
Propagation and branching strategies for job
shop scheduling minimizing the weighted energy

consumption

Andreas Bley and Andreas Linß

Universität Kassel, Institut für Mathematik, Heinrich-Plett-Straße 40, 34132 Kassel,
Germany, andreas.bley@uni-kassel.de, andreas.linss@uni-kassel.de

Abstract. We consider a job shop scheduling problem with time win-
dows, flexible energy prices, and machines whose energy consumption
depends on their operational state (offline, ramp-up, setup, processing,
standby or ramp-down). The goal is to find a valid schedule that min-
imizes the overall energy cost. To solve this problem to optimality, we
developed a branch-and-bound algorithm based on a time-indexed inte-
ger linear programming (ILP) formulation, which uses binary variables
that describe blocks spanning multiple inactive periods on the machines.
In this paper, we discuss the propagation and branching schemes used
in that algorithm. The strategies, which are specifically tailored for en-
ergy related machine scheduling problems, primarily aim to determine
and sharpen the activity profiles of the machines (and thus reduce the
number of the inactive block variables) and address the workload profile
of the tasks with lower priority. Computational experiments validate the
efficiency of those techniques.

Keywords: integer programming, machine scheduling, presolving, branch
and bound

1 Introduction

In recent years, energy awareness and increasing energy prices gained a lot of
attention in production planning. Various approaches to incorporate energy con-
sumption or costs into models and solution techniques for machine scheduling
problems have been proposed, see for example [7, 11]. Those models explicitly
consider different machine states, such as processing, standby or off, the tran-
sitions among these states, and the respective energy demands and durations
[3, 13]. Problems with time-dependent energy costs are typically modeled using
time-indexed formulations, which leads to huge ILP models. Even more, in con-
trast to classical objectives minimizing completion times, minimizing the energy
consumption leads to highly fractional solutions of the linear programming (LP)
relaxations. Thus, tailored model reduction and branching techniques are needed
to solve those models efficiently.

In this paper, we present such techniques for a variant of the job-shop schedul-
ing problem with flexible energy prices and time windows discussed in [5, 12]. An

2

overview of formulations for the classical job-shop scheduling problem is given
in [9]. A survey on alternative modelling and solution approaches for job-shop
scheduling can be found in [14].

2 Problem description and formulation

In our problem, the planning horizon [T] := {0, . . . , T −1} consists of T uniform
periods. For each t ∈ [T], we are given an energy price Ct ∈ R≥0, which is valid
during period t. Furthermore, we are given a set of (non-uniform) machines
M := {1, . . . , nM} and a set of jobs J := {1, . . . , nJ}. A job j ∈ J consists of
a list of tasks (j, k), j ∈ J , k ∈ Oj := [nj], nj ∈ N, which must be processed
in the order defined by Oj . Each task (j, k) must be setup and processed on a
predefined machine mj,k ∈ M . For each task (j, k), we are given its setup time
dsej,k ∈ N and its processing time dprj,k ∈ N. In addition, we are given a release
date aj ∈ [T] and a due date fj ∈ [T] for each job j ∈ J , which apply to the first
and the last task of the job, respectively. We let O := {(j, k) : j ∈ J, k ∈ Oj}.
OM

|m = {(j, k) ∈ O | mj,k = m} denotes the set of tasks (j, k) on machine m ∈ M .

In each period t ∈ [T], each machine m ∈ M must be in one of the operating
states off, processing, setup, standby, ramp-up or ramp-down, summarized as
S = {off, pr, se, st, ru, rd}. A machine is called active if its operating state is setup,
processing, or standby, otherwise it is called inactive, with the canonical switches
between the states and implications between tasks and machine states. The
duration of the ramp-up phase, changing from off to any state s ∈ {se, pr, st, rd},
is drum ∈ N. The duration of the ramp-down phase is drdm ∈ N. For each machine
m ∈ M and state s ∈ S, Ds

m is the energy demand of machine m in state s.
A feasible solution consists of the start time for each task’s processing and

a machine state for each machine and each period. Each task is processed non-
preemptively and each task’s setup immediately precedes (also non-preemptively)
its processing. The processing of a task can start only after the processing of
its predecessor has been completed, but its setup can already start while the
predecessor is processing (on another machine). The start of the first and the
completion of the last task of each job must obey this job’s release and due dates,
respectively. Only one task can be processed or set up on a machine simultane-
ously. A machine processing or setting up for a task must be in state processing
or setup, respectively. Otherwise, the machine can be active in standby or be-
come inactive ramping down, being off, or ramping up, respecting the ramping
durations and canonical state relations. At the beginning and the end of the
planning horizon, each machine must be off. Our goal is to find a solution whose
energy cost is minimized.

From the task precedences, the ramping, setup and processing times, and the
jobs’ release and due dates, we obtain for each task (j, k) ∈ OM

|m on machine m

the earliest period aj,k := max{aj , drum + dsej,0}+
∑k−1

q=0 d
pr
j,q and the latest period

fj,k := min{fj , T − drdm} −
∑|Oj |−1

l=k dprj,l when its processing may start.
We use a time-indexed formulation with binary variables to explicitly indicate

so-called breaks, i.e., inactive blocks of consecutive ramp-down–off –ramp-up pe-

3

riods on the machines, to avoid inequalities describing the ramping mechanism.
To use this type of variables also to model the initial and final ramping, we
extend the time window for each machine to Tm

+ := {−drdm, . . . , T + drum − 1} and
enforce that the machine is off in periods 0 and T . The energy price is set to
Ct = 0 for the artificial periods t ∈ Tm

+ \T . For each machine m, Bm denotes the
set of all feasible breaks (t0, t1), t0, t1 ∈ [Tm

+] and t1 − t0 ≥ drum + drdm, where the
machine is starting its ramp-down at t0, is off from t0 + drdm until t1 − drum − 1,
and in ramp-up from t1−drum to t1−1. In total, we have three types of variables:

– xj,k,t ∈ {0, 1} indicating iff task (j, k) ∈ O starts processing in period t ∈ [T],

– zstm,t ∈ {0, 1} indicating iff machine m ∈ M is in state standby in t ∈ [T],

– zm,br
t0,t1 ∈ {0, 1} indicating iff m ∈ M is in a break from t0 to t1, (t0, t1) ∈ Bm.

The associated objective coefficients ĉj,k,t and ĉbrm,t0,t1 express the total energy
cost induced by the setup and processing of task (j, k) if started in period t and
by a break from t0 until t1 on machine m, respectively.

We obtain the following integer programming formulation of the problem:

min
∑
m∈M

(∑
t∈[T]

(
CtD

st
mzstm,t +

∑
(j,k)∈OM

|m

ĉj,k,txj,k,t

)
+

∑
(t0,t1)∈Bm

ĉbrm,t0,t1z
m,br
t0,t1

)
(1)

∑
t∈{aj,k,...,fj,k}

xj,k,t = 1 (j, k) ∈ O (2)

t−dpr
j,k∑

q=0

xj,k,q −
t∑

q=0

xj,k+1,q ≥ 0 j ∈ J, k < |Oj |, t ∈ [T] (3)

∑
(j,k)∈OM

|m

min(t+dse
j,k,T−1)∑

q=max(t−dpr
j,k+1,0)

xj,k,q + zstm,t +
∑

(t0,t1)∈Bm:
t∈{t0,...,t1}

zm,br
t0,t1 = 1 m ∈ M, t ∈ [T] (4)

∑
(−drd

m,t1)∈Bm

zm,br
−drd

m,t1
= 1 m ∈ M (5)

∑
(t0,T+dru

m−1)∈Bm

zm,br
t0,T+dru

m−1 = 1 m ∈ M (6)

xj,k,t ∈ {0, 1} (j, k) ∈ O, t ∈ [T] (7)

zm,br
t0,t1 ∈ {0, 1} m∈M, (t0, t1) ∈ Bm (8)

zstm,t ∈ {0, 1} m∈M, t ∈ [T] (9)

The objective (1) describes the total energy cost. Equalities (2) ensure that each
task is started once. Constraints (3) describe the precedence relations between
consecutive tasks of each job. Equalities (4) enforce that each machine is ei-
ther processing or setting up a task or in a break or standby in each period.
Constraints (5) and (6) ensure each machine is offline in periods 0 and T .

4

3 Propagation and Presolving

In this section, we discuss several preprocessing and propagation techniques to
reduce the size of the proposed integer program (1)–(9) at the root node and
within the branch and bound tree. In practice, such reductions are of utmost
importance to efficiently solve large models. Many techniques such as detecting
dominating columns, bound tightening, and conflict analysis are implemented
in general purpose ILP solvers [1]. However, these techniques heavily exploit
problem-specific structures, whose (re-)detection from the model is computation-
ally expensive and available only for some very general types of substructures.
In our application, where the connection among precedence constraints and time
windows plays a key role, problem-specific techniques are necessary.

Precedence constraints and time windows. Throughout this section, we denote
by aj,k and fj,k the earliest and the latest period when task (j, k) ∈ O may
start its processing, respectively, at the current branch and bound node. This
time window may have holes, when task (j, k) is not allowed to start processing.
Pretending that there are no holes in [aj,k, fj,k], we first apply the constraint
propagation rules from [6] to detect locally valid precedence constraints and
tighten aj,k and fj,k.

Conflicts of breaks and tasks. Next, we try to infer implications stemming from
overlaps of time windows of tasks and a single break-variable. Clearly, the break
zm,br
t0,t1 on machine m ∈ M with (t0, t1) ∈ Bm cannot participate in any integer
feasible solution, if both t0 < aj,k+dprj,k and t1 ≥ fj,k−dsej,k hold for an arbitrary

task (j, k) ∈ OM
|m . This condition indicates that the break would conflict with

each possible start of processing of task (j, k).

Irrelevant breaks. A break-variable zm,br
t0,t1 , m ∈ M and (t0, t1) ∈ Bm, will not be

used in any optimal integral solution, if there is a combination of other break-
and standby-variables on machine m that exactly cover the periods from t0 until
t1 with a smaller objective. We detect those cases by enumerating all possible
covers with exactly one break. If all energy prices are non-negative, non-artificial
breaks before the first and after the last task on a machine are unnecessary.
Hence, break-variable zm,br

t0,t1 with t0 > 0 and t1 ≤ T can be eliminated if t0 ≤
min(j,k)∈OM

|m
(aj,k + dprj,k − 1) or if t1 ≥ max(j,k)∈OM

|m
(fj,k − dsej,k).

Clique information. Modern ILP solvers automatically generate clique inequal-
ities using a graph describing pairwise conflicts of binary variables, c.f. [1]. Not
all such conflicts are detected automatically. In our code, we explicitly add con-
flicts for pairs of break-variables if their combined lengths exceed the duration
of the overall time window T minus the sum of all task setup and processing
actions, the initial ramp-up, and the final ramp-down on the machine. More
explicitly, we add all conflicts between break variables zm,br

t0,t1 and zm,br
t2,t3 with

t3 − t2 + t1 − t0 + 2 > T + drum + drdm −
∑

(j,k)∈OM
|m
(dprj,k + dsej,k). In addition, the

5

clique constraints xj,k,t+
∑t+dpr

j,k−1+dse
i,l

q=t−dse
j,k−dpr

i,l+1
xi,l,q ≤ 1 for all pairs (j, k), (i, l) ∈ OM

|m
and (meaningful) periods t ∈ [T] are added to the conflict graph.

General presolving for task variables. Eventually, we apply the presolving and
constraint propagation rules available in the used ILP solver, see [1], for example.

4 Branching scheme

Our branching scheme consists of two rules. Our preferred branching aims to
interrupt longer intervals of consecutive fractional inactivity and forces the ma-
chine to either ramp-up or ramp-down completely. Both branches sharpen the
machine profile and typically increase the dual bound. To enforce integrality
of the activity of m in period t’, we create two child nodes, one forcing the
fractional (in)activity fm,t’ :=

∑
(t0,t1)∈Bm:t0≤t’≤t1

zm,br
t0,t1 to 0 and the other forc-

ing it to 1. The machine m ∈ M and the interval [q0, q1] ∈ Qm are chosen
to maximize (q1 − q0) ·

∑q1
t=q0

fm,t, where Qm denotes the set of all consec-
utive fractionally inactive intervals [q0, q1] ⊂ [Tm

+] on m. The chosen period
t’ = (

∑q1
t=q0

t·fm,t)/(
∑q1

t=q0
fm,t) interrupts the fractional activity of m in [q0, q1]

and forbids incomplete ramping in favorable periods.
If the first rule does not find an auspicious branching, we employ the branch-

ing of [2] to adjust the time windows of single tasks by branching on the as-

signment constraints (2). In contrast to [2], the task (k̂, ĵ) ∈ O to branch on

is chosen to maximize (r(ĵ, k̂) − l(ĵ, k̂)) ·
(∑r(ĵ,k̂)

t=l(ĵ,k̂)

∑
(j,k)∈OM

|m
xj,k,t

)−1
, with

l(j, k) = argmint∈[T]{xj,k,t > 0} and r(j, k) = argmaxt∈[T]{xj,k,t > 0}. This
modification prefers tasks that currently have small overlap with others, and so
branching on those tasks has a strong effect on the machine activity.

5 Results

In this section, we compare results obtained by applying the introduced tech-
niques in our branch-and-cut code in Scip [4] (with Gurobi 9.5.1 [8]), using
them to presolve the model solved by Gurobi, and using Gurobi as a stan-
dalone solver with default setting and aggressive presolving, but without our
presolving methods.

The instances presented here, with real energy prices from March 2021 of
Germany/Luxembourg, are derived from the instance la01 [10] by dividing all
processing times by 10 and ceiling to get processing and setup times and a
manageable time window (T = 120). Ramping times are chosen as 2

3 , 1, or 1.5
times the mean processing on each machine to derive instances with small (s),
medium (m) and large (l) ramping durations, respectively. The energy demands
are chosen as (Doff

m , Dru
m , Dse

m , Dpr
m , Dst

m, Drd
m) = (0, 10, 5, 8, 3, 6). The resulting full

models for s,m, and l have 31,198, 30,998, and 30,698 variables, respectively. The
table shows the number of variables after presolve (v), the number of branch and
bound nodes (NN), the primal-dual gap, and the dual bound after 3600s.

6

Table 1. Comparison of the effect of our propagation and branching rules

instance
la01 s la01 m la01 l

v NN gap dual v NN gap dual v NN gap dual

scip+pre+bra 12k 1.2k 0.00 124291 9k 591 0.00 132448 5k 6k 0.00 146503
gurobi+pre 14k 108k 0.00 124291 9k 9k 0.00 132448 6k 113k 0.00 146503
gurobi 19k 157k 0.16 124098 23k 42k 0.05 132387 12k 164k 0.26 146162

The results show that our techniques detect more reductions even than the
aggressive presolving of Gurobi. Only with our reductions the problem could be
solved to optimality within the time limit. Furthermore, our tailored branching
substantially reduced the number of branch-and-bound nodes that have been
explored. With our brachning and presolving Scip was able so solve the problems
as fast Gurobi with only our presolving and its default branching strategies,
despite running single-threaded versus Gurobi using up to 8 parallel threads.

6 Conclusion

We developed preprocessing and branching techniques that enable us to solve
time-indexed ILP formulations of job shop scheduling problems involving time
windows, machine states and energy costs to optimality. Our reduction and prop-
agation techniques outperform those implemented in standard ILP solvers and
can also be applied easily within the branch-and-bound tree. Our experiments
show that, in combination with tailored branching strategies, these techniques
effectively reduce the number of variables, drive the dual bound and substan-
tially reduce the size of the branch-and-bound trees, especially for instances with
relatively large ramping-durations. From our point of view, there is still some
need to improve the bounds on the task variables to obtain stronger dual bounds
and derive better primal solutions faster.

Acknowledgements This version of the contribution has been accepted for publi-
cation after peer review, but is not the Version of Record and does not reflect post-
acceptance improvements, or any corrections. The Version of Record is available online
at: https://dx.doi.org/10.1007/978-3-031-24907-5_68. Use of this Accepted Ver-
sion is subject to the publisher’s Accepted Manuscript terms of use
www.springernature.com/gp/open-research/policies/accepted-manuscript-terms.

References

1. Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve re-
ductions in mixed integer programming. INFORMS Journal on Computing 32(2),
473–506 (2020)

2. van den Akker, J.M., et al.: A polyhedral approach to single-machine scheduling
problems. Mathematical Programming 85(3), 541–572 (1999)

7

3. Benedikt, O., Sucha, P., Modos, I., Vlk, M., Hanzálek, Z.: Energy-aware production
scheduling with power-saving modes. In: Integration of Constraint Programming,
Artificial Intelligence, and Operations Research. pp. 72–81. Springer (2018)

4. Bestuzheva, K., et al.: The SCIP Optimization Suite 8.0. ZIB-Report 21-41, Zuse
Institute Berlin (2021)

5. Bley, A., Linß, A.: Job shop scheduling with flexible energy prices and time win-
dows. In: Operations Research Proceedings 2019, pp. 207–213. Springer (2020)

6. Brucker, P.: Scheduling and constraint propagation. Discrete Applied Mathematics
123(1), 227–256 (2002)

7. Gao, K., Huang, Y., Sadollah, A., Wang, L.: A review of energy-efficient scheduling
in intelligent production systems. Complex & Intelligent Systems 6(2), 237–249
(2020)

8. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022), https:
//www.gurobi.com

9. Jain, A., Meeran, S.: Deterministic job-shop scheduling: Past, present and future.
European Journal of Operational Research 113(2), 390 – 434 (1999)

10. Lawrence, S.: Resource constrained project scheduling: An experimental investiga-
tion of heuristic scheduling techniques (supplement). Tech. rep., Graduate School
of Industrial Administration, Carnegie-Mellon University (1984)

11. Nolde, K., Morari, M.: Electrical load tracking scheduling of a steel plant. Com-
puters & Chemical Engineering 34(11), 1899–1903 (2010)

12. Selmair, M., Claus, T., Herrmann, F., Bley, A., Trost, M.: Job shop scheduling
with flexible energy prices. In: Proceedings of the 30th ECMS (2016)

13. Shrouf, F., Ordieres-Meré, J., Garćıa-Sánchez, A., Ortega-Mier, M.: Optimizing the
production scheduling of a single machine to minimize total energy consumption
costs. Journal of Cleaner Production 67, 197–207 (2014)

14. Zhang, J., Ding, G., Zou, Y., Qin, S., Fu, J.: Review of job shop scheduling research
and its new perspectives under industry 4.0. Journal of Intelligent Manufacturing
30(4), 1809–1830 (2019)

