
Orometry, Intrinsic Dimensionality and
Learning:

Novel Insights into Network Data

Dissertation
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt im

Fachbereich Elektrotechnik/Informatik
der

Universität Kassel

von

Maximilian Stubbemann

Eingereicht am 27.04.2023

Verteidigt am 30.10.2023

iii

Declaration in accordance with § 8 of the General Provisions for Doctoral Degrees at the
University of Kassel dated 14.07.2021.

1. I herewith give assurance that the submitted dissertation
Orometry, Intrinsic Dimensionality and Learning:
Novel Insights into Network Data
is the product of my work alone.

2. I affirm that I have not used any sources or aids other than those explicitly cited. All
passages that are drawn from published or unpublished writings, either word-for-word
or in paraphrase, have been clearly identified as such.

3. The dissertation or parts of it

×� has/have not been used in another doctoral or tenure process in Germany or
abroad.

� has/have been submitted in another doctoral or tenure process in Germany or
abroad:

Title: -
University and year of submission: -
Type of examination or qualification: -
Published in: -

The submission refers to the following part(s) of the dissertation: -

4. Both, the submitted digital version and the submitted written copies are identical.

5. Third parties were not involved in the drafting of the content of this dissertation; most
specifically I did not employ the assistance of a commercial dissertation advisor.

6. In case of a cumulative dissertation: I have documented the participation of co-authors
by attaching a written statement signed by all of the co-authors outlining which parts
of jointly written contributions are attributed to which co-authors.

7. I confirm the correctness of the above mentioned statements.

Date Signature

v

Erklärung gemäß § 8 der Allgemeinen Bestimmungen für Promotionen der Universität
Kassel vom 14.07.2021.

1. Bei der eingereichten Dissertation zu dem Thema
Orometry, Intrinsic Dimensionality and Learning:
Novel Insights into Network Data
handelt es sich um meine eigenständig erbrachte Leistung.

2. Anderer als der von mir angegebenen Quellen und Hilfsmittel habe ich mich nicht
bedient. Insbesondere habe ich wörtlich oder sinngemäß aus anderen veröffentlichten
oder unveröffentlichten Werken übernommene Inhalte als solche kenntlich gemacht.

3. Die Dissertation oder Teile davon habe ich

×� bislang nicht an einer Hochschule des In- oder Auslands als Bestandteil einer
Prüfungs- oder Qualifikationsleistung vorgelegt.

� wie folgt an einer Hochschule des In- oder Auslands als Bestandteil einer
Prüfungs- oder Qualifikationsleistung vorgelegt:

Titel der Arbeit: -
Hochschule und Jahr: -
Art der Prüfungs- oder Qualifikationsleistung: -
Veröffentlicht in: -

Es handelt sich dabei um folgenden Teil der Dissertation: -

4. Die abgegebenen digitalen Versionen stimmen mit den abgegebenen schriftlichen
Versionen überein.

5. Ich habe mich keiner unzulässigen Hilfe Dritter bedient und insbesondere die Hilfe
einer kommerziellen Promotionsberatung nicht in Anspruch genommen.

6. Im Fall einer kumulativen Dissertation: Die Mitwirkung von Koautoren habe ich durch
eine von diesen unterschriebene Erklärung dokumentiert. Eine Übersicht, in der die
einzelnen Beiträge nach Ko-Autoren und deren Anteil aufgeführt sind, füge ich anbei.

7. Die Richtigkeit der vorstehenden Erklärungen bestätige ich.

Datum Unterschrift

Acknowledgements

First of all, I would like to thank Gerd Stumme for the mentorship throughout this journey.
The amount of self-determination, freedom and support I experienced during my time as a
PhD student was exceptionally high and contributed to the enjoyment of this very special
time. I had the opportunity to work on everything I was interested in and always got the
help and guidance needed. A special thank goes out to Tom Hanika, who taught me so many
things about how to write a publication and how to do research.

I am grateful for all the people of the Knowledge and Data Engineering Group at the
University of Kassel who crossed paths with me. This includes Johannes Hirth, Tobias Hille,
Maren Koyda, Maximilian Felde, Bastian Schäfermeier and Andreas Schmidt. I especially
appreciate the time I spent with my office partner, Dominik Dürrschnabel, who shared hours
of laughs and discussions about life in general and science in particular with me.

As my time as a PhD comes to an end, I can say with confidence that the creation
of this work would have taken fundamentally longer without Monika Vopicka and Björn
Fries. Monika organized and took care of so many things around the research itself. Björn
managed our growing collection of servers and GPUs in a way that allowed me to focus
solely on my research and experiments. Whenever I needed something, it was available in a
(often ridiculously) short amount of time. Last but not least, I thank my family for always
supporting me during this time and always being interested in and proud of the things I do
and achieve.

To Lena and Charlotte,
who brought joy into my life to an extent I could not have envisioned before.

Abstract

Today, networks are an integral part of our world. Let it be real-life friendship networks
or social connections that are based on social media. In this thesis, we contribute to the
understanding of networks by studying networks from three different perspectives. First, we
adapt notions and concepts from orometry to metric data and networks to gain novel
insights from a local perspective. Specifically, we study measures of local outstandingness
and propose concepts to derive small hierarchies from larger networks. These hierarchies are
originally designed for the sake of defining dominance relationships between mountain peaks.
Our adaption allows to identify outstanding entities on a local level and small hierarchies
between them. Second, we evaluate networks from a global perspective by computing
the intrinsic dimensionality of whole networks. Here, a low intrinsic dimensionality stands
for data with highly distinguishable data points, which is crucial for learning. To accomplish
this, we develop practical algorithms and speed-up techniques to transfer an axiomatically
grounded framework to large-scale graph data. Furthermore, as an application, we present a
feature selection method based on the developed method for computing intrinsic dimensions.
Third, we propose two novel deep learning methods for representation learning on
networks, leading to condensed perspectives on them. The first method learns embeddings
with the help of techniques from formal concept analysis. This approach leads to a novel
paradigm for embedding learning for bipartite graphs as it does not incorporate simple
neighborhood information but the concept lattice structure of the corresponding formal
context. The second method is a combination of a graph neural network and a language
model and is tailored for a special network structure and the special task of author verification.
This task deals with the verification of links between authors and publications. Our method
is designed such that it can process raw texts and also incorporates past co-authorship edges.

In conclusion, this thesis contributes to the understanding and investigation of networks
from a local, global, and condensed perspective. This is done by proposing novel measures
and structures for them based on orometric concepts and intrinsic dimensionality and by
providing novel learning methods for bipartite networks in general and author-publication
networks in specific.

Zusammenfassung

Netzwerke sind integraler Bestandteil unseres Lebens, seien es echte Freundschaftsnetzwerke
oder Verbindungen, welche auf sozialen Medien beruhen. In dieser Arbeit tragen wir dazu bei,
solche Netzwerke besser zu verstehen. Dafür studieren wir Netzwerke aus drei Perspektiven:

Erstens, adaptieren wir orometrische Konzepte auf metrische Daten und Netzw-
erke um diese Daten aus einer globalen Perspektive zu betrachten. Genauer gesagt
untersuchen wir Maße für lokale Herausragendheit und stellen Konzepte vor, welche es
ermöglichen Hierarchien von kleinen Teilmengen aus größeren Netzwerken abzuleiten.
Diese Hierarchien sind ursprünglich dafür gedacht um Dominanzbeziehungen zwischen
Berggipfeln darzustellen. Unsere Adaption auf Netzwerke führt zu überschaubaren Hierar-
chien zwischen herausragenden Akteuren und ist somit ein neuartiges Werkzeug im Rahmen
der Netzwerkanalyse. Zweitens evaluieren wir die intrinsische Dimensionalität eines
gesamten Netzwerkes um neue Einblicke aus einer globalen Perspektive zu erhalten.
Dafür entwickeln wir Algorithmen und Effizienztechniken um ein axiomatisch fundiertes
Framework für große Echtweltgraphen anwendbar zu machen. Zusätzlich erläutern wir eine
abgeleitete Methode zur Featureselektion, welche sich als kompetitiv zu repräsentativen
Baselines erweist. Drittens stellen wir zwei neuartige Deep-Learning Methoden für das
Repräsentationslernen auf Netzwerken vor, was zu kondensierten Perspektiven führt.
Die erste Methode lernt Einbettung mit der Hilfe des Begriffsverbandes eines formalen Kon-
textes. Dieses Vorgehen begründet ein neuartiges Paradigma zum Lernen von Einbettungen
auf bipartiten Graphen, welches nicht auf Nachbarschaften, sondern auf Verbandsstrukturen
beruht. Die zweite Methode kombiniert ein Graph Neuronales Netz mit einem Sprachmodell.
Diese Methode wurde für die Verifikation von Autorenschaften entwickelt. Sie erlaubt,
Textdaten und vergangene Ko-Autorenschaften in den Klassifikationsprozess einzubringen.

Zusammenfassend leistet diese Arbeit einen Beitrag zur Untersuchung und Verarbeitung
von Netzwerken durch die Einführung neuer Maße und Strukturen basierend auf orometrischen
Konzepten und der intrinsischen Dimensionalität. Außerdem stellen wir neuartige Lernmeth-
oden für spezielle Klassen von Netzwerken vor.

Table of Contents

I Foundations 1

1 New Perspectives on Network Data 3
1.1 Motivation . 3
1.2 Detailed Contribution . 5

2 Methodical Foundations 9
2.1 The Network Model . 9
2.2 Graphs . 10
2.3 Metric Spaces and Relative Neighborhood Graphs 13

2.3.1 From Metric Spaces to Graphs . 14
2.4 Formal Concept Analysis . 16
2.5 Learning and Classification . 19
2.6 Neural Networks . 21

2.6.1 Training of Neural Networks . 23
2.7 Neural Networks for Texts and Graphs . 24

2.7.1 Neural Networks for Texts . 24
2.7.2 Graph Neural Networks . 24

2.8 Representation Learning . 26

II Landscapes and Orometric Methods 29

3 Prominence and Isolation 31
3.1 Introduction . 31
3.2 Related Work . 32
3.3 Landscapes . 33
3.4 Prominence and Isolation . 34

xvi Table of Contents

3.5 Prominence in Metric Spaces . 35
3.6 Experiments . 38

3.6.1 Binary Classification Task . 40
3.7 Conclusion and Outlook . 43

4 Mountain Graphs and Line Parent Trees 47
4.1 Introduction . 47
4.2 Related Work . 49
4.3 Mountain Graphs . 50
4.4 Line Parent Trees . 55
4.5 Discarding Edges via Relative Neighborhood Graphs 57
4.6 Mountain Graphs and Line Parents of Real-World Networks 59

4.6.1 Comparison with Sampling Approaches 61
4.6.2 Distances to Line Parent Trees . 62

4.7 Experiments on Random Data . 63
4.8 Conclusion and Future Work . 65

III Intrinsic Dimensionality 69

5 Intrinsic Dimensionality for Large-Scale Geometric Learning 71
5.1 Introduction . 71
5.2 Related Work . 72
5.3 Intrinsic Dimensionality . 73

5.3.1 Intrinsic Dimension of Finite Data 75
5.3.2 Computing the Intrinsic Dimension of Finite Data 78

5.4 Intrinsic Dimension for Large-Scale Data 80
5.4.1 Computing Intrinsic Dimension via Support Sequences 82
5.4.2 Estimating Computational Costs 84

5.5 Intrinsic Dimension of Real-World Graph Data 85
5.5.1 Choosing Support Sequences . 87
5.5.2 Neighborhood Aggregation and Intrinsic Dimension 88
5.5.3 Synthetic Data . 91
5.5.4 Approximation of Intrinsic Dimension on Large-Scale Data 92

5.6 Errors of Random Data . 93
5.7 Conclusion and Future Work . 94

Table of Contents xvii

6 Selecting Features by their Resilience to the Curse of Dimensionality 95
6.1 Introduction . 95
6.2 Related Work . 96
6.3 Feature Selection via Discriminability . 97

6.3.1 Selection of Discriminating Features 98
6.3.2 Discarding Highly Correlated Features 98

6.4 Feature Selection for Large-Scale Data . 99
6.4.1 Error Ratios of Approximations 100

6.5 Experiments . 102
6.5.1 Feature Selection for Logistic Regression 103
6.5.2 Feature Selection for Graph Neural Networks 105

6.6 Parameter Study on Maximal Errors . 106
6.6.1 Results and Discussion . 106

6.7 Conclusion and Future Work . 108

IV Machine Learning 109

7 FCA2VEC: Representation Learning via Formal Concept Analysis 111
7.1 Introduction . 111
7.2 Related Work . 112
7.3 Word2Vec . 112

7.3.1 The Skip-Gram and the Continuous Bag of Words Architecture . . 114
7.4 Object2Vec and Attribute2Vec . 115

7.4.1 Skip Gram in the Realm of Object2Vec 115
7.5 Clustering Attributes with FCA2VEC . 117
7.6 Conclusion and Future Work . 119

8 LG4AV: Combining Language Models and Graph Neural Networks for Author
Verification 121
8.1 Introduction . 121
8.2 Related Work . 122
8.3 Problem . 123
8.4 Combining Language Models and Graph Neural Networks for Author Verifi-

cation . 124
8.4.1 The Language Model . 125
8.4.2 Author Tokens . 126

xviii Table of Contents

8.4.3 Choice of the Graph Neural Network 126
8.4.4 LG4AV . 126

8.5 Experiments . 127
8.5.1 Ablation Study . 131

8.6 Conclusion and Outlook . 133

V Conclusion and Outlook 135

9 Conclusion 137

10 Outlook 141

List of Figures 143

List of Tables 145

References 147

Part I

Foundations

Chapter 1

New Perspectives on Network Data

This thesis focuses on the investigation of network data. Our overall aim is to provide novel
quantities, structures and learning methods for such data. We start this thesis by motivating
our goal of studying networks from different perspectives. Furthermore, we discuss our
contributions to these perspectives.

1.1 Motivation

Networks are all around us. Let it be co-purchasing networks of products on Amazon or
networks in academic environments, such as co-author networks of academic authors and
citation networks of publications. The systematic study of network structures is known
as social network analysis, an established topic with a tremendous amount of ongoing
research. The extensive interest in this topic has consequently led to a variety of text
books [117, 153, 135] that deal with its fundamentals.

In this thesis, we contribute to the understanding of networks by presenting novel notions
that provide insides into them. To achieve this, we study networks from three perspectives.

The first perspective that we study is the local perspective to which we contribute with
the introduction of novel notions and structures. To be more detailed, we identify crucial
connections between nodes that are outstanding on a local level, i.e., with respect to their
surrounding. For this, we adapt concepts from orometry. Orometry is a sub-discipline of
geography and deals with the measurement, evaluation and categorization of mountains. In
this realm, a variety of notions were established to identify locally outstanding mountain
peaks and hierarchic connections between them. In this thesis, we adapt these mountain
measures and structures from orometry to metric and network data.

4 New Perspectives on Network Data

Recently, more and more research has focused on machine learning on graphs, motivated
by the fact that classification tasks regularly arise in the domain of networks. Examples are
the prediction of subject areas of publications in citation networks or category predictions
in co-purchasing networks of products. Furthermore, the important task of link prediction,
i.e., predicting whether there will be or is an edge between two nodes, can be interpreted as
a binary classification task on node pairs. When it comes to learning on real-world data, a
phenomenon that is regularly discussed is the curse of dimensionality. This term is often used
for a collection of obstacles that arise in high-dimensional learning [16, 111, 27]. In Pestov
[122], it is defined as the phenomenon of (some) features concentrating at specific regions.
Thus, different data points can not be discriminated and the data is considered to be of a high
intrinsic dimensionality (ID). While intrinsic dimensionality in general is widely investigated,
it is an open problem how to measure intrinsic dimensionality in networks and how this
notion would relate to the success of learning in such structures. We tackle this problem with
an adaption which leads to new insights about the complexity of different networks. The
notion of intrinsic dimensionality allows us to quantify the complexity of a whole network
and thus creates novel insights from a global perspective, which is the second perspective
studied in this work.

Our contribution to network analysis will not only consist of defining novel structures and
quantities to investigate them. We also provide novel learning for architectures them. This
leads to the incorporation of network structure into real-valued weights of neural networks.
This learning of representations for complex structures allows us to study networks from a
condensed perspective.

Our first architecture will be suited to the class of bipartite graphs which occur in a variety
of settings, such as the above mentioned author-publication graphs and purchasing graphs
between customers and products. In such circumstances, the graphs correspond to formal
contexts, one of the main structures of interest in Formal Concept Analysis (FCA) [58]. We
use this connection to introduce a completely novel learning approach that allows to embed
nodes from bipartite networks by using the concept lattice of the corresponding formal
context. This route has not been followed before.

Afterwards, we consider the specific classification task of author verification. Here, the
task is to verify links in a bipartite author-publication network. We contribute to this specific
direction of research with a novel architecture that combines graph neural networks (GNNs)
with language models (LMs). Our architecture is especially suited for verification tasks
where additional edges between authors are available.

1.2 Detailed Contribution 5

1.2 Detailed Contribution

We contribute to the understanding of networks and learning on them by following the routes
alluded in Section 1.1. The contribution of this thesis can be formulated as follows.

We provide novel insights into network data from different perspectives by trans-
ferring orometric concepts and notions of intrinsic dimensionality to them and by
proposing learning architectures for representation learning on specific types of net-
works.

As mentioned, this results into insights from a global, a local and a condensed perspective.
Our detailed contribution to the three perspectives are as follows.

We transfer orometric concepts to metric data and networks for local insights. In Part II,
we continue the transfer of (topographic) prominence and isolation from the realm of orom-
etry. We build on recent work [133] which transferred them to graphs. In this thesis, we
establish these measures to bounded metric spaces with the help of graph structures that
are derived from pairwise distance information. Lemma 3.12 shows that this is a natural
generalization of the prominence term coined by Schmidt and Stumme [133].

Furthermore, we close the bridge between network analysis and orometry by defining the
abstract structure of landscapes, i.e., graphs with height and distance information. For this
structure, we are able to establish additional concepts from the realm of mountain peaks. This
leads us to the line parent hierarchy of a network, which displays dominance relationships
between locally outstanding nodes. This line parent hierarchy is a derived structure which
leads to insights into networks that have not been present before.

We study the intrinsic dimensionality of network data for global insights. In Part III,
we bridge the gap between learning on networks and the concept of intrinsic dimensionality
by defining notions of intrinsic dimensionality for graph datasets and by linking them to the
success of classification performances of GNNs. In order to do so, we take the mathematical
foundation from Hanika et al. [70] for geometric datasets to give an explicit formula for
the intrinsic dimensionality of finite data. To establish intrinsic dimensionality as a tool
for network analysis, we propose speed-up techniques that allow to exactly compute the
intrinsic dimensionality of networks with millions of nodes. Furthermore, by using novel
approximation methods, we show that we can approximate the ID of ogbn-papers100M, a
citation network with over 100 millions of nodes and over a billion of edges with an accuracy
of over 99.9%. We additionally develop feature selection methods based on our notion of

6 New Perspectives on Network Data

intrinsic dimensionality. We show that features that lower the ID are crucial for learning
success, both for Euclidean and network data.

We develop novel learning procedures for networks for condensed insights. In Part IV,
our contribution is two-fold. First, we propose a novel learning approach for bipartite
networks. This is done by using the formal concepts of the formal context which correspond
to the bipartite graph. Our approach adapts word2vec [107, 108], which is originally designed
for word embeddings. More specifically, we train a neural network on predicting for an object
or attribute the objects or attributes it shares formal concepts with. This leads to the derivation
of an embedding procedure which is not based on simple neighborhood aggregation, but on
the lattice of concepts.

Second, we investigate a more concrete network type from a specific field of application.
This concrete application is author verification, i.e., the task of verifying if a specific
document is written by a specific author. To tackle this problem, we propose LG4AV, a
novel architecture that combines a graph neural network with a language model. LG4AV
is especially tailored for the application in scientific domains, i.e., authorship verification
on research papers. Here, we work with a specific network structure, a bipartite graph of
publications and their authors and, additionally, a co-author structure solely living on the
authors. LG4AV processes raw text information via a language model and co-author edges
by doing multiple rounds of neighborhood aggregation at the input layer.

To sum up, we contribute to the understanding of networks and learning on them by
adapting orometric concepts to them, by computing and approximating intrinsic dimensional-
ity on them, and by proposing novel learning procedures for special forms of networks. The
following publications are incorporated into this thesis.

Chapter 3: [140] Stubbemann, M., Hanika, T., and Stumme, G. (2020). Orometric methods
in bounded metric data. In Berthold, M. R., Feelders, A., and Krempl, G., editors,
Advances in Intelligent Data Analysis XVIII - 18th International Symposium on Intelli-
gent Data Analysis, IDA 2020, Konstanz, Germany, April 27-29, 2020, Proceedings,
volume 12080 of Lecture Notes in Computer Science, pages 496–508. Springer

Chapter 4: [143] Stubbemann, M. and Stumme, G. (2023). The mont blanc of twitter:
Identifying hierarchies of outstanding peaks in social networks. In Machine Learning
and Knowledge Discovery in Databases: Research Track - European Conference,
ECML PKDD 2023, Turin, Italy, September 18-22, 2023, Proceedings, Part III, volume
14171 of Lecture Notes in Computer Science, pages 177–192. Springer

1.2 Detailed Contribution 7

Chapter 5: [139] Stubbemann, M., Hanika, T., and Schneider, F. M. (2023a). Intrinsic
dimension for large-scale geometric learning. Transactions on Machine Learning
Research

Chapter 6: [141] Stubbemann, M., Hille, T., and Hanika, T. (2023b). Selecting features by
their resilience to the curse of dimensionality. CoRR, abs/2304.02455

Chapter 7: [43] Dürrschnabel, D., Hanika, T., and Stubbemann, M. (2022). FCA2VEC:
Embedding techniques for formal concept analysis. In Missaoui, R., Kwuida, L., and
Abdessalem, T., editors, Complex Data Analytics with Formal Concept Analysis, pages
47–74. Springer International Publishing

Chapter 8: [142] Stubbemann, M. and Stumme, G. (2022). LG4AV: Combining language
models and graph neural networks for author verification. In Bouadi, T., Fromont,
É., and Hüllermeier, E., editors, Advances in Intelligent Data Analysis XX - 20th
International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France,
April 20-22, 2022, Proceedings, volume 13205 of Lecture Notes in Computer Science,
pages 315–326. Springer

The paper Dürrschnabel et al. [43] is a joint work with Dominik Dürrschnabel and Tom
Hanika. The author of this thesis first-authored all content parts which are contained in this
thesis and designed and conducted all experiments which are introduced. Futhermore, the
author of this thesis first-authored all other publications above and designed and conducted
all experiments within them.

Chapter 2

Methodical Foundations

Our methodical foundations are split in two parts. We start by introducing a conceptualization
of networks. Afterwards, we introduce the important notions and concepts that are used
throughout this thesis.

2.1 The Network Model

The social phenomena which underlie different kinds of networks are of varying nature
and complexity. Network science is therefore connected to a variety of disciplines, such
as sociology and philosophy. To study networks from the perspective of mathematics and
computer science, a mathematical conceptualization is needed. In Brandes et al. [23], the
authors aim to give a conceptualization of the different levels of network analysis. The
conceptualization consists of three stages:

1. A general phenomenon...

2. from which a network concept is derived via abstraction...

3. ... from which concrete network data can generated via a representation.

An example given in Brandes et al. [23] are friendships. The general phenomenon friendship
is abstracted to friendship networks. Concrete network data of a specific group of people, for
example of a specific school class, can be represented by a mapping from the pairs of pupils
to, for example, [0,1], which represents the intense of friendship.

In Brandes [21], networks are defined as mappings x : D →W where D ⊆N ×A is
a set of dyads between nodes n ∈N and affiliations a ∈ A and W is a set of values. If
N = A , D is called an interaction domain and x an one-node network. if N ∩A = /0, then

10 Methodical Foundations

D is called an affiliation domain and x a two-mode network. An example of a one-node
network could be given by N being a set of academic authors and x mapping paris of
authors to the Jaccard-index of their set of publications, i.e., the fraction of their common
publications and the publications that at minimum one of them has co-authored. An example
of a two-mode network could be given by N being a set of authors, A , a set of publications
and x : D →{0,1} indicating for (n,a) whether n co-authored a.

To sum up, networks map dyads of entities to values. If D = N ×N and W = {0,1},
networks correspond to directed, unweighted graphs. If W ⊆R≥0, we can interpret networks
as directed, weighted graphs. In both cases, we interpret x(m,n) = 0 as the absence of
an edge between m and n. From this point of view, the above definition contains graphs
with edge attributes, i.e., graphs where edges have potential real-valued attribute vectors.
Furthermore, if we interpret each node n ∈N with the dyad (n,n), the network definition
also allows attribute vectors for nodes of graphs.

In this thesis, we will investigate two structures that are related to the network definition
above. The first one are graph datasets, i.e., graphs where each node is associated to an
additional real-valued attribute vector. The second one are landscapes, i.e., graphs where
nodes are equipped with a non-negative “height” and where we can measure pairwise
distances between nodes via an external metric.

In contrast to the above strict definition of networks, other authors often do not make a
clear distinction between networks and graphs. In this perspective, a graph is the mathematical
structure to model real-world networks. Close to this, Brandes and Erlebach [22] refers to
network as the informal concept of objects and interactions and connections between them
while graphs are the abstract mathematical objects to formalize them.

In the area of doing machine learning on such structures, the terms graph and networks
are often used interchangeable, dropping the distinction above. For the rest of this thesis, we
will follow this convention.

2.2 Graphs

As mentioned above, the mathematical structure to represent networks are graphs, which we
define in the following. For a detailed introduction into graph theory, we refer to Diestel [41].

Definition 2.1 (Graphs and Neighbors)
A graph is a tuple G = (V,E) with V being a set and E ⊆

(V
2

)
. We call V the nodes or vertices

of G and E the edges of G. For each node v ∈V , we call NG(v) := {v1 ∈V | {v,v1} ∈ E} the

2.2 Graphs 11

A D

E

C

B

2

0.5

2

1

1.5

Figure 2.1: Example of a weighted graph. Circles denote nodes, lines edges. Numbers next
to edges denote edge weights.

neighbors of v. Furthermore, we call degG(v) := |NG(v)| the degree of v. If G can be omitted
without confusion, we simply write deg(v) and N(v).

Note that according to our definition, graphs are undirected and we do not allow for
self-loops as for all v ∈V it holds that {v,v}= {v} ̸∈

(V
2

)
. In contrast, to get directed graphs,

we would require that E ⊆V ×V . In real-world networks, the importance of different edges
may vary. In co-author graphs for example, some edges may correspond to pairs of authors
which cooperate often and thus are strongly connected while other edges may represent rare
co-authorships between authors with a low connection. Such information can be incorporated
into the graph via edge weights.

Definition 2.2 (Weighted Graphs)
Let H = (V,E) be a graph. We call a function w : E→ R>0 a weighting function of H. We
call w(E) the weight of w. We call the triple G = (V,E,w) a weighted graph.

A sketch of a weighted graph is given in Figure 2.1. Often, one considers only subsets of
the nodeset with the corresponding edge sets. These smaller graphs are called subgraphs.

Definition 2.3 (Subgraphs and Supergraphs)
Let G1 = (V1,E1) and G2 = (V2,E2). If V1 ⊆V2 and E1 ⊆ E2, we call G1 a subgraph of G2

and G2 a supergraph of G1. If E1 = E2∩
(V1

2

)
, we call G1 an induced subgraph of G2. In this

case, we write G2[V1] := G1.

A widely investigated class of networks are connections between (academic) authors
and publications. A graph structure arises by the question which author has written which
publication. The resulting graph has a special structure as the node set can be separated into
two subsets (the authors and the publications) such that there exists no edge within one of
these two subsets. Such graphs are regularly considered in the realm of network analysis.
They are called bipartite graphs.

12 Methodical Foundations

Tom Hanika
Maximilian Stubbemann

Gerd Stumme

Dominik Dürrschnabel Gerd Stumme Dominik Dürrschnabel

Maximilian StubbemannTom Hanika

Figure 2.2: A co-author graph as a projection from an author-publicationsgraph. The edges
are weighted via Jaccard distances.

Definition 2.4
Let B = (V,E) be a graph with E ̸= /0. Let V1,V2 ⊆V be two subsets with V1∩V1 = /0 and
V1∪V2 =V such that for all e ∈ E:

e∩V1 ̸= /0 ̸= e∩V2.

We then call B bipartite and we call {V1,V2} a bipartition of B.

Following the convention to not distinguish between graphs and networks, we will
additionally speak of bipartite networks. (Weighted) graphs often can be derived from
bipartite graphs by considering one set of a bipartition and connect them if they have
common neighbors in the original graph.

Definition 2.5
Let B = (V,E) be a bipartite graph with a bipartition {V1,V2}. We call the graph G = (V1,E1)

with E1 := {{v1,v2} |NG(v1)∩NG(v2) ̸= /0} the projection of B on V1. The Jaccard-similarity
weighting function is given via

wJCS,V1 : E1→ R≥0,{v1,v2} 7→
|NB(v1)∩NB(v2)|
|NB(v1)∪NB(v2)|

,

If w(u,v) < 1 for all u ̸= v ∈ V , the Jaccard-distance weighting function is given via the
formula wJCD,V1 := 1−wJCS,V1 .

Examples of graphs that arise as as projections are for example given by co-occurrences
of movie actors or co-author graphs which are projections on the authors from the above
mentioned bipartite author-publicationgraphs. A small sketch of such a projection with edges
weighted via Jaccard-distance weighting is given by Figure 2.2.

2.3 Metric Spaces and Relative Neighborhood Graphs 13

In this thesis, especially to study orometric concepts in Part II, we will need graphs as a
structure to “traverse” through a node set. Furthermore, we will often need the information,
how far away different nodes of a graphs are. For both of these, we will need the concepts of
walks and paths in graphs.

Definition 2.6 (Walks and Paths)
Let G = (V.E) be a graph. A sequence p = (vi)

n
i=0 with n ∈N0 of V is called a walk if for all

i ∈ {1, . . . ,n} it holds that {vi−1,vi} ∈ E. We call a walk a path if for all i ̸= j ∈ {1, . . . ,n}
it holds that vi ̸= v j or {i, j} = {1,n}. We call start(p) := v0 the starting point of p and
end(p) := vn the end point of p.

Note, that this definition allows walks of length 0 which consist only of one node. Often,
we will assume that our graph is connected, i.e., that we can reach every node from each
other node via walks. If not, we will often just work with the largest set of nodes that fulfills
this property.

Definition 2.7 (Connectivity and Connected Components)
Let G = (V,E) be a graph. We call G connected if for all v1,v2 ∈ V there exist a walk
between v1 and v2. If V1 ⊆V such that G[V1] is connected and that for all V2)V1 the graph
G[V2] is not connected, we call G[V1] a connected component of G. We call the connected
components with the largest node sets the biggest connected components of G.

2.3 Metric Spaces and Relative Neighborhood Graphs

The other data structure we will regularly use in this work is the metric space.

Definition 2.8 (Metric Space and Boundedness)
A tuple (M,d) consisting of a set M and a function d : M×M→R≥0 is called a metric space
if

• ∀x,y ∈M : d(x,y) = 0⇔ x = y, called positivity,

• ∀x,y ∈M : d(x,y) = d(y,x), called symmetry and

• ∀x,y,z ∈M : d(x,z) = d(x,y)+d(y,z), called triangle inequality.

We call d a metric or distance (function) on M. If furthermore

sup
x,y∈M

d(x,y)< ∞,

14 Methodical Foundations

we call M bounded. If clear from context, we may omit d and call M a metric space.

Metric data is fundamental to data science, as a large amount of datasets has a form
which allows to compute distances between different data points. Often, the data points are
elements of Rd . In such cases distances are regularly measured via ln- metrics, which are
given via

ln : Rd×Rd → R≥0,(x,y) 7→ n

√√√√ d

∑
k=1
|xk− yk|n

For n = 1, we speak of the Manhattan metric and n = 2 gives us the standard Euclidean
metric.

Definition 2.9 (Shortest Path Distance)
Let G = (V,E,w) be a finite, weighted and connected graph. Let p = (vi)

n
i=0 be a path. The

length of the path p is defined via l(p) := ∑
n
i=1 w({vi−1,vi}). For v1,v2 ∈ V we define the

shortest path distance via

dSP(v1,v2) =

0 v1 = v2

min{l(p) | p path from v1 to v2} v1 ̸= v2.

For unweighted graphs G = (V,E), the shortest path is defined via the shortest path distance
of the weighted graph with constant edge weights of 1.

Note, that in the unweighted case, the length of a path is the amount of elements in the
path except for the starting point. Using our definition of weighted graphs where we require
that w(e)> 0 for all e ∈ E, it is common knowledge that the shortest path distance indeed
defines a metric on V .

2.3.1 From Metric Spaces to Graphs

The shortest path metric allows us to measure distances in graphs. For some applications
we will be interested in the opposite, i.e., in a possibility to generate a graph structure based
on metric information. This will give us the ability to traverse from point to point through a
metric space. A first approach is to connect each point to points that are close with respect to
the given metric.

Definition 2.10 (Nearest Neighbor Graph and Fixed Radius Neighbor Graph)
Let (M,d) be a metric space. If the set M is finite, we define the nearest neighbor graph

2.3 Metric Spaces and Relative Neighborhood Graphs 15

Figure 2.3: Neighborhood Graphs for randomly distributed points in R2 equipped with the
euclidean metric.

GM = (M,EM) via

EM := {{m,n} ∈
(

M
2

)
| d(m,n) = min

n1 ̸=m
d(m,n1)}.

Let δ > 0. We define the δ -radius graph or δ -step graph, denoted by GM,δ , as the tuple(
M,EM,δ

)
via

EM,δ := {{m,n} ∈
(

M
2

)
| d(m,n)≤ δ}.

While these graphs are intuitive solutions for deriving a graph structure from a metric
space, they have the shortcoming that the resulting graph may not be connected. Another
approach to get a graph structure is given by connecting two points if there is no third point
which is closer to both of them. As we will see, this will indeed result in a connected graph.

16 Methodical Foundations

Definition 2.11 (Relative Neighborhood Graph)
Let (M,d) be a metric space. Then, we define the relative neighborhood graph (RNG)
RNG(d) = (M,ERNG(d)) via

{m1,m2} ∈ ERNG(d)⇔ @m3 ∈M : max{d(m1,m3),d(m2,m3)}< d(m1,m2).

The RNG was first proposed by Toussaint [147] where it was also shown that for finite
point sets in R2 the RNG is a supergraph of the minimum-spanning-tree which implies the
connectivity [80]. Because RNGs are commonly only studied for points in Rd equipped with
an lp metric we could not find a proof for the connectivity of the RNG for arbitrary finite
metric spaces. Hence, we prove it here.

Theorem 2.12 Let (M,d) be a finite metric space. Then RNG(d) is connected.

Proof. Assume that RNG(d) is not connected. As M is finite we can choose an unconnected
pair (m1,m2) ∈ M×M such that d(m1,m2) is minimal. Since m1,m2 are not connected
they are especially not adjacent in RNG(d). Thus, we find m3 ∈M such that d(m1,m3)<

d(m1,m2) and d(m2,m3) < d(m1,m2). As m1,m2 are chosen as the pair with the minimal
distance among the unconnected pairs, the pairs (m1,m3) and (m2,m3) are both connected.
Hence, we would have a connection from m1 to m2.

A sketch of deriving neighbor graphs and radius graphs from a metric space is given
in Figure 2.3.

2.4 Formal Concept Analysis

Bipartite graphs can be interpreted as a relation between the two distinct partition classes.
This leads to a natural connection between network analysis and Formal Concept Analysis
(FCA) [58] that we will use in Chapter 7 to generate condensed views for bipartite networks.
In the following, we recall basic notions from FCA which are needed in this thesis. For a
detailed introduction to the whole topic we refer the reader to Ganter and Wille [58]. For our
small introduction, we will also need two concepts from order theory, namely orders and
lattices. Their definitions are also taken from Ganter and Wille [58].

Definition 2.13 (Order)
A binary relation ≤ on a set M that fulfills for all x,y,z ∈M the following conditions:

• x≤ x, called reflexivity,

2.4 Formal Concept Analysis 17

• if x≤ y and y≤ x, then x = y, called antisymmetry,

• if x≤ y and y≤ z, then x≤ z, called transitivity,

is called an order on M. We then call (M,≤) an ordered set.

To define lattices, we first need the notions of infimum and supremum.

Definition 2.14 (Infimum and Supremum)
Let (M,≤) be an ordered set. If for a subset A ⊆ M there exist a unique largest element
m ∈M (with respect to the order) such that m≤ a for all a ∈ A, we call m the infimum of A.
If there is a unique lowest element (with respect to the order) m ∈M such that a≤ m for all
a ∈ A, we call m the supremum of A.

Complete lattices are the orders where every infimum and every supremum exist.

Definition 2.15 (Complete Lattice)
We call an ordered set (M,≤) a complete lattice if the infimum and supremum of every
A⊆M exists.

We now have the few notions from order theory at hand that will be used in the following.
A formal context can be defined as follows.

Definition 2.16 (Formal Context)
A formal context is a triple K= (G,M, I) with I ⊆G×M. We call G the objects of K and M
the attributes of K. If (g,m) ∈ I we say “object g has attribute m”. We call a set A⊆ G an
object set of K and a set B⊆M an attribute set of K.

Formal contexts can be graphically represented by cross-tables. An example can be found
in Figure 2.4. The key operator in FCA is the derivation which maps objects (attributes) to
the attributes (objects) which they are in relation with.

Definition 2.17 (Derivation Operators)
Let K= (G,M, I) be a formal context. The object derivation is given by the map

·′ : P(G)→ P(M),A 7→ A′ := {m ∈M | ∀g ∈ A : (g,m) ∈ I}

and the attribute derivation via

·′ : P(M)→ P(G),B 7→ B′ := {g ∈ G | ∀m ∈ B : (g,m) ∈ I}.

18 Methodical Foundations

Note, that we use the same notation for the object and attribute derivation. For S′, whether
the object or attribute derivation is meant can be concluded from the fact whether S is a set
of objects or attributes. For the sake of simplicity, we use for an object g ∈ G the notation
g′ instead of {g}′ and talk about the derivation of an object. The same holds for attributes
a ∈ A. Furthermore, if S is an object set or an attribute set, we call the set S′′ the closure of S.

The key entities of investigation in FCA are pairs of objects A and attributes B where B is
the set of attributes that each object in A has and A is the set of objects to which all attributes
of A are incident.

Definition 2.18 (Formal Concepts, Extents and Intents)
A formal concept of a formal context K= (G,M, I) is a pair C = (A,B) ∈ P(G)×P(M) such
that

A′ = B ∧ B′ = A.

We denote by B(K) the set of all formal concepts of K. For a formal concept C = (A,B), we
call A the extent of C and we call B its intent.

Definition 2.19 (Superconcepts, Subconcepts and Concept Order)
Let (A,B),(C,D) be formal concepts of a formal context K= (G,M, I). We define a partial
order on the set of all formal concepts of K via

(A,B)≤ (C,D)⇔ A⊆C. (2.1)

If Equation (2.1) holds, we call (A,B) a subconcept of (C,D) and (C,D) a superconcept of
(A,B). We call

B(K) := (B(K),≤)

the concept lattice of K.

The structure B(K) is, as its name suggests, a lattice.

Theorem 2.20 (Part 1 of the Basic Theorem on Concept Lattices) [58, Theorem 3, Part 1]
The ordered set B(K) is a complete lattice and for a set C = {(Ai,Bi) | i ∈ I} ⊆B(K) it
holds that

sup(C) =

(
(
⋃
i∈I

Ai)
′′,
⋂
i∈I

Bi

)
,

inf(C) =

(⋂
i∈I

Ai,(
⋃
i∈I

Bi)
′′

)
.

2.5 Learning and Classification 19

P1 P2 P3 P4 P5

Maximilian Stubbemann × × ×
Gerd Stumme × × × ×
Dominik Dürrschnabel × ×
Tom Hanika × ×

Gerd Stumme Tom Hanika

Maximilian Stubbemann

Dominik Dürrschnabel
P3

P1

P5 P4, P2

Figure 2.4: Left: The formal context that corresponds to the bipartite graph in Figure 2.2.
Right: Its concept lattice. The lattice is can be read as follows: The nodes represent concepts.
For each node, the objects that are at nodes below (including the node itself) are contained in
the extent and all attributes at nodes above it (including the node itself) are contained in the
intent.

An example of a formal context and the corresponding concept lattice can be found
in Figure 2.4. The concept lattice is the central structure studied in FCA. The elements of
the concept lattice, i.e., the formal concepts as defined in Definition 2.18 will be the key to
generate the embeddings in Chapter 7.

2.5 Learning and Classification

A substantial amount of this work will be connected to the realm of machine learning.
In Part III we study its connection to intrinsic dimensionality and Part IV is dedicated to the
development of machine learning approaches for specific networks. Machine learning deals
with the question of “[..] how to construct computer programs that automatically improve
with experience”, as stated by Mitchell [111, p. xv]. We will use the following formalization.

Definition 2.21 (Learning [111, p.2])
A computer program learns from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T , as measured by P, improves with
experience E.

In this thesis, the experience will be made through data, i.e., observations encoded as
elements of a set. Here, the data which is used to learn will be called the training data.
Today, learning procedures are separated by the question whether they learn with the help of
additional ground truth information. To be more detailed, learning a function that maps inputs
to some kind of output information is called supervised learning while learning patterns from
input data without the supply of outputs is called unsupervised learning [131, p.650]. An

20 Methodical Foundations

example of supervised learning is given by the task of distinguishing pictures of cats and
dogs. Identifying friendship communities in social networks can be seen as an unsupervised
learning problem. Supervised learning methods are the ones which are more related to
this thesis. The most common tasks in this realm are classification tasks. The following
formalization is an adaption of the definition of classification from Ester and Sander [49].

Definition 2.22 (Supervised Learning, Classification and Regression)
Given an input domain X, an output domain Y, a set Xtrain ⊆ X of training examples and a
given function f̃ : Xtrain→ Y, the goal of supervised learning is to infer from f̃ a function
f : X→ Y which maps each input x ∈ X to its output f (x) ∈ Y. If Y = R, we speak of
regression learning and if |Y|< ∞, we speak of classification learning, call f a classifier and
f (x) the class or label of x ∈ X. If Y= {−1,1}, we speak of a binary classification problem.
We then call x ∈ Xtrain a positive example if f̃ (x) = 1 and a negative example if not.

The standard approach is to give the classifier the pairs (x, f̃ (x)), where x is a training
example, at training-time and then predict the labels f (x) for the elements x of a test set
Xtest ⊆X\Xtrain at the testing-time. If the test set is known at training time (without any label
information!), we speak of transductive learning. If not, we speak of inductive learning.

There exist various notions to quantify the performance of classifiers. Probably the most
common one is the accuracy which is defined of the ratio of the test examples which are
classified correctly. In the case of binary classification, a multiple amount of additional
quantities exist. They are built as combinations of the following four quantities:

• True Positives (TP): The amount of test examples which are correctly classified as
positive example.

• True Negatives (TN): The amount of test examples which are correctly classified as
negative examples.

• False Positives (FP): The amount of test examples which are wrongly classified as
positive examples.

• False Negatives: (FN): The amount of test examples which are wrongly classified as
negative examples.

From this quantities, the following performance measures are built:

• Precision: PR = TP
TP+FP

• Recall: RE = TP
TP+FN , also called accuracy on the positive examples, denoted with

ACC+.

2.6 Neural Networks 21

• F1-Score: F1 = 2 PR ·RE
PR+RE

• Accuracy on the negative examples, ACC- = TN
T N+FP

• Geometric mean: GM =
√

ACC+ ·ACC-

Often, binary classifies do not output definitive decisions, but a probability that an example is
positive. In this case, the above notions can be incorporated by using a threshold to assume
that an example is positive. However, there are also performance measures, that incorporate
the probabilities. One of them is the AUC score, also called ROCAUC score. This score is
built by computing the ratio of true positives on all examples classified as positive (i.e., the
precision, in this context also called the true positive rate) and the ratio of all wrongly as
positive classified examples of all negative examples, called the false positive rate. These
pairs of true positives and true negatives values are calculated for all possible thresholds
t ∈ [0,1]. The area under the curve of the graph with the false positive rates on the x-axis and
the true positive rates on the y-axis is then the AUC score. For a more detailed explanation
we refer to Fawcett [51].

2.6 Neural Networks

A large extent of modern learning architectures are neural networks. They build the base for
the processing of natural language [150, 40, 25] which will be part of the learning architecture
in Chapter 8 and for learning from graphs as studied in network analysis [85, 68, 151].

The most basic and fundamental building block of neural networks is the single-layer
perceptron, or simply perceptron, which consists of a sequence of units (ui)

d1
i=1 where

ui : Rd0 → R is of the form (x1, . . . ,xd0)
T 7→ wi

0 +∑
d0
l=1 wi

lxl where wi ∈ Rd0+1 is called the
weight vector or parameter vector of ui. Let furthermore be σ : Rd1 → Rd1 . The single layer
perceptron then has the form

f : Rd0 → Rd1,x 7→ σ
(
(u1(x), . . . ,ud1(x))

T)
Here, σ is called the activation function of f . A plentitude of commonly used activation
functions are derived from functions R 7→ R via coordinate-wise application. Commonly
used activation functions include the following.

• ReLU: R→ R,x 7→

x x >= 0,

0 x < 0,

22 Methodical Foundations

• Sigmoid: R→ R,x 7→ exp(x)
1+exp(x) ,

• Softmax: Rd → Rd,x 7→
(

exp(x1)

∑
d
i=1 exp(xi)

, . . . , exp(xd)

∑
d
i=1 exp(xi)

)T
.

Note, that single-layer perceptrons can be represented as concatenations of affine-linear
functions and activations. Let W ∈ Rd1×d0 via Wi, j := wi

j for i ∈ {1, . . . ,d1}, j ∈ {1, . . . ,d0}
and b ∈ Rd1 via bi := wi

0. Then, we get

f (x) = σ (Wx+b) .

This notation of column vectors being multiplied with matrices from the left is the
common notation in linear algebra. However, we will follow a different notation that is
more common in the realm of learning with neural networks. Here, it is usual to work with
row-vectors that are multiplied from the right with the weight matrix. In this case, we set
Wi, j := w j

i , set b as above but assuming it to be a row-vector and let single-layer perceptrons
map row- vectors x via

f (x) = σ(xW +b). (2.2)

Multi-layer perceptrons are concatenations of multiple single-layer perceptrons. Hence
we can define them via concatenations of affine-linear mappings and activations. This elegant
view has been brought to the author of this thesis by Kipf [84].

Definition 2.23 (Multi-Layer Perceptron [84, p.9])
Let ϕi : Rdi−1 →Rdi be an affine-linear function and let σi : Rdi−1 →Rdi for all i ∈ {1, . . . ,n}.
We then call

f := σn ◦ϕn ◦ · · · ◦σ1 ◦ϕ1 (2.3)

a multi-layer perceptron (MLP) or, more specific, a n-layer perceptron.

The entries of all weight vectors of all layers are called the weights or the parameters
of the network. Note, that there is a common inconsistency on how to count the number of
layers. While in the above definition we count the amount of “maps” which are applied on
an input, it is also common to identify the “states” an input takes while being inferred. This
leads to the unintuitive denomination that a 2-layer network consist of an input-layer, one
hidden-layer and an output-layer. This is a result of the view that MLPs propagate inputs by
the units through different layers. A sketch of this view is depicted in Figure 2.5.

In standard euclidean settings, the data is represented via a matrix X ∈ Rm×d , where the
rows Xi correspond to so called feature vectors or attribute vectors of the data points and X
is also called the feature matrix, attribute matrix or data matrix. It is common to apply the

2.6 Neural Networks 23

Figure 2.5: A 2-layer perceptron, consisting of an input-layer, one hidden-layer and the
output layer. This net expects 3−dimensional inputs. The first layer has 4 units, the second
layer has 2 units.

MLP f to X by applying it to every row of X . If we have a perceptron as in Equation (2.2),
we set B ∈ Rm×d1 as the matrix which is b in every row and arrive at

f (X) = σ(XW +B), (2.4)

where σ is applied row-wise. This rationale allows us to naturally also lift MLPs of the
form Equation (2.3) from Rd0 7→ Rdn to maps Rm×d0 7→ Rm×dn .

To classify with a neural network, the size of the output layer is set to the amount
of classes and softmax is commonly chosen as the activation σn of the last layer. The
coordinates of the output vector then represent with which probability the example belongs
to the corresponding classes. In the binary case with one positive and one negative class, it is
also common to have one unit at the last layer and a sigmoid activation as the last activation.
The output value is then interpreted as the probability that the input is a positive example.

2.6.1 Training of Neural Networks

We have focused the above explanation on the structure of multi-layer perceptrons and how
they map input vectors to output vectors when the weights are chosen. The question remains
on how to optimize the weights with the help of the training data of the classification task.
This is done with the help of a loss function which quantifies for a neural network f and
each training example (x, f̃ (x)) how far the network output f (x) is from f̃ (x). For this, the
training examples are split into small sets of (mini-)batches. The training examples of a
mini-batches are then fed simultaneously to the network and the parameters of the neural
networks are minimized such that the loss on the examples in the batch are minimized. We

24 Methodical Foundations

do not dive deeper into the optimization of neural networks. This topic is part of various
fundamental text books, as for example Bishop [16]. In the following chapters, we will often
explain how we choose specific parameters connected to the training of neural networks,
such as learning rates, optimizers or epochs. These parameters are mentioned for the sake of
transparency and reproducibility. The knowledge about the meaning of these terms is not
crucial to understand this thesis.

2.7 Neural Networks for Texts and Graphs

Until now, we assumed the input of neural networks to be of Euclidean nature, i.e., we
assume our data to be of the form X ∈ Rm×d . However, parts of this work will deal with data
of different format. Specifically, we will work with neural networks which are trained on text
data and with neural nets which are trained on graph data.

2.7.1 Neural Networks for Texts

Today, the standard architecture for learning from text data is the transformer architecture
from Vaswani et al. [150]. Here, sequences of tokens are fed through the network at once and
a so-called attention mechanism leads to the tokens “seeing” each other. Thus, the vectors of
each token at the hidden and output layer depend on the tokens around it. For more details,
we refer to the paper Vaswani et al. [150].

Recent models to process and generate texts are compositions of multiple transformer
layers [40, 25, 158] and are pre-trained on large texts. Then, to solve a specific task, these
models are further trained on suited training examples. This task-specific training step is
called fine-tuning. For our own learning approaches we use BERT [40], which is probably
the most known and used of these language models.

2.7.2 Graph Neural Networks

In this realm of graph learning it is common to work with data which consists of a graph
structure and additional information, such as external distance information or feature vectors
for all nodes. Dealing with the latter is an well-established but still growing research field.
The developments have led to a specific class of neural networks, the so called graph-neural
networks (GCNs). These neural networks work on the following kind of data, which consist
of a graph and feature vectors for the nodes.

2.7 Neural Networks for Texts and Graphs 25

Definition 2.24 (Graph Dataset)
Let X ∈ Rn×d be an attribute matrix. Let furthermore G = (V,E) be a graph with V =

{v1, . . . ,vn}. We call D=(G,X) a graph dataset and we call the row-vector Xi =(Xi,1, . . . ,Xi,d)

the attribute vector corresponding to vi.

Such datasets are commonly investigated in recent machine learning environments.
Examples are co-citation networks where each paper is mapped to bag-of-words or embedding
vectors [107, 108, 94], such as ogbn-arxiv or co-purchasing networks with feature-vectors
generated from descriptions, such as ogbn-products. Both these datasets are from the Open
Graph Benchmark Node Property Prediction (OGBN) suite [76].1

There is a plentitude of well-known and established architectures for GNNs [85, 68, 151].
Furthermore, a variety of more recent work has focused on scaling GNNs to millions
of nodes [129, 144, 161]. One of the most fundamental and basic GNN is the graph
convolutional neural network (GCN) from Kipf and Welling [85]. The GCN uses the
normalized adjacency matrix, which is defined as follows.

Definition 2.25 ((Normalized) Adjacency Matrix)
For a graph G = (V,E) with V = {v1, . . . ,vn}, we call A ∈ Rn×n with

Ai, j :=

1 v j ∈ N(vi) ∨ i = j,

0 else

the adjacency matrix of G. Let furthermore be Λ ∈ Rn×n be the diagonal matrix with
Λi,i := deg(vi)+1. We then call

Â := Λ
− 1

2 AΛ
− 1

2

the normalized adjacency matrix of G. In this context, Λ
− 1

2 stands for applying x 7→ x
1
2

element-wise to Λ−1.

The GCN model of Kipf and Welling [85] proposes to use the normalized adjacency
matrix to aggregate the representations of graph neighbors at every layer. This allows to not
only use the hidden representation of a node itself but also of its neighbors for classification.
To be more formal, Kipf and Welling [85] replaces layers of the form Equation (2.4) with

f (X) = σ(ÂXW).

1https://ogb.stanford.edu/docs/nodeprop/

https://ogb.stanford.edu/docs/nodeprop/

26 Methodical Foundations

This model is not sufficiently scalable because of its problem of handling mini-batches.
If one, for example, feeds a point through a 2-layer GCN one needs all neighbors of this
points and all neighbors of these neighbors to be able to do neighbor aggregation at both
layers. Hence, using the GCN will lead to large batch sizes. This problem is often referred
to as the neighbor explosion or neighborhood explosion problem [160, 159, 54]. Kipf and
Welling [85] therefore only considered full-batch training, i.e. only having one batch which
contains all examples. However, this form of training is not feasible with large graphs with
millions of nodes.

To overcome this problem, recent works have proposed to only do neighborhood aggre-
gation at the input layer [129, 144, 161]. Here, multiple rounds of neighborhood aggregation
are incorporated by computing X , ÂX , . . . , ÂkX and then feeding them together into a network
without neighborhood aggregation at hidden layers. Since the aggregation is only done at the
input layer, this can be done once before training and the network can be trained with usual
mini-batching.

In the following, we focus on the SIGN model from Rossi et al. [129]. In detail, this
model works as follows. For a fixed k ∈ N, the aggregations X , Â, . . . , ÂKX are computed.
The full network then has the form

X 7→ σ2(σ1([XW0, ÂXW1, . . . , ÂkWk])Ŵ), (2.5)

where W0, . . . ,Wk,Ŵ are learnable weight matrices, σ1,σ2 are activation functions and [.]

stands for concatenation. If only a mini-batch should be feed through the net, the input must
be restricted to the corresponding rows of X , ÂX , . . . , ÂKX . In Rossi et al. [129] the authors
also experimented with inputs of the form ÃkX with Ã not being the adjacency matrix, but
for example a matrix representing closed triangles. Furthermore, they tested deeper models
with more layers. These cases are not considered in this thesis.

2.8 Representation Learning

Until now, we have focused on supervised learning for classification as in Definition 2.22.
However, recent deep learning approaches focus on learning from a large amount of data
where there are no additional labels given. Here, a classification task to train a neural
network f is derived by the creation of input and output pairs from the data itself. The
aim is that the network which is trained on this artificial classification task incorporates
relevant knowledge of the underlying data. Then, the network f can be used for different
further tasks, either by using the outputs of f as input to another classifier or by training f

2.8 Representation Learning 27

further on a specific task, which is called fine-tuning. The process of learning such called
representations or embeddings from data is referred to as representation learning. In Bengio
et al. [12], it is defined as “[...] learning representations of the data that make it easier to
extract useful information when building classifiers or other predictors”. Representation
learning is common in the realm of learning from text data and graph data. For example,
in Mikolov et al. [107, 108] the authors generate vector representations for words by letting
a neural network predict for a word the words around it or vice versa. Adaption of this
exist for graphs where for a node the nodes next to it in the graphs are predicted [120, 65].
Furthermore, modern large language models are trained on predicting tokens from a large
amount of text data [40, 25, 158] as a preparation for further task such as question answering
or text generation.

The neural networks that we will propose in Part IV are connected to representation
learning as they learn general vector representations from bipartite graphs (Chapter 7) or as
they learn to predict links in graph data itself (Chapter 8).

Part II

Landscapes and Orometric Methods

Chapter 3

Prominence and Isolation

In this chapter, we will discuss orometric concepts and their adaption to metric data. To be
more specific, we will study the valuation functions prominence and isolation. They have
already been adapted to graphs by Schmidt and Stumme [133]. In this chapter, we extend
this work to arbitrary bounded metric spaces. For this, we will derive network structure from
metric spaces by using the nearest neighbor graphs defined in Section 2.3.1. We show that
our notions is a generalization of the prominence term for networks. The proposed bridge
between orometric notions for networks and metric data allows to identify locally outstanding
data point and thus provides insights into data from a local perspective.

3.1 Introduction

Metric data is regularly studied in various settings. Let it be cities with their coordinates
or feature vectors of inputs for a classification task. In this chapter, we will contribute to
the understanding of such metric data and network data by proposing a generalization of
measures of local outstandingness from networks to bounded metric spaces. This transfer is
indeed a generalization, as we will see in this chapter.

Our approach to identify outstanding elements could for example be used to identify im-
portant points in datasets to recommend them to users. For example, such recommendations
could provide a set of the most relevant cities in the world with respect to being outstanding
in their local surroundings. In some scenarios, the metric data is equipped with an additional
valuation function. Such functions, often called score or heigh functions, are often naturally
provided: cities may be ranked by population; the importance of scientific authors by their
h-index [73]. A naive approach for recommending relevant points in such settings would
be: points with higher scores are more relevant. As this method seems reasonable for many

32 Prominence and Isolation

applications, some obstacles arise if the “highest” points concentrate into a specific region of
the underlying metric space. For example, representing the cities of the world by the twenty
most populated ones would include no western European city. 1 Recommending the 100
highest mountains would not lead to knowledge about the mountains outside of Asia.2

Our novel approach will overcome this problem: we combine “heights and distances”
to provide new valuation functions, called prominence and isolation. These functions rate
points based on their height in relation to the valuations of the surrounding points. This
results in valuation functions that reflect the extend to which an item is locally outstanding.
The basic idea of the prominence value of a point is given by the minimal descent (with
respect to the height function) that is needed to get to another point of at least same height.
The isolation, sometimes also called dominance radius, values the distance to the next higher
point with respect to the metric. These measures are adapted from the field of orometry
where isolation and prominence are used in order to identify outstanding mountain peaks. We
base our approach on Schmidt and Stumme [133], where the authors proposed prominence
and isolation (called dominance in their paper) for networks. We generalize these to the
realm of bounded metric space.

We provide insights to the novel valuation functions and demonstrate their ability to
identify relevant data points for a given topic in metric knowledge graph applications. The
contributions of this chapter are as follows:

• We propose a novel structure, called landscapes, that will be the abstract setting for
our orometric notions.

• We propose prominence and isolation for bounded metric spaces. For this, we use the
terms from [133] and prominence and isolation terms for landscapes.

• We demonstrate an artificial machine learning task for evaluating our novel valuation
functions in metric data.

3.2 Related Work

The novel valuation functions prominence and isolation are inspired by topographic measures,
which have their origin in the classification of mountain peaks. The idea of ranking peaks
solely by their absolute height was already deprecated in 1978 [56]. The author introduced
prominence for geographic mountains, a function still investigated in this realm, e.g., in Torres

1https://en.wikipedia.org/wiki/List_of_largest_cities on 2019-06-16
2https://en.wikipedia.org/wiki/List_of_highest_mountains_on_Earth

on 2019-06-16

https://en.wikipedia.org/wiki/List_of_largest_cities
https://en.wikipedia.org/wiki/List_of_highest_mountains_on_Earth

3.3 Landscapes 33

et al. [146], where the authors used deep learning methods to identify prominent mountain
peaks. Another recent step for this was made in Kirmse and de Ferranti [86], where the
authors investigated methods for discovering new ultra-prominent mountains. Isolation and
more valuations functions motivated in the orometric realm are collected in Helman [71].
A well-known procedure for identifying peaks and saddles in 3D terrain data is described
in Čomić et al. [36]. However, these approaches rely on data that approximates a continuous
terrain surface via a regular square grid or a triangulation. Our data cannot fulfill this
requirement. Recently the idea of transferring orometric functions to different realms of
research gained attention: The authors of Nelson and McKeon [116] used topographic
prominence to identify population areas in several U.S. States. In Schmidt and Stumme [133]
the authors transferred prominence and isolation to co-author graphs in order to evaluate
their potential of identifying ACM Fellows. We build on this for proposing our valuation
functions on bounded metric data.

3.3 Landscapes

In the following, we will need landscapes, i.e., datasets, where we have a graph structure
to traverse between points, a function to measure distances between pairs of points and a
function which displays the height of a point. The application to bounded metric spaces
will arise from the ability to derive landscapes from bounded metric data via neighborhood
graphs.

Definition 3.1 (Height function)
Let M be a set. We call a function h : M→ R≥0 a height function on M.

Definition 3.2 (Landscape)
We call L = (G,d,h) a (finite) landscape if G = (V,E) is an undirected and (finite) graph, d
is a metric on V such that (V,d) is bounded and h is a height function on V such that h has a
unique maximum. We denote this unique highest point by max(L).

One example of a landscape is given by publication datasets, where co-author information
and performance measures, such as the h-index [73], are given under the assumption that
their is a unique authors with the highest h-index. Coming from graphs with heights, one can
derive a landscape via the shortest path distance.

Definition 3.3 (Induced Network Landscape)
Let G = (V,E,w) be a weighted graph and h : V → R≥0 a height function. Let dSP be the

34 Prominence and Isolation

shortest path metric on G. We call

LSP(G,h) := (G,dSP,h)

the induced network landscape of G.

It is also possible to derive a landscape structure if we have distance information, but no
given graph structure. This can for example be the case if we consider data points given via
some sort of coordinates. Then, the distance information can be used to define the graph via
the relative neighborhood graph as defined in Definition 2.11.

Definition 3.4 (Induced Metric Landscape)
Let (M,d) be a finite metric space and h : M → R≥0 a height function. Let RNG(d) =
(M,ERNG(d)) be the corresponding RNG. We call the landscape

LRNG(M,d) := (RNG(d),d,h)

the induced metric landscape.

For this definition, it is of fundamental interest that RNGs are connected what we have
shown in Theorem 2.12.

3.4 Prominence and Isolation

The notions in Schmidt and Stumme [133] where defined for networks with distance and
height functions, i.e., the structure which we call landscapes. They are defined as follows.

Definition 3.5 (Isolation)
Let L = (G,d,h) be a landscape. The isolation of v ∈V is then defined as follows:

• If there is no point of equal height than v, than

iso(v) := sup{d(v,u) | u ∈V}

The boundedness of (V,d) guarantees the existence of this supremum.

• If there is at least one other point in V which is higher than v, we define its isolation by

iso(v) := inf{d(v,u) | u ∈V : h(u)> h(v)}.

3.5 Prominence in Metric Spaces 35

Figure 3.1: Computation of isolation and prominence of a mountain peak. The isolation
displays the horizontal distance to a higher point. The prominence depicts how far one has to
descend to get to a higher point.

Definition 3.6 (Prominence)
Let Let L = (G,d,h) be a landscape. The prominence promG(v) of v ∈V is defined by

promL(v) := min{h(v),mindescG(v)} (3.1)

where
mindescL(v) := inf{max{h(v)−h(u) | u ∈ p} | p ∈ Pv}.

The set Pv contains of all paths to vertices w with h(w)> h(v), i.e.,

Pv := {{vi}n
i=0 ∈ P | v0 = v∧h(vn)> h(v)},

where P denotes the set of all paths of G.

Informally, mindescL(v) reflects on the minimal descent in order to get to a vertex in G
which is “higher” then v. For this the definition makes use of the convention that inf(/0) = ∞.
This case results in promL(v) being the height of v. A distinction to the definition in [133]
is, that we now consider all paths and not just shortest paths. This change better reflects the
calculation of the prominence for mountains.

To sum up, the prominence of a point x reflects how low one has to descend to get to a
point y of larger height and the isolation of x reflects the (horizontal) distance to a higher
point. A sketch of how to compute the prominence and isolation of a mountain landscape is
given via Figure 3.1.

3.5 Prominence in Metric Spaces

Let us now assume that (M,d) is a bounded metric space and that h : M→ R≥0 is a height
function. As the isolation of points in a landscape only depends on the metric information but
not on the edges in the graph, it is straightforward to compute isolation for bounded metric

36 Prominence and Isolation

spaces with a height function. However, the question arises how to compute the prominence
in this scenario. Here, we introduce two approaches:

1. We compute the prominence for different fixed radius neighbor graphs (e.g., graphs
where two nodes are connected if their distance is under a specific radius) and then
derive the prominence of the bounded metric spaces from this.

2. In the case that the metric space is finite, we also use the prominence of the induced
metric landscape from Definition 3.4.

One approach is to compute the prominence of a bounded metric space with the help of
decreasing radii δ > 0. Here, the prominence of the metric space can then be defined via a
limit process.

Definition 3.7 (δ -Radius landscape)
Let (M,d) be a metric space, h a height function on M and δ > 0. Let GM,δ be the δ -radius
graph from Definition 2.10. We call LM,δ ,h := (GM,δ ,d,h) the δ -radius landscape.

This definition allows us to compute the prominence of a bounded metric space for a
fixed radius δ > 0.

Definition 3.8 (δ -Prominence)
Let (M,d) be a bounded metric space and h : M→ R≥0 be a height function. We define
the δ -prominence promδ (m) of m ∈M as promLM,δ

(v), i.e., the prominence of m in LM,δ ,h

from Definition 3.7.

We now have a prominence term for all metric spaces that depends on a parameter δ .
Hence, we want to provide in the following a natural choice for δ . We consider only those
values for δ such that corresponding GM,δ does not exhibit noise, i.e., there is no element
without a neighbor.

Definition 3.9 (Minimal Radius)
For a bounded metric space (M,d) with |M|> 1, we call

δM := sup{inf{d(m,n) | n ∈M \{m}} | m ∈M}.

the minimal threshold of M.

Based on this definition a natural notion of prominence for metric spaces (equipped with
a height function) emerges via a limit process.

3.5 Prominence in Metric Spaces 37

Lemma 3.10 Let M be a bounded metric space and δM as in Definition 3.9. For m ∈M the
following descending limit exists:

lim
δ↘δM

promM,δ (m).

Proof. Fix any δ̂ > δM and consider on the open interval from δM to δ̂ the function that
maps δ to promδ (m), i.e.,

prom(.)(m) :]δM, δ̂ [→ R,δ 7→ promM,δ (m).

It is known that it is sufficient to show that prom(.)(m) is monotone decreasing and bounded
from above. Since we have for any δ that promδ (m) ≤ h(m) holds, we need to show the
monotony. Let δ1,δ2 be in]δM, δ̂ [with δ1 ≤ δ2. If we consider the corresponding graphs
(M,EM,δ1) and (M,EM,δ2), it easy to see EM,δ1 ⊆ EM,δ2 . Hence, we have to consider more
paths in Equation (3.1) for EM,δ2 , resulting in a not larger value for the infimum. We thus
obtain promM,δ1

(m)≥ promM,δ2
(m).

Definition 3.11 (Limit Prominence in Metric Spaces)
If M is a bounded metric space with |M|> 1 and a height function h, we call

promM(m) := lim
δ↘δM

promM,δ (m)

the limit prominence of m.

Note, if we want to compute prominence on a real world finite metric dataset, it is possible
to directly compute the prominence values: in that case the supremum in Definition 3.9 can
be replaced by a maximum and the infimum by a minimum, which leads to promM(m) being
equal to promM,δM

(m). There are results for efficiently creating radius graphs [13]. However,
for our needs in this chapter, in particular in the experiment section, a quadratic brute
force approach for generating all edges is sufficient. We want to show that our prominence
definition for bounded metric spaces is a natural generalization of Definition 3.6.

Lemma 3.12 Let G = (V,E) be a finite, connected graph with |V | ≥ 2. Consider the network
induced landscape LSP(G,h) = (G,dSP,h). Then the prominence promLSP

(·) from Defini-
tion 3.6 and promM(·) Definition 3.11 coincide.

38 Prominence and Isolation

Proof. Let M :=V be equipped with the shortest path metric d on G. As G is connected and
has more than one node, we have δM = 1. Hence, (M,EδM) from Definition 3.7 and G are
equal. Therefore, the prominence terms coincide.

In the finite case, a second approach to compute prominences on (M,d) is by using the
induced metric landscape.

Definition 3.13 (RNG Prominence)
Let (M,d) be a finite metric space. The rng prominence of (M,d) is given via the prominence
of the induced network landscape from Definition 3.4, i.e.,

promRNG(d)(·) := promLRNG(M,d)
(·).

3.6 Experiments

Now assume that we have given a bounded metric space M which represents the dataset
and a given height h. The following questions shall evaluate if our functions isolation and
prominence provide useful information about the relevance of given points in the metric
space. If (M,d,h) is a metric space equipped with an additional height function, we aim to
train a classifier that classifies the points in the dataset as relevant (1) or not (-1). To be more
concrete, we aim to classify municipalities in Germany and France as relevant or irrelevant.
To have a ground truth, we make the assumption, that a municipality is relevant if it has an
university. We admit that the underlying classification is not meaningful in itself. It treats a
real geographic case while our model could also handle more abstract scenarios. However,
since this setup is essentially a benchmark framework (in which we assume cities with
universities to be more relevant) we refrain from employing a more meaningful classification
task in favor of a controllable classification scenario. Our research questions are now:

1. Are prominence and isolation as individual features characteristically for rele-
vance? We use isolation and/or prominence for a given set of data points as features. To
which extend do these features improve learning a classification function for relevance?

2. Do prominence and isolation provide additional information, not catered by the
absolute height? Do prominence and isolation improve the prediction performance of
relevance compared to just using the height? Does a classifier that uses prominence
and isolation as additional features produce better results than a classifier that just uses
the height?

3.6 Experiments 39

Table 3.1: Basic statistics of the country datasets extracted from Wikidata.

Municipalities University Locations

France 2064 89
Germany 2986 160

We extract information about municipalities in the countries of Germany and France
from Wikidata. Wikidata is a structure that stores knowledge via statements, linking entities
via properties to values. A detailed description can be found in Vrandecic and Krötzsch
[152], while Hanika et al. [69] gives an explicit mathematical structure to the Wikidata
graph and shows how to use the graph for extracting implicational knowledge from Wikidata
subsets. We investigate if prominence and isolation of a given municipality can be used as
features to predict university locations in a classification setup. We use the query service of
Wikidata3 to extract points in the country maps from Germany and France and to extract all
their universities. All necessary SPARQL queries employed on can be found on the GitHub
repository of the paper from which this chapter was derived.4 In the following, we provide
details to our queries.

• Wikidata provides different relations for extracting items that are instances of the
notion city. The obvious choice is to employ the instance of (P31) property for the
item city (Q515). Using this, including subclass of (P279), we find insufficient results.
More specific, we find only 102 French cities and 2215 German cities.5 For Germany,
there exists a more commonly used item urban municipality of Germany (Q42744322)
for extracting all cities, while to the best of our knowledge, a counterpart for France is
not provided.

• The preliminary investigation leads us to use municipality (Q15284), again including
the subclass of (P279) property, with more than 5000 inhabitants.

• Since there are multiple french municipalities that are not located in the mainland of
France, we encounter problems for constructing the metric space. To cope with that
we draw a basic approximating square around the mainland of France and consider
only those municipalities inside.

3https://query.wikidata.org/
4https://github.com/mstubbemann/Orometric-Methods-in-Bounded-Metric-Data
5queried on 2019-08-07

https://query.wikidata.org/
https://github.com/mstubbemann/Orometric-Methods-in-Bounded-Metric-Data

40 Prominence and Isolation

• We find the class of every municipality, i.e, university location or non-university
location as follows. We use the properties located in the administrative territorial
entity (P131) and headquarters location (P159) on the set of all universities and
checked if these are set in Germany or France. Using only P131 was not sufficient. An
example of university that has not set P131 is TU Dortmund (Q685557).6

• We match the municipalities with the university properties. This is necessary because
some universities are not related to municipalities through P131, e.g., Hochschule
Niederrhein (Q1318081) is located in the administrative location North Rhine-Westphalia
(Q1198)8, which is a federal state containing multiple municipalities. For these cases
we check the university locations manually. This results in 2064 municipalities (89
university loc.) in France and 2986 municipalities (160 university loc.) in Germany.

Statistics of the resulting datasets can be found in Table 3.1.

3.6.1 Binary Classification Task

Setup. We consider the question whether isolation and prominence are helpful for the
identification of academic importance as a binary classification task, where we use use
the “height” and the derived isolation and prominence values as features. Here, the height
function is given via the amount of inhabitants. The class labels are given by the binary
information whether a city has a university. The following steps are needed for this.

1. Identify a Metric Space: To get a metric space, we use the geographic coordinates
in longitude and latitude and approximate the great circle distances between the
municipalities.

2. Identify height function: Since we want to compute the prominence and isolation of
the data points, we also have to identify a height function. In the following, we use the
population of the municipalities.

3. Compute isolations: Based on the steps before we are now able to compute the
isolation for all German and French municipalities.

4. Compute the minimal radii: For computing the limit prominence values for all data
points, we need to compute the minimal radii for the German and French datasets.

6last checked on 2019-10-26

3.6 Experiments 41

(a) Minimal Radius Graph of
France

(b) RNG of France
(c) University Locations of
France

(d) Minimal Radius Graph of
Germany

(e) RNG of Germany
(f) University Locations of
Germany

Figure 3.2: Minimal radius graphs, RNGs an university locations of France and Germany.

5. Compute limit prominences: Equipped with the minimal radius, we are now able to
compute the limit prominence values for all municipalities using Definition 3.11. Note,
that for finite datasets the limit can be omitted, i.e.,

promM = promδM
.

6. Compute the RNG: To compute the RNG prominence with Definition 3.13 we need
to compute the induced metric landscape from Definition 3.4. Hence, we compute the
RNG with respect to the metric discussed in Item 1.

7. Compute the RNG prominence: Finally, the RNG prominence can be computed
via Definition 3.13.

The resulting Minimal Radius graphs, RNGs and university locations are depicted in Fig-
ure 3.2. We use absolute height, limit prominence, rng prominence and isolation for all data
points and normalize them. Since our dataset is highly imbalanced, common classifiers tend

42 Prominence and Isolation

to simply predict the majority class. To overcome the imbalance, we use inverse penalty
weights with respect to the class distribution. We want to emphasize again that the goal
for the to be introduced classification task is not to identify the best classifier. Rather we
want to produce evidence for the applicability of employing isolation and prominence as
features for learning a classification function. We decide to use logistic regression with L2

regularization and Support Vector Machines [37] with a radial kernel. For our experiment
we use scikit-Learn [119]. As penalty factor for the SVC we set C = 1. For γ we stick to
previous work by [2] and set it to one. For all combinations of population, isolation, limit
prominence and rng prominence, we use 100 iterations of 5-fold stratified cross-validation.
From the performance measures mentioned in Section 2.5, we report the geometric mean
and its components, i.e., ACC+ and ACC-.

Results. The results of the computations are depicted in Table 3.2. We summarize our
findings in the following.

• Isolation is a good indicator for structural relevance. For both countries and classifiers
isolation outperforms population.

• Combining absolute height with our valuation functions leads to better results. For all
datasets, combining the height with our valuation functions outperforms the solely use
of the height. Furthermore, the best results are reached, when the height is combined
with local valuation functions in 3 of 4 cases: The SVM has the highest geometric
means when isolation, rng prominence and population are combined. For the French
dataset, the logistic regression works the best when isolation and rng prominence are
combined. For the German dataset, the logistic regression has the highest performance
when population and isolation are combined.

• RNG Prominence is more useful then limit prominence. We draw from our result that
limit prominence, in contrast to RNG prominence, is not a useful as an individual
indicator. The g-means for using only limit prominence can not cope with the absolute
height, isolation or RNG prominence. Additionally, adding limit prominence as addi-
tional feature to height, isolation and RNG prominence does not lead to a performance
boost. Note, that both prominence terms are computed on a graph and that all nodes
that have at least one graph neighbor of at least equal height have prominence 0. This
makes limit prominence a very strict valuation function: recall that we constructed
a radius graphs by using radius margins as indicators for edges, leading to a dense
graph structure in more dense parts of the metric space. Hence, a point in a more dense
part has many neighbors and thus many potential paths that may lead to a very low

3.7 Conclusion and Outlook 43

or vanishing prominence value. The minimal radius as in Definition 3.9 is about 34
kilometers for Germany and 54 kilometers for France, leading to graphs with 61636
and 103309 edges, respectively. Thus, a municipality has a not vanishing prominence
if it is the most populated point in a radius of over 34 kilometers, respectively 54
km. Only 75 municipalities of France have non zero prominence, with 40 of them
being university locations. Germany has 104 municipalities with positive prominence
with 72 of them being university locations. Thus, limit prominence alone as a feature
is insufficient for the prediction of university locations. In contrast, the RNGs are
fundamentally sparser. The have 6942 edges for Germany and 4589 edges for France.
This leads, in the case of Germany, to 877 points with a positive RNG prominence
with 81 of them being university locations. For the case of France, we have 877
municipalities with a positive RNG prominence with 137 of them being university
locations. Hence, RNG prominence is not as strict as limit prominence which could be
one explanation why it is a more useful feature.

• Support vector machine and logistic regression lead to similar results, except for
the RNG prominence. To the question, whether our valuation functions improve the
classification compared with the population feature, SVMs and logistic regressions
provide similar answers: isolation always outperforms population, a combination of
population and isolation is always better then using just the plain population feature,
the same holds for combining the rng prominence with population compared to just
use the population. When it comes to the question, whether RNG prominence is a
useful feature when added to height and isolation as a third feature, both classifier lead
to different results: For SVM classifiers, adding this feature enhances the performance,
for logistic regression, it does not.

3.7 Conclusion and Outlook

In this chapter, we presented a novel approach to identify outstanding elements in datasets.
For this, we employed orometric valuation functions, namely prominence and isolation
and transferred them to the realm of bounded metric spaces. In particular, we generalized
previously known results from the field of finite networks.

The theoretical work was motivated by the observation that real-world data is often of
metric nature. Furthermore, such datasets are often equipped with some kind of height
function in a natural way. Based on this we proposed in this chapter the groundwork for the
identification of relevant data points by the means of local outstandingness.

44 Prominence and Isolation

To evaluate the capabilities for identifying locally outstanding data points we selected
an artificial classification task. We identified all French and German municipalities from
Wikidata and evaluated if a classifier can learn a meaningful connection between our valuation
functions and the relevance of a municipality. To gain a binary classification task and to have
a benchmark, we assumed that universities are primarily located at relevant municipalities.
In consequence, we evaluated if a classifier can use prominence and isolation as features to
predict university locations. Our results showed that isolation and prominence are indeed
helpful for identifying locally outstanding points and are therefore indeed useful to study
data from a local perspective.

Future work could focus on the development of an outstandingness-based item rec-
ommender system and the evaluations of its practical usability in an empirical user study.
Furthermore, we are interested in the transferability of other orometry-based valuation
functions to both metric and network data.

3.7 Conclusion and Outlook 45

Table 3.2: Results. We report results for all possible feature combinations from popula-
tion(pop), isolation (iso), rng prominence (rpr) and limit prominence (lpr).

Country France Germany
Classifier SVM LR SVM LR
Score mean std mean std mean std mean std

iso ACC+ 0.5748 0.0086 0.6265 0.0064 0.5706 0.0040 0.6277 0.0056
ACC- 0.9597 0.0008 0.9477 0.0009 0.9763 0.0003 0.9599 0.0009
G-Mean 0.7427 0.0055 0.7705 0.0039 0.7464 0.0026 0.7762 0.0035

lpr ACC+ 0.2361 0.0061 0.4075 0.0067 0.1602 0.0054 0.3299 0.0052
ACC- 1.0000 0.0000 0.9971 0.0005 1.0000 0.0000 0.9988 0.0002
G-Mean 0.4858 0.0063 0.6374 0.0053 0.4003 0.0069 0.5740 0.0045

rpr ACC+ 0.4362 0.0067 0.5753 0.0120 0.3185 0.0025 0.5028 0.0082
ACC- 0.9969 0.0003 0.9909 0.0009 0.9996 0.0001 0.9954 0.0003
G-Mean 0.6594 0.0051 0.7550 0.0079 0.5642 0.0022 0.7074 0.0058

pop ACC+ 0.4847 0.0039 0.5880 0.0136 0.3589 0.0045 0.5131 0.0071
ACC- 0.9931 0.0004 0.9837 0.0007 0.9972 0.0001 0.9904 0.0005
G-Mean 0.6938 0.0028 0.7605 0.0089 0.5982 0.0038 0.7128 0.0049

iso+lpr ACC+ 0.5590 0.0095 0.6135 0.0107 0.5482 0.0054 0.6028 0.0062
ACC- 0.9625 0.0011 0.9512 0.0011 0.9774 0.0004 0.9660 0.0009
G-Mean 0.7335 0.0062 0.7639 0.0066 0.7320 0.0036 0.7631 0.0039

iso+rpr ACC+ 0.6031 0.0103 0.6380 0.0047 0.6194 0.0047 0.6551 0.0046
ACC- 0.9694 0.0012 0.9600 0.0008 0.9806 0.0007 0.9728 0.0004
G-Mean 0.7646 0.0065 0.7826 0.0029 0.7793 0.0029 0.7983 0.0028

iso+pop ACC+ 0.6045 0.0108 0.6336 0.0057 0.6450 0.0073 0.6676 0.0061
ACC- 0.9703 0.0013 0.9619 0.0008 0.9807 0.0007 0.9752 0.0006
G-Mean 0.7658 0.0069 0.7807 0.0035 0.7953 0.0045 0.8069 0.0037

lpr+rpr ACC+ 0.4244 0.0048 0.5549 0.0076 0.3357 0.0036 0.4939 0.0077
ACC- 0.9972 0.0004 0.9936 0.0007 0.9996 0.0001 0.9961 0.0003
G-Mean 0.6505 0.0036 0.7425 0.0052 0.5793 0.0031 0.7014 0.0055

lpr+pop ACC+ 0.4943 0.0059 0.5675 0.0072 0.3766 0.0061 0.5099 0.0082
ACC- 0.9959 0.0004 0.9902 0.0007 0.9975 0.0003 0.9930 0.0004
G-Mean 0.7016 0.0042 0.7496 0.0048 0.6129 0.0050 0.7115 0.0057

rpr+pop ACC+ 0.5404 0.0077 0.6184 0.0097 0.4587 0.0049 0.5622 0.0088
ACC- 0.9914 0.0003 0.9862 0.0008 0.9958 0.0003 0.9923 0.0003
G-Mean 0.7320 0.0052 0.7809 0.0060 0.6758 0.0036 0.7469 0.0059

iso+lpr+rpr ACC+ 0.5990 0.0099 0.6336 0.0062 0.6159 0.0040 0.6466 0.0054
ACC- 0.9699 0.0012 0.9621 0.0009 0.9815 0.0005 0.9741 0.0006
G-Mean 0.7622 0.0063 0.7807 0.0038 0.7775 0.0025 0.7936 0.0033

iso+lpr+pop ACC+ 0.6024 0.0102 0.6279 0.0070 0.6412 0.0071 0.6547 0.0065
ACC- 0.9709 0.0012 0.9639 0.0009 0.9812 0.0006 0.9774 0.0008
G-Mean 0.7647 0.0064 0.7779 0.0043 0.7932 0.0044 0.7999 0.0039

iso+rpr+pop ACC+ 0.6301 0.0086 0.6208 0.0104 0.6542 0.0039 0.6584 0.0045
ACC- 0.9739 0.0013 0.9677 0.0009 0.9826 0.0007 0.9796 0.0007
G-Mean 0.7834 0.0052 0.7750 0.0065 0.8018 0.0024 0.8031 0.0027

lpr+rpr+pop ACC+ 0.5406 0.0089 0.6103 0.0096 0.4538 0.0059 0.5599 0.0079
ACC- 0.9937 0.0006 0.9893 0.0007 0.9962 0.0004 0.9924 0.0003
G-Mean 0.7329 0.0061 0.7770 0.0061 0.6724 0.0044 0.7454 0.0052

all ACC+ 0.6296 0.0090 0.6134 0.0072 0.6534 0.0038 0.6531 0.0049
ACC- 0.9740 0.0012 0.9690 0.0007 0.9831 0.0006 0.9810 0.0007
G-Mean 0.7831 0.0055 0.7709 0.0045 0.8015 0.0023 0.8004 0.0030

Chapter 4

Mountain Graphs and Line Parent Trees

While the last chapter dealt with the computation of prominence and isolation itself, we now
study the underlying structures that determine them. More specifically, we will investigate
for a node which higher point is reached to determine its prominence and which point is the
lowest point on this travel. Hence, after this chapter, we will not only be able to identify
locally outstanding points, but also to derive meaningful hierarchies of dominance between
them. This further helps to understand networks from local perspectives.

4.1 Introduction

To understand which the locally important nodes of a graph are and how they relate to each
other is crucial for many applications where the study of complete large-scale networks is
not feasible. One such problem is for example graph visualization. There exist a variety of
established approaches for visualization [48, 55, 90]. However, they are often not suited to
large real-world networks. Another problem is that the importance of edges in such networks
often differs. This is especially possible in networks that are projections from other graphs.
Examples of such projections are networks of co-group memberships of Youtube users or
co-Follower networks. Such networks exhibit a large amount of low-weighted edges where
the set of shared neighbors in the original graph was small. Hence, it is crucial to derive
compact representations of structurally important relationships.

To derive more compact representations, many works generate smaller graphs from the
original network. This is done by random sampling of substructures [127], by considering
only dense parts of the network [137] or by merging vertices and edges [130]. Another
approach is to identify and study hierarchic connections [102, 66].

48 Mountain Graphs and Line Parent Trees

Often, the importance of individual vertices can be measured by a given height function
as defined in Definition 3.1. For example, Twitter users can be evaluated by the amount
of followers. For such networks, we propose structures that identify hierarchies between
locally outstanding nodes. These structures are based on (topographic) prominence. Recall,
from the last chapter, that the prominence of a mountain quantifies its local outstandingness
by computing the minimal vertical descent that is needed to reach a higher mountain peak.
These paths with minimal descent to a higher peak deliver two important reference points for
each mountain. First, the lowest point of this path (called the key col). Secondly, the first
higher peak that is reached after the key col, called the line parent. Adopting these notions to
networks allows to derive a relatively small tree structure which displays how outstanding
nodes are dominated by each other. This simplifies the study of networks because trees can
be visualized satisfactory and navigating through them is possible for larger node sets.

When deriving such structures the question arises on how to traverse through the network.
Here, it is natural to use the given edges of the graph. However, as mentioned above, some
edges in the graph may represent weak connections. Hence, it can be beneficial to remove
them as a preprocessing step.

To this point, we propose a method for parameter-free edge-reducing based on the
RNG [147], as defined in Definition 2.11. We will show that our edge-reduction technique
preserves connectivity of the graph. This is not guaranteed by other approaches which discard
edges via a weight threshold or only keep the k most important edges for each node. Our
method works as follows.

• First, if desired, we discard edges that represent weak connections. This is done
without the need to choose any parameters and in such a way that the connectivity is
preserved. This preprocessing step is described in Section 4.5.

• We then identify locally outstanding node “peaks” and a structure that displays how
peaks are connected through lower points. We call this structure the mountain graph.
It is defined in Section 4.3.

• Finally, we compute a hierarchy of the peaks of the graph which uses the line parent
relation. We will call the resulting structure the line parent tree or the line parent
hierarchy. It is introduced in Section 4.4.

The key point of our approach are mountain graphs and line parent trees. Discarding
unimportant edges is an optional preprocessing step.

4.2 Related Work 49

vi)

i) ii) iii)

iv)v)

Figure 4.1: Generating the mountain graph and the line parent tree. In i), a graph is displayed
with the heights next to the nodes and with the edge weight put in the middle of each edge.
The RNG in ii) is derived by discarding the edge between i and j, because h is closer to both i
and j than they are to each other and by discarding the edge between a and c because node b
is closer to both of them than they are to each other. From this, the mountain graph is derived
in iii), where we display the shortest path distances between the cols and peaks. Additionally,
we derive from ii) the peak graph which is displayed in iv). According to Definition 4.9, we
then discard the edge from g to i because j is closer to the key col f than i and we discard the
edge between d and i because j is closer to the key col h to arrive at v). From this, the line
parent tree vi) is derived by discarding the edge between d and g because the key col h over
which j is reached is closer to g than the key col f over which g is reached.

4.2 Related Work

Deriving compact structures that display important relations in the original network is often
done via sampling vertices or edges [127, 91, 95, 100, 101]. In contrast, other works focus on
the aggregation of vertices and edges such that the original network can be reconstructed [145,
99, 130]. All these methods have in common that they return a proxy of the original network.
Thus, they are not able to identify hierarchies and connections of outstanding vertices that
are not approximations or explicit subgraphs of the original graph.

The study of hierarchic structures has gained recent interest. Lu et al. [102] derive acyclic
graphs by removing cycles. Other works use likelihoods to derive suitable hierarchies [32,
106] or provide a quantification on how “hierarchical” a graph is [66]. In contrast to our
approach, these methods are solely based on the graph structure and are not able to incorporate
the “height” of the nodes.

50 Mountain Graphs and Line Parent Trees

As discussed in the related work part of the last chapter, there is a variety of works that
deals with adapting orometric methods to different areas [116, 82, 133, 118]. However, all
these works have in common, that they focus on the computation of prominence. In the
present chapter, we go a step further and study the underlying structure, i.e., the connections
to key cols and line parents which determine prominence values.

4.3 Mountain Graphs

Section 3.5 dealt with using mountain measures for feature engineering, i.e,. to generate
quantitative facts over points in landscapes. Now, we present an approach to derive small
hierarchies between peaks from larger networks. We first explain how one can derive
mountain graphs and line parents from landscapes. Afterwards, we present the already
mentioned optional preprocessing step based on RNGs to remove a significant amount of
edges while preserving the connectivity of the original network. A complete example of the
end-to-end procedure which we develop in the following is given by Figure 4.1.

In the following, we will always assume to have given a finite landscape L = (G,d,h)
where G is connected.1 As mentioned earlier, our aim is to display hierarchies of peaks and
connections between peaks and cols. For this, we first have to clarify how peaks and cols are
defined. We will then argue how prominence of peaks in landscapes as in Definition 3.6 is
determined by connections between them.

Definition 4.1 (Peaks, Mountain paths, Cols2)
We call v ∈V a peak of L if h(v)> h(u) for all u ∈ N(v) and denote by P(L) the set of peaks
of L. A path p of G is a mountain path if start(p),end(p) ∈ P(L). We denote by M(L) the
set of all mountain paths. For each p ∈M(L) we call

c(p) := argminv∈p h(p)

the col of p. If this argmin is not unique, we choose the point in the path which is visited
first.

To compute the prominence of a peak v ∈ P(L), we have to identify the cols which
connect it with higher peaks.

1This is only assumed for simplicity. One could study each connected component for itself if the graph is
not connected.

2To simplify notations, our definition of cols allow only one col per path which differs from the definition in
geography,

4.3 Mountain Graphs 51

Figure 4.2: Computing the prominence via key cols and line parents: Here, the vertical
positioning displays the height of the different points. To compute the prominence of v5,
we first identify the paths that lead to higher peaks. Then, we determine the cols of these
paths and compute the height difference of v5 to these cols. The lower difference yield the
prominence of v5.

Definition 4.2 (Cols of Peaks)
For each v ∈ P(L) we call the set

↑L (v) := {p ∈M(L) | start(p) = v,h(end(p))> h(v),

@u ∈ p\{end(p),v} :

u ∈ P(L)∧h(u)> h(v)}

the ascending paths of v and denote by

CL(v) := {c(p) | p ∈↑L (v)}

the cols of v.

We omit L in the index if clear from the context. As prominence as in Definition 3.6 is
the minimal descent needed to go to higher points, we are just interested in the highest cols.

Definition 4.3 (Key Cols)
For each peak v ∈ P(L)\{max(L)} we call the elements of

KL(v) := {u ∈CL(v) | h(u) = max
ũ∈CL(v)

h(ũ)}

the key cols of v.

Note, that the key cols are the highest possible lowest points of paths ending at higher
peaks. Thus, they determine the prominence values of peaks.

Corollary 4.4 Let v ∈ P(L)\{max(L)} be a peak of L. Let u ∈ KL(v). It then holds that

promL(v) = h(v)−h(u).

52 Mountain Graphs and Line Parent Trees

For v ∈ P(L)\{max(L)} the prominence is the minimal height difference to a col, i.e.,

promL(v) = min
u∈C(v)

h(v)−h(u).

Again, we write prom(v) and K(v) if the choice of the landscape is clear. An illustration
of determining prominence values via the identification of key cols is given by Figure 4.2.

We are not only interested in the key cols, but also in the higher peaks which are reached
after the key cols.

Definition 4.5 (Dominators)
For each peak v, we call the set

DL(v) := {end(p) | p ∈↑L (v)∧ c(p) ∈ K(v)}

the dominators of v.

Definition 4.6 (Mountain Graph)
For a given finite landscape L = ((V,E),d,h), let K(L) := ∪v∈P(L)KL(v) be the set of key
cols of L and let VMG(L) := P(L)∪K(L) be the critical points. Let for v ∈ P(L) be

↑K
L (v) := {p ∈↑L (v) | c(p) ∈ KL(v)}

the ascending paths of v with key cols as cols. Let then

EMG(L) :=
⋃

v∈P(L)

 ⋃
p∈↑K

L(v)

{{v,c(p)},{c(p),end(p)}}

 .

The graph
MG = (VMG(L),EMG(L))

is called the mountain graph of L. We call the corresponding landscape LMG :=(MGL,d|MG,h|MG)

the mountain landscape of L.

To sum up, if a peak v1 is connected via a key col u to a higher peak v2, we add edges
between v1 and u and between u and v2 to the mountain graph. Thus, the mountain graph
displays which peaks are connected through which key cols to each other. If clear from the
context, we omit L and simply write MG = (VMG,EMG). The mountain graph contains all
relevant information for the computation of prominences as the following theorem shows.

4.3 Mountain Graphs 53

Theorem 4.7 The following statements hold:

1. MG is connected.

2. P(L) = P(LMG)

3. Consider for each peak v∈P(L)\{max(L)} of L the set N′MG(v) := {u∈NMG(v) | ∃v′ ∈
NMG(u) : h(v′)> h(v)}. Then:

u ∈ N′MG(v)⇒∃u′ ∈CL(v) : h(u′)≥ h(u).

4. It holds for v ∈ P(L)\{max(L)} that:

promL(v) = min
u∈N′MG(v)

(h(v)−h(u)).

Proof. 1) Let u ∈ VMG \ {max(L)}. We show that u is connected to max(L). As every
u′ ∈ K(L) is connected to some û ∈ P(L) in GMG, it is sufficient to consider the case that
u ∈ P(L). For each dominator u1 ∈DL(u) of u it holds that h(u1)> h(u) and u1 is connected
to u in GMG. Analogously, if u1 ̸= max(L), there exists u2 with h(u2) > h(u1) > h(u)
such that u2 is connected to u1 and thus to u. Repeating this argument as long as the last
element has a dominator leads to chains (u,u1, . . . ,um) where all elements are connected and
h(ui−1)< h(ui). As VMG is finite, there must be an m ∈ N such that um = max(L) holds.

2) “⊆:” Let v ∈ P(L) and u ∈ NMG(v). Then there must exist a mountain path p =

(v0, . . . ,u, . . . ,vm) in L such that v0 = v or vm = v and such that c(p) = u. If v0 = v we have

h(v) >︸︷︷︸
v∈P(L)

h(v1)≥ h(c(p)) = h(u).

Analogously, if v = vm, we have

h(v) >︸︷︷︸
v∈P(L)

h(vm−1)≥ h(c(p)) = h(u).

Since u ∈ NMG(v) was chosen arbitrary, it follows that v ∈ P(LMG).
“⊇:” Let v ̸∈ P(L). We show v ̸∈ P(LMG). If v ̸∈ VMG, we are finished. Otherwise

v ∈ K(L) and hence it must exist u ∈ P(L) such that v ∈ K(u) and thus {u,v} ∈ EMG. With
an analog argumentation as above, we can see that h(u)> h(v) and thus v ̸∈ P(LMG).

3) Let u ∈ N′MG(v). It either holds that u ∈ K(v) or that there exists ṽ ∈ P(L) such
that u ∈ K(ṽ) and there is an ascending path p = (ṽ, . . . ,u, . . . ,v) ∈↑L (v) with c(p) = u.

54 Mountain Graphs and Line Parent Trees

In the first case, we are finished by choosing u′ = u. Hence, we assume the existence of
p̃ = (ṽ = v0, . . . ,u = vi, . . . ,v = vm) ∈↑L (ṽ). Let now v′ ∈ NMG(u) with h(v′)> h(v). Hence,
there exists v′′ ∈P(L) and a path p′′= (u0 = v′′, . . . ,u j = u, . . . ,ul = v′)∈MG with c(p′′) = u
such that

p′′ ∈↑L (v′′) or (ul, . . . ,u0) ∈↑L (v′).

Let p′′′ := (v = vm, . . . ,vi = u = u j,u j+1, . . . ,ul = v′). If p′′′ is not a path, there can only
be pairs of doubled vertices of the form (vk,us) as p′ and p′′ are paths. Let s be maximal
such that this is the case. Then, p̂ := (v = vm,vm−1, . . . ,vk,us+1, . . . ,ul = v′) is a path. If
p̂ ̸∈↑L (v), there must exist n ∈ {s+1, . . . l−1} with un ∈ P(L) and h(un)> h(v). Choose n
minimal that this is the case and set v̂ = un. Then set p := (v = vm, . . . ,vk,us+1, . . . ,un = v̂).
If p̂ ∈↑L (v) instead simply set p := p̂. In both cases, we get p ∈↑L (v). Let u′ := c(p). As
either u′ ∈ p′ or u′ ∈ p′′ and c(p′′) = c(p′) = u, it follows h(u′)≥ h(u).

4) “≥”: Let u ∈ K(v). It holds that

promL(v) = h(v)−h(u) ≥︸︷︷︸
u∈K(v)⊆N′MG

min
u′∈N′MG

(h(v)−h(u′))

“≤:” Let u ∈ N′MG(v). Choose u′ ∈C(v) with h(u′)≥ h(u). Hence:

promL(v) = min
ũ∈C(v)

h(v)−h(ũ)≤ h(v)−h(u′)≤ h(v)−h(u).

Since u was chosen arbitrary from N′MG(v) it directly follows that

promL(v)≤ min
u∈N′MG

(h(v)−h(u)).

Theorem 4.7 shows that to study relations between cols and peaks that determine promi-
nence values, it is sufficient to check the cols to which a peak is connected in the mountain
graph. Note, that the key cols and the paths between peaks passing through them have to be
determined to derive the mountain graph. Hence, Theorem 4.7 does not allow for a faster
computation of prominence values. Instead, it provides a representation that can be used to
observe important connections between peaks and cols.

4.4 Line Parent Trees 55

4.4 Line Parent Trees

As the prominence of mountain peaks is computed by descending to cols and then ascending
to higher peaks, a hierarchy between peaks arises by the question to which higher peak one
can traverse from a given peak to compute the prominence.

Definition 4.8 (Peak Graph)
Let

EP(L) :=
⋃

v∈P(L)

{{start(p),end(p)} | p ∈↑K
L (v)}.

We call PG(L) := (P(L),EP(L)) the peak graph of L and we call

TPG(L) :=
⋃

v∈P(L)

{(start(p),c(p),end(p)) | p ∈↑K
L (v)}

the defining triples of PG(L).

Peaks may be connected to different key cols and different higher peaks. To define a
meaningful hierarchy on the peaks, we use the metric d to determine a unique line parent for
all peaks.

Definition 4.9 (Line Parents)
Let

T ′PG(L) := {(v,u, ṽ) ∈ TPG | @v′ : (v,u,v′) ∈ TPG∧
(d(u,v′)< d(u, ṽ)∨ (d(u,v′) = d(u, ṽ)∧h(v′)> h(ṽ)))}.

(4.1)

Let

ELP(L) := {{{v, ṽ} | ∃u : (v,u, ṽ) ∈ T ′PG∧@u′,v′ : (v,u′,v′) ∈ T ′PG∧d(v,u′)< d(v,u)}. (4.2)

We call LP(L) := (P(L),ELP(L)) the line parent graph of L. If if we have {u,v} ∈ ELP(L)
with h(v)> h(u), v is a line parent of u.

Again, we omit L when possible without confusion. In Equation (4.1), we first remove
edges to higher peaks that are further away from the corresponding key col. If there are
multiple higher peaks with the exact same distance to the key col, we keep the highest peak.
Then we remove in Equation (4.2) edges where the key col is further away.

56 Mountain Graphs and Line Parent Trees

Theorem 4.10 If for each peak v ∈ P(L)\{max(L)} the line parent is unique, then it holds
that LP(L) is a tree.

Proof. Let n := |VMG|. As shown for example in Deo [39], it is sufficient to show that LP(L)
is connected and has n−1 edges.
Connectivity: We show, that each u ∈ P(L) is connected to max(L). Let

LP : P(L)\{max(L)}→ P(L)

map every other peak to its line parent. Since for each u ∈ P(L) it holds that h(LP(u)) >
h(u) and since P(L) is finite, there is m ∈ N with LPm(u) = max(L). Let v0 := u and for
i ∈ {1, . . . ,n} let vi := LPi(u). Then

(u = v0,v1, . . . ,vm = max(L))

is a path from u to v.
Edges: It holds that ELP = {{u,LP(u)} | u ∈ P(L)\{max(L)}}. Also,

{u,LP(u)}= {w,LP(w)}⇒ u = w

since u < LP(u) and w < LP(w). Thus,

|ELP|= |{{u,LP(u)} | u ∈ P(L)\{max(L)}}|= |{u | u ∈ P(L)\{max(L)}}|= n−1.

The uniqueness of the line parent is only violated in two cases.

• There are multiple peaks being reached after the same key col with the exactly same
distance to the key and the same height. In such a case, we can enforce the uniqueness
by sampling one of the peaks.

• There are key cols c1, . . . ,cn with corresponding higher peaks p1 . . . pn with the exact
same distance to the point. In such a case, we choose pi such that d(ci, pi) is minimal.
If these minimum is reached multiple times, we enforce uniqueness by sampling one
of the higher peaks with minimal distance to the corresponding key col.

The simple edge structure of trees enables a satisfactory visualization even for medium sized
node sets. The line parent tree can also be used to study dominance relationships with a
non peak as a starting point. In this case, we suggest to navigate through the line parent tree
starting with the closest peak with respect to the given metric.

4.5 Discarding Edges via Relative Neighborhood Graphs 57

Algorithm 4.1: g2rng: Computing RNGs from Graphs

1
Input: Graph G = (V,E,w) with shortest path metric dSP.
Output: RNG(G) = (V,ERNG(dSP)).

1 RNG(G)← G
2 FOR {v1,v2} IN ERNG(dSP) :
3 d← dSP(v1,v2)
4 FOR v3 IN V :
5 IF dSP(v1,v3)< d AND dSP(v2,v3)< d :
6 ERNG(dSP)← ERNG(dSP) \{{v1,v2}}
7 BREAK
8 RETURN RNG(G)

4.5 Discarding Edges via Relative Neighborhood Graphs

Let G = (V,E,w) be a weighted graph where smaller weights stand for smaller connections
and let h : V → R≥0 be a height function. One way to extend this to a landscape is given via
the shortest path distance as in Definition 3.3. In practical applications, the amount of peaks
will often be very low. One reason for this is the huge amount of connections one may have
in social networks. Let us for example assume to have a weighted co-follower graph (for
example weighted with Jaccard-distance) where the height function is given by the amount
of followers. Here, all pairs of users with just one common follower would be connected and
thus nearly all users would have a “higher” neighbor and thus will not be peaks. Hence, it is
of interest to only keep edges which stand for a strong connection, i.e., edges between users
with a large amount of common followers.

A straight-forward way to remove edges would be by either choosing a k ∈ N and keep
for all vertices only the k edges with the smallest weights or to choose a t ∈ (0,1) and remove
all edges with weights higher than t. However, besides the disadvantage that in both cases a
parameter has to be chosen, this procedure can lead to disconnected graphs. Restricting to
the biggest connected component of the resulting graph would then lead to the discarding of
whole regions of the graph. To this end, we develop in the following a parameter free, deter-
ministic edge sampling approach which guarantees to preserve connectivity. This approach
is based on the relative neighborhood graph (RNG) [147] as defined in Definition 2.11.

In Theorem 2.12, we have already shown that the RNG is always connected. What
still has to be proven is that deriving RNGs from the shortest-path metric is indeed an
edge-reduction technique, i.e., that edges are just removed and no new edges are added.

58 Mountain Graphs and Line Parent Trees

Theorem 4.11 (RNG as Edge-Reduction) Let G = (V,E,w) be a connected, undirected and
weighted graph and dSP : V ×V → R≥0 be the shortest path metric on G. Then it holds that

ERNG(dSP) ⊆ E.

Proof. Let u,v ∈V such that {u,v} ̸∈ E. We will show that {u,v} ̸∈ ERNG(dSP). As u,v are
not adjacent there must exist a shortest path p = (u = v0, . . . ,vn = v) with n≥ 2. As p is a
shortest path we have d(vi−1,vi) = w(vi−1,vi) for i ∈ {1, . . .n}. We thus have

d(u,v) =
n

∑
i=1

d(vi−1,vi)> d(v0,v1) = d(u,v1).

As (v1, . . . ,vn = v) is a shortest path between v1 and v we also have

d(v1,v) =
n

∑
i=2

d(vi−1,vi)<
n

∑
i=1

d(vi−1,vi) = d(u,v).

Thus, we have shown that {u,v} ̸∈ ERNG(dSP).

In the following, we use for a given graph G the term relative neighborhood graph of G,
denoted by RNG(G), which will always refer to the RNG with respect to the shortest-path-
metric. A sketch of an edge-reduction on a graph is given as part of Figure 4.1.

For a graph G = (V,E,w) with a height function h, our standard procedure is to

1. compute the shortest path metric dSP,

2. compute RNG(G),

3. derive from this the following landscape.

Definition 4.12 (Essential Landscape)
Let h : V → R≥0 be a height function on a weighted graph G = (V,E,w). Let dSP be the
shortest path metric on G. We call

L(G,h) := (RNG(G),dSP,h)

the (essential) landscape of G and MG(G,h) := MG(L(G,h)) the (essential) mountain graph
of G. We call LP(G,h) := LP(L(G,h)) the (essential) line parent tree of G.

If clear from the context, we omit h and write MG(G) and LP(G).

4.6 Mountain Graphs and Line Parents of Real-World Networks 59

Table 4.1: Network statistics. We display from left to right: 1.) the number of vertices of the
network, 2.) its density 3.) the density of the RNG 4.) the number of vertices of the mountain
graph, 5.) the density of the mountain graph, 6.) the number of vertices in the line parent tree,
7.) its maximum width and 8.) its depth. Then we show the node sizes and degrees of the
sampled graphs serving a) as a comparison for discarding edges via the RNG procedure and
b) for serving as a comparison for the mountain graph which is computed from the RNG. For
the latter, we apply the sampling baselines on the RNG, not on the original network itself.

RNG Baselines MG Baselines
ES CNARW[101] RPN[95] RCMH[100]

|V | DG DRNG(G) |VMG| DMG |VLP| WLP DPLP |V | DG |V | DG |V | DG |V | DG

Twitter>10K 6635 .9958 .0005 1171 .1089 652 88 20 5192.8 .0008 5174 .0007 271.1 .0079 1171 .0021
Twitter>100K 430 1.0000 .0064 146 .1084 84 14 13 374.8 .0084 325.5 .0112 35.9 .0652 146 .0168
ECML/PKDD 742 .0123 .0052 190 .1957 98 21 10 650.7 .0067 560 .0092 77.1 .0304 190 .0153
KDD 1674 .0100 .0036 219 .2236 115 30 8 1575.5 .0041 1407.5 .0041 67.2 .0390 219 .0138
PAKDD 889 .0124 .0054 132 .2155 67 27 5 814.7 .0064 704.1 .0087 34.3 .0812 132 .0222

Computing the RNG of a Graph. The naive approach to compute the RNG for a finite
metric space (M,d) would be to check for all pairs m1 ̸= m2 ∈M whether there exists m3

which is closer to both of them. This results in an algorithm with runtime O(|M|3) [147].
For Rd with a lp metric, there are algorithms with better runtime [147, 1, 79]. However,
these results can not be applied to shortest path metrics. To compute RNG(G) for a graph
G = (V,E), we can use Theorem 4.11 to speed up the computation as we only have to
check the elements of E and not all node pairs. The resulting algorithm g2rng is displayed
in Algorithm 4.1 and runs in O(|E|||V |).

4.6 Mountain Graphs and Line Parents of Real-World Net-
works

We experiment with networks built from a Twitter follower network [93, 17, 18] which we
found at SNAP [96] and with networks that display co-author relations.

Follower Networks. From the Twitter dataset, we derive two weighted co-follower net-
works. In these networks two users have an edge if they have a common follower. The edges
are weighted via Jaccard distance. We derive a version containing users with at least 10,000
followers (Twitter>10K) and a network containing users with at least 100,000 followers
(Twitter>100K). Here, the height of a user is given via the amount of followers.

Co-Author Networks. These networks are extracted from the Semantic Scholar Open
Research Corpus [4]. The co-author networks are derived by considering communities of
authors that regularly publish at a specific conference. We derive datasets for the European

60 Mountain Graphs and Line Parent Trees

(a) Twitter>100K (b) Twitter>10K

Figure 4.3: Examples of line parent trees.

Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD), the SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD) and the Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD). The heights of the authors are given via h-indices.

To weaken the influence of old publications and social connections that not exist anymore,
we only use publication with a “year” attribute between 2010 and 2020. To identify the
authors for a specific venue we identify authors with publications at the specific venue. To
discard authors which are only weakly connected to the community, we only choose authors
which are co-author of at least 2 publications at the specific venue. We generate an edge
between two authors if they have at least one joint publication. Here, the edges between
a1,a2 are weighted via Jaccard-distance using the set of publications authored between 2000
and 2020. As the height function we choose the h-index. For this, we again only consider
publications and citations which are dated between the years 2000 and 2020.

Connectivity and Vanishing Distances. When generating the co-author and co-follower
networks, two problems occur:

• Connectivity. The networks may not be connected. To solve this issue, we restrict
them to the biggest connected component with respect to the amount of vertices.

• Vanishing Edges. It may happen that an edge has weight 0 which results in the shortest
path distance not being a metric. This happens for example if two Twitter users are
followed by exactly the same persons. This problem can be solved by replacing zero
weights by minimal weights: We first choose the minimal positive edge weight w0 > 0.
Then, if an edge has weight zero, we replace its weight with w0

2 . In this way, the zero
edges are still the edges with the minimal weight but the shortest path distance is a
metric.

4.6 Mountain Graphs and Line Parents of Real-World Networks 61

At the end of this chapter, we display the labeled trees for the co-author networks. In
the brackets, we display the height and prominence of each author. For all graphs, we use
well-established measures to get further insights into our notions. To be more detailed, we
display node sizes and densities of the networks themselves, the RNGs and the mountain
graphs derived from the RNGs. Additionally, we display node sizes, maximum widths and
depths of the line parent trees derived from the RNGs. The results can be found in Table 4.1.
At the end of this chapter, one can found the line parent trees of all three co-author networks.

4.6.1 Comparison with Sampling Approaches

To further understand the steps of our approach, we compare them with commonly used
sampling approaches [101, 95, 100]. To be more specific, we sample edges from the original
network to get graphs which have an equal amount of edges as the RNG. Then we take the
biggest connected component of these graphs. We call these methods the RNG Baselines.
We use two sampling approaches: First, we sample edges with the probability of an edge e
to be chosen being proportional to 1−w(e), where w(e) is the weight of the edge3. We call
the resulting baseline the Edge Sampling (ES) approach. As a second comparison, we use a
weighted version of CNARW [101], a modern random walk approach.

Additionally, we use sampling approaches to sample from the RNG in such a way, that we
have an equal amount of nodes as in the mountain graph and take the biggest component of the
resulting network. We call these methods the MG Baseline. First, we sample nodes by their
PageRank value via RPN [95]. Again, we also use a modern random walk based approach,
namely RCMH [100]. The CNARW method used above relies on common neighbors. Since
triangles in the RNG are very uncommon (for these, 2 of the 3 corresponding edges in the
original graph need to have the same distance weight), we use RCMH instead.

Note, that we use the comparison with other methods to contextualize our novel structures.
As our structures have a different purpose, namely displaying important connections that
are derived from the original network, they are not directly comparable to regular sampling
approaches. These approaches derive small graphs that behave similar to the original graph
with respect to specific measures. This makes it unreasonable to interpret the comparison
to our baselines as a competition where higher/lower node sizes or densities are, in some
way, better. As our comparison methods include random sources, we repeat them 10 times
and report means. Statistics, including sizes of the derived RNGs, mountain graphs and line
parent trees, can be found in Table 4.1. Additionally, we include node sizes and densities for
all comparison approaches.

3We use 1−w(e) instead of w(e) because we assume edge weights to be distances, not similarities.

62 Mountain Graphs and Line Parent Trees

Table 4.2: Mean, median and maximum of the minimal shortest path distance (MSPD) from
all non-peaks v to the set P of all peaks (left) and to the set H which contains the |P| highest
nodes of the network (right).

d(P)Mean d(P)Median d(P)Max d(H)Mean d(H)Median d(H)Max

Twitter>10K 0.87 0.88 1.00 0.90 0.91 1.00
Twitter>100k 0.86 0.87 0.97 0.92 0.95 0.99
ECML 1.28 1.00 2.98 1.74 1.91 4.91
KDD 1.30 1.00 2.95 1.83 1.95 3.90
PAKDD 1.46 1.00 3.78 1.94 1.96 4.90

We observe that computing the RNG reduces the density by a large margin. It stands
out, that this effect is stronger for the dense Twitter networks. When sampling an equal
amount of edges, there are nodes which do not belong to the biggest connected component
anymore. This results in a higher density of the (biggest component) of the networks created
by sampling compared to the RNG.

The resulting line parent trees are much smaller than the original network, reducing the
node set by a factor of about 5 to 10 times. Another remarkable point is that the mountain
graph is always denser than the RNG from which it is computed and than the graphs which
are sampled via the comparison methods. An explanation is that edges from a peak v to a
col u in the mountain graph correspond to paths (not edges!) in the RNG. As the amount of
paths in a graph is commonly remarkably higher than the amount of edges, this could be one
reason for the higher density of the mountain graph.

4.6.2 Distances to Line Parent Trees

To investigate to which extent line parent trees are representative for the structure of the
whole network, we study how “dense” the line parent trees lay in the networks by computing
the shortest path lengths from all non-peaks to the peaks. To evaluate whether choosing
locally outstanding nodes lead to a better representation than choosing nodes solely based on
their height, we compare our approach with a “naive” approach of assuming the n highest
points to be relevant, where n is the amount of peaks. To be more detailed, we compute for
each non-peak v the minimal shortest path distances (MSPD) to all peaks in the original graph
G. We do the same using the n highest points instead of the set of peaks. We report means,
medians and maximum values over the MSPDs of all non-peaks, the results are in Table 4.2.

Our results show that locally outstanding nodes better reflect the overall network then just
choosing the highest nodes, with median and mean values of the MSPDs being fundamentally
lower. Furthermore, median MSPDs to peaks are always not higher then 1. In contrast,

4.7 Experiments on Random Data 63

Figure 4.4: Experiments on random data. In both rows, the set M1 on which is projected
has size 100. The other set has size 100,000 on the first row and size 100 in the second
row. The x-axes display the densities of the original bipartite graph B. The left plots display
the densities for the resulting network G, which is the biggest connected component of the
weighted projection, the line parent tree RNG(G) and the mountain graph MG(G). The right
pictures plot the node size of G,MG(G) and LP(G).

MSPDs to the “highest” nodes have median values of nearly 2 for the sparse co-author
networks. This indicates that selecting locally outstanding points indeed lead to a more
reasonable representation instead of selecting nodes solely by their hight, ignoring spatial
information. Note, that we compute distances in a weighted graph. Hence, shortest path
distances (and thus medians and maxima over them) do not have to be integers.

4.7 Experiments on Random Data

To investigate sizes and densities of the RNG, the mountain graph and the line parent tree,
we additionally experiment with randomly generated data. Here, we start with a randomly

64 Mountain Graphs and Line Parent Trees

generated bipartite graph with vertex sets M1,M2 with |M1|= 100 and |M2| ∈ {100000,100}.
We then project on the vertex set M1 and weight with the Jaccard distance. The graph
G is then given via the biggest connected component of this graph. As height function,
we map each vertex to the amount of neighbors in the original bipartite network. This
procedure is motivated by the background of often investigated real-world networks. Co-
author networks are for example projection from the bipartite author-publication graph. Here,
the corresponding height function then would be the amount of papers of an author, where
each author is connected to multiple publications but only a small amount of the overall
publications. This leads to a small density of the bipartite network.

We generate networks for different densities d. Namely, we iterate d through the set
{0.0001,0.0002, . . . ,0.01999} for |M2| = 100,000 and through {0.01,0.02, . . .0.99} for
|M2| = 100. The experiments with different sizes of |M2| allow us to investigate if our
methods behave fundamentally different for networks of different kinds. From G we com-
pute the RNG(G), the mountain graph MG(G) and the line parent hierarchy LP(G)) of the
essential landscape. For each d and |M2|, we repeat this procedure 20 times and display
means. The results can be found in Figure 4.4. The following facts stand out.

• The density of both the RNG and the mountain graph of the RNG are growing in a
significant smaller pace than the density of G. Considering the case |M2|= 100,000 it
is remarkable, that, when G has a density of nearly 1, the density of both other graphs
are still under 0.3.

• The characteristic points for describing the resulting mountain landscape build indeed
a subset that is remarkably smaller than the vertex size of the biggest component of G.

• Considering the second row, it stands out that for very high densities of nearly 1 of the
original bipartite network, the density and thus the amount of edges of the RNG start
to rise rapidly. We assume that this is driven by the case, that, if the bipartite graph is
nearly complete, there will be a large amount of vertex pairs with the same neighbor
set in the bipartite graph. Thus, nearly all shortest path distances are equal and just
very few edges will be discarded. In consequence, the mountain graph is built from a
nearly complete graph where nearly all edges have similar weights. Thus, there will be
only a small amount of peaks and the mountain graph is nearly vanishing.

Note, that we use a height function that is directly derived from the graph. Such height
functions are indeed reasonable. For example, the amount of followers of Twitter users in
co-follower graphs is indeed a useful indicator of their importance.

4.8 Conclusion and Future Work 65

4.8 Conclusion and Future Work

In this chapter, we showed how the notions of peaks, cols and line parents, which are
originally designed to characterize connections and hierarchies between mountains, can
be adapted to network analysis. We discussed how these notions can be used to identify
meaningful connections and hierarchies between locally outstanding vertices. This leads
to novel insights into networks from a local perspective. Our method further benefits
from a novel preprocessing procedure that removes unimportant edges without hurting the
connectivity of the original network.

Our experiments indicate that our method finds dependencies and hierarchies from the
original network that are remarkably smaller than the original graph and therefore can
enhance the comprehension of real-world social networks.

Future work will investigate the application to further kinds of networks such as friendship
networks on Facebook. As some of these networks may be unweighted, the question arises
on how to use our RNG procedure in this case. On the other hand, it would be interesting to
involve temporal aspects in networks, i.e., how the line parent hierarchy of social networks
change over time.

66 Mountain Graphs and Line Parent Trees

id name id name id name id name

0 Yoshua Bengio (154, 154) 25 Zhi-Hua Zhou (90, 36) 50 Klemens Böhm (29, 2) 75 Shie Mannor (56, 17)
1 Alexander J. Smola (100, 36) 26 Congfu Xu (14, 2) 51 Kathryn B. Laskey (30, 15) 76 Andreas Hotho (51, 2)
2 Jürgen Schmidhuber (77, 20) 27 S. Muthukrishnan (67, 21) 52 Ahmed AbdelWahab (22, 3) 77 Richard Nock (30, 5)
3 Marc Toussaint (37, 2) 28 Volker Tresp (42, 22) 53 Gennady L. Andrienko (52, 7) 78 Aapo Hyvärinen (49, 30)
4 Jiawei Han (139, 85) 29 Nikunj C. Oza (22, 2) 54 Tomás Pevný (29, 24) 79 Marcos André Gonçalves (44, 19)
5 Christian Wolf (31, 6) 30 Peter J. Stuckey (43, 4) 55 Eyke Hüllermeier (53, 15) 80 Jakub Marecek (13, 9)
6 Zoubin Ghahramani (94, 41) 31 Marko Jereminov (11, 1) 56 Pavlos Protopapas (24, 4) 81 Irina Rish (26, 14)
7 Bernd Bischl (27, 2) 32 Quan Z. Sheng (44, 2) 57 Céline Robardet (24, 2) 82 Bernard De Baets (54, 16)
8 Devis Tuia (47, 19) 33 Eli Upfal (38, 11) 58 Ambuj K. Singh (35, 22) 83 Saso Dzeroski (48, 7)
9 Qian Zhang (79, 23) 34 Iordanis Koutsopoulos (29, 9) 59 Pieter Libin (9, 5) 84 Osmar R. Zaïane (47, 10)
10 Marco Zaffalon (26, 7) 35 Fabio Crestani (33, 1) 60 Steven C. H. Hoi (59, 4) 85 Marc Boullé (17, 4)
11 Ross T. Whitaker (49, 27) 36 Luc De Raedt (55, 8) 61 Masashi Sugiyama (59, 4) 86 Boris Chidlovskii (15, 2)
12 Yong Yu (95, 18) 37 Gianluca Bontempi (49, 20) 62 Chris H. Q. Ding (64, 11) 87 Wagner Meira (40, 15)
13 Matej Oresic (75, 55) 38 Tristan Snowsill (13, 2) 63 Elizabeth S. Burnside (32, 16) 88 Tapio Pahikkala (27, 5)
14 Bhavani M. Thuraisingham (48, 2) 39 Holger Fröning (12, 9) 64 Milind Tambe (71, 37) 89 Louis Wehenkel (39, 1)
15 Jinbo Xu (40, 27) 40 Battista Biggio (35, 6) 65 Sarah Nogueira (4, 2) 90 Fabio Mercorio (15, 1)
16 Rui Chen (48, 16) 41 Jesús Manuel de la Cruz (20, 5) 66 Matthias Weidlich (37, 6) 91 Kaihua Liu (14, 8)
17 Lawrence T. Pileggi (42, 32) 42 Feiping Nie (70, 16) 67 George Tsatsaronis (32, 8) 92 Hongyu Guo (15, 4)
18 Nassir Navab (70, 61) 43 Raymond J. Mooney (72, 23) 68 Sridhar Mahadevan (37, 11) 93 Jerzy Stefanowski (33, 2)
19 Aristides Gionis (56, 9) 44 Ioannis P. Vlahavas (47, 7) 69 Markus Schedl (38, 18) 94 Patrick Gallinari (36, 14)
20 Rémi Munos (59, 23) 45 Samuel Kaski (45, 17) 70 Lena A. Jäger (8, 6) 95 Mark Last (30, 1)
21 Franz Pernkopf (24, 8) 46 Wolfgang Rhode (78, 69) 71 Francesco Calabrese (32, 13) 96 Jesús Cid-Sueiro (15, 1)
22 Kazumi Saito (26, 3) 47 Alex Alves Freitas (54, 15) 72 Elke A. Rundensteiner (43, 20) 97 Nicolas Vayatis (23, 1)
23 C. Lee Giles (70, 33) 48 Barry O’Sullivan (29, 3) 73 Mohamed Nadif (19, 11)
24 Yuji Matsumoto (42, 19) 49 Sen Wang (35, 10) 74 Henrik Grosskreutz (17, 1)

Figure 4.5: ECML/PKDD

4.8 Conclusion and Future Work 67

id name id name id name id name

0 Jiawei Han (139, 139) 29 Andrew McCallum (89, 6) 58 Ruslan Salakhutdinov (86, 47) 87 Ming Zhou (69, 19)
1 Eamonn Keogh (79, 30) 30 David Lobell (82, 47) 59 Feiping Nie (70, 10) 88 Tianyang Zhang (7, 2)
2 Tat-Seng Chua (80, 6) 31 Fei Wang (90, 7) 60 Stephen P. Boyd (88, 21) 89 Masashi Sugiyama (59, 4)
3 Louise E. Moser (23, 14) 32 Sangram Ganguly (55, 22) 61 Kota Tsubouchi (10, 4) 90 Ravi Kumar (66, 9)
4 Jason I. Hong (60, 8) 33 Wei Zhang (102, 6) 62 George Karypis (71, 11) 91 Achla Marathe (23, 5)
5 Dinggang Shen (85, 14) 34 Eric E. Schadt (102, 20) 63 Stefan Savage (70, 5) 92 Salvatore Scellato (30, 8)
6 Martin Ester (51, 7) 35 Max Welling (64, 7) 64 Benjamin J. Bachman (6, 2) 93 Klaus Ackermann (5, 2)
7 Vitaly Shmatikov (57, 22) 36 Tong Zhang (72, 15) 65 Feng Chen (46, 2) 94 Prantik Bhattacharyya (8, 2)
8 Alex Deng (12, 3) 37 Céline Robardet (24, 4) 66 Cecilia Mascolo (64, 23) 95 Hiroki Sugiura (8, 5)
9 Thomas S. Huang (115, 45) 38 Thore Graepel (44, 13) 67 Virgílio A. F. Almeida (43, 6) 96 Luc De Raedt (55, 6)
10 David L. Small (17, 4) 39 Lawrence A. Donehower (52, 8) 68 Liang-Hao Huang (11, 5) 97 Kunpeng Liu (8, 1)
11 Nick Koudas (55, 10) 40 Sam Shah (12, 3) 69 Ioana Giurgiu (9, 1) 98 Chuan Qin (32, 3)
12 Jie Wang (106, 33) 41 Wei Chen (111, 51) 70 Ming Lei (4, 2) 99 Yasuhiro Fujiwara (39, 7)
13 Cheng-Wei Wu (15, 6) 42 Zheng Liu (88, 9) 71 Yi Li (80, 38) 100 Hiroshi Nakagawa (22, 3)
14 Paul M. Thompson (137, 89) 43 Jayant Kalagnanam (27, 2) 72 Xiaoqiang Zhu (17, 1) 101 Bernhard Pfahringer (45, 5)
15 Michael I. Jordan (134, 59) 44 Yong Yu (95, 18) 73 Kewei Chen (53, 8) 102 Pierre-Alain Fouque (40, 17)
16 Bilson J. L. Campana (9, 2) 45 Yehuda Koren (49, 5) 74 Lawrence Carin (69, 2) 103 Chih-Jen Lin (56, 18)
17 Hiroshi Mamitsuka (28, 5) 46 Robert Chen (66, 3) 75 Ruiyuan Li (20, 9) 104 Duncan Watts (50, 32)
18 Evangelos E. Milios (37, 4) 47 Hans-Peter Kriegel (71, 10) 76 Joe Walsh (9, 3) 105 Vahab S. Mirrokni (50, 7)
19 Guoliang Li (62, 4) 48 Hiroshi Sawada (41, 18) 77 Fanjin Zhang (4, 2) 106 Graham Katz (18, 10)
20 Evangelos Kanoulas (27, 8) 49 Eric Horvitz (80, 8) 78 Souvik Ghosh (12, 4) 107 Jaime Arredondo (13, 4)
21 Dimitrios Gunopulos (58, 6) 50 Matthias Grossglauser (29, 8) 79 Michael Mitzenmacher (66, 7) 108 Anthony J. Bagnall (29, 15)
22 Ed H. Chi (51, 13) 51 João Gama (46, 3) 80 Ryo Asaoka (22, 19) 109 Yukihiro Tagami (7, 3)
23 Yong Ge (34, 6) 52 Prashant J. Shenoy (67, 19) 81 Ken-ichi Kawarabayashi (37, 14) 110 Christine Largouët (9, 7)
24 Murali Ramanathan (41, 2) 53 Diane J. Cook (54, 7) 82 Pedro Domingos (76, 15) 111 Wei Di (19, 4)
25 Bernhard Schölkopf (119, 32) 54 Andrew J. Connolly (69, 25) 83 Yina Tang (6, 2) 112 Yuandong Tian (26, 8)
26 Inderjit Dhillon (71, 26) 55 Jennifer Widom (69, 8) 84 Rodica Pop-Busui (47, 44) 113 Adam D. Smith (47, 5)
27 Anil K. Jain (130, 53) 56 Xiaoming Li (84, 19) 85 Zimu Zhou (34, 7) 114 Estevam R. Hruschka (19, 2)
28 Christos Faloutsos (107, 20) 57 Yunfei Lu (9, 4) 86 Wei Wang (75, 14)

Figure 4.6: KDD

68 Mountain Graphs and Line Parent Trees

id name id name id name id name

0 Jiawei Han (139, 139) 17 Chun Chen (58, 7) 34 Felix Cheung (8, 4) 51 Lior Rokach (52, 15)
1 Christos Faloutsos (107, 52) 18 Ramayya Krishnan (39, 5) 35 Manuel Campos (17, 9) 52 Gang Li (40, 6)
2 Yong Yu (95, 24) 19 Alex Beutel (31, 15) 36 Sadok Ben Yahia (25, 3) 53 Svetha Venkatesh (46, 11)
3 Zhi-Hua Zhou (90, 35) 20 Nan-Chen Hsieh (8, 1) 37 Niloy Ganguly (33, 3) 54 Manabu Okumura (27, 13)
4 Wei Zhang (102, 35) 21 Xiaoming Li (84, 6) 38 Shen Furao (18, 7) 55 Houkuan Huang (20, 2)
5 Eamonn J. Keogh (79, 30) 22 Qian Zhang (79, 6) 39 Elaheh ShafieiBavani (8, 1) 56 Si Quang Le (12, 3)
6 Minghua Zhang (19, 7) 23 Meng Chen (48, 13) 40 Xin Zuo (5, 3) 57 Tharshan Vaithianathan (13, 4)
7 Francesco Bonchi (47, 7) 24 Yusuke Suzuki (37, 26) 41 Samir Mustapha (13, 4) 58 Maguelonne Teisseire (24, 2)
8 Cyrus Shahabi (57, 11) 25 Hao Chen (34, 5) 42 Chris H. Q. Ding (64, 4) 59 Tanya Goyal (12, 3)
9 Chen Wang (71, 6) 26 Hiroyuki Toda (29, 10) 43 Gianluigi Greco (26, 10) 60 Wayne Wobcke (14, 5)
10 Boualem Benatallah (54, 8) 27 Mineichi Kudo (17, 8) 44 Nada Lavrac (41, 8) 61 Md. Rafiul Hassan (14, 5)
11 George Karypis (71, 11) 28 Alexandros Kalousis (26, 13) 45 Chunmei Dong (7, 2) 62 Viktor K. Prasanna (53, 5)
12 Osmar R. Zaïane (47, 10) 29 Ulf Johansson (18, 6) 46 Claudia Eckert (29, 17) 63 Yun Xiong (15, 1)
13 Irwin King (58, 2) 30 Tony F. Chan (65, 47) 47 Hsin-Min Wang (29, 3) 64 Sanparith Marukatat (13, 5)
14 Xueping Zhang (5, 1) 31 Peng Wang (99, 17) 48 Albert Y. Zomaya (66, 18) 65 Kazumi Saito (26, 11)
15 Luc De Raedt (55, 25) 32 Yiyu Yao (63, 25) 49 Kenichi Takahashi (11, 1) 66 Junichiro Mizusaki (15, 6)
16 Tamás D. Gedeon (32, 8) 33 Geoffrey I. Webb (48, 1) 50 Yaqin Wang (25, 11)

Figure 4.7: PAKDD

Part III

Intrinsic Dimensionality

Chapter 5

Intrinsic Dimensionality for Large-Scale
Geometric Learning

In this chapter, we study networks from a global perspective by investigating a quantity that
evaluates the complexity of a whole network. This quantity aims to display to which extent a
dataset is effected by the curse of dimensionality. We will discuss this notion in the abstract
setting of geometric datasets and will later discuss how this abstract setting can be applied to
real-world network data.

5.1 Introduction

Real-world networks are often large in size and comprised of complex structures, which
distinguishes them from Euclidean data. To consider these properties appropriately is
a challenging task for procedures that analyze or learn from said data. Moreover, with
increasing complexity of real-world datasets, the necessity arises to quantify to which extent
this data suffers from the curse of dimensionality. The common approach for estimating
the dimension curse of a particular dataset is through the notion of intrinsic dimension (ID)
[7, 62, 122]. There exists a variety of work on how to estimate the ID of datasets [50, 97,
38, 61, 7]. Most approaches to quantify the ID are based on distances between data points,
assuming the data to be Euclidean. A multitude of works base their modeling on the manifold
hypothesis [33, 61], which assumes that the observed data can be embedded in a manifold
of low dimension (compared to the number of data attributes). Based on this, the ID is an
approximation of the dimension of this manifold. Pestov [121] proposed a different concept of
intrinsic dimension by linking it to the mathematical concentration of measure phenomenon.
His modeling is based on a thorough axiomatic approach [122–124] which resulted in a

72 Intrinsic Dimensionality for Large-Scale Geometric Learning

novel class of intrinsic dimension functions. In contrast to the manifold hypothesis, Pestov’s
ID functions measure to which extent a dataset is affected by the curse of dimensionality, i.e.,
to which extent the complexity of the dataset hinders the discrimination of data points. Yet,
to compute said ID functions is an intractable computational endeavor. This limitation was
overcome in principle by an adaptation to geometric datasets [70]. However, two problems
persisted: First, the computational effort was found to remain quadratic in the number of data
points, which is insufficient for datasets of contemporary size; second, it is unclear how to
account for complex structure, such as in graph data.

With this in mind, we propose in the present chapter a default approach for computing
the intrinsic dimension of geometric data, such as graph data. To do this, we revisit the
computation of the ID based on distance functions [70] and overcome, in particular, the
inherent computational limitations in the works by Pestov [122] and Hanika et al. [70]. In
detail, we derive a novel approximation formula and present an algorithm for its computation.
This allows us to compute ID bounds for datasets that are magnitudes larger than in earlier
works. That equipped with, we establish a natural approach to compute the ID of networks.

We apply our method to seven real-world datasets and relate the obtained results to
performances of classification procedures. Thus, we demonstrate the practical computability
of our approach. In addition, we study the extent to which the intrinsic dimension reveals
insights into the performance of particularly classes of graph neural networks. With that, we
build a bridge between network complexity from a global view and graph learning.

5.2 Related Work

In numerous works, the intrinsic dimension is estimated using the pairwise distances between
data points [31, 63]. More sophisticated approaches use distances to nearest neighbors [50,
97, 38, 61]. All these works have in common, that they assume the data to be Euclidean and
that they favor local properties.

Recent work has drawn different connections between intrinsic dimension (ID) and mod-
ern learning theory. For example, Cloninger and Klock [33] show that functions of the form
f (x) = g(φ(x)), where φ maps into a manifold of lower dimension, can be approximated by
neural networks. On the other hand, Wojtowytsch et al. [156] prove that modern artificial
neural networks suffer from the curse of dimensionality in the sense that gradient training on
high dimensional data may converge insufficiently. Additional to these theoretical results,
there is an increasing interest of empirically estimating the ID of contemporary learning
architectures. Li et al. [98] study the ID of neural networks by replacing high dimensional
parameter vectors with lower dimensional ones. Their approach results in a non-deterministic

5.3 Intrinsic Dimensionality 73

ID. More recent works studied ID in the realm of geometric data and their standard architec-
tures. Ansuini et al. [5] investigate the ID for convolutional neural networks. In detail, they
are interested to which extent the ID changes at different hidden layers and how this relates
to the overall classification performance. Another work [125] associates an ID to popular
benchmark image datasets. These two works on ID estimators do solely rely on the metric
information of the data and do not consider any geometric structure of image data.

Our approach allows to incorporate such underlying geometric structures while incor-
porating the mathematical phenomenon of measure concentration [64, 109, 110]. Linking
this phenomenon to the occurrence of the dimension curse was done by Pestov [121–124].
He based his considerations on a thorough axiomatic approach using techniques from
metric-measure spaces. The resulting ID functions unfortunately turn out to be practically
incomputable. In contrast, Bac and Zinovyev [7] investigate computationally feasible ID
estimators that are related to the concentration phenomenon. Yet, their results elude a compa-
rable axiomatic foundation. Our modeling for the ID of large and geometric data is based
on Hanika et al. [70]. We build on their axiomatization and derive a computationally feasible
method for the intrinsic dimension of large-scale geometric datasets.

5.3 Intrinsic Dimensionality

Since our work is based on the formalization from Hanika et al. [70], we shortly revisit their
modeling and recapitulate the most important structures. Based on this, we derive and prove
an explicit formula to compute the ID for the special case of finite geometric datasets. This
first result is essential for Section 5.4.

Let D = (X ,F,µ), where X is a set and F ⊆ RX is a set of functions from X to R,
in the following called feature functions. This definition should not be confused with the
definition of feature matrices and feature vectors as defined before Equation (2.4). We require
that supx,y∈X dF(x,y)< ∞, where dF(x,y) := sup f∈F | f (x)− f (y)|. If (X ,dF) constitutes a
complete and separable metric space such that µ is a Borel probability measure on (X ,dF),
we call D a geometric dataset (GD). The aforementioned properties are satisfied when it
holds that 0 < |X |, |F |< ∞ and that F can distinguish all data points, i.e., dF(x,y)> 0 for
all x,y ∈X with x ̸= y.

Two geometric datasets D1 := (X1,F1,µ1),D2 := (X2,F2,µ2) are isomorphic if there
exists a bijection φ : X1→X2 such that F2 ◦φ = F1 and φ∗(µ1) = µ2, where φ∗(µ1)(B) :=
µ1(φ

−1(B)) is the push-forward measure and the closures are taken with respect to point-
wise convergence. From this point on we identify a geometric dataset with its isomorphism
class. The triple ({ /0},R,ν{ /0}) represents the trivial geometric dataset.

74 Intrinsic Dimensionality for Large-Scale Geometric Learning

Pestov [122] defines the curse of dimensionality as “[...] a name given to the situation
where all or some of the important features of a dataset sharply concentrate near their
median (or mean) values and thus become non-discriminating. In such cases, X is perceived
as intrinsically high-dimensional.” Thus, the ID estimator aims to compute to which extent
the features allow to discriminate different data points. For a specific feature f ∈ F , Hanika
et al. [70] therefore defines the partial diameter of f with regard to a specific α ∈ (0,1) such
that it displays to which extent f can discriminate subsets with minimal measure 1−α , i.e.,
via

PartDiam(f∗(ν),1−α) = inf{diam(B) | B⊆ R Borel, ν(f−1(B))≥ 1−α},

where diam(B) := supa,b∈B |a−b|. The observable diameter with respect to α then defines
to which extent F can discriminate points with minimum measure 1−α . It is defined as the
supremum of the partial diameter of all f ∈ F , i.e,

ObsDiam(D ,−α) := sup
f∈F

PartDiam(f∗(µ),1−α).

To observe the discriminability for different minimal measures α , the discriminability ∆(D)

of D and the intrinsic dimension ∂ (D) are defined via

∂ (D) :=
1

∆(D)2 , where ∆(D) :=
∫ 1

0
ObsDiam(D ,−α) dα. (5.1)

In other words, lower values of intrinsic dimensionality correspond to geometric datasets
with points that can be better discriminated by the given set of feature functions. This intrinsic
dimension function is, in principle, applicable to a broad variety of geometric data, such
as metric data, graphs or images. This applicability arises from the possibility to choose
suitable feature functions which reflect the underlying data structure. The appropriate choice
of feature functions is part of Section 5.5. Furthermore, the ID

∂ (D) =
1

∆(D)2

respects the formal axiomatization [70] for ID functions, informally:

• Axiom of concentration: A sequence of geometric datasets converges against the
constant dataset (meaning having no chance to separate data points!), if and only if
their IDs diverge against infinity.

5.3 Intrinsic Dimensionality 75

• Axiom of feature antitonicity: If dataset D1 has more feature functions then D0 (i.e.
having potentially more information to separate data points), it should have a lower
intrinsic dimension.

• Axiom of continuity: If a sequence of geometric datasets converge against a specific
geometric dataset, the sequence of the IDs should converge against the ID of the limit
geometric dataset.

• Axiom of geometric order of divergence: If a sequence of geometric datasets con-
verges against the constant dataset, its IDs should diverge against infinity with the
same order as 1

∆(D)2 does.

5.3.1 Intrinsic Dimension of Finite Data

We want to apply Equation (5.1) to real-world network data. In the following, let D =

(X ,F,ν) such that 0 < |X | < ∞ and 0 < |F | < ∞ and let ν be the normalized counting
measure on X , i.e., ν(M) := |M|

|X | for M ⊆X . In this case, it is possible to compute the
partial diameter and Equation (5.1), as we show in the following. Let α ∈ (0,1) and let
cα := ⌈|X | · (1−α)⌉. The following arguments were already hinted in previous work [70],
yet not formally discussed or proven.

Lemma 5.1 For f ∈ F it holds that

PartDiam(f∗(ν),1−α) = min
|M|=cα

max
x,y∈M

| f (x)− f (y)|.

Proof. It holds that

PartDiam(f∗(ν),1−α) = inf{diam(B) | B⊆ R Borel, ν(f−1(B))≥ 1−α}
= inf{diam(B) | B⊆ R Borel, |{x ∈X | f (x) ∈ B}|≥cα}.

We have to show that

inf{diam(B) | B⊆ R Borel, |{x ∈X | f (x) ∈ B}| ≥ cα}=
min{max

x,y∈M
| f (x)− f (y)| |M ⊆X , |M| ≥ cα}.

76 Intrinsic Dimensionality for Large-Scale Geometric Learning

“≤:” We show that

{diam(B) | B⊆ R Borel, |{x ∈X | f (x) ∈ B}| ≥ cα} ⊇
{max

x,y∈M
| f (x)− f (y)| |M ⊆X , |M| ≥ cα}.

Let z := maxx,y∈M | f (x)− f (y)| such that M ⊆X with |M| ≥ cα . Without loss of generality
we assume that

∀x ∈X : (∃m1,m2 ∈M : f (m1)≤ f (x)≤ f (m2) =⇒ x ∈M).

Let b := maxx∈M f (x), a := minx∈M f (x), then M = {x ∈X | f (x) ∈ [a,b]}. Hence,

z = b−a ∈ {diam(B)|B⊆ R Borel,|{x ∈X | f (x) ∈ B}| ≥ cα}.

“≥:” Let B⊆ R be Borel with |{x ∈X | f (x) ∈ B}| ≥ cα . Furthermore, we additionally
set M := {x ∈X | f (x) ∈ B}. It holds that

diam(B) = sup
x,y∈B
|x− y| ≥ max

x,y∈M
| f (x)− f (y)|

because of the choice of M. As B was chosen arbitrarily, it follows “≥”.
Finally, we need that

min{max
x,y∈M

| f (x)− f (y)| | |M| ≥ cα}= min{max
x,y∈M

| f (x)− f (y)| | |M|= cα}.

“≤” follows directly from the fact that

{max
x,y∈M

| f (x)− f (y)| | |M| ≥ cα} ⊇ {max
x,y∈M

| f (x)− f (y)| | |M|= cα}.

“≥” follows from the fact that for every |M| ≥ cα and for every N ⊆M with |N| = cα the
following equation holds: supx,y∈M | f (x)− f (y)| ≥ supx,y∈N | f (x)− f (y)|.

This lemma allows for a more tractable formula for the computation of the partial diameter
of a finite GD. That in turn enables the following theorem.

Theorem 5.2 It holds that

∆(D) =
1
|X |

|X |

∑
k=2

max
f∈F

min
M⊆X
|M|=k

max
x,y∈M

| f (x)− f (y)|. (5.2)

5.3 Intrinsic Dimensionality 77

Proof. Consider the function

g : (0,1)→ R,α 7→max
f∈F

min
M⊆X ,|M|=cα

max
x,y∈M

| f (x)− f (y)|.

Because of Lemma 5.1 we know that ∆(D) =
∫ 1

0 g(α) dα . The function g is a step function
which can be expressed for each α ∈ (0,1) via

g(α) =
|X |

∑
k=1

I(|X |−k
|X | ,

|X |+1−k
|X |

)(α)max
f∈F

min
M⊆X
|M|=k

max
x,y∈M

| f (x)− f (y)|

almost everywhere, where I is the indicator function. Hence, Equation (5.2) is a consequence
of the definition of the Lebesgue-Integral with the fact that

min
M⊆X ,|M|=1

max
x,y∈M

| f (x)− f (y)|= 0.

In general, the addition of features should lower the ID since we have additional infor-
mation that helps to discriminate the data. However, there are certain features that are not
helping to further discriminate data points. These are for example:

1. Constant features. This is due to the fact that for a constant feature f it always holds
for all M ⊆X that maxx,y∈M | f (x)− f (y)|= 0.

2. Permutations of already existing features. Let f̃ : X →R have the form f̃ = f ◦π with
π : X →X being a permutation on X . Then there exist for all M ⊆X with |M|= k
a set N ⊆X with |N| = k and maxx,y∈M | f (x)− f (y)| = maxx,y∈N | f̃ (x)− f̃ (y)| and
vice versa.

Thus, we have the following Lemma.

Lemma 5.3 Let D = (X ,F,µ) be a finite geometric dataset. Furthermore, let F̂ be a set of
constant functions X → R and let F̃ be a set of functions X → R such that there exist for
each f̃ ∈ F̃ an f ∈ F and a permutation π : X →X with f̃ = f ◦π . Let

E := (X ,F ∪ F̂ ∪ F̃ ,µ).

Then it holds that
∂ (D) = ∂ (E).

78 Intrinsic Dimensionality for Large-Scale Geometric Learning

5.3.2 Computing the Intrinsic Dimension of Finite Data

In this section we will propose an algorithm for computing the ID based on Equation (5.2).
For this, given a finite geometric dataset D , we use the shortened notations

φk, f (D) := min
M⊆X ,|M|=k

max
x,y∈M

| f (x)− f (y)|,

φk(D) := max
f∈F

φk, f (D).

Then, Equation (5.2) can be written as

∆(D) =
1
|X |

|X |

∑
k=2

φk(D) =
1
|X |

|X |

∑
k=2

max
f∈F

φk, f (D). (5.3)

The straightforward computation of Equation (5.3) is hindered by the task to iterate through
all subsets M ⊆X of size k. This yields an exponential complexity with respect to |X | for
computing ∆(D). We can overcome this towards a quadratic computational complexity in
|X | using the following concept.

Definition 5.4 (Feature Sequence)
For a feature f ∈ F let l f ,D ∈ R|X | be the increasing sequence of all values f (x) for x ∈X .
We call l f ,D = (l f ,D

1 , . . . , l f ,D
|X |) the feature sequence of f .

Using these sequences, the following lemma allows us to efficiently compute φk, f (D).

Lemma 5.5 For k ∈ {2, . . . , |X |}, f ∈ F and l f ,D , it holds that

φk, f (D) = min({l f ,D
k+ j − l f ,D

1+ j | j ∈ {0, . . . , |X |− k}}).

Proof. For all j ∈ {0, . . . , |X |− k} there exist M ⊆X with |M|= k and

l f ,D
k+ j − l f ,D

1+ j = max
x,y∈M

| f (x)− f (y)|.

Thus, it is sufficient to show

φk, f (D) ∈ {l f ,D
k+ j − l f ,D

1+ j | j ∈ {0, . . . , |X |− k}}.

Choose M⊆X with |M|= k such that φk, f (D)=maxx,y∈M | f (x)− f (y)| holds. Furthermore,
let lM := (lM

1 , . . . , lM
k) be the increasing sequence of values f (m) for m ∈ M and let j ∈

{0, . . . , |X |−k} such that lM
1 = l f ,D

1+ j . Since lM is an ordered sequence of which each element

5.3 Intrinsic Dimensionality 79

Algorithm 5.1: The pseudocode to compute ∆(D) for a finite geometric dataset
D = (X ,F,µ).

Input :Finite geometric dataset D = (X ,F,µ).
Output :∆(D)

1 forall f in F do
2 Compute feature sequence l f ,D .

3 ∆(D) = 0
4 forall k in {2, . . . , |X |} do
5 forall f in F do
6 φk, f (D) = min j∈{0,...,|X |−k} l f ,D

k+ j − l f ,D
1+ j .

7 ∆(D)+ = max f∈F φk, f (D)

8 ∆(D) = 1
|X |∆(D)

9 return ∆(D)

is also an element of the ordered sequence l f ,D , it holds that lM
k ≥ l f ,D

k+ j and thus

lM
k − lM

1 ≥ l f ,D
j+k − l f ,D

j+1.

There is an N ⊆X with size k such that maxx,y∈N | f (x)− f (y)|= l f ,D
k+ j− l f ,D

k+1. Since M⊆X

is of size k such that maxx,y∈M | f (x)− f (y)| is minimal, it follows

lM
k − lM

1 = max
x,y∈M

| f (x)− f (y)| ≤ max
x,y∈N

| f (x)− f (y)|= l f ,D
k+ j − l f ,D

k+1

and we thus have

φk, f (D) = max
x,y∈M

| f (x)− f (y)|= lM
k − lM

1 = l f ,D
k+ j − l f ,D

k+1.

To sum up, Lemma 5.5 enables the efficient computation of φk, f (D) via a sliding window,
i.e., by using only pairs of elements (l f ,D

1+ j , l
f ,D
k+ j). The algorithm based on this is shown in

Algorithm 5.1. We want to provide a brief description of the most relevant steps. In Line
4 we iterate through k ∈ {2, . . . , |X |} in order to compute φk(D) in Lines 6 and 7. For this
we also need to iterate over all f ∈ F (Line 5) to compute the necessary values of φk, f (D)

in Line 6. For a given f ∈ F,k ∈ {1, . . . , |X |}, Line 6 consumes |X |− k+ 1 subtraction
operations. Assuming that computing feature values can be done in constant time, the runtime

80 Intrinsic Dimensionality for Large-Scale Geometric Learning

for computing ∆(D) from the feature sequences is

O(|F |
|X |

∑
k=2
|X |− k+1) = O(|F |

|X |−1

∑
k=1

k) = O(|F | |X |2).

The creation of all feature sequences requires O(|F ||X | log(|X |)) computations which is
negligible compared to the aforementioned complexity. Thus, Algorithm 5.1 has quadratic
complexity with respect to |X |. Therefore, Algorithm 5.1 is a straightforward and easy
to implement solution for the computation of the ID. However, its quadratic runtime is
obstructive for the application in large-scale data problems, which raises the necessity for a
modification. We will present such a modification in the following section.

5.4 Intrinsic Dimension for Large-Scale Data

In order to speed up the computation of the ID we modify Algorithm 5.1 we show that often
a large amount of the computations steps conducted in Algorithm 5.1 can be skipped. Fur-
thermore, we provide an efficiently computable approximation of the ID. This approximation
consists of the following steps.

1. We approximate the ID by replacing {2, . . . , |X |} in Line 4 of Algorithm 5.1 with
a smaller subset S ⊆ {2, . . . , |X |}, which we represent by S := {s1, . . . ,sl}. For all
k ̸∈ S, we will use {φs1, . . . ,φsl} to estimate φk. This will eventually lead to two
approximations of the ID, an underestimation and an overestimation.

2. We compare the upper and lower approximation to provide an error bound of these
approximations with respect to the exact ID. This error bound can be computed without
knowing the exact ID.

3. We argue how the computation of the exact ID can be sped up with the help of
knowledge about φsi(D) for all si ∈ S. For this, we will in particular show that we
can replace for all k ∈ {2, . . . , |X |} \M the set F with a subset F̂ in Line 5-6 of
Algorithm 5.1.

4. We derive a formula which estimates the amount of computation cost which is saved
by using only subsets of F for the computation of the ID. This information can be
used to estimate and decide whether the exact computation of the ID is computational
feasible for a specific dataset.

The ensuing algorithm is shown in Algorithm 5.2. The underlying theory that justifies it is
presented in the following. This theory will be based on the monotonicity of i 7→ φi, f (D).

5.4 Intrinsic Dimension for Large-Scale Data 81

Algorithm 5.2: The pseudocode to compute ∆s,−(D),∆s,+(D),∆(D) for a finite
GD D = (X ,F,µ).

Input :Finite GD D = (X ,F,µ), support sequence s = (2 = s1, . . . ,sl = |X |),
exact (Boolean)

Output :∆s,−(D),∆s,+(D),∆(D)

1 forall f in F do
2 Compute feature sequence l f ,D .

3 ∆(D) = 0
4 s0 = 1
5 φs0(D) = 0
6 forall i in {1, . . . , l} do // Iterate over support sequence indices
7 forall f in F do
8 φsi, f (D) = min j∈{0,...,|X |−si} l f ,D

si+ j− l f ,D
1+ j // Use Lemma 5.5

9 φsi(D) = max f∈F φsi, f (D)
10 Fsi−1 = { f ∈ F | φsi, f (D)> φsi−1(D)} // Compute Fsi−1 for Lemma 5.12
11 ∆(D)+ = φsi(D)

12 ∆s,−(D) = 1
|X |(∆(D)+∑

l−1
i=1 ∑si< j<si+1 φsi(D)) // Compute lower ID

from Definition 5.7
13 ∆s,+(D) = 1

|X |(∆(D)+∑
l−1
i=1 ∑si< j<si+1 φsi+1(D)) // Compute upper ID

from Definition 5.7

// Approximation finished. Continue with exact computation, if
desired.

14 if exact then
15 forall i in {1, . . . l} do
16 forall si < j < si+1 do // Iterate between support elements
17 forall f in Fsi do // Only use Fsi because of Lemma 5.12
18 φsi, f (D) = min j∈{0,...,|X |−si} l f ,D

si+ j− l f ,D
1+ j .

19 φ j(D) = max({φ j, f (D) | f ∈ Fi}∪{φsi}) // Use Lemma 5.12
20 ∆(D)+ = φ j(D)

21 ∆(D) = 1
|X |∆(D)

22 return ∆s,−(D),∆s,+(D),∆(D)

23 return ∆s,−(D),∆s,+(D)

Theorem 5.6 For m > n≥ 2 and f ∈ F the following statements hold.

1. φm, f (D)≥ φn, f (D),

2. φm(D)≥ φn(D).

82 Intrinsic Dimensionality for Large-Scale Geometric Learning

Proof. The second inequality directly follows from the first one. Since we know per defini-
tion that φm, f (D) = minM⊆X ,|M|=m maxx,y∈M | f (x)− f (y)| and furthermore that φn, f (D) =

minN⊆X ,|N|=n maxx,y∈N | f (x)− f (y)|, we need to show that for each M ⊆X with |M|= m
there exist N ⊆X with |N|= n and maxx,y∈M | f (x)− f (y)| ≥maxx,y∈N | f (x)− f (y)|. It is
sufficient to show that for n = m−1. Choose x1,x2 ∈M such that maxx,y∈M | f (x)− f (y)|=
| f (x1)− f (x2)|. As |M|> 2 we find x3 ∈M \{x1,x2}. Let N := M \{x3}. It holds that

max
x,y∈M

| f (x)− f (y)|= | f (x1)− f (x2)|= max
x,y∈N

| f (x)− f (y)|.

5.4.1 Computing Intrinsic Dimension via Support Sequences

Equipped with Theorem 5.6, we can bound ∆(D) and thus the intrinsic dimension through
computing φsi for a few 2 = s1 < s2 · · ·< sl = |X |.

Definition 5.7 (Support Sequences and Upper / Lower ID)
Let s = (2 = s1, . . . ,sl−1,sl = |X |) be a strictly increasing and finite sequence of natural
numbers. We call s a support sequence of D . We additionally define

∆s,−(D) :=
1
|X |

(
l

∑
i=1

φsi(D)+
l−1

∑
i=1

∑
si< j<si+1

φsi(D)

)
,

∆s,+(D) :=
1
|X |

(
l

∑
i=1

φsi(D)+
l−1

∑
i=1

∑
si< j<si+1

φsi+1(D)

) (5.4)

and call accordingly

∂s,−(D) :=
1

∆s,+(D)2

the lower intrinsic dimension of D and

∂s,+(D) :=
1

∆s,−(D)2

the upper intrinsic dimension of D.

The governing idea is for i ∈ {1, . . . , l} and j with si < j < si+1 to substitute φ j(D) with
φsi(D) or φsi+1(D). With Theorem 5.6 this results in lower and upper bounds for ∆(D) and
thus for the intrinsic ID. By comparing upper and lower bounds, we can approximate the ID
and estimate the approximation error.

5.4 Intrinsic Dimension for Large-Scale Data 83

Corollary 5.8 For all support sequences s holds

∆s,−(D)≤ ∆(D)≤ ∆s,+(D),

∂s,−(D)≤ ∂ (D)≤ ∂s,+(D).

Definition 5.9 (Approximation Error)
For a support sequence s, we call

E(s,D) :=
∂s,+(D)−∂s,−(D)

∂s,−(D)

the (relative) approximation error of ∂ (D) with respect to s.

With the computation of the upper and lower ID it is possible to bound the error with
respect to the ID ∂ (D). The following corollary can be deduced from Corollary 5.8 and Def-
inition 5.9.

Corollary 5.10 For a support sequence s the following statements hold.

1. max{∂s,+(D)−∂ (D)
∂ (D) ,

∂ (D)−∂s,−(D)
∂s,−(D) } ≤ E(s,D),

2. max{|∂s,+(D)−∂ (D)|, |∂ (D)−∂s,−(D)|} ≤ |∂s,+(D)−∂s,−(D)|.

If the error of the approximation of a specific support sequence is not sufficient, further
elements can be added to the support sequence. Directly from Equation (5.4) follows the
following corollary.

Corollary 5.11 Let s = (2 = s1, . . . ,sl = |X |) be a support sequence and let additionally
be ŝ = (s1, . . . ,si, p,si+1, . . . ,sl) with a support sequence with an additional element p. Then
it holds that

∆(D)ŝ,− = ∆(D)s,−+
∑p≤ j<si+1 ((φp(D))−φsi(D))

|X |
,

∆(D)ŝ,+ = ∆(D)s,++
∑si< j≤p

(
(φp(D))−φsi+1(D)

)
|X |

.

For a given support sequence s, Corollary 5.10 gives us an upper bound for the error when
∂s,+(D) or ∂s,−(D) are used to approximate ∂ (D) without knowing ∂ (D). Hence, we can
compute (a lower bound) for the accuracy when approximating the ID with Definition 5.9.
As we can see in Section 5.5.1, Section 5.5.4 and Section 5.6, comparable small support
sequences lead to sufficient approximations. Support sequences can also be used to shorten
the computation of the exact intrinsic dimension as the following lemma shows.

84 Intrinsic Dimensionality for Large-Scale Geometric Learning

Lemma 5.12 Let s = (2 = s1, . . . ,sl = |X |) be a support sequence. Furthermore, let i ∈
{1, . . . , l−1} and let j ∈ N with si < j < si+1. Let

Fsi := { f ∈ F | φsi+1, f (D)> φsi(D)}.

Then it holds that

φ j(D) = max({φ j, f (D) | f ∈ Fsi}∪{φsi(D)}).

Proof. “≥” follows from Theorem 5.6 and the definition of φ j(D). “≤” holds because for
f ∈ F \Fsi it holds that φ j, f (D)≤ φsi+1, f (D), due to Theorem 5.6, and φsi+1, f (D)≤ φsi(D),
due to the construction of Fsi .

Hence, given a specific j, it is possible to compute φ j(D) using a subset of F . Based on
the particular GD D , this fact can considerably speed up the computation of the ID of D , as
we will see in Section 5.5.

An algorithm to approximate and compute the ID through support sequences is depicted
in Algorithm 5.2. This algorithm takes as input a GD D and a chosen support sequence
s. A reasonable choice for support sequences is discussed in Section 5.5.1. The output
is ∆s,−(D),∆s,+(D), and ∆(D), if desired (Line 14). In Line 2, all feature sequences are
computed. In Line 6 to Line 11, φsi(D) and Fsi−1 , as defined in Lemma 5.12, are computed.
From Line 1 to Line 13, the feature sequences and the lower and upper ID are computed.
If desired, the exact computation is done in Line 15 to Line 21. Here, we iterate for all
support elements (Line 15) through all “gaps” between them (Line 16) and compute φ j(D)

using Lemma 5.12 (Line 17 to Line 19).

5.4.2 Estimating Computational Costs

Let s = (s1, . . . ,sl) be a support sequence. After the computation of Fs1, . . . ,Fsl−1, we can
estimate how much computation steps we can avoid in order to compute ∂ (D) with Algo-
rithm 5.2 compared to Algorithm 5.1. Together with the error function E(s), this estimation
can help us to decide if it is desirable to compute the exact value ∂ (D) or leave it at ∂s,−(D)

and ∂s,+(D). This is done in the following manner. For a specific f ∈ F , Lemma 5.5 shows
that the computation of φk, f (D) requires |X |− k+1 different subtractions and to keep the
minimum value. Hence, the cost for computing ∆(D) and therefore ∂ (D) via Algorithm 5.1
can be estimated via O(|F |∑|X |k=2(|X | − k + 1)) = O(|F |∑|X |−1

k=1 k) = O(|F |(|X |
2−|X |
2)).

However, if we use Algorithm 5.2, our cost estimation for all values j with si < j < si+1 is

5.5 Intrinsic Dimension of Real-World Graph Data 85

Table 5.1: Statistics of all datasets used in this chapter.

Nodes Edges Attributes

PubMed 19,717 88,648 500
Cora 2,708 10,556 1,433
CiteSeer 3,327 9,104 3,703
ogbn-arxiv 169,343 1,166,243 128
ogbn-products 2,449,029 61,859,140 100
ogbn-mag 1,939,743 21,111,007 128
ogbn-papers100M 111,059,956 1,615,685,872 128

|Fsi|(|X |− j+1). Hence, for a given support sequence s = (s1, . . . ,sl), we can estimate how
many computations are saved using the following notions.

We address the naive computation costs for computing the ID of a GD with

C(D) := |F |(|X |
2−|X |
2

).

In contrast, for a support sequence s = (s1, . . . ,sl) of D , the computation costs are

Cs(D) := (|F |
l

∑
k=1
|X |− sk +1)+

l−1

∑
k=1
|Fsk | ∑

sk< j<sk+1

|X |− j+1. (5.5)

Hence, the saved costs of s are

SCs(D) := 1− Cs(D)

C(D)
.

Once we have computed φsi(D) and Fi, depending on the saved costs, we can decide to
discard the support sequence or to continue further computations with it. Furthermore,
using the error estimation, we can decide to compute the exact ID or to settle with the
approximation.

5.5 Intrinsic Dimension of Real-World Graph Data

Graph data is of major interest in the realm of geometric learning and beyond. In the
following, we assume to have a graph dataset D = (G,X) as defined in Definition 2.24 with
G = (V,E) where V = {v1, . . . ,vn} and X ∈ Rn×d .

Learning from such data is often done, as already discussed in Section 2.7.2, via graph
neural networks. In the following, we will focus on networks using the SIGN architec-

86 Intrinsic Dimensionality for Large-Scale Geometric Learning

Figure 5.1: Example of an k-hop geometric dataset with k = 1. Given are a graph and an
attribute matrix X . Then, the normalized adjacency matrix Â and then ÂX are computed. The
feature set F are the coordinate projections of X and ÂX . In the figure, every column after
“F =” represents one f ∈ F . Note, that in this example the normalization factor 1

dmax
is 1.

ture [129] as defined in Equation (2.5). Recall, that this means, that the employed networks
use inputs of the form

(X , ÂX , Â2X . . . , ÂkX), (5.6)

where Â is the normalized adjacency matrix as defined in Definition 2.25. The feature set of
the following geometric dataset corresponds to the input in Equation (5.6).

Definition 5.13 (k-hop feature functions and k-hop geometric datasets)
Let k ∈ N and Â be the normalized adjacency matrix of a graph dataset D. Furthermore, let
dmax := max j∈{1,...,d}maxi,k∈{1,...,n} |Xi, j−Xk, j|. We call the set

FD,k := {vi 7→
1

dmax
(ÂmX)i, j | m ∈ {0, . . . ,k}, j ∈ {1, . . . ,d}}

the k-hop feature functions of D. Let ν be the normalized counting measure on V . If
there exist for each vi,vk ∈V with vi ̸= v j elements m ∈ {0, . . . ,k}, j ∈ {1, . . . ,d} such that

1
dmax

(ÂmX)i, j ̸= 1
dmax

(ÂmX)k, j, then Dk = (V,FD,k,ν) is a GD. We call it the k-hop geometric
dataset of D.

Basic statistics of all seven graph datasets considered in the following sections are
depicted in Table 5.1. The statistics for Cora, PubMed and CiteSeer were taken from

5.5 Intrinsic Dimension of Real-World Graph Data 87

Figure 5.2: Errors and saved costs for approximating and computing the intrinsic dimension-
ality for 2−hop geometric datasets with different lengths of the support sequence.

PyTorch Geometric 1. The statistics of the OGB datasets were taken from the Open Graph
Benchmark. 2 An example of a k-hop geometric dataset is depicted in Figure 5.1. It is
well-known that the normalized adjacency matrix Â ∈ Rn×n of a graph has a spectral radius
of 1. As Â is symmetric, this yields ∥Âx− Ây∥ ≤ ∥x− y∥ for x,y ∈ Rn. The significance of
this property is for the respective computations, however, limited, since it primarily leads
to insights of the behavior of the columns of X under multiplication with powers of Â. In
contrast, the attribute vectors of the vertices are represented via the rows. Moreover, we may
point out that we are not considering the Euclidean distances between attribute vectors, but
differences between coordinate values. Thus, the spectral radius of Â does not provide direct
insights into FD,k.

5.5.1 Choosing Support Sequences

Algorithm 5.2 relies on a proper choice for a support sequence s. To choose s, two properties
have to be considered. Namely, the length of the support sequence and the spacing of the
elements. Regarding the second point, we decided to use log-scale spacing. To get such
a support sequence for a geometric dataset D = (X ,F,µ), we first choose a geometric

1https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_
geometric.datasets.Planetoid

2https://ogb.stanford.edu/docs/nodeprop

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.Planetoid
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.Planetoid
https://ogb.stanford.edu/docs/nodeprop

88 Intrinsic Dimensionality for Large-Scale Geometric Learning

sequence ŝ = (s1, . . .sl) of length l from |X | to 2. We derive the final support sequence s
from s′ = (⌊|X |+2− s1⌋, . . . ,⌊|X |+2− sl⌋) by removing duplicated elements.

In the following, we study the error and the saved costs for different lengths l of the sup-
port sequence. Here, for a geometric dataset, we investigate how E(s,D) and l SCs(D) vary
for s chosen with l ∈ {⌊0.001 · |X |⌋,⌊0.002 · |X |⌋, . . . ,⌊0.05 · |X |⌋}. Here, if l = ⌊r · |X |⌋,
we call r ∈ R the relative support size of the resulting support sequence s. We experiment
with common benchmark datasets, namely ogbn-arxiv, ogbn-mag and ogbn-products from
the Open Graph Benchmark [76, 75]. Since for ogbn-mag only a subset of vertices is
equipped with attribute vectors, we generate the missing vectors via metapath2vec [42]. For
all datasets, we consider the 2-hop geometric dataset. The results are depicted in Figure 5.2.

Results

For all datasets, low errors and high saved costs can be reached with a remarkably short
support sequence. With relative support sizes of under 0.015 all datasets are approximated
with an accuracy of over 99%. Furthermore, the saved costs for sequences with comparable
relative support sizes is over 0.98. It stands out, that for the larger datasets ogbn-mag and
ogbn-products, shorter sequences (relative to the size of the dataset) lead to lower errors and
higher saved costs then for ogbn-arxiv. Our results further indicate, that a relative support
size between 0.01 and 0.02 is a reasonable range for maximizing the saved costs. For longer
support sequences, the saved cost decrease while the error does not change dramatically,
at least for the 2- hop geometric datasets of ogbn-mag and ogbn-products. Note, that
longer support sequence do not always lead to a higher amount of saved costs. For longer
support sequences s the costs of computing φk(D) for k ̸∈ s decreases. However, the costs of
computing φsi(D) for all elements si ∈ s increase.

5.5.2 Neighborhood Aggregation and Intrinsic Dimension

We study how the choice of k affects the intrinsic dimension value of the k-hop geometric
dataset. For this, we compute the intrinsic dimension for k ∈ {0,1, . . . ,5} for six datasets: the
three datasets mentioned above and PubMed, Cora and CiteSeer [157], which we retrieved
from PyTorch Geometric [53]. Furthermore, we train GNNs which use the feature functions
of k-hop geometric datasets as information for training and inference. This allows us to
discover connections between the ID of specific datasets with respect to the considered
feature functions and the performance of classifiers, which rely on these feature functions.
For this, we train SIGN models [129] for k ∈ {0, . . . ,5}.

5.5 Intrinsic Dimension of Real-World Graph Data 89

Table 5.2: Intrinsic dimension and performances on classification tasks. In the upper table,
we display IDs for all k-hop geometric datasets for k ∈ {0, . . . ,5}. In the middle table, we
display the ID estimated by the MLE baseline. In the lower table we display mean and
standard derivations for test accuracy of a standard SIGN model on the classification tasks
which belongs to the dataset.

Dataset
k-hop

0 1 2 3 4 5

PubMed 2542.3425 2336.6611 2077.5821 2077.0953 2077.0886 2077.0848
Cora 6.2523 3.8324 3.6689 3.6627 3.6624 3.6623
CiteSeer 22.3337 11.3166 10.2347 9.8134 9.5491 9.3795
ogbn-arxiv 83.9160 31.4731 31.4731 31.4730 30.7370 30.3767
ogbn-products 1,169,323.2496 1,169,044.4736 1,169,044.2216 1,169,044.2216 1,169,044.2216 1,169,044.2216
ogbn-mag 2,311.3509 2,284.0290 2,284.0290 2,284.0290 2,284.0290 2,284.0290

Dataset
k-hop

0 1 2 3 4 5

PubMed 24.4623 24.7303 23.3924 22.2779 21.3495 20.5642
Cora 30.6049 28.1785 19.9316 10.8186 9.2970 8.6155
CiteSeer 58.9593 26.5031 16.5556 12.0495 9.3171 7.9572
ogbn-arxiv 16.2948 19.8571 18.9068 18.2265 17.4905 16.9325
ogbn-products 2.8694 4.7542 4.7950 4.7659 4.6943 4.6687
ogbn-mag 30.7024 33.2848 31.5140 30.4844 29.9080 29.5956

Dataset
k-hop

0 1 2 3 4 5

PubMed .6850± .0145 .7191± .0123 .7378± .0362 .7565± .0165 .7615± .0160 .7571± .0234
Cora .5329± .0120 .7223± .0117 .7766± .0045 .7870± .0076 .7917± .0084 .7951± .0047
CiteSeer .4975± .0075 .6165± .0160 .6530± .0101 .6677± .0074 .6695± .0085 .6734± .0080
ogbn-arxiv .5341± .0090 .6572± .0052 .6903± .0056 .6917± .0074 .6901± .0083 .6890± .0051
ogbn-products .5969± .0016 .7204± .0017 .7590± .0017 .7660± .0014 .7678± .0022 .7687± .0019
ogbn-mag .2712± .0020 .3635± .0029 .3879± .0030 .3959± .0029 .3983± .0050 .4012± .0040

Setup of SIGN Classifiers

For PubMed, Cora and CiteSeer, we train on the classification task provided by Pytorch
Geometric [53] which was earlier studied by Yang et al [157]. All Open Graph Benchmark
datasets are trained and tested on the official node property prediction task.3 Our goal is not
to find optimal classifiers but to discover connections between the choice of k, the ID and
classifier performance. Thus, we omit excessive parameter tuning and stick to reasonable
standard parameters. For all tasks, we use a simple SIGN model with one hidden inception
layer and one classification layer. For PubMed, CiteSeer and Cora, we use batch sizes
of 256, hidden layer size of 64 and dropout at the input and hidden layer with 0.5. The
learning rate is set to 0.01. All these parameters were taken from Kipf and Welling [85].
For ogbn-arxiv, ogbn-mag and ogbn-products, we stick to the parameters from the SIGN
implementations on the OGB leaderbord. For ogbn-arxiv, we use a hidden dimension of

3https://ogb.stanford.edu/docs/nodeprop/

https://ogb.stanford.edu/docs/nodeprop/

90 Intrinsic Dimensionality for Large-Scale Geometric Learning

512, dropout at the input with 0.1 and with 0.5 at the hidden layer. For ogbn-mag, we use a
hidden dimension of 512, do not dropout at the input and use dropout with 0.5 at the hidden
layer. For ogbn-products, we use a hidden dimension of 512, input dropout of 0.3 and
hidden layer dropout of 0.4. For all ogbn tasks, the learning rate is 0.001 and the batch-size
50000. For all experiments, we train for a maximum of 1000 epochs with early stopping on
the validation accuracy. Here, we use a patience of 15. These are the standard parameters of
Pytorch Lightning.4 For all models, we use an Adam optimizer with weight decay of 0.0001.
We report mean test accuracies over 10 runs. The intrinsic dimensions and the test accuracy
are shown in Table 5.2.

Baseline Estimator

To investigate to which extent our ID function surpasses established ID estimators with
respect to estimating the discriminability of a dataset, we also compute all ID values with the
maximum likelihood estimator (MLE) [97]. This estimator is commonly used in the realm of
deep learning [125, 103, 104]. For our experiments, we use the corrected version proposed
by MacKay and Ghahramani [105]. Note, that the MLE is only applicable to datasets
X ∈ Rn×d and is thus not able to respect the neighborhood aggregated feature functions.
Hence, we incorporate the neighborhood information of a k-hop dataset by concatenating
feature vectors with the neighborhood aggregated feature vectors.

To use the MLE ID, we have to convert the k-hop geometric dataset (V,FD,k,ν) of
graph data D = (X ,G), where X ∈ Rn×d , into a real-valued feature matrix X̂ . This done by
concating the rows of X with the rows of ÂX , . . . ÂkX , i.e., X̂ ∈ Rn×(k+1)d with

X̂i, j :=

Xi, j j ∈ {1, . . . ,d},

(AnX)i, ĵ j = nd + ĵ for n ∈ {1, . . . ,k}, ĵ ∈ {1, . . .d}.

The MLE is given via

MLE(X̂) :=
1

n(k−1)

n

∑
i=1

l−1

∑
j=1

log(
d(X̂i,Nl(X̂i))

d(X̂i,N j(X̂i))
), (5.7)

where d is the euclidean metric and N j(X̂i) is the j-th nearest neighbor of X̂i with respect to
the Euclidean metric. Thus, the MLE depends on a parameter l, which we set to 5.

We implement the MLE by using the NearestNeighbors class of scikit-learn [119] and
then building the mean of all log(d(Xi,N5(Xi))

d(Xi,N j(Xi))
) with i ∈ {1, . . . ,n} and j ∈ {1, . . . ,5}. Here,

4https://www.pytorchlightning.ai/

https://www.pytorchlightning.ai/

5.5 Intrinsic Dimension of Real-World Graph Data 91

we skip all elements where d(X̂i,N j(X̂i)) = 0. This can happen, when X̂ has duplicated rows,
representing data points with equal attribute vectors.

For ogbn-mag and ogbn-products, computing Equation (5.7) is not possible due to
performance reasons. Here, we sample 169,343 indices I ⊆ {1, . . . ,n} and only compute

MLE(X̂) :=
1

n(k−1)∑
i∈I

l−1

∑
j=1

log(
d(Xi,Nl(Xi))

d(Xi,N j(Xi))
).

We choose such a specific size for I because this is the number of data points in ogbn-arxiv,
the largest dataset for which the full computation was possible.

Results

We find that one iteration of neighborhood aggregation always leads to a huge drop of the ID
when using our ID function. However, consecutive iterations only lead to a small decrease.
For the datasets from OGB, some iterations lead to no drop of the ID dimension at all. For
ogbn-mag, only the first iteration significantly decreases the ID, for ogbn-products, only
the first two iterations are relevant for decreasing the ID. It stands out, that for ogbn-arxiv,
the second and third iteration lead to no significant decrease, but the fourth and fifth do. The
results for PubMed stand out. Here, the second iteration of neighborhood aggregation leads
to a comparable decrease as the first one.

Considering the classification performances, the first iteration is again the key factor,
leading to a significant increase in accuracy. As for the ID, the PubMed dataset behaves
differently than the other datasets: the second iteration of neighborhood aggregation leads to
a comparable increase in accuracy as the first.

The MLE ID behaves different. Here, no pattern of the first iteration of aggregation being
the key for decreasing the data complexity is observed. For some datasets, the first rounds
of feature aggregation may even increase the intrinsic dimension. To sum up, our results
indicate that our ID is a better indicator for classification performance then the MLE ID.

5.5.3 Synthetic Data

To get further insights into the behavior of our ID notion, we now consider k−hop geometric
dataset for one-hot encoded graph data, i.e., D = (X ,(V,E)), with X = I|V | where I|V | is the
|V |-dimensional identity matrix. We consider the case of V = {1, . . . ,100} and determine the
ID for k ∈ {0, . . . ,5} for increasing edge sizes. To do so, we place the 4950 possible edges
in a random order and add them step by step and compute the ID notions for the k−hop
geometric dataset. The results can be found in Figure 5.3.

92 Intrinsic Dimensionality for Large-Scale Geometric Learning

Figure 5.3: Intrinsic dimension of one-hot encoded features. The right plot is a zoom of the
left one which hides the 0−hop geometric dataset.

Table 5.3: Approximation of intrinsic dimension for ogbn-papers100M.

k 0 1 2 3 4 5

∂s,−(D) 282.2380 171.7385 148.3323 137.7662 128.2751 125.3418
∂s,+(D) 282.3387 171.7997 148.3852 137.8153 128.3208 125.3864
E(s,D) 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004

Results

The 0−hop geometric dataset has an ID which does not depend on the amount of edges.
This is not surprising since it does not incorporate any graph information. For all other k
values, the ID first sharply decreases and then increases. This indicates that the addition of
neighborhood aggregation is particularly useful for graphs of moderate density. Here, the
addition of additional rounds of aggregation beyond the first one can further lower the ID.
For higher edge sizes, the ID difference between different k values vanishes.

5.5.4 Approximation of Intrinsic Dimension on Large-Scale Data

To demonstrate the feasibility of our approach, we use it to approximate the ID of the
well known, large-scale ogbn-mag-papers100M dataset. For this, we construct the support
sequence as in Section 5.5.1 with l = 100.000. The results are depicted in Table 5.3. On
our Xeon Gold System with 16 cores, approximating the ID of a k-hop geometric dataset

5.6 Errors of Random Data 93

Table 5.4: Error on randomly generated data.

n d E(s,D)

106 10 2.55∗10−4±1.13∗10−8

106 50 2.55∗10−4±5.36∗10−9

106 250 2.55∗10−4±2.31∗10−9

107 10 3.08∗10−4±4.78∗10−10

107 50 3.08∗10−4±6.57∗10−10

107 250 3.08∗10−4±6.16∗10−10

108 10 3.55∗10−4±3.67∗10−11

108 50 3.55∗10−4±1.34∗10−11

108 250 3.55∗10−4±2.69∗10−11

build from ogbn-mag-papers100M is possible within a few hours. While the ID drops for
every iteration of neighborhood aggregation, the decrease becomes smaller. The ID of the
different k-hops can be differentiated by the approximation, i.e., ∂s,−(Di)> ∂s,+(Di+1) for
i ∈ {0, . . . ,4}. It stands out, that even for such a short support sequence (compared to the
size of the dataset), the observed error is remarkably low. In detail, we can approximate
the ID with an accuracy of over 99.95%. It is further remarkable, that the error does not
change significantly for different k. We observed this effect also for the other datasets. Our
results on ogbn-papers100M indicate, that with short support sequences, we can sufficiently
approximate the ID of large-scale graph data.

5.6 Errors of Random Data

To further understand how our approximation procedure behaves we conducted experiments
on random data. We considered different data sizes and different amount of attributes. For this,
we experimented with real-valued datasets, i.e. datasets represented by an attribute matrix
X ∈Rn×d . Here, the feature functions are given by the data columns. To be more detailed, the
considered geometric dataset is D = ({Xi | i ∈ {1, . . . ,n}},{Xi 7→ Xi, j | j ∈ {1, . . . ,d}},ν).
Here, ν is again the normalized counting measure and Xi is he i− th row vector of X . We
iterate n through {106,107,108} and d through {10,50,250}. We repeat all experiments
3 times. For all datasets, we build a support sequence as described in Section 5.5.1 with
l = 100,000. The results can be found in Table 5.4.

For all datasets, the errors are small and the accuracy is over 99.9% for all considered
data sizes. The difference in the error for different values of d is negligible. Furthermore, we

94 Intrinsic Dimensionality for Large-Scale Geometric Learning

have small standard deviations. All this indicates that l = 100,000 is a reasonable default
choice that leads to sufficient approximations in a large range of data and attribute sizes.

5.7 Conclusion and Future Work

We presented a principle way to efficiently compute the intrinsic dimension (ID) of geometric
datasets. Our approach is based on an axiomatic foundation and accounts for underlying
structures and is therefore especially tailored to the field of geometric learning. We proposed
a novel speed up technique for an algorithm which has quadratic complexity with respect to
the amount of data points. This enabled us to compute the ID of several real-world graphs
with up to millions of nodes. Equipped with this ability, we shed light on connections of
classification performances of graph neural networks and the observed intrinsic dimension
for common benchmark datasets. Finally, using a novel approximation technique, we were
able to show that our method scales to graphs with over 100 million nodes and billions of
edges. We illustrated this by using the well-known ogbn-papers100M dataset. To sum
up, we generated novel global insights into real-world networks by providing a measure of
complexity of whole networks that is applicable to modern large-scale graphs.

Future work includes the identification of suitable feature functions for other domains,
such as learning on text or image data. Incorporating the structure of such datasets into the
computation of intrinsic dimensionality is an open research problem. Another promising
research direction is to investigate how the ID of datasets could be manipulated. Since our
investigations suggest connections between a low ID and high classification performances,
this has the potential to enhance learning procedures.

Chapter 6

Selecting Features by their Resilience to
the Curse of Dimensionality

In this chapter, we present an application of the intrinsic dimensionality notion presented in
the last section. We investigate which features of a specific dataset are useful to lower the
intrinsic dimensionality. This results in a methods for feature selection that is competitive
with well-established baselines. We therefore find empirical evidence that features that tame
the curse of dimensionality are meaningful for the success of learning.

6.1 Introduction

Information derived by machine learning procedures is rarely comprehensible or interpretable.
This includes even procedures originally categorized as explainable, such as decision trees.
Addressing this problem, a variety of works aims to simplify data through methods that
reduce size or, in particular, the dimensionality. An important class of such methods has
the emblematic name feature selection (FS). By simply selecting to be discarded feature
dimensions, they preserve the explainability of the remaining original dimensions, in contrast
to approaches such as principal component analysis. Although there are supervised and unsu-
pervised types of FS, only unsupervised procedures are suited to improve the understanding
of data regardless of a specific learning task. Moreover, they do not require costly labels.

In common feature selection methods, the curse of dimensionality, as introduced in
the last chapter, is rarely explicitly accounted for, even though it does a) demonstrably
influences learning success in high-dimensional real-world scenarios, and b) potentially
prevent common FS methods to choose the best features to learn from. Thus, it is crucial to
incorporate the intrinsic dimension into the process of selecting features.

96 Selecting Features by their Resilience to the Curse of Dimensionality

We meet this challenge by proposing an unsupervised feature selection method that picks
features based on their measurable ability to discriminate different data points. While other
methods are based on feature relevance measures, such as variances, or select features by
discarding strongly correlated ones, our method ranks features by their resilience against
the curse of dimensionality in the sense of Pestov. By adapting corresponding ideas for
computing the intrinsic dimensionality from the last chapter, we derive an algorithm that
allows to find those features that are able to tame the influence of the curse of dimensionality.
Furthermore, adapting the speed-up techniques proposed in Chapter 5 will allow feature
selection for large-scale datasets comprised of millions of data points. While Hanika et al.
[70] and Chapter 5 are focused on computing the intrinsic dimensionality of datasets, we
will rank and select individual features by their ability to discriminate data points. Thus, we
identify features that are harmed by the curse of dimensionality by a comparable low extent.

We experimentally show on real-world datasets that features selected by our proposed
method are meaningful to learn from. To be more specific, we again experiment on the
OpenML-CC18 Curated Classification benchmark (Open18) [15] and witness that our method
is competitive or even outperforms established feature selection methods with respect to
feature selection for classification tasks. Furthermore, we again use OGB [76] to show that
our method is capable of feature selection in the realm of social network analysis. To sum
up, our experiments indicate that features that are able to discriminate data and thus weaken
the curse of dimensionality are highly relevant for learning tasks. The code for this chapter is
publicly available in the repository of the paper on which this chapter builds.1

6.2 Related Work

We focus on unsupervised feature selection, which is an established research topic [138, 26, 3].
Established methods are often focused on the identification of outstanding features by
identifying the relevant features for clustering [47, 24, 46]. Another directions focuses on
selecting a subset of important and dissimilar features [162, 52, 112, 69]. Here, feature
importance can for example be measured via variances and similarities via correlation
coefficients. While applying such methods may result in a decreasing intrinsic dimensionality,
they do not explicitly account for the curse of dimensionality in the selection process.

A small amount of research has incorporated intrinsic dimension estimators into feature
selection [60, 59, 114, 81]. However, these method either only use the ID to determine the
amount of features to select [60] or they are based on recomputing intrinsic dimensionalities
after discarding features which limits scalability [59, 114]. Even if applicable to larger

1https://github.com/mstubbemann/FSCOD

https://github.com/mstubbemann/FSCOD

6.3 Feature Selection via Discriminability 97

datasets, these methods build on notions of intrinsic dimensionality that do not aim to
quantify the curse of dimensionality [81]. Instead, these notions work under the assumption
that the data lies on a manifold of lower Euclidean dimension. The goal of the ID notion is
then to approximate the dimension of this manifold.

In contrast, we build our feature selection procedure on a notion of ID which quantifies
the influence of the curse of dimensionality which occurs when data points can not be
discriminated. Note, that Hanika et al. [70] and the last chapter were solely focused on the
intrinsic dimensionality of datasets and thus of the question how all features together can
discriminate data points. In this chapter, we present a novel approach to rank and select
individual features by their ability to discriminate data points.

6.3 Feature Selection via Discriminability

We again work with geometric datasets D = (X ,F,µ) [70]. Recall, that X is a set of data
points and F ⊆RX is a set of feature functions from X to R. We require supx,y∈X dF(x,y)<
∞, where dF(x,y) := sup f∈F | f (x)− f (y)|. Furthermore, (X ,dF) has to be a complete and
separable metric space with µ being a Borel probability measure on (X ,dF).

From this point on, we again consider the special case of finite geometric datasets, i.e.,
0 < |X |, |F |< ∞, with µ being the normalized counting measure. We build our method on
the discriminability ∆(D) of a geometric dataset D . The discriminability has in the case of
finite geometric datasets the form

∆(D) =
1
|X |

|X |

∑
k=2

max
f∈F

min
M⊆X
|M|=k

max
x,y∈M

| f (x)− f (y)|, (6.1)

as shown in Theorem 5.2. We again use the notations φk, f :=minM⊆X ,|M|=k maxx,y∈M| f (x)−
f (y)|, and φk := max f∈F φk, f so the discriminability ∆(D) can be rewritten as

∆(D) =
1
|X |

|X |

∑
k=2

max
f∈F

φk, f =
1
|X |

|X |

∑
k=2

φk, (6.2)

as we already noted in Equation (5.3). In the following, we consider feature selection with a
fixed feature budget in an unsupervised setting, i.e., without any known labels of a specific
classification task at selecting time.

Problem Statement. Given a finite geometric dataset D = (X ,F,µ) and a natural number
nF ≪ |F |, select the nF most important features of F .

98 Selecting Features by their Resilience to the Curse of Dimensionality

6.3.1 Selection of Discriminating Features

The definition of discriminability as in Equation (6.1) and Equation (6.2) quantifies to which
extent the set of all features can discriminate data subsets of different cardinality. The main
idea of our feature selection algorithm is to rank features by their ability to discriminate data
subsets of different cardinality by solely using this feature.

Definition 6.1 (Discriminability)
The discriminability of D with respect to feature f ∈ F is defined as

∆(D)∗f :=
1
|X |

|X |

∑
k=2

min
M⊆X
|M|=k

max
x,y∈M

| f (x)− f (y)|= 1
|X |

|X |

∑
k=2

φk, f . (6.3)

Enhancing Robustness against Outliers Note, that one data point with an outstanding
value f (x) can have a strong influence on ∆(D) f

∗ via drastically increasing φ|X |, f . To
weaken this phenomenon, we propose to weight φk, f higher for smaller values of k. This
leads to the following definition.

Definition 6.2 (Normalized Discriminability and Normalized Intrinsic Dimensionality)
The normalized discriminability of D with respect to f which we define as

∆(D) f :=
1
|X |

|X |

∑
k=2

1
k

φk, f .

The normalized intrinsic dimensionality of D with respect to f is then given via

∂ (D) f :=
1

∆(D)2
f
. (6.4)

We then can rank features by their discriminability and select the features with the highest
discriminability/ lowest intrinsic dimensionality. We call the resulting method features
selection via discriminability (FSD). It is depicted in Algorithm 6.1.

6.3.2 Discarding Highly Correlated Features

Our methods select features by their ability to separate data points. However, it does not
consider connections between individual features, as for example correlations. Thus, if for
example the two features that separate the dataset are nearly identical our method may select
both as though selecting one of these features would be sufficient as the second one gives no

6.4 Feature Selection for Large-Scale Data 99

Algorithm 6.1: Feature Selection via Discriminability (FSD)
Input :Finite geometric dataset D = (X ,F,µ). Natural number k << |F | of

features to select from F .
Output :Selected features

1 forall f in F do
2 ∆(D) f := 1

|X |∑
|X |
k=2

1
k φk, f

3 ∂ (D) f =
1

∆(D)2
f

4 Set lF as the list of all f ∈ F ordered by ascending ∂ (D) f .
5 return lF [: k]

extra information. To prevent such cases, we propose to incorporate correlation coefficients
into our feature selection process, if desired. In order to do so, we define an additional
number nc of features to remove via correlation coefficients. We then iteratively discard one
of the two features f1, f2 with the maximal pearson correlation coefficient. The version of our
algorithm that incorporates this preprocessing is called Feature Selection via Discriminability
and Correlation (FSDC).

6.4 Feature Selection for Large-Scale Data

Since computing φk, f is in O(|X |− k) for fixed f ∈ F as discussed in Chapter 5, computing
∆(D) f is in O(∑

|X |
k=2|X |−k) =O(|X |2). Hence, we have a worst case runtime which scales

quadratic with |X |. Thus, FSD(C) is applicable to medium-sized datasets with thousands of
data points. However, it is not tailored to large-scale data with millions of data points.

We again make use of support sequences as defined in Definition 5.7, i.e., strictly
increasing finite sequences of the form s = (2 = s1, . . . ,sl = |X |) to approximate ∆(D) and
∂ (D) by only computing φsi, f for si ∈ s.

We approximate the discriminability and intrinsic dimensionality with respect to a feature
f ∈ F . The approximation is based on the result, that the map k 7→ φk, f is monotonically
increasing as shown in Theorem 5.6. Using this result, we replace for si < j < si+1 the value
φ j, f by φsi, f or φsi+1, f . More formally, we get the following definition.

Definition 6.3 (Upper and Lower Normalized Discriminability)
For a feature f ∈ F and a support sequence s we call

∆(D)+s, f :=
1
|X |

(
l

∑
i=1

1
si

φsi, f +
l−1

∑
i=1

∑
si< j<si+1

1
j
φsi+1, f

)

100 Selecting Features by their Resilience to the Curse of Dimensionality

the upper normalized discriminability with respect to f and s and

∆(D)−s, f :=
1
|X |

(
l

∑
i=1

1
si

φsi, f +
l−1

∑
i=1

∑
si< j<si+1

1
j
φsi, f

)

he lower normalized discriminability with respect to f and s.

Definition 6.4 (Upper, Lower and Approximated Normalized Intrinsic Dimensionality)
We define the upper normalized intrinsic dimensionality with respect to f and s via

∂ (D)+s, f :=
1(

∆(D)−s,g
)2

and the lower normalized intrinsic dimensionality with respect to f and s via

∂ (D)−s, f :=
1(

∆(D)+s, f

)2 .

Furthermore we call

∂ (D)s, f :=
∂ (D)+s, f +∂ (D)−s, f

2
. (6.5)

the approximated normalized intrinsic dimensionality with respect to f and s.

Large-Scale Feature Selection via Discriminability The resulting algorithm for large-
scale datasets is depicted in Algorithm 6.2. We rank features via ascending ∂ (D)s, f . If we
want to select k features, we choose the first k features of the resulting order. We denominate
this method with large-scale feature selection via discriminability (LSFSD). If we use the
preprocessing via correlations as explained in Section 6.3.2 we instead call the method
large-scale feature selection via discriminability and correlation (LSFSDC).

6.4.1 Error Ratios of Approximations

Note, that ∂ (D)s, f as defined in Equation (6.5) only gives an approximation of ∂ (D) f as
defined in Equation (6.4). Thus ranking the features by ∂ (D)s, f instead of ∂ (D) f may lead to
a different ordering. We are interested in the amount of such changes. Let ls := (fi1, . . . , fi|F |)

be the list of the features in F ordered by ascending ∂ (D)s, f .

6.4 Feature Selection for Large-Scale Data 101

Algorithm 6.2: Large-Scale Feature Selection via Discriminability (LSFSD)
Input :Finite geometric dataset D = (X ,F,µ). Natural number k << |F | of

features to select from F . Support sequence s = (2 = s1, . . . ,sl = |X |).
Output :Selected features

1 forall f in F do
2 ∆(D)+s, f := 1

|X |

(
∑

l
i=1

1
si

φsi, f +∑
l−1
i=1 ∑si< j<si+1

1
j φsi+1, f

)
3 ∆(D)−s, f := 1

|X |

(
∑

l
i=1

1
si

φsi, f +∑
l−1
i=1 ∑si< j<si+1

1
j φsi, f

)
4 ∂ (D)+s, f := 1

(∆(D)−s,g)
2

5 ∂ (D)−s, f := 1
(∆(D)+s,g)

2

6 ∂ (D)s, f :=
∂ (D)+s, f+∂ (D)−s, f

2

7 Set lF as the list of all f ∈ F ordered by ascending ∂ (D)s, f .
8 return lF [: k]

Definition 6.5 (Error Ratio)
The error ratio of s is then given by

E(s)∗ :=
2|{(k, l) ∈ {1, . . . , |F |} | k < l∧∂ (D) fik

> ∂ (D) fil
}|

|F |(|F |−1)
.

Computing ∂ (D)s, f for all f ∈ F is especially of interest when computing ∂ (D) f is not
feasible. In such circumstances, it is also not possible to compute E(s)∗. Hence, we need an
approximation or upper bound of E(s)∗ which can be computed without needing ∂ (D) f .

Definition 6.6 (Maximal Error Ratio)
We call for a support sequence s

E(s) :=
2|{(k, l) ∈ {1, . . . , |F |} | k < l∧∂ (D)+s, fik

> ∂ (D)−s, fil
}|

|F |(|F |−1)

the maximal error ratio of s.

The maximal error ratio E(s) can be computed without knowing ∂ (D) f for all f ∈ F .
Per definition it holds that

∂ (D)−s, f ≤ ∂ (D)s, f ≤ ∂ (D)+s, f .

102 Selecting Features by their Resilience to the Curse of Dimensionality

Thus, for given features f ,g ∈ F with ∂ (D)+s, f ≤ ∂ (D)−s,g we can conclude

∂ (D) f ≤ ∂ (D)+s, f ≤ ∂ (D)−s,g ≤ ∂ (D)g.

Thus, we get the following corollary.

Corollary 6.7 For each support sequence s it holds that

E(s)∗ ≤ E(s). (6.6)

To sum up, we now have an approximation algorithm which allow us to rank the features
by their intrinsic dimensionality and we can efficiently bound the amount of errors this
approximation produces.

6.5 Experiments

In the following we empirically examine the following hypothesis.
Discriminative features are meaningful features with respect to learning perfor-

mances, especially in classification tasks.
The aim is not to develop a new feature selection procedure that surpasses all established

methods. Thus, we do not compare with all state-of unsupervised feature selection procedures.
Instead we use a small set of representative baselines that consists of established methods
and common-sense baselines based on correlation and variances. Furthermore, we compare
our approach to random feature selection to evaluate if our features are indeed meaningful
with respect to classification.

In all our experiments, we consider the features F to be the coordinate projections, i.e.,
the feature functions are given via the data columns. We evaluate our feature selection
method regarding to classification performances. We experiment with a logistic regression
classifier on the OpenML-CC18 Curated Classification benchmark (Open18)2 [15]. To
further evaluate our selection procedure on modern large-scale networks we also select
features for classification with graph neural networks on the subset of the Open Graph
Benchmark [76] which we already used in Chapter 5. In both experiments, we evaluate how
to classify on a small subset of the features. To be more detailed, we only want to keep
10% of all features. We evaluate our feature selection with and without the preprocessing
procedure of Section 6.3.2. In the case with the preprocessing step, we use it do discard 10%

2https://www.openml.org/search?type=study&study_type=task&id=99&sort=tasks_
included

https://www.openml.org/search?type=study&study_type=task&id=99&sort=tasks_included
https://www.openml.org/search?type=study&study_type=task&id=99&sort=tasks_included

6.5 Experiments 103

of the features. In both experiments, we will also report results for classification on the full
feature set. We evaluate against the following baselines.

• Random. Randomly selecting the 10% of features.

• Correlation Based. Only use the correlation based feature selection as proposed
in Section 6.3.2 until only 10% of the features are left.

• Variance Based. Select the 10% of the features with the highest variance. We choose
this baseline because it is a straight forward approach to for selecting features by their
individual importance.

• SPEC [162]. SPEC first builds a complete graph between the individual data points
with edge weights indicating similarities of the points and then uses spectral graph
theory for estimating feature relevance. In our experiments, we use an RBF Kernel
for similarity and evaluate feature relevance via φ2. Note, that we here refer to the
notation φ2 from Zhao and Liu [162], not φ2 as used in the rest of this chapter. For
details, we refer to Zhao and Liu [162]. We choose this baseline because it was the
univariate filter method with the highest classification accuracy in a recent survey on
unsupervised feature selection [138].

• RRFS [52]. RRFS combines a function @sim which measures similarity of feature
pairs and a relevance measure @rel that evaluates the importance of features. It
iteratively chooses the next most relevant feature that has a similarity to the last
chosen feature which below a specific threshold t. For comparison, we choose t
to be the correlation coefficient value of the last pair of features that was used to
discard a feature via Section 6.3.2. We use the Pearson correlation coefficient for
similarity evaluation and evaluate the relevance of features via their variance. For more
details, we refer to Ferreira and Figueiredo [52]. We use this baseline because it was
the multivariate filter method with the highest classification accuracy in the survey
mentioned above [138].

6.5.1 Feature Selection for Logistic Regression

We select features as explained above and then use a logistic regression classifier. We use
the data splits that are provided by Open18 and report mean test accuracies over all splits.
We report means over 10 runs of this experiment. Note, that the logistic regression of
scikit-learn [119] using the default solver leads to deterministic results. As only the random

104 Selecting Features by their Resilience to the Curse of Dimensionality

Table 6.1: Results on Open18 experiment. We report the accuracies for our method with
(FSDC) and without preprocessing (FSD) via correlation and for all baselines

Task ID Dataset |F | Full FSDC FSD Random Corr Vari RRFS SPEC

14 mfeat-fourier 76 .813 .694 .753 .433±.032 .457 .751 .751 .630
16 mfeat-karh. 64 .958 .695 .822 .466±.028 .288 .810 .810 .680
45 splice 60 .918 .531 .611 .580±.026 .534 .725 .647 .806

9910 Bioresponse 1776 .754 .745 .751 .704±.008 .739 .747 .707 .550
9977 nomao 118 .947 .907 .907 .835±.012 .752 .793 .793 .759
9981 cnae-9 856 .944 .884 .884 .391±.032 .404 .888 .144 .128
9985 1st-order 51 .479 .434 .434 .420±.002 .416 .419 .419 .418

167125 Internet-Advertisment 1558 .971 .962 .963 .936±.003 .899 .963 .963 .877

selection method is non-deterministic, this is the only baseline where results of different
repetitions vary.

We only experiment on a subset of Open18. To be more detailed, we discard all datasets
with NaN values or only binary features. Furthermore, we discard all datasets where the
logistic regression classifier of scikit-learn was not always able to converge on the full feature
set. We use default parameters with the exception that we changed the maximal iterations
from 100 to 1000 to increase the chance of convergence. Finally, we arrive at 8 out of 72
datasets of Open18. The results are depicted in Table 6.1.

Results and Discussion.

For all datasets, FSD outcompetes the random baseline and for 7 out of 8 datasets FSDC
outperforms random selection. Hence, selecting features by their discriminability a reason-
able aproach to identify relevant features for learning. Furthermore, for 6 out of 8 baselines,
FSD surpasses all baselines. This indicates that our selection approach is competetive with
established feature selection methods.

Adding the correlation-based feature selection to FSD does not increase performances and
feature selection solely based on correlation coefficients leads to comparable low accuracies.
Furthermore, RRFS, which, in our configuration, combines feature variances with dropping
strongly correlated features does not surpass the selection of features solely based on variance.
All this indicates that the incorporation of correlation between features is not useful in this
scenario. It also stands out, that FSDC sometimes lead to the same accuracy than FSD. In
these cases it stands to reason that FSD does not select any features that are dropped by
FSDC as preprocessing.

6.5 Experiments 105

Table 6.2: Results of our experiments on OGBN. We report, the accuracies for our method
with (LSFSDC) and without (LSFSD) and for all baselines except of SPEC.

Dataset |F | Full LSFSDC LSFSD Random Corr Vari RRFS

arxiv 128 .691± .006 .536± .005 .543± .005 .500± .021 .461± .006 .543± .008 .534± .003
products 100 .748± .006 .529± .007 .545± .005 .413± .038 .395± .006 .485± .006 .519± .008

mag 128 .387± .004 .292± .005 .283± .005 .274± .006 .269± .004 .292± .002 .282± .004

Overall, selecting only 10% often lead to a high drop compared to the original accuracy,
indicating that such a small feature budget often not allows for sufficient feature selection.
Thus, our experiment mainly gives insights in cases where feature selection is done because
only using a small subset of features is computational feasible or to get new insights into the
data and classification behavior. It is primarily not designed for feature selection to enhance
classification accuracy. Here, the amount of selected features should be set higher. However,
the competitiveness of our approach supports our hypothesis that discriminability of features
is connected to their relevance for learning.

6.5.2 Feature Selection for Graph Neural Networks

We now evaluate to which extent our feature selection methods helps to select features for
training graph neural networks. For this, we use ogbn-arxiv, ogbn-mag and ogbn-products3

from Open Graph Benchmark [76]. These datasets are fundamentally larger then the ones
from Open18, with a nodeset size of 169,343 (ogbn-arxiv), 2,449,029 (ogbn-products)
and 1,939,743 (ogbn-mag).

To use LSFSD(C) we need to choose a support sequence. As in Chapter 5, we use
log scale spacing. For this, we first choose a geometric sequence ŝ = (s1, . . .sl) of length
l = 10,000 with s1 = |X | and sl = 2 and use the support sequence s which results from
s′ = (⌊|X |+2− s1⌋, . . . ,⌊|X |+2− sl⌋) via discarding duplicated elements.

For training and classification, we again use a plain SIGN model [129] with one hidden-
layer of dimension 512 and do 2−hop neighborhood aggregation. We train with an Adam
optimizer with learning rate of 0.001 and weight decay of 0.0001. We train for a maximum
of 1000 epochs with a patience of 15 epochs with respect to validation accuracy. We use a
batch size of 256. We dropout at the input layer with a probability of 0.1,0.3,0.5 and at the
hidden layer with probability of 0.5,0.4,0.5 for ogbn-arxiv, ogbn-products and ogbn-mag,
respectively.

3https://ogb.stanford.edu/docs/nodeprop/

https://ogb.stanford.edu/docs/nodeprop/

106 Selecting Features by their Resilience to the Curse of Dimensionality

We report test accuracies, displaying means and standard deviations over 10 rounds. We
use all methods and baselines reported above. For SPEC, computation of the RBF kernel
was not possible on our Server with 125 GB RAM due to memory costs. This was true for
using scikit-learn as well with plain numpy. The results are depicted in Table 6.2.

Results and Discussion.

In this experiment, preprocessing via Section 6.3.2 indeed can help as LSFSDC lead to higher
accuracies then using LSFSD for ogbn-mag. LSFSDC also surpasses feature selection based
solely on correlations. Note, that RRFS, the other method that combines similarities between
features and selection by some measure of feature relevance, do lead to fundamentally worse
results. Thus, one can not follow that combining similarity and relevance is the general key
to successful feature selection. This is supported by the fact, that feature selection solely
based on feature variance leads to high accuracies. For ogbn-products and ogbn-arxiv,
LFSD lead to the best performance, for ogbn-mag, the highest accuracy is reached with
LSFSDC. In this experiment, our selection method is again competitive with the baselines
and surpasses random selection. This supports the hypothesis that selecting features via their
discriminability is meaningful.

6.6 Parameter Study on Maximal Errors

We now study the influence of the lengths of support sequences on the maximal error E(s).
For this, we generate the support sequence as in Section 6.5.2 with varying value l. We
iterate l through {⌊0.01 · n⌋,⌊0.02 · n⌋, . . . ,⌊0.2 · n⌋}, where n is the amount of points in
the respective datasets. Here, if l = ⌊r · n⌋, we call again r the length of l. Note, that the
final support sequence may have a lower amount of elements in l as we discard doubled
elements. For all three ogbn datasets mentioned above, we display the maximal errors E(s)
with the procedure mentioned in Section 6.3.2 and without. Since for ogbn-arxiv the exact
computation of ∆(D) f is possible, we also compute the “real” error E(s)∗ for this dataset.

6.6.1 Results and Discussion

The results are depicted in Figure 6.1. We first note that the behavior of the maximal errors
is not fundamentally effected by the decision for or against discarding strongly correlated
features. In both settings, the curves are similar. Only the absolute values tend to be lower
without discarding. Hence, the following observation and arguments hold for both cases.

6.6 Parameter Study on Maximal Errors 107

Figure 6.1: The maximal errors E(s) of all ogbn datasets. On the left, we display the results
without discarding highly correlated features. On the right, we display the results with. For
ogbn-arxiv, we also display the “real error” E(s)∗. The plots in the second row are zooms
into the plots in the first row.

For the larger datasets, ogbn-products and ogbn-mag, the maximal error E(s) is negligi-
ble for comparable small relative support sizes. For relative support sizes of 0.1, the maximal
mistakes are under 0.01. For ogbn-arxiv we have an maximal error of around 0.025 for this
relative support size and overall higher maximal errors for all relative support lengths.

Comparing E(s)∗ and E(s) for ogbn-arxiv it stands out, that the maximal error is a
strong overestimation of the error E(s)∗. As computing E(s)∗ for both other datasets is not

108 Selecting Features by their Resilience to the Curse of Dimensionality

feasible, we can not verify whether this is also the case for them. However, we know because
of Equation (6.6), that E(s)∗ is bound by the maximal error which is already negligible for
ogbn-products and ogbn-mag.

6.7 Conclusion and Future Work

We built on the developments from Chapter 5 to derive a novel unsupervised feature selection
method that accounts for the intrinsic dimensionality of datasets. Our approach identifies
those features that are able to discriminate data points and are thus responsible for taming the
curse of dimensionality. Our experiments provide evidence that intrinsic dimension-based
selection of features is competitive with well established procedures, occasionally outper-
forming them. This holds both on learning from real-valued and network data. Furthermore,
we demonstrated that sampling techniques can be used to scale our feature selection method
to more than millions of data points.

We identify as a natural next step for future work scenarios where the features are not
given by coordinate projection, i.e., go beyond columns in tabular data. The generality of
our modeling of features allows to encode, e.g., edge information for graphs. Thus, our
method can be used for edge-sampling procedures that are important for training graph
neural networks to learn from social networks. However, the question on how to encode edge
information via feature functions is open.

While the present work emphasizes on understanding data by selecting features that break
the curse of dimensionality, future work has to tackle as well the problem of understanding
the behavior of specific model classes. This helps to further strengthen our understanding on
the interplay between the success of learning and the presence of the curse of dimensionality.

Part IV

Machine Learning

Chapter 7

FCA2VEC: Representation Learning via
Formal Concept Analysis

In this chapter, we present FCA2VEC, an approach that learns representations for partition
classes of bipartite graphs with the help of formal concept analysis. For this, we assume that
the bipartite network is represented by a formal context as defined in Definition 2.16. As this
approach compresses complex network structure into simple vector representations, it allows
to study networks from a condensed perspective.

7.1 Introduction

Learning real-valued vector representations from complex data structures has shown to
be successful for a variety of tasks, such as link prediction, clustering, and information
retrieval. Hence, today it is widely applied for a variety of data, such as text data [107, 108]
or graphs [120, 65]. In this chapter, we contribute to this line of research by presenting
FCA2VEC, an embedding approach that connects representation learning with formal con-
cept analysis (FCA). For a given bipartite graph, FCA2VEC generates generates condensed
representations with the formal concepts of the corresponding formal context. Our develop-
ment is guided by two questions: First, how can vector space embeddings be exploited for
coping more efficiently with problems from FCA? Second, to what extent can conceptual
structures from FCA contribute to the embedding of formal context like data structures, e.g.,
bipartite graphs?

Equipped with this problem setting we show how the word2vec approach [107, 108] can
be applied to generate vector embeddings for bipartite networks. To do so, we consider the
corresponding formal context. We discuss how the formal concepts can be used to generate

112 FCA2VEC

input data for training a neural network on learning representations. Our experiments show,
that the generated embeddings can successfully be applied to cluster attributes by their
implicational dependencies.

7.2 Related Work

There is an plethora of principle investigations for embedding finite ordinal data in real
vector spaces, first of all measurement structures [134] (which we found via [155]) and
ordinal formal contexts [154, 57, 45, 44]. A commonly used approach for the reduction of
formal contexts is binary matrix decomposition [11, 10]. However, we are only aware of one
FCA-based learning model that computes real valued vector representations of objects and
attributes: in [34], the authors transfer latent semantic analysis (LSA) to the realm of FCA.
While all methods mentioned above are indeed useful to generate real-valued representations,
they are not tackling our problem of adapting modern neural network-based embedding
approaches to the realm of FCA.

Our learning method is an adaption of word2vec [107, 108] and derived works such
as node2vec [65]. Multiple approaches that aim to establish ties between FCA and neural
networks were proposed in the past. For example, Kuznetsov et al. [92] uses concept lattices
to derive neural network architectures for classification tasks while Caro-Contreras and
Mendez-Vazquez [29] uses a neural network to compute concept lattices. However, to the
best of our knowledge, there are no previous works of adapting the embedding approach of
word2vec to formal contexts.

7.3 Word2Vec

We adapt the word2vec approach [107, 108] that generates vector embeddings for words
from large text corpora. The model gets as input a list of sentences. It is then trained using
one of two different approaches: predicting for a target word the context words around it
(the Skip-gram model, called SG); predicting from a set of context words a target word (the
Continuous Bag of Words model, called CBOW). In detail, word2vec works as follows.

Let V = {v1, . . . ,vn} be the vocabulary. We identify V as a subset of the vector space Rn

via mapping the words to the standard basis of Rn, i.e. via

φ : V → Rn,vi 7→ ei := (0,0, . . . ,0,1,0, . . . ,︸ ︷︷ ︸
i−th position

0).

7.3 Word2Vec 113

Figure 7.1: The structure of the word2vec architecture. The neural network consists of an
input and output layer of size n and a hidden layer of size d, where d≪ n. The weights at
the hidden layers are used as the embeddings.

This identification is commonly known under the term one-hot encoding. The learning task
then is the following: Find for a given d ∈ N with d≪ n a linear map ϕ : Rn→ Rd , i.e., in
the case of working with row vectors, a a matrix W ∈Rn×d which obeys the goal: words that
appear in similar contexts shall be mapped closely by ϕ . The final embedding vectors of the
words of the vocabulary are given by the map

ϒ : V → Rd,v 7→ ϕ(φ(v)). (7.1)

Here, we call ϒ the encoder of V . Note, that it is well-established for the sake of simplicity
to not distinguish between v ∈ V and its one-hot encoding φ(v) and therefore also to not
distinguish between ϒ and ϕ . To obtain the embeddings, word2vec uses a neural network
approach. This network consists of two linear maps and a softmax activation function,
cf. Figure 7.1. The first linear function, the encoder, maps the input from Rn to Rd . The
second one, called the decoder, maps from Rd back to Rn. In detail, the neural net function
has the structure

f : Rn→ Rn,x 7→ softmax(ψ(ϕ(x))).

In the notion of Section 2.6, we have a 2-layer network with no biases, no activation at the
hidden layer, and a softmax activation at the output layer. In this notation the hidden layer is
used to determine the embeddings. We refer the reader again to Figure 7.1. In the realm of
word2vec, Mikolov et. al. [107] proposed two different approaches to obtain the parameters
of φ ,ψ from input data. Those are called the Skip-gram and the Continuous Bag of Words
architecture. We recollect them in the following.

114 FCA2VEC

7.3.1 The Skip-Gram and the Continuous Bag of Words Architecture

The SG architecture trains the network to predict for a given target word the context words
around it. Each training example consists of a target word and a finite sequence of context
words. We formalize these as tuples

(t,(ci)
l
i=0) ∈V ×V<N,

where V<N is the set of finite sequences of elements of V . The SG architecture generates the
input-output pairs

(φ(t),φ(c0)), . . . ,(φ(t),φ(cl))

as training examples, where φ is the one-hot encoding function, as introduced above. In the
CBOW model, in contrast to SG, the training pairs are generated differently from (t,(ci)

l
i=0).

We take the middle point of the vectors φ(c0), . . . ,φ(cl) and try to predict the target word
φ(t), hence the generated input-output training pair is

(
1
l

l

∑
i=0

φ(ci),φ(t)).

Both architectures employ the same kind of loss function to learn the weights of W and U .
The error term is computed through cross-entropy loss. A detailed explanation can be found
in Rong [128].

In word2vec, the pairs of target word and context words are generated from text data
sequences, i.e., lists of sentences. The word2vec approach has a window size m ∈ N as a
parameter, i.e., for a given sentence s = (wi)

l
i=0 ∈V<N pairs of target word and context word

sequences are defined in the following manner. For every i ∈ {0, . . . , l} a reduced window
size mi ∈ {0, . . . ,m} is chosen randomly and the pair (wi,(wi+k)

mi
k=−mi,k ̸=0) is used as pair of

target word and context word sequence.
Note, in the case of word embeddings, the size of the vocabulary often reaches a level

where computing the softmax is computationally infeasible. Hence, the softmax layer is
often approximated/replaced by one of the two following approaches. The hierarchical
softmax [113] stores the elements of the vocabulary in a binary Huffman tree and then only
uses the values to the path to an element to compute its probability. Another approach
presented in [108] is negative sampling, which uses the sigmoid function. In the experimental
part of this work we deal with formal contexts of a size where applying the softmax layer is
possible. In the following, we will restrict ourself to the SG architecture and will discuss
how it can be transferred to the realm of formal concept analysis.

7.4 Object2Vec and Attribute2Vec 115

7.4 Object2Vec and Attribute2Vec

We adapt word2vec to the domain of formal concept analysis and study its aptitude in a
different area. Namely, we introduce an approach to compute embeddings of objects and
attributes that incorporates proximity. Here, nearness of two objects or attributes refers to the
amount of concepts that include both.

The idea of adapting word2vec to non-text mining problems is a common approach
these days. Particular examples for that are node2vec [65] and deepwalk [120]. In the
realm of networks, it was shown that SG based architectures for node embeddings can
beat former approaches that use classic graph measures. They significantly enhanced node
classification and link prediction [120, 65] tasks. To do so, they interpret nodes as words for
their vocabulary, use random walks through the graphs to generate “sentences”, and then
employ word2vec. Since it is common to focus solely on the SG approach in the realm of
node embedding [120, 65], we will do the same from this point on.

In the following we present an approach to use the concepts of a given formal context
to generate embeddings of the object set or attribute set. Referring to its origin, we name
our novel methods object2vec and attribute2vec, respectively. The family of both of them is
what we call FCA2VEC. Both methods work in the same manner with the only difference
that object2vec generates embeddings for objects and attribute2vec generates embeddings
for attributes. We therefore focus on object2vec. For attribute2vec, only the roles of the
objects and attributes in the following explanations have to be switched. The basic idea of
object2vec is to interpret two objects to be more close to each other, if they are included
in more concept extents together. Hence, the set of extents of a formal context is used to
generate a low dimensional embedding of the object set G.

In the following we explain how to adapt the SG architecture to the realm of formal
concept analysis. We show how to generate multisets of training examples from a given
formal context. As an analogy for target word and context words we introduce target object
and context object sets. From this we can draw pairs as already done in SG.

7.4.1 Skip Gram in the Realm of Object2Vec

Let K := (G,M, I) be a (finite) formal context. The vocabulary is given by G = {g1, . . .gn}.
Furthermore, let be φ : G→ Rn,gi 7→ ei the one-hot encoding of our vocabulary (objects).
We derive our training examples from the set

T(K) := {(a,A\{a}) | a ∈ A, |G|> |A|> 1,∃B⊆M : (A,B) ∈B(K)},

116 FCA2VEC

1 2 3 4 5 6 7 8 9
a × × × ×
b × × × ×
c × × × × ×
d × × × × ×
e × × ×
f × × × ×
g × × × × ×
h × × × ×

Figure 7.2: Formal context of the classical Living Beings and Water example from [58].

where every element is a pair of a target object and some extent in which a is element of.
More specifically, we remove a from this extent. We interpret then A \ {a} as the object
context set. The word “context” here refers to the word2vec approach and is not be confused
with “formal context”. Note that we do not generate any training examples from the concept
(G,G′) since the extent G does not provide any information about the formal context.

In the SG model, the input and output training pairs are generated from target object and
an object context set pairs. From such a pair (t,C) ∈ T(K). the generated training examples
are given by

TSG(t,C) := {(φ(t),φ(c)) | c ∈C}.

Using this it is possible for some pairs (t1,C1),(t2,C2) ∈ T(K) where we have (t1,C1) ̸=
(t2,C2) that

TSG(t1,C1)∩TSG(t2,C2) ̸= /0.

Hence, samples can be generated multiple times in this setup. To give an impression of our
modeling we furnish the following example.

Consider a classical formal context from [58], called “Living Beings and Water”, which
we depicted in Figure 7.2. We map the objects with the one-hot encoding: φ : G 7→ R8,
with φ(a) = e1,φ(b) = e2, . . . ,φ(h) = e8. Using this we easily find a training sample
from TSG which is generated two times. Consider the concepts ({a, f ,g},{4,5,6}) and
({ f ,g,h},{5,6,7}). The first concept generates the pairs of target object and object context
sets (a,{ f ,g}) as well as (f ,{a,g}) and (g,{a, f}). The second formal concept generates the
pairs (f ,{g,h}),(g,{ f ,h}) and (h,{ f ,g}). If we train in the SG architecture we derive from
the pair (f ,{a,g}) the training examples (e6,e1) and (e6,e7). Also, from the pair (f ,{g,h})
we derive the examples (e6,e7),(e7,e8). Hence, the training example (e6,e7) is shown to the
neural network at least twice per epoch.

7.5 Clustering Attributes with FCA2VEC 117

Algorithm 7.1: The pseudocode of generating training examples for object2vec.
The algorithm takes a formal context as input. It returns a list of pairs to train the
neural network.

Input :a formal context (G,M, I)
Output :A list L of training examples.

1 L← []
2 Lext <− list of extents of (G,M, I) (excluding G).
3 forall A in Lext do
4 forall o in A do
5 forall ǒ in A: do
6 if o ̸= ǒ then
7 add ((φ(o),φ(ǒ))) to L

8 return L

7.5 Clustering Attributes with FCA2VEC

In FCA, implications on the set of attributes of a formal context are of major interest. While
computing the canonical base, i.e., the minimal base of the implicational theory of a formal
context, is often infeasible, one could be interested in implications of smaller attribute subsets.
This leads naturally to the question of how to identify attribute subsets that cover a large part
of the canonical base. In detail, the resulting task is as follows: Let (G,M, I) be a formal
context and L the canonical base (G,M, I). Using a simple clustering procedure (in our
case k-means), find for a given k ∈ N0 a partitioning of M in k clusters such that the ratio of
implications completely contained in one cluster is as high as possible. We investigate to
which extent our proposed approach attribute2vec maps attributes closely that are meaningful
for the aforementioned task. We conduct this research by computing an embedding via
attribute2vec and run the k-means clustering algorithm on top of it. For this experiment, we
use the wiki44k dataset taken from Ho et al. [74] and then adapted by Hanika et al. [69].
It consists of relational data extracted from Wikidata in December 2014. Even though it is
constructed to be a dense part of the Wikidata knowledge graph, it is relatively sparse for a
formal context. It consists of 45021 objects, 101 attributes, has a density of 0.04 and 21923
formal concepts. Our experimental pipeline looks as follows.

Applying attribute2vec on wiki44k We start by computing vector embeddings of the wiki44k
attributes using attribute2vec with SG.

K-means clustering We use the computed embedding to cluster our attributes with the
k-means algorithm. As implementation we rely on the scikit-learn software package.

118 FCA2VEC

For the initial clustering, we use the so called k-means++ technique by Arthur and
Vassilvitskii [6]. The method from scikit-learn runs internally for ten times with
different seeds and returns the best result encountered with respect to the costs of the
clusters.

Computation of the intra-cluster implications For clusterings C , we compute the ratio
of intra-cluster implications. An implication drawn from the canonical base, i.e.,
A→ B ∈L , is called intra-cluster if there is some C ∈ C such that A∪B ⊆C. The
canonical base of wiki44k has the size 7040.

Random clusterings To evaluate the ratios computed in the last step we use the following
baseline approaches. As a first baseline we make use of a random procedure. This
results in a random clustering of the attribute set. Using an arbitrary random clustering
with respect to cluster sizes is unreasonable for comparison. Hence, for each k-means
clustering obtained above we generate 10 random clusterings of the same size and the
same cluster size distribution. For those we also compute the intra-cluster implication
ratio.

Naive k-means clustering As a second baseline we envision a more sophisticated procedure.
We call this the “naive” clustering approach. In this setting we encode an attribute m
through a binary vector representation using the objects from {m}′. We then run ten
rounds of k-means and compare the results with the attribute2vec approach.

Setting. We repeat all experiments for 10 times and report means and standard deriva-
tions. We do mini-batching with a batch-size of 512 over 200 epochs and report results
for k ∈ {2,3,5,10,20}. We use an embedding dimension of d = 128, which is a common
choice in the realm of node embeddings based on word2vec [65, 120]. We use a learning
rate scheduler with linear decay and optimize the learning rate from γ from the possibilities
{0.0025,0.005,0.01,0.025,0.05,0.1,0.25,0.5}. The task is easier, if the cluster size distri-
bution is imbalanced, i.e., if nearly all attributes are in one cluster. We therefore decided to
use the cluster size distribution as our optimization criterion. To be more specific, we use
the parameters where the size of the largest cluster is minimized. Note, that this yields an
unsupervised optimization criterion that does not depend on the implication data we use for
testing. The results can be found in Table 7.1.

Results and Discussion. Attribute2vec outperforms both the random and the naive base-
lines. This indicates, that the generated embeddings indeed capture implicational knowledge

7.6 Conclusion and Future Work 119

Table 7.1: Results of clustering objects with attribute2vec.

k 2 3 5 10 20

Attribute2vec .3178± .0037 .3158± .0000 .2043± .0600 ..0494± .0658 .0062± .0026
Naive .0158± .0000 .0155± .0001 .0050± .0037 .0035± .0005 .0010± .0005
Random .0225± .0140 .0071± .0034 .0034± .0020 .0006± .0003 .0004± .0004

of the formal context. As application for our attribute2vec approach we envision the com-
putation of parts of the canonical base of a formal context. Taking the average maximum
cluster sizes into account we claim that this application is reasonable. We do not consider
the then necessary computation of all formal concepts as a disadvantage. The computation
of the canonical base is in general far more complex than computing the set of all concepts
and our embedding. Note, that the naive clustering baseline performs fundamentally worse
then attribute2vec. We presume that k-means clustering applied to the binary representation
vectors is not a particularly useful approach to capture implicational knowledge.

7.6 Conclusion and Future Work

In this chapter we presented FCA2VEC, a first approach for bringing data and conceptual
structures from FCA to the realm of embedding techniques based on word2vec. We specified
ourself to the well-known kip-gram architecture and showed how it can be used to generate
training examples that reflect which objects or attributes are contained in the same formal
concepts. In our investigation we have found convincing experimental evidence that FCA-
based methods can profit from word2vec-like embedding procedures as they can be used
to cluster for example attributes into partitions such that a large amount of implications
is intra-cluster. Thus, these representations are a reasonable tool to investigate networks
from a condensed perspective. This is in particular true fo the identification of implicational
knowledge, as studied in FCA.

The ideas for object2vec and attribute2vec have the limitation that they do require the
computation of the concept lattice. In future work we will investigate if this obligation can
be weakened through approximations or computing embeddings only with a subset of the
concept lattice or by computing only a sample of object or attribute derivations.

Another direction would be to step away from static real-valued embeddings and to neural
network architectures that incorporate the concept lattice structure in different layers. Here,
the distant vision would be to have a family of concept neural networks as an analogy to
graph neural networks.

Chapter 8

LG4AV: Combining Language Models
and Graph Neural Networks for Author

Verification

In this chapter we discuss possibilities to learn representations for a specific real-world
scenario. More specifically, we consider the case where documents with available text
information are connected to (potential) authors. Additionally, we will incorporate known
edges between different authors. The resulting neural network has the aim to represent the
graph structure such that potential edges between authors and unknown documents can be
predicted. Since we here represent a complex network structure via real-valued weights of
neural network, this approach falls into the category of condensed perspectives on networks.
Our approach is motivated by the task of verifying authorships of academic publications and
therefore has its application in the realm of bibliometrics.

8.1 Introduction

Evaluation of research strongly depends on bibliometric databases. Today, they are used
for the assessment of productivity and impact of researchers, conferences and affiliations.
Because of their rising relevance for the evaluation of the scientific output of individual
authors, it is crucial that the information which is stored in such databases is correct. However,
with the rapid growth of publication output [19], automatic inspections and corrections of
information in bibliometric data is needed. A major challenge in this area is authorship
verification (AV), which aims to verify if a document is written by a specific author. In
general, AV is widely investigated [88, 149, 67], with a majority of existing work handling

122 LG4AV

author verification by capturing writing styles [30, 67], assuming that they are unique among
different authors. This assumption does not hold in environments where the available texts
are short and contain uniform language patterns. An example of this is given by author
verification tasks for scientific documents. In such settings, the availability of full texts is
rare because bibliometric datasets often contain only abstracts and titles. In such scenarios
the variety of writing styles and linguistic usage is rather limited.

Additionally, the focus in AV research is on documents with one author, while verification
of multi-author documents is seldom done. Here, the information about known multi-
authorships can enhance the verification process because it provides a meaningful graph
structure. For example, scientific authors are more likely to write papers that would also fit to
their co-authors and Twitter users are expected to post about the same topics as the persons
they follow. The incorporation of such graph structures is rarely investigated.

We fill this gap with LG4AV. Our novel architecture combines language models and
graph neural networks to verify whether a document belongs to a potential author. This is
done without the explicit recap of the known documents of this author at decision time which
can be a computational bottleneck. This is especially true for authors with a large amount
of known documents. Additionally, LG4AV does not rely on any handcrafted stylometric
features.

By incorporating a graph neural network structure into our architecture, we use known
relations between potential authors. In this way, we are able to account for the fact that
authors are more likely to turn to topics that are present in their social neighborhood. We
experimentally evaluate the ability of our model to make verification decisions in bibliometric
environments and we review the influence of the individual components on the quality of the
verification decisions.

8.2 Related Work

Authorship verification is a commonly studied problem. PAN@CLEF1 provides regular
competitions in this realm. However, their past author verification challenges were based
on a setting where either small samples of up to ten known documents for each unknown
document were provided (2013-2015) or pairs of documents were given where the task was
to decide whether they were written by the same person (2020, 2021). Both scenarios are not
applicable for bibliometric environments, where the amount of known document can reach
up to hundreds.

1https://pan.webis.de/shared-tasks.html

https://pan.webis.de/shared-tasks.html

8.3 Problem 123

Many well-established methods for author verification develop specific hand-crafted fea-
tures that capture stylometric and syntactic patterns of documents. For example, Hürlimann
et al. [77] uses features such as sentence-lengths, punctuation marks and frequencies of
n-grams to make verification decisions. While the use of n-grams was already studied in
earlier work [83], there are still recent methods that build upon them [126]. Another well
established approach is given by Koppel et al. [89] where the authors successively remove
features and observe how this reduces the distinction between two works. This approach is
still known to be the gold standard [126, 14]. Despite its advantages, it is known to perform
worse on short texts. Therefore, Bevendorff et al. [14] proposes a modification that is also
applicable to shorter texts. However, this work experiments with documents of 4,000 words
per document, which is still much longer then abstracts of scientific publications.

Recently, methods based on neural network architectures, such as RNNs and transformer
models, emerged [8, 9]. Note, that both of these approaches need to train head layers for each
individual author. This makes them impractical for AV in bibliometric data where thousands
of authors has to be considered.

One of the few works that experiments with bibliometric data is [67], which uses full text
of a small subset of authors and ignores co-authorship relations. Most other works that deal
with bibliometric data tackle the closely related problem of authorship attribution (AA), i.e.,
with questions of the kind “who is the author of d” instead of “is a author of d” [72, 20, 28].

One of the few works in the realm of AV that takes into account that research papers are
multi-author documents is Sarwar et al. [132]. In their work, the authors derive a similarity
based graph structure of text fragments for authorship attribution for multi-author documents.
In contrast, our aim is to incorporate past co-author relations to verify potential authorships.

8.3 Problem

In the following, we formulate the problem we consider, introduce our architecture and
discuss the individual components of LG4AV.

Let t be a fixed time point and let G = (A,E) be a graph with A = {a1, . . . ,an} being a set
of authors and E ⊆

(A
2

)
a set of undirected and unweighted edges that represent connections

until t. Additionally, let D be a set of documents. Let, for all authors a ∈ A, be D(a) ⊆ D
the set of their known documents until t. Let U be a set of documents created after t with
unknown authorships. The goal is to verify for a set P⊆ A×U of potential author-document
pairs, whether for each (a,u) ∈ P a is an author of the unknown document u. More formally,
the aim is to find for each tuple a verification score f (a,u) ∈ [0,1].

124 LG4AV

Hence, we aim to infer from the data present at training time information about authors
to verify potential documents of them that occur at testing time. Our formulation differs from
the usual setting where the problem is either broken down to sequences of pairs (Di,di)

l
i=1

where the task is to determine for each i ∈ {1, . . . , l} if the unknown document di is from
the same author as the set of known documents Di. These settings are closely connected in
the sense that each author a can be interpreted as the set of his known documents D(a) at
training time. However, approaches adopted to this setting often assume to have already pairs
of known sets and unknown document [77] at training time or they explicitly use the set
of known documents for verification [126, 78, 136]. In contrast, we train a neural network
on incorporating information of known documents of an author to make it possible to make
verification decisions at testing time without explicitly recapping these documents for each
unknown document. This is especially useful in settings where the amount of unknown
documents can be large for some authors. Here, a need to explicitly use all these documents
for every single verification of an unknown document can be a computational bottleneck.

8.4 Combining Language Models and Graph Neural Net-
works for Author Verification

We develop an end-to-end model to tackle the author verification problem. For this, we
additionally assume to have for each author a ∈ A a vector representation xa ∈Rs. At training
time, our model gets as input pairs (a,d) ∈ A×D and is trained on predicting whether a
is author of D, i.e., d ∈ D(a). For inference at testing time, the model gets as input pairs
(a,u) ∈ P and decides whether a is author of u by computing a verification score f (a,u). For
both training and testing, author-document pairs (a,d) are forwarded through the network in
the following manner. We add a special token to represent the current author to the beginning
of d. The resulting document is then guided through a language model. Additionally, we
incorporate a graph neural network structure by

1. computing vector representations of a ∈ A that depend on its graph neighbors,

2. combining these vector representations with the output of a language model

3. and forwarding through a fully connected layer to get a verification score.

In the following, we discuss the individual components and give a detailed explanation of the
network inference. A sketch of LG4AV is given by Figure 8.1.

8.4 Combining Language Models and Graph Neural Networks for Author Verification 125

Prepocessed

Trainable

Figure 8.1: Forward step. LG4AV gets as input an author ai and a document d. The author
specific cls-token is added to the front of d which is then feed through the language model
(which is BERT in our case). The i-th rows of X , ÂX , . . . , ÂkX are individually component-
wise multiplied with the output of LM. The resulting vectors are concatenated and fed
through a fully connected layer with a sigmoid activation.

8.4.1 The Language Model

We choose a neural-network based language model build upon the transformer architec-
ture [150]. More specifically, we choose the standard BERT [40] model which we assume
the reader to be familiar with. While this model is originally intended for sentences, it is pos-
sible to feed arbitrary sequences of specific maximum length (512 tokens for regular BERT
models) through the network. Hence, we feed the full text of the document at once through
BERT and extract the output of the first token (a specific classification token, denoted by
[CLS-a]). This practice is established and has already been applied to abstracts of scientific
documents [35] as well as social media data [163]. To sum up, our language model can be
interpreted as a map

LM : D∪U → Rm.

To combine the output of the language model with the neighborhood aggregated author
vector representation, we need to ensure that the output of the language model has the same
size as the author features, i.e., m = s. Hence,we extend LM by a linear layer on top of the
BERT model, if needed.

126 LG4AV

8.4.2 Author Tokens

To give the language model information about the current author a∈ A, we replace the regular
[CLS] token by an author-dependent classification token [CLS-a]. Hence, the information
of the current author is encoded into the input of the language model. Roughly speaking,
if a pair (a,d) is fed through the whole network at training time, the author information is
not only incorporated into the LM layers via backpropagation. Instead, LM also sees a in
the forward step. To nourish from the optimization of the [CLS] token that was done in the
pre-training procedure of BERT, we initialize for each author a ∈ A the token-embedding of
[CLS-a] with the token-embedding of [CLS].

8.4.3 Choice of the Graph Neural Network

To avoid the neighborhood exploding problem, we adapt the idea of SIGN [129]. As
explained in Section 2.7.2, SIGN uses input layers with different neighborhood aggregations
of the form

X 7→ ÂkX .

We combine all these inputs with the language model outputs for our model. Our complete
architecture looks as follows.

8.4.4 LG4AV

The exact network inference is done in the following manner. Let X ∈ Rn×s be the feature
matrix of all authors where the i− th row represents the feature vector of the i-th author, i.e.
Xi = Xai . Let k ∈ N. Let Â be the normalized adjacency matrix from Definition 2.25 of the
co-author graph. For a given pair (ai,d) of an author and a document the network inference
is done in the following manner. For all l ∈ {0, . . . ,k}, we concatenate the vectors

vl(ai,d) := (ÂlX)i ∗LM(d).

Here, LM(d)) is also treated as a row-vector and ∗ denotes the element-wise product.
To derive a verification score from this concatenated vector, we feed v(ai,d) into a fully
connected layer with weight matrix W ∈ Rs(k+1)×1, a bias b ∈ R and sigmoid activation.
Hence, the full network inference of LG4AV for one training example is given by the equation

f (ai,d) := σ(v(ai,d))W +b).

8.5 Experiments 127

Training of LG4AV. For training we use all pairs (a,d) ∈ A×D with d ∈D(a) as positive
examples. For each a ∈ A we sample |D(a)| documents d ∈ D\D(a) to generate negative
examples. We use binary cross entropy as loss function.

8.5 Experiments

We use a dataset which contains publication information of the German and international AI
research community [87]. It contains titles and abstracts from Semantic Scholar [4] which
are needed for LG4AV but are not included in DBLP2. The relations between authors and
papers are based on DBLP which is, in our experience, comparably accurate with good name
disambiguation. This is crucial to prevent wrong authorship information in the data itself.

We use the dataset of the German AI researchers as our first dataset. As a second dataset,
we extract all authors with publications at the KDD conference and all their publications
from the dataset of the international AI researchers. We refer to the first as the GAI and to
the second as the KDD data. Basic statistics of the resulting data can be found in Table 8.1.
We generate training, validation and testing data for both datasets in the following manner.

• We discard all publications without an English abstract.

• For each publication, we use the title and the abstract as input for the language model
and concatenate them via a new line char to generate the text representation.

• We build the co-author graph of all authors until 2015. From this co-author graph,
we discard all author nodes that do not belong to the biggest connected component.
Let A be the set of authors that are nodes in this graph. We use this graph for the
neighborhood aggregation. We denote the set of publications until 2015 of these
authors with Dtrain.

• We generate for all authors and each of their publications a positive training example.
For all authors, we then sample papers from Dtrain which they are not an author of. We
sample in such a way that we have for each author an equal amount of positive and
negative examples.

• We use data from 2016 for validation. More specifically, we use for all authors a ∈ A
all publications that they have (co-) authored in 2016 as positive validation examples.
Let Dval be the set of these publications. We sample for all authors papers from Dval

that they are not author of as negative validation examples. Again, we sample in such

2https://dblp.org/

https://dblp.org/

128 LG4AV

Table 8.1: Basic statistics of the datasets. We display from left to right: 1.) The number of
authors in A, 2.) the number of edges in the co-author graph of these authors at training time,
3.) the number of training examples, 4.) the number of validation examples, 5.) the number
of test examples.

Authors # Edges # Train # Validation # Test

GAI 1669 4315 175118 14314 41558
KDD 3056 9592 254096 19976 61804

a way that we have for each author an equal amount of positive and negative validation
examples.

• We use publications from 2017 and newer to analogously generate test data.

Baselines

N-Gram Baseline. This baseline is strongly inspired by the baseline script of the AV chal-
lenge of PAN@CLEF 2020. For all authors we generate a “superdocument” by concatenating
all their documents that are available for training. For all pairs of authors a and documents d
at validation and testing time, we measure the similarity between d and the superdocument of
a. If the similarity is above a given threshold t, we classify the pair as a positive example. To
measure similarities, we build a character-based n-gram TF-IDF vectorizer upon all papers
available at training time, using only the 3000 most frequent n-grams across the documents
that the vectorizer is built on.

We tune n via grid-search on {1 . . .10} and choose the value that corresponds to the
highest AUC on the validation set. We tune the threshold on the set { 1

999 i− 1
999 | i ∈

{1, . . . ,1000}}. Note, that this means to sample 1000 evenly spaced points in [0,1]. We also
test the median of the distances of the validation examples as threshold. Since the AUC is
independent of this threshold, we tune on the validation F1 score after the best n is chosen.

GLAD [77]. This method is intended for pairs of the form (D,d) where D is a set of
documents and d is a single document. Note, that GLAD needs such pairs already for training.
Since our data consists of pairs (a,d) with a an author and d a document, we build training
examples for GLAD in the following manner. Let Ptrain be the set of all author-document pairs
available at training time and let, for all (a,d), be l(a,d) ∈ {−1,1} the label of that pair. For
each author a we collect the set Da,+ := {d | (a,d)∈Ptrain, l(a,d)= 1}= {da,+,0, . . . ,da,+,m} of
positive and the set Da,− := {d | (a,d)∈ Ptrain, l(a,d) =−1}= {da,−,0, . . . ,da,−,m} of negative
training examples. For each i ∈ {0, . . . ,m}, we train GLAD with (Da,+ \{da,+,i},da,+,i) with

8.5 Experiments 129

a positive label and (Da,+ \{da,+,i},da,−,i) with a negative label. For validation and testing,
we replace pairs (a,d) by (Da,+,d).

GLAD works as follows. For each pair (D,d) a vector representation is computed that
consists of features that are solely build on D or d, such as for example average sentence
length and joint features, which are build on D and d, such as entropy of concatenations of
documents of D and d. This vector representations are then fed into a support-vector machine.
While the authors of [77] uses a linear support-vector machine with default parameter setting
of scikit-learn [119], we enhance GLAD by tuning the c-parameter of the support-vector
machine and additionally experiment with radial kernels where we tune the γ-parameter. For
both parameters, we grid search over {10−3, . . . ,103} on the validation AUC.

RBI [126]. The ranking-based impostors method verifies a pair (D,d) with the help of a set
De of external documents. To use exactly the information available for training and thus have
a fair comparison, we use Da,+ as the known documents and Da,− as the external documents
for each pair (a,d).

By studying for each di ∈ D how many documents of De are closer to d than di is to d,
the impostors method computes a verification score where pairs with higher scores are more
likely to be positive examples. To compute vector representations for documents, we stick to
the procedure in Potha and Stamatatos [126]. We choose the following parameters for RBI.
We grid search k ∈ {100,200,300,400}, choose cosine similarity as the similarity function
and select the aggregation function between mean, minimum and maximum function. For
the meaning of the parameters, we refer to Potha and Stamatatos [126]. We use the AUC
score on the validation data to choose the best parameters. To derive binary predictions from
the verification scores, we use the median of all verification scores from the validation data.

Siamese BERT (S-BERT) [148] In this method, pairs of documents are fed through
BERT and the network is trained to put document pairs close together which are from the
same author. To derive examples from a training pair (a,d), we sample from Da,+ \ {d}
3 documents d1,d2,d3 to generate the training examples (d1,d),(d2,d),(d3,d). If (a,d) is
a validation or test example we set the distance of (a,d) to the mean of the distances of
(d1,d),(d2,d),(d3,d).

This model is trained with a linear decaying learning rate starting at 5 ·10−5 and weight
decay of 0.01. We use a contrastive loss function with a margin of 0.1 and cosine distance
because this led to the highest AUC score in Tyo et al. [148]. To choose the threshold t
which separates positive and negative examples at validation and testing time, we grid search
over {0,0.02, . . . ,1.998,2} on the validation F1 score and classify all pairs as positive which

130 LG4AV

Table 8.2: Results. For S-Bert, we report means over runs with an AUC over 0.51.

GAI KDD
AUC ACC F1 AUC ACC F1

N-Gram .8624 .7874 .7817 .7592 .6887 .7008
GLAD .8329 .7510 .7167 .7323 .6698 .6203
RBI .8251 .7478 .7391 .7452 .6823 .6647
S-BERT .9196 .8492 .8516 .8207 .7373 .7602

LG4AV .9247 .8541 .8569 .8522 .7675 .7808

have a distance not higher then t. We use a batch-size of 2 and accumulate 4 batches for an
effective batch size of 8. As S-BERT tends to lead to unstable results, which is commonly
observed for BERT models [115, 161], we do 10 runs for both datasets and report mean
values of the runs which lead to a reasonable solution, i.e., an AUC over 0.51.

Configuration of LG4AV and Implementation Details

We work with a LG4AV model with k = 2 which is a common choice in the realm of
GNNs [85, 68]. To derive classification decisions for computing F1 and accuracy scores, we
grid search a threshold t over {0,0.002, . . . ,0.998,1} on the validation F1 score.

We use the “regular” BERT base uncased model and train for 3 epochs. After the element-
wise multiplication of the BERT output and the text features, we dropout with probability
of 0.1. We use ADAM with weight decay of 0.01 and a learning rate of 2 ·10−5 with linear
decay and a batch size of 4. We do gradient accumulation of 4 for an effective batch size of
16. To generate features for each author, we feed their known documents through the not
fine-tuned BERT model and build the mean point vector of the vector representations of the
[CLS] tokens. Because of the instability of BERT fine-tuning [115, 161], we do 10 runs of
LG4AV and report mean scores.

Results and Discussion

The results can be found in Table 8.2. LG4AV outperforms all baselines. We especially point
out that LG4AV also leads to slight improvement over S-BERT, which also uses language
models and is, because of the sampling procedure that increases the amount of training
examples, more time-expensive. As we replace one training example with 3 new samples for
S-BERT, an epoch lasts about a factor 3 longer for S-BERT.

Note, that LG4AV uses for all authors their papers until 2015 to build the positive training
examples and for computing their feature vector. Hence, considering the positive examples,

8.5 Experiments 131

Table 8.3: Results. We report for all models the AUC-Score, the accuracy and the F1-score.
We compare the regular LG4AV with k = 2 (LG4AV-2) with a model with k = 0 (LG4AV-0)
and a model with k = 2 with freezed BERT layers (LG4AV-F)

GAI KDD
AUC ACC F1 AUC ACC F1

LG4AV-F .8384 .7576 .7767 .7621 .6866 .7110
LG4AV-0 .9207 .8492 .8519 .8465 .7619 .7771
LG4AV-2 .9247 .8541 .8569 .8522 .7675 .7808

the network is trained on verifying author-document pairs where the document is additionally
used to build the features of this author. Thus, one could expect that the availability to
generalize to unseen documents is limited. However, the results on the test set, which
contains only documents not used for the features vectors, show that this is not the case.

The performance gap between the datasets is remarkable. Because the GAI data uses
data from all domains of AI while the KDD data is limited to authors with connections to
topics of the KDD, it stands to reason that the documents of the KDD dataset are more
topically related. Thus, the worse results on the KDD data support our hypothesis that AV
for bibliometric data is not about distinguishing writing styles, but about identifying relevant
topics of authors.

8.5.1 Ablation Study

The novelty of LG4AV lays in the connection of two components, namely a GNN and a
fine-tunable language model. Hence, it is crucial to evaluate the individual components
with respect to their influence on the verification decisions. In order to do so, we run the
experiments in Section 8.5 with two additional LG4AV models.

LG4AV-F This model coincides with the model used in Section 8.5 with the difference,
that we freeze all BERT parameters and just train the weight matrix W . This allows us
to understand if the process of fine-tuning the BERT parameters is indeed necessary for
successful author verification.

LG4AV-0. Here, the parameter k is set to 0. Hence, this model does not use any graph
information. It just uses the individual author features and does not include any neighborhood
aggregation. We use this model to evaluate to which extent the graph information enhances
the verification process.

132 LG4AV

LG4AV-2 The LG4AV model with k = 2 which was also used in Table 8.2. This is our
“regular” LG4AV which uses both BERT fine-tuning and neighborhood aggregation.

Procedure

We also run 10 rounds of LG4AV-0 and LG4AV-F and report mean scores. For this runs, we
use the same 10 different random seeds for weight initialization and for shuffling the training
data which were used for LG4AV-2. We decided for this approach as early experiments
indicated that the performances of LG4AV-2 and LG4AV-0 were better for the same random
seeds (and therefore same shuffles of training data). This means, that the seeds which lead to
the higher/lower values for LG4AV-2 generally also lead to better results for LG4AV-0.

Results and Discussion

The results can be found in Table 8.3. Since the results of LG4AV-2 and LG4AV-0 are very
close, we use statistical significance tests. Based on the procedure explained in Section 8.5.1
and the observation that both models have the tendency of having better/worse results for the
same random seeds, we decide to use a paired t-test and a Wilcoxon-test over the 10 runs
for significance testing. LG4AV-2 always outperforms LG4AV-0 with a significance level
of 0.05. On the KDD dataset, LG4AV-2 outperforms LG4AV-0 with a significance level of
0.01 on all metrics.

Comparing the performance of LG4AV-F with the results in Table 8.2, the frozen models
perform on line with GLAD and RBI, which shows that LG4AV-F is (to some extent) capable
of successful author verification. We especially point that out because the freezing of the
BERT layers significantly decreases the runtime since only the 1+ k ·768 parameters of the
top layer have to be trained. On a NVIDIA RTX 2060 SUPER, each epoch of LG4AV-F and
LG4AV-2 on the GAI data last for about 40 minutes and for about 2 hour and 15 minutes,
respectively. For the KDD data, one epoch needs about 1 hour and about 4 hours and 15
minutes, respectively. With limited resources available it would be a reasonable compromise
to, for example, train the whole model for just one epoch and then freeze the layers of the
language model.

To sum up, the results indicate that the incorporation of co-author information can lead
to additional enhancements. Still, the comparable results for k = 0 show that our idea of
combining text features with a language model even works without the addition of co-author
information. On the other hand, if the BERT layers are frozen, the performance declines
considerably. Hence, the fine-tuning of the language model is an integral point for the
successful author verification with LG4AV.

8.6 Conclusion and Outlook 133

8.6 Conclusion and Outlook

In this chapter, we presented LG4AV, a novel architecture for author verification. We
worked with a complex network structure that consist of co-author links between authors
and links between authors and their publications. By combining a language model with a
graph neural network, our model does not depend on any handcrafted features. Instead we
incorporate information of co-author edges and raw texts into weights of neural network
to study this special network from a condensed perspective. LG4AV surpasses methods
that use handcrafted stylometric and n-gram text features when it comes to verification of
short and, to some extent, standardized texts. Hence, LG4AV is especially helpful to learn
real-valued representations of authorship information in bibliometric datasets, especially
when only abstracts and titles are available.

Future work could include applications of LG4AV to different settings, as for example
social media posts. Additionally, it is promising to investigate temporal evolution of interests
of authors. Here, one could for example study correlations between the temporal distance of
the training and test set and the classification performance.

Part V

Conclusion and Outlook

Chapter 9

Conclusion

In this thesis, we contributed to the realm of network analysis by providing different per-
spectives on the structure of networks and by establishing learning procedures for special
classes of networks. The broad goal was to gain new insights by providing novel quantities
and structures to analyze networks and to develop approaches for representation learning.
Our specific contributions are recapped in the following.

First, we proposed insights from a local perspective by studying locally outstanding
points and dominance relations between them. For this, we transferred orometric concepts
to the realm of metric and network data. We started in Chapter 3 with transferring the notions
of prominence and isolation, that have already been defined for networks, to bounded metric
data. To do so, we used different graph structures that can be defined on metric datasets.
We hence built a bridge between orometric concepts for networks and metric spaces. Our
experiments showed, that our novel approach of evaluating the local outstandingness allows
to identify relevant data points. More specifically, we identified important locations both in
France and in Germany. Our experiments further showed that the relative neighborhood graph
is particularly useful to define a graph structure on metric data for the sake of identifying
locally outstanding points.

To build further bridges between network analysis and orometry, we transferred in
Chapter 4 the notion of line parents to networks. This allowed to infer small hierarchies of
important “peaks” from larger graphs. In this way, we provide novel insights into networks
and a navigation paradigm that has not been studied before. To discard weak edges as a
preprocessing step, we introduced a novel and parameter free method that guarantees to
preserve the connectivity of the original graph. For this, we again made use of the relative
neighborhood graph.

138 Conclusion

Our experiments on real-world data showed that we can derive small line parent hier-
archies from larger networks. We empirically showed that the derived substructures are
representative for the full network in the sense that they lay dense in the original network.

Second, we studied networks from a global perspective by investigating intrinsic
dimensionality as a measure for network complexity. For this, we built in Chapter 5 on
recent work that established intrinsic dimensionality for geometric datasets, a structure that
allows to incorporate feature functions into the computation that can go beyond coordinate
projections of attribute vectors.

In this thesis we established connections between the above mentioned notion of intrinsic
dimensionality, network analysis and learning on graphs by making this notion applicable to
real-world network data and by studying connections between intrinsic dimensionality and
the success of classification tasks.

By proposing speedup-techniques for an algorithm that is in its original form of quadratic
runtime complexity, we scaled notion of intrinsic dimensionality to large-scale networks.
Our experiments on real-world graphs showed that our speedup technique allowed us to save
over 99% of the potential computations steps, which made it possible to compute the intrinsic
dimension of graphs with millions of nodes.

Furthermore, we were able to efficiently approximate the intrinsic dimension of a graph
with over 100 millions of nodes. To be more specific, we gave empirical evidence that it is
possible to approximate the intrinsic dimension of the well-known ogbn-papers100M with
an accuracy of over 99,9% in a few hours.

We investigated connections between intrinsic dimensionality and learning in multiple
ways. We first studied how the intrinsic dimensionality and the classification performance
behave for multiple amounts of neighborhood aggregation. We indeed identified a connection
between drops in the intrinsic dimensionality and enhancement in classification accuracy.
Here, the outstanding observation was that the first round of neighborhood aggregation is
crucial both for lowering the intrinsic dimensionality and the classification performance.

Furthermore, we showed in Chapter 6 that our notions of intrinsic dimensionality can
be adapted to feature selection. For this, we ranked and selected features by their ability to
discriminate data points. We grounded our novel feature selection procedure on Euclidean
and network data. Selecting features that tame the curse of dimensionality fundamentally
outperforms random selection and is competitive with established and reasonable baselines.
Thus, our experiments show that features that are resilient to the curse of dimensionality are
indeed meaningful for learning.

Third, we proposed novel architectures for representation learning to study social
networks from a condensed perspective.

139

We introduced two novel procedures for learning on graphs. First, with establishing
FCA2VEC, we were able to transfer common word embedding approaches to formal concept
analysis. By doing so, we were able to provide a novel embedding procedure for bipartite
graphs that is based on the structure of a concept lattice. Our experiments show, that this
approach leads to embeddings that are meaningful with respect to implicational knowledge
of the network.

Second, we proposed a novel neural network architecture that combines pre-trained
language models with a graph neural network. The resulting architecture, called LG4AV, is
especially tailored for the complex real-world structure of academic authors that are connected
to publications by authorships and at the same time to other authors by co-authorships. We
successfully applied this architecture to the task of author verification. Our results indicate
that the language model is the key factor for successful author verification and that the
incorporation of co-author information via neighborhood aggregation can lead to further
enhancements in the classification process.

To sum up, we proposed novel measures and structures to get new insights from networks
from both local and global perspectives. Furthermore, we provided learning architectures
that incorporate network information into real-valued model weights and therefore allow to
study networks from a condensed perspective.

Chapter 10

Outlook

The different parts of this thesis open multiple doors for future research. We examine some
of them in the following and discuss arising obstacles.

Our adaption of orometric concepts gave us new insights into networks. To further
understand the phenomena which underlie the discovered network structures, it will be
fruitful to incorporate temporal aspects. In the case of line parent hierarchies, the question
arises how to define a line parent hierarchy for a temporal network. The first question here
would be how to model temporal networks. If one decides to model them by sequences of
graphs, a first approach could be to model temporal line parents as a sequence of “normal”
line parents. In this case, one could investigate the changes of the line parent tree from
time-stamp to time-stamp. Future research then has to tackle the question on how to identify
and quantify changes and differences between different line parents. This could lead to
deeper thoughts on the meaning of the line parent hierarchy for the social phenomenon from
which the network concept was abstracted. Here, one would study which changes in the line
parent hierarchy correspond to which circumstances on the “real-world” level.

This thesis has studied intrinsic dimensionality as a complexity measure for network
data and we have drawn first connections to machine learning. However, there are multiple
possible approaches yet to investigate for strengthening this connection. A first possibility
would be to explicitly evaluate or manipulate the intrinsic dimensionality at different layers
while training a neural network. While this route has been followed in computer vision [5, 98],
it is not established in the area of graph learning. Here, it would be a crucial question on
which layers of a graph neural network the intrinsic dimensionality should be measured and
how it should be incorporated into the training process.

Finally, the introduced learning methods in this thesis, namely FCA2VEC and LG4AV,
lead to further possibilities for graph learning. Our aim to connect formal concept analy-
sis with representation learning can be continued by investigating different representation

142 Outlook

approaches. The current methods generates vector representations which can be used as
input for common machine learning tools. This is a consequence of it being an adaption of
word2vec. However, another paradigm of incorporating structure into learning, especially in
the realm of social networks, has been widely discussed in this work. Namely, the paradigm
of neighborhood aggregation via graph neural networks. This leads to the question, how this
paradigm can be adapted to the area of formal concept analysis. This could lead to a novel
class of architectures for bipartite graphs. Here, the more distant vision would be a class
of concept neural networks which use an innovative formal concept aggregation scheme to
incorporate the lattice structure into learning.

Future research on LG4AV could include temporal aspects. Here, an interesting question
will be whether larger time spans between training and testing makes it probable that authors
change their interest which would make it harder to predict potential future papers for them. It
will also be crucial to study whether a bigger time span makes the incorporation of co-author
information more or less important.

To sum up, we identified multiple potentials of future research which are mainly connected
to two directions. The first research direction would be to incorporate temporal aspects into
the notions and concepts introduced. The second direction would deal with adapting and
using the proposed methods to develop novel learning procedures or to modify already
present approaches.

List of Figures

2.1 Example of a weighted graph . 11
2.2 A co-autograph as a projection from an author-publicationsgraph 12
2.3 Neighborhood graphs for randomly distributed points in R2 15
2.4 Example of a formal context and its concept lattice 19
2.5 Example of a 2-layer perceptron . 23

3.1 Computation of isolation and prominence of a mountain peak 35
3.2 Minimal radius graphs, RNGs, and university locations of France and Germany 41

4.1 From landscapes over RNGs to line parent trees 49
4.2 Computing the prominence via key cols and line parents 51
4.3 Examples of line parent trees . 60
4.4 Densities of mountain graphs and RNGs of random graphs 63
4.5 Line parent tree of the ECML/PKDD . 66
4.6 Line parent tree of the KDD . 67
4.7 Line parent tree of the PAKDD . 68

5.1 Example of an k-hop geometric dataset with k = 1 86
5.2 Errors and saved costs for approximating and computing the intrinsic dimen-

sionality . 87
5.3 Intrinsic dimension of one-hot encoded features 92

6.1 Maximal errors of the approximative large-scale feature selection method . 107

7.1 The structure of the word2vec architecture 113
7.2 Formal context of Living Beings and Water 116

8.1 Forward step of LG4AV . 125

List of Tables

3.1 Basic statistics of the country datasets from Wikidata 39
3.2 Results of classifying relevant municipalities with orometric features 45

4.1 Statistic of real-world mountain graphs and line parent trees 59
4.2 Density of line parent trees in the original network 62

5.1 Statistics of all graph datasets for which the intrinsic dimensionality is computed 85
5.2 Intrinsic dimension of graph data and classification performances 89
5.3 Approximation of intrinsic dimension for ogbn-papers100M 92
5.4 Approximation error for computing the intrinsic dimensionality of randomly

generated data . 93

6.1 Results for feature selection on Open18 104
6.2 Results for feature selection on OGBN 105

7.1 Results of clustering objects with attribute2vec 119

8.1 Basic statistics of the data used for LG4AV 128
8.2 Classification results of LG4AV . 130
8.3 Results of the ablation study of LG4AV 131

References

[1] Agarwal, P. K. and Matousek, J. (1992). Relative neighborhood graphs in three dimen-
sions. In Frederickson, G. N., editor, Proceedings of the Third Annual ACM/SIGACT-SIAM
Symposium on Discrete Algorithms, 27-29 January 1992, Orlando, Florida, USA, pages
58–65. ACM/SIAM.

[2] Akbani, R., Kwek, S., and Japkowicz, N. (2004). Applying support vector machines to
imbalanced datasets. In Boulicaut, J., Esposito, F., Giannotti, F., and Pedreschi, D., editors,
Machine Learning: ECML 2004, 15th European Conference on Machine Learning, Pisa,
Italy, September 20-24, 2004, Proceedings, volume 3201 of Lecture Notes in Computer
Science, pages 39–50. Springer.

[3] Alelyani, S., Tang, J., and Liu, H. (2013). Feature selection for clustering: A review. In
Aggarwal, C. C. and Reddy, C. K., editors, Data Clustering: Algorithms and Applications,
pages 29–60. CRC Press.

[4] Ammar, W., Groeneveld, D., Bhagavatula, C., Beltagy, I., Crawford, M., Downey,
D., Dunkelberger, J., Elgohary, A., Feldman, S., Ha, V., Kinney, R., Kohlmeier, S.,
Lo, K., Murray, T., Ooi, H., Peters, M. E., Power, J., Skjonsberg, S., Wang, L. L.,
Wilhelm, C., Yuan, Z., van Zuylen, M., and Etzioni, O. (2018). Construction of the
literature graph in semantic scholar. In Bangalore, S., Chu-Carroll, J., and Li, Y., editors,
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New
Orleans, Louisiana, USA, June 1-6, 2018, Volume 3 (Industry Papers), pages 84–91.
Association for Computational Linguistics.

[5] Ansuini, A., Laio, A., Macke, J. H., and Zoccolan, D. (2019). Intrinsic dimension of data
representations in deep neural networks. In Wallach, H. M., Larochelle, H., Beygelzimer,
A., d’Alché-Buc, F., Fox, E. B., and Garnett, R., editors, Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 6109–6119.

[6] Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding.
In Bansal, N., Pruhs, K., and Stein, C., editors, Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana,
USA, January 7-9, 2007, pages 1027–1035. SIAM.

[7] Bac, J. and Zinovyev, A. Y. (2020). Local intrinsic dimensionality estimators based on
concentration of measure. In 2020 International Joint Conference on Neural Networks,
IJCNN 2020, Glasgow, United Kingdom, July 19-24, 2020, pages 1–8. IEEE.

148 References

[8] Bagnall, D. (2015). Author identification using multi-headed recurrent neural networks.
In Cappellato, L., Ferro, N., Jones, G. J. F., and SanJuan, E., editors, Working Notes of
CLEF 2015 - Conference and Labs of the Evaluation forum, Toulouse, France, September
8-11, 2015, volume 1391 of CEUR Workshop Proceedings. CEUR-WS.org.

[9] Barlas, G. and Stamatatos, E. (2020). Cross-domain authorship attribution using pre-
trained language models. In Maglogiannis, I., Iliadis, L., and Pimenidis, E., editors,
Artificial Intelligence Applications and Innovations - 16th IFIP WG 12.5 International
Conference, AIAI 2020, Neos Marmaras, Greece, June 5-7, 2020, Proceedings, Part I,
volume 583 of IFIP Advances in Information and Communication Technology, pages
255–266. Springer.

[10] Belohlávek, R. and Trnecka, M. (2015). From-below approximations in boolean matrix
factorization: Geometry and new algorithm. J. Comput. Syst. Sci., 81(8):1678–1697.

[11] Belohlávek, R. and Vychodil, V. (2010). Discovery of optimal factors in binary data
via a novel method of matrix decomposition. J. Comput. Syst. Sci., 76(1):3–20.

[12] Bengio, Y., Courville, A. C., and Vincent, P. (2013). Representation learning: A review
and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828.

[13] Bentley, J. L. (1975). A survey of techniques for fixed radius near neighbor searching.
Technical report, SLAC, SCIDOC, Stanford, CA, USA. SLAC-R-0186, SLAC-0186.

[14] Bevendorff, J., Stein, B., Hagen, M., and Potthast, M. (2019). Generalizing unmasking
for short texts. In Burstein, J., Doran, C., and Solorio, T., editors, Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), pages 654–659. Association for
Computational Linguistics.

[15] Bischl, B., Casalicchio, G., Feurer, M., Gijsbers, P., Hutter, F., Lang, M., Mantovani,
R. G., van Rijn, J. N., and Vanschoren, J. (2021). Openml benchmarking suites. In
Vanschoren, J. and Yeung, S., editors, Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021,
December 2021, virtual.

[16] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer Science+
Business Media.

[17] Boldi, P., Rosa, M., Santini, M., and Vigna, S. (2011). Layered label propagation: a
multiresolution coordinate-free ordering for compressing social networks. In Srinivasan,
S., Ramamritham, K., Kumar, A., Ravindra, M. P., Bertino, E., and Kumar, R., editors,
Proceedings of the 20th International Conference on World Wide Web, WWW 2011,
Hyderabad, India, March 28 - April 1, 2011, pages 587–596. ACM.

[18] Boldi, P. and Vigna, S. (2004). The webgraph framework I: compression techniques.
In Feldman, S. I., Uretsky, M., Najork, M., and Wills, C. E., editors, Proceedings of the
13th international conference on World Wide Web, WWW 2004, New York, NY, USA, May
17-20, 2004, pages 595–602. ACM.

References 149

[19] Bornmann, L. and Mutz, R. (2015). Growth rates of modern science: A bibliometric
analysis based on the number of publications and cited references. J. Assoc. Inf. Sci.
Technol., 66(11):2215–2222.

[20] Bradley, J. K., Kelley, P. G., and Roth, A. (2008). Author identification from citations.
Dept. Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep.

[21] Brandes, U. (2016). Network positions. Methodological Innovations,
9:2059799116630650.

[22] Brandes, U. and Erlebach, T. (2005). Fundamentals, pages 7–15. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[23] Brandes, U., Robins, G., McCranie, A., and Wasserman, S. (2013). What is network
science? Network science, 1(1):1–15.

[24] Breaban, M. and Luchian, H. (2011). A unifying criterion for unsupervised clustering
and feature selection. Pattern Recognit., 44(4):854–865.

[25] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan,
T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford,
A., Sutskever, I., and Amodei, D. (2020). Language models are few-shot learners. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

[26] Cai, J., Luo, J., Wang, S., and Yang, S. (2018). Feature selection in machine learning:
A new perspective. Neurocomputing, 300:70–79.

[27] Callan, R. (2003). Artificial intelligence. Red Globe Press.

[28] Caragea, C., Uban, A. S., and Dinu, L. P. (2019). The myth of double-blind review
revisited: ACL vs. EMNLP. In Inui, K., Jiang, J., Ng, V., and Wan, X., editors, Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing, EMNLP-
IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 2317–2327. Association
for Computational Linguistics.

[29] Caro-Contreras, D. E. and Mendez-Vazquez, A. (2013). Computing the concept lattice
using dendritical neural networks. In Ojeda-Aciego, M. and Outrata, J., editors, Proceed-
ings of the Tenth International Conference on Concept Lattices and Their Applications,
La Rochelle, France, October 15-18, 2013, volume 1062 of CEUR Workshop Proceedings,
pages 141–152. CEUR-WS.org.

[30] Castro-Castro, D., Arcia, Y. A., Brioso, M. P., and Guillena, R. M. (2015). Authorship
verification, average similarity analysis. In Angelova, G., Bontcheva, K., and Mitkov, R.,
editors, Recent Advances in Natural Language Processing, RANLP 2015, 7-9 September,
2015, Hissar, Bulgaria, pages 84–90. RANLP 2015 Organising Committee / ACL.

150 References

[31] Chávez, E., Navarro, G., Baeza-Yates, R. A., and Marroquín, J. L. (2001). Searching in
metric spaces. ACM Comput. Surv., 33(3):273–321.

[32] Clauset, A., Moore, C., and Newman, M. E. (2008). Hierarchical structure and the
prediction of missing links in networks. Nature.

[33] Cloninger, A. and Klock, T. (2021). A deep network construction that adapts to intrinsic
dimensionality beyond the domain. Neural Networks, 141:404–419.

[34] Codocedo, V., Taramasco, C., and Astudillo, H. (2011). Cheating to achieve formal
concept analysis over a large formal context. In Napoli, A. and Vychodil, V., editors,
Proceedings of The Eighth International Conference on Concept Lattices and Their
Applications, Nancy, France, October 17-20, 2011, volume 959 of CEUR Workshop
Proceedings, pages 349–362. CEUR-WS.org.

[35] Cohan, A., Feldman, S., Beltagy, I., Downey, D., and Weld, D. S. (2020). SPECTER:
document-level representation learning using citation-informed transformers. In Jurafsky,
D., Chai, J., Schluter, N., and Tetreault, J. R., editors, Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 2270–2282. Association for Computational Linguistics.

[36] Čomić, L., De Floriani, L., and Papaleo, L. (2005). Morse-smale decompositions for
modeling terrain knowledge. In Cohn, A. G. and Mark, D. M., editors, Spatial Information
Theory, pages 426–444, Berlin, Heidelberg. Springer Berlin Heidelberg.

[37] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Mach. Learn., 20(3):273–
297.

[38] Costa, J., Girotra, A., and Hero, A. (2005). Estimating local intrinsic dimension with
k-nearest neighbor graphs. In IEEE/SP 13th Workshop on Statistical Signal Processing,
2005, pages 417–422.

[39] Deo, N. (1975). Graph theory with applications to engineering and computer science.
Networks, 5(3):299–300.

[40] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019). BERT: pre-training of deep
bidirectional transformers for language understanding. In Burstein, J., Doran, C., and
Solorio, T., editors, Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational Linguistics.

[41] Diestel, R. (2005). Graph theory 3rd ed. Graduate texts in mathematics, 173(33):12.

[42] Dong, Y., Chawla, N. V., and Swami, A. (2017). metapath2vec: Scalable representation
learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada,
August 13 - 17, 2017, pages 135–144. ACM.

References 151

[43] Dürrschnabel, D., Hanika, T., and Stubbemann, M. (2022). FCA2VEC: Embedding
techniques for formal concept analysis. In Missaoui, R., Kwuida, L., and Abdessalem, T.,
editors, Complex Data Analytics with Formal Concept Analysis, pages 47–74. Springer
International Publishing.

[44] Dürrschnabel, D. and Stumme, G. (2023a). Greedy discovery of ordinal factors. CoRR,
abs/2302.11554.

[45] Dürrschnabel, D. and Stumme, G. (2023b). Maximal ordinal two-factorizations. CoRR,
abs/2304.03338.

[46] Dutta, D., Dutta, P., and Sil, J. (2014). Simultaneous feature selection and clustering
with mixed features by multi objective genetic algorithm. Int. J. Hybrid Intell. Syst.,
11(1):41–54.

[47] Dy, J. G. and Brodley, C. E. (2004). Feature selection for unsupervised learning. J.
Mach. Learn. Res., 5:845–889.

[48] Eades, P. (1984). A heuristic for graph drawing. Congressus numerantium.

[49] Ester, M. and Sander, J. (2000). Knowledge Discovery in Databases - Techniken und
Anwendungen. Springer.

[50] Facco, E., d’Errico, M., Rodriguez, A., and Laio, A. (2017). Estimating the intrinsic
dimension of datasets by a minimal neighborhood information. Scientific reports, 7(1):1–8.

[51] Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognit. Lett., 27(8):861–
874.

[52] Ferreira, A. J. and Figueiredo, M. A. T. (2012). An unsupervised approach to feature
discretization and selection. Pattern Recognit., 45(9):3048–3060.

[53] Fey, M. and Lenssen, J. E. (2019). Fast graph representation learning with pytorch
geometric. CoRR, abs/1903.02428.

[54] Fey, M., Lenssen, J. E., Weichert, F., and Leskovec, J. (2021). Gnnautoscale: Scalable
and expressive graph neural networks via historical embeddings. In Meila, M. and Zhang,
T., editors, Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pages 3294–3304. PMLR.

[55] Fruchterman, T. M. J. and Reingold, E. M. (1991). Graph drawing by force-directed
placement. Softw. Pract. Exp.

[56] Fry, S. (1987). Defining and sizing-up mountains. Summit, Jan.–Feb, pages 16–21.

[57] Ganter, B. and Glodeanu, C. V. (2012). Ordinal factor analysis. In Domenach, F.,
Ignatov, D. I., and Poelmans, J., editors, Formal Concept Analysis - 10th International
Conference, ICFCA 2012, Leuven, Belgium, May 7-10, 2012. Proceedings, volume 7278
of Lecture Notes in Computer Science, pages 128–139. Springer.

[58] Ganter, B. and Wille, R. (1999). Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, Berlin.

152 References

[59] Golay, J. and Kanevski, M. F. (2017). Unsupervised feature selection based on the
morisita estimator of intrinsic dimension. Knowl. Based Syst., 135:125–134.

[60] Gómez, W., Leija, L., and Díaz-Pérez, A. (2010). Mutual information and intrinsic
dimensionality for feature selection. In Proceedings of the 7th International Conference on
Electrical Engineering, Computing Science and Automatic Control, CCE 2010 (Formerly
known as ICEEE), September 8-10, 2010, Tuxtla Gutierrez, Mexico, pages 339–344. IEEE.

[61] Gomtsyan, M., Mokrov, N., Panov, M., and Yanovich, Y. (2019). Geometry-aware
maximum likelihood estimation of intrinsic dimension. In Lee, W. S. and Suzuki, T.,
editors, Proceedings of The 11th Asian Conference on Machine Learning, ACML 2019,
17-19 November 2019, Nagoya, Japan, volume 101 of Proceedings of Machine Learning
Research, pages 1126–1141. PMLR.

[62] Granata, D. and Carnevale, V. (2016). Accurate estimation of the intrinsic dimension
using graph distances: Unraveling the geometric complexity of datasets. Scientific reports,
6(1):1–12.

[63] Grassberger, P. and Procaccia, I. (2004). Measuring the strangeness of strange attractors.
In The theory of chaotic attractors, pages 170–189. Springer.

[64] Gromov, M. and Milman, V. D. (1983). A topological application of the isoperimetric
inequality. American Journal of Mathematics, 105(4):843–854.

[65] Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks.
In Krishnapuram, B., Shah, M., Smola, A. J., Aggarwal, C. C., Shen, D., and Rastogi, R.,
editors, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 855–864.
ACM.

[66] Gupte, M., Shankar, P., Li, J., Muthukrishnan, S., and Iftode, L. (2011). Finding hierar-
chy in directed online social networks. In Srinivasan, S., Ramamritham, K., Kumar, A.,
Ravindra, M. P., Bertino, E., and Kumar, R., editors, Proceedings of the 20th International
Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011,
pages 557–566. ACM.

[67] Halvani, O., Winter, C., and Graner, L. (2019). Assessing the applicability of authorship
verification methods. In Proceedings of the 14th International Conference on Availability,
Reliability and Security, ARES 2019, Canterbury, UK, August 26-29, 2019, pages 38:1–
38:10. ACM.

[68] Hamilton, W. L., Ying, Z., and Leskovec, J. (2017). Inductive representation learning
on large graphs. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M., Fergus,
R., Vishwanathan, S. V. N., and Garnett, R., editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages 1024–1034.

[69] Hanika, T., Marx, M., and Stumme, G. (2019). Discovering implicational knowledge in
wikidata. In Cristea, D., Ber, F. L., and Sertkaya, B., editors, Formal Concept Analysis
- 15th International Conference, ICFCA 2019, Frankfurt, Germany, June 25-28, 2019,
Proceedings, volume 11511 of Lecture Notes in Computer Science, pages 315–323.
Springer.

References 153

[70] Hanika, T., Schneider, F. M., and Stumme, G. (2022). Intrinsic dimension of geometric
data sets. Tohoku Mathematical Journal, 74(1):23 – 52.

[71] Helman, A. (2005). The Finest Peaks-Prominence and Other Mountain Measures.
Trafford, Victoria, British Columbia.

[72] Hill, S. and Provost, F. J. (2003). The myth of the double-blind review?: author
identification using only citations. SIGKDD Explor., 5(2):179–184.

[73] Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output.
Proceedings of the National Academy of Sciences, 102(46):16569–16572.

[74] Ho, V. T., Stepanova, D., Gad-Elrab, M. H., Kharlamov, E., and Weikum, G. (2018).
Rule learning from knowledge graphs guided by embedding models. In Vrandecic, D.,
Bontcheva, K., Suárez-Figueroa, M. C., Presutti, V., Celino, I., Sabou, M., Kaffee, L., and
Simperl, E., editors, The Semantic Web - ISWC 2018 - 17th International Semantic Web
Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings, Part I, volume 11136
of Lecture Notes in Computer Science, pages 72–90. Springer.

[75] Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y., and Leskovec, J. (2021). OGB-LSC:
A large-scale challenge for machine learning on graphs. In Vanschoren, J. and Yeung, S.,
editors, Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual.

[76] Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J.
(2020). Open graph benchmark: Datasets for machine learning on graphs. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

[77] Hürlimann, M., Weck, B., van den Berg, E., Suster, S., and Nissim, M. (2015). GLAD:
groningen lightweight authorship detection. In Cappellato, L., Ferro, N., Jones, G. J. F.,
and SanJuan, E., editors, Working Notes of CLEF 2015 - Conference and Labs of the
Evaluation forum, Toulouse, France, September 8-11, 2015, volume 1391 of CEUR
Workshop Proceedings. CEUR-WS.org.

[78] Jankowska, M., Milios, E. E., and Keselj, V. (2014). Author verification using common
n-gram profiles of text documents. In Hajic, J. and Tsujii, J., editors, COLING 2014, 25th
International Conference on Computational Linguistics, Proceedings of the Conference:
Technical Papers, August 23-29, 2014, Dublin, Ireland, pages 387–397. ACL.

[79] Jaromczyk, J. W. and Kowaluk, M. (1987). A note on relative neighborhood graphs.
In Soule, D., editor, Proceedings of the Third Annual Symposium on Computational
Geometry, Waterloo, Ontario, Canada, June 8-10, 1987, pages 233–241. ACM.

[80] Jaromczyk, J. W. and Toussaint, G. T. (1992). Relative neighborhood graphs and their
relatives. Proc. IEEE, 80(9):1502–1517.

[81] Jr., C. T., Traina, A. J. M., Wu, L., and Faloutsos, C. (2010). Fast feature selection
using fractal dimension. J. Inf. Data Manag., 1(1):3–16.

154 References

[82] Karatzoglou, A. (2020). Applying topographic features for identifying speed pat-
terns using the example of critical driving. In Berres, A. and Kurte, K. R., editors,
IWCTS@SIGSPATIAL 2020: Proceedings of the 13th ACM SIGSPATIAL International
Workshop on Computational Transportation Science, Seattle, Washington, 3 November,
2020, pages 6:1–6:4. ACM.

[83] Kešelj, V., Peng, F., Cercone, N., and Thomas, C. (2003). N-gram-based author
profiles for authorship attribution. In Proceedings of the conference pacific association
for computational linguistics, volume 3, pages 255–264.

[84] Kipf, T. N. (2020). Deep learning with graph-structured representations. PhD thesis,
Universiteit van Amsterdam.

[85] Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolu-
tional networks. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

[86] Kirmse, A. and de Ferranti, J. (2017). Calculating the prominence and isolation of
every mountain in the world. Progress in Physical Geography: Earth and Environment,
41(6):788–802.

[87] Koopmann, T., Stubbemann, M., Kapa, M., Paris, M., Buenstorf, G., Hanika, T., Hotho,
A., Jäschke, R., and Stumme, G. (2021). Proximity dimensions and the emergence of
collaboration: a hyptrails study on german AI research. Scientometrics, 126(12):9847–
9868.

[88] Koppel, M. and Schler, J. (2004). Authorship verification as a one-class classification
problem. In Brodley, C. E., editor, Machine Learning, Proceedings of the Twenty-first
International Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004, volume 69
of ACM International Conference Proceeding Series. ACM.

[89] Koppel, M., Schler, J., and Bonchek-Dokow, E. (2007). Measuring differentiability:
Unmasking pseudonymous authors. J. Mach. Learn. Res., 8:1261–1276.

[90] Koren, Y. (2005). Drawing graphs by eigenvectors: theory and practice. Computers &
Mathematics with Applications, 49(11):1867–1888.

[91] Krishnamurthy, V., Sun, J., Faloutsos, M., and Tauro, S. L. (2003). Sampling internet
topologies: How small can we go? In Arabnia, H. R. and Mun, Y., editors, Proceedings of
the International Conference on Internet Computing, IC ’03, Las Vegas, Nevada, USA,
June 23-26, 2003, Volume 2, pages 577–580. CSREA Press.

[92] Kuznetsov, S. O., Makhazhanov, N., and Ushakov, M. (2017). On neural network
architecture based on concept lattices. In Kryszkiewicz, M., Appice, A., Slezak, D., Ry-
binski, H., Skowron, A., and Ras, Z. W., editors, Foundations of Intelligent Systems - 23rd
International Symposium, ISMIS 2017, Warsaw, Poland, June 26-29, 2017, Proceedings,
volume 10352 of Lecture Notes in Computer Science, pages 653–663. Springer.

[93] Kwak, H., Lee, C., Park, H., and Moon, S. B. (2010). What is twitter, a social network or
a news media? In Rappa, M., Jones, P., Freire, J., and Chakrabarti, S., editors, Proceedings
of the 19th International Conference on World Wide Web, WWW 2010, Raleigh, North
Carolina, USA, April 26-30, 2010, pages 591–600. ACM.

References 155

[94] Le, Q. V. and Mikolov, T. (2014). Distributed representations of sentences and docu-
ments. In Proceedings of the 31th International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014, volume 32 of JMLR Workshop and Conference
Proceedings, pages 1188–1196. JMLR.org.

[95] Leskovec, J. and Faloutsos, C. (2006). Sampling from large graphs. In Eliassi-Rad,
T., Ungar, L. H., Craven, M., and Gunopulos, D., editors, Proceedings of the Twelfth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Philadelphia, PA, USA, August 20-23, 2006, pages 631–636. ACM.

[96] Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data.

[97] Levina, E. and Bickel, P. J. (2004). Maximum likelihood estimation of intrinsic
dimension. In Advances in Neural Information Processing Systems 17 [Neural Information
Processing Systems, NIPS 2004, December 13-18, 2004, Vancouver, British Columbia,
Canada], pages 777–784.

[98] Li, C., Farkhoor, H., Liu, R., and Yosinski, J. (2018). Measuring the intrinsic dimension
of objective landscapes. In ICLR (Poster). OpenReview.net.

[99] Li, F., Zou, Z., Li, J., and Li, Y. (2019a). Graph compression with stars. In Yang, Q.,
Zhou, Z., Gong, Z., Zhang, M., and Huang, S., editors, Advances in Knowledge Discovery
and Data Mining - 23rd Pacific-Asia Conference, PAKDD 2019, Macau, China, April
14-17, 2019, Proceedings, Part II, volume 11440 of Lecture Notes in Computer Science,
pages 449–461. Springer.

[100] Li, R., Yu, J. X., Qin, L., Mao, R., and Jin, T. (2015). On random walk based graph
sampling. In Gehrke, J., Lehner, W., Shim, K., Cha, S. K., and Lohman, G. M., editors,
31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South
Korea, April 13-17, 2015, pages 927–938. IEEE Computer Society.

[101] Li, Y., Wu, Z., Lin, S., Xie, H., Lv, M., Xu, Y., and Lui, J. C. S. (2019b). Walking
with perception: Efficient random walk sampling via common neighbor awareness. In
35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China,
April 8-11, 2019, pages 962–973. IEEE.

[102] Lu, C., Yu, J. X., Li, R., and Wei, H. (2016). Exploring hierarchies in online social
networks. IEEE Trans. Knowl. Data Eng., 28(8):2086–2100.

[103] Ma, X., Li, B., Wang, Y., Erfani, S. M., Wijewickrema, S. N. R., Schoenebeck, G.,
Song, D., Houle, M. E., and Bailey, J. (2018a). Characterizing adversarial subspaces using
local intrinsic dimensionality. In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

[104] Ma, X., Wang, Y., Houle, M. E., Zhou, S., Erfani, S. M., Xia, S., Wijewickrema,
S. N. R., and Bailey, J. (2018b). Dimensionality-driven learning with noisy labels. In
Dy, J. G. and Krause, A., editors, Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 3361–3370. PMLR.

http://snap.stanford.edu/data

156 References

[105] MacKay, D. J. and Ghahramani, Z. (2005). Comments on maximum likelihood
estimation of intrinsic dimension by e. levina and p. bickel (2005). The Inference Group
Website, Cavendish Laboratory, Cambridge University.

[106] Maiya, A. S. and Berger-Wolf, T. Y. (2009). Inferring the maximum likelihood
hierarchy in social networks. In Proceedings of the 12th IEEE International Conference
on Computational Science and Engineering, CSE 2009, Vancouver, BC, Canada, August
29-31, 2009, pages 245–250. IEEE Computer Society.

[107] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word
representations in vector space. In Bengio, Y. and LeCun, Y., editors, 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4,
2013, Workshop Track Proceedings.

[108] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. In Burges, C. J. C., Bottou,
L., Ghahramani, Z., and Weinberger, K. Q., editors, Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada,
United States, pages 3111–3119.

[109] Milman, V. (1988). The heritage of p. lévy in geometrical functional analysis.
Astérisque, 157(158):273–301.

[110] Milman, V. (2010). Topics in Asymptotic Geometric Analysis, pages 792–815.
Birkhäuser Basel, Basel.

[111] Mitchell, T. M. (1997). Machine learning, International Edition. McGraw-Hill Series
in Computer Science. McGraw-Hill.

[112] Mitra, P., Murthy, C. A., and Pal, S. K. (2002). Unsupervised feature selection using
feature similarity. IEEE Trans. Pattern Anal. Mach. Intell., 24(3):301–312.

[113] Mnih, A. and Hinton, G. E. (2008). A scalable hierarchical distributed language
model. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, Advances in
Neural Information Processing Systems 21, Proceedings of the Twenty-Second Annual
Conference on Neural Information Processing Systems, Vancouver, British Columbia,
Canada, December 8-11, 2008, pages 1081–1088. Curran Associates, Inc.

[114] Mo, D. and Huang, S. H. (2012). Fractal-based intrinsic dimension estimation and its
application in dimensionality reduction. IEEE Trans. Knowl. Data Eng., 24(1):59–71.

[115] Mosbach, M., Andriushchenko, M., and Klakow, D. (2021). On the stability of fine-
tuning BERT: misconceptions, explanations, and strong baselines. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

[116] Nelson, G. D. and McKeon, R. (2019). Peaks of people: Using topographic promi-
nence as a method for determining the ranked significance of population centers. The
Professional Geographer, 71(2):342–354.

References 157

[117] Newman, M. (2018). Networks. Oxford university press.

[118] Pavlík, J. (2015). Topographic spaces over ordered monoids. Math. Appl.

[119] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in
python. J. Mach. Learn. Res., 12:2825–2830.

[120] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: online learning of social
representations. In Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W., and Ghani, R.,
editors, The 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 701–710. ACM.

[121] Pestov, V. (2000). On the geometry of similarity search: Dimensionality curse and
concentration of measure. Inf. Process. Lett., 73(1-2):47–51.

[122] Pestov, V. (2007). Intrinsic dimension of a dataset: what properties does one expect?
In Proceedings of the International Joint Conference on Neural Networks, IJCNN 2007,
Celebrating 20 years of neural networks, Orlando, Florida, USA, August 12-17, 2007,
pages 2959–2964. IEEE.

[123] Pestov, V. (2008). An axiomatic approach to intrinsic dimension of a dataset. Neural
Networks, 21(2-3):204–213.

[124] Pestov, V. (2010). Intrinsic dimensionality. ACM SIGSPATIAL Special, 2(2):8–11.

[125] Pope, P., Zhu, C., Abdelkader, A., Goldblum, M., and Goldstein, T. (2021). The
intrinsic dimension of images and its impact on learning. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

[126] Potha, N. and Stamatatos, E. (2020). Improved algorithms for extrinsic author verifi-
cation. Knowl. Inf. Syst., 62(5):1903–1921.

[127] Rafiei, D. and Curial, S. (2005). Effectively visualizing large networks through
sampling. In 16th IEEE Visualization Conference, IEEE Vis 2005, Minneapolis, MN, USA,
October 23-28, 2005, Proceedings, pages 375–382. IEEE Computer Society.

[128] Rong, X. (2014). word2vec parameter learning explained. CoRR, abs/1411.2738.

[129] Rossi, E., Frasca, F., Chamberlain, B., Eynard, D., Bronstein, M. M., and Monti, F.
(2020). SIGN: scalable inception graph neural networks. CoRR, abs/2004.11198.

[130] Royer, L., Reimann, M., Andreopoulos, B., and Schroeder, M. (2008). Unraveling
protein networks with power graph analysis. PLoS Comput. Biol., 4(7).

[131] Russell, S. and Norvig, P. (2003). Artificial intelligence - a modern approach, 2nd
Edition. Prentice Hall series in artificial intelligence. Prentice Hall.

[132] Sarwar, R., Urailertprasert, N., Vannaboot, N., Yu, C., Rakthanmanon, T., Chuang-
suwanich, E., and Nutanong, S. (2020). CAG: stylometric authorship attribution of
multi-author documents using a co-authorship graph. IEEE Access, 8:18374–18393.

158 References

[133] Schmidt, A. and Stumme, G. (2018). Prominence and dominance in networks. In
Faron-Zucker, C., Ghidini, C., Napoli, A., and Toussaint, Y., editors, Knowledge Engineer-
ing and Knowledge Management - 21st International Conference, EKAW 2018, Nancy,
France, November 12-16, 2018, Proceedings, volume 11313 of Lecture Notes in Computer
Science, pages 370–385. Springer.

[134] Scott, D. (1964). Measurement structures and linear inequalities. Journal of Mathe-
matical Psychology, 1(2):233 – 247.

[135] Scott, J. (2012). What is social network analysis? Bloomsbury Academic.

[136] Seidman, S. (2013). Authorship verification using the impostors method. In Forner, P.,
Navigli, R., Tufis, D., and Ferro, N., editors, Working Notes for CLEF 2013 Conference ,
Valencia, Spain, September 23-26, 2013, volume 1179 of CEUR Workshop Proceedings.
CEUR-WS.org.

[137] Seidman, S. B. (1983). Network structure and minimum degree. Social Networks,
5(3):269–287.

[138] Solorio-Fernández, S., Carrasco-Ochoa, J. A., and Martínez-Trinidad, J. F. (2020). A
review of unsupervised feature selection methods. Artif. Intell. Rev., 53(2):907–948.

[139] Stubbemann, M., Hanika, T., and Schneider, F. M. (2023a). Intrinsic dimension for
large-scale geometric learning. Transactions on Machine Learning Research.

[140] Stubbemann, M., Hanika, T., and Stumme, G. (2020). Orometric methods in bounded
metric data. In Berthold, M. R., Feelders, A., and Krempl, G., editors, Advances in
Intelligent Data Analysis XVIII - 18th International Symposium on Intelligent Data
Analysis, IDA 2020, Konstanz, Germany, April 27-29, 2020, Proceedings, volume 12080
of Lecture Notes in Computer Science, pages 496–508. Springer.

[141] Stubbemann, M., Hille, T., and Hanika, T. (2023b). Selecting features by their
resilience to the curse of dimensionality. CoRR, abs/2304.02455.

[142] Stubbemann, M. and Stumme, G. (2022). LG4AV: Combining language models and
graph neural networks for author verification. In Bouadi, T., Fromont, É., and Hüllermeier,
E., editors, Advances in Intelligent Data Analysis XX - 20th International Symposium on
Intelligent Data Analysis, IDA 2022, Rennes, France, April 20-22, 2022, Proceedings,
volume 13205 of Lecture Notes in Computer Science, pages 315–326. Springer.

[143] Stubbemann, M. and Stumme, G. (2023). The mont blanc of twitter: Identifying
hierarchies of outstanding peaks in social networks. In Machine Learning and Knowledge
Discovery in Databases: Research Track - European Conference, ECML PKDD 2023,
Turin, Italy, September 18-22, 2023, Proceedings, Part III, volume 14171 of Lecture Notes
in Computer Science, pages 177–192. Springer.

[144] Sun, C. and Wu, G. (2021). Scalable and adaptive graph neural networks with self-
label-enhanced training. CoRR, abs/2104.09376.

References 159

[145] Toivonen, H., Zhou, F., Hartikainen, A., and Hinkka, A. (2011). Compression of
weighted graphs. In Apté, C., Ghosh, J., and Smyth, P., editors, Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Diego, CA, USA, August 21-24, 2011, pages 965–973. ACM.

[146] Torres, R. N., Fraternali, P., Milani, F., and Frajberg, D. (2018). A deep learning
model for identifying mountain summits in digital elevation model data. In First IEEE
International Conference on Artificial Intelligence and Knowledge Engineering, AIKE
2018, Laguna Hills, CA, USA, September 26-28, 2018, pages 212–217. IEEE Computer
Society.

[147] Toussaint, G. T. (1980). The relative neighbourhood graph of a finite planar set.
Pattern Recognit., 12(4):261–268.

[148] Tyo, J., Dhingra, B., and Lipton, Z. C. (2021). Siamese bert for authorship verification.
In Faggioli, G., Ferro, N., Joly, A., Maistro, M., and Piroi, F., editors, Proceedings of the
Working Notes of CLEF 2021 - Conference and Labs of the Evaluation Forum, Bucharest,
Romania, September 21st - to - 24th, 2021, volume 2936 of CEUR Workshop Proceedings,
pages 2169–2177. CEUR-WS.org.

[149] van Halteren, H. (2004). Linguistic profiling for authorship recognition and veri-
fication. In Scott, D., Daelemans, W., and Walker, M. A., editors, Proceedings of the
42nd Annual Meeting of the Association for Computational Linguistics, 21-26 July, 2004,
Barcelona, Spain, pages 199–206. ACL.

[150] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., von Luxburg, U.,
Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N., and Garnett, R., editors,
Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
5998–6008.

[151] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018).
Graph attention networks. In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

[152] Vrandecic, D. and Krötzsch, M. (2014). Wikidata: a free collaborative knowledgebase.
Commun. ACM, 57(10):78–85.

[153] Wasserman, S. and Faust, K. (2007). Social network analysis - methods and appli-
cations, volume 8 of Structural analysis in the social sciences. Cambridge University
Press.

[154] Wille, U. (1996). Representation of finite ordinal data in real vector spaces. In Bock,
H.-H. and Polasek, W., editors, Data Analysis and Information Systems, pages 228–240,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[155] Wille, U. (1997). The role of synthetic geometry in representational measurement
theory. journal of mathematical psychology, 41(1):71–78.

160 References

[156] Wojtowytsch, S. and E, W. (2020). Can shallow neural networks beat the curse of
dimensionality? A mean field training perspective. IEEE Trans. Artif. Intell., 1(2):121–
129.

[157] Yang, Z., Cohen, W. W., and Salakhutdinov, R. (2016). Revisiting semi-supervised
learning with graph embeddings. In Balcan, M. and Weinberger, K. Q., editors, Pro-
ceedings of the 33nd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference
Proceedings, pages 40–48. JMLR.org.

[158] Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdinov, R., and Le, Q. V. (2019).
Xlnet: Generalized autoregressive pretraining for language understanding. In Wallach,
H. M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett, R.,
editors, Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 5754–5764.

[159] Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Malevich, A., Kannan, R., Prasanna,
V. K., Jin, L., and Chen, R. (2021). Decoupling the depth and scope of graph neural
networks. In Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang, P., and Vaughan,
J. W., editors, Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pages 19665–19679.

[160] Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and Prasanna, V. K. (2020). Graph-
saint: Graph sampling based inductive learning method. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

[161] Zhang, W., Yin, Z., Sheng, Z., Li, Y., Ouyang, W., Li, X., Tao, Y., Yang, Z., and
Cui, B. (2022). Graph attention multi-layer perceptron. In Zhang, A. and Rangwala, H.,
editors, KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, Washington, DC, USA, August 14 - 18, 2022, pages 4560–4570. ACM.

[162] Zhao, Z. and Liu, H. (2007). Spectral feature selection for supervised and unsupervised
learning. In Ghahramani, Z., editor, Machine Learning, Proceedings of the Twenty-Fourth
International Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007,
volume 227 of ACM International Conference Proceeding Series, pages 1151–1157.
ACM.

[163] Zhu, J., Tian, Z., and Kübler, S. (2019). Um-iu@ling at semeval-2019 task 6: Identi-
fying offensive tweets using BERT and svms. In May, J., Shutova, E., Herbelot, A., Zhu,
X., Apidianaki, M., and Mohammad, S. M., editors, Proceedings of the 13th International
Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2019, Minneapolis, MN, USA,
June 6-7, 2019, pages 788–795. Association for Computational Linguistics.

Template

This thesis has been built with the help of the CUED PhD thesis template. This La-
TeX template is at the time of writing this thesis available at https://github.com/kks32/
phd-thesis-template. The template (not this thesis itself!) is published under the following
MIT license.

Copyright (c) 2013 Krishna Kumar

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHER-
WISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

https://github.com/kks32/phd-thesis-template
https://github.com/kks32/phd-thesis-template

	Table of Contents
	I Foundations
	1 New Perspectives on Network Data
	1.1 Motivation
	1.2 Detailed Contribution

	2 Methodical Foundations
	2.1 The Network Model
	2.2 Graphs
	2.3 Metric Spaces and Relative Neighborhood Graphs
	2.3.1 From Metric Spaces to Graphs

	2.4 Formal Concept Analysis
	2.5 Learning and Classification
	2.6 Neural Networks
	2.6.1 Training of Neural Networks

	2.7 Neural Networks for Texts and Graphs
	2.7.1 Neural Networks for Texts
	2.7.2 Graph Neural Networks

	2.8 Representation Learning

	II Landscapes and Orometric Methods
	3 Prominence and Isolation
	3.1 Introduction
	3.2 Related Work
	3.3 Landscapes
	3.4 Prominence and Isolation
	3.5 Prominence in Metric Spaces
	3.6 Experiments
	3.6.1 Binary Classification Task

	3.7 Conclusion and Outlook

	4 Mountain Graphs and Line Parent Trees
	4.1 Introduction
	4.2 Related Work
	4.3 Mountain Graphs
	4.4 Line Parent Trees
	4.5 Discarding Edges via Relative Neighborhood Graphs
	4.6 Mountain Graphs and Line Parents of Real-World Networks
	4.6.1 Comparison with Sampling Approaches
	4.6.2 Distances to Line Parent Trees

	4.7 Experiments on Random Data
	4.8 Conclusion and Future Work

	III Intrinsic Dimensionality
	5 Intrinsic Dimensionality for Large-Scale Geometric Learning
	5.1 Introduction
	5.2 Related Work
	5.3 Intrinsic Dimensionality
	5.3.1 Intrinsic Dimension of Finite Data
	5.3.2 Computing the Intrinsic Dimension of Finite Data

	5.4 Intrinsic Dimension for Large-Scale Data
	5.4.1 Computing Intrinsic Dimension via Support Sequences
	5.4.2 Estimating Computational Costs

	5.5 Intrinsic Dimension of Real-World Graph Data
	5.5.1 Choosing Support Sequences
	5.5.2 Neighborhood Aggregation and Intrinsic Dimension
	5.5.3 Synthetic Data
	5.5.4 Approximation of Intrinsic Dimension on Large-Scale Data

	5.6 Errors of Random Data
	5.7 Conclusion and Future Work

	6 Selecting Features by their Resilience to the Curse of Dimensionality
	6.1 Introduction
	6.2 Related Work
	6.3 Feature Selection via Discriminability
	6.3.1 Selection of Discriminating Features
	6.3.2 Discarding Highly Correlated Features

	6.4 Feature Selection for Large-Scale Data
	6.4.1 Error Ratios of Approximations

	6.5 Experiments
	6.5.1 Feature Selection for Logistic Regression
	6.5.2 Feature Selection for Graph Neural Networks

	6.6 Parameter Study on Maximal Errors
	6.6.1 Results and Discussion

	6.7 Conclusion and Future Work

	IV Machine Learning
	7 FCA2VEC: Representation Learning via Formal Concept Analysis
	7.1 Introduction
	7.2 Related Work
	7.3 Word2Vec
	7.3.1 The Skip-Gram and the Continuous Bag of Words Architecture

	7.4 Object2Vec and Attribute2Vec
	7.4.1 Skip Gram in the Realm of Object2Vec

	7.5 Clustering Attributes with FCA2VEC
	7.6 Conclusion and Future Work

	8 LG4AV: Combining Language Models and Graph Neural Networks for Author Verification
	8.1 Introduction
	8.2 Related Work
	8.3 Problem
	8.4 Combining Language Models and Graph Neural Networks for Author Verification
	8.4.1 The Language Model
	8.4.2 Author Tokens
	8.4.3 Choice of the Graph Neural Network
	8.4.4 LG4AV

	8.5 Experiments
	8.5.1 Ablation Study

	8.6 Conclusion and Outlook

	V Conclusion and Outlook
	9 Conclusion
	10 Outlook
	List of Figures
	List of Tables
	References

