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Abstract: For cooperative learning to be effective, the quality of student–student interaction is crucial.
Interactions, which are transactive in nature, are positively related to students’ learning success
during cooperative learning. However, little is known about typical interaction patterns during
transactive interaction in face-to-face cooperative learning. Therefore, the current study aims to
analyze typical interaction patterns of transactive interaction in cooperative learning. Sixty-eight
students from seventh to tenth grade were randomly assigned to a total of 23 groups in their classes.
The groups were videotaped while solving the same open-ended mathematical modelling task. The
interaction behavior was coded, and interaction patterns were analyzed using sequential analysis
with first- and second-order Markov chains. The results indicate that the likelihood that students
confirm and pick up correct proposals is relatively high, indicating transactive interaction. However,
it is almost equally likely that incorrect proposals are confirmed erroneously, as students barely
correct them. Still, students do frequently engage in transactive interaction by discussing incorrect
proposals, even though these discussions rarely lead to correct solution approaches. Limitations
of these results, as well as the practical implications for cooperative learning in classroom settings,
are discussed.

Keywords: cooperative learning; transactive interaction; Markov chains; sequential analysis; interaction
patterns

1. Introduction

Cooperative learning methods are widely used in classroom settings, in which students
solve a given problem together in small groups. Key elements of cooperative learning
are positive interdependence between the students, meaning that the students can reach
their goal only together, and their individual responsibility, that is, each student feeling
responsibility for making their individual contribution to the solution of the task [1].
Various studies have shown that cooperative learning can lead to better learning outcomes
than individual work [2–5]. However, when comparing the individual studies included
in the meta-analysis by Kyndt et al. [4], a heterogenous pattern of results regarding the
effectiveness of cooperative learning emerges—reaching positive to even negative effects.
These differences in the effectiveness of cooperative learning are partially attributed to
the specific methods of cooperative learning used in the different studies (e.g., with or
without incentives, task specialization). However, effects vary even within a single method
of cooperative learning, so other factors seem to influence the effectiveness as well, such as
student age, the domain, the complexity of the task, and the quality of interaction during
cooperative learning [4,6–8].
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1.1. Interaction during Cooperative Learning

Referring to the offer-and-use model of instruction [8–11], offering students to solve
a task together in small groups is a learning opportunity they have to use by engaging
in cognitive activities. These cognitive activities manifest in student behavior, e.g., in
meaningful interaction with their peers in cooperative learning. Numerous studies have
examined students’ interaction behavior during cooperative learning and have identified
various activities that are effective for learning. According to Kaendler et al. [12], the quality
of interaction in cooperative learning can be described on the basis of three dimensions:
collaborative, cognitive, and metacognitive activities. Collaborative activities refer, among
other things, to the extent to which learners listen to each other, share information, coop-
erate with each other, and encourage other group members. Cognitive activities include
activities such as asking task-related questions, giving elaborative explanations [13–15],
and explaining and reasoning about their solution approach [16]. Such cognitive activities
have been shown to foster learning as they promote the integration of the to-be-learned
content into existing knowledge structures, as well as recognizing and correcting prior
misconceptions [17,18]. Finally, metacognitive activities include the planning, monitoring,
and evaluation of the solution process and individual understanding.

1.2. Transactive Interaction in Cooperative Learning

Notably, cooperative learning allows students not only to engage in interaction activi-
ties that enable students to elaborate and reflect on their own knowledge but also to engage
in transactive interaction [19]. Berkowitz and Gibbs [20] define transactive interaction
as “reasoning that operates on the reasoning of another” (p. 402), meaning that students
refer to each other’s ideas and transform them into more elaborate ones. Thus, transac-
tive interaction exceeds constructive activities in the sense of Chi and Wylie [21], who
define constructive activities as self-constructing knowledge from the learning material
without taking the ideas of others into account (e.g., taking notes while reading a text).
However, in transactive interaction, students engage in interactive activities [22], meaning
that all persons in this interaction contribute to it constructively, leading to newly generated
knowledge by interacting. Thus, transactive interaction includes contributions such as
paraphrases, critiques, extensions, integrations of different ideas, requests for clarification
or elaboration, and answers to such transactive questions [20,23,24]. Former research has
shown that students during cooperative learning vividly engage in transactive interaction,
but there are distinct differences regarding the engagement in such interaction on the group
and individual level [10,25]. Transactive interaction favors deep-level cognitive processing,
i.e., it can lead to a deeper elaboration of the learning content and to better learning out-
comes for both the actor who elaborated their partner’s solution approach and for their
partner whose idea has been elaborated [24]. Research studies provide evidence for the
relevance of transactive interaction during cooperative learning for learning: paraphrasing
group members’ ideas; sharing solution approaches; asking for more detailed explanations;
and discussing, correcting, and integrating the different solution ideas, as well as further
developing them, have been shown to be related to learning success [26–31].

Hänze and Jurkowski [22] subdivide transactive utterances into low-transactive and
high-transactive ones. Low-transactive utterances include, e.g., paraphrases and inquiries,
which can benefit the comprehension of all group members. High-transactive utterances,
such as questioning or rejecting others’ solution ideas and further developing the solution
approaches of group members, can explicitly help students to move forward in their
solution process. Vogel et al. [26] have shown that the amount of engagement in dialogic
transactivity during computer-supported peer learning, i.e., taking the idea of a group
member into account by using or extending it, is not related to learning outcome, while
dialectic transactivity, i.e., critiquing or integrating different contributions, is positively
related to learning. The results provide evidence that the effect of engaging in transactive
interaction might vary regarding the concrete transactive activity and how far this activity
leads to more profound elaboration.
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Barron’s [27] findings add a more subject-related perspective to the rather structural
perspective on transactive interaction and support the relevance of interactions, which are
transactive in nature. She has shown that neither sixth graders’ prior knowledge nor the
total amount of incorrect and correct proposals during small-group work in mathematics are
related to the learning success of the groups. However, the number of solution approaches
linked to one another differentiated low-achieving from high-achieving groups. Moreover,
she showed that in successful groups, correct proposals were more often accepted and
discussed than in less successful groups. In contrast, correct proposals were more often
discarded or ignored in less successful groups than in successful ones. In addition, the
correct solution approaches should not only be discussed and integrated; how students deal
with incorrect solution approaches is also relevant, as the results of Barnes’ [32] qualitative
study with eleventh graders working in small groups in mathematics illustrate: “For
collaborative learning to be effective, groups need to contain some people who question the
usefulness of suggestions or the validity of arguments, look for alternative methods, seek
clarification of inadequate explanations, and point out flaws in reasoning and inaccuracies
in calculations” (p. 9).

In sum, transactive interaction during cooperative learning—in which students, e.g.,
share and discuss their solution approaches, further develop each other’s ideas, integrate
useful solution approaches, and question and correct incorrect ones—is positively related
to individuals’ learning success as well as to group outcome. However, transactive ut-
terances, and especially high-transactive utterances, are cognitively challenging, and it
remains unclear under which conditions students are willing to engage in these transactive
interactions [22]. Moreover, there is a lack of research regarding interaction patterns in
transactive interaction in face-to-face cooperative learning.

1.3. Analyzing Student Interaction in Cooperative Learning with Sequential Analysis

In most cases, the analysis of interaction in cooperative learning is based on the
categorization of single events [33]. However, the structure of interactions themselves
is sequential: by interacting, individuals influence each other. Thus, one event in an
interaction process cannot be considered without the former one(s). Moreover, single-event
analyses do not provide the possibility to analyze interaction patterns and, thus, to obtain
an insight into transactive interaction during cooperative learning. With single-event
analyses, it is not possible to analyze how students deal with competing ideas and arising
conflicts, how far they question each other’s solution approaches, and how far they build
upon each other’s ideas.

Next to, for example, network analysis [10,34], sequential analysis can help to analyze
interaction sequences quantitatively. With this method, transitional probabilities from
one event to another can be determined [35]. Markov chains provide the opportunity to
describe typical interaction patterns and how individuals refer to each other. Thus, it is a
suitable method to analyze interaction patterns in transactive interaction in cooperative
learning. In the context of computer-based collaborative learning (CSCL) settings, this
method has already been successfully applied to explore interaction patterns [36–39], while
research on using this method on face-to-face peer interaction in school settings is scarce. In
the following two sections, we will further introduce the application and potential benefit
of using first- and second-order Markov chains when analyzing interaction patterns in
cooperative learning.

1.3.1. First-Order Markov Chains

First-order Markov chains calculate the probability of the occurrence of the target
event depending on the given event. Thus, typical sequential patterns can be determined.
Initially, the absolute frequencies of each response type to each type of event are counted
(for a detailed explanation of the procedure, see [35,40]). Based on these absolute fre-
quencies, the transitional probabilities, that is, the relative frequencies of one response
type to one type of event, are calculated. For example, when ten questions were asked
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during cooperative learning, of which four were answered correctly and six incorrectly,
the transitional probability of a correct answer following a question would be 4/10 = 0.40,
and for incorrect answers, 6/10 = 0.60. A shortcoming of such first-order Markov chains is
that the probability of the occurrence of the target event only depends on the event that
immediately occurred previously (given event). However, interactions do not only consist
of two-event sequences. It can be expected that the target event is dependent not only
on the previous one but also on longer sequences. Therefore, an extension to nth-order
Markov chains is promising. The higher the number of events in an analyzed sequence, the
more rapidly the required sample size increases, so we will only elaborate on second-order
Markov chains in the following.

1.3.2. Second-Order Markov Chains

In contrast to first-order Markov chains, second-order Markov chains do not only trace
the occurrence of the target event back to the event that occurred immediately previously.
Three-event sequences are the basis of the analysis using second-order Markov chains. The
transitional probability for the occurrence of the target event following the given event is
contingent on the former event. The expected advantage of second-order Markov chains is
demonstrated in the following example:

Using first-order Markov chains as in the fictive example above, the probability of a
correct answer after a question was 40%, and the probability of an incorrect answer was
60%. However, it can be assumed that the transitional probabilities for correct and incorrect
answers are related to whether the question is asked following a correct or incorrect
declaration, as the notional example in Figure 1 shows:
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In this fictive example, the likelihood of correct answers (target event) to a question
(given event) that was asked following a correct declaration (former event) was 70% and
thus higher than for questions asked after an incorrect declaration (20%). In contrast, the
likelihood of incorrect answers after a question following an incorrect declaration was
80% and therefore higher than the likelihood of incorrect answers to questions asked after
correct declarations (30%). Similar conditional dependencies on whether the former event
is correct or incorrect might also apply to the transitional probabilities between other
interaction events.

1.4. The Present Study

Transactive interaction, including discussing conflicting views, clarifying flaws in
reasoning, questioning the ideas of other group members, and finally, integrating the
(correct) ideas of others in the ongoing solution process, seems to be crucial for promoting
learning in cooperative learning settings. Even though much research has been performed
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on learning-supportive interaction behavior, less is known about typical interaction patterns
in cooperative learning. It is unclear how students engage in transactive interaction during
face-to-face cooperative learning. Under which conditions do students further develop
each other’s ideas, reject or confirm solution approaches by other group members, and
ask questions and provide answers, and how do students deal with correct or incorrect
utterances? In order to fill this research gap, this study aims to exploratively take a closer
look at interaction patterns during transactive interaction in cooperative learning using
sequential analysis.

2. Materials and Methods
2.1. Design and Participants

The study took place in the middle of the 2015/2016 school year [41]. The sample
consisted of 68 seventh- to tenth-graders from one comprehensive school in Germany. The
students were videotaped while working face-to-face on the same mathematical modelling
task in small groups of two to four students. It was a convenience sample, which should be
considered when interpreting the results of this study.

Of the students, 28% were in seventh grade, 21% in eighth grade, 22% in ninth grade,
and 29% in tenth grade. About half of the students were female (45%). On average, the
students were 14.09 (SD = 1.29) years old. The students were randomly assigned to groups
in their classes. In total, 23 groups were formed: two groups of two, twenty groups of three,
and one group of four students. The group compositions were gender-heterogeneous (73%)
and homogeneous (27%).

Cooperative learning was structured using the think–pair–share method [42]. The
lessons were held by a teacher of the research team who did not know the classes and who
was instructed to intervene as little as possible during the group work. Although previous
research emphasizes the role of teachers during cooperative learning in the form of adaptive
teacher interventions [43,44], we chose to minimize teacher interventions because we were
interested in students’ transactive interaction behavior without teacher interventions. The
lesson was structured through an introductory phase, in which the teacher explained the
task; an individual work phase for about 10 min, in which the students dealt with the task
individually and developed initial solution approaches (think phase); a subsequent group
phase, in which the students shared their understanding of the task and their solution
approaches and jointly solved the task (pair phase); and a plenum phase, in which some
of the groups presented their solutions (share phase). The mathematical modelling task
shown in Figure 2 was taken from Herget [45] (pp. 189–190).

The different levels of mathematical competence between the grades were compen-
sated for by providing additional task-relevant information for students from grades seven
and eight, whereas students from grades nine and ten had to gather this information
by themselves (see Figure 2). Only the pair phase (M = 25.56 min, SD = 3.67 min) was
considered in the following analyses.
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2.2. Video-Based Analysis of Student–Student Interaction

The videos of the groups solving the task cooperatively were used to categorize the
students’ interaction behavior. The analysis was conducted by two trained coders and a
master coder who developed the coding manual. They coded the videos independently
using the program Videograph [48]. In the first step, the pair phase was coded by separating
it from the think and share phases. Subsequently, each student’s turn during the pair phase
was identified and categorized following a standardized coding manual concerning the
following categories: task relation, function, reference, directness of reference, syntactic
classification, type of question, type of declaration, and correctness. Following Jurkowski
and Hänze’s understanding of transactive interaction during cooperative learning, self-
referential turns were not considered as having a reference to another turn [29,30]. The
coding scheme is systematically shown in Figure 3.
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The categories and their coding rules were self-developed or partially adapted from
already existing coding systems as shown in Table 1. Each coding system was supplemented
by a residual category, including those turns that could not unambiguously be assigned to
one of the subcategories.
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Table 1. Examples and references of the categories.

Coding System Subcategories Example Literature

turn / “A football player is about 1.80 m tall.”
“What time is it?” [49]

task relation
task-related “A football player is about 1.80 m tall.”

[50–52]
non-task-related “What time is it?”

function
organization “I’ll go and get my ruler.”

[53]
task processing “The door fits seven times.”

reference (no
self-references)

no reference
“I have calculated how often a human person

would fit into the football field.”
(new idea) [20]

reference
S1: “The door fits 8 times.”
S2: “No, 7 times.”

directness of reference

direct
S1: “A foot length fits ten times into a

human person.”

own development

S2: “No, only 6 times.”

delayed

S1: “How do you calculate the height
of a ball?”

S2: “We should find out how often the
door fits into the ball.”

S3: “We need to find out the diameter
to calculate the height.”

syntactic classification

interrogative “How did you calculate this?”

[54]
declarative “Firstly, we should find out which additional

information we need.”

type of question

read aloud reading/paraphrasing the task

[54–56]

inquiry “Do you understand?”

non-understanding “I just don’t get it!”

procedure “How should we go on?”

content-specific “Are you sure?”

type of declaration

statement “A door is about 2 m high.”

own development

answer S1: “How tall is a normal football
player?”

S2: “About 1.90 m.”

agreement S2: “About 1.90 m.”
S3: “Yes, I think so too.”

disagreement S2: “About 1.90 m.”
S4: “No, much smaller! About 1.70 m.”

correctness

correct “A football player is about 1.80 m tall.”

own development
incorrect “If we take half of the circumference of the ball, we

have its height.”

Four randomly chosen videos were coded by the master coder and the two coders,
while the remaining 19 videos were randomly distributed between the two coders. The
intercoder reliabilities of the categories were calculated using the percentage of agreement
and Cohen’s κ over the four videos all three coders coded. The calculation of Cohen’s κ was
not possible for the categories pair phase and turn since the event only had to be identified
and not categorized. The intercoder reliabilities were satisfactory for all categories/coding
systems, as shown in Table 2.
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Table 2. Intercoder reliabilities of the categories between the master coder and the two coders.

Coding System Percentage of Agreement Cohen’s κ

pair-phase (begin) ≥91% /
pair-phase (end) ≥86% /

turn ≥86% /
task relation ≥98% ≥0.91

function =100% ≥0.86
reference ≥93% ≥0.72

directness of reference ≥95% ≥0.72
syntactic classification ≥98% ≥0.93

type of question ≥94% ≥0.83
type of declaration ≥88% ≥0.78

correctness ≥89% ≥0.88

2.3. Data Preparation

Before the analysis was performed, the data had to be prepared. The coded turns of
the students were restructured and merged into one variable to be able to detect typical
interaction patterns. In sum, 10060 turns in 23 groups were identified. However, only
task-related utterances were considered (8329 turns). Because we were interested in how
students respond to each other in transactive interactions, all kinds of utterances had to
have a direct reference. Thus, it was ensured that the target event did indeed relate to
the given event, i.e., the previously occurred event. The only exception were statements,
which were also considered when they had no reference. Statements without a reference
could indicate new solution approaches so that the transitional probabilities could be
used to analyze how new solutions are handled, while statements with a direct reference
indicate a pick-up of the given turn into the ongoing solution process. In total, 4851 of
6679 declarations, i.e., statements, answers, agreements, and disagreements, had a direct
reference and 1028 of 6679 did not have a direct reference. In addition, it was considered
whether the declarations were correct or incorrect, which led to another reduction of the
declarations that were considered in the analyses. A total of 3970 out of the 5879 declarations
with reference or statements without a reference could be coded as correct or incorrect.
Regarding the coding system type of question, only the content-specific questions were
part of the analysis since they could represent critical questions (1179 of 1540 questions in
total). Those content-specific questions also had to have a direct reference so that they could
constitute an immediate response to the former event, which reduced the total number to
772 content-specific questions with a direct reference.

This data restructuring led to 11 category combinations that were part of the following
analyses (Table 3). Pick-ups, disagreements, and questions illustrate indicators for transac-
tive interaction. Pick-ups include paraphrasing ideas from other group members, further
developments of ideas, and the integration of different solution approaches. By disagreeing
or asking content-related questions that indicate critical inquiries, students could contribute
to a change in or clarification of the current solution approach. Questions as coded in this
study, furthermore, include questions with the goal of clarifying if one has understood
the idea of a group member appropriately, questions to gather further information, and
critical inquiries. Although the other categories do not represent transactive interaction
by definition, they take an important role in the solution process: new ideas and answers
can be the starting point of transactive interaction, i.e., by picking them up or disagreeing.
Agreements can reinforce the pursuit of a solution approach. Table 3 shows the frequencies
of the different categories. Only incorrect pick-ups were not observed, so this category was
excluded from the following analyses.
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Table 3. Category combinations used in the analyses.

Correct-Ness Coding Category Absolute
Frequencies

Relative
Frequencies

1

co
rr

ec
t

statement without reference new idea 202 4%
2 statement with direct reference pick-up 737 16%
3 answer with direct reference answer 212 4%
4 agreement with direct reference agreement 421 9%
5 disagreement with direct reference disagreement 188 4%

total correct 1760 44%

6

in
co

rr
ec

t statement without reference new idea 476 10%
7 statement with direct reference pick-up 0 0%
8 answer with direct reference answer 275 6%
9 agreement with direct reference agreement 442 9%

10 disagreement with direct reference disagreement 1017 21%

total incorrect 2210 56%

total declarations 3970 84%

11 content-specific question question 772 16%

total 4742 100%

2.4. Data Analyses

To gain insight into students’ transactive interaction during cooperative learning, first-
and second-order Markov chains (see Section 1.3) using the described category combina-
tions (Table 3) were calculated. With the first-order Markov chains, the probability of one
event following another event (e.g., the probability of a correct answer following a question
or a correct disagreement following an incorrect answer) was analyzed. In addition to first-
order Markov chains, second-order Markov chains were used, as it can be expected that
students’ interaction behavior does not only depend on the immediately previous utterance
but also on the former event (former event→ given event→ target event). However, we
only included the former event differentiated by its correctness and did not consider the
specific category because a much higher number of coded utterances would be necessary
to fill the 113 = 1331 possible different three-event-sequences. By considering only whether
the former event is correct or incorrect, the number of possible three-event-sequences was
reduced to 242.

For both first- and second-order Markov chains, z-scores were calculated to de-
tect whether the transitional probabilities were on a 5%-level significantly lower
(z-score < −1.96) or higher (z-score > 1.96) than expected using the formula by Bake-
man and Gottman [35] (p. 109).

3. Results
3.1. Results of the First-Order Markov Chains

In the first step, the transitional probabilities between the different interaction cate-
gories were calculated using first-order Markov chains. Because 4742 category combinations
were identified (see Table 3), a total number of 4741 event sequences for the following
analysis would have been expected. However, only 3214 event sequences were part of
the analysis. This reduction in event sequences is due to incomplete sequences because
two-event sequences are needed to calculate the transitional probabilities. These lacks in
the data are due to non-completely codable turns (see Section 2.2).

The results are shown in Table 4: The number in each cell represents the transitional
probability for each possible event sequence based on the total number of responses to this
specific category (last cell in each row). Bold numbers represent transitional probabilities
that were significantly higher than expected, and underlined numbers identify transitional
probabilities that were significantly lower than expected. For instance, a correct new idea
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was followed in 23% of cases by a correct pick-up and in 32% of cases by a correct agree-
ment. Both transitional probabilities were significantly higher than statistically expected,
while, for example, the transitional probability from a correct new idea to an incorrect
disagreement was with 15% significantly lower than expected.

Table 4. Transitional probabilities of the first-order Markov chains.

Target Event *

Correct Incorrect
Idea Pick-Up Answer Agree Disagree Idea Answer Agree Disagree Quest Total

G
iv

en
ev

en
t

C
or

re
ct

Idea 0.02 0.23 0.01 0.32 0.01 0.07 0.00 0.03 0.15 0.17 117
Pick-up 0.03 0.26 0.00 0.29 0.02 0.03 0.00 0.02 0.17 0.18 522
Answer 0.01 0.23 0.12 0.26 0.05 0.03 0.01 0.01 0.14 0.15 155
Agree 0.06 0.35 0.00 0.23 0.01 0.06 0.00 0.01 0.17 0.11 268

Disagree 0.02 0.22 0.00 0.26 0.12 0.01 0.00 0.02 0.22 0.13 143

In
co

rr
ec

t Idea 0.03 0.07 0.01 0.04 0.08 0.08 0.01 0.30 0.20 0.20 291
Answer 0.01 0.06 0.03 0.01 0.06 0.07 0.09 0.23 0.27 0.18 196
Agree 0.03 0.07 0.00 0.01 0.06 0.09 0.01 0.17 0.35 0.20 269

Disagree 0.02 0.08 0.00 0.01 0.08 0.06 0.00 0.23 0.28 0.22 715

Quest 0.01 0.11 0.23 0.03 0.02 0.04 0.31 0.04 0.12 0.11 538

Total 72 492 153 366 155 174 194 385 667 546 3214

* Bold numbers represent transitional probabilities that were significantly higher than expected. Underlined
numbers represent transitional probabilities that were significantly lower than expected. Idea = new idea,
agree = agreement, disagree = disagreement, quest = question.

To illustrate the striking interaction patterns, Figure 4 only contains those transitional
probabilities between the interaction events that were significantly higher than expected.
The following patterns were apparent regarding the handling of correct solution approaches:
a correct new idea (given event) was followed in 32% of cases by a correct agreement (target
event). The high probability of agreements after correct declarations could also be shown
for the other forms of declarations: correct agreements could be determined with 29% after
a correct pick-up, with 26% after a correct disagreement, with 26% after a correct answer,
and with 23% after a correct agreement. Moreover, correct declarations led to a high rate of
transactive interaction in the form of pick-ups: students picked up correct new ideas in 23%
of cases, correct agreements in 35% of cases, correct disagreements in 22% of cases, correct
answers in 23% of cases, and correct pick-ups themselves in 26% of cases. Thus, it is likely
that correct declarations are used for the further solution process, either by confirming
them through agreement or by directly picking them up leading to transactive interaction.
Another central finding is that no significant transitional probability from a correct proposal
to an incorrect one could be found.

Concerning the handling of incorrect proposals, the following significant transitional
probabilities were found. Comparable to the handling of correct proposals, students
confirmed incorrect proposals with a high probability: incorrect new ideas were followed
by incorrect agreements in 30% of cases, incorrect disagreements were agreed with in 23%
of cases, incorrect answers in 23% of cases, and incorrect agreements themselves in 17%
of cases. Furthermore, the high probability of incorrect disagreements following other
incorrect proposals is conspicuous (with 35% after incorrect agreements, with 27% after
incorrect answers, and with 28% after incorrect disagreements themselves).
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Only two direct and one indirect transitional probability from an incorrect proposal
leading to a correct one were found. Correct disagreements followed incorrect new ideas
as well as incorrect disagreements in 8% of cases. Moreover, incorrect disagreements were
followed by questions in 22% of cases, which could constitute an indirect transition to
a correct solution approach. However, questions themselves were more often answered
incorrectly, in 31% of cases, than correctly, in 23% of cases. These results illustrate that
incorrect declarations can also lead to transactive interaction because students try to con-
vert the wrong solution approach into a correct one by rejecting it. Furthermore, correct
disagreements—although they are rare—are then likely to be agreed to or picked up and
are thus further used transactively in the solution process.

3.2. Results of the Second-Order Markov Chains

In the second step, the transitional probabilities were calculated using second-order
Markov chains. The correctness of the former event was also considered in the calculations,
as it could influence the transitional probabilities. Two matrices (see Tables 5 and 6) were
generated, including the transitional probabilities—one for correct and one for incorrect
former events. Due to the calculation of second-order Markov chains, the number of data
that were part of the analysis was reduced. On the one hand, this was due to the necessity
of three-event sequences, so incomplete sequences were excluded. On the other hand, the
former event was only considered if it was a declaration because its correctness was of
interest.
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Figure 5. Significant transitional probabilities using second-order Markov chains. The probabilities
for a transition between two interaction events with a correct declaration as the former event are
given on the left; the probabilities for a transition between two interaction events with an incorrect
declaration as the former event are given on the right. Rectangles with continuous outlines represent
correct declarations, and rectangles with dotted outlines incorrect declarations. n.s. = non-significant.

Table 5. Transitional probabilities of the second-order Markov chains with correct declarations as the
former event.

Target Event *

Correct Incorrect
Idea Pick-Up Answer Agree Disagree Idea Answer Agree Disagree Quest Total

G
iv

en
ev

en
t

C
or

re
ct

Idea 0.04 0.30 0.00 0.35 0.04 0.00 0.00 0.00 0.22 0.04 23
Pick-up 0.05 0.33 0.00 0.31 0.02 0.03 0.00 0.01 0.11 0.13 236
Answer 0.00 0.23 0.00 0.31 0.08 0.08 0.00 0.00 0.23 0.08 13
Agree 0.06 0.39 0.00 0.21 0.01 0.06 0.00 0.00 0.15 0.12 210

Disagree 0.00 0.25 0.00 0.21 0.18 0.04 0.00 0.00 0.21 0.11 28

In
co

rr
ec

t Idea 0.00 0.13 0.00 0.06 0.13 0.03 0.00 0.35 0.10 0.19 31
Answer 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1 0.00 1
Agree 0.00 0.10 0.00 0.00 0.20 0.30 0.00 0.20 0.00 0.20 10

Disagree 0.02 0.15 0.01 0.02 0.14 0.03 0.01 0.23 0.16 0.23 154

Quest 0.00 0.21 0.34 0.08 0.02 0.01 0.14 0.02 0.09 0.10 133

Total 28 234 46 151 45 30 20 54 114 117 839

* Bold numbers represent transitional probabilities that were significantly higher than expected. Underlined
numbers represent transitional probabilities that were significantly lower than expected. Idea = new idea,
agree = agreement, disagree = disagreement, quest = question. 1 Although incorrect answers were followed in
100% of cases by an incorrect disagreement significantly higher than expected, this result has to be viewed with
caution: in total, there was only one event following an incorrect answer after a correct declaration, and this single
event was an incorrect disagreement. Therefore, this event sequence is not considered in Figure 5.
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Table 6. Transitional probabilities of the second-order Markov chains with incorrect declarations as
the former event.

Target Event *

Correct Incorrect
Idea Pick-Up Answer Agree Disagree Idea Answer Agree Disagree Quest Total

G
iv

en
ev

en
t

C
or

re
ct

Idea 0.00 0.24 0.00 0.19 0.00 0.14 0.00 0.05 0.24 0.14 21
Pick-up 0.02 0.15 0.01 0.22 0.01 0.04 0.00 0.02 0.33 0.19 81
Answer 0.00 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.13 0.13 8
Agree 0.07 0.20 0.00 0.27 0.00 0.13 0.00 0.07 0.27 0.00 15

Disagree 0.02 0.21 0.00 0.25 0.12 0.01 0.00 0.04 0.24 0.12 85

In
co

rr
ec

t Idea 0.05 0.08 0.00 0.03 0.08 0.07 0.00 0.30 0.18 0.20 60
Answer 0.00 0.06 0.06 0.00 0.06 0.06 0.00 0.06 0.35 0.35 17
Agree 0.03 0.09 0.00 0.00 0.05 0.10 0.01 0.16 0.37 0.19 208

Disagree 0.02 0.07 0.00 0.00 0.05 0.09 0.00 0.25 0.33 0.17 297

Quest 0.01 0.09 0.14 0.01 0.01 0.06 0.42 0.04 0.14 0.09 227

Total 23 106 36 54 44 76 98 13 281 158 1019

* Bold numbers represent transitional probabilities that were significantly higher than expected. Underlined
numbers represent transitional probabilities that were significantly lower than expected. Idea = new idea,
agree = agreement, disagree = disagreement, quest = question.

Table 5 shows all transitional probabilities between the different interaction events
when the former event was correct. For instance, a correct new idea (given event) was
followed in 35% of cases by a correct agreement (target event) if the former event was
correct (former event). This transitional probability was significantly higher than expected.
Table 6 shows the transitional probabilities between the different interaction events when
the former event was incorrect. Here, a correct new idea was followed by 19% by a correct
agreement. This transitional probability was also significantly higher than expected.

In Figure 5, the results of the second-order Markov chains with correct and incorrect
former events are combined and reduced to those transitional probabilities that were
significantly higher than expected. The transitional probabilities for second-order Markov
chains with correct former events are given on the left; the transitional probabilities for
second-order Markov chains with incorrect former events are given on the right. The
percentages can be read as follows: if the former declaration was correct, students disagreed
correctly with 20% to incorrect agreements. If the former declaration was incorrect, the
transitional probability from an incorrect agreement to a correct disagreement was not
significant. If the former declaration was correct, students agreed with 35% to new ideas. If
the former declaration was incorrect, students agreed with 19% to new ideas.

The analysis with first-order Markov chains revealed only low transitional probabilities
from incorrect proposals to correct ones (Figure 4). When considering the correctness of
the former event, the following patterns become apparent: the probabilities of correct
disagreements following incorrect proposals were in some cases significantly higher than
expected when the former event was correct (20% after incorrect agreements, 14% after
incorrect disagreements). However, there were no such significant transitional probabilities
from an incorrect declaration to a correct one when the former event was incorrect. This
finding might indicate that it is easier for students to engage in transactive interaction
leading to a transformation of an incorrect proposal into a correct one by disagreeing
correctly when they had already taken a correct solution approach.

Yet it was very likely that the students disagreed incorrectly with incorrect proposals
when the former event was incorrect, while these transitional probabilities were only partly
significant when the former event was correct (Figure 5). For instance, incorrect agreements
were followed in 37% of cases by incorrect disagreements when the former event of this
sequence was incorrect. This transitional probability was not significant when the former
event was correct. This result, in turn, could indicate that the students recognized the flaws
in the interaction process and, therefore, engaged in transactive interaction by disagreeing
but were not able to correct them when the former event was incorrect. Comparable with
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the results of the first-order Markov chains, the results of both second-order Markov chains
with correct and incorrect former events again revealed a high rate of incorrect agreements
with incorrect proposals. It was very likely that the students confirmed incorrect proposals
irrespective of whether the former event was correct or incorrect.

Furthermore, it becomes clear that the high probability of questions after incorrect
disagreements (22%; see Figure 4), another way to turn an incorrect proposal into a correct
one by initiating transactive interaction, was only significant when the former event was
correct (23%). This finding may reveal that students only question incorrect proposals if they
already had a correct solution approach. Closely linked with this finding, another noticeable
difference was found: using first-order Markov chains, the transitional probability of a
correct answer after a question was lower than the probability for an incorrect one (Figure 4).
However, when the question was asked following a correct declaration, the probability
of a correct answer was with 34% higher than the probability of an incorrect one (14%).
In comparison, the likelihood of a correct answer to a question that was asked after an
incorrect proposal was with 14% lower than the probability of an incorrect answer (42%).

Comparable with the results of first-order Markov chains (Figure 4), it was very likely
that students agreed correctly to correct proposals when using second-order Markov chains.
However, there were some differences between second-order Markov chains with correct
and incorrect former events. While there were no significant transitional probabilities from
a correct answer and a correct disagreement to a correct agreement when the former event
was correct, these transitional probabilities were significant with incorrect former events
(Figure 5). Thus, students seem to realize that the reinforcement of a correct answer or
disagreement is not necessary if they have already followed a correct solution approach,
while they reinforce correct answers or disagreements when they occurred after an incorrect
solution path. In comparison, the likelihood of correct agreements following correct new
ideas (35%) and correct pick-ups (31%) was higher when the former event was correct
than when it was incorrect (correct new ideas: 19%, correct pick-ups: 22%). Furthermore,
correct pick-ups of correct proposals were again very likely when second-order Markov
chains were used. Still, there were some differences depending on whether the former
event was correct or incorrect (Figure 5). For instance, correct pick-ups were only then
picked up significantly more often than expected (33%) when the former event was correct,
while correct disagreements were only picked up more often than expected (21%) when the
former event was incorrect.

4. Discussion

The goal of the present study was to investigate exploratorily how students engage
in transactive interaction during face-to-face cooperative learning. The analysis with
first-order Markov chains revealed that the concrete way students engage in transactive
interaction depends on whether they react to a correct or incorrect declaration. While
correct declarations do primarily lead to agreements and pick-ups, with the latter rep-
resenting transactive interaction, incorrect declarations are seldom picked up. Incorrect
declarations are instead questioned or disagreed with. However, these questions and
disagreements to incorrect proposals only occur and only lead to correct proposals under
certain circumstances. The second-order Markov chains revealed that students seemed
to only question incorrect proposals if they already had a correct solution approach. Fur-
thermore, these questions were more often answered correctly when they were asked after
a correct declaration, while they were more often answered incorrectly when following
an incorrect declaration. Disagreements to incorrect proposals, as another transaction
with which, in principle, a wrong solution path can be converted into a correct one, only
occurred when the former event was correct. This finding might indicate that it is easier
for students to transform an incorrect proposal into a correct one by disagreeing correctly
when they had already taken a correct solution approach. Moreover, it was very likely
that the students disagreed incorrectly with incorrect proposals when the former event
was incorrect, while these transitional probabilities were only partly significant when the
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former event was correct (Figure 5). For instance, incorrect agreements were followed
in 37% of cases by incorrect disagreements when the former event of this sequence was
incorrect. Although students engaged in transactive interaction by recognizing the flaws
regarding the solution approach and disagreeing with it, they were not able to turn it into
a correct solution approach when the former event was incorrect. These results illustrate
that students seem to be aware that the current solution approach is non-expedient and
thus engage in transactive interaction by questioning and disagreeing. However, both
transactions seldom lead to a correct solution approach. Moreover, it was very likely that
the students confirmed incorrect proposals irrespective of whether the former event was
correct or incorrect, leading to a reinforcement of pursuing the wrong solution approach.

In conclusion, students support each other and further develop each other’s ideas
when reacting to a correct declaration. Regarding incorrect declarations, transactive inter-
action takes the form of students vividly disagreeing or questioning each other, although
this rarely leads to a correct solution approach. Thus, students seem to adapt their way of
transacting with each other regarding the correctness of the solution path followed.

4.1. Limitations

Although this study gives a detailed insight into the interaction processes in coopera-
tive learning by using sequential analysis, a few limitations have to be taken into account.
First, our coding manual included only three overarching forms of transactive interac-
tion, i.e., pick-ups, disagreements, and questions. Pick-ups include declarations such as
paraphrases, extensions, and integrations of ideas. Furthermore, our questions also in-
cluded different forms of transactions, namely questions with the goal of clarifying if one
has understood the idea of a group member appropriately, questions to gather further
information, and critical inquiries. To gain a deeper insight into how students engage
in transactive interaction, these transacts should be coded separately in future analyses,
e.g., [20,23,57]. It would also be possible to analyze the conditions for engagement in
low- and high-transactive interaction separately. Second, we had a relatively small sam-
ple of 68 students out of only four classes of one school in our study. Moreover, these
students were from different grades. Third, the transitional probabilities were calculated
over all 23 groups. However, it can be assumed that those may vary between the different
groups depending on the group composition. Relating to that, the interaction behavior
of the individual students may also depend on the group composition. The individual
engagement in discussions, e.g., in how far students agree or disagree with their group
members’ solution approaches or how often they contribute their own solution approach,
may be explained by the ambition for conformity in groups. This ambition for conformity
can be triggered by an informational and/or normative social influence [58]. Due to the
complexity of the task, some students might have been following the solution approaches
of their group members—especially those group members with higher social status [59–61].
Low-status students, e.g., students with a low grade in mathematics or those who are
less popular, may more often confirm proposals. In contrast, high-status students may
more often disagree—correctly or incorrectly—with the proposed solutions of their group
members. However, these assumptions need to be investigated in further research by
analyzing how far the individual behavior in cooperative learning is dependent on the
social status and the group composition. In order to analyze individual behavior, a much
higher number of data is necessary. Even though we calculated the transitional probabilities
over all groups, the absolute frequency of some event sequences was quite low, leading to
limited generalizability. This problem of a small number of some event sequences might
increase when calculating the transitional probabilities on an individual level. Fourth, in
future studies, it should be investigated which kind of (transactive) interaction patterns
contribute to or negatively affect student learning. Fifth, the transitional probabilities
calculated in this study are limited not only to this specific sample but also to the used
mathematical modelling task. Thus, further research is needed to investigate whether the
found interaction patterns are transferable to other samples, group tasks, and subjects.
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4.2. Practical Implications

In summary, our analyses revealed that students further develop correct proposals by
their group members or confirm them during transactive interaction. Concerning wrong
solution approaches, they frequently discuss or question. However, these discussions rarely
led to a correct solution approach in our sample. Still, this might indicate that the students
recognized flaws in reasoning and experienced a socio-cognitive conflict between their
knowledge and their group members’ solution approaches but were not able to transfer the
incorrect solution approaches into correct ones.

These findings point to the relevance of teachers for a successful implementation
of cooperative learning: Teachers should monitor students’ collaborative, cognitive, and
metacognitive activities and support them if necessary [12]. Moreover, diagnosing errors
and misconceptions seems to be necessary as well. If students do not correct errors by
themselves and are not able to transfer an incorrect solution approach into a correct one,
teachers should provide domain-specific support, including, for example, feedback, or
hints [12]. Such teacher support should be adaptive, i.e., it should match the specific
difficulties of the respective group [43]. However, research shows that providing adaptive
support during cooperative learning is a challenging endeavor for teachers. Meloth and
Deering [62] have shown that teachers’ support is rarely adapted to the specific difficulties
of learners. This is particularly problematic as teachers’ intervention that is not adapted to
the group can be accompanied by a deterioration of the quality of student interaction [63].
An additional and promising approach to support student learning can be derived from
research on productive failure, which shows that problem-solving prior to instruction can
be superior to a sequence of instruction followed by problem-solving [64,65]. Productive
failure instructions consist of two phases: in the first phase, students in small groups try to
solve a problem, while incorrect solution approaches will (at least in some groups) probably
be pursued. In the second phase, the teacher presents the correct solution, contrasting it to
typical (incorrect) student solutions. As shown in our study, the students vividly discussed
their different solution approaches—even though these discussions rarely led to correct
solution approaches. These insufficient solutions would provide a good starting point for
a subsequent in-class discussion of the canonical solution, because the students already
might have detected knowledge gaps. Still, implementing such an in-class discussion about
typical mistakes of the groups while solving the task is challenging for teachers: teachers
have to monitor and diagnose students’ solution paths to be able to discuss and contrast
them afterward.
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