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Abstract

Weak approximation methods for stochastic partial differential equations (SPDEs) are con-

cerned with approximating the probability distribution of the solution process rather than the

realizations of the solution process itself. In this thesis, we provide new results and methods

concerning the weak error analysis of numerical approximations of path-dependent functionals

of solution processes of SPDEs. Two separate approaches to analyzing weak approximation

errors are considered: the Itô calculus approach and the Malliavin calculus approach. In the

context of the Itô calculus approach to weak error analysis, we develop and apply a novel

path-dependent mild Itô formula suitable for the analysis of path-dependent functionals of mild

solutions of SPDEs and their numerical approximations. In the context of the Malliavin calculus

approach to SPDEs, we analyze spectral Galerkin projections of mild solutions of SPDEs with

multiplicative noise and establish estimates for the corresponding weak approximation errors

for a general class of path-dependent functionals. The considered functionals are defined on the

Bochner space of paths that are q-integrable with respect to a given finite Borel measure, for a

suitable integrability parameter q ∈ (1, 2].

Zusammenfassung

Schwache Approximationsverfahren für stochastische partielle Differentialgleichungen dienen der

Approximation der Wahrscheinlichkeitsverteilung des Lösungsprozesses, wobei dessen einzelne

Realisierungen eine untergeordnete Rolle spielen. Diese Dissertation liefert neue Resultate und

Methoden im Hinblick auf die mathematische Analyse schwacher Approximationsfehler für nu-

merische Approximationen pfadabhängiger Funktionale von Lösungsprozessen stochastischer

partieller Differentialgleichungen. Dabei werden zwei separate Ansätze zur Analyse schwacher

Approximationsfehler verfolgt: ein auf dem Itô-Kalkül basierender Ansatz und ein auf dem

Malliavin-Kalkül fußender Ansatz. Im Kontext des auf dem Itô-Kalkül basierenden Ansatzes

entwickeln wir eine neuartige, pfadabhängige milde Itô-Formel, die sich für die Analyse pfad-

abhängiger Funktionale milder Lösungen stochastischer partieller Differentialgleichungen und

derer numerischer Approximationen eignet. Im Kontext des auf dem Malliavin-Kalkül fußenden

Ansatzes untersuchen wir Galerkin-Projektionen milder Lösungen stochastischer partieller Dif-

ferentialgleichungen mit multiplikativem Rauschen und leiten Abschätzungen für die entsprechen-

den schwachen Approximationsfehler für eine allgemeine Klasse pfadabhängiger Funktionale

her. Die betrachteten Funktionale sind definiert auf dem Bochner-Raum aller bezüglich eines

gegebenen endlichen Borel-Maßes q-integrierbaren Pfade, wobei q ∈ (1, 2] ein geeigneter Inte-

grabilitätsparameter ist.
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Chapter 1

Introduction

Stochastic evolution equations (SEEs) such as stochastic ordinary differential equations (SODEs)

and stochastic partial differential equations of evolutionary type (SPDEs) are frequently used to

model stochastic dynamics of real-world systems in finite- and infinite-dimensional state spaces.

These systems range from physical phenomena over biological systems to finance. As the so-

lutions of SEEs are usually not known explicitly, numerical approximations are essential with

regard to, e.g., the extraction of relevant information from the models or statistical parameter

fitting.

Weak approximation methods for SEEs are concerned with approximating the probability dis-

tribution of the solution process rather than the realizations of the solution process itself. In

this context, the quantity of interest is typically some functional of the solution process. While

the majority of research on the analysis of weak approximation errors is focused on function-

als which depend only on evaluations of the solution process at a fixed time point, there has

been growing interest in path-dependent functionals in recent years. In this thesis, we provide

new results and methods concerning the weak error analysis of numerical approximations of

path-dependent functionals of solution processes of SPDEs.

In this introductory chapter, we first specify a suitable setting and introduce some notation

concerning SEEs and weak approximation errors in Section 1.1. We then briefly sketch two of

the main approaches to weak error analysis in the research literature in Section 1.2 and Section

1.3. The main results and the overall structure of this thesis are summarized in Section 1.4.
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Introduction 2

1.1 Weak approximation of stochastic evolution equations

To set the stage, let us consider the SEEdX(t) =
[
AX(t) + F

(
X(t)

)]
dt+B

(
X(t)

)
dW (t), t ∈ [0, T ],

X(0) = ξ,
(1.1.1)

where T ∈ (0,∞) is a finite time horizon and the solution process X = (X(t))t∈[0,T ] takes

values in a separable real Hilbert space H. Moreover, A : D(A) ⊂ H → H is the generator of

a strongly continuous semigroup (etA)t≥0 of bounded linear operators on H, W = (W (t))t∈[0,T ]

is a cylindrical IdU -Wiener process, where U is another separable real Hilbert space, and the

mappings F : H → H and B : H → L(U,H) are assumed to satisfy certain measurability and

regularity properties. Here L(U,H) denotes the space of bounded linear operators from U to

H. The initial condition ξ in (1.1.1) is an H-valued random variable that is assumed to satisfy

specific measurability and integrability properties as well. In this thesis, we follow the so-called

semigroup approach to SEEs, which amounts to reformulating (1.1.1) in the mild form

X(t) = etAξ +

∫ t

0
e(t−s)AF (X(s)) ds+

∫ t

0
e(t−s)AB(X(s)) dW (s), t ∈ [0, T ]. (1.1.2)

A suitably measurable H-valued process X = (X(t))t∈[0,T ] satisfying (1.1.2) is called a mild

solution of (1.1.1). Note that the precise definitions of all objects and concepts mentioned

above are presented in Chapter 2 below.

In the case where H is infinite-dimensional and the linear operator A is unbounded, SEE (1.1.1)

is well-suited to describe certain SPDEs in an abstract form. For example, H might be the space

L2(O) of square-integrable real-valued functions on a convex domain O ⊂ R2 with polygonal

boundary and −A might be an elliptic second order partial differential operator with Sobolov

space domain D(A) = H2(O)∩H1
0 (O). Our standard references for the semigroup approach to

SEEs in infinite dimensions are [16, 23, 49].

In the case where H = Rd is finite-dimensional, SEE (1.1.1) describes an SODE. In particular,

the linear operator A in (1.1.1) is always bounded with D(A) = H and can thus be included in

the function F . We can therefore set A = 0, so that in (1.1.2) we obtain that etA = IdH is the

identity operator for all t ∈ [0, T ].

Throughout this introductory chapter, the H-valued process X̃ = (X̃(t))t∈[0,T ] denotes a given

numerical approximation of the solution process X = (X(t))t∈[0,T ]. For example, X̃ might

be a time-interpolated solution of an explicit or implicit Euler scheme in the SODE case or a

time-interpolated solution of a temporal, spatial, or spatio-temporal discretization scheme in

the SPDE case; see, e.g., Example 3.1.3 and Example 3.1.4 in Section 3.2 below. In this thesis

we mainly focus on the case where X̃ represents a spatial semi-discretization of X in form of
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a Galerkin projection onto a finite-dimensional subspace of H, given by X̃(t) = PNX(t) with

discretization parameter N ∈ N. Here we essentially assume that A is a diagonal operator with

eigenbasis (en)n∈N ⊂ H and associated decreasing sequence of eigenvalues (λn)n∈N ⊂ (−∞, 0)

and that the projection operator PN : H → H is given by PN (v) =
∑N

n=1 〈en, v〉H en, v ∈ H.

Note that we follow the terminology in [13] and distinguish between Galerkin projections, which

are obtained by applying the projection operator PN to the solution process X of (1.1.2), and

Galerkin approximations, which are defined as solutions of projected SEEs that do not involve

the unknown solution X of (1.1.2); see, e.g., Example 3.1.4 below. While such partial discretiza-

tions are obviously not directly implementable and computable, Galerkin discretizations as well

as Galerkin projections play a key role as fundamental building blocks for the construction and

analysis of a large class of fully-discrete numerical approximation schemes for SPDEs.

In the context of weak approximation of SEEs, one is typically interested in approximating a

functional of the distribution of the state of the solution process at a fixed time point such as

E[f(X(T ))], where f : H → R is a given mapping. For instance, E[f(X(T ))] could represent

the expected payoff for a financial derivative in the SODE case or spatial correlations of the

solution process of the form E[f(X(T ))] = E
[
〈h1, X(T )〉H · 〈h2, X(T )〉H

]
with test functions

h1, h2 ∈ H in the SPDE case. If we use the process X̃ = (X̃(t))t∈[0,T ] to approximate the

solution X = (X(t))t∈[0,T ] of (1.1.2), then the corresponding weak approximation error is given

by ∣∣E[f(X(T ))]− E[f(X̃(T ))]
∣∣. (1.1.3)

The analysis of weak approximation errors is essential for the assessment of the consistency and

the efficiency of a given approximation scheme, and a particular interest lies in the derivation

of sharp upper bounds. It is worth noting here that even in the case where X̃ stems from a

fully-discrete and directly implementable numerical scheme, the practical approximation of the

quantity of interest E[f(X(T ))] further requires the approximation of the expectation operator

E[ · ] via, e.g., a suitable Monte Carlo method [25, 46]. This leads to an additional statistical

approximation error, the analysis of which does not lie within the scope of this thesis. The

analysis of weak errors of the type (1.1.3) is quite far developed in the SODE case; see, e.g.

[18, 34, 45, 55] and the references therein. Weak error analysis in the SPDE case has come into

focus in research in the last 10 to 15 years; see, e.g., [1, 8, 9, 13, 15, 17, 19, 24, 37, 38, 44]. In both

cases it is typically found that for sufficiently regular test functions f the rate of convergence

to zero of the weak approximation error (1.1.3) as the discretization is refined is twice the rate

of convergence of the strong approximation error

(
E
[∥∥X(T )− X̃(T )

∥∥p
H

])1/p

, (1.1.4)
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for certain integrability parameters p ∈ [1,∞). Knowledge of both weak and strong convergence

rates is important for a proper conceptualization and application of multilevel Monte Carlo

methods [25, 46].

As mentioned before, most research concerning the weak error analysis of numerical approxima-

tions of SEEs is focused on approximating functionals which depend only on evaluations of the

solution process at a fixed time point. In contrast, the analysis of weak approximation errors in-

volving path-dependent functionals of the form E[f(X)] is not as well established. Here the map-

ping f is a functional defined on a suitable path space, e.g., the space C([0, T ], H) of continuous

paths, and the solution X of (1.1.2) is identified with the random variable ω 7→
(
X(ω, t)

)
t∈[0,T ]

with values in the path space, where ω ∈ Ω is taken from the sample space of the underlying

probability space (Ω,A,P) and where X(ω, t) = X(t)(ω) denotes a realization of the H-valued

random variable X(t). The corresponding path-dependent weak approximation error then reads

∣∣E[f(X)]− E[f(X̃)]
∣∣. (1.1.5)

In this thesis, we provide new results and tools for the analysis of weak approximation er-

rors of type (1.1.5) concerning numerical approximations of path-dependent functionals of mild

solutions of SPDEs.

1.2 Itô calculus and weak error analysis

A by now classical approach to weak error analysis for numerical approximations of SEEs is

based on Itô calculus in combination with Kolmogorov equations associated to the SEE; see, e.g.,

[34, 55, 56]. In the sequel, we first sketch a variant of this approach for the well established case

of SODEs and weak errors of type (1.1.3), which depend only on evaluations of the solution

process at a fixed time point. Thereafter, we present available extensions of the described

strategy to the case of SPDEs and weak errors of type (1.1.3) and to the case of SODEs and

path-dependent weak errors of type (1.1.5).

Recall that in the SODE case we may assume etA = IdH in (1.1.2), so that the solution process

X = (X(t))t∈[0,T ] is an Itô process of the form

X(t) = ξ +

∫ t

0
Ψ(s) ds+

∫ t

0
Φ(s) dW (s), t ∈ [0, T ], (1.2.1)

where the H-valued and L(U,H)-valued integrand processes Ψ = (Ψ(s))s∈[0,T ] and

Φ = (Φ(s))s∈[0,T ] are given by Ψ(s) = F (X(s)) and Φ(s) = B(X(s)), respectively. Itô cal-

culus extends the methods of calculus to Itô processes of type (1.2.1) and a central result in this

theory is Itô’s change-of-variable formula [28, 29, 33, 54]. The standard Itô formula states that
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for sufficiently regular functions g : [0, T ]×H → R and all t ∈ [0, T ] it holds almost surely that

g
(
t,X(t)

)
= g(0, ξ) +

∫ t

0

[
∂1g
(
s,X(s)

)
+ ∂2g

(
s,X(s)

)
Ψ(s)

]
ds

+

∫ t

0
∂2g
(
s,X(s)

)
Φ(s) dW (s)

+
1

2

∑
u∈U

∫ t

0
∂2

2g
(
s,X(s)

)(
Φ(s)u,Φ(s)u

)
ds.

(1.2.2)

Here and below we denote for every (s, x) ∈ [0, T ] × H by ∂1g(s, x) and ∂2g(s, x) the partial

derivatives with respect to the first and the second argument of g, i.e., the time derivative and the

spatial derivative, and we interpret for every (s, x) ∈ [0, T ]×H the spatial derivatives ∂2g(s, x)

and ∂2
2g(s, x) of first and second order in the usual way as linear and bilinear mappings from H

to R and from H ×H to R, respectively. Moreover, U ⊂ U denotes an arbitrary orthonormal

basis of the Hilbert space U associated to the driving Wiener process W . For a large class

of numerical approximation schemes for SODEs such as explicit or drift-implicit Euler schemes

and for suitable stochastic interpolations between the discrete time points, the time-interpolated

approximation process X̃ = (X̃(t))t∈[0,T ] can be represented as an Itô process of the form (1.2.1)

as well, with different integrand processes Ψ̃, Φ̃ and possibly a different initial condition ξ̃ in

place of Ψ, Φ, and ξ, respectively. Under suitable technical assumptions, formula (1.2.2) then

remains valid with X̃, ξ̃, Φ̃, and Ψ̃ in place of X, ξ, Φ, and Ψ.

When it comes to analyzing the weak error (1.1.3) in the described SODE setting via Itô calculus,

a fruitful idea is to employ the specific function g(t, x) = E
[
f(Xx(T − t))

]
, (t, x) ∈ [0, T ]×H,

where Xx =
(
Xx(t)

)
t∈[0,T ]

denotes the solution of (1.1.2) with initial condition x ∈ H in place of

ξ. It is well-known that under sufficient regularity assumptions on F , B, and f , this particular

choice of g represents the solution of the backward Kolmogorov equation with terminal condition

f associated to (1.1.2). Moreover, if we assume for simplicity that the given initial condition

ξ in (1.1.2) is non-random and thus an element of H, it follows directly from the definition

of g that the weak error (1.1.3) can be rewritten as
∣∣E[g(0, ξ) − g(T, X̃(T ))]

∣∣. In combination

with an application of Itô’s formula to the process X̃ = (X̃(t))t∈[0,T ] and the function g, this

leads to a useful weak error representation formula which may serve as a starting point for a

thorough weak error analysis. For details and further aspects of this approach with regard to

the Euler-Maruyama scheme for SODEs we refer to [34, Section 14.1] and [55, Sections 3.1–3.3].

Related results can be found, e.g., in [44, 45].

In the SPDE case, the solution process X = (X(t))t∈[0,T ] in (1.1.2) is not a standard Itô process

anymore, so that the standard Itô formula cannot be applied. As a consequence, the approach

to weak error analysis based on Itô calculus described above cannot directly be extended to the

this case. In this context, a useful extension of Itô calculus to mild solutions of SPDEs and their

numerical approximations has been introduced in a systematic way in [15], where the authors
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analyze so-called mild Itô processes of the form

X(t) = S(t, 0)ξ +

∫ t

0
S(t, s)Ψ(s) ds+

∫ t

0
S(t, s)Φ(s) dW (s), t ∈ [0, T ]. (1.2.3)

Here S = (S(t, s))0≤s≤t≤T is a strongly continuous evolution family of bounded linear operators

on H and, as before, the integrand processes Ψ and Φ take values in H and L(U,H), respectively,

and are assumed to satisfy suitable measurability and integrability conditions; see Definition

2.4.9 in Chapter 2 below for details. Comparing (1.2.3) with (1.1.2), it is clear that the solution

process in (1.1.2) is a mild Itô process of the form (1.2.3) with S(t, s) = e(t−s)A, Ψ(s) = F (X(s)),

and Φ(s) = B(X(s)). The so-called mild Itô formula presented in [15] states that for any

sufficiently regular mapping g : [0, T ]×H → R and all t ∈ [0, T ] it holds almost surely that

g
(
t,X(t)

)
= g(0, S(t, 0)ξ) +

∫ t

0

[
∂1g
(
s, S(t, s)X(s)

)
+ ∂2g

(
s, S(t, s)X(s)

)
S(t, s)Ψ(s)

]
ds

+

∫ t

0
∂2g
(
s, S(t, s)X(s)

)
S(t, s)Φ(s) dW (s)

+
1

2

∑
u∈U

∫ t

0
∂2

2g
(
s, S(t, s)X(s)

)(
S(t, s)Φ(s)u, S(t, s)Φ(s)u

)
ds.

(1.2.4)

This generalization of the standard Itô formula involving the evolution operators S(t, s) ∈ L(H),

0 ≤ s ≤ t ≤ T , where L(H) = L(H,H) denotes the space of bounded linear operators on H, is

well-suited for the analysis of both mild solutions of SPDEs and their numerical approximations.

Note that the difference between a general evolution family S = (S(t, s))0≤s≤t≤T and the specific

family (e(t−s)A)0≤s≤t≤T associated to the operator semigroup (etA)t≥0 is that the operators of

the evolution family depend explicitly on both variables s and t, and not necessarily only on

the difference t − s as in the semigroup case. The motivation for this additional technical

complexity in the definition (1.2.3) of a mild Itô process is that numerical approximations of the

semigroup (etA)t≥0 often form only an evolution family and not necessarily a semigroup; see,

e.g., the discussion of the linear implicit Euler scheme in Example 3.1.3 in Chapter 3 below. In

particular, the approximation process X̃ = (X̃(t))t∈[0,T ] can typically also be written in the form

(1.2.3), with a different evolution family S̃, different integrand processes Ψ̃, Φ̃, and possibly a

different initial condition ξ̃ in place of S, Ψ, Φ, and ξ, respectively; compare Example 3.1.3 and

Example 3.1.4 in Chapter 3 below. Under suitable technical assumptions, formula (1.2.4) then

remains valid with X̃, ξ̃, S̃, Ψ̃, and Φ̃ in place of X, ξ, S, Ψ, and Φ.

The mild Itô formula (1.2.4) has been successfully employed, e.g., in [13] and [32], to extend

the Itô calculus approach for the analysis of weak approximation errors of the type (1.1.3) from

the SODE case to a large class of semilinear SPDEs. The origins of this extension lie in the

pioneering work [19], in which the authors study weak approximation errors for linear SPDEs
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with additive noise using Hilbert space-valued Itô calculus and Kolmogorov equations; com-

pare also the closely related articles [24, 36–38, 41]. In the case of semilinear SPDEs, weak

approximation errors have also been analyzed using a combination of the approach based on Itô

calculus and Kolmogorov equations and the integration-by-parts formula from Malliavin calcu-

lus; see, e.g., [3, 8, 17]. It is worth noting here that in the special case where the approximation

X̃ = (X̃(t))t∈[0,T ] of the solution process X = (X(t))t∈[0,T ] is given by a Galerkin projection,

i.e., X̃(t) = PNX(t) for some N ∈ N, neither Kolmogorov equations nor Malliavin integration-

by-parts are needed to derive sharp estimates for the weak approximation error (1.1.3) under

standard assumptions on the semilinear SPDE (1.1.2) and the function f . Instead, in this

simplified case it turns out to be sufficient to apply the mild Itô formula (1.2.4) directly with

g(t, x) = f(x), (t, x) ∈ [0, T ]×H; compare [13, Section 2]. Let us further remark that, besides

the mild Itô formula (1.2.4), further generalizations of the standard Itô formula to solution pro-

cesses of SPDEs have been presented in the research literature in the context of the variational

approach to SPDEs; see, e.g. [26, 27, 45]. However, these generalizations are typically concerned

only with specific functions g such as the squared norm g(x) = ‖x‖2H , x ∈ H.

Next we return to the SODE case and consider path-dependent weak approximation errors of

type (1.1.5). The standard Itô calculus approach to weak error analysis for SODEs is obviously

not directly applicable in this case. Nevertheless, independently from questions concerning the

analysis of weak approximation errors, a useful extension of Itô’s calculus to path-dependent

functionals has been established in [5, 11, 12, 20]. The key ingredient of this so-called functional

Itô calculus is a path-dependent Itô formula, which we present in a slightly simplified form

suitable for our purpose: Given an H-valued Itô process X = (X(t))t∈[0,T ] with continuous

sample paths of the form (1.2.1), we follow the notation in [5] and denote for every t ∈ [0, T ]

by Xt = (X(r ∧ t))r∈[0,T ] the process stopped at time t, i.e., Xt(r) = X(r ∧ t) for all r ∈ [0, T ].

Let C([0, T ], H) and D([0, T ], H) be the spaces of H-valued continuous paths and of H-valued

càdlàg (right continuous with left limits) paths, respectively, both endowed with the uniform

norm, and note that for every t ∈ [0, T ] we may identify the stopped process Xt with the

C([0, T ], H)-valued random variable ω 7→
(
X(ω, r ∧ t)

)
r∈[0,T ]

, where ω ∈ Ω is taken from the

sample space of the underlying probability space and where X(ω, r ∧ t) = X(r ∧ t)(ω) denotes

a realization of the H-valued random variable X(r ∧ t). In particular, observe that the family

(Xt)t∈[0,T ] thus represents a C([0, T ], H)-valued stochastic process. In this setting, the so-called

functional Itô formula states that for sufficiently regular mappings g : [0, T ]×D([0, T ], H)→ R
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and all t ∈ [0, T ] it holds almost surely that

g(t,Xt) = g(0, X0) +

∫ t

0
∂1g(s,Xs) ds

+

∫ t

0
∂2g(s,Xs)

(
1[s,T ](·)Ψ(s)

)
ds

+

∫ t

0
∂2g(s,Xs)

(
1[s,T ](·)Φ(s)

)
dW (s)

+
1

2

∑
u∈U

∫ t

0
∂2

2g(s,Xs)
(
1[s,T ](·)Φ(s)u,1[s,T ](·)Φ(s)u

)
ds.

(1.2.5)

Here for every (s, x) ∈ [0, T ] × D([0, T ], H) the spatial derivatives ∂2g(s, x) and ∂2
2g(s, x) of

first and second order are assumed to be Fréchet derivatives and are interpreted as linear and

bilinear mapping from D([0, T ], H) to R and from D([0, T ], H)×D([0, T ], H) to R, respectively.

Moreover, for every s ∈ [0, T ], u ∈ U the terms 1[s,T ](·)Ψ(s) and 1[s,T ](·)Φ(s)u appearing in

(1.2.5) denote the D([0, T ], H)-valued random variables ω 7→
(
1[s,T ](r)Ψ(ω, s)

)
r∈[0,T ]

and ω 7→(
1[s,T ](r)Φ(ω, s)u

)
r∈[0,T ]

, respectively. The functional Itô calculus introduced in [5, 11, 12, 20]

has been generalized and modified in the SODE case in various directions, e.g., in [14, 40, 48].

It has been shown in [35] that functional Itô calculus can be employed to extend the classical Itô

calculus approach to weak error analysis of numerical approximations of SODEs to a large class

of sufficiently smooth path-dependent functionals. A generalization of functional Itô calculus to

Itô processes with values in possibly infinite-dimensional Hilbert spaces has been presented in

[52]. However, this work is restricted to standard Itô processes of the form (1.2.1) without the

involvement of an operator semigroup or an evolution family, so that SPDEs are not covered.

To the best of our knowledge, there exists no path-dependent Itô formula for solution processes

of SPDEs and their numerical approximations so far. Consequently, the Itô calculus approach

to weak error analysis has not yet been extended to path-dependent weak approximation errors

for SPDEs. It is one of the contributions of this thesis to partially fill the gap.

1.3 Malliavin calculus and weak error analysis

Another useful toolbox for the analysis of weak errors of numerical approximations of SEEs

is provided by Malliavin calculus, which is a stochastic calculus of variations that extends

the classical calculus of variations from deterministic functions to stochastic processes [43, 47].

Malliavin calculus has been used in various different ways in the context of the analysis of

weak approximation errors of type (1.1.3), often in combination with the approach based on Itô

calculus and Kolmogorov equations; see, e.g., [3, 6–8, 17].

In this thesis we focus on a duality approach that has been introduced in [10, 39] and does

not rely on Kolmogorov equations associated to the SEE. Instead, the basic ansatz is to start
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with a linearization of the weak error (1.1.3) in terms of a simple application of the mean value

theorem,

E
[
f(X(T ))− f(X̃(T ))

]
=

∫ 1

0
E
〈
f ′
(
θX(T ) + (1− θ)X̃(T )

)
, X(T )− X̃(T )

〉
H

dθ. (1.3.1)

Here we assume again that X = (X(t))t∈[0,T ] is the solution of an SEE (SODE or SPDE)

of type (1.1.2), that X̃ = (X̃(t))t∈[0,T ] is a given approximation of X, and that f : H → R
is a sufficiently regular function. Moreover, for every x ∈ H the Fréchet derivative f ′(x) of

f at x, originally defined as a bounded linear functional f ′(x) : H → R, is interpreted as an

element f ′(x) ∈ H by means of the Riesz isomorphism. The crucial idea in the duality approach

to weak error analysis is to exploit the Malliavin regularity of the H-valued random variable

f ′
(
θX(T ) + (1 − θ)X̃(T )

)
appearing in the integral on the right hand side of (1.3.1) and to

formally consider the integrand term E 〈· · · , · · · 〉H on the right hand side of (1.3.1) as a duality

bracket between a Malliavin-Sobolev space with positive smoothness parameter and the dual

space thereof. The derivation of an upper bound for the weak approximation error (1.1.3) thus

essentially boils down to the derivation of an upper bound of the norm of X(T )−X̃(T ) in a dual

space of a Malliavin-Sobolev space, which is a weaker norm than the corresponding Lp-norm

defining the strong approximation error (1.1.4). This abstract point of view is, however, not

necessary for our purpose.

In order to indicate the duality approach to weak error analysis in some more detail, assume that

the solution process X is given as a mild Itô process of the form (1.2.3) and let the approximation

process X̃ be given by

X̃(t) = S̃(t, 0)ξ̃ +

∫ t

0
S̃(t, s)Ψ̃(s) ds+

∫ t

0
S̃(t, s)Φ̃(s) dW (s), t ∈ [0, T ],

where S̃ = (S̃(t, s))0≤s≤t≤T ⊂ L(H) is an approximation of the evolution family

S = (S(t, s))0≤s≤t≤T ⊂ L(H) and where the integrand processes Ψ̃ and Φ̃ take values in H

and L(U,H), respectively, and are assumed to satisfy suitable measurability and integrability

conditions. Observe that the difference X(T ) − X̃(T ) appearing in the integral on the right

hand side of (1.3.1) can now be rewritten as

X(T )− X̃(T ) = S(T, 0)ξ − S̃(T, 0)ξ̃ +

∫ T

0

[
S(T, s)Ψ(s)− S̃(T, s)Ψ̃(s)

]
ds

+

∫ T

0

[
S(T, s)Φ(s)− S̃(T, s)Φ̃(s)

]
dW (s),

and that the stochastic integral term therein represents the bottleneck when it comes to deriving

sharp weak error estimates. Given that X and X̃ are sufficiently regular in a Malliavin sense,

the Malliavin integration-by-parts formula in Lemma 4.2.3 in Section 4.2 below implies that the
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corresponding part of the weak error (1.3.1) can be simplified as

E

[〈
F,

∫ T

0

[
S(T, s)Φ(s)− S̃(T, s)Φ̃(s)

]
dW (s)

〉
H

]
= E

[∫ T

0

〈
DsF, S(T, s)Φ(s)− S̃(T, s)Φ̃(s)

〉
HS(U,H)

ds

] (1.3.2)

with F = f ′
(
θX(T ) + (1− θ)X̃(T )

)
. Here we denote by HS(U,H) the space of Hilbert-Schmidt

operators from U to H with inner product 〈·, ·〉HS(U,H) and, loosely speaking, the Malliavin

derivative DF =
(
DtF

)
t∈[0,T ]

of F constitutes an HS(U,H)-valued stochastic process; see Sec-

tion 2.2 and Section 4.2 below for details. The application of the integration-by-parts formula

(1.3.2) often allows for a proper handling of the crucial stochastic integral terms involved in

estimates of the weak approximation error (1.3.1).

The described duality approach to weak error analysis has been suggested in [10] for SODEs

and independently in [39] for linear SPDEs with additive noise. Extension to semilinear SPDEs

with additive noise can be found, e.g., in [1, 2, 4]. While the approach has originally been

applied to weak approximation errors of the type (1.1.3) involving functionals that depend only

on evaluations of the stochastic process at a fixed time point, the authors in [10] remark that

path-dependent functionals can potentially be treated as well. In the SPDE case, a specific class

of path-dependent functions of the form f(x) =
∏K
i=1 φi

( ∫ T
0 x(t)µi(dt)

)
and the corresponding

path-dependent weak error (1.1.5) have been analyzed in [1], with φi and µi being sufficiently

smooth functions from H to R and finite Borel-measures on [0, T ], respectively. A similar class

of specific path-dependent functionals has been considered in [4]. So far the duality approach to

weak error analysis has not been extended to more general classes of path-dependent functionals.

One of the contributions of this thesis is a new result in this context.

In the SODE case, Malliavin calculus methods have also been used to analyze weak errors of

type (1.1.3) involving non-smooth functions f : H → R such as indicator functions of certain

subsets of H; see, e.g., [6, 7, 10]. The corresponding arguments are not directly applicable to the

SPDE case, in which only sufficiently smooth functions f have been treated in the literature;

a standard assumption is that f is at least twice continuously differentiable. Accordingly, non-

smooth functions f do not lie within the scope of this thesis.

To complete the picture, let us add that a further approach to weak error analysis different from

the approaches described in Section 1.2 and Section 1.3 can be found in [9]. Here the authors

analyze weak approximation errors of type (1.1.5) for a relatively general class of path-dependent

functionals and spectral Galerkin approximations of semilinear SPDEs. The approach makes

use of the regularity of an underlying Itô map and heavily relies on the fact that only additive

noise is considered.
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1.4 Contributions and structure of the thesis

In this section we briefly outline the main results concerning the analysis of path-dependent

functionals of SPDEs presented in this thesis.

In the context of the Itô calculus approach to weak error analysis reviewed in Section 1.2

above, we establish in Theorem 3.2.2 in Section 3.2 below a novel path-dependent mild Itô

formula suitable for the analysis of path-dependent functionals of mild solutions of SPDEs

and their numerical approximations. To this end, we combine the ideas behind the mild Itô

formula (1.2.4) presented in [15] in an SPDE setting and the path-dependent Itô formulas of

type (1.2.5) introduced in [5, 11, 12, 20] in an SODE framework. For the sake of a better

compatibility with (1.2.4) and (1.2.5) we present here a slightly different version of our path-

dependent mild Itô formula than the one formulated in Theorem 3.2.2; see Remark 3.2.5 for

details. Let X = (X(t))t∈[0,T ] be a mild Itô process of the form (1.2.3) with continuous H-

valued sample paths, strongly continuous evolution family S = (S(t, s))0≤s≤t≤T ⊂ L(H), and

integrand processes Ψ and Φ taking values in H and HS(U,H), respectively, satisfying the

technical conditions summarized in Assumption 3.1.1 in Section 3.1 below. For all s, t ∈ [0, T ]

with s ≤ t let as before Xt = X(· ∧ t) be the C([0, T ], H)-valued random variable given by

the process stopped at time t and let further St,s : D([0, T ], H)→ D([0, T ], H) be the bounded

linear operator defined by

(
St,sx

)
(r) = 1[0,s)(r)x(r) + 1[s,t)(r)S(r, s)x(r) + 1[t,T ](r)S(t, s)x(r)

= 1[0,s)(r)x(r) + 1[s,T ](r)S(r ∧ t, s)x(r),

x ∈ D([0, T ], H), r ∈ [0, T ]. Moreover, suppose that the mapping g : [0, T ]×D([0, T ], H)→ R,

(t, x) 7→ g(t, x) is continuously differentiable in t and two times continuously Fréchet differen-

tiable in x and satisfies the regularity conditions formulated in Assumption 3.1.5 below with g

and R in place of f and V . In this situation our path-dependent mild Itô formula ensures that

for all t ∈ [0, T ] it holds almost surely that

g(t,Xt) = g(0, St,0X0) +

∫ t

0
∂1g(s, St,sXs)ds

+

∫ t

0
∂2g(s, St,sXs)St,s

(
1[s,T ](·)Ψ(s)

)
ds

+

∫ t

0
∂2g(s, St,sXs)St,s

(
1[s,T ](·)Φ(s)

)
dW (s)

+
1

2

∫ t

0

∑
u∈U

∂2
2g(s, St,sXs)

(
St,s
(
1[s,T ](·)Φ(s)u

)
, St,s

(
1[s,T ](·)Φ(s)u

))
ds.

(1.4.1)

Note that our path-dependent mild Itô formula extends the mild Itô formula (1.2.4) to path-

dependent functionals f and extends the path-dependent Itô formula (1.2.5) to mild Itô processes
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X.

The main idea of the proof of (1.4.1) is to employ appropriate discretizations of the transformed

C([0, T ], H)-valued process (St,sXs)s∈[0,t] in combination with a Taylor expansion of g. These

discretizations constitute a uniform approximation of (St,sXs)s∈[0,t] over the time interval [0, t].

One of several technical difficulties involved in the proof lies in the well-known fact that the

Banach spaces C([0, T ], H) and D([0, T ], H) are not suited as state spaces for the construction

of Banach space-valued stochastic integrals, so that we cannot work, e.g., with an underlying

C([0, T ], H)-valued SEE for the C([0, T ], H)-valued process (St,sXs)s∈[0,t]. As a first applica-

tion of our functional mild Itô formula we investigate in Section 3.4.1 below the weak order of

convergence of spectral Galerkin projections of SPDEs with multiplicative noise for the approx-

imation of spatio-temporal covariances of the solution process. An example for possible further

applications is outlined in Section 3.4.2.

In the context of the Malliavin calculus approach to weak error analysis reviewed in Section 1.3

above, we establish in Theorem 4.4.3 below a weak error estimate concerning path-dependent

weak approximation errors of type (1.1.5) for the mild solutions X of SPDEs with multiplicative

noise of type (1.1.1), spectral Galerkin projections X̃ of X, and a general class of path-dependent

functionals f : Lq(µ;H)→ R defined on the space Lq(µ;H) = Lq
(
[0, T ],B([0, T ]), µ;H

)
of paths

that are q-integrable w.r.t. a given finite Borel-measure µ on [0, T ] for a suitable integrability

parameter q ∈ (1, 2]. Here we assume that the linear operator A : D(A) ⊂ H → H in (1.1.1) is a

diagonal operator with eigenbasis (en)n∈N ⊂ H and associated sequence of eigenvalues (λn)n∈N

with supn∈N λn < 0, that the mappings F and B in (1.1.1) are Lipschitz continuous from H to

H−ϑ and from H to the space of Hilbert-Schmidt operators HS(U,H−ϑ/2), respectively for some

ϑ ∈ [0, 1), and that the initial condition ξ in (1.1.1) satisfies ξ ∈ Hρ for some ρ ∈ [0, 1 − ϑ).

By Hr, r ∈ R we denote a family of interpolation spaces associated to −A such that Hr =

D((−A)r) for all r ≥ 0; see Section 2.2 below for details. The spectral Galerkin projections

PNX = (PNX(t))t∈[0,T ], N ∈ N, of X are defined by the orthogonal projection operators

PN : H → H given by PNh =
∑N

n=1 〈h, en〉H en, h ∈ H, and the path-dependent test function f

is essentially assumed to be a twice continuously Fréchet differentiable mapping from Lq(µ;H)

to R with bounded first and second Fréchet derivatives, where q ∈ (1, 2] satisfies q < 1
ρ+ϑ/2 . In

this situation, Theorem 4.4.3 below establishes that there exists a constant M ∈ (0,∞) such

that ∣∣E [f(X)− f(PNX)]
∣∣ ≤M ‖Id−PN‖L(H,H−ρ) . (1.4.2)

Note that the term ‖Id−PN‖L(H,H−ρ) in the inequality above is finite. In particular, if the

sequence (λn)n∈N of eigenvalues of A is decreasing with limn→∞ λn = −∞, we have

‖Id−PN‖L(H,H−ρ) = (−λN+1)−ρ.
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It turns out that the rate of weak convergence is as expected twice the rate of strong convergence;

compare Remark 4.4.4 below.

Compared with the path-dependent weak error results obtained within the duality approach

in [1, 4], the strategy of the proof of our weak error result in Theorem 4.4.3 allows to cover a

more general class of path-dependent functionals, but we focus on Galerkin projections instead

of implementable discretizations. The starting point of our proof is to replace the ansatz (1.3.1)

by

E
[
f(X)− f(X̃)

]
=

∫ 1

0
E
〈
f ′
(
θX + (1− θ)X̃

)
, X − X̃

〉
L2(µ;H)

dθ,

with X̃ = PNX. Here for every x ∈ L2(µ;H) the Fréchet derivative f ′(x) : Lq(µ;H) → R,

is interpreted as an element f ′(x) ∈ L2(µ;H) by means of the embedding L
(
Lq(µ;H),R

)
⊂

L
(
L2(µ;H),R

)
and an application of the Riesz isomorphism. A challenging task is then to

derive suitable Malliavin regularity results for X to be considered as a random variable in the

path space. For this we extend the Malliavin regularity results in [22] in a way that fits our

purpose. Compared with the weak error analysis in [9], Theorem 4.4.3 covers a less general class

of functions but allows for multiplicative noise instead of only additive noise.

The structure of this thesis is as follows: In Chapter 2 we give a short review of mathematical

definitions and preliminary results from the literature. This chapter is divided in the topics

mathematical analysis, linear operators, Gâteaux and Fréchet derivatives, and stochastic anal-

ysis.

Chapter 3 contains our path-dependent mild Itô formula. This chapter begins with our setting

and assumptions. In Section 3.2 we state our path-dependent mild Itô formula in Theorem

3.2.2. Then we discuss a comparison with related Itô-type formulas from the literature. In

Section 3.3, we prove our path-dependent mild Itô formula. As an exemplary application, we

show in Section 3.4.1 an upper bound for the weak error of approximations of spatio-temporal

covariances of the solution process of a semilinear SPDE with multiplicative noise. In Section

3.4.2, we discuss a possible further application of our path-dependent mild Itô formula to linear

SPDEs and the associated Kolmogorov equations.

In Chapter 4 we study the weak convergence rate for Galerkin projections of sample paths of

mild solutions of nonlinear SPDEs with multiplicative Gaussian noise via Malliavin calculus.

The approach applied in this chapter is inspired by [2] and [1]. Our setting in this chapter is

mostly based on [22, Section 3]. After a short review of Malliavin calculus in Hilbert spaces in

Section 4.2, we investigate the Malliavin regularity of mild solutions of SPDEs in Section 4.3.

In Section 4.4 we state our weak error result in Theorem 4.4.3.





Chapter 2

Preliminaries

In this chapter we state the necessary notations, definitions and preparatory results that we use

later in this thesis. We present the auxiliary results concerning mathematical analysis in Section

2.1 and concerning linear functions in Section 2.2 . In Section 2.3, we review the definitions

of Gâteaux and Fréchet derivatives and we develop our setting regarding stochastic analysis in

infinite dimensions in Section 2.4.

2.1 Some concepts from mathematical analysis

For a set A we denote its power set by P(A). The Borel σ-algebra associated to a topological

space (E, E) is denoted by B(E). If n ∈ N and A ∈ B(Rn), we denote by λn
∣∣
A

: B(A) → [0,∞]

the Lebesgue-Borel measure on A. For the case n = 1 we simply use λ instead of λ1. A measure

µ on (A,B(A)) is called finite Borel measure if µ(A) <∞.

For Banach spaces (E, ‖·‖E) and (K, ‖·‖K) we denote by C(E,K) the space of continuous

mappings from E to K. Recall that C(E,K) equipped with the uniform-norm, i.e., ‖f‖∞ =

supx∈E ‖f(x)‖K , f ∈ C(E,K), is a Banach space. We denote by Lip(E,K) the space of all

continuous mappings f : E → K with

|f |Lip(E,K) := sup
x,y∈E, x6=y

‖f(x)− f(y)‖K
‖x− y‖E

<∞.

We also use the norm ‖f‖Lip(E,K) = ‖f(0)‖K + |f |Lip(E,K).

To define the integral of operator-valued functions, we first need the definition of strong mea-

surability. Roughly speaking, strongly measurable functions are those functions which can be

pointwise approximated by simple functions. Recall that simple functions are functions with

finite image set. For details see, e.g., Section 2.3 in [30].

15
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Definition 2.1.1. We call a real Banach space (E, ‖·‖E) separable if there exists countable set

A ⊂ E such that the closure of A is equal to E.

Definition 2.1.2. Let (E, ‖·‖E) and (K, ‖·‖K) be real Banach spaces and let (Ω,A) be a

measurable space. A function f : Ω → E is called A-strongly measurable if it is A-B(E)-

measurable and f(Ω) ⊂ E is separable. Moreover, an operator-valued function F : Ω→ L(E,K)

is called E-strongly measurable if for all x ∈ E, the K-valued mapping F (·)x : Ω → K, ω 7→
F (ω)x, is A-strongly measurable.

The procedure of defining an integral for Banach space-valued functions, also called the Bochner

integral, is similar to the real-valued case, however, the measurability is replaced by strong

measurability. For details see, e.g., Appendix A in [42]. In the following we introduce the set

of Bochner-integrable functions.

Definition 2.1.3. Let (E, ‖·‖E) be a real Banach space, let (Ω,A, µ) be a measure space and

let p ∈ (0,∞). Then we denote by L p
(
Ω,A, µ;E

)
the space of A-strongly measurable mappings

f : Ω→ E with the property that ∫
Ω
‖f(x)‖pE µ(dx) <∞.

Moreover, the space of equivalence classes of mappings f ∈ L p
(
Ω,A, µ;E

)
, which coincide µ-

almost everywhere is denoted by Lp
(
Ω,A, µ;E

)
or simply by Lp

(
µ;E

)
if it causes no confusion.

Recall that for p ∈ [1,∞) the space Lp
(
µ;E

)
equipped with the norm

‖f‖Lp(µ;E) =
(∫

Ω
‖f(x)‖pE µ(dx)

)1/p
, f ∈ Lp

(
µ;E

)
is a Banach space.

2.2 Linear functions in Banach spaces

Let (E, ‖·‖E) and (K, ‖·‖K) be real Banach spaces. We denote the space of linear operators

from U ⊂ E to K by Lin(U,K) and for the domain of a linear operator A we write D(A).

Moreover, we denote the space of bounded linear operators from E to K by L(E,K). We write

L(E) for L(E,E) and IdE (or simply Id if no confusion arises) for the identity operator on E.

This section is mainly based on [30].

Definition 2.2.1. The mapping B : E × E → K is called bilinear if for every x ∈ E the

mappings B(x, ·) : E → K and B(·, x) : E → K are linear. Moreover, B is called bounded if

‖B‖ = sup
x1,x2∈E,‖x1‖E=1=‖x2‖E

‖B(x1, x2)‖K <∞,
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so that

‖B(x1, x2)‖K ≤ ‖B‖ · ‖x1‖E · ‖x2‖E ∀x1, x2 ∈ E.

The space of all bounded bilinear mappings from E × E to K is denoted by L(2)(E,K).

Definition 2.2.2. The space E∗ = L(E,R) of all real-valued bounded operators on E is called

the dual space of E.

We usually identify, via Riesz-isomorphism, the dual space of a real Hilbert space
(
U, ‖·‖U , 〈·, ·〉U

)
with U itself.

Definition 2.2.3. Let
(
U, ‖·‖U , 〈·, ·〉U

)
be a real Hilbert space and A : D(A) ⊂ U → U be a

linear operator. We call the operator A symmetric if for all u, v ∈ D(A) it holds that

〈Au, v〉U = 〈u,Av〉U .

Definition 2.2.4. Let
(
U, ‖·‖U , 〈·, ·〉U

)
and

(
H, ‖·‖H , 〈·, ·〉H

)
be real Hilbert spaces and A ∈

L(U,H). The Hilbert-adjoint operator of A, denoted by A∗ ∈ L(H,U), is the bounded linear

operator that satisfies

〈Au, h〉H = 〈u,A∗h〉U ∀u ∈ U, h ∈ H.

Definition 2.2.5. Let
(
U, ‖·‖U , 〈·, ·〉U

)
be a real Hilbert space and A : D(A) ⊂ U → U be an

linear operator. We call the operator A non-negative if 〈Au, u〉U ≥ 0 for all u ∈ D(A).

Definition 2.2.6. Let
(
U, ‖·‖U , 〈·, ·〉U

)
be a real Hilbert space and let U be an orthonormal

basis of U . Then we define the trace of A ∈ L(U) by trA =
∑

u∈U 〈Au, u〉U , given that the

series is convergent and its value does not depend on the choice of the orthonormal basis.

The definition of trace is not necessarily independent of the choice of the orthonormal basis.

In [51, Remark B.0.4], it is shown that the definition of trace for a special class of operators is

well-defined and independent of the choice of the orthonormal basis. This class of operators is

called the set of nuclear operators.

Definition 2.2.7. Let
(
U, ‖·‖U , 〈·, ·〉U

)
and

(
H, ‖·‖H , 〈·, ·〉H

)
be separable real Hilbert spaces.

An operator A ∈ L(U,H) is called nuclear if there exist sequences (aj)j∈N ⊂ H and (bj)j∈N ⊂ U
such that

Ax =

∞∑
j=1

aj 〈bj , x〉U ∀x ∈ U,

and
∞∑
j=1

‖aj‖H · ‖bj‖U <∞.
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Definition 2.2.8. Let
(
U, ‖·‖U , 〈·, ·〉U

)
and

(
H, ‖·‖H , 〈·, ·〉H

)
be separable real Hilbert spaces

and U be an orthonormal basis of U . A bounded linear operator A ∈ L(U,H) is called a Hilbert-

Schmidt operator if
∑

u∈U ‖Au‖
2
H < ∞. The space of Hilbert-Schmidt operators from U to H

is denoted by

HS(U,H) =
{
A ∈ L(U,H) :

∑
u∈U
‖Au‖2U <∞

}
.

The Hilbert-Schmidt norm on HS(U,H) is then defined by

‖A‖HS(U,H) =
(∑
u∈U
‖Au‖2H

)1/2
∀A ∈ HS(U,H).

Note that the Hilbert-Schmidt norm does not depend on the choice of the orthonormal basis;

see, e.g., [51, Remark B.0.6]. Furthermore, it is well-known (see, e.g., [51, Proposition B.0.7])

that HS(U,H) equipped with the inner product 〈L, T 〉HS(U,H) =
(∑

u∈U 〈Lu, Tu〉
2
U

)1/2
, with

L, T ∈ HS(U,H), is a separable real Hilbert space.

Diagonal operators

Next we introduce a class of linear operators and associated interpolation spaces, which will be

used later in our weak error rate results.

Definition 2.2.9. Let
(
H, ‖·‖H , 〈·, ·〉H

)
be a separable real Hilbert space. We call the linear

operator A : D(A) ⊂ H → H a diagonal linear operator on H if there exist a set I ⊂ N, a family

of real numbers (λi)i∈I , and an orthonormal basis (ei)i∈I of H such that

Av =
∑
i∈I

λi 〈ei, v〉H ei,

for all v ∈ D(A) =
{
v ∈ H :

∑
i∈I |λi|2| 〈ei, v〉H |2 <∞

}
.

Definition 2.2.10. Let
(
H, ‖·‖H , 〈·, ·〉H

)
be a separable real Hilbert space, let A be a diagonal

operator on H, let (λi)i∈I with infi∈I λi > 0 be the family of eigenvalues of A as in the definition

above, and let
(
Hr, 〈·, ·〉Hr , ‖·‖Hr

)
, r ∈ R, be real Hilbert spaces with the following properties

� ∀r, s ∈ R, r ≥ s : Hr ⊂ Hs ⊂ Hr
Hs

,

� ∀r ∈ [0,∞) :
(
D(Ar), 〈Ar(·), Ar(·)〉H , ‖Ar(·)‖H

)
=
(
Hr, 〈·, ·〉Hr , ‖·‖Hr

)
, and

� ∀r ∈ (−∞, 0], v ∈ H : ‖v‖Hr = ‖Arv‖H .

Then we call
(
Hr, 〈·, ·〉Hr , ‖·‖Hr

)
, r ∈ R, a family of interpolation spaces associated to A.
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Note that the functional powers Ar : D(Ar) ⊂ H → H, r ∈ [0,∞), of the operator A appearing

in Definition 2.2.10 above are defined in the usual way; see, e.g., [30, Section 3.6.3]. The existence

of interpolation spaces defined in Definition 2.2.10 above is shown in, e.g., [30, Theorem 3.6.29].

Semigroups of bounded linear operators

Definition 2.2.11. Let S : [0,∞)→ L(E) be a mapping with the property that for all t1, t2 ∈
[0,∞) it holds that

S(0) = IdE , and S(t1)S(t2) = S(t1 + t2).

Then we call S a semigroup of bounded linear operators on E.

There are different types of semigroups of bounded linear operators. For this work, however,

we need only the following type of semigroups.

Definition 2.2.12. A semigroup S of bounded linear operators on E is called a strongly con-

tinuous semigroup or C0-semigroup if for all v ∈ E it holds that limt→0 S(t)v = v.

Definition 2.2.13. Let S be a strongly continuous semigroup on E. A linear operatorA : D(A) ⊂
E → E is called the (infinitesimal) generator of S if

D(A) =
{
v ∈ E : lim

t↘0

S(t)v − v
t

exists
}
,

and it holds for all v ∈ D(A) that

Av = lim
t↘0

S(t)v − v
t

.

The proof of the lemma below can be found in, e.g., [30, Theorem 4.8.2] and [30, Theorem

4.8.5].

Lemma 2.2.14. Let
(
H, ‖·‖H , 〈·, ·〉H

)
be a separable real Hilbert space, let l ⊂ N, let (ei)i∈I ⊂

H be an orthonormal basis of H, let A be a diagonal operator on H, and let (λi)i∈I be a family

of numbers with supi∈I λi < 0 and with the property that

D(A) =

{
v ∈ H :

∑
i∈I
|λi|2| 〈ei, v〉H |

2 <∞

}

and such that for all v ∈ D(A) it holds thatAv =
∑
i∈I

λi 〈ei, v〉H ei. Furthermore, let
(
Hr, ‖·‖Hr , 〈·, ·〉Hr

)
,

r ∈ R, be a family of interpolation spaces associated to −A. Then
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(i) it holds for all r ∈ [0,∞) that

sup
t∈(0,∞)

∥∥(− tA)r etA∥∥
L(H)

≤
[r
e

]r
<∞,

(ii) it holds that A is the generator of the strongly continuous semigroup (etA)t≥0 on H and

it holds for all v ∈ ∪r∈RHr and t ∈ (0,∞) that

etAv =
∑
i∈I

etλi 〈ei, v〉H ei.

2.3 Differentiation of nonlinear functions on Banach spaces

Let (E, ‖·‖E) and (K, ‖·‖K) be real Banach spaces. In this section, we review, mainly based on

[57], two types of derivatives defined for functions on Banach spaces.

Definition 2.3.1. We call a mapping f : E → K Gâteaux differentiable on E if for each x ∈ E
there exists an operator Tx ∈ L(E,K) such that

lim
h→0

f(x+ hv)− f(x)

h
= Txv ∀v ∈ E. (2.3.1)

We write f ∈ G 1(E,K) if f is continuous, Gâteaux differentiable and the mapping T· : E →
L(E,K), x 7→ Tx, is strongly continuous, i.e., for every v ∈ E the mapping T·v : E → K,

x 7→ Txv, is continuous.

Definition 2.3.2. We call a mapping f : E → K Fréchet differentiable at point x ∈ E if the

convergence in (2.3.1) is uniformly on {v ∈ E : ‖v‖E ≤ 1}. We call the mapping f : E → K

Fréchet differentiable on E if it is Fréchet differentiable for all x ∈ E. In this case we denote

its Fréchet derivative by f ′ : E → L(E,K). If f ′ is Fréchet differentiable as well, then for

every x ∈ E the operator (f ′)′(x) : E → L(E,K) is a bounded linear operator, i.e., (f ′)′(x) ∈
L(E,L(E,K)). Therefore, for all v1, v2 ∈ E it holds that (f ′)′(x)(v1) ∈ L(E,K) and that

∥∥(f ′)′(x)(v1)(v2)
∥∥
K
≤
∥∥(f ′)′(x)(v1)

∥∥
L(E,K)

· ‖v2‖E ≤
∥∥(f ′)′(x)

∥∥
L(E,L(E,K))

· ‖v1‖E · ‖v2‖E .

Hence the mapping (v1, v2) 7→ (f ′)′(x)(v1)(v2) is a bounded bilinear mapping from E×E to K,

i.e., (f ′)′ ∈ L(2)(E,K). We use the notation f ′′ instead of (f ′)′ for the second Fréchet derivative

of f and the identification

(f ′)′(x)(v1)(v2) = f ′′(x)(v1, v2) ∀x, v1, v2 ∈ E.

For more details see [58, Section 4.6]. By C2(E,K) we denote the set of all mappings f : E → K,

which are 2-times continuously Fréchet differentiable.
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Remark 2.3.3. If f ∈ C2(E,K), then its second Fréchet derivative f ′′ is a symmetric bounded

bilinear operator and by symmetry we mean that

f ′′(x)(v1, v2) = f ′′(x)(v2, v1) ∀x, v1, v2 ∈ E.

A proof can be found in [58, Problem 4.10].

The following lemma states a second-order Taylor formula for Fréchet differentiable functions

on Banach spaces. A proof can be found in, e.g., [58, Theorem 4.C].

Lemma 2.3.4. Let f ∈ C2(E,K). Then it holds for all x, v ∈ E that

f(x+ v) = f(x) + f ′(x)(v) +
1

2
f ′′(x)(v, v) +

∫ 1

0
(1− θ)

[
f ′′(x+ θv)− f ′′(x)

]
(v, v) dθ.

2.4 Stochastic analysis in infinite dimensions

If T ∈ (0,∞) and
(
Ω,F , (Ft)t∈[0,T ],P

)
is a filtered probability space, we call the σ-field

PT =σ
({
Fs × (s, t] : 0 ≤ s < t ≤ T, Fs ∈ Fs

}
∪
{
F0 × {0} : F0 ∈ F0

})
=σ
(
Y : Ω× [0, T ]→ R : Y is left-continuous and adapted to (Ft)t∈[0,T ]

)
.

the predictable σ-field on Ω×[0, T ] and its elements are called predictable sets. A PT -measurable

process will be called predictable.

2.4.1 Conditional expectation in Banach spaces

In [51, Section 2.2], it is shown that, analogously to real-valued random variables, the conditional

expectation for Banach space-valued random variables are well-defined as well because the real-

valued conditional expectation operator is a positive operator.

Lemma 2.4.1. Let (E, ‖·‖E) be a separable real Banach space, let (Ω,F ,P) be a probability

space, let G ⊂ F be a σ-algebra and let X be a Bochner integrable E-valued random variable.

Then there exists a unique, up to a P-null set, Bochner integrable E-valued random variable Z,

measurable with respect to G, such that∫
A
X dP =

∫
A
Z dP ∀A ∈ G.
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The random variable Z is denoted by E
[
X
∣∣G] and is called the conditional expectation of X

given G. Furthermore, it holds P-almost surely that

∥∥E[X∣∣G]∥∥
E
≤ E

[
‖X‖E

∣∣G].
Proof. See [51, Proposition 2.2.1].

The following result is taken from Proposition 2.2.2 in [51].

Lemma 2.4.2. Let (M1,A1) and (M2,A2) be two measurable spaces, let Ψ: M1×M2 → R be

a bounded measurable mapping, let X1 and X2 be two random variables on a probability space

(Ω,F ,P) with values in (M1,A1) and (M2,A2), respectively and let G ⊂ F be an σ-algebra.

Assume that X1 is G-measurable and X2 is independent of G, then it holds that

E
[
Ψ(X1, X2)

∣∣G] = Ψ̂(X1),

where

Ψ̂(x) = E [Ψ(x,X2)] ∀x ∈M1.

2.4.2 Wiener processes and stochastic integration in Hilbert spaces

To develop our stochastic calculus, we review some definitions mainly from [51]. Our aim is to

introduce the stochastic integral with respect to a cylindrical Wiener process and then introduce

mild solutions of stochastic evolution equations. To do this, we first need to state the definition

of the stochastic integral with respect to a standard Q-Wiener process.

In this section we assume that T ∈ (0,∞),
(
Ω,F , (Ft)t∈[0,T ],P

)
is a filtered probability space,

and (U, 〈·, ·〉U , ‖·‖U ) and (H, 〈·, ·〉H , ‖·‖H) are infinite-dimensional separable real Hilbert spaces.

The finite-dimensional cases are then particular implications of the infinite-dimensional setting.

Standard Q-Wiener process

Definition 2.4.3. Let Q : U → U be a non-negative and symmetric linear operator with finite

trace and let (uk)k∈N be an orthonormal basis of U consisting of eigenvectors of Q corresponding

to real eigenvalues (λk)k∈N. We call the U -valued (Ft)-adapted stochastic process (W (t))t∈[0,T ]

a standard Q-Wiener process if:

� W (0) = 0,

� for all t1, t2 ∈ [0, T ] with t1 ≤ t2, σ
(
W (t2)−W (t1)

)
and Ft1 are independent,
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� for all t1, t2 ∈ [0, T ] with t1 ≤ t2 the random variable W (t2)−W (t1) has Gaussian distribu-

tion with mean 0 and covariance operator (t2−t1)Q, i.e., W (t2)−W (t1) ∼ N (0, (t2−t1)Q).

A representation of a standard Q-Wiener process is given in [51, Proposition 2.1.10].

Lemma 2.4.4. Let Q : U → U be a non-negative and symmetric linear operator with finite

trace and let (uk)k∈N be an orthonormal basis of U consisting of eigenvectors of Q corresponding

to real eigenvalues (λk)k∈N. Then a U -valued stochastic process (W (t))t∈[0,T ] is a standard Q-

Wiener process on U if and only if

W (t) =
∑
k∈N

√
λk βk(t)uk, (2.4.1)

where (βk(t))t∈[0,T ], k = 1, 2, . . ., are independent real-valued standard Brownian motions. The

series in (2.4.1) converges in L2(P;C([0, T ], U)) with the uniform norm on C([0, T ], U).

Stochastic integration with respect to a standard Q-Wiener Process

Note that for every non-negative symmetric L ∈ L(U), there exists a unique bounded linear

operator L1/2 : U → U with L = L1/2 ◦ L1/2. For more details see, e.g., [51, Proposition 2.3.4].

A predictable HS(Q1/2(U), H)-valued stochastic process
(
Φ(t)

)
t∈[0,T ]

is integrable with respect

to a standard Q-Wiener process (W (t))t∈[0,T ] if P
( ∫ T

0 ‖Φ(s)‖2HS(Q1/2(U),H) ds < ∞
)

= 1. Note

that the inner product of the subspace U0 := Q1/2(U) is given by

〈u0, v0〉U0
=
〈
Q−1/2u0, Q

−1/2v0

〉
U

, u0, v0 ∈ U0, where Q−1/2 is the pseudo inverse of Q1/2 in the

case that Q is not one to one. According to [21, Proposition C.3], (U0, 〈·, ·〉U0
) is a separable

real Hilbert space. The construction of the stochastic integral is explained in, e.g., [51, Section

2.3.2].

The following result is the aforementioned Itô isometry and is taken from [30, Theorem 6.3.29].

Lemma 2.4.5. Let Q : U → U be a non-negative and symmetric linear operator with fi-

nite trace, let (W (t))t∈[0,T ] be a standard Q-Wiener process defined on the filtered probabil-

ity space
(
Ω,F , (Ft)t∈[0,T ],P

)
and let Φ: Ω × [0, T ] → HS(Q1/2(U), H) be predictable with

E
∫ T

0 ‖Φ(s)‖2HS(Q1/2(U),H) ds <∞. Then it holds for all t ∈ [0, T ] that

E

[∥∥∥∥∫ t

0
Φ(s) dW (s)

∥∥∥∥2

H

]
= E

[∫ t

0
‖Φ(s)‖2HS(Q1/2(U),H) ds

]
,

and E
[∫ t

0 Φ(s) dW (s)
]

= 0.
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Cylindrical Wiener process

In many situations one is interested in cases where Q does not have finite trace, for example the

identity operator. In such cases, the series in (2.4.1) is not convergent in L2(P;C([0, T ], U)) any

more. This problem can be solved by introducing the concept of cylindrical Wiener processes.

Definition 2.4.6. Let Q : U → U be a non-negative and symmetric linear operator, let U0 =

Q1/2 U and let (ek)k∈N be an orthonormal basis of U0. Suppose that there exists a further

Hilbert space (U1, 〈·, ·〉U1
, ‖·‖U1

) and a Hilbert-Schmidt embedding J : U0 → U1. The operator

Q1 = JJ∗ is then non-negative and symmetric with finite trace. Then by a cylindrical Q-Wiener

process we mean actually the standard Q1-Wiener process on U1, and it can be represented (see,

e.g., [51, Proposition 2.5.2]) by

W (t) =
∑
k∈N

βk(t) Jek, (2.4.2)

with convergence in L2(P;C([0, T ], U1)). Note that (W (t))t∈[0,T ] takes values in the larger space

U1 instead of U .

Moreover, note that (U1, 〈·, ·〉U1
, ‖·‖U1

) and J in the Definition 2.4.6 above always exist. For in-

stance, choose U1 = U and (αk)k∈N such that
∑

k∈N α
2
k < ∞ and define

J(u) =
∑

k∈N αk 〈u, ek〉U0
ek, for all u ∈ U0; see [51, Remark 2.5.1].

Stochastic integration with respect to a cylindrical Q-Wiener Process

Assume the setting in Definition 2.4.6. We say a predictable HS(Q
1/2
1 (U1), H)-valued stochastic

process
(
Φ(t)

)
t∈[0,T ]

is integrable with respect to the cylindrical Q-Wiener process (W (t))t∈[0,T ] if

P
( ∫ T

0 ‖Φ(s)‖2
HS(Q

1/2
1 (U1),H)

ds <∞
)

= 1, and we basically integrate with respect to the standard

Q1-Wiener process defined on U1.

It is important to know that the definition of the stochastic integral
∫ ·

0 Φ(s)dW (s) is independent

of the choice of U1 and J , see [51, Remark 2.5.3].

For this thesis, the cylindrical IdU -Wiener process is of most interest. In this case, U0 =

Id
1/2
U (U) = U and the representation in (2.4.2) reads

W (t) =
∑
k∈N

βk(t) Juk, (2.4.3)

with (uk)k∈N being an orthonormal basis of U and the series converging in L2(P;C([0, T ], U1)).

The stochastic integral
∫ ·

0 Φ(s)dW (s) is then well-defined for all Φ: Ω× [0, T ]→ HS(U,H) such

that Φ is predictable and P
( ∫ T

0 ‖Φ(s)‖2HS(U,H) ds <∞
)

= 1. Indeed, by [16, Proposition 4.7] it

holds that Q
1/2
1 (U1) = U .
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The representation in (2.4.3) and the definition in [51, Equation (2.5.2)] ensure that there exists

a family of independent real-valued Brownian motions (β(t))t∈[0,T ], k ∈ N such that for all

predictable
(
Φ(t)

)
t∈[0,T ]

with P
( ∫ T

0 ‖Φ(s)‖2HS(U,H) ds <∞
)

= 1 and all t ∈ [0, T ] it holds that

∫ t

0
Φ(s)dW (s) =

∑
k∈N

∫ t

0
Φ(s)uk dβk(s), (2.4.4)

where the series above converges in L2(P;C([0, T ], H)). If further E[
∫ T

0 ‖Φ(s)‖2HS(U,H) ds] <∞
then, analogously to Lemma 2.4.5, it holds that

E

[∥∥∥∥∫ t

0
Φ(s) dW (s)

∥∥∥∥2

H

]
= E

[∫ t

0
‖Φ(s)‖2HS(U,H) ds

]
∀t ∈ [0, T ],

and

E

[∫ t

0
Φ(s) dW (s)

]
= 0 ∀t ∈ [0, T ].

2.4.3 A class of stochastic evolution equations

Assumption 2.4.7. Let T ∈ (0,∞), let
(
Ω,F , (Ft)t∈[0,T ],P

)
be a filtered probability space, let

the filtration (Ft)t∈[0,T ] satisfy the usual conditions, and let
(
U, ‖·‖U , 〈·, ·〉U

)
and

(
H, ‖·‖H , 〈·, ·〉H

)
be separable real Hilbert spaces. Furthermore, let the stochastic process W = (W (t))t∈[0,T ] be

an (Ft)-adapted cylindrical IdU -Wiener process, let A : D(A) ⊂ H → H be the generator of

strongly continuous semigroup (etA)t≥0 ⊂ L(H) and let F : H → H and B : H → L(U,H) be

measurable and strongly measurable mappings, respectively.

This section is based on Chapter 2 in [21] and Appendix G in [42] and we introduce different

types of solutions of the following stochastic evolution equationdX(t) =
[
AX(t) + F (X(t))

]
dt+B(X(t)) dW (t), t ∈ [0, T ]

X(0) = ξ ∈ L2
(
Ω,F0,P;H

)
.

(2.4.5)

Definition 2.4.8. Let Assumption 2.4.7 be fulfilled. We call an H-valued predictable stochastic

process X = (X(t))t∈[0,T ]

(i) an (analytically) strong solution of (2.4.5) if

(a) it holds P(dω)⊗ dt-almost everywhere that X(ω, t) ∈ D(A),

(b) (AX(t))t∈[0,T ] and (F (X(t)))t∈[0,T ] are P-a.s. Bochner-integrable and (B(X(t)))t∈[0,T ]

is integrable with respect to the cylindrical IdU -Wiener process (W (t))t∈[0,T ],
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(c) for every t ∈ [0, T ], it holds P-a.s. that

X(t) = ξ +

∫ t

0

[
AX(s) + F (X(s))

]
ds+

∫ t

0
B(X(s)) dW (s),

(ii) an (analytically) weak solution of (2.4.5) if for every h ∈ D(A∗) and t ∈ [0, T ] it holds

P-a.s. that

〈X(t), h〉H = 〈ξ, h〉H +

∫ t

0

[
〈X(s), A∗h〉H + 〈F (X(s)), h〉H

]
ds

+

∫ t

0
〈h,B(X(s)) dW (s)〉H .

(2.4.6)

In particular, the integrals in (2.4.6) above have to be well-defined.

(iii) a mild solution of (2.4.5) if for all t ∈ [0, T ] it holds P-a.s. that

X(t) = etAξ +

∫ t

0
e(t−s)AF (X(s)) ds+

∫ t

0
e(t−s)AB(X(s)) dW (s). (2.4.7)

In particular, the integrals in (2.4.7) above have to be well-defined.

It is remarkable that every strong solution of (2.4.5) is also a weak solution. Moreover, if

(X(t))t∈[0,T ] is a weak solution of (2.4.5), B(X(t))t∈[0,T ] takes values in HS(U,H) and

P
(∫ T

0
‖X(s)‖H + ‖F (X(s))‖H + ‖B(X(s))‖2HS(U,H) ds <∞

)
= 1,

then the process is also a mild solution. For details see, e.g., [42, Proposition G.0.5].

Definition 2.4.9. Let T ,
(
Ω,F , (Ft)t∈[0,T ],P

)
, U , H, and W = (W (t))t∈[0,T ] be taken from As-

sumption 2.4.7. Additionally, let S : {(τ, σ) ∈ [0, T ]2 : σ ≤ τ} → L(H) be a strongly measurable

mapping satisfying S(t, s)S(s, r) = S(t, r) for all 0 ≤ r ≤ s ≤ t ≤ T and let Ψ: [0, T ]× Ω→ H

and strongly measurable Φ: [0, T ]× Ω→ L(U,H) be two predictable stochastic processes with

∀t ∈ [0, T ] :

∫ t

0

(
‖S(t, s)Ψ(s)‖H + ‖S(t, s)Φ(s)‖2HS(U,H)

)
ds <∞ P-a.s.

Then a predictable stochastic process X : [0, T ]× Ω→ H satisfying

∀t ∈ [0, T ] : X(t) = S(t, 0)X(0) +

∫ t

0
S(t, s)Ψ(s)ds+

∫ t

0
S(t, s)Φ(s)dW (s) P-a.s.,

is called a mild Itô process.



Chapter 3

On path-dependent Itô calculus in

infinite-dimensional Hilbert spaces

This chapter contains our path-dependent mild Itô formula and begins with our setting and

assumptions. In Section 3.2 we state our path-dependent mild Itô formula in Theorem 3.2.2.

Then we discuss a comparison with related Itô-type formulas from the literature. In Section 3.3,

we prove our path-dependent mild Itô formula. As an exemplary application, we show in Section

3.4.1 an upper bound for the weak error of approximations of spatio-temporal covariances of

the solution process of a semilinear SPDE with multiplicative noise. In Section 3.4.2, we discuss

a possible further application of our path-dependent mild Itô formula to linear SPDEs and the

associated Kolmogorov equations. In Section 3.5 we collect some technical results mostly used

in the proof of Theorem 3.2.2 below.

3.1 Preliminaries

For T ∈ (0,∞) and a separable real Hilbert space
(
H, ‖·‖H , 〈·, ·〉H

)
, we denote by D([0, T ], H)

the space of H-valued right-continuous with left limits (càdlàg) paths endowed with the uniform-

norm ‖·‖D([0,T ],H) given by ‖x‖D([0,T ],H) = sups∈[0,T ] ‖x(s)‖H , x ∈ D([0, T ], H). If further

(E, ‖·‖E) is a real Banach space, we denote by C
(
[0, T ]×D([0, T ], H), E

)
the set of all continuous

functions on [0, T ]×D([0, T ], H) with values in E. Given a function f : [0, T ]×D([0, T ], H)→ E,

then the mapping ∂+
1 f : [0, T )×D([0, T ], H)→ E defined by

∂+
1 f(t0, x0) = lim

h→0+

f(t0 + h, x0)− f(t0, x0)

h
, (t0, x0) ∈ [0, T ]×D([0, T ], H),

is the right-sided derivative with respect to time parameter t, if the above limit exists. By

∂2f(t0, x0) and ∂2
2f(t0, x0) we denote, if they exist, the first and second Fréchet derivatives of

27
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the mapping f(t0, ·) : D([0, T ], H) → E at x0. Note that ∂2f(t0, x0) ∈ L
(
D([0, T ], H), E

)
and

∂2
2f(t0, x0) ∈ L

(
L(D([0, T ], H), E), E

)
. If the function f depends only on the variable x then

we denote its first and second Fréchet derivatives with the conventional notation f ′ and f ′′,

respectively.

Setting and assumptions

In the following we introduce the assumptions employed throughout this chapter.

Consider the stochastic process X = (X(t))t∈[0,T ] given by

X(t) = S(t, 0)X(0) +

∫ t

0
S(t, s)Ψ(s)ds+

∫ t

0
S(t, s)Φ(s)dW (s), t ∈ [0, T ], (3.1.1)

where we assume the following:

Assumption 3.1.1 (Process X).

(i) Let T ∈ (0,∞) and let
(
Ω,F , (Ft)t∈[0,T ],P

)
be a filtered probability space such that the

filtration (Ft)t∈[0,T ] satisfies the usual conditions.

(ii) Let U and H be separable real Hilbert spaces and let W = (W (t))t∈[0,T ] be an (Ft)-adapted

cylindrical IdU -Wiener process.

(iii) Let S = (S(t, s))0≤s≤t≤T be a strongly continuous evolution family on H, i.e., for all

0 ≤ r ≤ s ≤ t ≤ T it holds that

S(t, s) ∈ L(H), S(t, t) = IdH , S(t, r) = S(t, s)S(s, r),

and for all h ∈ H the mapping (τ, σ) 7→ S(τ, σ)h is continuous from {(τ, σ) ∈ [0, T ]2 : σ ≤
τ} to H.

(iv) Let the stochastic processes Ψ: [0, T ]×Ω→ H and Φ: [0, T ]×Ω→ HS(U,H) be predictable

mappings such that the following assumption is fulfilled:∫ T

0

(
‖Ψ(s)‖H + ‖Φ(s)‖2HS(U,H)

)
ds <∞ P-a.s.

(v) Let X(0) : Ω→ H be F0-measurable.

(vi) Assume that the process X defined by (3.1.1) admits a modification with continuous

sample paths [0, T ] 3 t 7→ X(ω, t) ∈ H, ω ∈ Ω.
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Note that, as a consequence of the uniform boundedness principle, we have that

sup
0≤s≤t≤T

‖S(t, s)‖L(H) <∞. (3.1.2)

Therefore, the integrals in (3.1.1) are well-defined. Indeed, for all t ∈ [0, T ] we have that∫ t

0

(
‖S(t, s)Ψ(s)‖H + ‖S(t, s)Φ(s)‖2HS(U,H)

)
ds <∞ P-a.s.

Moreover, note that, due to items (iii), (iv), and (vi) above, the H-valued processes( ∫ t
0 S(t, s)Ψ(s)ds

)
t∈[0,T ]

and
( ∫ t

0 S(t, s)Φ(s)dW (s)
)
t∈[0,T ]

admit continuous modifications. In

the sequel, we will always consider these specific modifications without explicit mentioning it.

Example 3.1.2 (Mild solutions of SEEs). Let Assumption 2.4.7 be fulfilled and assume further

that F : H → H and B : H → HS(U,H) are globally Lipschitz continuous. Consider the

following stochastic evolution equationdX(t) =
[
AX(t) + F

(
X(t)

)]
dt+B

(
X(t)

)
dW (t), t ∈ [0, T ]

X(0) = ξ ∈ L2
(
Ω,F0,P;H

)
.

(3.1.3)

In [42, proof of Theorem 6.2.3] it is shown that there exists a unique predictable mild solution

of SEE (3.1.3), i.e.,

X(t) = S(t)ξ +

∫ t

0
S(t− s)F

(
X(s)

)
ds+

∫ t

0
S(t− s)B

(
X(s)

)
dW (s).

Moreover, due to [42, Lemma 6.2.9] and [42, Proposition 6.3.5], the process (X(t))t∈[0,T ] has

a continuous modification. Therefore the conditions in Assumption 3.1.1 are fulfilled with

S(t, s) = S(t − s), Ψ(s) = F (X(s)), and Φ(s) = B(X(s)) for 0 ≤ s ≤ t ≤ T in the notation of

Assumption 3.1.1.

Example 3.1.3. Assume the setting from Example 3.1.2 above. It is well-known; see, e.g.,

[15], that the linear implicit Euler approximations of the mild solution of the SEE (3.1.3),(
Y N (t)

)
t∈{0, T

N
,...,T}, given by

Y N
((n+ 1)T

N

)
=
(
I − T

N
A
)−1

(
Y N
(nT
N

)
+
T

N
· F
(
Y N
(nT
N

))
+B

(
Y N
(nT
N

))(
W
((n+ 1)T

N

)
−W

(nT
N

)))
,
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with Y N (0) = ξ, n = 0, 1, . . . , N − 1, N ∈ N, have continuous interpolations

Y N (t) = SN (t, 0)ξ +

∫ t

0
SN (t, bscN )F

(
Y N (bscN )

)
ds+

∫ t

0
SN (t, bscN )B

(
Y N (bscN )

)
dW (s)

= SN (t, 0)ξ +

∫ t

0
SN (t, s)

(
I −A(s− bscN )

)−1
F
(
Y N (bscN )

)
ds

+

∫ t

0
SN (t, s)

(
I −A(s− bscN )

)−1
B
(
Y N (bscN )

)
dW (s),

where
(
SN (t, s)

)
0≤s≤t≤T ⊂ L(H) is given by

SN (t2, t1) =
(
I − (t1 − bt1cN )A

)(
I − (t2 − bt2cN )A

)−1(
I − T

N
A
)(bt1cN−bt2cN )N

T
,

for all t1, t2 ∈ [0, T ] with t1 < t2, all N ∈ N, and

btcN : = max
{
s ∈

{
0,
T

N
,
2T

N
, . . . ,

(N − 1)T

N
, T
}

: s ≤ t
}
,

for all t ∈ [0, T ]. Note that the semigroup (SN (t2, t1))0≤t1≤t2≤T depends explicitly on both

variables t1 and t2 instead of the difference t2 − t1.

Example 3.1.4. Let Assumption 2.4.7 be fulfilled. Furthermore, let (en)n∈N be an orthonormal

basis of H, let (λn)n∈N ⊂ (0,∞) be an increasing sequence, and let the diagonal operator

A : D(A) ⊂ H → H be such that D(A) =
{
w ∈ H :

∑
n∈N |λn|2| 〈en, w〉H |2 <∞

}
and for

all n ∈ N it holds that Aen = −λnen. For N ∈ N, let (PN )N∈N ⊂ L(H) satisfy PN (v) =∑N
n=1 〈en, v〉H en for all v ∈ H, and let XN : [0, T ] × Ω → PN (H) be a continuous analytically

strong solution of

dXN (t) =
[
PNAX

N (t) + PNF (XN (t))
]
dt+ PNB(XN (t))dW (t),

XN (0) = PNξ.

The process XN =
(
XN (t)

)
t∈[0,T ]

is called spatial spectral Galerkin approximation [13], which

satisfies Assumption 3.1.1 with

S(t, s) = ePNA(t−s), Ψ(s) = PNF
(
XN (s)

)
, Φ(s) = PNB(XN (s)), and X(0) = PNξ.

In the following we formulate our assumptions on the path-dependent functionals.

Assumption 3.1.5 (Functional f).

(i) Let (V, ‖·‖V ) be a separable real Hilbert space and let f : [0, T ] × D([0, T ], H) → V be

a mapping, where T ∈ (0,∞) and the separable real Hilbert space H are taken from

Assumption 3.1.1.
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(ii) Assume at each (t, x) ∈ [0, T )×D([0, T ], H), the right-sided derivative ∂+
1 f(t, x) ∈ V and

at each (t, x) ∈ [0, T ]×D([0, T ], H) the Fréchet derivatives ∂2f(t, x) ∈ L(D([0, T ], H), V )

and ∂2
2f(t, x) ∈ L(2)(D([0, T ], H), V ) exist.

(iii) Let the mappings f : [0, T ]×D([0, T ], H)→ V , ∂+
1 f : [0, T )×D([0, T ], H)→ V , ∂2f : [0, T ]×

D([0, T ], H) → L(D([0, T ], H), V ) and ∂2
2f : [0, T ] ×D([0, T ], H) → L(2)(D([0, T ], H), V )

be continuous and stay bounded on bounded subsets of [0, T ]×D([0, T ], H).

(iv) If (hn)n∈N and (gn)n∈N are bounded sequences in D([0, T ], H) and h, g ∈ D([0, T ], H) are

such that for all s ∈ [0, T ] it holds that lim
n→∞

hn(s) = h(s) and lim
n→∞

gn(s) = g(s), let it

hold for all (t, x) ∈ [0, T ]×D([0, T ], H) that

∂2f(t, x)hn
n→∞−−−→ ∂2f(t, x)h (limit in V ),

and

∂2
2f(t, x)(gn, hn)

n→∞−−−→ ∂2
2f(t, x)(g, h) (limit in V ).

Note that if a functional f satisfies the conditions in Assumption 3.1.5 above, then its second

Fréchet derivative ∂2
2f is a symmetric bounded bilinear operator; for details see Remark 2.3.3.

Example 3.1.6. (i) Let T, V and H be as in Assumption 3.1.5, and let g : [0, T ]×Hm → V ,

(t, (h1, . . . , hm)) 7→ g(t, (h1, . . . , hm)), be continuous and twice continuously Fréchet dif-

ferentiable with respect to (h1, . . . , hm). Moreover, assume that the right-sided deriva-

tive ∂+
1 g(t, (h1, . . . , hm)) exists for all t ∈ [0, T ), (h1, . . . , hm) ∈ Hm, that the map-

ping ∂+
1 g : [0, T ) × Hm → V is continuous, and that ∂2g, ∂2

2g and ∂+
1 g are bounded

on bounded subsets of [0, T ] × Hm and [0, T ) × Hm, respectively. Then the functional

f : [0, T ]×D([0, T ], H)→ V defined by

f(t, x) = g(t, x(s1), . . . , x(sn))

satisfies the conditions in Assumption 3.1.5. Indeed, note that

∂+
1 f(t, x) =

∂+g
(
t,
(
x(s1), . . . , x(sm)

))
∂t

,

for all (t, x) ∈ [0, T )×D([0, T ], H) and that

∂2f(t, x)(y) = ∂2g
(
t,
(
x(s1), . . . , x(sm)

))(
y(s1), . . . , y(sm)

)
,

∂2
2f(t, x)(y, z) = ∂2

2g(t, x(s1), . . . , x(sm))
(
y(s1), . . . , y(sm), z(s1), . . . , z(sm)

)
,

for all t ∈ [0, T ], x, y, and z ∈ D([0, T ], H).

(ii) Let T, V and H be as in Assumption 3.1.5, let µ be a finite Borel-measure on [0, T ], and

let g : [0, T ]× [0, T ]×H → V , (t, s, h) 7→ g(t, s, h), satisfy the following conditions:
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(a) For all (t, s) ∈ [0, T ]2, the function g(t, s, ·) : H → V is two times continuously

Fréchet differentiable.

(b) There exists a µ-measurable function G : [0, T ]× [0, T ]→ R such that for all s, t ∈
[0, T ] and all h, h1, h2 ∈ H with max{‖h1‖H , ‖h2‖H} ≤ 1 it holds that G(t, ·) is

µ-integrable and that

max
{
‖g(t, s, h)‖V ,

∥∥∥∂g((t, s, h)
∂x

(h1)
∥∥∥
V
,
∥∥∥∂2g

(
(t, s, h

)
∂x2

(h1, h2)
∥∥∥
V

}
≤ G(t, s).

Then the functional f : [0, T ]×D([0, T ], H)→ V defined by

f(t, x) =

∫
[0,T ]

g(t, s, x(s))µ(ds)

satisfies the conditions in Assumption 3.1.5. Indeed, note that

∂+
1 f(t, x) =

∫
[0,T ]

∂+g(t, s, x(s))

∂t
µ(ds),

for all (t, x) ∈ [0, T )×D([0, T ], H) and that

∂2f(t, x)(y) =

∫
[0,T ]

∂g
(
t, s, x(s)

)
∂x

(
y(s)

)
µ(ds), and

∂2
2f(t, x)(y, z) =

∫
[0,T ]

∂2g
(
(t, s, x(s)

)
∂x2

(
y(s), z(s)

)
µ(ds),

for all t ∈ [0, T ], x, y, and z ∈ D([0, T ], H) as a consequence of the assumptions on g and

the dominated convergence theorem. See Lemma 3.5.4 below for details.

3.2 A path-dependent mild Itô formula

In this section, we introduce a path-dependent mild Itô formula in infinite-dimensional Hilbert

spaces. In order to prove our path-dependent mild Itô formula, Theorem 3.2.2 below, we

introduce a perturbation of the trajectories of X = (X(t))t∈[0,T ], in (3.2.1) below.

Let Assumption 3.1.1 be given, let X = (X(t))t∈[0,T ] be the H-valued mild Itô process given by

(3.1.1), and set for all t, r ∈ [0, T ]

XS
t (r) =

X(r) if r ∈ [0, t),

S(r, t)X(t) if r ∈ [t, T ].
(3.2.1)
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Then we have that

XS
t (r) = S(r, 0)X(0) +

∫ r∧t

0
S(r, s)Ψ(s)ds+

∫ r∧t

0
S(r, s)Φ(s)dW (s). (3.2.2)

It is clear that, under Assumption 3.1.1, for all t ∈ [0, T ] and P-a.e. ω ∈ Ω the trajectories

[0, T ] 3 r 7→ XS
t (r, ω) ∈ H of the H-valued process (XS

t (r))r∈[0,T ] are continuous, and therefore

XS = (XS
t )t∈[0,T ] is a stochastic process with values in C([0, T ], H) ⊂ D([0, T ], H). Moreover,

note that XS
T (r) = X(r) for all r ∈ [0, T ].

Lemma 3.2.1. Let Assumption 3.1.1 be fulfilled, let the H-valued process (X(t))t∈[0,T ] be

given by (3.1.1), and let the C([0, T ], H)-valued process (XS
t )t∈[0,T ] be given by (3.2.2). Then

the trajectories [0, T ] 3 t 7→ XS
t (·, ω) ∈ C([0, T ], H), ω ∈ Ω, are continuous. Here and below

we denote for every (t, ω) ∈ [0, T ] × Ω by XS
t (·, ω) ∈ C([0, T ], H) the mapping [0, T ] 3 s 7→

XS
t (s, ω) ∈ H.

Proof. We show the continuity at a fixed point t0 ∈ [0, T ]. To this end, we use the fact that for

all x ∈ C([0, T ], H) the mapping

{
(t, s) ∈ [0, T ]2 : s ≤ t

}
3 (t, s) 7→ S(t, s)x(s) ∈ H

is uniformly continuous, see Lemma 3.5.1 below for details. As a consequence, for t > t0 it holds

that ∥∥XS
t −XS

t0

∥∥
C([0,T ],H)

= sup
r∈[0,T ]

∥∥XS
t (r)−XS

t0(r)
∥∥
H

≤ sup
r∈[t0,t]

∥∥S(r, r)X(r)− S(r, t0)X(t0)
∥∥
H

+ sup
r∈[t,T ]

∥∥S(r, t)X(t)− S(r, t0)X(t0)
∥∥
H

goes to zero as t decreases to t0. Therefore, the mapping t 7→ XS
t (·, ω) is right-continuous at t0

for all ω ∈ Ω. The left-continuity can be shown in the similar way: For t < t0, observe that

∥∥XS
t −XS

t0

∥∥
C([0,T ],H)

≤ sup
r∈[t,t0]

∥∥S(r, t)X(t)− S(r, r)X(r)
∥∥
H

+ sup
r∈[t0,T ]

∥∥S(r, t)X(t)− S(r, t0)X(t0)
∥∥
H

goes to zero as t increases to t0. This implies the assertion.

We are now able to present our path-dependent mild Itô formula:

Theorem 3.2.2. Let Assumption 3.1.1 be fulfilled, let (X(t))t∈[0,T ] be given by (3.1.1), and

let f : [0, T ]×D([0, T ], H)→ V satisfy Assumption 3.1.5. Moreover, let the C([0, T ], H)-valued
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process (XS
t )t∈[0,T ] be given by (3.2.2) and let U be an orthonormal basis of U . Then it holds

P-a.s. that∫ T

0

{∥∥∂+
1 f(s,XS

s )
∥∥
V

+
∥∥∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Ψ(s)

)∥∥
V

+
∥∥∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)

)∥∥2

HS(U,V )

+
∑
u∈U

∥∥∂2
2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)u,1[s,T ](·)S(·, s)Φ(s)u

)∥∥
V

}
ds

<∞

(3.2.3)

and for all t ∈ [0, T ] we have P-a.s. that

f(t,XS
t ) = f(0, XS

0 ) +

∫ t

0
∂+

1 f(s,XS
s ) ds

+

∫ t

0
∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Ψ(s)

)
ds

+

∫ t

0
∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s) dW (s)

)
+

1

2

∫ t

0

∑
u∈U

∂2
2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)u,1[s,T ](·)S(·, s)Φ(s)u

)
ds.

(3.2.4)

Remark 3.2.3. Note that all integrals in (3.2.4) exist due to the integrability property (3.2.3)

and the fact that the mappings

[0, T ]× Ω 3 (s, ω) 7→ ∂+
1 f
(
s,XS

s (·, ω)
)
∈ V,

[0, T ]× Ω 3 (s, ω) 7→ ∂2f
(
s,XS

s (·, ω)
)(
1[s,T ](·)S(·, s)Ψ(s, ω)

)
∈ V,

[0, T ]× Ω 3 (s, ω) 7→
[
U 3 u 7→ ∂2f

(
s,XS

s (·, ω)
)(
1[s,T ](·)S(·, s)Φ(s, ω)u

)
∈ V

]
∈ HS(U, V ),

[0, T ]× Ω 3 (s, ω) 7→
∑
u∈U

∂2
2f
(
s,XS

s (·, ω)
)(
1[s,T ](·)S(·, s)Φ(s, ω)u,1[s,T ](·)S(·, s)Φ(s, ω)u

)
∈ V

are PT measurable. In particular, observe that for all (s, ω) ∈ [0, T ] × Ω, u ∈ U we have

1[s,T ](·)S(·, s)Ψ(s, ω) ∈ D([0, T ], H) and 1[s,T ](·)S(·, s)Φ(s, ω)u ∈ D([0, T ], H). Moreover, if the

second mapping listed above is denoted by Ξ: [0, T ]×Ω→ HS(U, V ), then the stochastic integral

appearing in (3.2.4) can be rewritten as
∫ t

0 Ξ(s) dW (s). See Section 3.5 below for details.

Remark 3.2.4 (Comparison with related results from literature). (i) In order to compare the

Itô formula (3.2.4) above with the functional Itô formula introduced in [12, 20], one can

set the spaces U , H, and V equal to the space of real numbers R and the evolutionary

family S(t, s) = IdR, for t, s ∈ [0, T ]. Then the path-valued random variable XS
t defined

in (3.2.1) is simply the stopped Itô process Xt = X(· ∧ t) and the formula in (3.2.4) can
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be rewritten as

f(t,Xt) = f(0, X0) +

∫ t

0
∂+

1 f(s,Xs) ds

+

∫ t

0
∂2f(s,Xs)

(
1[s,T ](·)Ψ(s)

)
ds

+

∫ t

0
∂2f(s,Xs)

(
1[s,T ](·)Φ(s)

)
dW (s)

+
1

2

∫ t

0
∂2

2f(s,Xs)
(
1[s,T ](·)Φ(s),1[s,T ](·)Φ(s)

)
ds.

(3.2.5)

Considering the ”non-anticipativity” assumption on the functional f in [12], observe that

the right-sided time-derivative ∂+
1 f(s,Xs) and Fréchet derivatives ∂2f(s,Xs)

(
1[s,T ](·)h(s)

)
,

h ∈ H appearing in (3.2.5) correspond to the horizontal and vertical derivatives in [12],

respectively. Therefore, the formula (3.2.4) corresponds to the functional Itô formula

introduced in [12, 20].

(ii) The infinite-dimensional functional Itô formula, presented in [52], is similar to our Itô

formula in (3.2.4) if we set S(t, s) = IdH for all t, s ∈ [0, T ]. Note that the notation

and assumptions in [52] are slightly different than in our setting. For instance, in [52] a

left-sided time-derivative is used instead of right-sided time-derivative.

(iii) Let us finally compare Theorem 3.2.2 to the mild Itô formula in [15]. To this end let

in Theorem 3.2.2 above t ∈ [0, T ] be fixed. If for all s ∈ [0, T ] and x ∈ D([0, T ], H) it

holds that f(s, x) = f̃(s, x(t)) with an f̃ ∈ C1,2([0, T ] × H,V ), then f ∈ C1,2([0, T ] ×
D([0, T ], H), V ) and the formula (3.2.4) implies that

f̃(t,X(t)) = f̃(0, S(t, 0)X(0)) +

∫ t

0
∂+

1 f̃
(
s, S(t, s)X(s)

)
ds

+

∫ t

0
∂2f̃
(
s, S(t, s)X(s)

)(
S(t, s)Ψ(s)

)
ds

+

∫ t

0
∂2f̃
(
s, S(t, s)X(s)

)(
S(t, s)Φ(s)

)
dW (s)

+
1

2

∫ t

0

∑
u∈U

∂2
2 f̃
(
s, S(t, s)X(s)

)(
S(t, s)Φ(s)u, S(t, s)Φ(s)u

)
ds,

(3.2.6)

which coincides, for the fixed t, with the mild Itô formula introduced in [15].

Remark 3.2.5 (alternative version of the path-dependent mild Itô formula). Here we present

an alternative, slightly modified version of the path-dependent mild Itô formula (3.2.4) involv-

ing a suitable evolution family (St,s)0≤s≤t≤T of bounded linear operators on the path-space

D([0, T ], H).

To this end, let Assumption 3.1.1 be fulfilled and for every t ∈ [0, T ] let Xt =
(
X(r∧t)

)
r∈[0,T ]

be

the process stopped at t, which we identify with the corresponding C([0, T ], H)-valued random
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variable. Therefore (Xt)t∈[0,T ] is a stochastic process with values in C([0, T ], H) ⊂ D([0, T ], H).

For all s, t ∈ [0, T ] with s ≤ t let St,s ∈ L(D([0, T ], H)) be defined by

(
St,sx

)
(r) = 1[0,s)(r)x(r) + 1[s,t)(r)S(r, s)x(r) + 1[t,T ](r)S(t, s)x(r)

= 1[0,s)(r)x(r) + 1[s,T ](r)S(r ∧ t, s)x(r),
(3.2.7)

x ∈ D([0, T ], H), r ∈ [0, T ]. Note that (St,s)0≤s≤t≤T ⊂ L(D([0, T ], H)) is a strongly continuous

evolution family on D([0, T ], H). To see this, let r, s, t ∈ [0, T ] with r ≤ s ≤ t and let x ∈
D([0, T ], H). Observe that St,t = IdD([0,T ],H) and that for all u ∈ [0, T ] it holds that

(
St,sSs,rx

)
(u) = 1[0,s)(u)

(
Ss,rx

)
(u) + 1[s,T ](u)S(u ∧ t, s)

(
Ss,rx

)
(u)

= 1[0,s)(u)
[
1[0,r)(u)x(u) + 1[r,T ](u)S(u ∧ s, r)x(u)

]
+ 1[s,T ](u)S(u ∧ t, s)

[
1[0,r)(u)x(u) + 1[r,T ](u)S(u ∧ s, r)x(u)

]
= 1[0,r)(u)x(u) + 1[r,s)(u)S(u ∧ s, r)x(u) + 1[s,T ](u)S(u ∧ t, s)S(u ∧ s, r)x(r)

= 1[0,r)(u)x(u) + 1[r,s)(u)S(u ∧ t, r)x(u) + 1[s,T ](u)S(u ∧ t, s)S(s, r)x(r)

=
(
St,rx

)
(u).

(3.2.8)

The strong continuity of (St,s)0≤s≤t≤T can be shown in a similar way as in the proof of Lemma

3.2.1. Next suppose that the mapping g : [0, T ]×D([0, T ], H)→ V fulfills the conditions formu-

lated in Assumption 3.1.5 with g in place of f , and let U be an orthonormal basis of U . Then,

by reasoning along the lines of the proof of Theorem 3.2.2 one obtains that for all t ∈ [0, T ] it

holds P-a.s. that∫ T

0

{∥∥∂+
1 g(s, St,sXs)

∥∥
V

+
∥∥∂2g(s, St,sXs)St,s

(
1[s,T ](·)Ψ(s)

)∥∥
V

+
∥∥∂2g(s, St,sXs)St,s

(
1[s,T ](·)Φ(s)

)∥∥2

HS(U,V )

+
∑
u∈U

∥∥∥∂2
2g(s, St,sXs)

(
St,s
(
1[s,T ](·)Φ(s)u

)
, St,s

(
1[s,T ](·)Φ(s)u

))∥∥∥
V

}
ds

<∞

(3.2.9)

and

g(t,Xt) = g(0, St,0X0) +

∫ t

0
∂1g(s, St,sXs)ds

+

∫ t

0
∂2g(s, St,sXs)St,s

(
1[s,T ](·)Ψ(s)

)
ds

+

∫ t

0
∂2g(s, St,sXs)St,s

(
1[s,T ](·)Φ(s)

)
dW (s)

+
1

2

∫ t

0

∑
u∈U

∂2
2g(s, St,sXs)

(
St,s
(
1[s,T ](·)Φ(s)u

)
, St,s

(
1[s,T ](·)Φ(s)u

))
ds.

(3.2.10)
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In particular, analogous measurability assertions to the ones in Remark 3.2.3 hold true.

To elucidate the relation of (3.2.10) and (3.2.4), let t ∈ [0, T ] be fixed, let the mapping

Jt : D([0, T ], H) → D([0, T ], H) be defined by Jt(x) = 1[0,t)(·)x(·) + 1[t,T ](·)S(·, t)x(·), x ∈
D([0, T ], H), and observe that for all s ∈ [0, t] it holds that

XS
s = Jt(St,sXs), (3.2.11)

where we use the notation introduced in (3.2.1). Thus, if : [0, T ]×D([0, T ], H)→ V is a further

mapping satisfying the conditions formulated in Assumption 3.1.5, the identity (3.2.4) coincides

with (3.2.10) for the specific choice

g(s, x) = f(s,Jt(x)),

s ∈ [0, T ], x ∈ D([0, T ], H). Indeed, it holds for all h ∈ H that Jt
(
St,s
(
1[s,T ](·)h

))
=

1[s,T ](·)S(·, t)h and by Definition 2.3.2 that

∂2f̃(s, x)(y) = ∂2f
(
s,Jt(x)

)(
Jt(y)

)
, (3.2.12)

x, y ∈ D([0, T ], H).

Remark 3.2.6 (simplified setting for the path-dependent mild Itô formula). The proof of

our mild Itô formula is significantly simplified if we work in the much more restrictive setting

obtained by replacing the Banach spaces C([0, T ], H) and D([0, T ], H) in the setting of Remark

3.2.5 above by the Hilbert space L2(µ;H) = L2([0, T ],B([0, T ]), µ;H), where µ is some given

finite Borel-measure on [0, T ]. To discuss this in some more detail, let Assumption 3.1.1 be

fulfilled and, as in Remark 3.2.5 above, for every t ∈ [0, T ] let Xt =
(
X(r ∧ t)

)
r∈[0,T ]

be the

process stopped at t. We now interpret each Xt as an L2(µ;H)-valued random variable, so that

(Xt)t∈[0,T ] is an L2(µ;H)-valued stochastic process. Similarly, the operators St,s, 0 ≤ s ≤ t ≤ T ,

defined in (3.2.7) are now considered as operators on L2(µ;H), i.e., St,s ∈ L(L2(µ;H)). It then

follows that (St,s)0≤s≤t≤T is a strongly continuous evolution family on L2(µ;H) and that the

L2(µ;H)-valued process (Xt)t∈[0,T ] is in fact an L2(µ;H)-valued mild Itô process which satisfies

for all t ∈ [0, T ] that

Xt = St,0X0 +

∫ t

0
St,s
(
1[s,T ](·)Ψ(s)

)
ds+

∫ t

0
St,s
(
1[s,T ](·)Φ(s)

)
dW (s), (3.2.13)

P-a.s. as an equality in L2(µ;H). Here the Bochner integral and the stochastic integral on the

right hand side are meant to be L2(µ;H)-valued integrals; compare Lemma 4.4.1 in Section

4.4 below for related considerations. As the mild Itô process (3.2.13) essentially fits into the

framework in [15], we are now able to directly apply the “standard” mild Itô formula in [15] to

obtain that the identity (3.2.10) in Remark 3.2.5 above holds true for every g ∈ C1,2
(
[0, T ] ×
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L2(µ;H), V
)
. Note, however, that the simplified setting considered here is much more restrictive

than the setting considered in Remark 3.2.5 above. An example of a mapping g : [0, T ] ×
D([0, T ], H) → V that can not be extended to a mapping from [0, T ] × L2(µ;H) to V is given

by

g(t, x) = E
[
φ
(
1[0,t)(·)x(·) + 1[t,T ](·)Xt,x(t)(·)

)]
, (3.2.14)

t ∈ [0, T ], x ∈ D([0, T ], H), where φ : D([0, T ], H)→ V is sufficiently regular and
(
Xt,ξ(r)

)
r∈[t,T ]

,

t ∈ [0, T ], ξ ∈ H, is a family of mild solutions (in a probabilistically strong sense) of a given

semilinear SPDE with respective starting time t and starting position ξ. Such functionals are

of interest in the context of path-dependent Kolmogorov equations; compare, e.g., [5, 35].

3.3 Proof of the path-dependent mild Itô formula

To present the proof of Theorem 3.2.2 we need some auxiliary results and one new notation.

For tnj = j
2nT , j ∈ {0, 1, . . . , 2n}, n ∈ N, and r ∈ [0, T ] we define the H-valued random variables

Y n
j (r) by

Y n
j (r) =

2n∑
k=1

1[tnk−1,t
n
k )(r)X

S
tnj

(tnk) + 1{T}(r)X
S
tnj

(T ).

Note that Y n
j = Y n

j (·) is thus a D([0, T ], H)-valued random variable,

Y n
j (·) =

2n∑
k=1

1[tnk−1,t
n
k )(·)XS

tnj
(tnk) + 1{T}(·)XS

tnj
(T ). (3.3.1)

The idea of the definitions of XS
t and Y n

j are illustrated in Figure 3.1 below.

t

r

T

T

tnk−1

tnj

tnk

XS
t (r) = X(r)

XS
t (r) = S(r, t)X(t)

Y n
j (r) = XS

tnj
(tnk )

Figure 3.1: Perturbation of sample paths of X and its approximation via Y nj .
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Lemma 3.3.1. The D([0, T ], H)-valued processes (Y n
j )j=0,...,2n , n ∈ N, defined in (3.3.1), are

uniform approximations of (XS
t )t∈[0,T ] in the following sense:

max
j=0,...,2n

sup
t∈[tnj−1,t

n
j )

∥∥Y n
j (·, ω)−XS

t (·, ω)
∥∥
D([0,T ],H)

n→∞−−−→ 0 for all ω ∈ Ω.

Proof. The assertion follows from the fact that the mapping

[0, T ]2 3 (t, r) 7→ XS
t (r, ω) ∈ H

is continuous, by Lemma 3.2.1, and therefore uniformly continuous. Indeed, it holds that

max
k,j=0,...,2n

sup
t,r∈[0,T ]

1[tnj−1,t
n
j )(t)1[tnk−1,t

n
k )(r)

∥∥∥XS
tnj

(tnk)−XS
t (r)

∥∥∥
H

n→∞−−−→ 0.

The following auxiliary result is closely related to the so-called Λ-Lemma in [20]. It is crucial

that the value δ appearing in (3.3.2) below does not depend on t.

Lemma 3.3.2. Let T ∈ (0,∞), let B be a real Banach space, and let H be a real Hilbert space.

If the mappings f : [0, T ] × D([0, T ], H) → B and x· : [0, T ] → D([0, T ], H), [0, T ] 3 t 7→ xt ∈
D([0, T ], H), are continuous, then it holds that

∀ε > 0 ∃δ > 0: ∀y ∈ D([0, T ], H), ∀s, t ∈ [0, T ](
|t− s|+ ‖xt − y‖D([0,T ],H) < δ ⇒ ‖f(t, xt)− f(s, y)‖B < ε

)
.

(3.3.2)

Proof. Assume that the assertion does not hold. Then there exist ε > 0, sequences (tn)n∈N,

(sn)n∈N in [0, T ], and (yn)n∈N in D([0, T ], H) such that |tn − sn|+ ‖xtn − yn‖D([0,T ],H) <
1
n and

‖f(tn, xtn)− f(sn, yn)‖B > ε for all n ∈ N. Let (tnk)k∈N be a subsequence of (tn)n∈N which

converges to some t∗ ∈ [0, T ] and write

∥∥f(tnk , xtnk )− f(snk , ynk)
∥∥
B
≤
∥∥f(tnk , xtnk )− f(t∗, xt∗)

∥∥
B

+
∥∥f(t∗, xt∗)− f(snk , ynk)

∥∥
B
.

(3.3.3)

Notice that∣∣t∗ − snk ∣∣+
∥∥xt∗ − ynk∥∥D([0,T ],H)

<
∣∣t∗ − tnk ∣∣+

∥∥xt∗ − xtnk∥∥D([0,T ],H)

+
∣∣tnk − snk ∣∣+

∥∥xtnk − ynk∥∥D([0,T ],H)

≤ 1

nk
+
∣∣tnk − t∗∣∣+

∥∥xtnk − xt∗∥∥D([0,T ],H)

n→∞−−−→ 0,
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by continuity of s 7→ xs. Now the continuity of f at (t∗, xt∗) implies that the right-

hand-side of the inequality in (3.3.3) goes to zero. This contradicts the assumption that

‖f(tn, xtn)− f(sn, yn)‖B > ε for all n ∈ N.

Proof of Theorem 3.2.2. For the sake of notational simplicity, we prove formula (3.2.4) for the

case t = T :

f(T,XS
T ) = f(0, XS

0 ) +

∫ T

0
∂+

1 f(s,XS
s ) ds

+

∫ T

0
∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Ψ(s)

)
ds

+

∫ T

0
∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s) dW (s)

)
+

1

2

∫ T

0

∑
u∈U

∂2
2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)u,1[s,T ](·)S(·, s)Φ(s)u

)
ds.

(3.3.4)

The proof for an arbitrary t ∈ [0, T ] is more complicated from a notational point of view but not

from a mathematical point of view. To simplify the exposition, we first describe the strategy

of our proof. The single arguments are carried out in Steps 1-3 below. We begin by showing

the integrability assertion (3.2.3) in Step 1. Further, a stopping argument in Step 2 shows that

without loss of generality we can assume that

sup
t∈[0,T ]

max

(
‖X(0)‖H ,

∫ T

0
‖Ψ(s)‖H ds,

∫ T

0
‖Φ(s)‖2HS(U,H) ds,∥∥∥∥∫ t

0
S(t, s)Φ(s)dW (s)

∥∥∥∥
H

)
< N P-a.s.

(3.3.5)

for some N ∈ (0,∞). The main idea of our proof is to use the D([0, T ], H)-valued processes

(Y n
j )j∈{0,...,2n}, n ∈ N, defined in (3.3.1), in order to write

f(T,XS
T )− f(0, XS

0 ) =
(
f(T,XS

T )− f(T, Y n
n )
)

+

2n∑
j=1

(
f(tnj , Y

n
j )− f(tnj−1, Y

n
j−1)

)
+
(
f(0, Y n

0 )− f(0, XS
0 )
)

=
(
f(T,XS

T )− f(T, Y n
n )
)

+

2n∑
j=1

(
f(tnj , Y

n
j−1)− f(tnj−1, Y

n
j−1)

)

+

2n∑
j=1

(
f(tnj , Y

n
j )− f(tnj , Y

n
j−1)

)
+
(
f(0, Y n

0 )− f(0, XS
0 )
)

= An +Bn + Cn +Dn,

(3.3.6)
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where

An = f(T,XS
T )− f(T, Y n

n ),

Bn =
2n∑
j=1

(
f(tnj , Y

n
j−1)− f(tnj−1, Y

n
j−1)

)
,

Cn =

2n∑
j=1

(
f(tnj , Y

n
j )− f(tnj , Y

n
j−1)

)
,

Dn = f(0, Y n
0 )− f(0, XS

0 ).

(3.3.7)

A straightforward argumentation in Step 3 shows that for P-a.s. ω ∈ Ω we have

An(ω)
n→∞−−−→ 0,

Bn(ω)
n→∞−−−→

∫ T

0
∂+

1 f(s,XS
s (ω))ds,

Dn(ω)
n→∞−−−→ 0.

In order to handle the more complicated term Cn in (3.3.6), we set

∆Y n
j = Y n

j+1 − Y n
j , j = 0, . . . , 2n − 1, (3.3.8)

and observe that by (3.2.2) and (3.3.1), we have

∆Y n
j−1 =

2n∑
k=j

1[tnk−1,t
n
k )(·)

(
XS
tnj

(tnk)−XS
tnj−1

(tnk)
)

+ 1{T}(·)
(
XS
tnj

(T )−XS
tnj−1

(T )
)

=

2n∑
k=j

1[tnk−1,t
n
k )(·)

(∫ tnk∧t
n
j

tnk∧t
n
j−1

S(tnk , s)Ψ(s)ds+

∫ tnk∧t
n
j

tnk∧t
n
j−1

S(tnk , s)Φ(s)dW (s)

)

+ 1{T}(·)
(∫ tnj

tnj−1

S(T, s)Ψ(s)ds+

∫ tnj

tnj−1

S(T, s)Φ(s)dW (s)

)

=

( 2n∑
k=j

1[tnk−1,t
n
k )(·)S(tnk , t

n
j ) + 1{T}(·)S(T, tnj )

)

×
(∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds+

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)

)
.

(3.3.9)

For the sake of better readability, we define for j ∈ {0, 1, . . . , 2n−1}, n ∈ N, the linear operators

Γnj ∈ L(H,D([0, T ], H)) by

Γnj h =

2n∑
k=j

1[tnk−1,t
n
k )(·)S(tnk , t

n
j )h+ 1{T}(·)S(T, tnj )h h ∈ H. (3.3.10)
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Therefore, we can rewrite (3.3.9) in the form

∆Y n
j−1 = Γnj

(∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds+

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)

)
. (3.3.11)

Looking back at the term Cn in (3.3.7), we see that, by the Taylor expansion presented in

Lemma 2.3.4, the following equalities hold:

Cn =

2n∑
j=1

(
f(tnj , Y

n
j−1 + ∆Y n

j−1)− f(tnj , Y
n
j−1)

)

=
2n∑
j=1

{
∂2f(tnj , Y

n
j−1)(∆Y n

j−1) +
1

2
∂2

2f(tnj , Y
n
j−1)(∆Y n

j−1,∆Y
n
j−1)

+

∫ 1

0
(1− θ)

[
∂2

2f(tnj , Y
n
j−1 + θ∆Y n

j−1)− ∂2
2f(tnj , Y

n
j−1)

](
∆Y n

j−1,∆Y
n
j−1

)
dθ

}
= Cn1 + Cn2 + Cn3 + Cn4 + Cn5 + Cn6 ,

(3.3.12)

where

Cn1 =

2n∑
j=1

∂2f(tnj , Y
n
j−1)Γnj

∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds,

Cn2 =

2n∑
j=1

∂2f(tnj , Y
n
j−1)Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),

Cn3 =
2n∑
j=1

1

2
∂2

2f(tnj , Y
n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds,Γnj

∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds

)
,

Cn4 =

2n∑
j=1

∂2
2f(tnj , Y

n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds,Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)

)
,

Cn5 =

2n∑
j=1

1

2
∂2

2f(tnj , Y
n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)

)
,

Cn6 =
2n∑
j=1

∫ 1

0
(1− θ)

[
∂2

2f(tnj , Y
n
j−1 + θ∆Y n

j−1)− ∂2
2f(tnj , Y

n
j−1)

](
∆Y n

j−1,∆Y
n
j−1

)
dθ.

(3.3.13)

We will later in Step 4 investigate the terms above and show that

Cn1
n→∞−−−→

∫ T

0
∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Ψ(s)

)
ds P-a.s.

Cn2
n→∞−−−→

∫ T

0
∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)

)
dW (s) in probability,

Cn5
n→∞−−−→ 1

2

∫ T

0

∑
u∈U

∂2
2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)u,1[s,T ](·)S(·, s)Φ(s)u

)
ds in probability,

Cni
n→∞−−−→ 0, i = 3, 4, 6.
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Step 1: We begin by showing the integrability assertion (3.2.3). Due to Lemma 3.2.1, the

mapping [0, T ] 3 t 7→ XS
t (·, ω) ∈ C([0, T ], H) is continuous for all ω ∈ Ω. Therefore

sup
s∈[0,T ]

∥∥XS
s (·, ω)

∥∥
C([0,T ],H)

<∞,

and since ∂+
1 f , ∂2f and ∂2

2f are bounded on bounded subsets of [0, T ]×D([0, T ], H), it follows

that

K(ω) = sup
s∈[0,T ]

{∥∥∂+
1 f
(
s,XS

s (·, ω)
)∥∥
V
,
∥∥∂2f

(
s,XS

s (·, ω)
)∥∥
L(D([0,T ],H),V )

,∥∥∂2
2f
(
s,XS

s (·, ω)
)∥∥
L(2)(D([0,T ],H),V )

}
<∞.

Now observe that it holds P-a.s. that∫ T

0

{∥∥∥∂+
1 f(s,XS

s )
∥∥∥
V

+
∥∥∥∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Ψ(s)

)∥∥∥
V

+
∥∥∥∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)

)∥∥∥2

HS(U,V )

+
∑
u∈U

∥∥∥∂2
2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)u,1[s,T ](·)S(·, s)Φ(s)u

)∥∥∥
V

}
ds

≤ K
∫ T

0

{
1 + sup

0≤u≤v≤T
‖S(v, u)‖L(H) ‖Ψ(s)‖H

+K sup
0≤r≤t≤T

‖S(t, r)‖2L(H) ‖Φ(s)‖2HS(U,H)

+ sup
0≤r≤t≤T

‖S(t, r)‖2L(H) ‖Φ(s)‖2HS(U,H)

}
ds <∞,

which shows the integrability property (3.2.3).

Step 2: As mentioned before, we would like to reduce the assertion (3.3.4) to the bounded case

(3.3.5). For each N ∈ N, define the stopping times

τN = inf

{
t ∈ [0, T ] : max

(
‖X(0)‖H ,

∫ t

0
‖Ψ(s)‖H ds,

∫ t

0
‖Φ(s)‖2HS(U,H) ds,

∥∥∥∫ t

0
S(t, s)Φ(s)dW (s)

∥∥∥
H

)
> N

}
∧ T,

(3.3.14)

with inf ∅ :=∞, and also the stochastic intervals

((0, τN K =
{

(t, ω) ∈ (0, T ]× Ω: t ≤ τN (ω)
}
∈ PT ,
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where the predictability follows from, e.g., [51, proof of Proposition 2.3.8]. Let XN (0) =

1{‖X(0)‖H≤N}X(0), ΨN = 1((0,τN KΨ, ΦN = 1((0,τN KΦ. Then
(
XN (t)

)
t∈[0,T ]

given by

XN (t) = S(t, 0)XN (0) +

∫ t

0
S(t, s)ΨN (s)ds+

∫ t

0
S(t, s)ΦN (s)dW (s)

is well-defined. Due to Assumption 3.1.1, the processes
(
I(t)

)
t∈[0,T ]

=
( ∫ t

0 S(t, s)Ψ(s)ds
)
t∈[0,T ]

and
(
J(t)

)
t∈[0,T ]

=
( ∫ t

0 S(t, s)Φ(s)dW (s)
)
t∈[0,T ]

have continuous modifications, which im-

plies that the processes
(
IN (t)

)
t∈[0,T ]

=
( ∫ t

0 S(t, s)ΨN (s)ds
)
t∈[0,T ]

and
(
JN (t)

)
t∈[0,T ]

=( ∫ t
0 S(t, s)ΦN (s)dW (s)

)
t∈[0,T ]

have continuous modifications as well. Indeed, for all t ∈ [0, T ]

we have

IN (t) =

∫ t

0
1((0,τN K(s)S(t, s)Ψ(s)ds =

∫ t∧τN

0
S(t, s)Ψ(s)ds = S(t, t ∧ τN )I(t ∧ τN ) P-a.s.

(3.3.15)

and

JN (t) =

∫ t

0
1((0,τN K(s)S(t, s)Φ(s)dW (s) = S(t, t ∧ τN )J(t ∧ τN ) P-a.s., (3.3.16)

Note that, while the second equality in (3.3.15) is a consequence of [51, Lemma 2.3.9] and the

third equality in (3.3.15) follows from standard properties of the Bochner integral, the third

equality in (3.3.16) can be justified by approximating τN by a series of simple stopping times

and verifying the equality for this simple stopping times first; see Lemma 3.5.10 below for

details. The latter verification is necessary since the operator S(t, t ∧ τN ) involves a stopping

time and is thus a random operator. The processes
(
S(t, t ∧ τN )I(t ∧ τN )

)
t∈[0,T ]

and
(
S(t, t ∧

τN )J(t∧ τN )
)
t∈[0,T ]

have continuous modifications by Lemma 3.5.1 in Section 3.5 below. We fix

continuous modifications of the H-valued processes IN and JN , N ∈ N, once and for all.

Moreover, for N ∈ N define the C([0, T ], H)-valued process XS,N = (XS,N
t )t∈[0,T ] by

XS,N
t (r) =

XN (r) if r ∈ [0, t),

S(r, t)XN (t) if r ∈ [t, T ].

Then, for all N ∈ N the assumptions of Theorem 3.2.2 are fulfilled by XN , ΨN , ΦN and XS,N

in place of X, Ψ, Φ and XS , respectively. Next note that

P
(
1{‖X(0)‖H≤N}X

S,N
t = 1{‖X(0)‖H≤N}X

S
t∧τN for all t ∈ [0, T ], N ∈ N

)
= 1. (3.3.17)
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Indeed, by [51, Lemma 2.3.9] it holds P-a.s. for all t, r ∈ [0, T ] that

XS,N
t (r) = S(r, 0)XN (0) +

∫ r∧t

0
S(r, s)ΨN (s)ds+

∫ r∧t

0
S(r, s)ΦN (s)dW (s)

= S(r, 0)XN (0) +

∫ r∧(t∧τN )

0
S(r, s)Ψ(s)ds+

∫ r∧(t∧τN )

0
S(r, s)Φ(s)dW (s),

Since all considered processes are continuous we obtain that, with probability one,

1{‖X(0)‖H≤N}X
S,N
t (r) = 1{‖X(0)‖H≤N}X

S
t∧τN (r) for all t, r ∈ [0, T ], N ∈ N,

which implies (3.3.17). Assume that we have shown statement (3.3.4) for the process(
XN (t)

)
t∈[0,T ]

, i.e., for all t ∈ [0, T ] it holds P-a.s. that

f(T,XS,N
T ) = f(0, XS,N

0 ) +

∫ T

0
∂+

1 f(s,XS,N
s )ds

+

∫ T

0
∂2f(s,XS,N

s )
(
1[s,T ](·)S(·, s)ΨN (s)

)
ds

+

∫ T

0
∂2f(s,XS,N

s )
(
1[s,T ](·)S(·, s)ΦN (s)

)
dW (s)

+
1

2

∫ T

0

∑
u∈U

∂2
2f(s,XS,N

s )
(
1[s,T ](·)S(·, s)ΦN (s)u,1[s,T ](·)S(·, s)ΦN (s)u

)
ds.

(3.3.18)

We would like to prove the statement for the process
(
X(t)

)
t∈[0,T ]

. Observe that

f(T,XS,N
T )− f(0, XS,N

0 ) = 1{‖X(0)‖H≤N}

(
f(T,XS

T∧τN )− f(0, XS
0 )
)

+ 1{‖X(0)‖H>N}

(
f(T,XS,N

T )− f(0, 0)
)
,

N→∞−−−−→ f(T,XS
T )− f(0, XS

0 ) P-a.s.

(3.3.19)

due to (3.3.17), the fact that P
(
{‖X(0)‖H ≤ N}

) N→∞−−−−→ 1, τN
N→∞−−−−→ T P-a.s. and that f(T, ·)

is continuous from C([0, T ], H) to V . For the same reason, we have∫ T

0
∂+

1 f(s,XS,N
s )ds = 1{‖X(0)‖H≤N}

∫ T

0
∂+

1 f(s,XS
s∧τN )ds

+ 1{‖X(0)‖H>N}

∫ T

0
∂+

1 f(s,XS,N
s )ds

N→∞−−−−→
∫ T

0
∂+

1 f(s,XS
s )ds P-a.s.

(3.3.20)

where we also use the fact that sup
s∈[0,T ]

∥∥∂+
1 f(s,XS

s∧τN )
∥∥
V
< ∞ P-a.s. due to the boundedness

of
(
XS
s∧τN (·, ω)

)
s∈[0,T ]

, N ∈ N, in C([0, T ], H) and the assumption that ∂+
1 f stays bounded on
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bounded subsets of [0, T ]×C([0, T ], H). Next, we use (3.3.17), the definition of ΨN = 1((0,τN KΨ,

the fact that P
(
{‖X(0)‖H ≤ N}

) N→∞−−−−→ 1, and τN
N→∞−−−−→ T P-a.s. and the continuity of the

Bochner-integral as a function of the upper limit, to obtain∫ T

0
∂2f(s,XS,N

s )
(
1[s,T ](·)S(·, s)ΨN (s)

)
ds

= 1{‖X(0)‖H≤N}

∫ T∧τN

0
∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Ψ(s)

)
ds

+ 1{‖X(0)‖H>N}

∫ T

0
∂2f(s,XS,N

s )
(
1[s,T ](·)S(·, s)ΨN (s)

)
ds

N→∞−−−−→
∫ T

0
∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Ψ(s)

)
ds P-a.s.

(3.3.21)

Similarly, using also [51, Lemma 2.3.9] we obtain P-a.s for all t ∈ [0, T ] that∫ T

0
∂2f(s,XS,N

s )
(
1[s,T ](·)S(·, s)ΦN (s)

)
dW (s)

= 1{‖X(0)‖H≤N}

∫ T∧τN

0
∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)

)
dW (s)

+ 1{‖X(0)‖H>N}

∫ T

0
∂2f(s,XS,N

s )
(
1[s,T ](·)S(·, s)ΦN (s)

)
dW (s)

Now, by choosing a continuous modification of the first stochastic integral on the right-side of

the equation above and the continuity of the stochastic integral as a function of the upper limit,

we have∫ T

0
∂2f(s,XS,N

s )
(
1[s,T ](·)S(·, s)ΦN (s)

)
dW (s)

N→∞−−−−→
∫ T

0
∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)

)
dW (s) P-a.s.

(3.3.22)

With the same argument as for (3.3.21) we finally obtain

1

2

∫ T

0

∑
u∈U

∂2
2f(s,XS,N

s )
(
1[s,T ](·)S(·, s)ΦN (s)u,1[s,T ](·)S(·, s)ΦN (s)u

)
ds

N→∞−−−−→ 1

2

∫ T

0

∑
u∈U

∂2
2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)u,1[s,T ](·)S(·, s)Φ(s)u

)
ds P-a.s.

(3.3.23)

The combination of (3.3.18), (3.3.19), (3.3.20), (3.3.21), (3.3.22), and (3.3.23) implies (3.3.4).
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Step 3: From the previous step, we know that without loss of generality we can assume that

there exists an N ∈ N such that inequality (3.3.5) holds. Under this assumption we obtain that

M = sup
s∈[0,T ]

max

(∥∥XS
s

∥∥
C([0,T ],H)

,
∥∥∂+

1 f(s,XS
s )
∥∥
V
,
∥∥∂2f(s,XS

s )
∥∥
L(D([0,T ],H),V )

,

∥∥∂2
2f(s,XS

s )
∥∥
L(2)(D([0,T ],H),V )

, sup
0≤s≤t≤T

‖S(t, s)‖L(H)

)
<∞.

(3.3.24)

We are going to verify formula (3.3.4), by making use of (3.3.5) and (3.3.24) and analyzing the

terms appearing in (3.3.7) step by step. Without loss of generality we also assume that the

Hilbert spaces U and H are infinite-dimensional and (ui)i∈N and (hi)i∈N are orthonormal bases

of U and H, respectively. For each n ∈ N and j ∈ {0, 1, . . . , 2n − 1}, let tnj = j T2n , and Y n
j and

Γnj be given as in (3.3.1) and (3.3.10), respectively. Furthermore, considering the boundedness

property (3.3.24), we assume without loss of generality that

sup
j=1,...,2n

n∈N

sup
s∈[tnj−1,t

n
j )

max

(∥∥Y n
j

∥∥
D([0,T ],H)

,
∥∥∂+

1 f(s, Y n
j )
∥∥
V
,
∥∥∂2f(s, Y n

j )
∥∥
L(D([0,T ],H),V )

,

∥∥∂2
2f(s, Y n

j )
∥∥
L(2)(D([0,T ],H),V )

)
< M.

(3.3.25)

Note that due to continuity of the functional f and by Lemma 3.3.1 it holds P-a.s. that

An = f(T,XS
T )− f(T, Y n

n )
n→∞−−−→ 0,

Dn = f(0, Y n
0 )− f(0, XS

0 )
n→∞−−−→ 0.

For the term Bn in (3.3.7) note that it holds due to Lemma 3.5.3 below that

Bn =
2n∑
j=1

∫ tnj

tnj−1

∂+
1 f(s, Y n

j−1)ds =

∫ T

0

2n∑
j=1

1[tnj−1,t
n
j )∂

+
1 f(s, Y n

j−1)ds.

Now observe that due to the continuity of ∂+
1 f and Lemma 3.3.1 it holds P-a.s. for all s ∈ [0, T ]

that
2n∑
j=1

1[tnj−1,t
n
j )(s)∂

+
1 f(s, Y n

j−1)
n→∞−−−→ ∂+

1 f(s,XS
s ).

By the boundedness property (3.3.25) and the dominated convergence theorem, we obtain P-a.s.

that

Bn n→∞−−−→
∫ T

0
∂+

1 f
(
s,XS

s

)
ds.

Step 4: Next, we analyze the third term in (3.3.7), Cn. For that, we will analyze the terms

Cn1 , . . . , C
n
6 appearing in (3.3.13) above in Steps 4.1, . . ., 4.6 below, respectively.
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Step 4.1: Using the fact that for fixed ω ∈ Ω, ∂2f(tnj , Y
n
j−1(·, ω))Γnj is an element of L(H,V )

and
∫ tnj
tnj−1

S(tnj , s)Ψ(s, ω)ds is an H-valued Bochner-integral, we have that

Cn1 =
2n∑
j=1

∂2f(tnj , Y
n
j−1)Γnj

∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds

=

2n∑
j=1

∫ tnj

tnj−1

∂2f(tnj , Y
n
j−1)Γnj S(tnj , s)Ψ(s)ds

=

∫ T

0

2n∑
j=1

1(tnj−1,t
n
j ](s)∂2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Ψ(s)

)
ds.

An application of the triangular inequality implies that

∫ T

0

∥∥∥ 2n∑
j=1

1(tnj−1,t
n
j ](s)∂2f

(
tnj , Y

n
j−1

)(
Γnj S(tnj , s)Ψ(s)

)
− ∂2f

(
s,XS

s

)(
1[s,T ](·)S(·, s)Ψ(s)

)∥∥∥
V

ds

≤
∫ T

0

2n∑
j=1

1(tnj−1,t
n
j ](s)

{∥∥∥(∂2f
(
tnj , Y

n
j−1

)
− ∂2f

(
s,XS

s

))(
1[s,T ](·)S(·, s)Ψ(s)

)∥∥∥
V

+
∥∥∥∂2f

(
tnj , Y

n
j−1

)(
Γnj S(tnj , s)Ψ(s)− 1[s,T ](·)S(·, s)Ψ(s)

)∥∥∥
V

}
ds.

(3.3.26)

Now observe that (3.3.24) and (3.3.25) imply for all j ∈ {1, . . . , 2n}, n ∈ N that

∥∥∥∂2f
(
tnj , Y

n
j−1

)(
Γnj S(tnj , s)Ψ(s)− 1[s,T ](·)S(·, s)Ψ(s)

)∥∥∥
V
≤ 2M2 ‖Ψ(s)‖H

and by Lemma 3.5.1 below, it holds P-a.s. that

∥∥Γnj S(tnj , s)Ψ(s)− 1[s,T ](·)S(·, s)Ψ(s)
∥∥
D([0,T ],H)

n→∞−−−→ 0.

The dominated convergence theorem and the fact that
∫ T

0 ‖Ψ(s)‖H ds < ∞ P-a.s. thus yield

P-a.s. that

∫ T

0

2n∑
j=1

1(tnj−1,t
n
j ](s)

∥∥∥∂2f
(
tnj , Y

n
j−1

)(
Γnj S(tnj , s)Ψ(s)− 1[s,T ](·)S(·, s)Ψ(s)

)∥∥∥
V

ds
n→∞−−−→ 0.

(3.3.27)

Moreover, Lemma 3.3.1 and Lemma 3.3.2 and a further application of the dominated convergence

theorem imply that

∫ T

0

2n∑
j=1

1(tnj−1,t
n
j ](s)

∥∥∥(∂2f
(
tnj , Y

n
j−1

)
− ∂2f

(
s,XS

s

))(
1[s,T ](·)S(·, s)Ψ(s)

)∥∥∥
V

ds
n→∞−−−→ 0. (3.3.28)
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Combining (3.3.24)–(3.3.28) gives

Cn1
n→∞−−−→

∫ T

0
∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Ψ(s)

)
ds P-a.s.

Step 4.2: Next we consider the term

Cn2 =
2n∑
j=1

∂2f(tnj , Y
n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)

)
.

Analogously to Lemma 3.5.8, one can show for each j ∈ {1, . . . , 2n} that the mapping

[0, T ] × Ω 3 (s, ω) 7→ ∂2f(tnj , Y
n
j−1(·, ω))

(
Γnj S(tnj , s)Φ(s, ω)

)
∈ HS(U, V ) is PT -B(HS(U, V ))-

measurable, and due to (3.3.5) and (3.3.25) we have that

2n∑
j=1

1(tnj−1,t
n
j ](s)∂2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Φ(s)

)
∈ L2(P⊗ ds,PT ; HS(U, V )).

Moreover, due to the standard properties of the stochastic integral, we have that

Cn2 =

∫ T

0

2n∑
j=1

1(tnj−1,t
n
j ](s)∂2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Φ(s)

)
dW (s).

Basically by following a similar idea as in Step 4.1 we show that

2n∑
j=1

1(tnj−1,t
n
j ](s)∂2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Φ(s)

) n→∞−−−→ ∂2f(s,XS
s )
(
1[s,T ](·)S(·, s)Φ(s)

)
, (3.3.29)

in L2(P⊗ ds; HS(U, V )). For this we use the following triangular inequality to obtain pointwise

convergence and then apply the dominated convergence theorem. It holds by the triangular

inequality that

∥∥∥ 2n∑
j=1

1(tnj−1,t
n
j ](s)∂2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Φ(s)

)
− ∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)

)∥∥∥
HS(U,V )

≤
2n∑
j=1

1(tnj−1,t
n
j ](s)

∥∥(∂2f(tnj , Y
n
j−1)− ∂2f(s,XS

s )
)(
1[s,T ](·)S(·, s)Φ(s)

)∥∥
HS(U,V )

+

2n∑
j=1

1(tnj−1,t
n
j ](s)

∥∥∂2f(tnj , Y
n
j−1)

(
Γnj S(tnj , s)Φ(s)− 1[s,T ](·)S(·, s)Φ(s)

)∥∥
HS(U,V )

.

(3.3.30)

Next observe that (3.3.24) and (3.3.25) imply for all j ∈ {1, . . . , 2n}, n ∈ N, that

∥∥∂2f(tnj , Y
n
j−1)

(
Γnj S(tnj , s)Φ(s)− 1[s,T ](·)S(·, s)Φ(s)

)∥∥2

HS(U,V )
≤ 4M4 ‖Φ(s)‖2HS(U,H)
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and by Lemma 3.5.1 below it holds P-a.s. for all u ∈ U that

∥∥Γnj S(tnj , s)Φ(s)u− 1[s,T ](·)S(·, s)Φ(s)u
∥∥2

D([0,T ],H)

n→∞−−−→ 0.

The dominated convergence theorem and the fact that
∫ T

0 ‖Φ(s)‖2HS(U,H) ds < ∞ thus imply

that ∑
u∈U

∥∥Γnj S(tnj , s)Φ(s)u− 1[s,T ](·)S(·, s)Φ(s)u
∥∥2

D([0,T ],H)

n→∞−−−→ 0

and consequently that

E

∫ T

0

2n∑
j=1

1(tnj−1,t
n
j ](s)

∥∥∂2f(tnj , Y
n
j−1)

(
Γnj S(tnj , s)Φ(s)− 1[s,T ](·)S(·, s)Φ(s)

)∥∥2

HS(U,V )
ds

n→∞−−−→ 0.

(3.3.31)

Moreover, combining Lemma 3.3.1, Lemma 3.3.2, the boundedness assumption (3.3.25), and

the fact that

∑
u∈U

∥∥1[s,T ](·)S(·, s)Φ(s)u
∥∥2

D([0,T ],H)
< M2 ‖Φ(s)‖2HS(U,H) ∈ L

1(P⊗ ds),

allows us to conclude that

E

∫ T

0

2n∑
j=1

1(tnj−1,t
n
j ](s)

∥∥(∂2f(tnj , Y
n
j−1)− ∂2f(s,XS

s )
)(
1[s,T ](·)S(·, s)Φ(s)

)∥∥2

HS(U,V )
ds

n→∞−−−→ 0.

(3.3.32)

Thus, as a consequence of (3.3.30), (3.3.31) and (3.3.32) we have that

E

∫ T

0

∥∥∥ 2n∑
j=1

1(tnj−1,t
n
j ]

(s)∂2f(tnj , Y
n
j−1)

(
Γnj S(tnj , s)Φ(s)

)
−∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)

)∥∥∥2
HS(U,V )

ds
n→∞−−−−→ 0.

Consequently we obtain the following convergence that

Cn2
n→∞−−−→

∫ T

0
∂2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)

)
dW (s) in probability.

Step 4.3: The next term in (3.3.13) that we analyze is

Cn3 =

2n∑
j=1

1

2
∂2

2f(tnj , Y
n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds,Γnj

∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds

)
.
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A straightforward computation shows that

‖Cn3 ‖V ≤
1

2
max

j=1,...,2n

n∈N

∥∥∂2
2f(tnj , Y

n
j−1)

∥∥
L(2)(D([0,T ],H),V )

sup
0≤r≤τ≤T

‖S(τ, r)‖2L(H)

×
2n∑
j=1

∥∥∥∥∥
∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds

∥∥∥∥∥
2

H

≤M1

∫ T

0
‖Ψ(s)‖H ds max

j=1,...,2n

∥∥∥∥∥
∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds

∥∥∥∥∥
H

≤M1 ·N max
j=1,...,2n

∫ tnj

tnj−1

sup
0≤r≤τ≤T

‖S(τ, r)‖L(H) ‖Ψ(s)‖H ds

≤M1 ·N ·M max
j=1,...,2n

∥∥∥∥∫ tnj

0
Ψ(s)ds−

∫ tnj−1

0
Ψ(s)ds

∥∥∥∥
H

n→∞−−−→ 0 P-a.s.

where M1 is some positive constant independent of n, and N is from (3.3.5).

Step 4.4: The following equalities hold due to standard properties of the Bochner-integral:

Cn4 =
2n∑
j=1

∂2
2f(tnj , Y

n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds,Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)

)

=
2n∑
j=1

∫ tnj

tnj−1

∂2
2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Ψ(s),Γnj

∫ tnj

tnj−1

S(tnj , r)Φ(r)dW (r)

)
ds

=

∫ T

0

2n∑
j=1

1(tnj−1,t
n
j ](s)∂

2
2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Ψ(s),Γnj

∫ tnj

tnj−1

S(tnj , r)Φ(r)dW (r)

)
ds.

Therefore we have that

‖Cn4 ‖V ≤M1

∫ T

0
‖Ψ(s)‖H ds max

j=1,...,2n

∥∥∥∥∥
∫ tnj

tnj−1

S(tnj , r)Φ(r)dW (r)

∥∥∥∥∥
H

.

Here and below, M1 denotes a finite constant which does not depend on n and may change its

value with every appearance. Next note that

max
j=1,...,2n

∥∥∥∥∥
∫ tnj

tnj−1

S(tnj , r)Φ(r)dW (r)

∥∥∥∥∥
H

= max
j=1,...,2n

∥∥∥∥∫ tnj

0
S(tnj , r)Φ(r)dW (r)− S(tnj , t

n
j−1)

∫ tnj−1

0
S(tnj−1, r)Φ(r)dW (r)

∥∥∥∥
H

n→∞−−−→ 0 P-a.s.

where the convergence holds due to the continuity of the stochastic integral as a function of the

upper limit (see Assumption 3.1.1) and Lemma 3.5.1 below. Hence, it holds P-a.s. that

Cn4
n→∞−−−→ 0.

Step 4.5: In this step we will use the conditional expectation of Hilbert space-valued random
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variables. Analogously to the real-valued case, one can show the existence of the conditional

expectation; see Section 2.4. Remember that

Cn5 =
1

2

2n∑
j=1

∂2
2f(tnj , Y

n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)
)
,

and that (ui)i∈N and (hi)i∈N are orthonormal bases of U and H, respectively. First we show

that, for j ∈ {1, . . . , 2n}, it holds P-a.s. that

E

(
∂2

2f(tnj , Y
n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)
)∣∣∣∣Ftnj−1

)

= E

(∫ tnj

tnj−1

∞∑
i=1

∂2
2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Φ(s)ui,Γ

n
j S(tnj , s)Φ(s)ui

)
ds

∣∣∣∣Ftnj−1

)
,

(3.3.33)

To this end, let first j ∈ {1, . . . , 2n} be fixed. We know, by (2.4.4), that

∫ tnj

tnj−1

S(tnj , s)Φ(s) dW (s) =
∞∑
i=1

∫ tnj

tnj−1

S(tnj , s)Φ(s)ui dβi(s), (3.3.34)

where (βi(t))t∈[0,T ], i ∈ N, are a family of independent real-valued Brownian motions and the

infinite sum above converges in L2(P;H). Consequently, we have that

Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s) = lim
N→∞

Γnj

N∑
i=1

∫ tnj

tnj−1

S(tnj , s)Φ(s)uidβi(s) in L2
(
P;D([0, T ], H)

)
.

(3.3.35)

The boundedness and bilinearity of ∂2
2f(tnj , Y

n
j−1) thus imply that

∂2
2f(tnj , Y

n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)
)

= lim
N→∞

lim
N ′→∞

N∑
i=1

N ′∑
k=1

∂2
2f(tnj , Y

n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)ui dβi(s),

Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)uk dβk(s)
)
,

(3.3.36)
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with convergence in L1(P;V ). Now the continuity of the mapping E
(
·
∣∣Ftnj−1

)
: L1(Ω,F ,P;V )→

L1(Ω,Ftnj−1
,P;V ) hence implies that

E

(
∂2

2f(tnj , Y
n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)
)∣∣∣Ftnj−1

)

= lim
N→∞

lim
N ′→∞

N∑
i=1

N ′∑
k=1

E

(
∂2

2f(tnj , Y
n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)uidβi(s),

Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)ukdβk(s)
)∣∣∣Ftnj−1

)
,

(3.3.37)

with convergence in L1(P;V ). To continue with our computation, note that for all i, k ∈ N it

holds that

∂2
2f(tnj , Y

n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)uidβi(s),Γ
n
j

∫ tnj

tnj−1

S(tnj , s)Φ(s)ukdβk(s)
)

= ∂2
2f(tnj , Y

n
j−1)

(
Γnj

∞∑
µ=1

〈∫ tnj

tnj−1

S(tnj , s)Φ(s)uidβi(s), hµ

〉
H
hµ,

Γnj

∞∑
ν=1

〈∫ tnj

tnj−1

S(tnj , s)Φ(s)ukdβk(s), hν

〉
H
hν

)
.

(3.3.38)

With a similar argument as used in (3.3.37), one can show that

E

(
∂2

2f(tnj , Y
n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)uidβi(s),Γ
n
j

∫ tnj

tnj−1

S(tnj , s)Φ(s)ukdβk(s)
)∣∣∣Ftnj−1

)

= lim
M→∞

lim
M ′→∞

M∑
µ=1

M ′∑
ν=1

E

(
∂2

2f(tnj , Y
n
j−1)

(
Γnj

〈∫ tnj

tnj−1

S(tnj , s)Φ(s)uidβi(s), hµ

〉
H
hµ,

Γnj

〈∫ tnj

tnj−1

S(tnj , s)Φ(s)ukdβk(s), hν

〉
H
hν

)∣∣∣Ftnj−1

)
,

(3.3.39)



Path-dependent Itô calculus 54

with convergence in L1(P;V ). Further, due to the Ftnj−1
-measurability of the V -valued random

variables ∂2
2f(tnj , Y

n
j−1)(Γnj hµ,Γ

n
j hν), µ, ν ∈ N, we obtain that

E

(
∂2

2f(tnj , Y
n
j−1)

(
Γnj

〈∫ tnj

tnj−1

S(tnj , s)Φ(s)uidβi(s), hµ

〉
H

hµ,

Γnj

〈∫ tnj

tnj−1

S(tnj , s)Φ(s)ukdβk(s), hν

〉
H

hν

)∣∣∣Ftnj−1

)

= ∂2
2f(tnj , Y

n
j−1)(Γnj hµ,Γ

n
j hν)E

(〈∫ tnj

tnj−1

S(tnj , s)Φ(s)uidβi(s), hµ

〉
H

·

〈∫ tnj

tnj−1

S(tnj , s)Φ(s)ukdβk(s), hν

〉
H

∣∣∣Ftnj−1

)
= ∂2

2f(tnj , Y
n
j−1)(Γnj hµ,Γ

n
j hν)E

(∫ tnj

tnj−1

〈
S(tnj , s)Φ(s)ui, hµ

〉
H

dβi(s)

·
∫ tnj

tnj−1

〈
S(tnj , s)Φ(s)uk, hν

〉
H

dβk(s)
∣∣∣Ftnj−1

)
= ∂2

2f(tnj , Y
n
j−1)(Γnj hµ,Γ

n
j hν)

· E
(∫ tnj

tnj−1

〈
S(tnj , s)Φ(s)ui, hµ

〉
H
·
〈
S(tnj , s)Φ(s)uk, hν

〉
H

ds δik

∣∣∣Ftnj−1

)
,

(3.3.40)

where the last equality holds by standard properties of stochastic integrals; see, e.g., [33, Propos-

tion 2.17], and δik is the Kronecker delta function. Combining (3.3.37), (3.3.39), and (3.3.40),

we obtain the following identities in L1(P;V ),

E

(
∂2

2f(tnj , Y
n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)
)∣∣∣∣Ftnj−1

)

= lim
N→∞

lim
N ′→∞

N∑
i=1

N ′∑
k=1

∞∑
µ=1

∞∑
ν=1

∂2
2f(tnj , Y

n
j−1)(Γnj hµ,Γ

n
j hν)

· E
(∫ tnj

tnj−1

〈
S(tnj , s)Φ(s)ui, hµ

〉
H
·
〈
S(tnj , s)Φ(s)uk, hν

〉
H

ds δik

∣∣∣Ftnj−1

)

= lim
N→∞

lim
N ′→∞

min(N,N ′)∑
i=1

∞∑
µ=1

∞∑
ν=1

∂2
2f(tnj , Y

n
j−1)(Γnj hµ,Γ

n
j hν)

· E
(∫ tnj

tnj−1

〈
S(tnj , s)Φ(s)ui, hµ

〉
H
·
〈
S(tnj , s)Φ(s)ui, hν

〉
H

ds
∣∣∣Ftnj−1

)

= lim
N→∞

N∑
i=1

∞∑
µ=1

∞∑
ν=1

∂2
2f(tnj , Y

n
j−1)(Γnj hµ,Γ

n
j hν)

· E
(∫ tnj

tnj−1

〈
S(tnj , s)Φ(s)ui, hµ

〉
H
·
〈
S(tnj , s)Φ(s)ui, hν

〉
H

ds
∣∣∣Ftnj−1

)
.

(3.3.41)

We continue with the computation above by using the linearity of ∂2
2f(tnj , Y

n
j−1), linearity and
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continuity of the mapping E
(
·
∣∣Ftnj−1

)
: L1(Ω,F ,P;V )→ L1(Ω,Ftnj−1

,P;V ), Ftnj−1
-measurability

of ∂2
2f(tnj , Y

n
j−1), and the boundedness properties and obtain for every i ∈ N that

∞∑
µ=1

∞∑
ν=1

∂2
2f(tnj , Y

n
j−1)(Γnj hµ,Γ

n
j hν)E

(∫ tnj

tnj−1

〈
S(tnj , s)Φ(s)ui, hµ

〉
H
·
〈
S(tnj , s)Φ(s)ui, hν

〉
H

ds
∣∣∣Ftnj−1

)

=
∞∑
µ=1

E

(
∂2

2f(tnj , Y
n
j−1)

(
Γnj hµ,Γ

n
j

∫ tnj

tnj−1

〈
S(tnj , s)Φ(s)ui, hµ

〉
H

·
∞∑
ν=1

〈
S(tnj , s)Φ(s)ui, hν

〉
H
hνds

) ∣∣∣Ftnj−1

)

=
∞∑
µ=1

E

(∫ tnj

tnj−1

∂2
2f(tnj , Y

n
j−1)

(
Γnj
〈
S(tnj , s)Φ(s)ui, hµ

〉
H
hµ,

Γnj

∞∑
ν=1

〈
S(tnj , s)Φ(s)ui, hν

〉
H
hν

)
ds
∣∣∣Ftnj−1

)

= E

(∫ tnj

tnj−1

∂2
2f(tnj , Y

n
j−1)

(
Γnj

∞∑
µ=1

〈
S(tnj , s)Φ(s)ui, hµ

〉
H
hµ,Γ

n
j S(tnj , s)Φ(s)ui

)
ds
∣∣∣Ftnj−1

)

= E

(∫ tnj

tnj−1

∂2
2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Φ(s)ui,Γ

n
j S(tnj , s)Φ(s)ui

)
ds
∣∣∣Ftnj−1

)
.

(3.3.42)

Combining (3.3.41) and (3.3.42) and using again the linearity and continuity of the mapping

E
(
·
∣∣Ftnj−1

)
: L1(Ω,F ,P;V )→ L1(Ω,Ftnj−1

,P;V ) we get that

E

(
∂2

2f(tnj , Y
n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)
)∣∣∣∣Ftnj−1

)

= lim
N→∞

N∑
i=1

E

(∫ tnj

tnj−1

∂2
2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Φ(s)ui,Γ

n
j S(tnj , s)Φ(s)ui

)
ds
∣∣∣Ftnj−1

)

= E

(∫ tnj

tnj−1

∞∑
i=1

∂2
2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Φ(s)ui,Γ

n
j S(tnj , s)Φ(s)ui

)
ds
∣∣∣Ftnj−1

)
.

(3.3.43)

This proves the equality in (3.3.33). On the other hand, we show that

E

(∥∥∥∥ 2n∑
j=1

∂2
2f(tnj , Y

n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)
)

−
2n∑
j=1

E

(
∂2

2f(tnj , Y
n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)
)∣∣∣∣Ftnj−1

)∥∥∥∥2

V

)
n→∞−−−→ 0.

(3.3.44)
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To simplify notation, let Gnj =
∫ tnj
tnj−1

S(tnj , s)Φ(s)dW (s), j ∈ {1, . . . , 2n}, n ∈ N and note that

E

(∥∥∥∥ 2n∑
j=1

∂2
2f(tnj , Y

n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)
)

−
2n∑
j=1

E

(
∂2

2f(tnj , Y
n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)
)∣∣∣∣Ftnj−1

)∥∥∥∥2

V

)

=

2n∑
j=1

E

(∥∥∥∂2
2f(tnj , Y

n
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(
ΓnjG

n
j ,Γ

n
jG

n
j

)
− E

(
∂2

2f(tnj , Y
n
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(
ΓnjG

n
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n
jG

n
j

)∣∣∣Ftnj−1

)∥∥∥2

V

)

+
∑
j 6=k

E

(〈
∂2

2f(tnj , Y
n
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(
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n
j ,Γ

n
jG

n
j

)
− E

(
∂2

2f(tnj , Y
n
j−1)

(
ΓnjG

n
j ,Γ

n
jG

n
j

)∣∣∣Ftnj−1

)
,

∂2
2f(tnk , Y

n
k−1)

(
ΓnkG

n
k ,Γ

n
kG

n
k

)
− E

(
∂2

2f(tnk , Y
n
k−1)

(
ΓnkG

n
k ,Γ

n
kG

n
k

)∣∣∣Ftnk−1

)〉
V

)
.

(3.3.45)

The second sum after the equality sign above is equal to zero due to simple properties of the

conditional expectation. Indeed, let k, j ∈ N, k < j and observe that

E
[ 〈
∂2

2f(tnj , Y
n
j−1)

(
ΓnjG

n
j ,Γ

n
jG

n
j

)
, ∂2

2f(tnk , Y
n
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(
ΓnkG

n
k ,Γ

n
kG

n
k

)〉
V

]
= E

[
E
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∂2
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n
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(
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n
j ,Γ

n
jG

n
j

)
, ∂2

2f(tnk , Y
n
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(
ΓnkG

n
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n
kG

n
k

)〉
V
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]]
= E

[ 〈
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[
∂2

2f(tnj , Y
n
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(
ΓnjG

n
j ,Γ

n
jG

n
j

)
|Ftnj−1

]
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n
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(
ΓnkG

n
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n
kG

n
k

)〉
V

]
,

and that

E
[ 〈
E
[
∂2

2f(tnk , Y
n
k−1)

(
ΓnkG

n
k ,Γ

n
kG

n
k

)
|Ftnk−1

]
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n
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(
ΓnjG
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n
jG

n
j

)〉
V

]
= E

[ 〈
E
[
∂2

2f(tnj , Y
n
j−1)

(
ΓnjG

n
j ,Γ

n
jG

n
j

)
|Ftnj−1

]
,E
[
∂2

2f(tnk , Y
n
k−1)

(
ΓnkG

n
k ,Γ

n
kG

n
k

)
|Ftnk−1

]〉
V

]
.
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Moreover, note that for each j ∈ {1, . . . , 2n} it holds that

E

(∥∥∥∂2
2f(tnj , Y

n
j−1)

(
ΓnjG

n
j ,Γ

n
jG

n
j

)
− E

(
∂2

2f(tnj , Y
n
j−1)

(
ΓnjG

n
j ,Γ

n
jG

n
j

)∣∣∣Ftnj−1

)∥∥∥2

V

)
≤ 4E

(∥∥∂2
2f(tnj , Y

n
j−1)

(
ΓnjG

n
j ,Γ

n
jG

n
j

)∥∥2

V

)
+ 4E

(∥∥∥E(∂2
2f(tnj , Y

n
j−1)

(
ΓnjG

n
j ,Γ

n
jG

n
j

)∣∣∣Ftnj−1

)∥∥∥2

V

)
≤ 4 max

i=1,...,2m

m∈N

∥∥∂2
2f(tmi , Y

m
i−1)

∥∥2

L(2)(D([0,T ],H),V )
sup

0≤r≤τ≤T
‖S(τ, r)‖4L(H)E

(∥∥Gnj ∥∥4

H

)
+ 4E

(
E
(∥∥∂2

2f(tnj , Y
n
j−1)

(
ΓnjG

n
j ,Γ

n
jG

n
j

)∥∥
V

∣∣∣Ftnj−1

)2
)

≤ 8 max
i=1,...,2m

m∈N

∥∥∂2
2f(tmi , Y

m
i−1)

∥∥2

L(2)(D([0,T ],H),V )
sup

0≤r≤τ≤T
‖S(τ, r)‖4L(H)E

(∥∥Gnj ∥∥4

H

)
≤ 8M6E

(∥∥Gnj ∥∥4

H

)
,

(3.3.46)

where M ∈ (0,∞) is the constant defined in (3.3.24). By Lemma 3.1 in [23] there exists a

c ∈ (0,∞) such that for all j ∈ {1, . . . , 2n}, n ∈ N, it holds that

E

∥∥∥∥∥
∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)

∥∥∥∥∥
4

H

 ≤ cE
(∫ tnj

tnj−1

∥∥S(tnj , s)Φ(s)
∥∥2

HS(U,H)
ds

)2
 ,

which implies that

2n∑
j=1

E

(∥∥∥∂2
2f(tnj , Y

n
j−1)

(
ΓnjG

n
j ,Γ

n
jG

n
j

)
− E

(
∂2

2f(tnj , Y
n
j−1)

(
ΓnjG

n
j ,Γ

n
jG

n
j

)∣∣∣Ftnj−1

)∥∥∥2

V

)
≤ 8M6 · c · sup

0≤r≤τ≤T
‖S(τ, r)‖4L(H)

· E

[
max

j=1,...,2n

∫ tnj

tnj−1

∥∥Φ(s)
∥∥2

HS(U,H)
ds ·

∫ T

0

∥∥Φ(s)
∥∥2

HS(U,H)
ds

]
n→∞−−−→ 0,

(3.3.47)

by the boundedness assumption (3.3.5) on
∫ T

0

∥∥Φ(s)
∥∥2

HS(U,H)
ds, the fact that

maxj=1,...,2n
∫ tnj
tnj−1

∥∥Φ(s)
∥∥2

HS(U,H)
ds

n→∞−−−→ 0, P-a.s., and the dominated convergence theo-

rem. Indeed, the uniform continuity of the mapping [0, T ] 3 t 7→
∫ t

0 ‖Φ(s)‖2HS(U,H) ds ∈ R is a

result of the continuity of the Lebesgue integral of an integrable function. Combining (3.3.33)

and (3.3.44) we obtain that

E

(∥∥∥∥ 2n∑
j=1

∂2
2f(tnj , Y

n
j−1)

(
Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s),Γnj

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)

)

−
2n∑
j=1

E

(∫ tnj

tnj−1

∞∑
i=1

∂2
2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Φ(s)ui,Γ

n
j S(tnj , s)Φ(s)ui

)
ds
∣∣∣Ftnj−1

)∥∥∥∥2

V

)
n→∞−−−→ 0.

(3.3.48)
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Let s ∈ [0, T ] and (tnjn)n>1 be such that s ∈ (tnjn−1, t
n
jn

], n ∈ N. By using the triangular inequality

and the bilinearity and symmetry of ∂2
2f(tnjn , Y

n
jn−1)(·, ·), one can show for each i ∈ N that∥∥∥∂2

2f(tnjn , Y
n
jn−1)

(
ΓnjnS(tnjn , s)Φ(s)ui,Γ

n
jnS(tnjn , s)Φ(s)ui

)
− ∂2

2f(s,XS
s )
(
1[s,T ](·)S(·, s)Φ(s)ui,1[s,T ](·)S(·, s)Φ(s)ui

)∥∥∥
V

≤
∥∥∥(∂2

2f(tnjn , Y
n
jn−1)− ∂2

2f(s,XS
s )
)(
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V

+
∥∥∥∂2

2f(tnjn , Y
n
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ΓnjnS(tnjn , s)Φ(s)ui + 1[s,T ](·)S(·, s)Φ(s)ui

)∥∥∥
V
.

Now, by following a similar idea as in the proof of (3.3.29) we obtain that

E

(∥∥∥∥∫ T

0

2n∑
j=1

1(tnj−1,t
n
j ](s)

∞∑
i=1

∂2
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(
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n
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∂2
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V

)
n→∞−−−→ 0.

(3.3.49)

We use the above convergence to show that the following holds:

E

(∥∥∥∥ 2n∑
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E

(∫ tnj
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∞∑
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∂2
2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Φ(s)ui,Γ

n
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)
.

(3.3.50)



Path-dependent Itô calculus 59

An application of the Jensen inequality on the first summand after the inequality sign above

and using (3.3.49) imply that

E

(∥∥∥∥ 2n∑
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E
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2f(tnj , Y

n
j−1)

(
Γnj S(tnj , s)Φ(s)ui,Γ

n
j S(tnj , s)Φ(s)ui

)
ds

−
∫ tnj

tnj−1

∞∑
i=1
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)
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n
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0
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(
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V

)
n→∞−−−→ 0.

(3.3.51)

For the second summand in (3.3.50), we use the Jensen inequality, the martingale convergence

theorem, and the dominated convergence theorem to obtain that

E

(∥∥∥∥∫ T

0

∞∑
i=1

∂2
2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)ui,1[s,T ](·)S(·, s)Φ(s)ui

)
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E
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)
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∣∣∣∣Ftnj−1
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V
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)
ds

n→∞−−−→ 0.

(3.3.52)

More details are given in Lemma 3.5.11 below. The combination of (3.3.48) and (3.3.50)–(3.3.52)

implies that

Cn5
n→∞−−−→ 1

2

∫ T

0

∞∑
i=1

∂2
2f(s,XS

s )
(
1[s,T ](·)S(·, s)Φ(s)ui,1[s,T ](·)S(·, s)Φ(s)ui

)
ds in L1(P;R),

and particularly in probability.
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Step 4.6: Finally observe that

E
(∥∥Cn6 ∥∥V ) = E

(∥∥∥∥ 2n∑
j=1

∫ 1

0
(1− θ)

[
∂2

2f(tnj , Y
n
j−1 + θ∆Y n

j−1)− ∂2
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n
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∆Y n

j−1∆Y n
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∥∥∥∥
)
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E
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n
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n
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j−1,∆Y
n
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V

dθ

)

≤
2n∑
j=1

E

(∫ 1

0

∥∥∥∂2
2f(tnj , Y

n
j−1 + θ∆Y n

j−1)− ∂2
2f(tnj , Y

n
j−1)

∥∥∥
L(2)(D([0,T ],H),V )

·
∥∥∥∆Y n

j−1

∥∥∥2

D([0,T ],H)
dθ

)

≤ E

(
sup

i=1,...,2n

θ∈[0,1]

∥∥∥∂2
2f(tni , Y

n
i−1 + θ∆Y n

i−1)− ∂2
2f(tni , Y

n
i−1)

∥∥∥
L(2)(D([0,T ],H),V )

·
2n∑
j=1

∥∥∥∆Y n
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∥∥∥2

D([0,T ],H)

)
.

(3.3.53)

Moreover, by Lemma 3.3.1 and Lemma 3.3.2 we have that∥∥∥∂2
2f(tnj , Y

n
j−1 + θ∆Y n

j−1)− ∂2
2f(tnj , Y

n
j−1)

∥∥∥
L(2)(D([0,T ],H),V )

≤
∥∥∥∂2

2f(tnj , X
S
tnj

)− ∂2
2f(tnj , Y

n
j−1)

∥∥∥
L(2)(D([0,T ],H),V )

+
∥∥∥∂2

2f(tnj , Y
n
j−1 + θ∆Y n

j−1)− ∂2
2f(tnj , X

S
tnj

)
∥∥∥
L(2)(D([0,T ],H),V )

n→∞−−−→ 0, P-a.s.

(3.3.54)

uniformly in θ ∈ [0, 1] and j = 1, . . . , 2n. Indeed, by an application of Lemma 3.3.2 we set

B = L(2)(D([0, T ], H), V ), H = H, f = ∂2
2f , and xt = XS

t in the notation of the lemma.

Furthermore, note that

E

(∥∥∥∆Y n
j−1

∥∥∥2

D([0,T ],H)

)
= E

(∥∥∥Γnj

(∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds+

∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)

)∥∥∥2

D([0,T ],H)

)

≤ 2 sup
0≤r≤τ≤T

‖S(τ, r)‖2L(H)E

(∥∥∥∥∫ tnj

tnj−1

S(tnj , s)Ψ(s)ds

∥∥∥∥2

H

+

∥∥∥∥∫ tnj

tnj−1

S(tnj , s)Φ(s)dW (s)

∥∥∥∥2

H

)
(3.3.55)

≤ 2M4E

[(∫ tnj

tnj−1

∥∥Ψ(s)
∥∥
H

ds

)2
]

+ 2M4E

(∫ tnj

tnj−1

∥∥Φ(s)
∥∥2

HS(U,H)
ds

)
,

where for the last inequality we used the Jensen inequality and the Itô isometry and M is the

constant defined in (3.3.24). Therefore for all n ∈ N we have that

E

( 2n∑
j=1

∥∥∥∆Y n
j−1

∥∥∥2

D([0,T ],H)

)
≤ 2M4E

(∫ T

0

∥∥Ψ(s)
∥∥
H

ds

)
· max
j=1,...,2n

∫ tnj

tnj−1

∥∥Ψ(s)
∥∥
H

ds

+ 2M4E

(∫ T

0

∥∥Φ(s)
∥∥2

HS(U,H)
ds

)
<∞.

(3.3.56)
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Indeed, the term max
j=1,...,2n

∫ tnj
tnj−1
‖Ψ(s)‖H ds is finite due to the assumption (3.3.5). Combining

(3.3.53), (3.3.54) and (3.3.56), we obtain that

Cn6
n→∞−−−→ 0,

in L1(P;R) and therefore in probability.

3.4 Applications to weak error analysis for SEEs

3.4.1 Approximation of spatio-temporal covariances

In this section we mainly assume the setting in [13, Proposition 2.1] and analyze

the convergence rate for approximations of spatio-temporal covariances of the form

Cov
(
〈X(t1), h1〉H , 〈X(t2), h2〉H

)
, where t1, t2 ∈ [0, T ] and h1, h2 ∈ H. The employed ap-

proximations are based on Galerkin projections onto finite-dimensional subspaces of H.

Assumption 3.4.1. Let items (i) and (ii) in Assumption 3.1.1 be fulfilled. Moreover, let

(ei)i∈N ⊂ H, be an orthonormal basis of H, let A : D(A) ⊂ H → H be a diagonal linear operator

as in Lemma 2.2.14 with eigenvalues satisfying sup((λi)i∈N) < 0, let
(
Hr, 〈·, ·〉Hr , ‖·‖Hr

)
, r ∈ R,

be a family of interpolation spaces associated to −A (see Definition 2.2.10), let F ∈ Lip
(
H,H

)
,

and let B ∈ Lip
(
H,HS(U,H)

)
. Suppose that ξ ∈ Hρ with ρ ∈ [0, 1), and let also (PN )N∈N ⊂

L(H) be defined as PN (v) =
∑N

n=1 〈en, v〉H en for all v ∈ H and N ∈ N. Note that for

x ∈ D([0, T ], H) and N ∈ N, by PNx we mean the path defined by

(
PNx

)
(s) = PN (x(s)) s ∈ [0, T ].

The following existence and uniqueness result is well-known; see, e.g., [31, Theorem 5.1].

Lemma 3.4.2. Let Assumption 3.4.1 be fulfilled. Then there exists a unique (up to modifi-

cations) predictable stochastic process X : Ω × [0, T ] → H satisfying sup
t∈[0,T ]

E
[
‖X(t)‖2H

]
< ∞

and

X(t) = etAξ +

∫ t

0
e(t−s)AF

(
X(s)

)
ds+

∫ t

0
e(t−s)AB

(
X(s)

)
dW (s), (3.4.1)

P-a.s. for all t ∈ [0, T ].

Remark 3.4.3. Note that under above assumption, the conditions in Assumption 3.1.1 are

fulfilled with S(t, s) = e(t−s)A, Ψ(s) = F (X(s)), Φ(s) = B(X(s)) for s, t ∈ [0, T ] in the notation

of Assumption 3.1.1. Indeed, the path-wise continuity of X follows from [42, Lemma 6.2.9] and

[42, Proposition 6.3.5].

For N ∈ N, observe that it holds P-a.s. for all t ∈ [0, T ] that PNX(t) = etAPNξ +∫ t
0 e

(t−s)APNF
(
X(s)

)
ds +

∫ t
0 e

(t−s)APNB
(
X(s)

)
dW (s). Note that for all t ∈ [0, T ] and N ∈ N

the operators PN and etA can commute due to the fact that A is a diagonal operator.
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Lemma 3.4.4. Let Assumption 3.4.1 be fulfilled, let X : Ω × [0, T ] → H be given by Lemma

3.4.2 with continuous sample paths, and let N ∈ N . Then, for every t1, t2 ∈ [0, T ] it holds that

∣∣∣E[〈X(t1), X(t2)
〉
H
−
〈
PNX(t1), PNX(t2)

〉
H

]∣∣∣ ≤M ‖Id−PN‖L(H,H−ρ) ,

where

M = 2
(

sup
r∈[0,T ]

∥∥erA∥∥
L(H)

)2
‖ξ‖2Hρ

+ sup
s∈[0,T ]

E
[
‖X(s)‖2H

] ((
2 sup
r∈[0,T ]

∥∥erA∥∥
L(H)

+ 5
)T 1−ρ

1− ρ
‖F‖Lip(H,H)

+ 2 sup
r∈[0,T ]

∥∥erA∥∥
L(H)

T 1−ρ

1− ρ
‖B‖2Lip(H,HS(U,H))

)
.

Note that the term ‖Id−PN‖L(H,H−ρ) in the inequality above is finite. In particular, if (λi)i∈N

is a decreasing sequence then we have that

‖Id−PN‖L(H,H−ρ) = (−λN+1)−ρ.

Proof of Lemma 3.4.4. Let t1, t2 ∈ [0, T ], with t1 < t2 be fixed and the mapping

f : D([0, T ], H) → R be given as f(x) = 〈x(t1), x(t2)〉H , for all x ∈ D([0, T ], H). Then f is

two times Fréchet differentiable with continuous derivatives and therefore Assumption 3.1.5 is

fulfilled. Indeed it holds for all x, y, z ∈ D([0, T ], H) that

f ′(x)(y) = 〈y(t1), x(t2)〉H + 〈x(t1), y(t2)〉H ,

f ′′(x)(y, z) = 〈y(t1), z(t2)〉H + 〈z(t1), y(t2)〉H .

We denote by U the orthonormal basis of U . By Lemma 3.4.2 and Remark 3.4.3, the assumption

of Theorem 3.2.2 is fulfilled and we can apply our path-dependent mild Itô formula and obtain

that

E
[
f(XS

T )
]
− E

[
f(PNX

S
T )
]

= E
[
f(XS

0 )
]
− E

[
f(PNX

S
0 )
]

+

∫ T

0

(
E
[
f ′(XS

t )
(
1[t,T ](·)e(·−t)AF (X(t))

)]
− E

[
f ′(PNX

S
t )
(
1[t,T ](·)e(·−t)APNF (X(t))

)])
dt

+
1

2

∫ T

0
E
[∑
u∈U

f ′′(XS
t )
(
1[t,T ](·)e(·−t)AB

(
X(t)

)
u,1[t,T ](·)e(·−t)AB

(
X(t)

)
u
)]

dt

− 1

2

∫ T

0
E
[∑
u∈U

f ′′(PNX
S
t )
(
1[t,T ](·)e(·−t)APNB

(
X(t)

)
u,1[t,T ](·)e(·−t)APNB

(
X(t)

)
u
)]

dt.

(3.4.2)
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Next observe that due to the definition of XS
0 it holds that

∣∣f(XS
0 )− f(PNX

S
0 )
∣∣ =

∣∣〈et1A( Id−PN
)
ξ, et2Aξ

〉
H

+
〈
et1APNξ, e

t2A
(

Id−PN
)
ξ
〉
H

∣∣
≤
∥∥et1A(−A)−ρ

(
Id−PN

)
(−A)ρξ

∥∥
H
·
∥∥et2Aξ∥∥

H

+
∥∥et1APNξ∥∥H · ∥∥et2A(−A)−ρ

(
Id−PN

)
(−A)ρξ

∥∥
H

≤ 2
(

sup
r∈[0,T ]

∥∥erA∥∥
L(H)

)2
‖ξ‖2Hρ ‖Id−PN‖L(H,H−ρ) .

Therefore we have that

E
[∣∣f(XS

0 )− f(PNX
S
0 )
∣∣] ≤ 2

(
sup
r∈[0,T ]

∥∥erA∥∥
L(H)

)2
‖ξ‖2Hρ ‖Id−PN‖L(H,H−ρ) . (3.4.3)

Next observe that for t ∈ [0, T ] it holds that∣∣∣f ′(XS
t )
(
1[t,T ](·)e(·−t)AF (X(t))

)
− f ′(PNXS

t )
(
1[t,T ](·)e(·−t)APNF (X(t))

)∣∣∣
≤
∣∣∣(f ′(XS

t )− f ′(PNXS
t )
)(
1[t,T ](·)e(·−t)AF (X(t))

)∣∣∣
+
∣∣∣f ′(PNXS

t )
(
1[t,T ](·)e(·−t)AF (X(t))− 1[t,T ](·)e(·−t)APNF (X(t))

)∣∣∣ .
Before we continue with the above computation, we need to write the term

f ′(XS
t )
(
1[t,T ](·)e(·−t)AF (X(t))

)
explicitly. Observe that

f ′(XS
t )
(
1[t,T ](·)e(·−t)AF (X(t))

)

=


〈
e(t1−t)AF (X(t)), e(t2−t)AX(t)

〉
H

+
〈
e(t2−t)AF (X(t)), e(t1−t)AX(t)

〉
H

t ∈ [0, t1]〈
e(t2−t)AF (X(t)) , X(t1)

〉
H

t ∈ (t1, t2]

0 t ∈ (t2, T ].

Thus it holds that(
f ′(XS

t )− f ′(PNXS
t )
)(
1[t,T ](·)e(·−t)AF (X(t))

)

=


〈
e(t1−t)AF (X(t)), e(t2−t)A

(
Id−PN

)
X(t)

〉
H

+
〈
e(t2−t)AF (X(t)), e(t1−t)A

(
Id−PN

)
X(t)

〉
H

t ∈ [0, t1]〈
e(t2−t)AF (X(t)) ,

(
Id−PN

)
X(t1)

〉
H

=
〈
e(
t2−t

2
)AF (X(t)), e(

t2−t
2

)A
(
Id−PN

)
X(t1)

〉
H

t ∈ (t1, t2]

0 t ∈ (t2, T ],

and that

f ′(PNX
S
t )
(
1[t,T ](·)e(·−t)AF (X(t))− 1[t,T ](·)e(·−t)APNF (X(t))

)

=


〈
e(t1−t)A

(
Id−PN

)
F (X(t)), e(t2−t)APNX(t)

〉
H

+
〈
e(t2−t)A

(
Id−PN

)
F (X(t)), e(t1−t)APNX(t)

〉
H

t ∈ [0, t1]〈
e(t2−t)A

(
Id−PN

)
F (X(t)), PNX(t1)

〉
H

t ∈ (t1, t2]

0 t ∈ (t2, T ].
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Consequently, we obtain by straightforward computations that∣∣∣∣∫ T

0
E
[
f ′(XS

t )
(
1[t,T ](·)e(·−t)AF (X(t))

)]
− E

[
f ′(PNX

S
t )
(
1[t,T ](·)e(·−t)APNF (X(t))

)]
dt

∣∣∣∣
≤ sup

s∈[0,T ]
E
[
‖X(s)‖2H

]
‖F‖Lip(H,H) ‖Id−PN‖L(H,H−ρ)

·
(

2
(
1 + sup

r∈[0,T ]

∥∥erA∥∥
L(H)

) ∫ t1

0
(t1 − t)−ρdt+

(
2ρ + 1

) ∫ t2

t1

(t2 − t)−ρdt
)

≤ sup
s∈[0,T ]

E
[
‖X(s)‖2H

]
‖F‖Lip(H,H) ‖Id−PN‖L(H,H−ρ)

·
(

2
(
1 + sup

r∈[0,T ]

∥∥erA∥∥
L(H)

) ∫ T

0
(T − t)−ρdt+

(
2 + 1

) ∫ T

0
(T − t)−ρdt

)
≤ sup

s∈[0,T ]
E
[
‖X(s)‖2H

]
‖F‖Lip(H,H)

T 1−ρ

1− ρ
(
2 sup
r∈[0,T ]

∥∥erA∥∥
L(H)

+ 5
)
‖Id−PN‖L(H,H−ρ) .

(3.4.4)

Next note that for each u ∈ U it holds that

f ′′(XS
t )
(
1[t,T ](·)e(·−t)AB

(
X(t)

)
u,1[t,T ](·)e(·−t)AB

(
X(t)

)
u
)

=

2
〈
e(t1−t)AB

(
X(t)

)
u, e(t2−t)AB

(
X(t)

)
u
〉
H

t ≤ t1

0 otherwise.

Therefore, we have that∣∣∣∣12
∫ T

0
E
[∑
u∈U

f ′′(XS
t )
(
1[t,T ](·)e(·−t)AB

(
X(t)

)
u,1[t,T ](·)e(·−t)AB

(
X(t)

)
u
)]

dt

− 1

2

∫ T

0
E
[∑
u∈U

f ′′(PNX
S
t )
(
1[t,T ](·)e(·−t)APNB

(
X(t)

)
u,1[t,T ](·)e(·−t)APNB

(
X(t)

)
u
)]

dt

∣∣∣∣
≤
∫ t1

0
E
[∑
u∈U

〈
e(t1−t)A( Id−PN

)
B
(
X(t)

)
u, e(t2−t)AB

(
X(t)

)
u
〉
H

]
+

∫ t1

0
E
[∑
u∈U

〈
e(t1−t)APNB

(
X(t)

)
u, e(t2−t)A( Id−PN

)
B
(
X(t)

)
u
〉
H

]
≤ sup

s∈[0,T ]
E
[
‖X(s)‖2H

]
‖B‖2Lip(H,HS(U,H)) ‖Id−PN‖L(H,H−ρ)

∫ t1

0

(
(t1 − t)−ρ + (t2 − t)−ρ

)
dt

≤ 2 sup
s∈[0,T ]

E
[
‖X(s)‖2H

]
‖B‖2Lip(H,HS(U,H)) ‖Id−PN‖L(H,H−ρ) ·

∫ t1

0
(t1 − t)−ρ dt

≤ 2 sup
s∈[0,T ]

E
[
‖X(s)‖2H

]
‖B‖2Lip(H,HS(U,H)) ‖Id−PN‖L(H,H−ρ) ·

T 1−ρ

1− ρ
.

(3.4.5)

The combination of (3.4.2), (3.4.3), (3.4.4) and (3.4.5) proves the assertion.
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In the following result we show the weak error rate for time approximations of covariances of

mild solution of a linear SPDE, i.e., we assume the Assumtion 3.4.1 and set the drift term

F = 0. Then X : Ω× [0, T ]→ H satisfies sup
t∈[0,T ]

E
[
‖X(t)‖2H

]
<∞ and

X(t) = etAξ +

∫ t

0
e(t−s)AB

(
X(s)

)
dW (s), (3.4.6)

P-a.s. for all t ∈ [0, T ].

Lemma 3.4.5. Let Assumption 3.4.1 be fulfilled with F = 0, let X : Ω × [0, T ] → H with

continuous sample paths be given by (3.4.6), and let N ∈ N. Then, for every t1, t2 ∈ [0, T ] and

h1, h2 ∈ H it holds that∣∣∣Cov
(〈
X(t1), h1

〉
H
,
〈
X(t2), h2

〉
H

)
− Cov

(〈
PNX(t1), h1

〉
H
,
〈
PNX(t2), h2

〉
H

)∣∣∣
≤M ‖Id−PN‖L(H,H−ρ) ,

where

M = ‖h1‖H ‖h2‖H
((

sup
r∈[0,T ]

∥∥erA∥∥
L(H)

)2
‖ξ‖2Hρ

+ 2 sup
s∈[0,T ]

E
[
‖X(s)‖2H

] T 1−ρ

1− ρ
‖B‖2Lip(H,HS(U,H))

)
<∞.

Proof. Let t1, t2 ∈ [0, T ], with t1 < t2 and h1, h2 ∈ H be fixed and let the mapping

f : D([0, T ], H) → R be given as f(x) = 〈x(t1), h1〉H · 〈x(t2), h2〉H , for all x ∈ D([0, T ], H).

Then f is two times Fréchet differentiable with continuous derivatives and therefore Assump-

tion 3.1.5 is fulfilled. Indeed it holds for all x, y, z ∈ D([0, T ], H) that

f ′(x)(y) = 〈y(t1), h1〉H · 〈x(t2), h2〉H + 〈y(t2), h2〉H · 〈x(t1), h1〉H , and

f ′′(x)(y, z) = 〈y(t1), h1〉H · 〈z(t2), h2〉H + 〈y(t2), h2〉H · 〈z(t1), h1〉H .

We denote by U the orthonormal basis of U . By Theorem 3.4.2 and Remark 3.4.3, the assump-

tion of Theorem 3.2.2 is fulfilled and we can apply the path-dependent mild Itô formula and

obtain that

E
[
f(XS

T )
]
− E

[
f(PNX

S
T )
]

= E
[
f(XS

0 )
]
− E

[
f(PNX

S
0 )
]

+
1

2

∫ T

0
E
[∑
u∈U

f ′′(XS
t )
(
1[t,T ](·)e(·−t)AB

(
X(t)

)
u,1[t,T ](·)e(·−t)AB

(
X(t)

)
u
)]

dt

− 1

2

∫ T

0
E
[∑
u∈U

f ′′(PNX
S
t )
(
1[t,T ](·)e(·−t)APNB

(
X(t)

)
u,1[t,T ](·)e(·−t)APNB

(
X(t)

)
u
)]

dt.

(3.4.7)
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Next observe that due to the definition of XS
0 it holds that

∣∣f(XS
0 )− f(PNX

S
0 )
∣∣ ≤ ∣∣〈et1A( Id−PN

)
ξ, h1

〉
H
·
〈
et2Aξ, h2

〉
H

∣∣
+
∣∣〈et2A( Id−PN

)
ξ, h2

〉
H
·
〈
et1APNξ, h1

〉
H

∣∣
≤ ‖h1‖H ‖h2‖H

(
sup
r∈[0,T ]

∥∥erA∥∥
L(H)

)2
‖ξ‖2Hρ ‖Id−PN‖L(H,H−ρ) .

Therefore we have that

E
[∣∣f(XS

0 )− f(PNX
S
0 )
∣∣] ≤ ‖h1‖H ‖h2‖H

(
sup
r∈[0,T ]

∥∥erA∥∥
L(H)

)2
‖ξ‖2Hρ ‖Id−PN‖L(H,H−ρ) .

(3.4.8)

Next note that for each u ∈ U it holds that

f ′′(XS
t )
(
1[t,T ](·)e(·−t)AB

(
X(t)

)
u,1[t,T ](·)e(·−t)AB

(
X(t)

)
u
)

=

2
〈
e(t1−t)AB

(
X(t)

)
u, h1

〉
H
·
〈
e(t2−t)AB

(
X(t)

)
u, h2

〉
H

t ≤ t1

0, otherwise.

Therefore we have that∣∣∣∣12
∫ T

0
E
[∑
u∈U

f ′′(XS
t )
(
1[t,T ](·)e(·−t)AB

(
X(t)

)
u,1[t,T ](·)e(·−t)AB

(
X(t)

)
u
)]

dt

− 1

2

∫ T

0
E
[∑
u∈U

f ′′(PNX
S
t )
(
1[t,T ](·)e(·−t)APNB

(
X(t)

)
u,1[t,T ](·)e(·−t)APNB

(
X(t)

)
u
)]

dt

∣∣∣∣
≤
∫ t1

0
E
[∑
u∈U

〈
e(t1−t)A( Id−PN

)
B
(
X(t)

)
u, h1

〉
H
·
〈
e(t2−t)AB

(
X(t)

)
u, h2

〉
H

]
dt

+

∫ t1

0
E
[∑
u∈U

〈
e(t1−t)APNB

(
X(t)

)
u, h1

〉
H
·
〈
e(t2−t)A( Id−PN

)
B
(
X(t)

)
u, h2

〉
H

]
dt

≤ ‖h1‖H ‖h2‖H sup
s∈[0,T ]

E
[
‖X(s)‖2H

]
‖B‖2Lip(H,HS(U,H)) ‖Id−PN‖L(H,H−ρ)

·
∫ t1

0

(
(t1 − t)−ρ + (t2 − t)−ρ

)
dt

≤ 2 ‖h1‖H ‖h2‖H sup
s∈[0,T ]

E
[
‖X(s)‖2H

]
‖B‖2Lip(H,HS(U,H)) ‖Id−PN‖L(H,H−ρ)

·
∫ t1

0
(t1 − t)−ρdt

≤ 2 ‖h1‖H ‖h2‖H sup
s∈[0,T ]

E
[
‖X(s)‖2H

]
‖B‖2Lip(H,HS(U,H)) ‖Id−PN‖L(H,H−ρ) ·

T 1−ρ

1− ρ
.

(3.4.9)

The combination of (3.4.7), (3.4.8) and (3.4.9) proves the assertion.
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3.4.2 Outlook on further applications

In this section, we discuss a possible further application of our path-dependent mild Itô formula

(3.2.4) to linear SPDEs. For this, let µ be a finite Borel-measure, let A : D(A) ⊂ H → H

be the generator of a strongly continuous semigroup (etA)t≥0 ⊂ L(H), and let B ∈ HS(U,H).

Moreover, let Assumption 3.1.1 be fulfilled, where the strongly continuous evolution family S

is given by S(t, s) = e(t−s)A, 0 ≤ s ≤ t ≤ T , Ψ(s) = 0, and Φ(s) = B, s ∈ [0, T ]. Consider the

mild solution

X(t) = etAξ +

∫ t

0
e(t−s)AB dW (s) t ∈ [0, T ],

of the linear SPDE dX(t) = AX(t) dt+B dW (t), t ∈ [0, T ]

X(0) = ξ ∈ H.

The following approach to weak error analysis for path-dependent functionals is analogous to

the approach in [38] in the non-path-dependent case. To simplify the exposition, we consider

here a simplified L2(µ;H)-setting; as in Remark 3.2.6, however, we expect that the following

weak error representation can be extended to the D([0, T ], H)-setting.

As in Remark 3.2.5, we define the strongly continuous evolution family (St,s)0≤s≤t≤T on L2(µ;H)

and the L2(µ;H)-valued mild Itô process (Xt)t∈[0,T ] by

St,sx = 1[0,s)(·)x(·) + 1[s,T ](·)e(·∧t−s)Ax(·) ∀x ∈ L2(µ;H),

Xt = X(· ∧ t),

so that

Xt = St,0ξ +

∫ t

0
St,s
(
1[s,T ](·)B

)
dW (s), (3.4.10)

where we interpret ξ as a constant H-valued path. Next let f ∈ C2
b

(
L2(µ;H),R

)
and define the

mapping φ : [0, T ]× L2(µ;H)→ R, (t, x) 7→ φ(t, x), by

φ(t, x) = E

[
f
(
x+

∫ T

t
ST,s

(
1[s,T ](·)B

)
dW (s)

)]
. (3.4.11)

Then it is not difficult to check that for all t ∈ [0, T ], x, y, z ∈ L2(µ;H) it holds that

∂2φ(t, x)(y) =E

[
f ′
(
x+

∫ T

t
ST,s

(
1[s,T ](·)B

)
dW (s)

)
(y)

]
,

∂2
2φ(t, x)(y, z) =E

[
f ′′
(
x+

∫ T

t
ST,s

(
1[s,T ](·)B

)
dW (s)

)
(y, z)

]
.

(3.4.12)
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Moreover, the following backward Kolmogorov equation holds for (t, x) ∈ [0, T )× L2(µ;H)∂
+
1 φ(t, x) = −1

2

∑
u∈U ∂

2
2φ(t, x)

(
ST,t

(
1[t,T ](·)Bu

)
, ST,t

(
1[t,T ](·)Bu

))
,

φ(T, x) = f(x).
(3.4.13)

To see that (3.4.13) holds true, note that the L2(µ;H)-valued random variables∫ T
t ST,s

(
1[s,T ](·)B

)
dW (s) and

∫ T−t
0 ST,T−s

(
1[T−s,T ](·)B

)
dW (s) have the same distribution, so

that

φ(t, x) = E

[
f
(
x+

∫ T−t

0
ST,T−s

(
1[T−s,T ](·)B

)
dW (s)

)]
. (3.4.14)

Now we can apply the Itô formula [16, Theorem 4.32] to the function y 7→ f(x+ y), with fixed

x, and the L2(µ;H)-valued process
( ∫ r

0 ST,T−s
(
1[T−s,T ](·)B

)
dW (s)

)
r∈[0,T ]

, at time T − t, and

take expectations on both sides of the Itô formula to obtain that

E

[
f
(
x+

∫ T−t

0
ST,T−s

(
1[T−s,T ](·)B

)
dW (s)

)]
= f(x)

+
1

2

∫ T−t

0

∑
u∈U

E

[
f ′′
(
x+

∫ s

0
ST,T−r

(
1[T−r,T ](·)B

)
dW (r)

)
(
ST,T−s

(
1[T−s,T ](·)Bu

)
, ST,T−s

(
1[T−s,T ](·)Bu

))]
ds.

Now use (3.4.14) and (3.4.12) to get

φ(t, x) = φ(T, x) +
1

2

∫ T−t

0

∑
u∈U

∂2
2φ(T − s, x)

(
ST,T−s

(
1[T−s,T ](·)Bu

)
, ST,T−s

(
1[T−s,T ](·)Bu

))
ds.

(3.4.15)

Taking a right-sided time-derivative from both sides of (3.4.15) implies the backward Kol-

mogorov equation (3.4.13).

To derive a weak error representation, let (X̃(t))t∈[0,T ] be the mild solution of another linear

SPDE with initial value ξ̃ and diffusion operator B̃ ∈ HS(U,H) and observe that

E
[
f(X̃T )

]
− E

[
f(XT )

]
= E

[
φ(T, X̃T )

]
− φ(0, ST,0ξ)

=
(
φ(0, ST,0ξ̃)− φ(0, ST,0ξ)

)
+ E

[
φ(T, X̃T )− φ(0, ST,0ξ̃)

]
,

and assuming sufficient regularity of φ apply the mild Itô formula to the L2(µ;H)-valued mild Itô

process (X̃t)t∈[0,T ] and the function φ(t, x). This leads to a weak error representation analogous

to [38, Theorem 3.1] involving ∂2
2φ(t, x), and the weak error can then be suitably estimated.

In the D([0, T ], H)-setting, we expect that our path-dependent mild Itô formula (3.2.4) can be

applied in the procedure explained above, wherever an Itô formula was used, i.e., once to derive

the backward Kolmogorov equation and once to estimate the weak error.
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3.5 Technical proofs

In this section we collect some technical results mostly used in the proof of Theorem 3.2.2.

Readers who are not interested in these technicalities are welcome to skip this section.

Lemma 3.5.1. Let T ∈ (0,∞), let (H, 〈·, ·〉H , ‖·‖H) be a separable real Hilbert space, let

S = (S(t, s))0≤s≤t≤T be a strongly continuous evolution family on H as in Assumption 3.1.1

(iii) and let x ∈ C([0, T ], H). Then it holds that

{
(t, s) ∈ [0, T ]2 : s ≤ t

}
3 (t, s) 7→ S(t, s)x(s) ∈ H

is uniformly continuous.

Proof. Since
{

(t, s) ∈ [0, T ]2 : s ≤ t
}

is a compact set, it suffices to show the continuity at an

arbitrary fixed (t0, s0) ∈
{

(t, s) ∈ [0, T ]2 : s ≤ t
}

. For this note that it holds for all (τ, σ) ∈{
(t, s) ∈ [0, T ]2 : s ≤ t

}
and x ∈ C([0, T ], H) that

‖S(τ, σ)x(s)− S(t0, s0)x(s0)‖H ≤ ‖S(τ, σ)x(s)− S(τ, σ)x(s0)‖H
+ ‖S(τ, σ)x(s0)− S(t0, s0)x(s0)‖H
≤ sup

0≤u≤v≤T
‖S(v, u)‖L(H) ‖x(σ)− x(s0)‖H

+
∥∥(S(τ, σ)− S(t0, s0)

)
x(s0)

∥∥
H
.

If σ → s0, the first term on the right-hand side goes to zero since x ∈ C([0, T ], H). More-

over, the second term goes to zero as (τ, σ) → (t0, s0), by the continuity assumption on

S = (S(τ, σ))0≤s≤t≤T .

Lemma 3.5.2. Let (V, ‖·‖V ) be a real Banach space, let a, b ∈ R with a < b and, let g : [a, b]→
V be continuous and right-differentiable with ∂+g|(a,b) = 0. Then g is constant on [a, b].

Proof. Assume that the assertion does not hold. Then there exist r, s ∈ (a, b) with r < s and

g(r) 6= g(s). We define

ε =
‖g(s)− g(r)‖V

2(s− r)
> 0, and

c = inf
{
x ∈ (r, s] : ‖g(x)− g(r)‖V > ε(x− r)

}
.

The definitions above and the continuity of g imply that ‖g(c)− g(r)‖V = ε(c − r) and c < s.

Due to the assumption that ∂+g(c) = 0, it holds that

∃d ∈ (c, s] s.t. ‖g(x)− g(c)‖V < ε(x− c) ∀x ∈ (c, d],
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and consequently that

‖g(x)− g(r)‖V ≤ ‖g(x)− g(c)‖V + ‖g(c)− g(r)‖V ≤ ε(x− r) ∀x ∈ (c, d],

which contradicts the definition of c.

Lemma 3.5.3. Let (V, ‖·‖V ) be a real Banach space, let a, b ∈ R with a < b and let g : [a, b]→ V

be continuous and right-differentiable with continuous right-derivative ∂+g. Then it holds that

g(b)− g(a) =

∫ b

a
∂+g(x)dx.

Proof. Define G(x) =
∫ x
a ∂

+g(s)ds, then by the fundamental theorem of calculus, [42, Proposi-

tion A.2.3], we have for all x ∈ (a, b) that

G′(x) = ∂+g(x).

In particular ∂+(G− g)|(a,b) = 0. Now Lemma 3.5.2 completes the proof.

Lemma 3.5.4. Assume the setting in Example 3.1.6 (ii). Then it holds that

∂2f(t, x)(h) =

∫
[0,T ]

∂2g
(
t, s, x(s)

)(
h(s)

)
µ(ds).

Proof. By the first-order Taylor formula [58, Theorem 4.C] , we have that

g(t, s, r + h) = g(t, s, r) + ∂2g(t, s, r)(h) +

∫ 1

0
(1− θ)

(
∂2g(t, s, r + θh)− ∂2g(t, s, r)

)
(h)dθ.

Then we obtain

f(t, x+ h) =

∫
[0,T ]

g
(
t, s, x(s) + h(s)

)
µ(ds)

=

∫
[0,T ]

g
(
t, s, x(s)

)
µ(ds) +

∫ T

0
∂2g
(
t, s, x(s)

)(
h(s)

)
µ(ds)

+

∫
[0,T ]

∫ 1

0
(1− θ)

[
∂2g
(
t, s, x(s) + θh(s)

)
− ∂2g

(
t, s, x(s) + h(s)

)]
h(s)dθµ(ds)

= f(t, x) + ∂2f(t, x)(h)

+

∫
[0,T ]

∫ 1

0
(1− θ)

[
∂2g
(
t, s, x(s) + θh(s)

)
− ∂2g

(
t, s, x(s) + h(s)

)]
h(s)dθµ(ds),
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since∥∥∥∥∫
[0,T ]

∫ 1

0
(1− θ)

[
∂2g
(
t, s, x(s) + θh(s)

)
− ∂2g

(
t, s, x(s) + h(s)

)]
h(s)dθµ(ds)

∥∥∥∥
V

≤
∥∥h∥∥

D([0,T ],H)

∫
[0,T ]

∫ 1

0

∥∥∥∂2g
(
t, s, x(s) + θh(s)

)
− ∂2g

(
t, s, x(s) + h(s)

)∥∥∥
L(H,V )

dθµ(ds),

and therefore

lim
h→0

∥∥∥∥ ∫[0,T ]

∫ 1
0 (1− θ)

[
∂2g
(
t, s, x(s) + θh(s)

)
− ∂2g

(
t, s, x(s) + h(s)

)]
h(s)dθµ(ds)

∥∥∥∥
V

‖h‖D([0,T ],H)

≤ lim
h→0

∫
[0,T ]

∫ 1

0

∥∥∥∂2g
(
t, s, x(s) + θh(s)

)
− ∂2g

(
t, s, x(s) + h(s)

)∥∥∥
L(H,V )

dθµ(ds)

=

∫
[0,T ]

∫ 1

0
lim
h→0

∥∥∥∂2g
(
t, s, x(s) + θh(s)

)
− ∂2g

(
t, s, x(s) + h(s)

)∥∥∥
L(H,V )

dθµ(ds)

= 0

as ∂2g is continuous in x and dominated by the µ-integrable function G.

Measurability of integrands in the functional Itô formula

Lemma 3.5.5. Let (E, ‖·‖E) and (K, ‖·‖K) be real Banach spaces, let (Ω,A) be a measurable

space, let f : Ω → E be A-B(E)-measurable, let F : Ω → L(E,K) be such that for all e ∈ E
the mapping F (·)e : Ω→ K is A-B(K)-measurable, and assume further that at least one of the

following conditions is fulfilled:

(i) f(Ω) ⊂ E is separable,

(ii) F is A-B(L(E,K))-measurable and F (Ω) ⊂ L(E,K) is separable.

Then the mapping F (·)f(·) : Ω→ K, ω 7→ F (ω)f(ω), is A-B(K)-measurable.

Proof. We first verify the assertion under assumption (i). In this case, let fn : Ω→ E, n ∈ N, be

a sequence of simple E-valued functions such that for every ω ∈ Ω it holds that limn→∞ fn(ω) =

f(ω), see [51, Lemma A.1.4]. Observe that for every ω ∈ Ω we have

F (ω)f(ω) = lim
n→∞

F (ω)fn(ω) (3.5.1)

as an equality in K. Moreover, note that for every n ∈ N the mapping

F (·)fn(·) : Ω→ K, ω 7→ F (ω)fn(ω) (3.5.2)
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is A-B(K)-measurable. Indeed, in order to verify it suffices to observe that for every B ∈ B(K)

we have (
F (·)fn(·)

)−1
(B) =

⋃
e∈fn(Ω)

[(
F (·)e

)−1
(B) ∩ f−1

n ({e})
]
∈ A,

due to the measurability assumption on F . Combining (3.5.1), (3.5.2) with the fact that the

set of A-B(E)-measurable functions is closed under the formation of pointwise limits; see, e.g.,

[51, Proposition A.1.3] yields the assertion under assumption (i).

Next we verify the assertion under assumption (ii). In this case, let Fn : Ω → L(E,K), n ∈ N
be a sequence of simple L(E,K)-valued functions such that for every ω ∈ Ω it holds that

F (ω) = lim
n→∞

Fn(ω) (3.5.3)

as an equality in L(E,K); see [51, Lemma A.1.4]. Further, note that for every n ∈ N the

mapping

Fn(·)f(·) : Ω→ K, ω 7→ Fn(ω)f(ω) is A-B(K)-measurable. (3.5.4)

Indeed, in order to verify (3.5.4) it suffices to observe that for every B ∈ B(K) it holds that(
Fn(·)f(·)

)−1
(B) =

⋃
L∈Fn(Ω)

[(
L ◦ f

)−1
(B) ∩ F−1

n ({L})
]
∈ A

due to the measurability assumption on f . Combining (3.5.3), (3.5.4) with the fact that the

set of A-B(E) measurable functions is closed under formation of pointwise limits; see, e.g., [51,

Proposition A.1.3] yields the assertion under assumption (ii).

Lemma 3.5.6. Assume the setting in Theorem 3.2.2 and let h ∈ H. Then the mapping

[0, T ] 3 s 7→ 1[s,T ](·)S(·, s)h ∈ D([0, T ], H)

is B
(
[0, T ]

)
-B
(
D([0, T ], H)

)
-measurable. As a trivial consequence, it holds also that the mapping

[0, T ]× Ω 3 (s, ω) 7→ 1[s,T ](·)S(·, s)h ∈ D([0, T ], H)

is PT -B
(
D([0, T ], H)

)
-measurable.

Proof. We test the measurability by considering the sets of a suitable generator of

B
(
D([0, T ], H)

)
. Let n ∈ N, B1, B2, . . . , Bn ∈ B(H), and t1, . . . , tn ∈ [0, T ]. Denote by
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πt1,...,tn : D([0, T ], H)→ Hn the projection πt1,...,tn(x) =
(
x(t1), . . . , x(tn)

)
and observe that

(
1[·,T ]S

)−1(
π−1t1,...,tn(B1 × . . .×Bn)

)
=
{
t ∈ [0, T ] : πt1,...,tn

(
1[t,T ](·)S(·, t)h

)
∈ B1 × . . .×Bn

}
=
{
t ∈ [0, T ] : 1[t,T ](t1)S(t1, t)h ∈ B1, . . . ,1[t,T ](tn)S(tn, t)h ∈ Bn

}
=

n⋂
i=1

{
t ∈ [0, T ] : 1[t,T ](ti)S(ti, t)h ∈ Bi

}
︸ ︷︷ ︸

∈B([0,T ])

∈ B
(
[0, T ]

)
,

which proves the assertion.

Lemma 3.5.7. Assume the setting in Theorem 3.2.2. Then the mapping

[0, T ]× Ω 3 (s, ω) 7→ ∂2f
(
s,XS

s (·, ω)
)(
1[s,T ](·)S(·, s)Ψ(s, ω)

)
∈ V

is PT -B(V )-measurable.

Proof. Step 1: The mapping [0, T ] × Ω 3 (s, ω) 7→
(
s,XS

s (·, ω)
)
∈ [0, T ] × D([0, T ], H) is

PT -B
(
D([0, T ], H)

)
-measurable since the process (XS

s )s∈[0,T ] is (Fs)-adapted and has continu-

ous trajectories; see Lemma 3.2.1. The operator-valued mapping ∂2f : [0, T ] × D([0, T ], H) →
L
(
D([0, T ], H), V

)
is continuous, therefore for all y ∈ D([0, T ], H) the composition [0, T ]×Ω 3

(s, ω) 7→ ∂2f
(
s,XS

s (·, ω)
)
y ∈ V is PT -B

(
V
)
-measurable.

Step 2: Note that the mapping

[0, T ]× Ω 3 (s, ω) 7→ 1[s,T ](·)S(·, s)Ψ(s, ω) ∈ D([0, T ], H)

is PT -B
(
D([0, T ], H)

)
-measurable, due to the predictability assumption on (Ψ(t))t∈[0,T ], Lemma

3.5.6, and Lemma 3.5.5 with E = H and K = D([0, T ], H), f = Ψ, F = 1[·,T ]S, and Ω =

[0, T ]× Ω fulfilling assumption (i).

Step 3: Combining Step 1 and Step 2 and applying Lemma 3.5.5 once again with

E = D([0, T ], H) fulfilling assumption (ii), we obtain that the mapping (s, ω) 7→
∂2f
(
s,XS

s (·, ω)
)(
1[s,T ](·)S(·, s)Ψ(s, ω)

)
∈ V is PT -B(V )-measurable.

Lemma 3.5.8. Assume the setting in Theorem 3.2.2. Then the mapping

[0, T ]× Ω 3 (s, ω) 7→ ∂2f
(
s,XS

s (·, ω)
)(
1[s,T ](·)S(·, s)Φ(s, ω)

)
∈ HS(U, V )

is PT -B(HS(U, V ))-measurable.

Proof. Let H ∈ HS(U,H). With a similar argument as in the proof of Lemma 3.5.6, one can

show that the mapping

[0, T ]× Ω 3 (s, ω) 7→ 1[s,T ](·)S(·, s)H ∈ D([0, T ],HS(U,H))
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is PT -B
(
D([0, T ],HS(U,H))

)
-measurable. Following an analogue idea as in Step 2 and Step 3

in the proof of Lemma 3.5.7 proves the assertion.

Lemma 3.5.9. Assume the setting in Theorem 3.2.2. Then the mapping

[0, T ]× Ω 3 (s, ω) 7→
∑
i∈N

∂2
2f
(
s,XS

s (·, ω)
)(
1[s,T ](·)S(·, s)Φ(s, ω)ei,1[s,T ](·)S(·, s)Φ(s, ω)ei

)
is PT -B(V )-measurable.

Proof. It suffices to show the measurability for only one summand. Let i ∈ N and y ∈
D([0, T ], H). As in the proof of Lemma 3.5.7, one can show that the mapping [0, T ] × Ω 3
(s, ω) 7→ 1[s,T ](·)S(·, s)Φ(s, ω)ei ∈ D([0, T ], H) is PT -B

(
D([0, T ], H)

)
-measurable. Now, by

Lemma 3.5.5 with E = D([0, T ], H) and K = V fulfilling assumption (ii), we obtain that the

mapping

[0, T ]× Ω 3 (s, ω) 7→ ∂2
2f
(
s,XS

s (·, ω)
)(
y ,1[s,T ](·)S(·, s)Φ(s, ω)ei

)
∈ V

is PT -B(V )-measurable. A second application of Lemma 3.5.5 thus finishes the proof.

Lemma 3.5.10. Assume the setting in Theorem 3.2.2, let N ∈ N, and let τN : Ω → [0, T ] be

the stopping time defined in (3.3.14). Then it holds for all t ∈ [0, T ] that∫ t

0
1((0,τN K(s)S(t, s)Φ(s) dW (s) = S(t, t ∧ τN )

∫ t∧τN

0
S(t ∧ τN , s)Φ(s) dW (s), P-a.s. (3.5.5)

Proof. In order to verify (3.5.5) above, we employ an approximation argument for stopping

times similar to the argument in the proof of [51, Lemma 2.3.9]. To this end, we define the

following sequence of simple stopping times

τ
(n)
N =

2n−1∑
k=0

T (k + 1)

2n
1

(Tk
2n
,
T (k+1)

2n
]
◦ τN , n ∈ N, (3.5.6)

with the property that τ
(n)
N ↓ τN , P-a.s. as n→∞. For each n ∈ N, we can rewrite τ

(n)
N as

τ
(n)
N =

2n−1∑
k=0

ak1Ak

where ak = T (k+1)
2n and Ak = {τN ∈ (Tk2n ,

T (k+1)
2n ]} = {τ (n)

N = ak}, k = 0, · · · , 2n − 1. Thus, it

holds that

1
((0,τ

(n)
N K(s) =

2n−1∑
k=0

1Ak1(0,ak](s), s ∈ [0, T ].
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Now note that for all t ∈ [0, T ] the following equalities hold in L2(P⊗ λ;H)∫ t

0
1((0,τN K(s)S(t, s)Φ(s) dW (s) = lim

n→∞

∫ t

0
1

((0,τ
(n)
N K(s)S(t, s)Φ(s) dW (s)

= lim
n→∞

∫ t

0

2n−1∑
k=0

1Ak1(0,ak](s)S(t, t ∧ τ (n)
N )S(t ∧ τ (n)

N , s)Φ(s) dW (s)

= lim
n→∞

∫ t

0

2n−1∑
k=0

1Ak1(0,ak](s)S(t, t ∧ ak)S(t ∧ τ (n)
N , s)Φ(s) dW (s)

= lim
n→∞

2n−1∑
k=0

S(t, t ∧ ak)
∫ t

0
1Ak1(0,ak](s)S(t ∧ τ (n)

N , s)Φ(s) dW (s).

(3.5.7)

We continue with our computation by using [49, Proposition 8.11]

lim
n→∞

2n−1∑
k=0

S(t, t ∧ ak)
∫ t

0
1Ak1(0,ak](s)S(t ∧ τ (n)

N , s)Φ(s) dW (s)

= lim
n→∞

2n−1∑
k=0

S(t, t ∧ τ (n)
N )

∫ t

0
1Ak1(0,ak](s)S(t ∧ τ (n)

N , s)Φ(s) dW (s)

= lim
n→∞

S(t, t ∧ τ (n)
N )

∫ t

0

2n−1∑
k=0

1Ak1(0,ak](s)S(t ∧ τ (n)
N , s)Φ(s) dW (s)

= lim
n→∞

S(t, t ∧ τ (n)
N )

∫ t

0
1

((0,τ
(n)
N K(s)S(t ∧ τ (n)

N , s)Φ(s) dW (s)

= lim
n→∞

S(t, t ∧ τ (n)
N )

∫ t∧τ (n)N

0
S(t ∧ τ (n)

N , s)Φ(s) dW (s).

(3.5.8)

Next, observe that due to continuity of the mapping [0, T ] 3 t→
∫ t

0 S(t, s)Φ(s)dW (s) ∈ H and

Lemma 3.5.1, we have P-a.s. that

S(t, t ∧ τN )

∫ t∧τN

0
S(t ∧ τN , s)Φ(s) dW (s) = lim

n→∞
S(t, t ∧ τ (n)

N )

∫ t∧τ (n)N

0
S(t ∧ τ (n)

N , s)Φ(s) dW (s).

This together with (3.5.7) and (3.5.8) completes the proof.

On time integrals of predictable processes

Lemma 3.5.11. Let T ∈ (0,∞), let
(
Ω,F , (Ft)t∈[0,T ],P

)
be a filtered probability space such

that the filtration (Ft)t∈[0,T ] satisfies the usual conditions, and let V be a separable real Hilbert

space. Moreover, let Z = (Z(t))t∈[0,T ] be a bounded V -valued PT -measurable process and let

tnj = jT
2n , j ∈ {0, 1, . . . , 2n}, n ∈ N. Then it holds that

E

(∥∥∥∥∫ T

0
Z(t)dt−

2n∑
j=1

E

(∫ tnj

tnj−1

Z(t)dt
∣∣∣Ftnj−1

)∥∥∥∥
V

)
n→∞−−−→ 0.
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Proof. Due to predictability of the process Z and by a similar argument as used in the proof of

[51, Proposition 2.3.8], there exists a sequence (Z(m))m∈N of predictable simple processes of the

form

Z(m)(ω, t) =
K(m)∑
k=1

z
(m)
k 1

F
(m)
k ×(t

(m)
k−1,t

(m)
k ]

(ω, t), (3.5.9)

where z
(m)
k ∈ V , F

(m)
k ∈ F

t
(m)
k−1

, 0 ≤ t(m)
0 ≤ . . . ≤ t(m)

K(m) ≤ T , such that

lim
m→∞

E

∫ T

0

∥∥∥Z(t)− Z(m)(t)
∥∥∥2

V
dt = 0.

In particular, (Z(m))m∈N is a Cauchy-sequence in L2(λ;L2(P;V )) and after passing to a subse-

quence it holds for λ-a.e. t ∈ [0, T ] that

lim
m→∞

Z(m)(t) = Z(t) in L2(P;V ). (3.5.10)

For j ∈ {1, 2, . . . , 2n}, n,m ∈ N, let the function ηn,mj ∈ L 2
(
Ω×[0, T ],Ftnj−1

⊗B([0, T ]),P⊗λ;V
)

be given by

ηn,mj (ω, t) =
K(m)∑
k=1

z
(m)
k E

(
1
F

(m)
k

∣∣Ftnj−1

)
(ω)1

(t
(m)
k−1,t

(m)
k ]

(t) ∀(ω, t) ∈ Ω× [0, T ],

where by E
(
1
F

(m)
k

∣∣Ftnj−1

)
we mean a fixed version of the conditional expectation. Then it holds

for all t ∈ [0, T ] that

ηn,mj (·, t) = E
(
Z(m)(t)

∣∣Ftnj−1

)
. (3.5.11)

Remember that (Z(m))m∈N is a Cauchy-sequence in L2(λ;L2(P;V )) and note that the condi-

tional expectation E
(
·
∣∣Ftnj−1

)
: L2(Ω,F ,P;V ) → L2(Ω,Ftnj−1

,P;V ) is a bounded linear oper-

ator and therefore the sequence (ηn,mj )m∈N is also a Cauchy-sequence in L2(λ;L2(P;V )). For

j ∈ {1, 2, . . . , 2n}, n ∈ N, let ηnj be given by

ηnj = lim
m→∞

ηn,mj in L2(λ;L2(Ω,Ftnj−1
,P;V )).

Then, after a passing to a subsequence it holds for λ-a.e. t ∈ [0, T ] that

ηnj (·, t) = lim
m→∞

ηn,mj (·, t) in L2(Ω,Ftnj−1
,P;V ). (3.5.12)

The combination of (3.5.10)–(3.5.12) implies for λ-a.e. t ∈ [0, T ] and A ∈ Ftnj−1
that

∫
A
Z(ω, t)P(dω) =

∫
A
ηnj (ω, t)P(dω).
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Therefore, for λ-a.e. t ∈ (tnj−1, t
n
j ] we get that

E
(
Z(t)

∣∣Ftnj−1

)
= ηnj (·, t), (3.5.13)

as an equality in L1(Ω,Ftnj−1
,P;V ). Next we show that

E

(∫ tnj

tnj−1

Z(t)dt
∣∣∣Ftnj−1

)
=

∫ tnj

tnj−1

ηnj (t)dt P-a.s. (3.5.14)

To this end, let A ∈ Ftnj−1
and observe that

∫
A

∫ tnj

tnj−1

Z(t) dtdP =

∫ tnj

tnj−1

∫
Ω
1AZ(t) dP dt =

∫ tnj

tnj−1

∫
Ω
1Aη

n
j (t) dP dt =

∫
A

∫ tnj

tnj−1

ηnj (t) dt dP,

where for the second equality above we used (3.5.13). This proves (3.5.14). Therefore we obtain

that

E

(∥∥∥∥∫ T

0
Z(t)dt−

2n∑
j=1

E

(∫ tnj

tnj−1

Z(t)dt
∣∣∣Ftnj−1

)∥∥∥∥
V

)
= E

(∥∥∥∥∫ T

0
Z(t)dt−

2n∑
j=1

∫ tnj

tnj−1

ηnj (t)dt

∥∥∥∥
V

)

= E

(∥∥∥∥∫ T

0
Z(t)dt−

∫ T

0

2n∑
j=1

1(tnj−1,t
n
j ](t)η

n
j (t)dt

∥∥∥∥
V

)

≤
∫ T

0

2n∑
j=1

1(tnj−1,t
n
j ](t)E

(∥∥Z(t)− ηnj (t)
∥∥
V

)
dt.

Now let t ∈ [0, T ] be fixed and let (jn)n∈N ⊂ [0, T ] be such that limn→∞ t
n
jn−1 = t, and t ∈

(tnjn−1, t
n
jn

], n ∈ N. The martingale convergence theorem [50, Theorem 1.14] thus implies that

E
(
Z(t)

∣∣σ( ⋃
s∈[0,t)

Fs
))

= lim
n→∞

E
(
Z(t)

∣∣Ftnjn−1

)
= lim

n→∞
ηnjn(·, t) in L1(P ;V ),

which, by considering the predictability of Z can be rewritten as follows

Z(t) = lim
n→∞

ηnjn(·, t) in L1(P ;V ). (3.5.15)

Indeed, the definition (3.5.9) and the estimation (3.5.10) imply that

Z(t) = E
(
Z(t)

∣∣σ( ⋃
s∈[0,t)

Fs
))

P-a.s.
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The boundedness assumption on (Z(t))t∈[0,T ] allows us to apply the dominated convergence

theorem and obtain that

∫ T

0

2n∑
j=1

1(tnj−1,t
n
j ](t)E

(∥∥Z(t)− ηnj (t)
∥∥
V

)
dt

n→∞−−−→ 0.

This concludes the assertion of the Lemma.



Chapter 4

Weak error analysis of

approximations of path-dependent

functionals of mild solutions of SEEs

via Malliavin calculus

In this chapter we develop a Malliavin calculus approach to analyze the weak error of spatial

approximations of path-dependent functionals of mild solutions of stochastic evolution equations

(SEEs). In order to do that we first introduce in Assumption 4.1.1 below the notation we use and

the setting we assume throughout this chapter. After mentioning some regularity results from

the literature, we state in Lemma 4.3.1 below a Malliavin regularity result for mild solutions of

SEEs of the type

dX(t) =
[
AX(t) + F

(
X(t)

)]
dt+B

(
X(t)

)
dW (t), t ∈ [0, T ]

X(0) = ξ ∈ H,
(4.0.1)

where H and U are separable real Hilbert spaces,
(
W (t)

)
t∈[0,T ]

is an IdU -Wiener process de-

fined on a filtered probability space
(
Ω,F , (Ft)t∈[0,T ],P

)
, and F : H → H and B : H → L(U,H)

are measurable mappings satisfying suitable regularity assumptions. Using results from [22],

we show in Lemma 4.3.1 that the mild solution of (4.0.1) is Malliavin differentiable and the

Malliavin derivative
(
Ds(X(t))

)
s,t∈[0,T ]

is continuous and satisfies suitable boundedness prop-

erties. For a finite Borel measure µ, we show in Lemma 4.3.4 that the L2(µ;H)-valued random

variable X(·), i.e., the random variable whose values are the sample paths of the stochastic pro-

cess (X(t))t∈[0,T ], is also Malliavin differentiable. Moreover, we investigate the relation between

Malliavin derivative of (X(t))t∈[0,T ] and of X(·), using a proper isometry introduced in Lemma

4.3.3 below. In the last section of this chapter, the main result is presented in Theorem 4.4.3.

79
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There we show an upper bound for the weak error E
∣∣f(X) − f(X̃)

∣∣, where X̃ is an approxi-

mation of X and f is a functional on the sample path space of X. Our approach to prove this

upper bound is based on Malliavin calculus and the regularity results proved in this chapter.

4.1 Preliminaries

We start this section with introducing a setting which we assume throughout this chapter.

Assumption 4.1.1 below is based on [22, Hypothesis 3.1]. Consider the following abstract SEE

dX(t) =
[
AX(t) + F

(
X(t)

)]
dt+B

(
X(t)

)
dW (t), t ∈ [0, T ]

X(0) = ξ ∈ H,
(4.1.1)

where the following is assumed:

Assumption 4.1.1. Let Assumption 2.4.7 hold and additionally assume that

(i) the mappings F : H → H and B : H → L(U,H) satisfy for all s > 0, x ∈ H, u ∈ U that

F ∈ Lip(H,H), esAB(x) ∈ HS(U,H) and that B(·)u : H → H is measurable. Moreover,

there exist constants L > 0 and ϑ ∈ [0, 1) such that for all s > 0, x, y ∈ H it holds that

∥∥esAB(x)
∥∥

HS(U,H)
≤ Ls−ϑ/2

(
1 + ‖x‖H

)
,∥∥esAB(x)− esAB(y)

∥∥
HS(U,H)

≤ Ls−ϑ/2 ‖x− y‖H

‖B(x)‖L(U,H) ≤ L(1 + ‖x‖H).

(ii) for every s > 0 it holds that

F ∈ G 1(H,H), esAB ∈ G 1
(
H,HS(U,H)

)
.

Remember that by G 1 we denote the space of Gâteaux differentiable mappings; see Definition

2.3.1.

Recall from Definition 2.4.8 that a mild solution of (4.1.1) is an H-valued predictable process

such that for all t ∈ [0, T ] it holds P-a.s. that

X(t) = etAξ +

∫ t

0
e(t−s)AF (X(s)) ds+

∫ t

0
e(t−s)AB(X(s)) dW (s). (4.1.2)

In particular, the integrals in (4.1.2) above have to be well-defined. According to [22, Proposition

3.2], Assumption 4.1.1 guarantees the existence of a unique mild solution X =
(
X(t)

)
t∈[0,T ]

of

(4.1.1) with continuous sample paths such that (4.1.2) holds P-a.s. for all t ∈ [0, T ]. Moreover,

for every p ∈ [2,∞) it holds that X ∈ Lp
(
P;C([0, T ], H)

)
with

E
[

sup
t∈[0,T ]

∥∥X(t)
∥∥p
H

]
< C

(
1 + ‖ξ‖H

)p
, (4.1.3)
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for some constant C ∈ (0,∞) depending only on p, ϑ, T, F,B and M : = supt∈[0,T ]

∥∥etA∥∥
L(H)

.

Lemma 4.1.2. Let Assumption 4.1.1 be fulfilled, let p ≥ 2 and let X ∈ Lp(P;C([0, T ], H)) be

the mild solution of (4.1.1) with continuous paths. Then it holds that

X ∈ C
(
[0, T ], Lp(P;H)

)
.

Proof. Let t ∈ [0, T ]. Observe that for every t0 ∈ [0, T ] it holds that ‖X(t)−X(t0)‖pH ≤
2 sups∈[0,T ] ‖X(s)‖pH and that E( sups∈[0,T ] ‖X(s)‖pH) < ∞. As a consequence, the dominated

convergence theorem implies that

lim
t→t0

E
(
‖X(t)−X(t0)‖pH

)
= 0.

4.2 Malliavin calculus in Hilbert spaces

In this section we review some definitions and auxiliary results from [39, Chapter 4] and [22,

Section 3.3]. Let U and H be separable real Hilbert spaces, let T ∈ (0,∞), and let
(
W (t)

)
t∈[0,T ]

be an IdU -Wiener process defined on a filtered probability space
(
Ω,F , (Ft)t∈[0,T ],P

)
. We denote

by S (H) the set of all smooth and cylindrical H-valued random variables F of the form

F =
n∑
j=1

fj(W (Φ1), . . . ,W (Φm))hj ,

where m,n ∈ N, Φi ∈ L2([0, T ], λ; HS(U,R)), W (Φi) =
∫ T

0 Φi(t) dW (t), hj ∈ H, and fj : Rm →
R is infinitely differentiable function with the property that fj and all its derivatives are at

most polynomially growing, i = 1, . . . ,m, j = 1, . . . , n. Then the Malliavin derivative DF of

F ∈ S (H) is defined by

DτF =
n∑
j=1

m∑
i=1

∂

∂xi
fj(W (Φ1), . . . ,W (Φm))hj ⊗ Φi(τ) for τ ∈ [0, T ],

where hj ⊗Φi(τ) denotes the tensor product of hj ∈ H and Φi(τ) ∈ HS(U,R) and indicates the

operator U 3 u 7→
(
Φi(τ)

)
[u] · hj ∈ H.

In [39, Propostion 4.2], it is shown that the Malliavin derivative opertorD : S (H) ⊂ L2(P;H)→
L2(Ω × [0, T ],P ⊗ λ; HS(U,H)) is well-defined. In particular, DF does not depend on the

representation of F ∈ S (H). It is well-known; see, e.g., [39, Proposition 4.4], that the Malliavin

derivative operator D : S (H) ⊂ L2(P;H) → L2(Ω × [0, T ],P ⊗ λ; HS(U,H)) is closable, i.e., if
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(Fn)n∈N ⊂ S (H) is a sequence with

lim
n→∞

Fn = 0, in L2(P;H),

lim
n→∞

DFn = Υ, in L2(P⊗ λ; HS(U,H)),

then Υ = 0. We write D1,2(H) for the closure of S (H) in L2(P;H) with respect to the seminorm

‖F‖D1,2(H) =
(
‖F‖2L2(P;H) + ‖DF‖2L2(P⊗λ;HS(U,H))

)1/2
and obtain a well-defined extension of the Malliavin derivative operator

D : D1,2(H) ⊂ L2(P;H)→ L2(P⊗ λ; HS(U,H)).

We also remark that, for F ∈ D1,2(H), DF can be interpreted as a stochastic process

(DτF )τ∈[0,T ] with values in HS(U,H). In particular, for τ ∈ [0, T ] and u ∈ U , (DτF )[u]

can be interpreted as an H-valued random variable. Note, however, that the distributions of

the HS(U,H)-valued random variables DτF , τ ∈ [0, T ], are not uniquely determined for all

t ∈ [0, T ], since DF ∈ L2(P⊗λ; HS(U,H)) is a P⊗λ-equivalence class of functions on Ω× [0, T ].

Remark 4.2.1. For Φ ∈ L2([0, T ], λ; HS(U,R)), let the real-valued stochastic process

(X(t))t∈[0,T ] be defined by X(t) =
∫ t

0 Φ(σ)dW (σ), t ∈ [0, T ]. Obviously, it holds for all

t, τ ∈ [0, T ] that X(t) ∈ S (R) and that

Dτ

(
X(t)

)
= 1[0,t](τ)Φ(τ).

In particular, DτX(t) = 0, P ⊗ dτ -a.e. on Ω × (t, T ]. More generally, if F ∈ D1,2(H) is Ft-
measurable, then it holds that DτF = 0, P⊗dτ -a.e. on Ω× (t, T ]. Indeed, for an Ft-measurable

F ∈ D1,2(H) let (Fn)n∈N be a sequence of Ft-measurable S (H)-valued random variables such

that Fn → F in D1,2(H), as n→∞. For each n ∈ N, let the following representation be given:

Fn =

Nn∑
j=1

f
(n)
j

(
W (Φ

(n)
1 ), . . . ,W (Φ(n)

mn)
)
h

(n)
j .

As the random variables Fn, n ∈ N, are Ft-measurable, we can replace each Φ
(n)
i , i ∈

{1, . . . ,mn}, n ∈ N with 1[0,t]Φ
n
i . Therefore we obtain for τ ∈ [0, T ] that

DτFn =

Nn∑
j=1

mn∑
i=1

∂

∂xi
f

(n)
j

(
W (1[0,t]Φ

(n)
1 ), . . . ,W (1[0,t]Φ

(n)
mn)

)
h

(n)
j ⊗ 1[0,t](τ)Φ

(n)
i (τ).

This shows for each n ∈ N that DτFn = 0, P ⊗ dτ -a.e. on Ω × (t, T ]. Consequently, it holds

that DτF = 0, P⊗ dτ -a.e. on Ω× (t, T ]. Compare with [22, page 1415].
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The following result is a particular case of the so-called chain rule for the Malliavin derivative

and the proof can be found in [39, Lemma 4.7].

Lemma 4.2.2. Let φ : H1 → H2 be a continuously Fréchet differentiable mapping, where

(H1, 〈·, ·〉H1
, ‖·‖H1

) and (H2, 〈·, ·〉H2
, ‖·‖H2

) are arbitrary separable real Hilbert spaces. Assume

that there exists a constant C ∈ (0,∞) such that

‖φ(h)‖H2
≤ C

(
1 + ‖h‖H1

)
,
∥∥φ′(h)

∥∥
L(H1,H2)

≤ C, ∀h ∈ H1.

Then for all F ∈ D1,2(H1) it holds that φ(F ) ∈ D1,2(H2) and

Dφ(F ) = φ′(F )DF.

The next result is the so-called Malliavin integration-by-parts formula and its proof can be

found in [39, Proposition 4.3].

Lemma 4.2.3. For all Φ ∈ L2(Ω× [0, T ],P⊗ λ; HS(U,H)) and all F ∈ D1,2(H) it holds that

E

[〈
F,

∫ T

0
Φ(t) dW (t)

〉
H

]
= E

[〈
DF,Φ

〉
L2([0,T ],λ;HS(U,H))

]
.

As an application of the Malliavin integration-by-parts formula, a short proof of the stochastic

Fubini theorem is given in [39, Theorem 4.18]. We will use the stochastic Fubini theorem later

in this chapter.

Lemma 4.2.4. Let
(
E, E , µ) be a measure space with finite measure µ and let Φ: Ω×[0, T ]×E →

HS(U,H) be a
(
PT ⊗ E

)
-B(HS(U,H))-measurable mapping. Under the condition

∫
E

(
E
[ ∫ T

0
‖Φ(t, x)‖2HS(U,H) dt

]) 1
2

µ(dx) <∞,

it holds P-almost surely that∫ T

0

∫
E

Φ(t, x)µ(dx)dW (t) =

∫
E

∫ T

0
Φ(t, x) dW (t)µ(dx). (4.2.1)

In particular, all integrals in (4.2.1) are well-defined.

4.3 Malliavin regularity of mild solutions of SEEs

In this section we investigate the Malliavin differentiability of the mild solution (X(t))t∈[0,T ]

of SPDE (4.1.1) and the regularity properties of its derivative. Moreover, we formulate the

relation between the Malliavin derivatives of the H-valued random variables X(t), t ∈ [0, T ],

and the Malliavin derivative of the L2(µ;H)-valued random variable X(·), where µ is a finite

Borel measure on [0, T ].
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The following result is based on [22, Proposition 3.5] and complements some of the assertions

therein in a way that is suitable for our purpose.

Lemma 4.3.1. Let Assumption 4.1.1 be fulfilled and let X ∈ L2 (P;C([0, T ], H)) be the mild

solution of (4.1.1) with continuous sample paths. Here and below we set 2
ϑ =∞ if ϑ = 0. Then

(i) it holds for every t ∈ [0, T ] that X(t) ∈ D1,2(H),

(ii) the mapping [0, T ] 3 t 7→ X(t) ∈ D1,2(H) is continuous, and

(iii) there exists a measurable mapping η : Ω × [0, T ] × [0, T ] → HS(U,H) such that for all

t ∈ [0, T ] it holds that

η(·, t) = D·(X(t))

as an equality in L2(Ω× [0, T ],P⊗ λ; HS(U,H)) and for all p ∈ [2, 2/ϑ) we have that

sup
s∈[0,T )

E
(

sup
t∈(s,T ]

(t− s)pϑ/2 ‖η(s, t)‖pHS(U,H)

)
<∞.

Proof. For the sake of clarity, we divide the proof into several steps.

Step I: Observe that item (i) is a direct consequence of [22, Proposition 3.5(ii)]. Next note

that [22, Proposition 3.5] further implies the existence of a measurable mapping

η : Ω× [0, T ]× [0, T ]→ HS(U,H)

and a Lebesgue null set N ∈ B([0, T ]) with the following properties:

(a) For all t ∈ [0, T ] \N it holds that

η(·, t) = D·(X(t))

as an equality in L2(Ω× [0, T ],P⊗ λ; HS(U,H)).

(b) For all τ ∈ [0, T ], ω ∈ Ω the mapping

(τ, T ] 3 t 7→ η(ω, τ, t) ∈ HS(U,H),

is continuous.

(c) For all p ∈ [2,∞) it holds that

sup
s∈[0,T )

E
(

sup
r∈(s,T ]

(r − s)pϑ/2 ‖η(s, r)‖pHS(U,H)

)
<∞.

The verification of items (ii) and (iii) above is based on item (i), items (a)–(c), and the auxiliary

results derived in Steps II-V below.
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Step II: We show that for all t ∈ [0, T ], p ∈ [2, 2/ϑ) it holds that η(·, t) ∈ Lp(P⊗ λ; HS(U,H))

and that the mapping

[0, T ] 3 t 7→ η(·, t) ∈ Lp(P⊗ λ; HS(U,H))

is continuous. First note that, since for all t ∈ [0, T ] it holds that Dτ (X(t)) = 0 P⊗ dτ almost

everywhere on Ω × (t, T ] (see Remark 4.2.1 above), we can, without loss of generality, assume

that for all (ω, τ, t) ∈ Ω× [0, T ]× [0, T ] with τ > t it holds that η(ω, τ, t) = 0. Therefore, for all

t ∈ [0, T ] and p ∈ [2, 2/ϑ), we can write

E

∫ T

0
‖η(τ, t)‖pHS(U,H) dτ = E

∫ T

0

∥∥1[0,t)(τ) η(τ, t)
∥∥p

HS(U,H)
dτ

≤ sup
s∈[0,T ]

E
(

sup
r∈(s,T ]

(r − s)pϑ/2 ‖η(s, r)‖pHS(U,H)

) ∫ T

0
1[0,t)(τ)(t− τ)−pϑ/2dτ

≤ sup
s∈[0,T ]

E
(

sup
r∈(s,T ]

(r − s)pϑ/2 ‖η(s, r)‖pHS(U,H)

) ∫ T

0
(T − τ)−pϑ/2dτ

= sup
s∈[0,T ]

E
(

sup
r∈(s,T ]

(r − s)pϑ/2 ‖η(s, r)‖pHS(U,H)

) T 1−pϑ/2

1− pϑ/2
<∞,

(4.3.1)

by item (c) above. This proves that η(·, t) ∈ Lp(P⊗λ; HS(U,H)), for t ∈ [0, T ] and p ∈ [2, 2/ϑ).

Now let t0 ∈ (0, T ] and p ∈ [2, 2/ϑ) be fixed. Next we prove that

lim
t→t0

E

∫ T

0
‖η(τ, t)− η(τ, t0)‖pHS(U,H) dτ = 0. (4.3.2)

Observe that, due to item (b) above it holds P-almost surely for all τ ∈ [0, T ] that

lim
t→t0

1[0,t∧t0)(τ) ‖η(τ, t)− η(τ, t0)‖pHS(U,H) = 0. (4.3.3)

In order to prove the continuity (4.3.2), we have to show the left- and right-continuity separately.

We start first with the right-continuity: For all t ∈ [t0, T ] we have that

E

∫ T

0
‖η(τ, t)− η(τ, t0)‖pHS(U,H) dτ = E

∫ T

0
1[0,t0)(τ) ‖η(τ, t)− η(τ, t0)‖pHS(U,H) dτ

+ E

∫ T

0
1[t0,t)(τ) ‖η(τ, t)− η(τ, t0)‖pHS(U,H) dτ.

(4.3.4)
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Moreover, for all t ∈ [t0, T ] and τ ∈ [0, T ] it holds that

1[0,t0)(τ) ‖η(τ, t)− η(τ, t0)‖pHS(U,H) ≤ 1[0,t0)(τ) 2p−1
(
‖η(τ, t)‖pHS(U,H) + ‖η(τ, t0)‖pHS(U,H)

)
≤ 1[0,t0)(τ) 2p−1

(
sup

r∈(τ,T ]
(r − τ)pϑ/2 ‖η(τ, r)‖pHS(U,H)

)
·
(
(t− τ)−pϑ/2 + (t0 − τ)−pϑ/2

)
≤ 1[0,t0)(τ) 2p

(
sup

r∈(τ,T ]
(r − τ)pϑ/2 ‖η(τ, r)‖pHS(U,H)

)
· (t0 − τ)−pϑ/2 ∈ L1(P⊗ dτ ;R),

(4.3.5)

by the fact that (t− τ)−pϑ/2 ≤ (t0 − τ)−pϑ/2 and item (c) above. Indeed, it holds that

E

∫ T

0
1[0,t0)(τ)

(
sup

r∈(τ,T ]
(r − τ)pϑ/2 ‖η(τ, r)‖pHS(U,H)

)
(t0 − τ)−pϑ/2dτ

≤ sup
s∈[0,T )

E
(

sup
r∈(s,T ]

(r − s)pϑ/2 ‖η(s, r)‖pHS(U,H)

) ∫ T

0
(T − τ)−pϑ/2dτ <∞.

The pointwise convergence in (4.3.3), the boundedness property (4.3.5), and the dominated

convergence theorem thus imply that

lim
t↘t0

E

∫ T

0
1[0,t0)(τ) ‖η(τ, t)− η(τ, t0)‖pHS(U,H) dτ = 0. (4.3.6)

For the second summand in (4.3.4), observe that for all t ∈ (t0, T ] we have that

E

∫ T

0
1[t0,t)(τ) ‖η(τ, t)− η(τ, t0)‖pHS(U,H) dτ = E

∫ T

0
1[t0,t)(τ) ‖η(τ, t)‖pHS(U,H) dτ

≤ sup
s∈[0,T )

E
(

sup
r∈(s,T ]

(r − s)pϑ/2 ‖η(s, r)‖pHS(U,H)

)
·
∫ T

0
1[t0,t)(τ)(t− τ)−pϑ/2dτ

= sup
s∈[0,T )

E
(

sup
r∈(s,T ]

(r − s)pϑ/2 ‖η(s, r)‖pHS(U,H)

)
· (t− t0)1−pϑ/2

1− pϑ/2
−→ 0 as t↘ t0.

(4.3.7)
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This together with (4.3.6) proves the right-continuity in (4.3.2). Now we show the left-continuity:

For all t ∈ [ t02 , t0] we have that

E

∫ T

0
‖η(τ, t)− η(τ, t0)‖pHS(U,H) dτ = E

∫ T

0
1[0,2t−t0)(τ) ‖η(τ, t)− η(τ, t0)‖pHS(U,H) dτ

+ E

∫ T

0
1[2t−t0,t0)(τ) ‖η(τ, t)− η(τ, t0)‖pHS(U,H) dτ.

(4.3.8)

Note that, since t ∈ [ t02 , t0], it holds for all τ ∈ [0, 2t− t0) that t0−τ
2 ≤ t− τ . Thus with a similar

argument as in (4.3.5), we obtain that

1[0,2t−t0)(τ) ‖η(τ, t)− η(τ, t0)‖pHS(U,H) ≤ 1[0,2t−t0)(τ) 2p−1
(

sup
r∈(τ,T ]

(r − τ)pϑ/2 ‖η(τ, r)‖pHS(U,H)

)
·
(
(t− τ)−pϑ/2 + (t0 − τ)−pϑ/2

)
≤ 1[0,2t−t0)(τ) 2p−1

(
sup

r∈(τ,T ]
(r − τ)pϑ/2 ‖η(τ, r)‖pHS(U,H)

)
·
(( t0 − τ

2

)−pϑ/2
+ (t0 − τ)−pϑ/2

)
≤ 1[0,2t−t0)(τ) 2p−1

(
sup

r∈(τ,T ]
(r − τ)pϑ/2 ‖η(τ, r)‖pHS(U,H)

)
· (1 + 2pϑ/2)(t0 − τ)−pϑ/2 ∈ L1(P⊗ dτ ;R).

(4.3.9)

The pointwise convergence in (4.3.3), the boundedness property (4.3.9), and the dominated

convergence theorem thus imply that

lim
t↗t0

E

∫ T

0
1[0,2t−t0)(τ) ‖η(τ, t)− η(τ, t0)‖pHS(U,H) dτ = 0. (4.3.10)

Finally, for the second summand in (4.3.8) observe that for all t ∈ [0, t0) it holds that

E

∫ T

0
1[2t−t0,t0)(τ) ‖η(τ, t)− η(τ, t0)‖pHS(U,H) dτ

≤ 2p−1 sup
s∈[0,T )

E
(

sup
r∈(s,T ]

(r − s)pϑ/2 ‖η(s, r)‖pHS(U,H)

)
·
∫ T

0

[
1[2t−t0,t)(τ)(t− τ)−pϑ/2 + 1[2t−t0,t0)(τ)(t0 − τ)−pϑ/2

]
dτ

= 2p−1 sup
s∈[0,T )

E
(

sup
r∈(s,T ]

(r − s)pϑ/2 ‖η(s, r)‖pHS(U,H)

)
·
((t0 − t)1−pϑ/2

1− pϑ/2
+

(2t0 − 2t)1−pϑ/2

1− pϑ/2

)
−→ 0 as t↗ t0.

(4.3.11)

This together with (4.3.10) proves the left-continuity in (4.3.2). Therefore the continuity (4.3.2)

is true.
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Step III: We show that for all t0 ∈ N there exists a sequence (tj)j∈N ⊂ [0, T ] \ N with

limj→∞ tj = t0 and

∀F ∈ D1,2(H) : lim
j→∞

〈X(tj), F 〉D1,2(H) = 〈X(t0), F 〉D1,2(H) . (4.3.12)

Indeed, as a consequence of items (a) and (b), we have that

sup
t∈[0,T ]\N

E

∫ T

0
‖Dτ (X(t))‖2HS(U,H) dτ = sup

t∈[0,T ]\N
E

∫ t

0
‖Dτ (X(t))‖2HS(U,H) dτ

= sup
t∈[0,T ]\N

E

∫ t

0
‖η(τ, t)‖2HS(U,H) dτ

≤ sup
t∈[0,T ]\N

∫ t

0
E
[
(t− τ)ϑ (t− τ)−ϑ ‖η(τ, t)‖2HS(U,H)

]
dτ

≤ sup
s∈[0,T )

E
(

sup
r∈(s,T ]

(r − s)ϑ ‖η(s, r)‖2HS(U,H)

) ∫ t

0
(t− τ)−ϑdτ

≤ sup
s∈[0,T )

E
(

sup
r∈(s,T ]

(r − s)ϑ ‖η(s, r)‖2HS(U,H)

) ∫ T

0
(T − τ)−ϑdτ

<∞.

This boundedness property together with Lemma 4.1.2 implies that

sup
t∈[0,T ]\N

‖X(t)‖D1,2(H) <∞,

which means that the family X(t), t ∈ [0, T ] \ N , is bounded in D1,2(H). Next let t0 ∈ N be

arbitrary and choose (tj)j∈N ⊂ [0, T ]\N with tj → t0. As (X(tj))j∈N is bounded in D1,2(H), by

weak compactness in Hilbert spaces; see, e.g., [57, Theorem III.3.7], there exists a subsequence

(X(tjk))k∈N and Y ∈ D1,2(H) with

∀F ∈ D1,2(H) : lim
j→∞

〈X(tjk), F 〉D1,2(H) = 〈Y, F 〉D1,2(H) . (4.3.13)

Due to Lemma 4.1.2 it follows that

‖X(t0)− Y ‖2L2(P;H) = 〈X(t0)− Y, X(t0)− Y 〉L2(P;H)

= 〈X(t0), X(t0)− Y 〉L2(P;H) − 〈Y, X(t0)− Y 〉L2(P;H)

= lim
k→∞

〈X(tjk), X(t0)− Y 〉L2(P;H) − lim
k→∞

〈X(tjk), X(t0)− Y 〉L2(P;H)

= 0,

i.e., X(t0) = Y in L2(P;H). The equality holds even in D1,2(H) as X(t0), Y ∈ D1,2(H). This

and (4.3.13) imply (4.3.12).
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Step IV: As an extension of property (a), we show that for all t ∈ [0, T ] it holds that

η(·, t) = D·(X(t)) in L2
(
P⊗ λ; HS(U,H)

)
.

Due to property (a) it is enough to verify the equality above for t ∈ N . For this let t ∈ N be

arbitrary. By Step III there exists a sequence (tj)j∈N ⊂ [0, T ] \N with limj→∞ tj = t and

∀F ∈ D1,2(H) : lim
j→∞

〈X(tj), F 〉D1,2(H) = 〈X(t), F 〉D1,2(H) .

Hence we obtain for all Φ ∈ L2
(
P⊗ λ; HS(U,H)

)
that

lim
j→∞

〈
D
(
X(tj)

)
,Φ
〉
L2(P⊗λ;HS(U,H))

= lim
j→∞

〈X(tj), D
∗Φ〉D1,2(H)

= 〈X(t), D∗Φ〉D1,2(H) =
〈
D
(
X(t)

)
,Φ
〉
L2(P⊗λ;HS(U,H))

,

(4.3.14)

where D∗ ∈ L
(
L2(P ⊗ λ; HS(U,H)),D1,2(H)

)
is the Hilbert-adjoint operator of D ∈

L
(
D1,2(H), L2(P⊗ λ; HS(U,H))

)
. On the other hand, for all Φ ∈ L2

(
P⊗ λ; HS(U,H)

)
it holds

that

lim
j→∞

〈
D
(
X(tj)

)
,Φ
〉
L2(P⊗λ;HS(U,H))

= lim
j→∞

〈
η(·, tj), Φ

〉
L2(P⊗λ;HS(U,H))

=
〈
η(·, t), Φ

〉
L2(P⊗λ;HS(U,H))

,
(4.3.15)

where the first equality above holds due to property (a) and the second equality due to the

continuity property proven in Step II. Combining (4.3.14) and (4.3.15) yields that

η(·, t) = D·
(
X(t)

)
in L2

(
P⊗ λ; HS(U,H)

)
.

Step V: We are now able to verify items (ii) and (iii). First, observe that item (ii) is a

consequence of Lemma 4.1.2, Step II, and Step IV. Moreover, note that item (iii) follows from

item (c) and Step IV.

The next result demonstrates the interchange of integration and the Malliavin derivative.

Lemma 4.3.2. Let Assumption 4.1.1 be fulfilled, X : Ω × [0, T ] → H be the mild solution of

(4.1.1) with continuous sample paths, let µ be a finite Borel measure on [0, T ], let φ ∈ L2(µ;H).

Furthermore, let U ⊂ U be an ONB, let u ∈ U , and let η : Ω × [0, T ] × [0, T ] → HS(U,H) be

a measurable mapping which satisfies the properties formulated in item (iii) of Lemma 4.3.1.

Then

(i) it holds that ∫
[0,T ]
〈φ(t), X(t)〉H µ(dt) ∈ D1,2(R),
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(ii) it holds P⊗ dτ -a.e. that ∫
[0,T ]

∣∣∣ 〈φ(t),
(
η(τ, t)

)
[u]
〉
H

∣∣∣µ(dt) <∞,

and

(iii) it holds P⊗ dτ -a.e. that(
Dτ

∫
[0,T ]
〈φ(t), X(t)〉H µ(dt)

)
[u] =

∫
[0,T ]

〈
φ(t),

(
η(τ, t)

)
[u]
〉
H
µ(dt).

Proof. We start with item (ii). For this, note that

E

∫ T

0

(∫
[0,T ]

∣∣∣〈φ(t),
(
η(τ, t)

)
[u]
〉
H

∣∣∣µ(dt)

)
dτ

≤ T ‖φ‖2L2(µ;H) E

∫ T

0

∫
[0,T ]

∥∥∥(η(τ, t)
)
[u]
∥∥∥2

H
µ(dt)dτ

≤ T ‖φ‖2L2(µ;H)

∫
[0,T ]

∫ t

0
(t− τ)−ϑE

(
(t− τ)ϑ

∥∥(η(τ, t)
)∥∥2

HS(U,H)

)
dτ µ(dt)

≤ T ‖φ‖2L2(µ;H) µ([0, T ])

[
sup

s∈[0,T )
E
(

sup
r∈(s,T ]

(r − s)ϑ ‖η(s, r)‖2HS(U,H)

)]
·
∫ T

0
(T − τ)−ϑdτ <∞.

(4.3.16)

This proves item (ii). Next note that due to the predictability of
(
X(t)

)
t∈[0,T ]

, the mapping

Ω× [0, T ] 3 (ω, t) 7→ 〈φ(t), X(ω, t)〉H is measurable. Moreover, observe that

E

((∫
[0,T ]

∣∣ 〈φ(t), X(t)〉H
∣∣µ(dt)

)2
)
≤ E

(∫
[0,T ]
‖φ(t)‖2H µ(dt)

∫
[0,T ]
‖X(t)‖2H µ(dt)

)
= ‖φ‖2L2(µ;H)E

(∫
[0,T ]
‖X(t)‖2H µ(dt)

)
= ‖φ‖2L2(µ;H)

∫
[0,T ]

E
(
‖X(t)‖2H

)
µ(dt)

≤ ‖φ‖2L2(µ;H)

∫
[0,T ]

(
sup
s∈[0,T ]

E
(
‖X(s)‖2H

))
µ(dt)

= µ
(
[0, T ]

)
‖φ‖2L2(µ;H) sup

s∈[0,T ]
E
(
‖X(s)‖2H

)
<∞,

(4.3.17)

where the last equality holds due to Lemma 4.1.2. On the other hand, due to the path-wise

continuity of X we know that 〈φ, X(ω)〉L2(µ;H) exists for every ω ∈ Ω. Now Fubini’s theo-

rem implies that 〈φ, X〉L2(µ;H) ∈ L2(P;R). For n ∈ N, let tj = jT
n , j ∈ {0, . . . , n} and let



Weak error analysis 91

(
Xn(t)

)
t∈[0,T ]

be defined as

Xn(t) =

n−1∑
j=0

1[tj ,tj+1)(t)X(tj) + 1{T}(t)X(T ).

Then it holds by Hölder’s inequality that∥∥∥∥∥
∫

[0,T ]
〈φ(t), Xn(t)〉H µ(dt)−

∫
[0,T ]
〈φ(t), X(t)〉H µ(dt)

∥∥∥∥∥
2

L2(P;R)

= E

((∫
[0,T ]

〈
φ(t), Xn(t)−X(t)

〉
H
µ(dt)

)2
)

≤ E
(∫

[0,T ]
‖φ(t)‖2H µ(dt) ·

∫
[0,T ]
‖Xn(t)−X(t)‖2H µ(dt)

)
≤ ‖φ‖2L2(µ;H)

∫
[0,T ]

E
(
‖Xn(t)−X(t)‖2H

)
µ(dt) −→ 0 as n→∞.

(4.3.18)

Indeed, the convergence holds due to the definition of Xn and the uniform continuity of the

mapping [0, T ] 3 t→ X(t) ∈ L2(P;H); see Lemma 4.1.2. Moreover it holds that

∫
[0,T ]
〈φ(t), Xn(t)〉H µ(dt) =

n−1∑
j=0

∫
[tj ,tj+1)

〈φ(t), X(tj)〉H µ(dt) + µ({T}) 〈φ(T ), X(T )〉H

=
n−1∑
j=0

〈∫
[tj ,tj+1)

φ(t)µ(dt), X(tj)

〉
H

+ µ({T}) 〈φ(T ), X(T )〉H .

Hence, by Lemma 4.3.1(i), the fact that
∫

[0,T ] 〈φ(t), Xn(t)〉H µ(dt) ∈ D1,2(R), and due to the

general properties of the Malliavin derivative it holds P⊗ dτ -a.e. that

(
Dτ

(∫
[0,T ]
〈φ(t), Xn(t)〉H µ(dt)

))
[u] =

n−1∑
j=0

〈∫
[tj ,tj+1)

φ(t)µ(dt),
(
Dτ

(
X(tj)

))
[u]

〉
H

+ µ({T})
〈
φ(T ),

(
Dτ

(
X(T )

))
[u]
〉
H

=
n−1∑
j=0

∫
[tj ,tj+1)

〈
φ(t),

(
Dτ

(
X(tj)

))
[u]
〉
H
µ(dt)

+ µ({T})
〈
φ(T ),

(
Dτ

(
X(T )

))
[u]
〉
H

=

∫
[0,T ]

〈
φ(t),

n−1∑
j=0

1[tj ,tj+1)(t)
(
Dτ

(
X(tj)

))
[u]

〉
H

µ(dt)

+ µ({T})
〈
φ(T ),

(
Dτ

(
X(T )

))
[u]
〉
H
.
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To complete the proof of this lemma it remains to show that

lim
n→∞

(
Dτ

(∫
[0,T ]
〈φ(t), Xn(t)〉H µ(dt)

))
=

∫
[0,T ]

〈
φ(t),

(
η(τ, t)

)
[·]
〉
H
µ(dt) in L2(P⊗dτ ; HS(U,R)).

(4.3.19)

We show first that
∫

[0,T ] 〈φ(t), (η(τ, t))[·]〉H µ(dt) ∈ L2(P⊗ dτ ; HS(U,R)). Indeed we have anal-

ogously to (4.3.16) that

E

∫ T

0

∑
u∈U

∣∣∣ ∫
[0,T ]

〈
φ(t),

(
η(τ, t)

)
[u]
〉
H
µ(dt)

∣∣∣2dτ

≤ E
∫ T

0

∑
u∈U

(
‖φ‖2L2(µ;H) ·

∫
[0,T ]

∥∥∥(η(τ, t)
)
[u]
∥∥∥2

H
µ(dt)

)
dτ

= ‖φ‖2L2(µ;H)

∫
[0,T ]

∫ T

0

(
E
∑
u∈U

∥∥∥(η(τ, t)
)
[u]
∥∥∥2

H

)
dτµ(dt) <∞.

(4.3.20)

Next note that the definition of Xn and the (uniform) continuity in Lemma 4.3.1(ii) imply that∥∥∥∥∥D·(
∫

[0,T ]
〈φ(t), Xn(t)〉H µ(dt)

)
−
∫

[0,T ]

〈
φ(t),

(
η(·, t)

)
[·]
〉
H
µ(dt)

∥∥∥∥∥
2

L2(P⊗λ;HS(U,R))

= E

∫ T

0

∑
u∈U

∣∣∣∣∣∣
∫

[0,T ]

〈
φ(t),

n−1∑
j=0

1[tj ,tj+1)(t)
(
Dτ

(
X(tj)

)
− η(τ, t)

)
[u]

〉
H

µ(dt)

∣∣∣∣∣∣
2

dτ

≤ E
∫ T

0

∑
u∈U

∫
[0,T ]
‖φ(s)‖2H µ(ds) ·

∫
[0,T ]

n−1∑
j=0

1[tj ,tj+1)(t)
∥∥∥(Dτ

(
X(tj)

)
− η(τ, t)

)
[u]
∥∥∥2

H
µ(dt)

dτ

= ‖φ‖2L2(µ;H)E

∫ T

0

∑
u∈U

n−1∑
j=0

∫
[tj ,tj+1)

∥∥∥(Dτ

(
X(tj)

)
− η(τ, t)

)
[u]
∥∥∥2

H
µ(dt)dτ

= ‖φ‖2L2(µ;H)

∫
[0,T ]

n−1∑
j=0

1[tj ,tj+1)(t)E

∫ T

0

∥∥Dτ

(
X(tj)

)
− η(τ, t)

∥∥2

HS(U,H)
dτ µ(dt)

= ‖φ‖2L2(µ;H)

∫
[0,T ]

n−1∑
j=0

1[tj ,tj+1)(t)E

∫ T

0
‖η(τ, tj)− η(τ, t)‖2HS(U,H) dτ µ(dt) −→ 0.

For the uniform continuity of the mapping [0, T ] 3 t 7→ η(·, t) ∈ L2(P⊗λ; HS(U,H)) see Step II

in the proof of Lemma 4.3.1. The combination of (4.3.18), (4.3.19), and the closedness of the

Malliavin derivative prove items (i) and (iii).

Our next lemma introduces a useful isometry which we use later in this chapter to investigate

the situation when we apply the derivative operator on the square-integrable sample paths of

mild solutions of SEEs.

Lemma 4.3.3. Let T ∈ (0,∞) and µ be a finite Borel measure on [0, T ]. Let U,H be sepa-

rable real Hilbert spaces and U be an orthonormal basis of U . Then there exists an isometric
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isomorphism i : HS(U,L2(µ;H)) → L2(µ; HS(U,H)) such that for any Ψ ∈ HS(U,L2(µ;H)) it

holds that

∀u ∈ U :

((
i(Ψ)(r)

)
[u] =

(
Ψ[u]

)
(r), µ-a.e. r ∈ [0, T ]

)
. (4.3.21)

Proof. Without loss of generality we assume that the Hilbert space U is infinite-dimensional

and that (uj)j∈N is a counting for the orthonormal basis U . First we show that the set H ={∑n
j=1 φj ⊗ gj ⊗ hj : φj ∈ HS(U,R), gj ∈ L2(µ;R), hj ∈ H,n ∈ N

}
is dense in HS(U,L2(µ;H)).

For this let ε > 0 be given. For Ψ ∈ HS(U,L2(µ;H)) let n ∈ N be such that

∥∥∥Ψ−
n∑
j=1

〈uj , ·〉U ⊗Ψ[uj ]
∥∥∥

HS(U,L2(µ;H))
<
ε

2
. (4.3.22)

Moreover note that, due to [51, Lemma A.1.4] and an application of the dominated convergence

theorem, we have that for each Ψ[uj ] ∈ L2(µ;H), j ∈ {1, . . . , n}, there exist gjk ∈ L2(µ;R),

hjk ∈ H, and nj ∈ N, k ∈ {1, . . . , nj}, such that

∥∥∥Ψ[uj ]−
nj∑
k=1

gjk ⊗ h
j
k

∥∥∥
L2(µ;H)

<
ε

2n
. (4.3.23)

Now note that using the triangular inequality, (4.3.22) and (4.3.23) we obtain that

∥∥∥Ψ−
n∑
j=1

nj∑
k=1

〈uj , ·〉U ⊗ g
j
k ⊗ h

j
k

∥∥∥
HS(U,L2(µ;H))

≤
∥∥∥Ψ−

n∑
j=1

〈uj , ·〉U ⊗Ψ[uj ]
∥∥∥

HS(U,L2(µ;H))

+
∥∥∥ n∑
j=1

〈uj , ·〉U ⊗Ψ[uj ]−
n∑
j=1

nj∑
k=1

〈uj , ·〉U ⊗ g
j
k ⊗ h

j
k

∥∥∥
HS(U,L2(µ;H))

<
ε

2
+
∥∥∥ n∑
j=1

〈uj , ·〉U ⊗
(

Ψ[uj ]−
nj∑
k=1

gjk ⊗ h
j
k

)∥∥∥
HS(U,L2(µ;H))

≤ ε

2
+

n∑
j=1

∥∥∥Ψ[uj ]−
nj∑
k=1

gjk ⊗ h
j
k

∥∥∥
L2(µ;H)

<
ε

2
+
ε

2
= ε,

which proves that the set H is dense in HS(U,L2(µ;H)). Let the mapping i : H →
L2(µ; HS(U,H)) be defined as

i(φ⊗ g ⊗ h) = g ⊗ φ⊗ h, for φ ∈ HS(U,R), g ∈ L2(µ;R), h ∈ H.

Obviously the mapping i is continuous and injective and for each element of H the equality

(4.3.21) holds. Therefore it can be extended to an isomorphism between HS(U,L2(µ;H)) and

L2(µ; HS(U,H)), considering the fact that the image space i(H) is also dense in L2(µ; HS(U,H)).
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Now let Ψ ∈ HS(U,L2(µ;H)) be arbitrary. Then there exists a sequence
(
Ψn

)
n∈N ⊂ H such

that it converges to Ψ in HS(U,L2(µ;H)). In particular,we obtain that

∀u ∈ U :
∥∥∥Ψ[u]−Ψnk [u]

∥∥∥
L2(µ;H)

→ 0, as k →∞.

Therefore it holds that

∀u ∈ U :

(
∃(nuk)k∈N ⊂ N : Ψ[u](r) = lim

k→∞
Ψnuk

[u](r) µ-a.e. r ∈ [0, T ]

)
.

Using a diagonal procedure for choosing above subsequences and due to countability of U one

can, without loss of generality, assume that there exists a sequence
(
Ψn

)
n∈N ⊂ H such that for

all u ∈ U and µ-a.e. r ∈ [0, T ] it holds that

Ψ[u](r) = lim
n→∞

Ψn[u](r).

On the other hand due to construction of the mapping i we have that i(Ψn) converges to i(Ψ)

in L2(µ; HS(U,H)) and one can analogously show (after passing to a subsequence) that for all

u ∈ U and µ-a.e. r ∈ [0, T ] it holds that

i
(
Ψ
)
(r)[u] = lim

n→∞
i
(
Ψn

)
(r)[u].

Considering the fact that for all u ∈ U and µ-a.e. r ∈ [0, T ], Ψn[u](r) = i
(
Ψn

)
(r)[u] we obtain

for all u ∈ U and µ-a.e. r ∈ [0, T ] that

Ψ[u](r) = i
(
Ψ
)
(r)[u].

This together with the fact that the mapping i is an isometric isomorphism completes the

proof.

The next lemma presents a relation between the Malliavin derivatives of mild solutions of SEEs

and the Malliavin derivative of its square-integrable sample paths.

Lemma 4.3.4. Let Assumption 4.1.1 be fulfilled, let X : Ω × [0, T ] → H be the mild solu-

tion of (4.1.1) with continuous sample paths, let η : Ω × [0, T ] × [0, T ] → H be a measurable

mapping which satisfies the properties formulated in item (iii) of Lemma 4.3.1, and let µ and

i : HS(U,L2(µ;H)) → L2(µ; HS(U,H)) be the finite Borel measure and the isometric isomor-

phism introduced in Lemma 4.3.3, respectively. Then

(i) it holds that X ∈ D1,2(L2(µ;H)) and

(ii) the following equality holds P⊗ dτ -a.e. as an equality in L2(µ(dt); HS(U,H)):

(
i(DτX)

)
(t) = η(τ, t).
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Proof. Throughout this proof let (φjk)j∈J,k∈K be an orthonormal basis of L2(µ;H) of the form

φjk = ψj⊗ek, where (ψj)j∈J and (ek)k∈K are orthonormal bases of L2(µ;R) and H, respectively.

To simplify notation, we restrict the exposition to the case where both L2(µ;R) and H are

infinite-dimensional spaces and assume that J = K = N. We remark that the proof can be

extended to other cases in a straightforward way. First we show that

X = lim
n→∞

n∑
j=1

n∑
k=1

〈φjk, X〉L2(µ;H) φjk in L2(P;L2(µ;H)). (4.3.24)

For this note that the above equality holds for every ω ∈ Ω in L2(µ;H) due to

the continuity of
(
X(t)

)
t∈[0,T ]

. Therefore it is enough to show that the sequence(∑n
j=1

∑n
k=1 〈φjk, X〉L2(µ;H) φjk

)
n∈N is a Cauchy sequence in L2(P;L2(µ;H)). Indeed, for all

m,n ∈ N with m ≤ n it holds that∥∥∥∥( n∑
j=1

n∑
k=1

−
m∑
j=1

m∑
k=1

)
〈φjk, X〉L2(µ;H) φjk

∥∥∥∥2

L2(P;L2(µ;H))

=

∥∥∥∥( n∑
j=1

n∑
k=m+1

+

n∑
j=m+1

m∑
k=1

)
〈φjk, X〉L2(µ;H) φjk

∥∥∥∥2

L2(P;L2(µ;H))

≤ 2
∥∥∥ n∑
j=1

n∑
k=m+1

〈φjk, X〉L2(µ;H) φjk

∥∥∥2

L2(P;L2(µ;H))
+ 2
∥∥∥ n∑
j=m+1

m∑
k=1

〈φjk, X〉L2(µ;H) φjk

∥∥∥2

L2(P;L2(µ;H))

= 2E

(∥∥∥ n∑
k=m+1

n∑
j=1

〈φjk, X〉L2(µ;H) φjk

∥∥∥2

L2(µ;H)

)
+ 2E

(∥∥∥ m∑
k=1

n∑
j=m+1

〈φjk, X〉L2(µ;H) φjk

∥∥∥2

L2(µ;H)

)

= 2E
n∑

k=m+1

n∑
j=1

(
〈φjk, X〉L2(µ;H)

)2
+ 2E

m∑
k=1

n∑
j=m+1

(
〈φjk, X〉L2(µ;H)

)2

≤ 2E
n∑

k=m+1

∞∑
j=1

(∫
[0,T ]

ψj(t) 〈ek, X(t)〉H µ(dt)
)2

+ 2E

∞∑
k=1

n∑
j=m+1

(∫
[0,T ]

ψj(t) 〈ek, X(t)〉H µ(dt)
)2
.

(4.3.25)
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Now we continue with the above calculation by applying Parseval’s identity and two times the

dominated convergence theorem to obtain that∥∥∥∥( n∑
j=1

n∑
k=1

−
m∑
j=1

m∑
k=1

)
〈φjk, X〉L2(µ;H) φjk

∥∥∥∥2

L2(P;L2(µ;H))

≤ 2E
n∑

k=m+1

∫
[0,T ]
〈ek, X(t)〉2H µ(dt) + 2E

∞∑
k=1

n∑
j=m+1

(∫
[0,T ]

ψj(t) 〈ek, X(t)〉H µ(dt)
)2

≤ 2E

∫
[0,T ]

n∑
k=m+1

〈ek, X(t)〉2H µ(dt) + 2E

∞∑
k=1

n∑
j=m+1

(∫
[0,T ]

ψj(t) 〈ek, X(t)〉H µ(dt)
)2

−→ 0, as m,n −→∞.
(4.3.26)

Indeed it holds that

n∑
k=m+1

〈ek, X(t)〉2H ≤ ‖X(t)‖2H ∈ L
1
(
P⊗ µ(dt);R

)
, and that

n∑
j=m+1

(∫
[0,T ]

ψj(t) 〈ek, X(t)〉H µ(dt)
)2
≤
∫

[0,T ]
〈ek, X(t)〉2H µ(dt) ∈ L1

(
P⊗ (

∞∑
k=1

δk);R
)
,

and that the corresponding terms converge pointwise. This proves (4.3.24). On the other hand,

for all j, k ∈ N and u ∈ U it holds by Lemma 4.3.2(iii) P⊗ dτ -a.e. that(
Dτ

(
〈φjk, X〉L2(µ;H)

))
[u] =

∫
[0,T ]

〈
φjk(t),

(
η(τ, t)

)
[u]
〉
H
µ(dt). (4.3.27)

Using this we show next that X ∈ D1,2(L2(µ;H)) and

DτX = lim
n→∞

n∑
j=1

n∑
k=1

Dτ

(〈
φjk, X

〉
L2(µ;H)

)
φjk, in L2

(
P⊗ dτ ; HS(U,L2(µ;H)

)
. (4.3.28)

To this end, note that because of (4.3.24) and the closed-

ness of the operator D, it is enough to show that the sequence∑n
j=1

∑n
k=1

(
D
(〈
φjk, X

〉
L2(µ;H)

)
φjk

)
, n ∈ N, is a Cauchy sequence in L2

(
P ⊗
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λ; HS(U,L2(µ;H)
)
. For this let m,n ∈ N with m ≤ n and observe that

∥∥∥∥( n∑
j=1

n∑
k=1

−
m∑
j=1

m∑
k=1

)
D
(〈
φjk, X

〉
L2(µ;H)

)
φjk

∥∥∥∥2

L2(P⊗λ;HS(U,L2(µ;H)))

=

∥∥∥∥( n∑
j=1

n∑
k=m+1

+
n∑

j=m+1

m∑
k=1

)
D
(〈
φjk, X

〉
L2(µ;H)

)
φjk

∥∥∥∥2

L2(P⊗λ;HS(U,L2(µ;H)))

≤ 2

∥∥∥∥ n∑
j=1

n∑
k=m+1

D
(〈
φjk, X

〉
L2(µ;H)

)
φjk

∥∥∥∥2

L2(P⊗λ;HS(U,L2(µ;H)))

+ 2

∥∥∥∥ n∑
j=m+1

m∑
k=1

D
(〈
φjk, X

〉
L2(µ;H)

)
φjk

∥∥∥∥2

L2(P⊗λ;HS(U,L2(µ;H)))

= 2E

∫ T

0

(∑
u∈U

∥∥∥ n∑
j=1

n∑
k=m+1

(
Dτ 〈φjk, X〉L2(µ;H)

)
[u]φjk

∥∥∥2

L2(µ;H)

)
dτ

+ 2E

∫ T

0

(∑
u∈U

∥∥∥ n∑
j=m+1

m∑
k=1

(
Dτ 〈φjk, X〉L2(µ;H)

)
[u]φjk

∥∥∥2

L2(µ;H)

)
dτ

= 2E

∫ T

0

(∑
u∈U

n∑
j=1

n∑
k=m+1

∣∣∣(Dτ 〈φjk, X〉L2(µ;H)

)
[u]
∣∣∣2) dτ

+ 2E

∫ T

0

(∑
u∈U

n∑
j=m+1

m∑
k=1

∣∣∣(Dτ 〈φjk, X〉L2(µ;H)

)
[u]
∣∣∣2)dτ.

(4.3.29)

Now we continue with the above calculation by applying (4.3.27) and two times the dominated

convergence theorem to obtain that∥∥∥∥ n∑
j,k=1

D
(〈
φjk, X

〉
L2(µ;H)

)
φjk −

m∑
j,k=1

D
(〈
φjk, X

〉
L2(µ;H)

)
φjk

∥∥∥∥2

L2(P⊗λ;HS(U,L2(µ;H)))

≤ 2E

∫ T

0

∑
u∈U

n∑
j=1

n∑
k=m+1

(∫
[0,T ]

〈
φjk(t),

(
η(τ, t)

)
[u]
〉
H
µ(dt)

)2

dτ

+ 2E

∫ T

0

∑
u∈U

n∑
j=m+1

m∑
k=1

(∫
[0,T ]

〈
φjk(t),

(
η(τ, t)

)
[u]
〉
H
µ(dt)

)2

dτ

≤ 2E

∫ T

0

∑
u∈U

n∑
k=m+1

∞∑
j=1

(∫
[0,T ]

ψj(t)
〈
ek,
(
η(τ, t)

)
[u]
〉
H
µ(dt)

)2

dτ

+ 2E

∫ T

0

∑
u∈U

n∑
j=m+1

∞∑
k=1

(∫
[0,T ]

ψj(t)
〈
ek,
(
η(τ, t)

)
[u]
〉
H
µ(dt)

)2

dτ

≤ 2E

∫ T

0

∑
u∈U

n∑
k=m+1

∫
[0,T ]

〈
ek,
(
η(τ, t)

)
[u]
〉2

H
µ(dt) dτ

+ 2E

∫ T

0

∑
u∈U

∞∑
k=1

n∑
j=m+1

(∫
[0,T ]

ψj(t)
〈
ek,
(
η(τ, t)

)
[u]
〉
H
µ(dt)

)2

dτ

−→ 0, as m,n −→∞.

(4.3.30)
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Indeed, the corresponding pointwise convergences are clear and for the boundedness of the first

summand above note that

n∑
k=m+1

∫
[0,T ]

〈
ek,
(
η(τ, t)

)
[u]
〉2

H
µ(dt) =

∫
[0,T ]

n∑
k=m+1

〈
ek,
(
η(τ, t)

)
[u]
〉2

H
µ(dt)

≤
∫

[0,T ]

∥∥(η(τ, t)
)
[u]
∥∥2

H
µ(dt) and

E

∫ T

0

∑
u∈U

∫
[0,T ]

∥∥(η(τ, t)
)
[u]
∥∥2

H
µ(dt)dτ <∞,

similarly to (4.3.20). For the second summand in (4.3.30) note that

n∑
j=m+1

(∫
[0,T ]

ψj(t)
〈
ek,
(
η(τ, t)

)
[u]
〉
H
µ(dt)

)2

≤
∫
[0,T ]

〈
ek,
(
η(τ, t)

)
[u]
〉2
H
µ(dt) and

E

∫ T

0

∑
u∈U

∞∑
k=1

∫
[0,T ]

∣∣∣ 〈ek, (η(τ, t)
)
[u]
〉2
H

∣∣∣µ(dt) dτ ≤ E
∫ T

0

∑
u∈U

∞∑
k=1

∫
[0,T ]

〈
ek,
(
η(τ, t)

)
[u]
〉2
H
µ(dt) dτ

= E

∫ T

0

∑
u∈U

∫
[0,T ]

∥∥(η(τ, t)
)
[u]
∥∥2
H
µ(dt) dτ

<∞.

This proves (4.3.28) and also item (i). To verify item (ii), we first show that there exists a

sequence (nl)l∈N ⊂ N with nl ↗ ∞ such that P ⊗ dτ -a.e. it holds for µ-a.e. t ∈ [0, T ] and all

u ∈ U that

η(τ, t)[u] = lim
l→∞

nl∑
j=1

nl∑
k=1

〈
φjk,

(
η(τ, ·)

)
[u]
〉
L2(µ;H)

φjk(t). (4.3.31)

To this end, note that it is enough to show that the sequence
∑n

j,k=1

〈
φjk,

(
η(τ, ·)

)
[·]
〉
L2(µ;H)

φjk,

n ∈ N, is a Cauchy sequence in L2(P ⊗ dτ ; HS(U,L2(µ;H))), which follows from a similar

reasoning as in the proof of Lemma 4.3.2(iii) and in (4.3.30). Moreover, note that (4.3.28)

implies that there exists a subsequence (nl′)l′∈N ⊂ (nl)l∈N with nl′ ↗ ∞ such that it holds

P⊗ dτ -a.e. that

DτX = lim
l′→∞

nl′∑
j=1

nl′∑
k=1

(
Dτ 〈φjk, X〉L2(µ;H)

)
· φjk in HS

(
U,L2(µ;H)

)
. (4.3.32)

Now due to the continuity of the mapping i : HS(U,L2(µ;H))→ L2(µ; HS(U,H)) there exists a

subsequence (nl′q)q∈N ⊂ (nl′)l′∈N with nl′q ↗∞ such that it holds P⊗dτ -a.e. for µ-a.e. t ∈ [0, T ]
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and all u ∈ U that

[
i
(
DτX

)]
(t)[u] =

[
i

(
lim
l′→∞

nl′∑
j=1

nl′∑
k=1

Dτ

(〈
φjk, X

〉
L2(µ;H)

)
φjk

)]
(t)[u]

=

[
lim
l′→∞

i

( nl′∑
j=1

nl′∑
k=1

Dτ

(〈
φjk, X

〉
L2(µ;H)

)
φjk

)]
(t)[u]

= lim
q→∞

[
i

( nl′q∑
j=1

nl′q∑
k=1

Dτ

(〈
φjk, X

〉
L2(µ;H)

)
φjk

)
(t)[u]

]
.

(4.3.33)

Without loss of generality we can assume that all three sequences (nl)l∈N, (n′l)l′∈N, and (nl′q)q∈N

are equal. The combination of (4.3.31), (4.3.33), and Lemma 4.3.3 implies that it holds P⊗dτ -

a.e. for µ-a.e. t ∈ [0, T ] and all u ∈ U that

[
i
(
DτX

)]
(t)[u] = lim

l→∞

[
i

( nl∑
j=1

nl∑
k=1

Dτ

(〈
φjk, X

〉
L2(µ;H)

)
φjk

)
(t)[u]

]

= lim
l→∞

[( nl∑
j=1

nl∑
k=1

Dτ

(〈
φjk, X

〉
L2(µ;H)

)
φjk

)
[u](t)

]

= lim
l→∞

[
nl∑
j=1

nl∑
k=1

Dτ

(〈
φjk, X

〉
L2(µ;H)

)
[u]φjk(t)

]

= lim
l→∞

[
nl∑
j=1

nl∑
k=1

〈
φjk,

(
η(τ, ·)

)
[u]
〉
L2(µ;H)

φjk(t)

]
= η(τ, t)[u].

This proves item (ii).

4.4 A weak convergence result

In this section we present, after a preparatory lemma, our main result Theorem 4.4.3. For

T ∈ (0,∞) and a Hilbert space H, if µ is a finite Borel measure on [0, T ] and A is a linear

operator on H, then the operator e(·)A : H → L2(µ;H) denotes the linear operator which maps

any element h ∈ H to the element of L2(µ;H) given by the path [0, T ] 3 t 7→ etAh ∈ H. With

that said, the integrals in the following lemma are L2(µ;H)-valued integrals.

Lemma 4.4.1. Let Assumption 4.1.1 be fulfilled, let X : Ω× [0, T ] → H be the mild solution

of (4.1.1) with continuous sample paths, and let µ be a finite Borel measure on [0, T ]. Then the

following equality holds P-a.s. in L2(µ;H):

X(·) = e(·)Aξ +

∫ T

0
1[τ,T ](·) e(·−τ)AF

(
X(τ)

)
dτ +

∫ T

0
1[τ,T ](·) e(·−τ)AB

(
X(τ)

)
dW (τ). (4.4.1)
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Proof. Let (Ψ(t))t∈[0,T ] be defined as the stochastic integral

Ψ(t) =

∫ t

0
e(t−τ)AB

(
X(τ)

)
dW (τ) ∀t ∈ [0, T ] P-a.s.

To prove equality (4.4.1), it is enough to show that it holds P-a.s. in L2(µ;H)

Ψ(·) =

∫ T

0
1[τ,T ](·) e(·−τ)AB

(
X(τ)

)
dW (τ). (4.4.2)

The non-stochastic-integral part can be proven in a similar and easier way. Let (φk)k∈N be an

orthonormal basis of L2(µ;H). Observe that for all k ∈ N and all t ∈ [0, T ] it holds by [51,

Lemma 2.4.1] that

〈Ψ(t), φk(t)〉H =

∫ T

0

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[·], φk(t)

〉
H

dW (τ) P-a.s.

Furthermore, it holds by Assumption 4.1.1(i) and (4.1.3) that

∫
[0,T ]

(
E

∫ T

0

∥∥∥〈1[τ,T ](t) e
(t−τ)AB

(
X(τ)

)
[·], φk(t)

〉
H

∥∥∥2

HS(U,R)
dτ

)1/2

µ(dt)

≤
∫

[0,T ]

(
E

∫ T

0

∥∥∥1[τ,T ](t) e
(t−τ)AB

(
X(τ)

)∥∥∥2

HS(U,H)

∥∥φk(t)∥∥2

H
dτ

)1/2

µ(dt)

≤ L
∫

[0,T ]

(
E

∫ T

0

∥∥∥1(τ,T ](t) (t− τ)−ϑ
[
1 + ‖X(τ)‖H

]2
dτ

)1/2

·
∥∥φk(t)∥∥H µ(dt)

≤ L · E
[

sup
t∈[0,T ]

(
2 + 2

∥∥X(t)
∥∥2

H

)]
·
∫ T

0
(T − τ)−ϑdτ ·

∫
[0,T ]

∥∥φk(t)∥∥H µ(dt)

≤ L · µ([0, T ])1/2 ·
∥∥φk∥∥L2(µ;H)

· E
[

sup
t∈[0,T ]

(
2 + 2

∥∥X(t)
∥∥2

H

)]
· T

1−ϑ

1− ϑ
<∞.

(4.4.3)

Therefore we can apply the stochastic Fubini theorem, Lemma 4.2.4, and obtain that

Ψ(·) = lim
n→∞

n∑
k=1

〈Ψ, φk〉L2(µ;H) φk

= lim
n→∞

n∑
k=1

∫
[0,T ]

∫ T

0

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[·], φk(t)

〉
H

dW (τ)µ(dt)φk

= lim
n→∞

n∑
k=1

∫ T

0

(∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[·], φk(t)

〉
H
µ(dt)φk

)
dW (τ)

= lim
n→∞

∫ T

0

n∑
k=1

(∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[·], φk(t)

〉
H
µ(dt)φk

)
dW (τ) P-a.s.

(4.4.4)
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To verify (4.4.2), it remains to show that the following holds in L2
(
P⊗ dτ ; HS(U,L2(µ;H))

)
lim
n→∞

n∑
k=1

∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[·], φk(t)

〉
H
µ(dt)φk = 1[τ,T ](·) e(·−τ)AB

(
X(τ)

)
.

(4.4.5)

To this end, note that the sequence (
∑n

k=1

∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB(X(τ))[·], φk(t)
〉
H
µ(dt)φk),

n ∈ N, is a Cauchy sequence in L2(P⊗ dτ ; HS(U,L2(µ;H))) and therefore converges in L2(P⊗
dτ ; HS(U,L2(µ;H))). Indeed, for all m,n ∈ N with m ≤ n it holds that

E

∫ T

0

∥∥∥ n∑
k=m

∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[·], φk(t)

〉
H
µ(dt)φk

∥∥∥2

HS(U,L2(µ;H))
dτ

= E

∫ T

0

∑
u∈U

∥∥∥ n∑
k=m

∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[u], φk(t)

〉
H
µ(dt)φk

∥∥∥2

L2(µ;H)
dτ

= E

∫ T

0

∑
u∈U

n∑
k=m

(∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[u], φk(t)

〉
H
µ(dt)

)2

dτ.

(4.4.6)

Moreover, the following boundedness holds

∑
u∈U

n∑
k=m

(∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[u], φk(t)

〉
H
µ(dt)

)2

≤
∑
u∈U

∞∑
k=1

(∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[u], φk(t)

〉
H
µ(dt)

)2

=
∥∥∥1[τ,T ](·) e(·−τ)AB

(
X(τ)

)∥∥∥2

HS(U,L2(µ;H))
∈ L1

(
P⊗ dτ ;R

)
,

and for u ∈ U we have that

lim
m,n→∞

n∑
k=m

(∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[u], φk(t)

〉
H
µ(dt)

)2

= 0.

The dominated convergence theorem thus implies that

lim
m,n→∞

E

∫ T

0

∥∥∥ n∑
k=m

∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[·], φk(t)

〉
H
µ(dt)φk

∥∥∥2

HS(U,L2(µ;H))
dτ = 0.

This proves (4.4.5) and consequently (4.4.4) can be rewritten as

Ψ(·) = lim
n→∞

∫ T

0

n∑
k=1

(∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[·], φk(t)

〉
H
µ(dt)φk

)
dW (τ)

=

∫ T

0
lim
n→∞

n∑
k=1

(∫
[0,T ]

〈
1[τ,T ](t) e

(t−τ)AB
(
X(τ)

)
[·], φk(t)

〉
H
µ(dt)φk

)
dW (τ)

=

∫ T

0
1[τ,T ](·) e(·−τ)AB

(
X(τ)

)
dW (τ) P-a.s.
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This concludes the assertion of the Lemma.

We are now ready to state and prove our main result. For this we need the following assumption:

Assumption 4.4.2. In addition to Assumption 4.1.1, let A : D(A) ⊂ H → H be a diagonal

linear operator with eigenbasis (en)n∈N ⊂ H and associated sequence of eigenvalues (λn)n∈N ∈ R
such that supn∈N(λn) < 0, and let

(
Hr, 〈·, ·〉Hr , ‖·‖Hr

)
, r ∈ R be a family of interpolation spaces

associated to −A. Moreover, suppose that B ∈ Lip
(
H,HS(U,H−ϑ/2)

)
. Let also (PN )N∈N ⊂

L(H) satisfy PN (v) =
∑N

n=1 〈en, v〉H en for all v ∈ H and N ∈ N. Note that for x ∈ L2(µ;H),

by PNx we mean the path defined by

PNx(s) = PN (x(s)) s ∈ [0, T ].

Note that Assumption 4.4.2 and Lemma 2.2.14 imply that it holds for all r ∈ [0, e) that

sup
t∈(0,∞)

∥∥(−tA)retA
∥∥
L(H)

≤ sup
x∈(0,∞)

[xr
ex
]
≤
[r
e

]r ≤ 1. (4.4.7)

Theorem 4.4.3. Let Assumption 4.4.2 be fulfilled, let X : Ω× [0, T ]→ H be the mild solution

of (4.1.1) with continuous sample paths, let X(0) = ξ ∈ Hρ with ρ ∈ [0, 1− ϑ), η : Ω× [0, T ]×
[0, T ] → H be a meausrable mapping which satisfies the properties formulated in item (iii) of

Lemma 4.3.1. Moreover, let µ be a finite Borel measure on [0, T ], N ∈ N, q < 1
ρ+ϑ/2 , p < 2

ϑ with
1
p + 1

q = 1 , q ≤ 2 ≤ p, where we set 1
ρ+ϑ/2 =∞ if ρ = ϑ = 0 and 2

ϑ =∞ if ϑ = 0. Furthermore,

let f ∈ C2(Lq(µ;H),R) be such that

Mf : = max
{

sup
x∈L2(µ;H)

∥∥f ′(x)
∥∥
L(L2(µ;H),R)

, sup
x∈Lq(µ;H)

∥∥f ′′(x)
∥∥
L(2)(Lq(µ;H),R)

}
<∞.

Then it holds that

∣∣∣E [f(X)− f(PNX)]
∣∣∣ ≤Mξ,F,B,f,µ,T,A · ‖Id−PN‖L(H,H−ρ) , (4.4.8)

where

Mξ,F,B,f,µ,T,A = Mf sup
t∈[0,T ]

∥∥etA∥∥
L(H)

‖ξ‖Hρ µ([0, T ])1/2 +Mf ‖F‖Lip(H,H−ϑ)
µ([0, T ])1/2

· E
[

sup
t∈[0,T ]

‖X(t)‖H
] T 1−(ρ+ϑ)

1− (ρ+ ϑ)

+
(
‖B‖Lip(H,HS(U,H−ϑ/2))

sup
t∈[0,T ]

E
[
‖X(t)‖qH

]1/q
µ([0, T ])1/q · 1

1− (ρ+ ϑ/2)q
T 1−(ρ+ϑ/2)q

)
·M2

f

(
sup

s∈[0,T )

E
(

sup
t∈(s,T ]

(t− s)pϑ/2 ‖η(s, t)‖pHS(U,H)

))1/p
µ([0, T ])1/p

T 1−pϑ/2

1− pϑ/2
.
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Proof. Due to Lemma 4.4.1 it holds P-a.s. in L2(µ;H) that

PNX(·) = e(·)APNξ +

∫ T

0
1[τ,T ]e

(·−τ)APNF
(
X(τ)

)
dτ +

∫ T

0
1[τ,T ]e

(·−τ)APNB
(
X(τ)

)
dW (τ).

Note that the differentiability assumption on f ensures that the mapping (0, 1) 3 θ → f
(
PNX+

θ(Id−PN )X
)
∈ R is differentiable and an application of the fundamental theorem of calculus

and then Fubini’s theorem yield that

E
[
f(X)− f(PNX)

]
= E

[ ∫ 1

0

〈
f ′
(
θX + (1− θ)PNX

)
,
(

Id−PN
)
X
〉
L2(µ;H)

dθ

]
=

∫ 1

0
E

[〈
f ′
(
θX + (1− θ)PNX

)
,
(

Id−PN
)
X
〉
L2(µ;H)

]
dθ.

Next consider that for θ ∈ [0, 1] it holds P-a.s. that

〈
f ′
(
θX + (1− θ)PNX

)
,
(

Id−PN
)
X
〉
L2(µ;H)

=
〈
f ′
(
θX + (1− θ)PNX

)
, e(·)A( Id−PN

)
ξ
〉
L2(µ;H)

+
〈
f ′
(
θX + (1− θ)PNX

)
,

∫ T

0
1[τ,T ]e

(·−τ)A
(

Id−PN
)
F
(
X(τ)

)
dτ
〉
L2(µ;H)

+
〈
f ′
(
θX + (1− θ)PNX

)
,

∫ T

0
1[τ,T ]e

(·−τ)A
(

Id−PN
)
B
(
X(τ)

)
dW (τ)

〉
L2(µ;H)

≤ sup
x∈L2(µ;H)

∥∥f ′(x)
∥∥
L(L2(µ;H),R)

(∥∥e(·)A( Id−PN
)
ξ
∥∥
L2(µ;H)

+
∥∥∥∫ T

0
1[τ,T ]e

(·−τ)A
(

Id−PN
)
F
(
X(τ)

)
dτ
∥∥∥
L2(µ;H)

)
+
〈
f ′
(
θX + (1− θ)PNX

)
,

∫ T

0
1[τ,T ]e

(·−τ)A
(

Id−PN
)
B
(
X(τ)

)
dW (τ)

〉
L2(µ;H)

.

(4.4.9)

For the sake of clarity, we divide the proof into several steps and analyze the three terms above

separately.

Step I: For the first term above we have that

E
[∥∥e(·)A( Id−PN

)
ξ
∥∥
L2(µ;H)

]
= E

[( ∫
[0,T ]

∥∥erA (−A)−ρ
(

Id−PN
)

(−A)ρξ
∥∥2

H
µ(dr)

)1/2]
≤ ‖Id−PN‖L(H,H−ρ) sup

t∈[0,T ]

∥∥etA∥∥
L(H)

‖ξ‖Hρ µ([0, T ])1/2.

(4.4.10)



Weak error analysis 104

Step II: For the second term in (4.4.9), we apply Jensen’s inequality to obtain that

E
[∥∥∥ ∫ T

0

1[τ,T ](·)e(·−τ)A
(

Id−PN
)
F
(
X(τ)

)
dτ
∥∥∥
L2(µ;H)

]
= E

[(∫
[0,T ]

∥∥∥∫ T

0

1[τ,T ](r)e
(r−τ)A( Id−PN

)
F
(
X(τ)

)
dτ
∥∥∥2
H
µ(dr)

)1/2]
≤ E

[(∫
[0,T ]

(∫ T

0

∥∥∥1[τ,T ](r) (−A)ρ+ϑe(r−τ)A (−A)−ρ
(

Id−PN
)

(−A)−ϑF
(
X(τ)

)∥∥∥
H

dτ
)2
µ(dr)

)1/2]
≤ E

[(∫
[0,T ]

(∫ T

0

1(τ,T ](r) (r − τ)−(ρ+ϑ) ‖Id−PN‖L(H,H−ρ)

∥∥F (X(τ)
)∥∥
H−ϑ

dτ
)2
µ(dr)

)1/2]
≤
∥∥( Id−PN

)∥∥
L(H,H−ρ)

‖F‖Lip(H,H−ϑ)
E

[(∫
[0,T ]

(∫ T

0

(T − τ)−(ρ+ϑ) ‖X(τ)‖H dτ
)2
µ(dr)

)1/2]
≤ ‖Id−PN‖L(H,H−ρ)

‖F‖Lip(H,H−ϑ)
E

[
µ([0, T ])1/2

∫ T

0

(T − τ)−(ρ+ϑ) ‖X(τ)‖H dτ

]

≤ ‖Id−PN‖L(H,H−ρ)
‖F‖Lip(H,H−ϑ)

µ([0, T ])1/2E
[

sup
t∈[0,T ]

‖X(t)‖H
] ∫ T

0

(T − τ)−(ρ+ϑ)dτ

= ‖Id−PN‖L(H,H−ρ)
‖F‖Lip(H,H−ϑ)

µ([0, T ])1/2E
[

sup
t∈[0,T ]

‖X(t)‖H
] T 1−(ρ+ϑ)

1− (ρ+ ϑ)
.

(4.4.11)

Step III: For the last term in (4.4.9), note that X ∈ D1,2(L2(µ;H)) by Lemma 4.3.4(i).

Therefore by the Malliavin chain rule, and Lemma 4.2.2, it holds that f ′
(
θX + (1− θ)PNX

)
∈

D1,2(L2(µ;H)), and that means we can apply the Malliavin integration by part formula, Lemma

4.2.3, and obtain that

E

[〈
f ′
(
θX + (1− θ)PNX

)
,

∫ T

0
1[τ,T ]e

(·−τ)A
(

Id−PN
)
B
(
X(τ)

)
dW (τ)

〉
L2(µ;H)

]
=E

∫ T

0

〈
Dτf

′(θX + (1− θ)PNX
)
,1[τ,T ]e

(·−τ)A
(

Id−PN
)
B
(
X(τ)

)〉
HS(U,L2(µ;H))

dτ.

(4.4.12)



Weak error analysis 105

We use now the isomerty i : HS(U,L2(µ;H)) → L2(µ; HS(U,H)), introduced in Lemma 4.3.3,

to continue our calculation and get that

E

∫ T

0

〈
Dτf

′(θX + (1− θ)PNX
)
,1[τ,T ]e

(·−τ)A( Id−PN
)
B
(
X(τ)

)〉
HS(U,L2(µ;H))

dτ

= E

∫ T

0

〈
i
(
Dτf

′(θX + (1− θ)PNX
))
, i
(
1[τ,T ]e

(·−τ)A( Id−PN
)
B
(
X(τ)

))〉
L2(µ;HS(U,H))

dτ

= E

∫ T

0

∫
[0,T ]

〈
i
(
Dτf

′(θX + (1− θ)PNX
))

(r), i
(
1[τ,T ]e

(·−τ)A( Id−PN
)
B
(
X(τ)

))
(r)
〉
HS(U,H)

µ(dr)dτ

≤

(
E

∫ T

0

∫
[0,T ]

∥∥∥i(Dτf
′(θX + (1− θ)PNX

))
(r)
∥∥∥p
HS(U,H)

µ(dr) dτ

)1/p

·

(
E

∫ T

0

∫
[0,T ]

∥∥∥i(1[τ,T ]e
(·−τ)A( Id−PN

)
B
(
X(τ)

))
(r)
∥∥∥q
HS(U,H)

µ(dr) dτ

)1/q

=: C1(θ) · C2,

(4.4.13)

where the inequality above holds by Hölder with respect to P ⊗ dτ ⊗ µ. We analyze the term

C2 first. For this, observe that it holds P⊗ dτ -a.e. for µ-a.e. r ∈ [0, T ] that

i
(
1[τ,T ]e

(·−τ)A
(

Id−PN
)
B
(
X(τ)

))
(r) = 1[τ,T ](r)e

(r−τ)A
(

Id−PN
)
B
(
X(τ)

)
,

and therefore we obtain that

C2 =

(
E

∫ T

0

∫
[0,T ]

∥∥∥1[τ,T ](r)e
(r−τ)A( Id−PN

)
B
(
X(τ)

)∥∥∥q
HS(U,H)

µ(dr) dτ

)1/q

=

(
E

∫ T

0

∫
[0,T ]

∥∥∥1[τ,T ](r) (−A)ρ+ϑ/2 e(r−τ)A (−A)−ρ
(

Id−PN
)

(−A)−ϑ/2B
(
X(τ)

)∥∥∥q
HS(U,H)

µ(dr) dτ

)1/q

≤

(∫ T

0

∫
[0,T ]

1(τ,T ](r) (r − τ)−(ρ+ϑ/2)q E
(∥∥B(X(τ)

)∥∥q
HS(U,H−ϑ/2)

)
µ(dr) dτ

)1/q

‖Id−PN‖L(H,H−ρ)

≤ ‖B‖Lip(H,HS(U,H−ϑ/2))
sup
t∈[0,T ]

E
[
‖X(t)‖qH

]1/q
‖Id−PN‖L(H,H−ρ)

·

(∫
[0,T ]

∫ T

0

τ−(ρ+ϑ/2)q dτ µ(dr)

)1/q

≤ ‖B‖Lip(H,HS(U,H−ϑ/2))
sup
t∈[0,T ]

E
[
‖X(t)‖qH

]1/q
‖Id−PN‖L(H,H−ρ)

· µ([0, T ])1/q
1

1− (ρ+ ϑ/2)q
T 1−(ρ+ϑ/2)q.

(4.4.14)
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Next we try to bound the term C1(θ) in (4.4.13) above. Using Minkowski’s integral inequality

[53, Theorem 13.14] we get that

C1(θ) =

(
E

∫ T

0

∫
[0,T ]

∥∥∥i(Dτf
′(θX + (1− θ)PNX

))
(r)
∥∥∥p

HS(U,H)
µ(dr) dτ

)1/p

=

(
E

∫ T

0

∫
[0,T ]

[∑
u∈U

∥∥∥i(Dτf
′(θX + (1− θ)PNX

))
(r)[u]

∥∥∥2

H

]p/2
µ(dr) dτ

)1/p

≤

(
E

∫ T

0

(∑
u∈U

[ ∫
[0,T ]

∥∥∥i(Dτf
′(θX + (1− θ)PNX

))
(r)[u]

∥∥∥p
H
µ(dr)

]2/p
)p/2

dτ

)1/p

=

(
E

∫ T

0

(∑
u∈U

[ ∫
[0,T ]

∥∥∥(Dτf
′(θX + (1− θ)PNX

))
[u](r)

∥∥∥p
H
µ(dr)

]2/p
)p/2

dτ

)1/p

,

(4.4.15)

where the last equality holds due to Lemma 4.3.3. Now we can apply the Malliavin chain rule,

Lemma 4.2.2, and obtain that

C1(θ) =(
E

∫ T

0

(∑
u∈U

[ ∫
[0,T ]

∥∥∥((f ′′
(
θX + (1− θ)PNX

)(
θDτX + (1− θ)PNDτX

))
[u](r)

∥∥∥p
H
µ(dr)

]2/p)p/2
dτ

)1/p

.

Since f ∈ C2(Lq(µ;H),R), it holds P⊗ dτ -a.e. and for all u ∈ U that

f ′′
(
θX + (1− θ)PNX

) (
·, θ (DτX)[u] + (1− θ)PN (DτX)[u]

)
∈ L

(
Lq(µ;H),R

)
,

and by f ′′
(
θX + (1− θ)PNX

) (
θ DτX + (1− θ)PNDτX

)
[u] we mean the image of f ′′

(
θX + (1−

θ)PNX
) (
·, θ (DτX)[u] + (1 − θ)PN (DτX)[u]

)
under the Riesz isomorphism. For all τ ∈ [0, T ]

and u ∈ U , we know that θ (DτX)[u] + (1 − θ)PN (DτX)[u] ∈ L2(µ;H). However to continue

with the calculation in (4.4.15) we consider θ (DτX)[u] + (1− θ)PN (DτX)[u] as an element in

Lq(µ;H). Therefore it holds that

C1(θ) =

(
E

∫ T

0

(∥∥f ′′(θX + (1− θ)PNX
)(
θDτX + (1− θ)PNDτX

)∥∥p
HS(U,Lp(µ;H))

dτ

)1/p

=

(
E

∫ T

0

(∥∥f ′′(θX + (1− θ)PNX
)(
·, θDτX + (1− θ)PNDτX

)∥∥p
HS(U,L(Lq(µ;H);R)) dτ

)1/p

≤ sup
x∈Lq(µ;H)

∥∥f ′′(x)
∥∥
L(2)(Lq(µ;H),R)

(
E

∫ T

0

(∑
u∈U

∥∥∥θ (DτX)[u] + (1− θ)PN (DτX)[u]
∥∥∥2
Lq(µ;H)

)p/2
dτ

)1/p

= sup
x∈Lq(µ;H)

∥∥f ′′(x)
∥∥(E∫ T

0

(∑
u∈U

[ ∫
[0,T ]

∥∥∥(θ (DτX)[u] + (1− θ)PN (DτX)[u]
)

(r)
∥∥∥q
H
µ(dr)

]2/q)p/2
dτ

)1/p

.
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Now consider that there exists a measurable mapping Q :
(
U × [0, T ],P(U) ⊗ B([0, T ])

)
→(

H,B(H)
)

such that

∀u ∈ U :

(
Q(u, r) =

(
θ (DτX)[u] + (1− θ)PN (DτX)[u]

)
(r), µ-a.e. r ∈ [0, T ]

)
(4.4.16)

Therefore using the above equality and then Minkowski’s integral inequality [53, Theorem 13.14]

we get that

(∑
u∈U

[ ∫
[0,T ]

∥∥∥(θ (DτX)[u] + (1− θ)PN (DτX)[u]
)

(r)
∥∥∥q
H
µ(dr)

]2/q
)p/2

=

(∑
u∈U

[ ∫
[0,T ]

∥∥∥Q(u, r)
∥∥∥q
H
µ(dr)

]2/q
)p/2

≤
(∫

[0,T ]

[∑
u∈U

∥∥∥Q(u, r)
∥∥∥2

H

]q/2
µ(dr)

)p/q
.

(4.4.17)

Moreover, we know from Lemma 4.3.3 that

∀u ∈ U :

(
i
(
θ (DτX)+(1−θ)PN (DτX)

)
(r)[u] =

(
θ (DτX)[u]+(1−θ)PN (DτX)[u]

)
(r), µ-a.e. r ∈ [0, T ]

)
(4.4.18)

Putting (4.4.16), (4.4.17) and (4.4.18) together we get that

C1(θ) = Mf

(
E

∫ T

0

(∫
[0,T ]

[∑
u∈U

∥∥∥i(θ (DτX) + (1− θ)PN (DτX)
)

(r)[u]
∥∥∥2

H

]q/2
µ(dr)

)p/q
dτ

)1/p

= Mf

(
E

∫ T

0

(∫
[0,T ]

∥∥∥i(θ (DτX) + (1− θ)PN (DτX)
)

(r)
∥∥∥q

HS(U,H)
µ(dr)

)p/q
dτ

)1/p

≤Mf

(
E

∫ T

0

(∫
[0,T ]

∥∥∥i(θ (DτX) + (1− θ)PN (DτX)
)

(r)
∥∥∥p

HS(U,H)
µ(dr)

)
dτ

)1/p

,

where the last inequality holds due to Jensen’s inequality and the fact that p > q. Now we

apply Lemma 4.3.4(ii) and obtain that

C1(θ) ≤Mf

(
E

∫ T

0

(∫
[0,T ]

∥∥∥i(θ (DτX) + (1− θ)PN (DτX)
)

(r)
∥∥∥p

HS(U,H)
µ(dr)

)
dτ

)1/p

= Mf

(
E

∫ T

0

(∫
[0,T ]

∥∥∥θ η(τ, r) + (1− θ)PN η(τ, r)
∥∥∥p

HS(U,H)
µ(dr)

)
dτ

)1/p

.
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Now considering the inequality above and using Lemma 4.3.1(iii) we have that

∫ 1

0

C1(θ) dθ =

∫ 1

0

(
E

∫ T

0

∫
[0,T ]

∥∥∥i(Dτf
′(θX + (1− θ)PNX

))
(r)
∥∥∥p
HS(U,H)

µ(dr) dτ

)1/p

dθ

≤Mf

∫ 1

0

[
θ

(
E

∫ T

0

(∫
[0,T ]

∥∥η(τ, r)
∥∥p
HS(U,H)

µ(dr)

)
dτ

)1/p

+ (1− θ)

(
E

∫ T

0

(∫
[0,T ]

∥∥∥PN η(τ, r)
∥∥∥p
HS(U,H)

µ(dr)

)
dτ

)1/p]
dθ

≤Mf

(
E

∫ T

0

(∫
[0,T ]

∥∥η(τ, r)
∥∥p
HS(U,H)

µ(dr)

)
dτ

)1/p

≤Mf

(
sup

s∈[0,T )

E
(

sup
t∈(s,T ]

(t− s)pϑ/2 ‖η(s, t)‖pHS(U,H)

))1/p
·
(∫

[0,T ]

∫ T

0

1[0,r](τ)(r − τ)−pϑ/2dτµ(dr)

)1/p

≤Mf

(
sup

s∈[0,T )

E
(

sup
t∈(s,T ]

(t− s)pϑ/2 ‖η(s, t)‖pHS(U,H)

))1/p
·
(∫

[0,T ]

∫ T

0

(T − τ)−pϑ/2dτµ(dr)

)1/p

≤Mf

(
sup

s∈[0,T )

E
(

sup
t∈(s,T ]

(t− s)pϑ/2 ‖η(s, t)‖pHS(U,H)

))1/p
µ([0, T ])1/p

T 1−pϑ/2

1− pϑ/2
<∞.

(4.4.19)

Putting (4.4.10), (4.4.11), (4.4.13), (4.4.14) and (4.4.19) together proves (4.4.8).

Remark 4.4.4. According to [31, Theorem 5.1], under the assumptions in Theorem 4.4.3 there

exists a unique predictable stochastic process X : [0, T ] × Ω → Hρ/2 satisfying (4.1.2) with

supt∈[0,T ]E
[
‖X(t)‖2Hρ/2

]
<∞. Hence, we have that

E
[
‖X(·)− PNX(·)‖L2(µ;H)

]
= E

[∥∥∥(−A)−ρ/2 (Id−PN ) (−A)ρ/2X(·)
∥∥∥
L2(µ;H)

]
≤ ‖Id−PN‖L(H,H−ρ/2) E

[
‖X(·)‖L2(µ;Hρ/2)

]
≤ ‖Id−PN‖L(H,H−ρ/2)

(
E
[ ∫

[0,T ]
‖X(t)‖2Hρ/2 µ(dt)

])1/2

≤ ‖Id−PN‖L(H,H−ρ/2) µ([0, T ])1/2

(
sup
t∈[0,T ]

E
[
‖X(t)‖2Hρ/2

])1/2

.

(4.4.20)

This shows that the weak convergence rate in Theorem 4.4.3 is twice the strong convergence

rate in (4.4.20) above.
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[37] M. Kovács, S. Larsson, and F. Lindgren, Weak convergence of finite element ap-

proximations of linear stochastic evolution equations with additive noise., BIT, 52 (2012),

pp. 85–108.

https://www2.math.ethz.ch/education/bachelor/lectures/fs2016/math/numsol/NASPDE_181.pdf
https://www2.math.ethz.ch/education/bachelor/lectures/fs2016/math/numsol/NASPDE_181.pdf


Weak error analysis 112

[38] , Weak convergence of finite element approximations of linear stochastic evolution

equations with additive noise II. Fully discrete schemes, BIT, 53 (2013), pp. 497–525.

[39] R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations,

Springer International Publishing, 2014.

[40] D. Leão, A. Ohashi, and A. B. Simas, A weak version of path-dependent functional Itô
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[51] C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential

Equations, Springer-Verlag, 2007.
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