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Neural network interatomic potential for
laser-excited materials
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Data-driven interatomic potentials based on machine-learning approaches have been

increasingly used to perform large-scale, first-principles quality simulations of materials in the

electronic ground state. However, they are not able to describe situations in which the

electrons are excited, like in the case of material processing by means of femtosecond laser

irradiation or ion bombardment. In this work, we propose a neural network interatomic

potential with an explicit dependency on the electronic temperature. Taking silicon as an

example, we demonstrate its capability of reproducing important physical properties with

first-principles accuracy and use it to simulate laser-induced surface modifications on a thin

film at time and length scales that are impossible to reach with first-principles approaches

like density functional theory. The method is general and can be applied not only to other

laser-excited materials but also to condensed and liquid matter under non-equilibrium

situations in which electrons and ions exhibit different temperatures.
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Interatomic potentials (or force fields) are essential quantities
for describing the mechanical properties of materials with sub-
nanometer scale resolution. Many numerical methods such as

Monte-Carlo or molecular dynamics (MD) simulations, widely
used in statistical physics, materials science and soft-matter stu-
dies, rely on interatomic potentials1,2. In particular, MD simu-
lations of large atomic structures are crucial for many different
research fields3,4. In order to calculate the atomic energies and
forces during the simulation, first-principle (or ab-initio) meth-
ods like density functional theory (DFT) can be applied5. DFT
describes the necessary underlying quantum mechanical effects
very accurately, but simulations based on DFT are limited to at
most 1000 atoms and to picosecond timescales6–8. On larger
spatial and temporal scales, however, the atomic interactions need
to be treated classically by using an interatomic potential, which is
either constructed in a data-driven way or is derived from phy-
sical assumptions and approximations.

In the last years, interatomic potentials based on machine-
learning (ML) methods like neural networks have become more
and more popular. They allow to perform highly efficient ato-
mistic simulations with first-principles accuracy and therefore
have gained huge interest among researchers9–11. In general, ML
potentials are used to perform large-scale simulations of materials
that are assumed to be in the electronic ground state, which is a
reasonable approximation for many thermodynamical processes
at low temperatures (i.e., much lower than the Fermi tempera-
ture). However, this assumption fails in the case of laser-excited
materials.

Ultrashort laser pulses with a pulse duration in the order of a few
femtoseconds (1 fs = 10−15 s) are essential for many fields such as
biological imaging12, surgery13, or material processing14. Among
others, they are used for surface texturing with applications in the
microelectronics and photovoltaic industry15. A femtosecond laser
pulse primarily interacts with the electrons and leaves the ions
almost unaffected, leading to an extreme non-equilibrium state of
hot electrons at an increased temperature Te and “cold” ions (see
Fig. 1a). The potential energy surface (PES) generated by the hot
electrons differs significantly from the one resulting when electrons
are at the ground state or very low temperatures. After the laser
excitation, the electronic temperature decreases and equilibrates

with the ionic temperature on a picosecond timescale due to the
electron–phonon coupling. Therefore, interatomic potentials for
simulations of laser-excited solids have to depend explicitly on the
electronic temperature to account for both, changes in interatomic
bonding and the electronic temperature decrease. Since standard
ML potentials from the literature do not fulfill this requirement,
they are not suitable for this specific task even if they are trained on
a dataset generated at high Te. In the past, interatomic potentials
with an explicit Te-dependency were only constructed empirically
based on physical approximations16–18. Therefore, they lack the
advantages of modern ML potentials like increased flexibility and,
in particular, ab-initio accuracy.

Highly accurate Te-dependent ML potentials could strongly
increase our theoretical understanding of laser-excited materials.
For example, they could be used to simulate ultrafast non-thermal
phenomena like structural phase transitions19–22 and transient
phonon effects23–26, which result from bond softening, bond
hardening, or lattice instabilities27–29 caused by laser-induced
changes to the PES. These effects occur within the first picose-
conds after the laser excitation, when the electrons can still be
treated as if their temperature was suddenly increased to a high
constant value. On longer timescales, however, the Te-depen-
dency of the interatomic potential becomes even more important
because the electronic temperature cannot be assumed to be
constant anymore due to the electron–phonon coupling. Only
with Te-dependent interatomic potentials it can be possible to
perform large- and ultralarge-scale MD simulations treating
laser-induced bond changes and incoherent lattice heating via
electron–phonon coupling on the same accuracy level30. Further
utilizing the benefits of ML potentials could provide insights on
interesting long-term effects like the spontaneous formation of
laser-induced periodic surface structures31–33, which is still not
fully understood.

In their first versions, early ML potentials based on neural net-
works could only be applied to small molecules due to the fast
growth of the network size for larger systems and the challenging
task of finding appropriate symmetric coordinates34–37. However,
the introduction of atom-centered symmetry functions and the
high-dimensional neural network architecture opened the possi-
bility to handle arbitrarily large structures, in principal38,39. These

Fig. 1 Modeling laser-excited materials with a Te-dependent neural network interatomic potential. a A femtosecond laser pulse excites the electrons of
an atomic structure to high temperatures Te≫ 300 K. For a few picoseconds, the ions remain cold until the energy starts to transfer from the electrons to
the lattice due to electron–phonon coupling. b The Cartesian coordinates of the atoms are described by symmetry functions gi, which are passed to the
neural network potential together with the electronic temperature Te. The network is evaluated individually for every atom in the structure and the results
are summed to obtain the total cohesive energy Φcoh. c The atomic neural network in the case of two hidden layers. The input values are the Nsf symmetry
function values for atom i and the electronic temperature Te. The network function fnn is also evaluated for gi= 0 and subtracted from the output value to
obtain the atomic cohesive energy Φi.
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kinds of ML potentials were shown to reach ab-initio accuracy for
many different systems40–42 and in contrast to classical interatomic
potentials, they do not require human experts to derive complex
system-specific interaction terms.

Since the introduction of high-dimensional neural network
potentials, several modifications to the model were suggested, e.g.,
extensions to multicomponent systems43,44, magnetic systems45, or
the inclusion of non-local long-range interactions46–48. Further-
more, interatomic potentials based on other ML algorithms than
neural networks were proposed, e.g., Gaussian approximation
potentials49,50, spectral neighbor analysis potentials51,52, or moment
tensor potentials53,54. Convolutional and graph neural networks
have also been used to construct interatomic potentials55–58.

Despite these many modifications and extensions, ML poten-
tials were still not able to describe laser-excited systems so far. In
this work, we propose the first ML potential that includes a
dependency on the electronic temperature Te and is therefore
applicable to large-scale simulations of materials excited by
femtosecond laser-pulses. Our model, which is based on the high-
dimensional neural network potential, is exemplarily applied to
silicon (Si) but the method is general and could easily be trans-
ferred to other materials. We show that our derived interatomic
potential can describe many important physical properties of
laser-excited and unexcited Si with ab-initio accuracy and fur-
thermore, the successful application of the model in MD simu-
lations involving more than 160,000 Si atoms is demonstrated in
this work.

Results
Neural network potential for laser-excited silicon. We propose
an interatomic potential that can be applied in MD simulations of
laser-excited materials. Thereby, we describe the PES as a func-
tion Φ(r1,…, rN, Te) of the atomic positions ri and the electronic
temperature Te. Furthermore, we consider a configuration with N
identical atoms. The total potential energy Φ of this configuration
can be split up into the total cohesive energy Φcoh and the
Helmholtz free energy of the isolated atoms Φ0:

Φðr1; ¼ ; rN ;TeÞ ¼ Φcohðr1; ¼ ; rN ;TeÞ þ N �Φ0ðTeÞ: ð1Þ
We designed a ML model that predicts Φcoh from r1,…, rN, and
Te and is able to learn this relationship from an ab-initio training
dataset. As a useful example, we explicitly construct the model for
laser-excited Si. In order to obtain the total potential energy Φ, we
calculate Φ0(Te) using an existing polynomial model for Si from
the literature (see “Methods”).

Ourmodel forΦcoh is a Te-dependent neural network interatomic
potential (Te-NNP). It is based on the high-dimensional neural

network architecture introduced by Behler and Parrinello in 200738,
in which the potential energy is treated as a sum of local atomic
contributions. A feed-forward neural network is trained to predict
the atomic energy from special symmetric coordinates describing
the atomic environment. We extend this concept to the description
of laser-excited systems by implementing a Te-dependency in the
form of an additional input node to the neural network, which is
depicted schematically in Fig. 1b (high-dimensional neural network
architecture) and Fig. 1c (atomic neural network).

Our aim is to train the model to predict the cohesive energy and
the atomic forces for structures occurring in large-scale MD
simulations of laser-excited Si with ab-initio accuracy. Therefore,
we train the Te-NNP on a specially designed dataset that consists of
atomic configurations obtained from several ab-initio calculations
of a small supercell containing a Si thin film. By choosing this
geometry, we are not only taking into account bulk but also surface
effects. Using Te-dependent DFT, we perform MD simulations of
the thin film at different constant electronic temperatures from a
wide range of values. Furthermore, the training dataset contains
artificial compressions and expansions of the structure to also
include atomic configurations with extreme local pressures and
densities. For all calculations, the Si atoms are initialized in the
diamond-like crystal structure.

In order to determine the models generalization capability and
to prevent overfitting, we also monitor its accuracy on a distinct
validation dataset. It contains similar ab-initio calculations
carried out at intermediate Te’s between the Te-steps of the
training set (see “Methods” for details on the training and
validation set). Figure 2a shows the evolution of the training and
validation set error Γ (see Eq. (10)) during the training process.
Despite some small fluctuations, the validation set error does not
increase during the training process, which would be an indicator
for overfitting.

Performance validation. As a first approach to validate the
accuracy of the trained neural network interatomic potential, we
analyze the relative prediction errors of the total cohesive energy
and the atomic forces occurring during the MD simulations from
the training and validation set as a function of the electronic
temperature, as depicted in Fig. 2b. Thereby, we use the relative
root-mean-square errors γE and γF, as defined in Eq. (10). The
energy error is below 2% for Te < 25,000 K and only increases
significantly for extremely high electronic temperatures far above
the non-thermal melting threshold at Te= 17,052 K59. The rela-
tive prediction error for the atomic forces is between 8 and 12% at
most temperatures and only increases at very low electronic

Fig. 2 Training curve and prediction errors. a The loss function Γ evaluated on the training and validation set during the training process. b The relative
prediction errors γE and γF for the total cohesive energy and the atomic forces as a function of the electronic temperature Te averaged over all
configurations occurring in the MD simulations from the training and validation set.
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temperatures as well as in the range slightly above the non-
thermal melting threshold.

Although measuring the performance of the model in terms of
the energy and forces errors is a reasonable approach, low
prediction errors do not guarantee a physically meaningful
description of the PES. Therefore, we also evaluate the models
performance by calculating different atomic and electronic proper-
ties and comparing the results to ab-initio data in a qualitative way.
First, we calculate the cohesive energy per atom as a function of the
lattice parameter for different ideal crystal structures. We perform
these calculations at various Te’s and on configurations similar to
those in the training dataset (diamond-like structure) as well as on
configurations not contained in the training dataset (sc, fcc, and
bcc). The results are shown exemplarily for Te= 12,631 K in Fig. 3a
(see Supplementary Fig. 1 for results at other electronic tempera-
tures). For all considered electronic temperatures and ideal crystal
structures, the cohesive energy curves are almost perfectly
reproduced by the Te-NNP. Furthermore, the cohesive energies
are correctly predicted to approach to zero for large interatomic
distances. Note that these kind of structures are not included in the
training dataset and that the correct modeling of the underlying
physics is achieved by a special neural network architecture (see
“Methods”).

Besides the cohesive energies, we also calculate the phonon
band structure of bulk Si in the diamond-like crystal structure at
various Te’s. Again, the ab-initio-results are reproduced with high
accuracy, as can be seen in Fig. 3b for Te= 12,631 K (see
Supplementary Fig. 2 for results at other electronic temperatures).
Both the optical and acoustic phonon modes are well described.
Furthermore, our model correctly predicts a bond softening for
increasing electronic temperatures indicated by decreasing
phonon frequencies. Note that the overall accuracy in the
description of this property is significantly higher than that of
most classical Te-dependent interatomic potentials for Si from the
literature16,\17. Only the interatomic potential by Bauerhenne

et al.18 achieves a comparable accuracy (see ref. 30 for an extensive
comparison of literature models).

In order to test if the Te-NNP is also able to reproduce
electronic properties, we further determine the internal energy Ue

and the specific heat Ce of the electrons for bulk diamond Si using
the thermodynamic relations

Ue ¼ Φ� Te
∂Φ

∂Te
; Ce ¼ �Te

∂2Φ

∂T2
e

: ð2Þ

In Fig. 3c, d, these two properties are plotted against the
electronic temperature. While the internal energy is almost
perfectly reproduced, the deviations from the DFT results are
slightly higher for the specific heat. Nevertheless, the overall
description of this property is qualitatively correct and the Te-
NNP is indeed capable of reproducing electronic properties,
which is remarkable since the electronic temperature Te is the
only information on the electrons that is passed to the model.

Next, we use the trained Te-NNP to perform MD simulations
on laser-excited bulk Si at various electronic temperatures.
Thereby, the Si atoms are initiated in the ideal diamond-like
crystal structure and periodic boundary conditions are applied in
all spatial directions. The root-mean-square displacement
RMSD(t) of the Si atoms is shown as a function of time during
the first picosecond after the laser excitation at Te= 12,631 K
(Fig. 3) and Te= 22,104 K (Fig. 3f). The corresponding results at
Te= 15,789 K and Te= 18,947 K are provided in Supplementary
Fig. 3. The simulations are repeated several times and the width of
the curves corresponds to twice the standard error of the mean
over all simulation runs. For temperatures below the non-thermal
melting threshold, the RMSD(t) oscillates and indicates phonon
antisqueezing, while for higher temperatures, it increases
monotonously and a non-thermal melting of the crystal structure
can be observed. Both of these effects are reproduced correctly by
the neural network interatomic potential.

Fig. 3 Physical properties reproduced by the Te-dependent neural network interatomic potential. a The Helmholtz free cohesive energy per atom at
Te= 12,631 K as a function of the lattice parameter for different crystal structures. b The phonon band structure of bulk diamond Si at Te= 12,631 K. c The
internal energy Ue of the electrons as a function of Te for bulk diamond Si. d The specific heat Ce of the electrons as a function of Te for bulk diamond Si.
e The root-mean-square displacement (RMSD) of the Si atoms as a function of time after the laser excitation at Te= 12,631 K. f The root-mean-square
displacement (RMSD) of the Si atoms as a function of time after the laser excitation at Te= 22,104 K. The width of the curves in (e) and (f) corresponds
to twice the standard error of the mean over multiple simulation runs. For all figures, ab-initio results are shown in black, while results obtained with the
Te-NNP are colored.
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Finally, we calculate the melting temperature of Si by simulating
the coexistence of liquid and crystal using a simulation setup
described in ref. 30. We determine the melting temperature

TmðpÞ ¼ ð1263 ± 2ÞK� ð25 ± 2ÞKGPa�1 ´ p ð3Þ

near zero pressure p. This value agrees with Tm(p)= (1300 ±
50) K− 58 KGPa−1 × p from DFT using the local density
approximation (LDA)60. Thus, the Te-dependent neural network
interatomic potential correctly reproduces the melting temperature
given by the reference method used to generate its training
data. Note that this value differs significantly from the experimental
value Tm(p)= (1687 ± 5) K− 58 KGPa−1 × p61,62. However,
this only affects the timescale for the recrystallization of the
material at t > 100 ps after the laser-excitation. Nevertheless, we
propose a possible approach to correct the melting temperature in
the Discussion.

Application to large-scale molecular dynamics simulation. We
perform large-scale MD simulations using our derived Te-
dependent interatomic potential to demonstrate its practical
applicability for systems that cannot be treated with DFT any-
more. We consider a simulation cell containing a Si thin film with
more than 160,000 atoms, which is more than 500 times the
number of atoms contained in the supercell used for the training
dataset. Furthermore, we insert two different kinds of spherically
shaped surface impurities centered on the top layer of the thin
film: A hill and a sink, each with a diameter of 2 nm. We simulate
the effect of the laser excitation on these structures separately and
compare the results for various pulse energies.

In addition to performing MD simulations on larger length
scales, we also increase the simulation time to 10 ps. On this
timescale, the energy is transferred from the electronic to the ionic
system and thereby, Te decreases while the ionic temperature Ti
increases. We explicitly consider the electron–phonon coupling in
our simulations using an extended two-temperature model MD
(TTM-MD) setup (see “Methods”). The method strictly requires a
Te-dependent interatomic potential that provides a physically
meaningful specific heat of the electrons with Ce≥ 0. The Te-NNP
is fulfilling this requirement as can be seen in Fig. 3d.

We find that the laser-excited thin film undergoes a period of
expansion and shrinking, which is more pronounced for higher
pulse energies. During the expansion, the thickness of the thin
film increases by a rate between 1.9% for a pulse energy of 0.1 eV
and 11.1% for 0.5 eV. It reaches its maximum value between 4 to
5 ps after the laser excitation. The time evolution of the thickness
of the thin film is shown in Supplementary Fig. 4. After 10 ps, the
surface of the thin film gets slightly coarser and for pulse energies
greater than 0.3 eV, both kinds of surface impurities vanish.
Figure 4 shows the surface of both structures at t= 0 ps, t= 5 ps,
and t= 10 ps after a laser excitation with a pulse energy of 0.35
eV. The corresponding results at t= 10 ps after laser excitations
with other pulse energies (0.1, 0.3, and 0.5 eV) are shown in
Supplementary Fig. 5.

Discussion
The Te-dependent neural network interatomic potential can be
evaluated very efficiently compared to DFT and since it scales
linearly with the number of atoms, it can be applied to arbitrary
system sizes. At the same time, we demonstrated that it is able to
achieve ab-initio accuracy both in MD simulations as well as in
reproducing important physical properties like the phonon band
structure or the specific heat of the electrons.

We also showed that the Te-dependent neural network
interatomic potential is correctly reproducing the melting tem-
perature of Si given by the underlying reference DFT method

used to generate the training data. However, this value differs
from the experimental result by more than 300 K. A possible
approach to force the neural network interatomic potential to
reproduce the experimental melting temperature would be to
replace the training data for atomic configurations at an ionic
temperature Ti near the melting temperature with data generated
by a different method that is known to give a more accurate
melting temperature, e.g., the random phase approximation63.
Both methods could be combined in a weighted sum with Ti-
dependent weights to ensure a smooth transition between them.
An alternative approach would be to combine the different
reference methods in a hierarchical fashion using a multi-fidelity
approach64.

A transfer of our model to other laser-excited materials could
be accomplished with only a few changes. First, the symmetry
function parameters would have to be readjusted for the new
dataset (see “Methods”). Second, an expression for the energy
Φ0(Te) of the isolated atoms is required, but this could for
example be done with a simple polynomial model fitted to easily
generateable ab-initio data. Finally, our model could be directly
adopted for the training on a sufficiently large and diverse ab-
initio dataset of other laser-excited materials including varying
electronic temperatures.

In conclusion, we want to emphasize that our model is easier to
derive compared to existing empirically determined Te-dependent
interatomic potentials due to its data-driven approach and fur-
thermore, it is more flexible in terms of possible extensions. For
example, in early stages of the laser excitation (10–100 fs) the
electrons have not thermalized to a Fermi distribution yet. In
order to better describe this situation, the Te-input-node could be
replaced by multiple input nodes representing a suitable dis-
cretization of a non-equilibrium electron distribution. We seek to
investigate this possibility in a future work.

Methods
Te-dependent high-dimensional neural network potential. Our model is a Te-
dependent neural network interatomic potential (Te-NNP) based on the high-
dimensional architecture introduced by Behler and Parrinello in 200738 and is
depicted in Fig. 1b. It treats the cohesive energy Φcoh as a sum of atomic con-
tributions Φi,

Φcohðr1; ¼ ; rN ;TeÞ ¼ ∑
N

i¼1
Φiðgiðr1; ¼ ; rN Þ;TeÞ: ð4Þ

Thereby, gi is a set of atom-centered symmetry functions describing the environ-
ment of atom i in terms of the atomic coordinates r1,…, rN.

A feed-forward neural network is trained to predict Φi for a single atom from
the symmetry functions gi and the electronic temperature Te (see Fig. 1c). The
same network, which from now on will be referred to as the atomic neural
network, is evaluated individually for every atom in the structure and the results
are summed up to obtain the total cohesive energy. Training the model can be
carried out by comparing the network output with reference DFT data and
applying gradient-based optimization. Once the network is trained, it can be
applied to large-scale atomistic simulations at low computational costs
compared to DFT.

To implement the dependency of Φcoh on the electronic temperature Te, we
introduce an additional input node to the atomic neural network that represents Te.
With this modification, it is possible to train the model on the physical relevant
atomic configurations appearing in MD simulations at different Te’s. Thus, the
network output Φi is a function of the symmetry functions gi describing the
environment of atom i (they are, in turn, functions of the atomic positions ri) and
the electronic temperature Te. For numerical stability, we scale these input values to
the range [0, 1].

We use the standard mathematical expression of a feed-forward neural network,
i.e., a sequence of matrix multiplications combined with a non-linear activation
function fact. In most neural network applications, a trainable bias vector is also
added to each hidden layer. Since the influence of the bias on the prediction
accuracy is rather small, we increase the physical meaning of the model and its
capability to describe physical properties like the cohesive energy per atom for
different crystal structures by introducing a special bias architecture. It is based on
the observation that all symmetry functions will be zero if every interatomic
distance is greater than the cutoff radius. In this case of very large interatomic
distances the cohesive energy per atom approaches to zero. However, biases
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generally lead to a non-zero network output in the case of only zeros as inputs.
Therefore, we omit the biases of the hidden layers completely and only introduce a
fixed non-trainable bias to the output layer to compensate for the non-zero Te-
input-node. This bias corresponds to the network output evaluated for gi= 0 and is
subtracted from the original output value. In the case of two hidden layers the
atomic potential energy can thus be written as

Φiðgi;TeÞ ¼ f nnðgi;TeÞ � f nnð0;TeÞ ð5Þ

with

f nnðgi;TeÞ ¼ ∑
N ð2Þ

hid

l¼1
wð23Þ
l1 � f ð2Þact ∑

N ð1Þ
hid

k¼1
wð12Þ
kl � f ð1Þact ∑

Nsf

j¼1
wð01Þ
jk � gi;j þ wð01Þ

Nsfþ1;k � Te

� � !
: ð6Þ

Here, N ðpÞ
hid is the number of nodes in the p-th layer, f ðpÞact is the non-linear activation

function applied in the p-th layer, W(pq) is the weight matrix connecting layer p
with layer q and Nsf is the number of symmetry functions.

In order to calculate the total potential energy of a system using Eq. (1) and to
correctly reproduce the derivative of Φ with respect to Te, one also has to calculate
the energy Φ0(Te) of the isolated atoms. In this work, we use an existing model for
Si from the literature, which is based on polynomials18.

Atom-centered symmetry functions. We use the concept of atom-centered
symmetry functions39 in order to describe the atomic environments in the form of
input values for the atomic neural network. However, we propose a different
functional form that can be calculated very efficiently because it does not involve
the repeated expensive computation of the exponential function like commonly
used functions10. The functions are inspired by the functional form of the Te-
dependent interatomic potential for Si proposed by Bauerhenne et al.18. Our radial
symmetry functions are constructed as sums of two-body terms to describe the
radial environment of atom i and are defined by

gradi ¼ ∑
N

j¼1
f c Rij; η

radRrad
c

� �
; ð7Þ

where Rij is the distance from atom i to its j-th neighboring atom and fc(Rij, Rc) is
the cutoff function controlling the atomic interaction range,

f cðRij;RcÞ ¼
1� Rij

Rc

� �2
; Rij ≤Rc

0; Rij > Rc

8<
: : ð8Þ

Here, different values of ηrad with ηrad 2 R; 0< ηrad ≤ 1 are used, which means that
the function is evaluated for different cutoff radii Rc ¼ ηradRrad

c up to a fixed
maximum cutoff radius Rrad

c . Furthermore, we also take three-body interactions

into account by using angular symmetry functions defined as

gangi ¼ 21�ζ ∑
all

j;k≠i
j<k

1þ λ cos θijk
� �ζ

� f cðRij; η
angRang

c Þ � f cðRik; η
angRang

c Þ; ð9Þ

where ζ 2 N and λ= ±1. Moreover, θijk ¼ acosðrij � rik=Rij � RikÞ is the angle
centered at atom i with respect to two neighboring atoms j and k. The function
Gang
i essentially corresponds to the functional form proposed in ref. 38, except that

the radial parts are replaced by the cutoff function fc. In general, the cutoff radii
ηangRang

c used for the angular symmetry functions are chosen differently from those
used for the radial symmetry functions because different interatomic distances may
play a role for two- and three-body interactions.

The parameters ηrad, ηang, ζ, and λ in Eqs. (7) and (9) are varied to cover the
whole atomic environment up to the maximum cutoff radii Rrad

c and Rang
c . The

number Nsf of used symmetry functions differing in these parameters determines
the resolution of the atomic environment description. The exact parameters we use
in this work are summarized in Tables 1 and 2.

Note that the parameters of the symmetry functions have to be treated as
hyperparameters which are specific to the material that is investigated and are not
learned by the model during training. Therefore, they have to be adjusted when
transferring the model to other materials. However, the space of possible solutions
can be reduced by restricting the parameters ηrad and ηang to be equidistant. In this
way, only the spacing between these parameters as well as the maximum cutoff
radii Rrad

c and Rang
c have to be optimized using standard hyperparameter

optimization techniques. An alternative method to find the symmmetry function
parameters is to minimize the linear correlation between a fixed number of
symmetry functions evaluated on the training dataset. This technique is used in this
study to find the ζ parameters for the angular symmetry functions.

Training and optimization. In this work, we use an atomic neural network with
two hidden layers and N ð1Þ

hid ¼ Nð2Þ
hid ¼ 50. Furthermore, we use the tanh activation

function after the first hidden layer and the Gaussian error linear unit (GELU)65

after the second hidden layer. Especially the choice of the activation functions
strongly influences the quality of the reproduction of physical properties. For

Fig. 4 Large-scale MD simulation using the Te-dependent neural network interatomic potential. The top layer of two different Si thin films (a–c Sink-like
surface defect, d–f Hill-like surface defect) is shown at three times (0 ps, 5 ps, 10 ps) after a laser excitation with a pulse energy of 0.35 eV. Both surface
defects vanish within 10 ps after the laser excitation. The MD simulations were performed using the Te-NNP on a supercell containing more than
160,000 atoms.

Table 1 Parameters of the radial symmetry functions.

Index 1 2 3 4 5 6 7
ηradRradc [nm] 0.265 0.295 0.326 0.357 0.388 0.419 0.450
Index 8 9 10 11 12 13
ηradRradc [nm] 0.481 0.512 0.542 0.573 0.604 0.635
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example, we find that using the exponential linear unit (ELU)66 results in
anomalies in the cohesive energy curves at small lattice parameters.

The cost function for the gradient-based training process is based on the error
function used in ref. 18 and is defined by

Γ ¼ 1
2

γ2E þ γ2F
� �

¼ 1
2
�

∑t ΦðtÞ
coh � EðtÞ

� �2
∑t EðtÞ� �2 þ

∑t∑i �∇rðtÞi
ΦðtÞ

coh � FðtÞi
��� ���2

∑t∑i F
ðtÞ
i

��� ���2
0
B@

1
CA:

ð10Þ

Here, E is the reference ab-initio total Helmholtz free cohesive energy and Fi is the
ab-initio force acting on atom i. The particular form of this relative error function
is selected to guarantee that the network learns to predict the energies and forces in
both situations, near equilibrium as well as at high electronic temperatures, with
similar relative accuracy despite strongly varying magnitudes of the predicted
quantities. For one weight update, the cost function is evaluated as the mean over
multiple training examples indexed by t within a batch of size Nbatch (which we set
to 20). During one training epoch, the batches are selected randomly from the
training set without repetition until the model has processed every example of the
training set (minibatch learning). For this stochastic gradient-based optimization of
the cost function we further use the Adam algorithm67 with the learning rate
α= 0.001 and the exponential decay rates β1= 0.9 and β2= 0.999 for the first and
second moment estimates. The neural network is trained for 50 epochs with an
integrated early stopping mechanism which is activated when the validation set
error does not decrease for ten epochs in a row. However, this condition was not
fulfilled during our experiments.

Details on DFT calculations and MD simulations. All ab-initio calculations in this
work, including those contained in the training dataset, are carried out using our in-
house Te-dependent DFT program CHIVES (Code for Highly excIted Valence
Electron Systems)7,68,69. CHIVES yields a very good agreement with experiment70 as
well as established DFT codes, including Wien2k and ABINIT, and is more than 200
times faster than ABINIT at the same degree of accuracy71.

The dataset used to train the Te-NNP was originally generated in ref. 18 for the
construction of a classical Te-dependent interatomic potential for laser-excited Si. It
contains ab-initio calculations of a Si thin film at 316 K as well as at ten higher
electronic temperatures ranging from 3158 to 31,578 K in steps of 3158 K ≈ 10 mHa.
Further ab-initio calculations of the thin film at intermediate electronic temperatures
from 1579 to 29,999 K in equally sized steps are used as the validation dataset.

At each electronic temperature in the training and validation dataset, three
different types of ab-initio calculations are performed:

1. MD simulation: The laser-induced dynamics are simulated by suddenly
increasing Te from room temperature to a constant value. The duration of
the MD simulations is set to 1 ps with a step size of 2 fs resulting in 501
different thin film configurations with corresponding energies and forces for
each electronic temperature.

2. Artificial compression: The Si thin film is compressed stepwise and the
corresponding energies and forces are calculated to also include atomic
configurations with high local atomic densities in the training dataset, which
are likely to occur after a laser-excitation. In this way, 25 additional data
points are generated for each electronic temperature.

3. Artificial expansion: Since laser-excitations can also lead to high local
negative pressures with decreased local atomic densities, mechanical
expansions of the thin film are simulated and the corresponding energies
and forces are calculated. In this way, 501 data points are added to the
dataset for all Te < 25,000 K. For higher temperatures, the thin film is already
naturally expanding during the MD simulation.

All in all, both the training and the validation dataset contain more than 9000
different atomic configurations of the thin film with corresponding labels for the
cohesive energy as well as the three force components for each atom. We decided to
use a comparatively small percentage of the total available data for training to
emphasize the data efficiency of our model.

The thin film used in this study has a thickness of 5.3 nm and consists of 320
atoms. The simulation supercell is constructed by arranging 2 × 2 × 10
conventional unit cells. Since CHIVES uses periodic boundary conditions in all
spatial directions, a vacuum is inserted on top of the thin film by doubling the
supercell size in z-direction in order to simulate surface effects. The Si atoms are
prepared in the ideal diamond-like crystal structure and initialized to room
temperature using an Andersen thermostat72.

Among others, the model performance is evaluated by comparing the atomic
root-mean-square displacement during MD simulations of bulk Si with results
from ab-initio calculations (see Fig. 3e, f). Note that these configurations are not
contained in the training or validation dataset. For the bulk MD simulations at
Te= 12,631 K and Te= 15,789 K, we use a simulation cell containing 640 atoms in
total and consisting of 4 × 4 × 5 conventional unit cells. We repeat the simulation
10 times. For Te= 18,947 K and Te= 22,104 K, the simulation cell contains 288
atoms (3 × 3 × 4 conventional unit cells) and we repeat the simulation 40 times.
The simulation duration and step size is chosen similarly to the ab-initio
calculations of the thin film. The bulk MD simulations are first performed using
CHIVES and then repeated with the Te-NNP using the same initializations.

Details on large-scale MD simulations. The large-scale MD simulations are
carried out on a simulation cell containing a Si thin film with a thickness of 29.7
nm. It is constructed by arranging 19 × 19 × 56 conventional unit cells. Again, in
order to simulate surface effects despite of periodic boundary conditions, we fur-
ther insert a vacuum of 50 nm on top of and below the thin film. The surface
impurities are spherically shaped and both have a diameter of 2 nm. The exact
number of atoms contained in the simulation cells are 161,836 (hill) and 161,633
(sink). We perform MD simulations of the laser excitation at various pulse energies
in the range from 0.1 to 0.5 eV with a step size of 0.05 eV. The simulation duration
is set to 10 ps with a step size of 1 fs.

As described previously, the electron–phonon coupling has to be taken into
account if the simulation time exceeds a few picoseconds. In this case, the
electronic temperature cannot be treated as constant anymore. Therefore, we
perform the MD simulations in the frame of the two-temperature model (TTM-
MD)73 as formulated by Ivanov and Zhigilei74. In this combined atomistic-
continuum approach, the electrons with their individual temperature Te are treated
in a continuum, while the ions are modeled by a classical ground state interatomic
potential. Furthermore, the electron–phonon coupling is included by performing a
velocity scaling. However, since we are using a Te-dependent interatomic potential
to also take non-thermal effects into account, we deploy the extended MD
simulation setup introduced by Bauerhenne30, which includes the electron–phonon
coupling as well as the usage of a Te-dependent interatomic potential. Thereby, we
use the electron–phonon coupling constant for Si from ref. 75.

The TTM-MD scheme has been shown to yield an accurate description of laser-
induced mechanical relaxation processes in materials leading to spallation,
ablation, formation of nanoparticles, and nanostructuring of surfaces and thin
films76–79.

Data availability
The datasets analyzed in this work are available from the corresponding author on
reasonable request.

Code availability
The Te-NNP is implemented in the Python programming language using the Tensorflow
library80. The code is available from the corresponding author on reasonable request.
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