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Abstract

Metaheuristics are optimization algorithms that efficiently solve a variety of complex
combinatorial problems. In psychological research, metaheuristics have been applied
in short-scale construction and model specification search. In the present study, we
propose a bee swarm optimization (BSO) algorithm to explore the structure under-
lying a psychological measurement instrument. The algorithm assigns items to an
unknown number of nested factors in a confirmatory bifactor model, while simulta-
neously selecting items for the final scale. To achieve this, the algorithm follows the
biological template of bees’ foraging behavior: Scout bees explore new food sources,
whereas onlooker bees search in the vicinity of previously explored, promising food
sources. Analogously, scout bees in BSO introduce major changes to a model specifi-
cation (e.g., adding or removing a specific factor), whereas onlooker bees only make
minor changes (e.g., adding an item to a factor or swapping items between specific
factors). Through this division of labor in an artificial bee colony, the algorithm aims
to strike a balance between two opposing strategies diversification (or exploration)
versus intensification (or exploitation). We demonstrate the usefulness of the algo-
rithm to find the underlying structure in two empirical data sets (Holzinger–
Swineford and short dark triad questionnaire, SDQ3). Furthermore, we illustrate the
influence of relevant hyperparameters such as the number of bees in the hive, the
percentage of scouts to onlookers, and the number of top solutions to be followed.
Finally, useful applications of the new algorithm are discussed, as well as limitations
and possible future research opportunities.
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Metaheuristics are general-purpose algorithms that can be used to efficiently solve

optimization problems that are computationally too demanding for exhaustive search

solutions (Du & Swamy, 2016). Many metaheuristics are inspired by phenomena in

nature, which often rely on multiple agents (i.e., population-based approaches). A

prominent example is the ant colony optimization (ACO; Deneubourg et al., 1983)

algorithm that mimics the foraging behavior of ants. Metaheuristics are adaptive and

nondeterministic, as they converge toward optimal or near-optimal solutions by

selecting and evaluating over several iterations, using information from previous

iterations to adjust the selection process (Colorni et al., 1996; Dorigo & Stützle,

2010). In psychological research, metaheuristics have been used for several purposes,

for example, to compile short scales that fulfill certain preset criteria (e.g., Janssen

et al., 2017; Leite et al., 2008; G. A. Marcoulides & Drezner, 2001; Olaru et al.,

2015, 2019; Schroeders et al., 2016a, 2016b). There is also an extensive research lit-

erature on how metaheuristics can be used to correct specification errors between a

proposed model and the true model (e.g., G. A. Marcoulides & Drezner, 2003; G. A.

Marcoulides et al., 1998; G. A. Marcoulides & Ing, 2012; G. A. Marcoulides &

Leite, 2013; G. A. Marcoulides & Schumacker, 2001; K. M. Marcoulides & Falk,

2018). The basic idea behind this model specification search (Long, 1983) is to spe-

cify a slightly modified version of an initial, intended model and to compare both in

terms of model fit (e.g., Akaike information criteria [AIC] or Bayesian information

criteria [BIC]). Manually specifying such competing measurement models is feasible

if the model is not too complex and the misspecification not too large, but with an

increasing number of variables and possible modifications, this approach is impracti-

cal and will cover only a small to negligible part of the parameter space (K. M.

Marcoulides & Falk, 2018). Instead, model specification search can be understood as

a combinatorial optimization problem (G. A. Marcoulides & Drezner, 2003; G. A.

Marcoulides & Schumacker, 2001). For its solution, a variety of metaheuristics (for

an overview see G. A. Marcoulides & Ing, 2012) have been proposed such as ACO

(Dorigo & Stützle, 2010; Leite et al., 2008), Genetic Algorithm (Holland, 1992; G.

A. Marcoulides & Schumacker, 2001), Tabu Search (Drezner & Marcoulides, 1999;

Glover, 1986; G. A. Marcoulides et al., 1998), and Simulated Annealing (Černý,

1985; G. A. Marcoulides & Drezner, 1999).

In the present article, we intend to complement previous efforts in model specifi-

cation search using metaheuristics. Previous approaches and tools are helpful if the

researcher has at least a general idea of the structure of the measurement instrument

(e.g., number of underlying dimensions). However, in early stages of test or ques-

tionnaire development, little is known about the dimensional structure of a measure.

Moreover, almost always item selection is necessary because more items are pilot
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tested than intended for the final instrument. These two requirements—determining

the factor structure and item selection—represent a considerable extension of the

already challenging combinatorial problem faced in model specification searches

with a known number of underlying dimensions. The traditional non-heuristic proce-

dure in psychology is to run an exploratory factor analysis (EFA; Fabrigar &

Wegener, 2011) in combination with item selection (e.g., Kruyen et al., 2013; Steger

et al., 2022). This approach signifies a number of individual decisions to be made for

the structure finding part such as deciding on the estimator (Preacher & MacCallum,

2003), determining the number of factors to be extracted (Preacher et al., 2013),

choosing a rotation method (Schmitt & Sass, 2011), and interpreting the solution.

Subsequently, items with substantial cross-loadings are excluded and these steps are

repeated until a robust and interpretable solution is found. This might seem like a

straightforward procedure, but usually it is not. In each iteration of the procedure,

there are multiple options. For example, several methods have been suggested to

determine how many factors should be retained, but without clear recommendations

as to when they should be used (Auerswald & Moshagen, 2019). Thus, item selection

with a simultaneous assignment of items to factors is a formidable optimization prob-

lem with many researchers’ degrees of freedom (Nelson et al., 2018; Simmons et al.,

2011).

To address this issue, we introduce a new population-based metaheuristic to the

psychometric literature, a BSO algorithm (for an overview of previous applications in

the computational sciences that used algorithms that were motivated by the behavior

of bees (see Karaboga & Akay, 2009; Karaboga et al., 2012). In contrast to the fora-

ging behavior of ants that led to the formulation of ACO algorithms, the behavioral

repertoire of bees is more sophisticated due to a division of labor. Scout bees search

for food sources in the surrounding of the hive, whereas onlooker bees are directed to

certain locations to exploit promising food sources. The main idea of such a division

of labor in model specification search is that the global search (scout bees) focuses on

the identification of the number of factors and general factor-item allocation, whereas

the specific search (onlooker bees) focuses on optimizing a simple structure thereof

by reallocating or removing single items. We evaluate the usability and effectiveness

of such a BSO in determining the factor structure and selecting items for simple struc-

ture in two real data sets representing hierarchical constructs.

Model Specification Search in Bifactor Modeling

For the current examples, we choose a bifactor model that includes a general factor

reflecting the common variance of all items and specific factors covering additional

shared variance within subsets of items. The specific or nested factors are orthogonal

to each other and to the general factor. Bifactor models have originally been invented

in intelligence research (Holzinger & Swineford, 1937), but recently experienced a

renaissance as an important structural representation of multidimensionality in vari-

ous other fields (Reise, 2012; Reise et al., 2010). We chose this model because many
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psychological constructs are hierarchical in nature (e.g., Kotov et al., 2021; McGrew,

2009; Moshagen et al., 2018) and bifactor models allow for a representation of this

hierarchy without imposing proportionality constraints as in higher order models

(Brunner et al., 2012). In comparison with a correlated factor model, a bifactor model

allows items to load only on the general factor, so that the information of all items

can be used, even for items that otherwise cannot be easily allocated to a specific

factor.

Consider a measure with n indicators, a strong general factor, and an unknown

number of specific factors. The factor model in matrix notation can be denoted as:

y = Lh + E

where h denotes the latent variable, L is the factor loading matrix, and E represents

the residuals. For instance, the factor model may look as follows:

L =

l11 l12 0 � � � l1n

l21 l22 0 � � � l2n

l31 l32 0 � � � l3n

l41 0 0 � � � 0

l51 0 l53 � � � l5n

l61 0 l63 � � � l6n

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 0

2
666666666664

3
777777777775

In this example, the first three indicators load on the general factor (first column) and

the first specific factor (second column). The fourth indicator only loads on the gen-

eral factor, whereas the fifth and sixth indicators load on the general and the second

specific factor, and so on. The last indicator is completely excluded as indicated by

zero loadings in all columns. The same item-factor assignment that is given in the

matrix can also be expressed as a vector of integers where each element represents

an indicator and the specific value represents the assignment to a factor (for a similar

notation, see G. A. Marcoulides & Drezner, 2001; Murohashi & Toyoda, 2007):

[1 1 1 0 2 2 . . . 21]

Here, positive integers (e.g., 1 and 2) denote that an indicator loads on the respec-

tive specific factor (e.g., 1 and 2) and on the general factor. A value of 0 denotes an

item that loads on the general factor only, and 21 represents an item that is excluded

from the item pool.

As BSO is a population-based metaheuristic, multiple solutions are followed

simultaneously. Each possible item assignment or model is considered a location in

the area and a potential food source that is visited by a bee. All models are evaluated

by a predefined optimization function including multiple criteria and sorted accord-

ingly (food quality). The better a model is evaluated (promising food source), the

more bees are requested to follow and investigate alternative solutions similar to this

model—in analogy to the waggle dance of honey bees. In nature, scout bees open up
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new food sources, whereas onlooker bees search for food in the vicinity of previ-

ously explored, promising food sources. With respect to model specification search,

scout bees initiate rather global model revisions (e.g., removing a factor), whereas

onlooker bees investigate alternative models at a more fine-grained level (e.g., re-

assigning a single item). In the following, we will describe the specific operations of

the virtual scout and onlooker bees in more detail.

Main Principles of Bee Swarm Optimization

We identified four key principles of bee foraging behavior and translated them to

model specification search:

First, scout bees systematically explore new vicinities based on previously col-

lected information on promising food sources that have been shared in the beehive.

We allow scouts to introduce major changes to the best candidate solutions of previ-

ous iterations: (a) adding a nested factor (Scout 1 in the following example), (b) split-

ting a nested factor (Scout 2), (c) removing a nested factor (Scout 3), or (d) merging

two nested factors (Scout 4). For instance, these operations could result in the follow-

ing item assignments:

[1 1 1 0 2 2 2 2 2 0 3 3 3 3 0 4 4 4 4 4 0 4 4 4 21] (Best previous solution)

[1 1 1 5 2 2 2 2 2 5 3 3 3 3 5 4 4 4 4 4 5 4 4 4 21] (Scout 1: Add factor)

[1 1 1 0 2 2 2 2 2 0 3 3 3 3 0 4 4 4 4 4 0 5 5 5 21] (Scout 2: Split factor)

[1 1 1 0 2 2 2 2 2 0 0 0 0 0 0 4 4 4 4 4 0 4 4 4 21] (Scout 3: Remove factor)

[1 1 1 0 2 2 2 2 2 0 2 2 2 2 0 4 4 4 4 4 0 4 4 4 21] (Scout 4: Merge factor)

Importantly, each scout randomly decides which of the four operations is applied to

the best previous solution. If there are multiple possible ways to execute an operation

(e.g., which factor could be split), this decision is also made randomly.

Second, onlookers search for food in the immediate proximity of a good food

source. In psychometric terms, onlooker bees introduce minor changes to the model

that may involve (a) adding an item to a nested factor (if it was not assigned to a

nested factor previously, Onlooker 1), (b) removing an item from a nested factor (so

that it only loads on the general factor, Onlooker 2), (c) swapping an item between

nested factors (Onlooker 3), or (d) completely removing an item from the pool

(Onlooker 4). Again, the decision of which these operations are executed and which

item is affected is made randomly. For example, minor tweaks may look like these

item-factor changes:

[1 1 1 0 2 2 2 2 2 0 3 3 3 3 0 4 4 4 4 4 0 4 4 4 21] (Best previous solution)

[1 1 1 1 2 2 2 2 2 0 3 3 3 3 0 4 4 4 4 4 0 4 4 4 21] (Onlooker 1: Adding item)

[1 1 1 0 0 2 2 2 2 0 3 3 3 3 0 4 4 4 4 4 0 4 4 4 21] (Onlooker 2: Removing item)

[1 1 1 0 2 2 3 2 2 0 3 3 2 3 0 4 4 4 4 4 0 4 4 4 21] (Onlooker 3: Swapping items)

[1 1 1 0 2 2 2 2 2 0 3 3 3 3 0 4 4 4 4 4 0 4 4 2121] (Onlooker 4: Dropping item)
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Third, successful scouts provide information about the location of good food

sources (e.g., direction, distance, and quality). The more promising the source, the

more onlooker bees are attracted. In psychometric terms, all measurement models

are evaluated according to a user-defined optimization function and recorded in a

sorted list. In analogy to more profitable food sources leading to intensive dances

attracting more onlookers, models that better fulfill the predefined criteria will entail

more intense local searches (e.g., 10 onlookers for the best model and eight onloo-

kers for the second best model). Moreover, to streamline the specification search we

also included a Tabu list ensuring that the same model is not estimated several times

(which may be conceived as depletion of the food source).

Fourth, after each iteration, the list of the best models is updated and used as a

starting point by both scout and onlooker bees in the next iteration. To reduce the

possibility of focusing too much on only one specific region in the search space (i.e.,

reaching a local optimum), models that are on top of the best model list are no longer

pursued after a predefined number of iterations, which is equivalent to the depletion

of food sources. Please note that these models are not removed from the list; they are

simply not further explored. Pseudocode for the complete BSO procedure can be

found in the online supplement.

Advantages of Bee Swarm Optimization

BSO has several advantages in test or questionnaire development compared with

other methods (see Table 1): First, the algorithm can perform item selection during

the optimization. Especially in the early stages of test development, the question of

dimensionality underlying a questionnaire is often complicated by the need to select

appropriate items from a larger pool. Both exploratory and confirmatory bifactor

analyses are not suitable to conduct item selection out-of-the-box. Often items are

selected after the structure of the questionnaire was established, for example, by

removing items that contributed most to model misfit. However, the dimensionality

depends on the specific abbreviated item set, which is why both analysis steps should

be conducted simultaneously. Greedy stepwise selection mechanisms also depend on

the sequence of item removal; thus, they are prone to run into local optima. In con-

trast, BSO evaluates item sets during the optimization in a non-greedy manner, that

is, it can recover items that would be excluded if only the best solution would have

been followed.

Second, although BSO is logically an exploratory, data-driven approach

(Wagenmakers et al., 2012), its models are evaluated using confirmatory factor anal-

yses, allowing to find an unambiguous structure for a measure. The various

structure-finding or structure-testing procedures—exploratory factor analysis with

bifactor rotation (bifactor EFA), BSO, bifactor exploratory structure equation model-

ing (BESEM) with target rotation, and confirmatory factor analysis with bifactor

rotation (bifactor CFA)—can be ordered on a continuum from exploratory to confir-

matory, from no to clear specifications regarding the structure of a measure. Bifactor
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EFA and BSO are clearly exploratory, whereas bifactor CFA is completely confirma-

tory. BESEM with target rotation is semi-confirmatory (see Huang et al., 2017),

because it combines features of EFA and CFA: On one hand, they allow the occur-

rence of cross-loadings, and on the other hand, they are also based on a prespecified

model structure (Marsh et al., 2010; Morin et al., 2016). BESEM might be useful to

take into account the fuzziness of indicators in many real-world settings, but for the

target rotation, it is necessary to specify a target structure in advance. More knowl-

edge about a measure will often lead to better models, but in early stages of test

development such knowledge is lacking. This is when BSO can prove useful,

because the algorithm makes no prior assumptions about the assignment of items to

factors and about the number of factors. Nonetheless, BSO enforces a simple struc-

ture by only allowing one additional factor loading besides the loading on the general

factor, restricting all other loading to zero. This leads to more purified specific fac-

tors that might be easier to interpret. However, this clear assignment of items to fac-

tors by BSO is not achieved by requiring strong theoretical assumptions as in the

case of confirmatory factor analyses.

Third, with respect to item selection, traditional methods rely on stepwise exclu-

sion of items according to a single criterion, for example, deleting the item with the

lowest item-total correlation (Kruyen et al., 2013) or the one that contributes most to

model misspecification (Whittaker, 2012). Usually, this item deletion is based on a

single metric (Clifton, 2020; Steger et al., 2022). In contrast, model search of BSO

can incorporate several criteria simultaneously (e.g., model fit, reliability, and length

of the scale). The simultaneous inclusion of different optimization goals is a major

advantage of metaheuristics in general (Dorigo & Stützle, 2010; Olaru et al., 2015,

2019). For example, metaheuristics have been used to create reliable and cross-

culturally invariant short versions of a Big Five personality inventory (Jankowsky

et al., 2020). The consideration of different, possibly conflicting criteria in BSO pre-

vents a one-sided optimization at the expense of other criteria (e.g., the attenuation

paradox by Loevinger, 1954, and Schroeders et al., 2016b).

Table 1. Comparison of BSO Algorithm With Exploratory and Confirmatory Bifactor
Modeling.

BSO Exploratory bifactor Confirmatory bifactor

Item selection possible No item selection included No item selection included
Data-driven Data-driven Theory-driven
Simple structure Cross-loadings Strong theory needed

Biased estimates Anomoulus results

+ Item selection
No sequence effect Sequence effects
Multiple criteria One criterion at a time

Note. BSO = Bee swarm optimization. Exploratory/confirmatory bifactor = EFA/CFA with bifactor

rotation.
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Fourth, bifactor models might run into estimation problems or produce anomalous

results. In case of exploratory bifactor modeling, Schmid–Leiman and alternative

bifactor rotations lead to inaccurate parameter estimates when the specified model

departs from perfect cluster structure (e.g., item cross-loadings on nested factors;

Mansolf & Reise, 2016). In case of confirmatory bifactor modeling, overfactoring

might lead to anomalous results. Therefore, Eid et al. (2017) proposed two theory-

driven alternative models, the bifactor-(S–1) model and the bifactor-(S.I–1) model,

in which either a factor or a single item per factor is set as a reference. In case of

clear theoretical assumptions, such reference models are the preferred choice, but

without a clear understanding of the factor structure, these models are difficult to

specify. In contrast to these bifactor models with a reference, BSO makes no prior

assumption how items should be assigned to factors, which is completely subjected

to the optimization process. Thus, BSO can circumvent the issue of overfactoring by

allowing items to load on the general factor only.

Fifth, in comparison with an exhaustive search, BSO is efficient. The combination

of structure finding and item selection is a huge combinatorial problem (G. A.

Marcoulides & Drezner, 2001). To give an idea on the combinatorial complexity, let

us assume a bifactor model with 25 items, and, for the sake of simplicity, we restrict

the number of nested factors to a maximum of two. Each item can thus take one of

four states (item is excluded, loads on the general factor only, loads on either the first

or second nested factor), which results in a total of approximately

425 = 1, 125, 899, 906, 842, 624 models (if models with less than three items per fac-

tor are counted). If we estimate that each model takes one-tenth of a second to com-

pute, then even with parallel computation on 10 cores, the analysis of all models

would take 356, 776 years. In comparison, BSO achieves results in considerably less

time in similar settings (as in the following empirical examples)—usually between 1

and 3 hr.

Research Objectives

The aims of the present proof-of-principle study are twofold: First, we will systemati-

cally study the influence of different hyperparameters such as the number of scout

bees and onlooker bees, respectively, on the convergence and the quality of the pro-

vided solutions. For this purpose, we used the well-known Holzinger–Swineford data

set to specify a bifactor model with all subtests loading on a general factor and in

addition on two to five domain-specific, nested factors. The task of the BSO algo-

rithm is to group the indicators into nested factors where the number of nested factors

is not specified further. The optimization follows a predefined function that takes into

account different criteria such as model fit, minimal factor loading, and the total num-

ber of items. The results will be compared with the results of exploratory and confir-

matory factor analyses with Schmid–Leiman rotation and a varying number of nested

factors.
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Second, we study the usability and applicability of BSO in another data set featur-

ing a (SD3, Jones & Paulhus, 2014). In the last decade, personality traits that were

associated with ethically, morally, and socially questionable behavior have received a

lot of attention among personality researchers (e.g., Moshagen et al., 2018). The SD3

consists of 27 items with nine items each for machiavellianism (a manipulative atti-

tude), narcissism (excessive self-love), and psychopathy (lack of empathy). Because

the factor structure of the SD3 has not been satisfactorily clarified (Jones & Paulhus,

2014; Persson et al., 2019), we use the questionnaire as an example to showcase the

possibilities of the BSO algorithm. More precisely, we demonstrate how to derive

essentially equivalent models that all satisfy the predefined psychometric criteria,

thus, both streamlining the item pool of a measure and exploring its structure.

Method

Data sets
Holzinger–Swineford Data Set. We used the Holzinger–Swineford data set, which is a

classic textbook example that has been reanalyzed many times in the psychometric

literature (e.g., Murohashi & Toyoda, 2007). The data set contains intelligence test

scores for 24 cognitive tests from 301 children attending two schools (for more infor-

mation, see Holzinger & Swineford, 1939). The study on which the data are based

has become famous in the assessment literature because it was the first application of

a bifactor model (Holzinger & Swineford, 1937).

Concerning the structure of the Holzinger–Swineford data set, the 24 subtests were

chosen from five different broad abilities (number of subtests in parentheses): (a)

spatial abilities (4), (b) verbal abilities (5), (c) mental speed (4), (d) memory (6), and

(e) mathematical deduction (5). Instead of the intended factor structure, Holzinger

and Swineford (1939) concluded that a bifactor model with four specific factors

(without the last factor) better fitted the data.

Dark Triad Data Set. One of the most influential questionnaires to measure the dark

core of personality is the SD3, in which previously separate developmental strands are

merged by combining and abbreviating existing measures (Jones & Paulhus, 2014).

Data were collected online and distributed under an Open Database License.1 The data

set consists of the responses of 18,192 participants on the 27 items of the SD3.

With respect to the structure of the measure, the questionnaire developers

described the fit of the three-dimensional model in the original publication as ‘‘not

impressive (RMSEA [Root Mean Square Error of Approximation] = .07, CFI

[Comparative Fit Index] = .82, and TLI [Tucker-Lewis-Index] = .80)’’ (Jones &

Paulhus, 2014, p. 33). Consequently, Persson et al. (2019) investigated the psycho-

metric properties of the SD3 in three independent samples and proposed a bifactor

structure with an overarching dark personality as general trait and either three nested

factors or two nested factors, in which machiavellianism and psychopathy collapse,

while narcissism is modeled as a second independent factor.
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Hyperparameters of the Bee Swarm Optimization Algorithm

Metaheuristics often provide efficient solutions to a problem, but not necessarily the

best solution. The convergence behavior of the BSO depends on the optimization

function and several hyperparameters regulating the search behavior and restricting

the search space (the most important are given in Table 2). To study their influence in

more detail, we systematically varied the following three hyperparameters in the

Holzinger–Swineford data set: (a) the number of bees in the hive (n_bees), (b) the

percentage of scouts among all bees (percent_scouts), and (c) the number of top solu-

tions that attract onlooker bees (top_best). n_bees should have a direct influence on

the convergence behavior and on the duration of the search: The more bees, the larger

the area that can be covered and the more extensive the search. The other two hyper-

parameters (percent_scouts and top_best) affect the relation of diversification to

intensification. The higher the proportion of scouts among all bees, the more diversi-

fication occurs compared with intensification. The top_best parameter determines

how many promising solutions are intensified. A small number indicate a strong

intensification but also a more specific local search.

We chose the Holzinger–Swineford data set for this demonstration because

researchers have a good understanding of the structure (e.g., Murohashi & Toyoda,

2007). In more detail, we used the following design for the empirical illustration of

the hyperparameters: n_bees with six levels (100, 200, 400, 600, 800, and 1000), per-

cent_scouts with three levels (.25, .50, and .75), and top_best with three levels (10%,

20%, and 50% of n_bees). Each combination was run across 20 seeds, totaling

6 � 3 � 3 � 20 = 1080 runs. Because the overall best solution is essentially unknown,

we considered the overall best solution across all runs according to our optimization

criteria the best solution.

Statistical Analysis

The BSO algorithm is openly available from Github: https://github.com/

FlorianScharf/BSO. BSO relies mainly on the parallel package for parallel

Table 2. Hyperparameters of the BSO Algorithm.

Argument Explanation Example

n_bees Number of bees in the hive 200
percent_scouts Proportion of scout bees .25
top_best Number of top solutions to be examined 20
max_iter Maximum number of iterations without improvement 10
min_nest_fac Minimum number of (nested) factors 1
max_nest_fac Maximum number of (nested) factors 5
depletion Number of iterations after which the food source is depleted 5

Note. Arguments that are varied in the empirical illustration are given in the upper part of the table.
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computing (v.4.2.2; R Core Team, 2022), lavaan for CFA (v.0.6.13; Rosseel, 2012),

and ggplot2 for plotting the convergence plots (v.3.4.0; Wickham, 2016). All syntax

and data files necessary to reproduce the analyses of this study can be found in an

online repository: https://osf.io/kx4fg/.

The Optimization Function

The core of a metaheuristic search is the optimization function that evaluates the

quality of the models. The optimization function is modular in design and often con-

tains several criteria. In the present context, we focused on model fit, factor loadings,

and the number of items included in the final model. All criteria were logit-

transformed to scale the outcomes of the different formulae (e.g., Equations 1 and 2)

to the range between 0 and 1 to maximally differentiate between models around a

preset cutoff value (Janssen et al., 2017; Schroeders et al., 2016a). We labeled these

value n in reference to the Greek word nectar (nEktar).

With respect to the first criterion, model fit, we used a combination of an incre-

mental fit index, the Comparative Fit Index (CFI �.95), and an absolute fit index,

the Root Mean Square Error of Approximation (RMSEA �.06)—as proposed with

the two-index presentation strategy (Hu & Bentler, 1999). All models had continuous

indicators, which is why the maximum likelihood estimator was used. To streamline

the convergence of the BSO algorithms by reducing the number of non-promising

models, both observed and latent variances were forced to be non-negative (bounds

= ‘‘pos.var’’). The chosen cutoff values for the fit indices constitute the inflection

point of the function.

nCFI =
1

1 + exp (50 � (:95� CFI))
ð1Þ

nRMSEA =
1

1 + exp (� 50 � (:06� RMSEA))
ð2Þ

The second criterion of the optimization function deals with the minimal absolute

factor loading across all nested factors, which was set to l = :30.

nl =
1

1 + exp (15 � (:30� jlminj))
ð3Þ

The third criterion deals with the number of indicators that will be used in the

final version. The indicators in both data sets had been extensively tested; that is,

item selection had already taken place in previous stages of test development. For

example, the original version of SD3 consisted of 41 items from which the final 27

items were drawn. For this reason, we choose a cutoff of 95% of all items, which

essentially prevents any substantial item selection.
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nitems =
1

1 + exp (30 � (:95� n(items)))
ð4Þ

Please note that the chosen cutoffs slightly differ in the second example to accom-

modate for the different data set, that is, for the dark triad data set we deemed a CFI

� .90 satisfactory and strived for a minimal absolute factor loading �.20. The over-

all weighting of the three criteria in the optimization function favors the model fit:

ntotal = 2 � (nCFI + nRMSEA) + nl + 2 � nitems ð5Þ

Models in which one of the criteria was below a predefined threshold of

n � :0001 were not followed up. Please note that other criteria could also easily be

implemented in the optimization function such as maximizing correlations with cov-

ariates, favoring item sets that offer measurement invariance with respect to grouping

variables, balancing content domains, etc. In this introduction to BSO, we will

adhere to some basic principles of test construction.

Results

Example 1: Holzinger–Swineford Data Set

Specifying the originally intended bifactor model with five nested factors (Holzinger

& Swineford, 1939) resulted in a confirmatory factor model with acceptable fit:

x2(228, N = 301) = 438.9, p \ .001, CFI = .922, RMSEA = .055. However, the stan-

dardized loadings of the fifth factor (deduction) fluctuated unsystematically around

0, indicating overfactoring. A confirmatory bifactor model with four specific factors

and the indicators of deduction set as reference overcame these problems: x2(233, N

= 301) = 444.0, p \ .001, CFI = .922, RMSEA = .055. With respect to the optimiza-

tion function which was the base for the BSO algorithm, this model yielded a n-value

of 3.19.

As another point of comparison, we conducted exploratory factor analyses and

Schmid–Leiman rotation with two, three, and four specific factors (i.e., SL2, SL3,

and SL4). In a subsequent step, we assigned all items to the general factor only that

had a factor loading below .30 on the nested factor to make a reasonable comparison

with the BSO. The bifactor solution with two nested versus three nested factors came

to similar values in the optimization function (n2 = 2.65 vs. n3 = 2.65), whereas the

solution with four nested factors scored higher (n4 = 3.42).

The best model derived by the BSO algorithm was a bifactor model and four spe-

cific factors, resulting in a substantially higher value in the optimization function (n

= 3.88). Compared with the intended structure, there were some modifications: One

indicator of the memory factor (figurew) only loaded on the general factor and two

indicators that were originally intended for the last factor (numeric and arithmet)

loaded on the mental speed factor instead. This last modification seems reasonable

because speed played a crucial role in solving these simple arithmetic problems. The

model fit was slightly better: x2(232, N = 301) = 414.6, p \ .001, CFI = .933,
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RMSEA = .051 (parameter estimates for the four-dimensional solutions are given in

the online supplement). Given the constraints specified in the optimization function,

this solution was deemed the optimal solution in the context of the subsequent

illustration.

Figure 1 shows the convergence plots of two exemplary specifications of the BSO

algorithm with the same optimization function and a total of 120 bees. In the left

panel, the top 60 solutions were pursued in each iteration, whereas only the best 24

solutions were used in the right panel. In addition, the percentage of scouts differed

across the two examples: 50% versus 25%. As a consequence, the process in the left

panel was less diversified and ran into a local minimum, while the optimum solution

was found in the right panel. This led to the question which hyperparameter settings

have a positive influence on the convergence behavior.

Systematic Variation of Hyperparameters

Overall, the algorithm provided consistent and efficient results in the Holzinger–

Swineford data set, because even with a small number of bees the optimal solution was

often found across 20 seeds. With 800 or more bees, the optimal solution was provided

in almost all cases (for more detailed results, see online supplement). To determine the

influence of the hyperparameters on the consistency of the results, we conducted a three-

way analysis of variance (ANOVA) with the hyperparameters as independent variables

and the frequency of how often the best solution was found across 20 seeds as the depen-

dent variable. The main effects of all three hyperparameters were significant, with the

Figure 1. Convergence Plots of Two Exemplary BSO Runs.
Note. In both runs, the same optimization function was used, but with different hyperparameters. Left

panel: n_bees = 120, top_best = 60, percent_scouts = .75, Right panel: n_bees = 120, top_best = 24, and

percent_scouts = .25. Colored dashed lines marked with SL2, SL3, and SL4 represent the nectar values of

the confirmatory bifactor model with two, three, and four specific factors and Schmid–Leiman (SL)

rotation. Nectar values of SL2 and SL3 are almost identical. The gray dashed line indicates the empirical

optimum. The syntax can be found online at https://osf.io/jvrpq.
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number of bees being the most influential factor, F(5, 1026) = 63:99, p\:001, h2
p = :24.

Figure 2 indicated improved consistency of results if only 10% or 20% of the best mod-

els were followed up in subsequent iterations, F(2, 1026) = 10:96, p\:001, h2
p = :02.

Moreover, using only 25% scouts (and 75% onlookers) yielded better results than the

opposite ratio, F(2, 1026) = 27:78, p\:001, h2
p = :05. In summary, at least for this exam-

ple, it is important for the BSO to weigh intensification more strongly than diversifica-

tion. Also, the interaction between the percentage of scouts and the number of top

solutions to be followed was significant (for the complete results of the ANOVA, please

see online supplement).

Example 2: Dark Triad Data Set

The intended confirmatory bifactor model with nine items loading on each of the

three specific factors machiavellianism, psychopathy, and narcissism (Jones &

Paulhus, 2014) had sufficient model fit, x2(297, N = 18,192) = 17,175.1, p \ .001,

CFI = .901, RMSEA = .057. However, some of the factor loadings on the nested fac-

tors turned out to be low, that is, three were below .10 and eight below .20. The fac-

tor saturation of the nested factors was low for machiavellianism (vM = :11) and for

psychopathy (vM = :19), and substantial for narcissism (vM = :44). The n-value of

this theoretically established model was n = 3.87.

Table 3 gives the best solutions of 10 independent seeds, out of which seven

yielded higher n-values than the intended model. The best model had essentially the

same model fit as the theoretical model, but a slightly higher minimal factor loading

on the nested factors (lmin = .108 vs. lmin = .074; for all factor loadings of the best

BSO model, see online supplement). The right side of the table shows the color-

coded item-factor assignment. Overall, the structure found by the BSO algorithm

matches the intended structure. There were two deviations of the best solution from

Figure 2. Proportion of Optimal Solutions Among Random Starts as a Function of
Hyperparameters.
Note. Points represent the average proportion of optimal solutions across all random seeds per condition,

and error bars represent 61 standard error.
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the intended structure: First, two machiavellianism items loaded on the general factor

only (see light gray squares). Second, the item ‘‘Whatever it takes, you must get the

important people on your side’’ was assigned to narcissism instead of machiavellian-

ism (with the item arguably measuring grandiosity). Both modifications can be

understood as a sign that the specificity of the machiavellianism items was lower.

Discussion

In this article, we introduced a new metaheuristic—BSO—to the psychometric litera-

ture. In the course of measurement development, behavioral researchers often have to

make several decisions, such as determining the number of factors to extract, select-

ing items, and thinking about alternative assignments of items to factors—rendering

the process a formidable optimization problem. BSO tackles the question of dimen-

sionality of a measurement instrument in combination with a possible item selection.

Both structure finding and the item selection are conducted jointly according to an

optimization function that may include several criteria (e.g., model fit and factor

saturation). In contrast to exploratory bifactor analysis, BSO avoids biased estimates

(Mansolf & Reise, 2017) and renounces cross-loadings that sometimes complicate

the interpretation of factors. In contrast to confirmatory bifactor analysis, BSO does

not presuppose strong theoretical assumptions and avoids the sometimes occurring

anomalous results (Eid et al., 2017). With regard to the extensive metaheuristic

literature concerning model specification search (G. A. Marcoulides & Drezner,

2003; G. A. Marcoulides et al., 1998; G. A. Marcoulides & Ing, 2012; G. A.

Table 3. The Best BSO Solutions of 10 Seeds Concerning the Structure of the SD3.

Seed n CFI RMSEA lmin Item-factor assignment

9 3.968 .902 .056 .108

1 3.935 .902 .056 .092

4 3.935 .902 .056 .092

5 3.935 .902 .056 .092

7 3.935 .902 .056 .092

8 3.935 .902 .056 .092

2 3.907 .902 .056 .078

6 3.698 .893 .058 .106

10 3.637 .890 .059 .115

3 3.633 .892 .059 .097

Note. In all runs, the same optimization function was used with CFI �.90, RMSEA �.06, |lminj � :20, and

item selection essentially turned off. Hyperparameters: n_bees = 2000, top_best = 200, percent_scouts

= .25. M1-M9 = machiavellianism; N1-N9 = narcissism; P1-P9 = psychopathy; red/orange/yellow = nested

factors; light gray = general factor only.
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Marcoulides & Leite, 2013; G. A. Marcoulides & Schumacker, 2001; K. M.

Marcoulides & Falk, 2018), both similarities and differences to BSO can be found.

One obvious commonality is that metaheuristics are often based on biological

mechanisms of an animal population (e.g., a fish swarm or an insect colony). In addi-

tion, many metaheuristics try to strike a balance between two opposing strategies—

diversification (or exploration) versus intensification (or exploitation)—and they will

be more successful in finding a near-to-optimal solution to a given optimization prob-

lem if a (dynamic) balance between both strategies can be established (Blum & Roli,

2003). For the model specification search discussed in the current article, measure-

ment and structural parameters of a structure equation modeling (e.g., factor loadings

and factor correlations) are conceptualized as a vector that is subject to a random

modification (see G. A. Marcoulides & Drezner, 2003; G. A. Marcoulides &

Schumacker, 2001). The resulting model is then evaluated regarding predefined cri-

teria which in subsequent iterations influences the probability of items to be assigned

to factors. Even though the algorithms are similar on this abstract level and often

achieve similar results, there are still major differences between the various algo-

rithms (G. A. Marcoulides & Ing, 2012; Olaru et al., 2015; Schroeders et al., 2016b).

If one wants to draw parallels between ACO and BSO, one could link the local search

of the onlooker bees to the mode of operation of the ants, whereas the global search

of the scout bees has no direct equivalent. In ACO, exploration and exploitation

depend on the number of ants, search duration, and evaporation of pheromones. In

BSO, however, the two processes are split with scouts engaging in diversification and

onlookers in intensification. Such a division of labor might favor a dynamic balance

between both strategies when it comes to finding a measure’s structure. Compared

with metaheuristics that have previously been used, BSO brings two major features:

First, the number of factors does not have to be specified a priori, and second, the

search for a solution can be combined with item selection. Thus, we deem BSO a

flexible and promising new tool in the method toolbox of psychometricians.

The measurement model that is finally presented in an article is often equivalent

in terms of its psychometric properties (e.g., model fit and factor saturation) to other

models. Such alternative models might offer substantively meaningful concurrent

explanations to the data (MacCallum et al., 1993). In practice, however, the number

of models to be manually specified and tested is reduced to a small subset of models

that are theoretically motivated. If a researcher tries to specify all conceivable mod-

els, an iterative, knowledge-driven search is neither practical nor exhaustive (G. A.

Marcoulides & Ing, 2012; K. M. Marcoulides & Falk, 2018). BSO offers a different

solution to this problem: BSO systematically searches the solution space of compet-

ing measurement models, so that researchers get a sense of the variation of possible

good (not essentially equivalent) solutions. In this sense, BSO is a good complement

to more theory-driven methods to assess the robustness of effects such as specifica-

tion curve analysis (Simonsohn et al., 2020) or multiverse analysis (Steegen et al.,

2016). In contrast, the BSO algorithm provides the researcher with a set of appropri-

ate, but data-driven models that need to be cross-validated before claiming real
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validity (G. A. Marcoulides & Leite, 2013). Based on this set, alternative models can

be evaluated with respect to their usefulness and theoretical plausibility. As exempli-

fied with the SD3 data set, the BSO can thus point to weaknesses in test development

(i.e., low specificity of the machiavellianism items).

The present article is a first-time proof of principle, which implies several limita-

tions but also possible future research avenues. First, our presentation of BSO is cur-

rently limited to a bifactor model; however, it should be easy to extend the algorithm

to other models such as a correlated factor model or a higher order model. The gen-

eral idea of scout bees which introduce major changes to the model specification

search and onlooker bees which engage in minor tweaks could be useful for several

models. Second, we deliberately decided to leave the addition/removal of factors (or

items to factors) to chance. From the convergence behavior in the examples, we con-

clude that the algorithm efficiently leads to a stable final solution within a few dozen

iterations. Conversely, the specification search could also be more restrictive or goal-

oriented, that is, the algorithm presumably can be further optimized at the expense of

losing the connection to the biological model. For example, items could be added/

removed with Tabu search (for a successful combination of ACO and Tabu search,

see Jing et al., 2022) or the items subject to change could be selected based on their

contribution to the model misfit (e.g., modification indices). Third, we tried to closely

mirror the foraging behavior of honey bees, but also made simplifications to the

rather complex communication of bees. Thus, one might question specific decisions

we made in translating the biological principles into psychometric concepts. We

acknowledge that the chosen approach is not the only conceivable implementation of

a BSO algorithm. But just as there are different types of bees (with a diverse beha-

vioral repertoire), there are also different BSO algorithms that could be developed

(for a critical discussion of the use of metaphors in the development of new methods,

we recommend Sörensen, 2015). The general idea of scout bees that introduce major

changes to the model specification search and onlooker bees that engage in minor

tweaks could also be useful for a wide range of applications. At this point of algorith-

mic development, we also know little about whether the presented set of results on

hyperparameters generalizes to other data sets. Presumably, the degree to which

intensification or diversification leads to better performance of BSO depends on the

nature of the solution space and the optimization function. We found that 25% scouts

led to better results than a higher percentage of scouts, which is interestingly backed

up by observations of honeybees for which the number of scouts varies between

about 5% and 35%, depending on forage availability (Seeley, 1983). To answer such

questions concerning the hyperparameter more systematically, it is necessary to con-

duct a simulation study with different optimization problems, which is beyond the

scope of this introduction.

On a more general methodological stance, we think we have just tapped the poten-

tial of metaheuristics in psychometrics. Similar optimization problems are wide-

spread: For example, constructing parallel test forms or booklets with many boundary

conditions (e.g., average item difficulty, comparable test information curves, and
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predefined item coverage) is a common and reoccurring issue in educational large-

scale assessment and represents another optimization problem that could also be

handled with metaheuristics (see van der Linden, 2005). In addition, current applica-

tions of metaheuristics often evolve around the items of a measure (e.g., constructing

short scales), but it is also possible to apply the same logic to the person side, that is,

metaheuristics could be used to form groups of persons (rather than item bundles). In

short, potential new applications in psychology are manifold, as well as the possibili-

ties for further methodological developments. Therefore, we welcome the recent

efforts and advances of other researchers to capitalize on the possibilities of meta-

heuristics such as combining ACO and Tabu search for model specification (Jing

et al., 2022) or using ACO to automatically search for sensitivity parameters (Leite

et al., 2022).
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Olaru, G., Witthöft, M., & Wilhelm, O. (2015). Methods matter: Testing competing models for

designing short-scale Big-Five assessments. Journal of Research in Personality, 59, 56–68.

https://doi.org/10.1016/j.jrp.2015.09.001

Persson, B. N., Kajonius, P. J., & Garcia, D. (2019). Revisiting the structure of the Short Dark

Triad. Assessment, 26(1), 3–16. https://doi.org/10.1177/1073191117701192

Preacher, K. J., & MacCallum, R. C. (2003). Repairing Tom SwiftâĂŹs electric factor
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