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Abstract
Regular physical activity is an important factor in maintaining and improving physical and cognitive functions in an aging 
society. Compared to resistance and endurance training, motor tasks with attentional demands and cognitive activation are 
considered to have a greater potential for improving executive functions. Unstable devices increase the coordinative demands 
and could thus lead to increased cognitive engagement during acute resistance exercises. This study aimed to investigate the 
required attentional resources during squats on stable and unstable surfaces in young and older adults. For this purpose, 13 
young (Mage = 23.5, SD = 2.7 years) and 17 older (Mage = 70.2, SD = 4.3 years) healthy adults performed dumbbell squats on 
a flat ground (stable condition) and on an unstable device (unstable condition) while simultaneously conducting a visual-
verbal Stroop task. Attentional resources for the stable and unstable conditions were assessed by calculating the differences 
in reaction time for the Stroop task (dual-task effect) from the single-task to the dual-task condition, respectively. As a 
result, there was a significant higher negative dual-task effect (i.e., cognitive performance decrement) while squatting on an 
unstable (− 13.96%) versus a stable surface (− 8.68%). Older adults did not show significantly greater dual-task effects than 
young adults. In conclusion, the attentional resources required during acute resistance training may be increased by the use 
of unstable devices. The fact that no age differences were found could be a consequence of the strict selection criteria for 
the study (selection bias).
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Abbreviations
BDNF  Brain-derived neurotrophic factor
DS  Digit span
DT  Dual-task
FES-I  Fall Efficacy Scale-International
HSD  Honestly significant difference
IMU  Inertial measurement unit
IGF-1  Insulin-like growth factor-1
MRT  Metastable resistance training
MoCA  Montreal Cognitive Assessment
M-RM  Multiple repetition maximum
OA  Older adults
PARQ  Physical Activity Readiness Questionnaire
RPE  Rating of perceived exertion

RT  Reaction time
RIR  Repetitions in Reserve
GDS-S  Short form of the Geriatric Depression Scale
ST  Single-task
YA  Young adults

Introduction

In the context of healthy aging — the focus of WHO’s work 
on aging between 2015 and 2030 — regular physical activ-
ity not only improves and maintains physical functioning, 
but also evokes positive effects on cognitive functioning in 
older adults (Colcombe & Kramer, 2003; Voelcker-Rehage 
& Niemann, 2013). According to reviews and meta-analy-
ses, improvements in cognitive and executive functions are 
detected predominantly following resistance training and 
aerobic exercise (Gallardo-Gómez et al., 2022; Northey 
et al., 2018). However, the specific impact of these exercise 
types on executive functions has recently been questioned 
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and discussed (Diamond & Ling, 2016, 2019; Hillman et al., 
2019). In particular, the meaning of “mindless” aerobic and 
resistance exercises with small demands for cognition has 
been under critical debate as benefits to executive functions 
appeared to be unjustified (Diamond & Ling, 2016).

The cognitive stimulation hypothesis assumes that cog-
nitively engaging exercises that require whole-body coordi-
nation and attentional control to complete the task (Chen & 
Nakagawa, 2023; Tomporowski et al., 2015) activate simi-
lar neural circuits associated with executive function tasks 
(Best, 2010). Due to the complexity and novelty of such 
motor tasks, chronic effects are thought to involve learn-
ing processes, such that neuroplasticity and improvements 
in cognitive functions are task specific (Netz, 2019; Tom-
porowski & Pesce, 2019). Supporting this hypothesis, recent 
literature indicates that training interventions with simulta-
neous cognitive activation have a greater effect on cognitive 
functioning compared to endurance and strength training 
interventions alone (Gheysen et al., 2018). Moreover, motor 
tasks where task complexity rather than intensity is under-
stood as the control variable seem to be a promising training 
mode for healthy aging (Netz, 2019). For instance, studies 
on gross motor exercises and coordination training showed 
equivalent improvements in executive functions, selective 
attention, and visual perception compared to aerobic and 
strength training (Berryman et al., 2014; Voelcker-Rehage 
et al., 2011).

In resistance training, unstable surfaces could be used 
to alter task complexity because they change coordinative 
requirements through increased vertical and transversal 
ground reaction forces (Eckardt et al., 2020a; Lehmann 
et al., 2022), in addition to increased demands on visual 
perception (Lord & Menz, 2000). However, adding bal-
ance requirements to resistance exercises has not yet been 
analyzed in terms of attentional demands. This study aims 
to show that cognitive engagement during acute resist-
ance exercises can be increased by implementing unstable 
devices. Consequently, the investigation of the acute effects 
of exercising on unstable devices may contribute to its clas-
sification as cognitive engaging exercise, and thus the under-
standing of how resistance training with surface instability 
enhanced executive functions (Eckardt et al., 2020b).

Meta-analyses of the acute effects of resistance exercise 
on cognition have yielded inconsistent results. Chang et al. 
(2012) found negative effects while Wilke et al. (2019) 
showed moderate improvements in cognitive performance 
after an acute bout of resistance exercise. Reasons for diver-
gent results may include differences in exercise intensity, 
timing of cognitive testing, and type of cognitive task. How-
ever, the studies included in these analyses mainly assessed 
cognitive performance within 5 min after the single bout of 
exercise. The literature on cognitive performance and atten-
tion during resistance exercise is limited. One study that 

examined the attentional demands of resistance exercise in 
young adults found performance declines in the cognitive 
task and concluded that barbell squats required a higher 
amount of attentional resources than standing upright (Her-
old et al., 2020).

In their study, Herold et al. (2020) employed a dual-task 
paradigm, which provides a methodology for examining 
the cognitive resources required during exercise. This para-
digm involves the execution of two tasks simultaneously, 
usually a motor task and a concurrent cognitive task (Aber-
nethy, 1988). It is assumed that the execution of a motor 
task requires a proportion of a limited processing capacity 
depending on its attentional demands (Huang & Mercer, 
2001). In general, goal-directed behavior requires cognitive 
resources in terms of selecting task-relevant information 
from task-irrelevant information summarized as selective 
attention (Lavie et al., 2004). Performance on the concur-
rent cognitive task is considered to reflect the amount of 
residual processing capacity not allocated to the motor 
task. Consequently, attentional demands for a motor task 
are assessed by comparing the individual’s cognitive task 
performance in a single-task (ST) condition (cognitive task 
only) with the cognitive task performance in a dual-task 
(DT) condition (cognitive and motor task concurrently) 
(Huang & Mercer, 2001). The differences between single- 
and dual-task performances are defined as dual-task effect 
( DTeffect = (DT − ST)∕ST ∗ ±100% ). For example, a 
negative DT effect in the performance of the cognitive task 
would indicate that attentional resources were allocated to 
the motor task and the remaining resources were insuffi-
cient to perform the cognitive task to the best of their ability 
(McIsaac et al., 2015).

Overall, task complexity, such as postural demands, and 
individual prerequisites, such as experience, age, or cogni-
tive abilities, are associated with the attentional resources 
required for motor task performance. Several studies have 
used a DT paradigm to compare attentional resources during 
static and dynamic motor tasks (i.e., sitting, standing, and 
walking) in young and older adults (for a review Woollacott 
& Shumway-Cook, 2002). In general, their findings show 
that attentional demands increased during a static standing 
task in both older and young adults when the complexity 
of the postural task increased, e.g., by changing the base of 
support (wide vs. normal stance, Lajoie et al., 1993, 1996), 
the surface (normal vs. foam, Marsh & Geel, 2000; Teasdale 
et al., 1993), or the sensory input (eyes open vs. eyes closed, 
Teasdale et al., 1993; Vuillerme et al., 2006), or by perturba-
tion (platform displacement, Brown et al., 1999). Compared 
to static motor tasks, dynamic motor tasks (e.g., walking) 
were found to require more attentional resources, as indi-
cated by larger performance decrements in the secondary 
cognitive task (Lajoie et al., 1993; Wollesen et al., 2016). 
Compared to young adults, older adults showed higher 



244 Journal of Cognitive Enhancement (2023) 7:242–256

1 3

reaction times and DT effects under DT conditions, suggest-
ing that postural control requires more attentional resources 
in older adults (Woollacott & Shumway-Cook, 2002). This 
age effect is attributed to functional and structural changes in 
motor control (Papegaaij et al., 2014), and can be attenuated 
by expertise or exacerbated by pathological aging (Li et al., 
2010; Rapp et al., 2006; Tsang & Shaner, 1998).

To date, no studies have investigated whether using unsta-
ble devices, as in postural tasks, increases the attentional 
demands of executing dynamic resistance exercises and thus 
may activate cognitive resources in the sense of the cognitive 
stimulation hypothesis. Therefore, the purpose of this study 
was to examine the attentional resources required for squat-
ting exercises under stable and unstable surface conditions. 
It was hypothesized that DT effects are higher in unstable 
than in stable conditions. Furthermore, this study explored 
the impact of age on attentional resources needed to execute 
squatting exercises on stable and unstable surfaces. Hence, 
DT effects were compared between older and young adults.

Materials and Methods

Participants

Older adults were recruited through an announcement in the 
local newspaper and a local senior citizen walking group. 
Young adults were recruited by an announcement in univer-
sity seminars and lectures. In total, 74 participants, includ-
ing older (n = 57; 26 females) and young adults (n = 17; 7 
females), were invited to a pretest session to receive infor-
mation on the experimental procedures. All participants 
were informed about the nature and the purpose of the inves-
tigation and provided written consent to participate. Par-
ticipants confirmed that they were not suffering from acute 

or chronic musculoskeletal or neurological disorders or an 
acute or chronic disease hampering balance control (e.g., 
Parkinson’s disease, diabetes) and listed their medication. 
Participants were not excluded because of their medication 
(e.g., l-thyroxine, candesartan), as there is evidence that the 
medication may compensate for any attentional deficits due 
to their medical conditions (e.g., thyroid disease, hyperten-
sion). All participants completed the German version of the 
Physical Activity Readiness Questionnaire (PARQ) assess-
ing an individual’s health risk when exercising physically 
(Adams, 1999). Additionally, three questionnaires were 
administered to further exclude neurological and psychologi-
cal disorders. First, general cognitive abilities were assessed 
by the Montreal Cognitive Assessment (MoCA) (Nasreddine 
et al., 2005) with obtained permission. Participants with a 
MoCA score lower than the cutoff values provided by Tho-
mann et al. (2018) were excluded from the study. The Fall 
Efficacy Scale-International (FES-I, Dias et al., 2006) and 
the short form of the Geriatric Depression Scale (GDS-S, 
Yesavage & Sheikh, 1986) were utilized to assess a concern 
of falling and depression due to their influence on attentional 
resources (Wollesen & Voelcker-Rehage, 2018; Young & 
Williams, 2015). Consequently, participants with a high con-
cern of falling (score ≥ 23 points, Delbaere et al., 2010) and 
depressive symptoms (score ≥ 5, Pocklington et al., 2016) 
were excluded from the study. Figure 1 illustrates the process 
of participants’ exclusion after pretesting and during data 
analysis. For instance, 14 older adults had to be excluded 
after pretesting because dumbbell squats on the unstable 
device were too challenging for them. After applying the 
exclusion criteria, 56 individuals remained in the study and 
participated in the testing session. All experimental proce-
dures were conducted in accordance with the ethical stand-
ards of the Declaration of Helsinki and approved by the local 
ethics committee of the University of Kassel (E05202004).

Fig. 1  Subject inclusion chart
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Procedure

Our experimental setup was adopted from the study protocol 
by Herold et al. (2020). Participants were first invited to a 
pretesting session to screen their eligibility.

Pretesting Session

During the pretesting session, participants filled out ques-
tionnaires, performed the pretests, as described below, and 
familiarized themselves with the cognitive and motor tasks. 
For a warm-up routine, participants exercised 5 min on a 
rowing machine at 1 W/kg body weight and a revolution 
of 24 strokes per minute. Prior to familiarization with the 
cognitive and motor task, the recording quality of the micro-
phone and amplifier for the visual-verbal Stroop task was 
checked. Then, a familiarization block of 16 congruent and 
incongruent trials in a random order followed. Finally, a 30-s 
testing block of randomly assigned congruent and incon-
gruent trials was executed while standing upright in front 
of the TV screen. Next, dumbbell squats with self-selected 
low-intensity weights were executed as the motor task on an 
even surface (stable condition) and the flat side of a Bosu® 
Balance Trainer (unstable condition). Dumbbell squats were 
performed as a single-task (ST condition) and in a dual-task 
(DT) condition concurrently with the Stroop task. Partici-
pants started their squatting movement following a visual 
countdown (from 3 to 1) on the screen. Depending on the 
task condition, either a white cross on a black screen or the 
first colored word of the Stroop task appeared on the screen 
following the countdown. The appearance of the white 
cross on the black screen indicated the motor ST condition 
(squatting exercise only). In contrast, the first colored word 
indicated the cognitive-motor DT condition (30-s Stroop 
task while squatting). In the DT conditions, the prioriti-
zation of either task in terms of functional relevance was 
avoided, since in everyday life people often strive to perform 

both tasks in a dual-task situation in the best possible way 
(Wehrle et al., 2010). Instead, participants were instructed 
to execute the squatting exercise as similarly as possible as 
in the ST condition (i.e., with a similar velocity and down-
ward displacement) while simultaneously trying to respond 
as fast as possible to the Stroop task. This instruction should 
ensure that participants strive for consistent performance 
in the squatting exercise without defining one task as the 
primary task in order to attribute the losses in the cognitive 
task to the attentional resources required for it. At the end 
of each task, participants rated their RPE on the Borg Scale.

The final stage of the pretesting session comprised a mul-
tiple repetition maximum (M-RM) strength test to adjust 
dumbbell weight to the individual’s strength abilities. As the 
1-RM would cause a possible risk of injury especially for 
older adults, a M-RM was conducted (Reynolds et al., 2006). 
For the M-RM strength test, participants were instructed to 
perform sets of dumbbell squats with increasing loads until 
a weight was found that they could lift approximately ten 
times. After each set, participants rated their perceived exer-
tion by using the Repetitions in Reserve (RIR) scale (Zour-
dos et al., 2016) and, then, rested for 3 to 5 min between 
sets. The 1-RM was estimated by the equations provided 
by Tan et al. (2015) referring to the squat performance of 
older adults with different calculations for male and female 
participants.

Testing Session

The second visit to the laboratory was scheduled with a rest 
period of at least 48 h. Figure 2 illustrates the procedures 
of the testing session. Participants started with a warm-up 
procedure on the rowing machine followed by one block of 
the Stroop task and one set of the squatting exercise in each 
ground condition (stable, unstable) for familiarization and a 
task-specific warm-up. Participants then executed one block 
of the cognitive task (i.e., Stroop task while standing) and 

Fig. 2  Overview of the testing session procedure. Dumbbell squats 
in the stable and the unstable conditions were conducted in a coun-
terbalanced order in both the single-task and the dual-task condi-

tions. Each task lasted 30 s with at least a 2-min rest between tasks 
and a 5-min rest between the single-task and dual-task conditions and 
within the dual-task condition between stable and unstable conditions
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one set each of the motor task (i.e., dumbbell squats on sta-
ble and unstable ground) in the ST condition followed by the 
performance of two sets each of the ground condition in the 
DT condition (i.e., Stroop task while squatting on stable and 
unstable ground). The testing session ended with a second 
set each of the motor task and a second block of the cogni-
tive task in the ST condition. Accordingly, each task was 
conducted twice. The order of the stable and unstable ground 
conditions was counterbalanced in the motor ST and cogni-
tive-motor DT conditions. The cognitive task was always the 
first and the last task in order to account for possible learning 
effects in the cognitive task performance. Each cognitive 
task block and motor task set lasted 30 s with a rest of at 
least 2 min between tasks and at least 5 min between the ST 
and DT conditions and within the DT condition between the 
stable and unstable conditions. Cognitive task blocks with 
many voice key failures (triggered by breathing or no trigger 
to acoustic response) and motor task sets with balance loss 
on the Bosu® Balance Trainer were aborted and repeated as 
extra sets or blocks.

Instruments

Questionnaires and Pretests

In order to identify individual’s prerequisites, the following 
questionnaires and tests were completed by the participants 
during the pretesting session: a German physical activity 
questionnaire to obtain an estimate of the individual’s level 
of physical activity and the type of sport exercise within the 
past 4 weeks (Fuchs et al., 2015), the d2 test as a measure of 
focused and sustained attention (Brickenkamp, 1962), and 
a computerized digit span backward task as an estimate of 
the working memory capacity (Diamond, 2013). In addition, 
participants were asked about the duration of their school 
education as well as their experience in resistance training 
using a rating scale ranging from 1 (i.e., no experience) to 
10 (i.e., strong experience). Last but not least, the 30-s chair-
rise test was conducted to measure lower body muscle power 
(Csuka & McCarty, 1985).

Cognitive Task

The abilities to focus attention on relevant information and 
detain attention from distracting information are wide-
spread components of testing attentional resources (Perrey, 
2022). A custom-built Stroop color-word task was admin-
istered to assess selective attention through an E-Prime 
software experiment (version 3.0, PST, Pittsburgh, PA, 
USA). Colored words were presented on a TV screen at a 
visual angle of α = 1.26° during an upright stance. The task 
consisted of congruent (word and ink color are identical, 
e.g., the word “red” with red ink color) and incongruent 

trials (word and ink color differ, e.g., “red” with green ink 
color) with the word and colors red, green, yellow, and blue 
similar to that applied by Wollesen et al. (2016). Congru-
ent and incongruent trials were presented in a random order 
with each block lasting 30 s. A visual countdown starting 
from three indicated the start of the 30-s testing block. Par-
ticipants were instructed to respond as fast as possible to 
the presented stimulus material by naming the ink color of 
the word loud and clear. Acoustic responses and the cor-
responding reaction time (RT) were recorded by utilizing a 
microphone (Superlux ECM999) and an amplifier (Yamaha 
MG16/6FX). The acoustic responses triggered the voice key, 
which then caused the appearance of the next trial. Thus, 
the total number of trials in the 30-s testing block differed 
between participants depending on their reaction times.

Motor Task

The execution of the squat exercises was based on the setup 
reported by Herold et al. (2020). Dumbbell squats at 40% 
of the one repetition maximum (1-RM) were executed on 
a solid surface (floor) and on an instability device (Bosu® 
Balance Trainer; flat side facing up) at a self-paced fre-
quency. During the squatting exercise, participants were 
standing at a distance of 2.5 m in front of the TV screen 
with their feet shoulder-wide apart. They were instructed 
to lower their body as far as possible until their thighs were 
oriented parallel to the ground. Dumbbells were held at 
each side of the body with arms extended and eyes resting 
on the center of the screen. According to Zawadka et al. 
(2020), squat depth should be at least 30% of leg length. 
Based on the average height of German citizens (male, 
178.9 cm; female, 165.9 cm) (Federal Office for Statistics 
in Germany, 2022), a squatting depth of 30 cm would cor-
respond to the minimum of a squat depth of 30% of leg 
length. Therefore, as an estimate, a valid squat was assigned 
when the downward displacement of the dumbbells reached 
at least 30cm (Zawadka et al., 2020). For that purpose, an 
inertial measurement unit (IMU) (Vmaxpro, version 6.0, 
Magdeburg, Germany) was attached to one of the dumb-
bells. The IMU signals were transferred via Bluetooth to 
the Vmaxpro software (version 6.0). Additionally, the IMU 
was used to assess motor-related DT effects regarding the 
number of repetitions, movement velocity, and squat depth 
as suggested by Herold et al. (2020).

Perceived Exertion

During ST and DT conditions, a 6–20 Borg Scale was 
administered to estimate the perceived exertion (RPE) (Borg, 
1982). Participants were instructed to rate their physical and 
cognitive perceived exertion immediately after the execution 
of each task.
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Data Processing and Statistical Analysis

Participants were excluded from the analysis if they failed 
to execute two valid blocks of the Stroop task or two valid 
squat sets in each of the task and ground conditions. At least 
12 valid trials for a block in the Stroop task were required 
for further analysis. Trials with either a voice key failure, an 
incomprehensibly recorded color name (e.g., due to heavy 
breathing), or RTs of less than 250 ms were excluded from 
the analysis. In addition, RTs larger than the median RT 
plus 3 × interquartile range were identified as outliers and 
excluded (Eckardt et al., 2020b). For the motor task, at least 
five correctly executed dumbbell squats in the ST and the DT 
conditions were required for further analysis. Additionally, 
in the motor ST condition, each dumbbell squat had to be 
executed with a dumbbell downward displacement of at least 
30 cm. Since the estimation of attentional resources required 
for the performance of the squatting exercise is based on the 
performance differences in the cognitive task, it should be 
ensured that the motor task is performed similarly in ST and 
DT conditions. For that purpose, the deviation in motor per-
formance (i.e., number of repetitions) between ST and DT 
conditions was calculated for each participant and expressed 
relative to the ST condition as follows: (DT − ST)∕ST ∗ 100 . 
Participants who were least able to maintain a comparable 
motor performance in ST and DT condition were excluded 
by including only DT trials within the 5th to 95th percentile 
of %-deviation from ST performance (as a result, accept-
able range of deviation in stable condition, − 22.4 to 28.4%; 
unstable condition, − 18.3 to 40.0%).

For statistical analysis, the cognitive (MoCA, d2 test, DS 
backward) and physical (chair-rise, sport activity, experi-
ence) prerequisites of young and older adults assessed dur-
ing pretesting were evaluated for normal distribution and 
then compared by an unpaired Student t-test. The median 
RT of correct responses was calculated for the congruent 
and incongruent trials for each of the Stroop task blocks. 
The median RTs were then averaged across the two blocks 
in each task condition (ST, DT) and each ground condition 
(stable, unstable). Response accuracy and the Stroop effect 
(difference in RT between congruent and incongruent tri-
als) were calculated for each condition but not subjected to 
statistical analysis. The DT effect was calculated through 
the equation: DTeffect = (DT − ST)∕ST ∗ −100% . The 
negative sign refers to the negative relationship between RT 
and task performance (McIsaac et al., 2015). A negative DT 
effect represents performance decrements while a positive 
DT effect represents improvements. For the calculation of 
DT effects in stable and unstable conditions, the average RT 
across congruent and incongruent trials was used.

Further, RTs and DT effects were inspected for outliers 
and tested for their normal distribution by the Shapiro–Wilk 
test. Outliers were defined as values larger than the median 

plus 3 × interquartile range. There was one young adult 
identified as an outlier for DT effect and thereby excluded 
from further analysis. Main and interaction effects in the 
RTs were examined by a 2 × 3 × 2 mixed ANOVA (stimulus 
type × condition × group). Main and interaction effects in the 
DT effects were analyzed by a 2 × 2 mixed ANOVA (condi-
tion × group). Motor performance parameters for the squat-
ting exercise (repetitions, velocity, vertical displacement) 
and RPEs were subjected to a 2 × 2 × 2 mixed ANOVA (task 
condition × ground condition × group).

Levene’s test was administered to examine the homoge-
neity assumption. Greenhouse–Geisser corrections were 
performed when necessary (Geisser & Greenhouse, 1958). 
Significant main effects and interaction effects were further 
analyzed by a post hoc Tukey’s HSD (honestly significant 
difference) and Tukey–Kramer test due to unequal sample 
sizes across age groups. The calculation of Tukey’s HSD 
was also adjusted if corrections of degrees of freedom were 
necessary (Hays, 1994). Significant main effects of the 
ANOVA were analyzed by non-parametric tests in cases 
when the normality assumption was violated. All statistical 
calculations were carried out using SPSS Statistics software 
(IBM, version 28). Significance levels were set to α = 0.05 
for all statistical analyses.

Results

During data analysis, 26 participants were excluded 
because of invalid data (i.e., voice key errors, improper 
squat performance, outliers) (see Fig. 1). Since the sam-
ple size changed considerably during the data analysis, we 
performed a sensitivity analysis to investigate the impact 
on the effect size (Giner-Sorolla et al., 2022). A sensitiv-
ity analysis on the actual sample size of 30 participants 
with an α level of 0.05 and a power of β = 0.8 showed that 
only a large effect (ηp

2 = 0.22) can be detected with this 
sample size. Due to the high average effect sizes given in 
the literature related to the variation of the task condition 
(ηp

2 = 0.42), we assumed that the remaining sample is suf-
ficient to detect differences between the conditions. Since 
the effect size for age differences is smaller (ηp

2 = 0.14) 
(Lindenberger et al., 2000), the sample of n = 30 is too 
small to detect group differences.

Finally, the data of 13 young adults (seven females, 
Mage = 23.54, SD = 2.67 years) and 17 older adults (four 
females, Mage = 70.18, SD = 4.25 years) were analyzed (see 
Table 1). All variables met the assumption of the normal 
distribution except for the DT effects. Nevertheless, ANOVA 
and post hoc Tukey–Kramer test were applied for analysis 
because of its robustness to non-normality (Driscoll, 1996; 
Knief & Forstmeier, 2021). Levene’s test (p > 0.05) con-
firmed the homogeneity assumption for all variables.
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As can be seen from Table 1, older adults showed lower 
MoCA scores, t(28) = 3.89, p < 0.001, and lower attentional 
capacity (d2 test), t(28) = 5.15, p < 0.001, in the cognitive 
tests than young adults. No significant differences between 
groups were found in the working memory capacity (DS 
backward), t(28) = 1.93, p = 0.064; the chair-rise test per-
formance, t(28) = 0.56, p = 0.583; the amount of sport activ-
ity per week, t(28) = 0.21, p = 0.575; and the experience in 
resistance training, t(28) = 0.09, p = 0.984. Specifically, 
resistance training or working out in a gym was explic-
itly reported as a regular sport activity by 23 participants, 
including 12 young adults and 11 older adults.

Cognitive Task

Participants responded to a different number of trials in 
each task and ground condition due to their different reac-
tion times. On average, the number of trials in each block 
was 24.0 trials (SD = 2.2) in the ST standing condition, 23.3 
trials (SD = 2.4) in the DT squatting stable condition, and 
22.6 trials (SD = 2.4) in the DT squatting unstable condition. 
The response accuracy ranged on average between 94.7% 
(ST; SD = 5.8), 92.0% (DT unstable; SD = 7.5), and 91.2% 
(DT stable; SD = 8.4) with few false responses (ST: M = 0.9, 
SD = 1.6%; DT stable: M = 0.8, SD = 1.0%; DT unstable: 
M = 0.8, SD = 1.6%). The remaining trials were excluded 
from further analysis due to invalid reaction times and/or 
missing color identification in the recorded audio track.

The 2 × 3 × 2 mixed ANOVA (stimulus type × condi-
tion × group) of RT revealed a significant main effect of con-
dition, εGG = 0.81, F(1.61, 45.10) = 19.64, p < 0.001, ηp

2 = 0.41 
with an increase in RT from the ST standing (M = 788 ms) 
to the DT squatting conditions on stable (M = 857 ms) and 

unstable surface (M = 899 ms). All differences in the means 
were found to be significant referring to Tukey’s post hoc 
HSD,  HSD1%, ST-DT stable = 40.5 ms;  HSD1%, ST-DT unstable = 65.5 
ms;  HSD5%, DT stable-DT unstable = 41.3 ms (see Fig. 3). The main 
effect of stimulus type, F(1, 28) = 78.30, p < 0.001, ηp

2 = 0.74, 
was significant with, on average, 120-ms faster RTs for con-
gruent as compared to the incongruent trials. Moreover, the 
ANOVA showed an interaction effect between stimulus type 
and condition, F(2, 56) = 4.91, p = 0.011, ηp

2 = 0.15, indicat-
ing that conditions affected participants’ responses to con-
gruent and incongruent trials differently. In detail, Tukey’s 
HSD showed that the difference between congruent and 
incongruent trials (Stroop effect) was significant across all 
conditions  (HSD1% = 33.1 ms), but decreased from the ST 
standing (M = 146 ms) to the DT stable (M = 120 ms) and 
the DT unstable (M = 104ms) conditions. This can be seen 
in the approximating RT levels for congruent and incongru-
ent trials in Fig. 3. Additionally, a significant main effect of 
group was found on RT, F(1, 28) = 9.97, p = 0.004, ηp

2 = 0.26. 
Overall, older adults showed, on average, 125-ms longer RTs 
as compared to young adults. However, the mixed ANOVA 
did not reveal an interaction effect between stimulus type, 
condition, and group, F(2, 56) = 0.26, p = 0.775, ηp

2 = 0.01. 
Moreover, there were neither significant interaction effects 
between stimulus type and group, F(1, 28) = 2.43, p = 0.130, 
ηp

2 = 0.08, nor between condition and group, εGG = 0.81, 
F(1.61, 45.10) = 2.40, p = 0.112, ηp

2 = 0.08.

Dual‑Task Effect

The 2 × 2 mixed ANOVA (condition × group) of the DT 
effect revealed a significant main effect of ground condi-
tion, F(1, 28) = 5.27, p = 0.029, ηp

2 = 0.16, with an on average 

Table 1  Mean values, standard 
deviations (SD), and median of 
the sample’s characteristics

MoCA, Montreal Cognitive Assessment; d2 test, number of correctly identified d’s with two dashes; DS 
backward, number of correctly repeated sequences; 30-s chair-rise test, number of sit-to-stand cycles in 30 
s; 1-RM, calculated one-repetition maximum; PA, physical activity; Experience ResTr, experience in resist-
ance training rated on a scale from 1 to 10; YA, young adults; OA, older adults ***p < 0.001

YA (n = 13) OA (n = 17)

Characteristics Mean (SD) Median Mean (SD) Median

Age (years) 23.54 (2.67) 23.00 70.18 (4.25) 70.00
Height (cm) 172.92 (8.74) 172.00 174.59 (7.15) 177.00
Weight (kg) 66.08 (8.99) 65.00 76.98 (12.25) 75.00
MoCA score 28.15 (1.41) 29.00 25.82*** (1.78) 26.00
d2 test 202.62 (42.31) 206.00 137.24*** (27.09) 134.00
DS backward 6.15 (1.28) 6.00 5.35 (1.00) 5.00
30-s chair-rise test 19.58 (3.70) 19.00 18.82 (3.67) 18.00
1-RM (kg) 66.06 (19.14) 60.70 46.84 (14.65) 48.47
Exercise amount (min/week) 324.90 (197.48) 360.00 286.25 (174.74) 242.50
PA in leisure time (min/week) 537.31 (485.25) 340.00 854.19 (715.13) 630.00
Experience ResTr (1–10) 7.31 (1.49) 7.00 7.29 (2.02) 7.00
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5% larger negative DT effect in the unstable condition than 
in the stable condition. A non-parametric Wilcoxon test 
also showed a significant difference between conditions, 
Z =  − 2.47, p = 0.042. There was no significant main effect 
of group, F(1, 28) = 2.07, p = 0.162, ηp

2 = 0.07, and no sig-
nificant interaction between ground condition and group, 
F(1, 28) = 1.81, p = 0.190, ηp

2 = 0.06. DT effects of young and 
older adults are displayed in Fig. 4 for both conditions.

Motor Task

Mean values of the performance in the squatting exer-
cise are presented in Table 2. A 2 × 2 × 2 mixed ANOVA 
(task condition × ground condition × group) on repetitions 

showed a main effect of ground condition which indicates 
that significantly more squats were executed in stable than 
in unstable conditions, F(1, 28) = 42.59, p < 0.001, ηp

2 = 0.60, 
across both age groups. Moreover, the ANOVA revealed an 
interaction effect between task condition and ground con-
dition, F(1, 28) = 6.29, p = 0.018, ηp

2 = 0.18. In this respect, 
post hoc Tukey’s HSD test showed that the DT condition 
increased the number of repetitions in the unstable condi-
tion,  HSD1% = 0.69. Participants were able to conduct sig-
nificantly more repetitions on unstable ground while simul-
taneously performing the Stroop task. Moreover, the mixed 
ANOVA revealed an interaction effect between task condi-
tion and group, F(1, 28) = 9.59, p = 0.004, ηp

2 = 0.26. As such, 
older adults performed significantly more repetitions in the 
DT condition as compared to young adults,  HSD5% = 1.14. 
Furthermore, the interaction between ground condition and 
group was significant, F(1, 28) = 12.10, p = 0.002, ηp

2 = 0.30. 
Tukey–Kramer post hoc analysis showed that older adults 
significantly not only reduced the number of repetitions 
from the stable to the unstable condition but also conducted 
significantly more repetitions on stable ground than young 
adults,  HSD5% = 1.43. The mixed ANOVA revealed nei-
ther an effect of task condition, F(1, 28) = 1.76, p = 0.196, 
ηp

2 = 0.06, nor group, F(1, 28) = 0.30, p = 0.586, ηp
2 = 0.01.

As another result, movement velocity in the squatting 
performance differed significantly between ground condi-
tions, F(1, 28) = 65.41, p < 0.001, ηp

2 = 0.70, indicating that 
both groups reduced their movement velocity while squat-
ting on the unstable device in comparison to squatting on 
stable ground (YA, − 10.3%; OA, − 19.9%). Additionally, the 
interaction between ground condition and group was signifi-
cant, F(1, 28) = 6.52, p = 0.016, ηp

2 = 0.19, and Tukey–Kram-
er’s post hoc test showed that ground condition had a sig-
nificant effect on movement velocity for older adults only, 

Fig. 3  Reaction time to congruent and incongruent trials across the single-task and stable and unstable dual-task conditions for a young and b 
older adults. DT, dual-task; OA, older adults; ST, single-task; YA, young adults Error bars represent standard deviations

Fig. 4  Dual-task effect in the Stroop task for both groups across the 
stable and unstable conditions. OA, older adults; RT, reaction time; 
YA, young adults Error bars represent standard deviations
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 HSD1% = 0.11 m/s. The mixed ANOVA revealed neither an 
effect of task condition, F(1, 28) = 0.92, p = 0.347, ηp

2 = 0.03, 
nor group, F(1, 28) = 0.42, p = 0.523, ηp

2 = 0.02.
The mixed ANOVA based on the vertical dumbbell dis-

placement detected a significant main effect of task con-
dition, F(1, 28) = 6.29, p = 0.018, ηp

2 = 0.18. In the ST con-
ditions, participants moved dumbbells on average 5 cm 
lower than in the DT conditions. Additionally, a significant 
main effect of ground condition was found, F(1, 28) = 37.13, 
p < 0.001, ηp

2 = 0.57, indicating a reduced squat depth on 
the unstable surface. Moreover, there was a significant 
interaction effect between ground condition and group, 
F(1, 28) = 11.78, p = 0.002, ηp

2 = 0.30. Post hoc Tukey’s 
HSD test revealed that older adults executed squats on the 
unstable surface more shallowly than on the stable surface, 
 HSD1% = 0.06 m. Furthermore, older adults’ vertical dumb-
bell displacement was significantly shorter on the unstable 
device as compared to young adults,  HSD5% = 0.05 m. In 
turn, young adults’ squat depth was not significantly affected 
by ground condition. There was no main effect of group, 
F(1, 28) = 0.97, p = 0.333, ηp

2 = 0.03.

Rating of Perceived Exertion

Ratings of perceived exertion (RPE) were found to be sig-
nificantly different between task conditions, F(1, 28) = 6.82, 
p = 0.014, ηp

2 = 0.20, and ground conditions F(1, 28) = 17.13, 
p < 0.001, ηp

2 = 0.38. The DT condition (M = 13.5, SD = 1.6) 
and the unstable ground condition (M = 13.6, SD = 1.5) were 
rated as more demanding than the ST condition (M = 13.0, 
SD = 1.2) and the stable ground condition (M = 12.8, 
SD = 1.4). There was no main effect of group, F(1, 28) = 0.79, 
p = 0.382, ηp

2 = 0.03.

Discussion

The significant increase in reaction times (RT) during a ver-
bal color-word Stroop task from the single-task (ST) to the 
dual-task (DT) conditions suggests that attentional resources 
are increasingly required during squatting exercises on stable 
and unstable surfaces. Additionally, the higher negative DT 
effect on unstable as compared to stable surfaces confirms 
our hypothesis that surface instability increases cognitive 
demands while squatting. However, contrary to our previous 
assumption, DT effects did not differ significantly between 
young and older adults.

Cognitive Task and Dual‑Task Effect

The increase in the color-naming latency from a rested 
standing posture (i.e., in ST) to squatting exercises on stable 
and unstable grounds (i.e., in DT) suggests that the atten-
tional resources required for the execution of squats compete 
with the cognitive task for the limited processing capacity 
(Huang & Mercer, 2001). This finding is consistent with 
that of Herold et al. (2020) who also found a decrease in 
cognitive task performance while squatting. Additionally, 
the significant increase of the DT effect and RTs from the 
stable to the unstable ground condition demonstrates that 
more attentional resources are needed to execute dynamic 
resistance exercises with increasing demands for postural 
control (Woollacott & Shumway-Cook, 2002).

So far, only a few studies have investigated the influence 
of various degrees of task complexity on cognitive task per-
formance in dynamic motor task (Agmon et al., 2014; Lin-
denberger et al., 2000; Simoni et al., 2013). Lindenberger 
et al. (2000) found performance decrements in a cognitive 
task and increasing DT effects with increasing complexity 

Table 2  Mean values and 
standard deviations for the 
variables of the motor task 
performance

DT, dual-task; MV, movement velocity; OA, older adults; ST, single-task; YA, young adults

Parameter Task condition Ground condition YA
(n = 13)

OA
(n = 17)

Difference
YA vs. OA (%)

M (SD) M (SD)

Repetition ST Stable 14.50 (3.27) 15.53 (2.97) 7.1
Unstable 13.50 (3.48) 12.44 (3.01)  − 7.85

DT Stable 13.92 (3.40) 15.94 (3.27) 14.51
Unstable 13.35 (3.42) 13.85 (3.12) 3.75

MV (m/s) ST Stable 0.83 (0.15) 0.82 (0.18)  − 1.2
Unstable 0.74 (0.18) 0.65 (0.16)  − 12.16

DT Stable 0.80 (0.15) 0.81 (0.17) 1.25
Unstable 0.72 (0.19) 0.66 (0.17)  − 8.33

Vertical dumbbell 
displacement (m)

ST Stable 0.54 (0.05) 0.56 (0.08) 3.7
Unstable 0.52 (0.05) 0.49 (0.08)  − 5.77

DT Stable 0.54 (0.06) 0.53 (0.07)  − 1.85
Unstable 0.52 (0.06) 0.46 (0.07)  − 11.54
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in a walking task for young and older adults. However, our 
study showed smaller negative DT effects (stable, − 8.7%; 
unstable, − 14.0%) for the cognitive task and a smaller effect 
size (ηp

2 = 0.16) compared to those obtained in walking tasks 
(DT  effectoval track =  − 12.5%, DT  effectaperiodic track =  − 29.3%, 
ηp

2 = 0.21) (Lindenberger et al., 2000), possibly owing to 
a different cognitive task or higher attentional demands of 
locomotion tasks. The DT effect of the stable condition of 
our study was also smaller as compared to the DT effect 
found by Herold et al. (2020) (DT  effectback squats =  − 18.8%).

Furthermore, studies measuring brain activity during 
various balance tasks showed increased brain activity with 
increasing metastability demands in brain areas relevant to 
information processing such as the frontal, central, and pari-
etal cortex (Büchel et al., 2021; Hülsdünker et al., 2015). 
In line with these findings, recent investigations on cortical 
processing during squats on stable and unstable surfaces 
indicated differences in information processing to be asso-
ciated with differences in balance demands (Lehmann et al., 
2022). Consequently, according to Wood’s (1986) task com-
plexity construct, squats on unstable devices are assumed to 
have a higher task complexity than squats on stable ground 
as a result of a larger amount of information cues to be pro-
cessed. These information cues may be visual information, 
proprioceptive, and kinesthetic information transmitted by 
the mechanoreceptors of the lower limb or the vestibular 
system in order to ensure balance and postural control on 
unstable surface conditions (Woollacott & Shumway-Cook, 
2002).

The most interesting finding was that the reaction times 
did not increase consistently across congruent and incon-
gruent trials of the Stroop task. Task complexity seems to 
affect cognitive performance differently. Specifically, the 
Stroop interference effect (difference between congruent 
and incongruent trials) decreased with increasing task com-
plexity from ST to DT conditions. An explanation for this 
outcome may provide the Load Theory of Attention (Lavie 
et al., 2004) which distinguishes between two different types 
of load influencing processes of selective attention: the cog-
nitive load and the perceptual load. Based on this theory, 
cognitive load is provoked by cognitive control processes 
that require higher cognitive functions (e.g., working mem-
ory) to successfully perform the current task according to 
the task definition. In high cognitive load situations, due to 
the limited processing capacity, task-irrelevant distractors 
are perceived but not ignored as efficiently as in low cog-
nitive load situations, resulting in pronounced interference 
effects. By contrast, perceptual load, referring to the load 
caused by perceptual information processing, prevents the 
perception of irrelevant information in situations of high per-
ceptual load due to deficient processing capacity. As a result, 
interference effects are reduced (Lavie et al., 2004). As an 
example, given a squatting movement to induce cognitive 

load, the inhibition of distracting information in the incon-
gruent trials (i.e., the color name) should be less efficient 
while squatting in comparison with the standing condi-
tion. Consequently, this would lead to increasing RTs in the 
incongruent trials and a more pronounced interference effect 
while squatting. In contrast, the results of this study showed 
a decreasing Stroop interference effect with increasing task 
complexity, which may possibly originate from an increased 
perceptual load while squatting on stable and unstable sur-
faces. As mentioned above, in situations of high perceptual 
load, distracting information is supposed to be less perceived 
resulting in reduced interference effects (Lavie et al., 2004). 
Contrary to the interpretation by Herold et al. (2020) that 
squatting exercises require higher order cognitive functions, 
our findings suggest that squatting induces perceptual load 
with increased processing of perceptual information with 
surface instability rather than cognitive load. Our results 
support previous findings on theimportance of visual per-
ception for postural control on compliant and movable sur-
faces in older adults (Lord & Menz, 2000; Shumway-Cook 
& Woollacott, 2000).

Future research on cognitive and perceptual load during 
resistance exercise is required including studies on (neuro)
physiological measures of cognitive demand such as electro-
encephalography, heart rate variability, blink rate, or pupil-
lary response (Perrey, 2022). In particular, pupil diameter 
has been considered to be a valid indicator of task complex-
ity and cognitive effort (Beatty & Lucero-Wagoner, 2000). 
In fact, studies on motor tasks with varying task complexity 
show increases in pupil diameter with increasing task com-
plexity (Kahya et al., 2018; Saeedpour-Parizi et al., 2020; 
White & French, 2017).

Overall, older adults showed slower reaction times as 
compared to young adults. These findings are in line with 
the results of a previous study on the visual-verbal Stroop 
task performance of young and older adults (Davidson et al., 
2003). Furthermore, older adults’ increased response latency 
corresponds with findings on the age-related decline of pro-
cessing speed and inhibitory control (Bugg et al., 2007; 
Ebaid et al., 2017; West & Alain, 2000).

Contrary to our expectations, DT effects did not signifi-
cantly differ between age groups despite lower cognitive per-
formance scores in older adults during the pretesting session 
(e.g., MoCA score, d2 test). However, Krampe and Baltes 
(2003) note that psychometric tests are only limited valu-
able as measures of mental capacity to assess individuals’ 
cognitive resources. This lack of group differences may be 
related to the small sample size which was only sensitive to 
detect large effects (ηp

2 = 0.22). However, the rigorous selec-
tion of the individuals attending our study possibly excluded 
other aspects that may influence the DT performance in 
older adults, such as physical and functional capacity 
(Campos-Magdaleno et al., 2022). As seen in Table 1, older 
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participants had similarly high levels of physical activity 
and experience in resistance training as compared to young 
adults. In addition, older adults were more likely to report 
using unstable surfaces for exercise than younger adults 
in the initial survey. Hence, our active older adults might 
have been used to similar situations and, therefore, already 
acquired appropriate strategies to cope with the test situa-
tion in our study (Engelhard & Kleinert, 2006). In addition, 
the effect of age on DT performance was described as less 
robust than the effect of pathological aging. For instance, 
Alzheimer’s disease patients show distinct impairment 
in dual-task performance (Logie et al., 2004; Rapp et al., 
2006). Nevertheless, our data for the Stroop task and the DT 
effects indicate that cognitive-motor interference was higher 
during squatting on unstable ground in both age groups. The 
observed higher exertion rates for the squatting exercise on 
unstable ground, when compared to stable ground, addition-
ally emphasized the various physical and cognitive demands 
when exercising on that surface. However, a shortcoming 
of our study may relate to an objective measure of effort 
(e.g., heart rate) to assess the acute physical effects of the 
squatting exercises (Amico et al., 2021; Herold et al., 2020).

Motor Task

Squat performance differed between conditions and age 
groups. Especially older adults conducted squats with slower 
movement velocity (approx. 0.16 m/s), with a reduced ver-
tical displacement (approx. 7 cm), and with two to three 
repetitions less on the unstable device as compared to the 
stable surface. This may be associated with the age-related 
decline in postural reserve, a capability that allows people to 
respond effectively to postural demands (Yogev-Seligmann 
et al., 2012). In comparison to stable conditions, partici-
pants were constantly urged to adjust postural stability and 
to counteract higher vertical and transversal ground reaction 
forces while squatting on an unstable device (Eckardt et al., 
2020a; Lehmann et al., 2022). Older adults may cope with 
increased postural demands by conducting squats slower 
and less pronounced in the vertical displacement than young 
adults did. These motor performance decrements as a conse-
quence of increasing task complexity accord with findings in 
back squatting on unstable surface (Drinkwater et al., 2007) 
and tend to be a common strategy known from walking tasks 
with increasing complexity (Lindenberger et al., 2000).

Although participants who showed a large difference in 
the number of repetitions between the ST and DT condi-
tions were excluded from further analysis, the number of 
repetitions in the unstable condition and vertical displace-
ment still differed between task conditions for the remaining 
participants. Noteworthy, for the unstable surface condition, 
older adults executed, on average, one more repetition in 
the DT condition than in the ST condition mainly due to 

smaller vertical displacements including faster movement 
velocity. Alterations in older adults’ motor performance 
were also found in DT walking with an additional Stroop 
task (Wollesen et al., 2016). They are associated with the 
demands of the concurrently executed cognitive task and 
may be explained by theoretical models regarding DT 
effects. According to the limited resource hypothesis (Wick-
ens, 1980) and the cross-domain competition model (Lacour 
et al., 2008), motor and cognitive tasks compete for the same 
pool of limited attentional resources. This means, when both 
tasks are executed simultaneously, the limited amount of 
resources may be exceeded, leading to performance decre-
ments in one or both tasks. The slowing in RT as well as the 
reduction in squat depth found in our study suggests that the 
unstable condition exhausted the available resources result-
ing in performance decrements in both the cognitive and 
the motor tasks.

In contrast, young adults slightly reduced movement 
velocity, and thus performed a fewer number of repetitions 
in DT conditions, but these motor performance adaptations 
were not significant. Since we only used data from an IMU 
attached to a dumbbell to record squatting performance, pos-
sible other motor adaptations of the participants cannot be 
evaluated. For example, as found in a previous kinematic 
analysis (Wei et al., 2014), older people tend to lower the 
weights by additionally leaning and bending their upper 
body forward while squatting.

Overall, the motor task placed high demands on the par-
ticipants’ postural control because only a few reported expe-
rience with metastable training. In particular, older people 
had to be excluded from the study already after pretesting 
due to uncertain standing on unstable ground. Furthermore, 
more older adults than young adults had to be excluded dur-
ing data analysis due to insufficient squat performance. This 
suggests that especially excluded older adults had difficulty 
in adequately allocating their available attentional resources 
to both tasks.

Limitations

A major limitation of this study relates to a possible 
selection bias in the participant recruitment process. 
Both age groups are not representative of their general 
age population as they were highly physically active and 
experienced in resistance training. In addition, neuropsy-
chological conditions (e.g., ADHD) cannot be excluded in 
this sample, as they were not explicitly tested. Therefore, 
conclusions on attentional resources required for squat-
ting can only be derived from the study sample. For the 
inclusion of a broader, less active population, this study 
may be repeated with less challenging unstable devices 
such as foam pads.
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One further weakness of this study relates to the meas-
urement of the cognitive task, both because of the small 
number of trials per condition and because of the record-
ing of RTs via a voice key. As a result of increased physi-
cal effort and increased breathing during the exercise, the 
participants’ voice key responses were subjected to sev-
eral sources of error. For example, participants may have 
triggered the voice key without naming a color, the color 
name could not be identified in the recorded audio track, 
or participants’ responses were not loud enough. In such 
cases, participants tried to ignore these voice key errors and 
continued with the task. Voice key errors occurred in both 
conditions (total number: stable, 113; unstable, 95). How-
ever, this disturbance of participants’ concentration and their 
refocusing on the task could have also accounted for the 
increased attentional resources observed while squatting on 
stable and unstable ground conditions. Other studies using 
the Stroop task to assess DT effects during walking evalu-
ated the number of correct responses and accuracy scores 
on a slightly larger number of trials per block (32–40 tri-
als) (Bishnoi et al., 2022; Chaparro et al., 2020; Wollesen 
et al., 2016). It should be noted that squats with additional 
weights cannot be repeated as frequently, as they are more 
demanding than walking. In this study, it was not intended 
to measure the effect of fatigue on RT, as fatigue would be 
an additional and undesirable source of variance. Therefore, 
we were limited in the duration of recording. Nevertheless, 
despite the small number of trials, we assume that measuring 
RT is useful. Herold et al. (2020) argued that the DT effect 
found in their study was quantitative rather than qualitative 
because the accuracy of the responses remained unchanged. 
In addition, both Wollesen et al. (2016) and Chaparro et al. 
(2020) stated the lack of RT as a limitation of their study. 
Furthermore, Chaparro et al. (2020) suggested that the use 
of accuracy as a measure of cognitive performance may 
not have been sensitive enough to capture motor-cognitive 
interference. They suggested that future studies should use 
variables that are more sensitive, such as RT. Thus, our study 
represents an attempt to capture RT in a visual-verbal Stroop 
task during a physically demanding motor task.

Furthermore, the difference in the squatting exercise 
performance between task and ground conditions can be 
considered another limitation. Basically, the motor primary 
task should be performed alike in the ST and DT conditions 
in order to appropriately assess the attentional resources of 
the motor task based on the performance decrements in the 
additional cognitive task (Abernethy, 1988; Huang & Mer-
cer, 2001). Indeed, this is a central problem of the dual-task 
paradigm because the influence of the additional cognitive 
task on the motor task can hardly be prevented (i.e., cogni-
tive-motor interference) (Plummer et al., 2013). The per-
formance difference in the motor task between settings and 
conditions could be reduced by introducing a metronome 

providing a fixed rhythm for the concentric and eccentric 
phases (Eckardt et al., 2020a). However, a fixed rhythm may 
counteract intuitive, automatized movement patterns and 
cause additional attentional demands (Amico et al., 2021). 
Nonetheless, the increase in RT and the difference in DT 
effect with a concomitant adaptation of motor performance 
suggest that squatting on an unstable surface increases cog-
nitive demands.

Conclusions

Our study found attentional resources while squatting exer-
cises to be increased by surface instability. This finding is 
considered to emerge from increased perceptual load for both 
young and older adults. Therefore, unstable devices and free 
weights could provide a means to raise cognitive demands 
during resistance training. This cognitive engagement during 
exercise may be a possible indication of the positive effects 
of so-called metastable resistance training (MRT) versus 
machine-based resistance training on executive function in 
older adults as suggested by Kibele et al. (2021).

Noteworthy, older adults in this study did not show 
increased attentional demands compared to young adults while 
squatting exercises with a different degree of metastability. 
Further research is needed to better understand the mental 
effort involved in motor tasks of varying complexity. Conse-
quently, cognitive demands of physical training and its cogni-
tive effects could be better suited to the individual needs and 
goals. Nevertheless, resistance exercises with different degrees 
of metastability should be included in older adults’ daily rou-
tine to challenge not only the muscles but the brain as well.
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