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Abstract
Use of X-ray fluorescence (XRF) spectrometry for estimation of soil texture, pH,

and cation exchange capacity (CEC) is desirable given the time-consuming nature

of traditional methods. Recent studies have shown promising results; however, fur-

ther investigation is required to determine the effects of sample preparation and

data evaluation techniques on accuracy. Our objective was to compare (I) a sim-

ple but well-founded approach, combining measurement of powder samples and

modeling with elemental contents as predictors in stepwise multiple linear regres-

sions (MLR), with alternative approaches including (II) use of partial least squares

regression (PLSR), (III) sample preparation as a pressed pellet, and (IV) spectral

intensities as predictors (20 kV, 40 kV, and concatenated 20 + 40 kV). A total of 395

loess soils from three arable fields were used with a fivefold random training-testing

approach and a hold-one-site-out training-testing approach. With random partition-

ing, clay, silt, and sand accuracy with approach I was excellent (ratio of performance

to interquartile distance in validation (RPIQv) = 8.5–12.9), while pH and CEC esti-

mations were satisfactory to excellent (RPIQv = 2.0–2.5 and 2.2–3.3, respectively).

Differences between MLR and PLSR were negligible. Increases in accuracy with

pellet samples were 1%–13% of RPIQv for 20 kV intensities, but effects were incon-

sistent for other predictors. The optimal predictor varied by property, and differences

ranged from 3% to 13% of RPIQv. Improvements to accuracy from Approach I to

the best alternative were largest for texture (10%–15%) but may be superfluous given

the excellent accuracy across all approaches. Although the leave-one-site-out train-

ing resulted in variable performance, inclusion of soils from the target site in training

assured reliable accuracy.

Abbreviations: CEC, cation exchange capacity; ED-XRF, energy dispersive X-ray fluorescence; MLR, multiple linear regression; PLSR, partial least squares

regression; RMSE, root mean squared error; RPIQ, ratio of performance to interquartile distance; XRF, X-ray fluorescence.
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1 INTRODUCTION

The use of sensors for prediction of soil properties has gained
attention due to the time-consuming nature of traditional lab-
oratory analyses. In this content, X-ray fluorescence (XRF)
spectrometry—which detects fluorescence at discrete ener-
gies resulting from the interaction of X-rays and atoms to
quantify the total elemental contents of a sample—has proven
to be very useful. XRF is already a well-established approach
for quantifying the contents of heavy metal contamination in
soils (Nawar et al., 2020). However, in recent years, more
wide-ranging applications for XRF have been explored as
devices have become increasingly accurate and versatile.
Modern-day energy dispersive X-ray fluorescence (ED-XRF)
devices are capable of accurately detecting the contents of
elements from sodium (Na) to uranium (U) (Haschke et al.,
2021)—a range that includes the elements that make up the
majority of the soil matrix as well as a number of plant macro-
and micronutrients. Thus, soil properties that co-vary with
total elemental contents from Na to U can be predicted by
XRF following model calibration with values determined by
traditional laboratory methods. While soil organic fractions
are therefore dominated by elements too light to be quanti-
fied by XRF, prediction of soil inorganic fractions and the
properties they strongly influence is of interest.

Recent studies have therefore explored application of XRF
for the estimation of soil texture (Silva et al., 2020), pH (Javadi
& Mouazen, 2021), and cation exchange capacity (CEC)
(Tavares et al., 2020) with promising results. The mecha-
nisms by which XRF can predict contents of the soil particle
size classes are based on the unique assemblages of elements
present in soil minerals associated with coarse versus fine
particles. For example, Zhu et al. (2011), O’Rourke, Stock-
mann et al. (2016), and Tavares et al. (2020) found iron (Fe)
content was useful for the prediction of clay content across
a diverse range of soils. This is explained by the presence
of Fe in minerals in the clay fraction, for example, in the
Fe-oxides goethite and hematite and as an interlayer cation
in montmorillonite and vermiculite (Sparks, 2003). Predic-
tion mechanisms for pH and CEC are more complex due to
their dependence on not only inorganic but also organic soil
components, which are dominated by elements too light to
be quantified by XRF (Haschke et al., 2021). Nevertheless,
Tavares et al. (2020) and Silva et al. (2017) both found calcium
(Ca) content to be a useful predictor for pH and CEC, which
could be due to the presence of Ca-containing carbonates
(e.g., calcite and dolomite) and other Ca-containing primary
minerals (e.g., amphiboles and pyroxenes) that contribute to
base saturation as they weather, buffering soil acidity, and
retained in soil by CEC (Sparks, 2003).

Since relationships between elemental contents and soil
properties may be site or region specific, it is essential that
studies demonstrate model performance both with and with-

Core Ideas
∙ With random partitioning into training and test

sets, XRF estimation of soil texture, pH, and cation
exchange capacity was successful.

∙ Effects of preparation (powder vs. pellet), predictor
(elements vs. spectra), and algorithm (multiple lin-
ear regression vs. partial least squares regression)
were minor.

∙ Accuracy improvements with optimized
approaches were largest for texture prediction
but may be superfluous.

∙ Inclusion of soils from the target site in training
improved the reliability of models.

out soils from the target site in model calibration to inform
best practices. For example, infrared spectroscopy studies
have demonstrated high model robustness in independent val-
idation for spectrally active soil properties (e.g., clay), but
that local calibration is often essential for spectrally inac-
tive properties (e.g., pH and CEC) (Soriano-Disla et al.,
2014). While a large number of XRF studies predicting soil
properties have been conducted, typically only one model cal-
ibration/validation strategy has been applied in each study
(e.g., Javadi & Mouazen, 2021; Kandpal et al., 2022; Li et al.,
2022; O’Rourke, Minasny et al., 2016, O’Rourke, Stockmann
et al., 2016; Sharma et al., 2015; Tavares et al., 2020; Zhu
et al., 2011). Thus, a mechanistic investigation of the robust-
ness of XRF predictions for various soil properties with and
without independent validation is required.

Further optimizations of XRF application are also worth
exploring, including the benefits of various approaches to
sample preparation and data evaluation. The degree of sam-
ple preparation affects the trade-off between the accuracy
and efficiency of soil characterization with XRF (Li et al.,
2022). While field measurement of intact soil samples saves
time and expense (Goff et al., 2020), enabling a much higher
spatiotemporal resolution of data to be collected, soil mois-
ture content absorbs X-rays and scatters primary radiation,
resulting in poor detection of light elements (Haschke et al.,
2021) and thus lower model accuracy. Sample representative-
ness is also a challenge with intact soil samples (Stockmann,
Cattle et al., 2016). To overcome these issues, use of dried
and sieved (Xu et al., 2019) or ground (O’Rourke, Minasny
et al., 2016; Towett et al., 2015) soil samples are common
approaches to sample preparation for recent XRF studies indi-
rectly predicting soil texture or fertility attributes. Finally,
studies implementing XRF to achieve highly accurate deter-
mination of elemental contents have often measured pressed
pellets formed from ground soil material (Byers et al., 2016;
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Goff et al., 2020; Zhao et al., 2013). This approach, applied
with or without the use of additives (e.g., cellulose and wax)
for binding, enables higher accuracy due to the smoother sam-
ple surface and more uniform sample density (Haschke et al.,
2021). However, it remains to be explored whether the indirect
estimation of soil texture and fertility parameters by XRF can
be meaningfully improved by measurement of pressed pellets
versus powder samples.

Regarding the predictors used to model soil properties
with XRF, it is possible to use either the fluorescence
spectral intensities directly, or instead use total elemental
contents quantified by spectral deconvolution from the spec-
tra. Spectral deconvolution involves calculation of the area
of element-specific fluorescence peaks, which may be over-
lapping with peaks of other elements and scattering peaks
(Brouwer, 2010). Thus, this approach is based on knowledge
of physicochemical relationships, and therefore is capable of
handling spectral artifacts arising from the X-ray tube source
and the detection process (Beckhoff et al., 2006; Haschke
et al., 2021). In studies utilizing XRF to indirectly estimate
soil properties, a common approach is to use these elemental
contents as predictors in multiple linear regression (MLR),
often with stepwise model simplification to eliminate ele-
ments whose inclusion does not substantially lower the error
of prediction (O’Rourke, Stockmann et al., 2016; Sharma
et al., 2015; Wang et al., 2013; Zhu et al., 2011).

Rather than calculating elemental contents first to use
as model predictors, an alternative approach is to directly
use intensities across the XRF spectra (Javadi & Mouazen,
2021; Kandpal et al., 2022; Xu et al., 2019). Direct use
of the spectral intensities can be considered an empirical
modeling approach with a high number of correlated predic-
tors, containing both useful information as well as spectral
artifacts and noise. In this context, partial least squares
regression (PLSR) is a useful linear modeling approach
which has often been applied in the field of infrared soil
spectroscopy (Soriano-Disla et al., 2014). PLSR calculates
orthogonal latent variables to maximize the covariance
between independent variables (spectral intensities) and
dependent variables (measured laboratory data) and elimi-
nate irrelevant information (Wehrens, 2020). Although not
a standard approach, modeling with elemental data achieved
by spectral deconvolution could also be implemented with
the PLSR algorithm, as the elemental contents are also often
highly correlated and contain both useful information as well
as noise. Thus, a comparison of models created using spectral
predictors with PLSR versus elemental predictors with both
PLSR and MLR could be useful to separate the effect of using
different model predictors as well as different algorithms.

The use of elemental contents versus spectral intensities
also raises considerations about how ED-XRF measurements
at different voltages should be handled. Measurements at two
or more voltages are often carried out due to the comple-
mentary nature of the information collected: measurement at

lower voltages (e.g., 15–20 kV) is optimal for detection of
lighter elements due to higher background-to-peak ratios in
the lower energy portion of the spectra, whereas measure-
ment at higher voltages (e.g., 35–50 kV) provides sufficient
excitation for optimal detection of heavier elements (Haschke
et al., 2021). While elemental contents are typically deter-
mined using a single spectrum with optimal voltage for a
given atomic number, the optimal approach using spectral
intensities as predictors is unclear. While O’Rourke, Minasny
et al. (2016) and O’Rourke, Stockmann et al. (2016) analyzed
both single and concatenated spectral intensities measured at
three voltages (15, 40, and 50 kV), some studies do not spec-
ify the voltage(s) of the measurements used in modeling with
ED-XRF (Xu et al., 2019) or do not specify whether spec-
tra measured at both 15 and 40 kV were utilized in modeling
(Javadi & Mouazen, 2021; Kandpal et al., 2022). Due to the
time-consuming nature of consecutive analyses of multiple
single spectrum or concatenated spectra, more information on
the improvements from including measurements with various
voltages may be beneficial.

Our objective was therefore to optimize the use of ED-XRF
for the prediction of soil properties by starting with Approach
I—measurement of powder samples, with use of XRF ele-
mental contents as predictors, and modeling with stepwise
MLR—and then systematically testing changes to model
accuracy resulting from alternative approaches. Approach I
may be regarded as the simplest and most well-founded of
the tested approaches because it is the least time-consuming
in terms of both sample preparation and modeling due to
the smaller number of predictors, and due to its reliance on
physicochemical relationships to extract elemental informa-
tion from the XRF spectra rather than empirical modeling
with the spectral intensities. The alternative approaches
included (II) use of another algorithm (PLSR), (III) sample
preparation as a press pellet; and (IV) use of spectral inten-
sities as predictors (20 kV, 40 kV, and concatenated 20 +
40 kV spectra). To test these approaches, we utilized a set of
395 loess soils from three arable fields for which wet chem-
istry analyses were already conducted (Greenberg et al., 2022)
and subsequently carried out XRF measurements on powder
and pressed sample material to address the aforementioned
research objective. Finally, we compared model performance
following random dataset partitioning into training and test-
ing sets with a leave-one-site-out approach to determine the
robustness of the models at independent sites.

2 MATERIALS AND METHODS

2.1 Field sampling and laboratory analysis

The soils under investigation came from three loess-derived
arable fields in eastern Germany. The soil types according
to the World Reference Base for Soil (IUSS Working Group



30 GREENBERG ET AL.

WRB, 2022) included a silt Haplic Luvisol in Lüttewitz, a silt
loam Gleyic Luvisol in Zschortau, and a silty clay loam Hap-
lic Phaeozem in Friemar. Luvisols are categorized as Alfisols,
and Phaeozems are categorized as Mollisols according to the
US Soil Taxonomy (Jelinski et al., 2023; Soil Survey Staff,
2022). Long-term tillage experiments have been carried out
at each of these sites by the Südzucker AG in cooperation
with the Institute of Sugar Beet Research at the University
of Göttingen since 1992 (Lüttewitz and Freimar) and 1997
(Zschortau) including conventional tillage (i.e., annual mold-
board plowing to a depth of 0.3 m), reduced tillage (i.e.,
mixing tillage with a cultivator and/or disc harrow to a depth
of 0.1–0.15 m), and no till (i.e. direct seeding) (Koch et al.,
2009). For the present study, the tillage treatments are only
relevant because they increased the field-scale heterogeneity
of certain soil properties. At each site, a crop rotation consist-
ing of sugar beet (Beta vulgaris L.)—winter wheat (Triticum
aestivum L.)—winter wheat was cultivated, with white mus-
tard (Sinapis alba L.) grown as a cover crop following the
second winter wheat harvest. Crop management was in accor-
dance with recommended agricultural practicesfor the region,
and mineral fertilizers (nitrogen [N], phosphorus [P], potas-
sium [K], and magnesium [Mg]) were applied equally across
all treatments in line with results of electro-ultrafiltration
soil analysis. Thus, soils from these three sites have both
similar parent material (loess) and long-term agricultural
management.

In September and October 2018, sample material was col-
lected at n = 50 points per tillage treatment at each site, result-
ing in a total of n = 150 per site and a grand total of n = 450
across all three sites, as described in Greenberg et al. (2022).
Soils from each combination of site and tillage treatment were
taken from a 2-ha area with regular grid sampling (see Green-
berg et al. (2022) for a map of the fields and sampling design).
At each sampling point, a 15 cm × 15 cm area was cleared
of crop residues, and soil was collected to a depth of 2 cm.
In the present study, only n = 395 sample units were ana-
lyzed (n = 123 from Friemar and Zschortau each and n = 149
from Lüttewitz) due to lack of sufficient material following
the previous experiment for the rest of the sample units.

Soils were sieved to<2 mm and dried at 40˚C for 48 h. Total
carbon (C) contents were measured on ball-milled samples
with a CN elemental analyzer (Elementar Vario El, Heraeus).
Contents of inorganic carbon (IC) were determined with the
Scheibler Method. Briefly, 10% HCl was added to the dried,
ball-milled soil and the evolved CO2 was measured volumet-
rically. Organic C (OC) content was calculated by subtracting
the IC from total C. Soil texture was determined with the
pipette method (DIN ISO 11277, 2002). The pH values were
determined with 2.5 g field-moist soil in 6.25 mL 0.01 M
CaCl2 (DIN ISO 10390, 2005). For determination of CEC,
the soil was first slowly leached with 0.1 M BaCl2, with a soil
to solution ratio of 1:10. Next, exchangeable K+, Na+, Ca2+,

and Mg2+ were measured in the filtered extracts with ion chro-
matography (850 Professional IC, 237 Metrohm) and CEC
was calculated as the sum of exchangeable cations (Koenig
& Fortmann, 1996). A total of 226 of the 395 soils in the cur-
rent experiment contained carbonate, which can be dissolved
during cation extraction with BaCl2, leading to overestima-
tion of CEC in highly calcareous soils (Jaremko & Kalembasa,
2014). To determine the relevance of this source of error for
the carbonate-containing soils, we compared the amount of
Ca potentially bound to carbonates in this soil—quantified
by the Scheibler Method—with the amount of Ca extracted
with BaCl2. The amount extracted with BaCl2 was two to
four orders of magnitude higher than the amount potentially
contained within and thus dissolved from carbonates. This
source of error was therefore considered to be negligible in
the current experiment.

2.2 Spectral measurements

Prior to XRF measurements, 12 g of soil for each sample unit
were ball-milled using a Retsch MM 400 with 10 ZrO2 balls at
30 Hz for 5 min. A test of this milling method using other soils
found an average particle diameter of ca. 13 μm, with 90% of
the particles with a diameter<33 μm. From this, 5 g was taken
for XRF measurement as powder and subsequently recom-
bined with the rest of the milled soil prior to formation of the
press pellets. For this, 11 g of powder sample were mixed with
1.87 g Hoechst Wax C Micropowder (C38H76N2O4) from
MERCK KGaA, resulting in pellets with 17% wax on a mass
basis (DIN EN 15309, 2007). Soils and wax were thoroughly
mixed in the ball mill with two polyamide balls for 10 min
at 12 Hz. The mixtures were then pressed in a HTP 40 half-
automated press (Herzog Maschinenfabrik GmbH & Co. KG)
for 39 s in total, building up for 10 s to a maximum pressure
of 200 kN, which was held for 10 s, and then released over 9 s,
resulting in pellets with a 40-mm diameter and 5-mm height,
which matches the recommended pressure to diameter ratio
of Haschke et al. (2021).

XRF measurements were made with the bench-top Bruker
S2 PUMA EDXRF spectrometer. This device has a silver X-
ray tube with a maximum power of 50 W, a Peltier-cooled
HighSense Silicon Drift Detector which can detect approx-
imately 300,000 counts per second (cps) output count rate.
Measurements were conducted in helium (He) atmosphere
with reduced pressure of 0.2 bar. Intensities were recorded
across 4096 channels across energies from 0 to 44 keV, using
two measurement ranges as follows: (1) 20 kV and 150 s
spectral acquisition time with 25% dead time on average
and (2) 40 kV and 200 s spectral acquisition time with 39%
dead time on average. For 20 kV, the current was automat-
ically adjusted to 0.59 and 0.65 mA on average for pressed
and powder samples, respectively, and 1.00 and 1.20 mA on
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F I G U R E 1 Average 20 and 40 kV X-ray fluorescence (XRF) spectra for Friemar (FM), Lüttewitz (LW), and Zschortau (ZS) for powder (Po)

or pressed (Pr) soils. Kα1 lines for each element are shown, besides for Pb, which utilized the Lβ1 line. Boxplots show elemental contents across the

three sites determined by XRF measurement of Po or Pr soil samples.

average for pressed and powder samples, respectively, at
40 kV. For both sample preparations, sample cups with a
diameter of 3.6 cm and a mask size of 3.4 cm were used.
Cups were sealed with a SpectroMembrane Prolene Thin-
Film with 4.0-μm thickness (Chemplex Industries, Inc.) and
rotated during measurement. Two replicate measurements per
sample unit were taken with each method (powder and press
pellet) and values (estimates of elemental contents or spectral
intensities) were averaged.

For the analysis approach utilizing the 20 and/or 40 kV
spectra, raw spectra were first standardized by converting total
count data over the duration of the measurement period [mea-
surement time = total time − (total time × percentage of dead
time)] to counts per second per mA (Figure 1). Due to periodic
drift corrections that were required during the XRF measure-
ments, the measured energy channels shifted very slightly.
Measured intensities were thus resampled using the resam-
ple function of the prospectr package (Stevens et al., 2022)
with the interpolation method set to “spline” in order to have
consistent wavelength predictors throughout the dataset.

For the XRF approach utilizing elemental contents, an
internal calibration was performed using acid digestion
followed by inductively coupled plasma optical emission
spectroscopy (ICP-OES) as a reference method and the
Bruker AXS SPECTRA.ELEMENTS software to correct
XRF elemental contents accordingly (version 2.4, Bruker
AXS GmbH). A total of 43 sample units used for internal cal-
ibration were selected to cover the variability in CEC existing
across the three fields. The reference values for total ele-
mental contents were obtained by acid digestion with HNO3,
HCl, HClO4, and HF followed by ICP-OES, as described in
Greenberg et al. (2023). Silicon (Si) contents, which cannot
be measured using ICP-OES due to loss during acid evapora-
tion, were obtained via wavelength dispersive XRF on using a
Malvern Panalytical Axios advanced spectrometer (Rh X-ray
tube) and the software SuperQ (version 4) at the University
of Göttingen (Greenberg et al., 2023). For this, measurements
were made on glass disks containing 0.42 g soil mixed with
4.2 g of A12 flux (66% di-lithium tetraborate and 34% lithium
metaborate). Si was measured using a PE 002C crystal, a
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550-μm collimator and a flow detector. Measurements (60 s
counting time) were performed at a peak angle of 109.0258
(2θ˚) and with a voltage of 25 kV and a current of 160 mA.
Three soil standards covering the SiO2 range of the investi-
gated samples as well as JR-1, a Geological Survey of Japan
international rock standard with similar SiO2, were processed
and measured with the sample set. For all standards, SiO2 was
within 3.9% of the accepted values (Govindaraju, 1994, see
Table S1). With these reference methods, 18 elements had
concentrations above the detection limit. The Bruker AXS
SPECTRA.ELEMENTS software was then utilized to create
calibrations between the elemental contents and the spec-
tral intensities, with the 20 kV spectra used for contents of
lighter elements (Na, Mg, aluminum [Al], Si, P, and sulfur
[S]) and the 40 kV spectra for heavier elements (K, Ca, tita-
nium [Ti], chromium [Cr], manganese [Mn], Fe, nickel [Ni],
copper [Cu], zinc [Zn], strontium [Sr], zirconium [Zr], and
lead [Pb]). A total of 16 elements were ultimately used in
the subsequent prediction models. Cr was eliminated due to
low R2 between measured and estimated contents within the
internal calibration (R2 = 0.30 for powder samples and 0.25
for pressed samples), and Cu was eliminated due to negative
contents predicted for some sample units in the set of n = 395
soils, which is implausible. For other elements, R2 values for
the internal calibration were comparable for pressed versus
powder samples for most elements, with R2 ≥ 0.9 for Mg, Al,
Si, P, Mn, Fe, Zn, and Sr, R2 ≥ 0.8 for S, K, Ti, Ni, and Pb,
R2 ≥ 0.7 for Na, and ≥ 0.5 for Zr (see Table S2 for R2 val-
ues by element and preparation method). Deviations between
the reference values and XRF elemental contents could result
from minor differences in the 50 mg subsample used for acid
digestion compared to the samples measured by XRF, despite
fine milling. This internal calibration was then used to deter-
mine element concentrations for all n = 395 soils. In contrast
to our approach, it is typical to apply correction factors to
XRF elemental contents using standard reference materials
from a national bureau of standards (Soil Survey Staff, 2014).
This may be less accurate than our chosen approach since the
ranges of elemental contents and sample preparations would
be less well-suited to the target dataset, but certainly more
time and cost-effective than performing a site-specific internal
calibration.

Figure 1 shows boxplots of the total elemental contents
estimated from the XRF spectra.

2.3 Modeling

The goal of modeling was to predict soil clay, silt, and sand
content, as well as pH and CEC from the XRF elemental
contents or spectral intensities. For all modeling approaches,
a fivefold model training and testing procedure was carried
out using n = 300 randomly selected sample units for train-

ing and n = 95 sample units for model testing. Additionally,
to test the robustness of Approach I (MLR models for pow-
der samples with elemental predictors) as well as the single
most accurate approach for application at unknown sites, a
leave-one-site-out approach to training and testing was also
conducted, whereby two sites were used for model training,
and the third site was used for testing. Modeling was per-
formed with the statistical software R version 4.2.2 (R Core
Team, 2022).

2.3.1 Stepwise multiple linear regressions

Modeling with XRF elements was first performed with MLR
with stepwise simplification. For this, XRF elemental data
were first z-transformed to ease comparison of the importance
of the element predictors in the models despite vastly different
magnitudes. MLR began with all 16 elements using the lm()
command, and models were subsequently simplified using the
step() command of the “stats” package based on the Akaike
Information Criterion (AIC) calculated as follows:

AICMLR = 𝑛 × log𝑒
(SSE

𝑛

)
+ 2𝑘,

where n is the sample size, SSE is the sum or squares of the
error, and k is the number of parameters. This resulted in opti-
mal regressions for each of the five training sets, which were
then applied to the test sets and evaluated also according to the
performance measures described above. We also calculated
the variance inflation factor (VIF) to determine the degree of
multicollinearity between our model predictors using the vif
function of the “car” package (Fox & Weisberg, 2023).

2.3.2 Partial least squares regressions

PLSR was carried out for both elemental data and spectral
data using the “pls” package (Mevik et al., 2019). Vari-
ants for the spectral data included separate PLSR with the
20 kV spectral intensities, the 40 kV spectral intensities, and
a concatenated matrix containing both. Although methods of
spectral pretreatment are well-developed for soils measured
by infrared spectroscopy, standardized approaches have not
yet been established for XRF (Xu et al., 2019). Transfor-
mations with the Savitzky–Golay algorithm have, however,
shown some usefulness for XRF (Javadi & Mouazen, 2021;
O’Rourke, Stockmann et al., 2016; Xu et al., 2019). Thus, 13
spectral pretreatments were carried out with the “prospectr”
package (Stevens et al., 2022), including use of the full spectra
without manipulation, calculation of moving averages (cal-
culated over 5, 11, 17, or 23 data points), and application
of the Savitzky–Golay algorithm for the reduction of noise
applied with the polynomial degree (PD) set to 2, the order



GREENBERG ET AL. 33

T A B L E 1 Pretreatments applied to X-ray fluorescence (XRF)

spectral intensities using the “prospectr” package (Stevens et al., 2022)

and the Savitzky–Golay algorithm for the reduction of noise.

Variant Smoothing window Polynomial degree Derivative
1 0 0 0

2 5 0 0

3 11 0 0

4 17 0 0

5 23 0 0

6 5 2 1

7 11 2 1

8 17 2 1

9 23 2 1

10 5 2 2

11 11 2 2

12 17 2 2

13 23 2 2

of the derivative (DER) ranging from 1 to 2 (with PD–DER:
2–1 or 2–2), and a window smoothing size of 5, 11, 17,
or 23 (Table 1). Using the best spectral pretreatment deter-
mined in model training compared to no spectral pretreatment
decreased error of prediction in the validation sets by 4.9%
on average across all tested models. Thus, only results from
models utilizing spectral pretreatments will be presented.

To determine the optimal number of latent variables for
PLSR using either elemental or spectral predictors, train-
ing included leave-one-out cross-validation for each of the
five training folds. The maximum number of latent variables
was set to 15. To create more robust, parsimonious mod-
els, the optimal number of latent variables was determined in
cross-validation by considering minimization of Akaike infor-
mation criterion (AIC) (Viscarra Rossel & Behrens, 2010)
which is calculated as follows:

AICPLSR = 𝑛 × log𝑒 (RMSE) + 2𝑣,

where n is the sample size, v is the number of latent variables,
and root mean squared error (RMSE) is calculated as follows:

RMSE =

√∑(
𝑦𝑖 − 𝑦̂𝑖

)2
𝑛

,

where 𝑦𝑖 is the measured soil property, 𝑦̂i is the modeled soil
property, and n is the sample size. The optimal spectral pre-
treatment was the model with the highest ratio of performance
to interquartile distance (RPIQ) in cross-validation, calculated
as follows:

RPIQ = IQR
RMSE

,

where IQR is the interquartile range of the measured soil
property. RPIQ was calculated rather than ratio of prediction
to deviation (RPD) due to non-normality of the distributions
of the measured soil properties for this set of n = 395 soils
according to the Shapiro–Wilk test. Results were evaluated
according to the classification system of Chang et al. (2001)
by converting the RPD classification system to RPIQ val-
ues. For a normally distributed variable and large sample
size, RPIQ = 1.89 corresponds to RPD = 1.4 and R2 = 0.5.
Thus, a model with RPIQ < 1.89 is considered poor, RPIQ
= 1.89–2.70 is satisfactory, and RPIQ > 2.70 is very good.
Nevertheless, the usefulness of the models must also be
determined based on the context in which they are applied.
The optimal PLSR models generated in training for the five
dataset partitions were then tested with the validation sets.
The performance measures RMSE and RPIQ were calculated
for the validation sets of both PLSR and MLR models for
comparison.

3 RESULTS AND DISCUSSION

In presenting and discussing the results, we will begin with
results from random dataset partitioning into training and test-
ing sets applied with Approach I, a simple and well-founded
approach using MLR models for powder samples with ele-
mental predictors. This approach will then be compared
with alternative approaches sequentially, including variation
of the algorithm applied, sample preparation, and predictor
type. Finally, Approach I and the most accurate alterna-
tive approach for each soil property will be applied with a
hold-one-site-out training-testing procedure to determine the
robustness of these models at independent sites.

3.1 Performance of MLR models for
powder samples with elemental predictors

For Approach I applied with random dataset partitioning into
training and testing sets, texture predictions were excellent
for all model partitions, with average and range of RMSE
in validation (RMSEv) for clay of 1.1% (0.9%–1.3%), silt
of 2.0% (1.8%–2.3%), and sand of 1.8% (1.7%–2.1%), and
average and range of RPIQ in validation (RPIQv) for clay
of 11.3 (9.1–12.9), silt of 9.6 (8.5–10.7), and sand of 13.2
(12.7–14.8) (Table 2, Figure 2). The plots of measured versus
estimated contents (Figure 3) show the accurate and unbiased
predictions produced by this approach.

To aid in interpretation of the prediction mechanisms,
Figure 4a shows the interrelation between all measured
soil properties and Figure 4b shows the interrelation
between measured soil properties and the elemental con-
tents for powder samples, as well as the average slopes
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T A B L E 2 Average (Avg.) and standard deviation (SD) of performance in model testing for five random dataset partitions with eight approaches

to predicting clay, silt, and sand content as well as pH and cation exchange capacity (CEC).

RMSEv RPIQv
Property Predictor Preparation Algorithm Avg. SD Avg. SD
Clay (%) Elements Powder MLR 1.1 0.2 11.3 1.7

Elements Powder PLSR 1.1 0.1 11.2 1.5

Elements Pressed PLSR 1.1 0.2 11.0 1.7

20 kV Powder PLSR 1.0 0.2 11.8 2.1

20 kV Pressed PLSR 1.0 0.2 12.3 2.4

40 kV Powder PLSR 1.0 0.1 11.7 1.4

40 kV Pressed PLSR 1.0 0.1 11.5 1.6

20 + 40 kV Powder PLSR 1.0 0.1 12.6 2.2
Silt (%) Elements Powder MLR 2.0 0.2 9.6 0.9

Elements Powder PLSR 2.1 0.2 9.4 0.9

Elements Pressed PLSR 2.1 0.3 9.4 1.4

20 kV Powder PLSR 2.0 0.2 9.5 0.7

20 kV Pressed PLSR 1.8 0.2 10.5 0.8
40 kV Powder PLSR 2.0 0.1 9.8 0.5

40 kV Pressed PLSR 2.0 0.2 9.7 1.1

20+40 kV Powder PLSR 1.9 0.2 10.3 0.8

Sand (%) Elements Powder MLR 1.8 0.2 13.2 1.7
Elements Powder PLSR 1.8 0.2 13.3 1.8

Elements Pressed PLSR 1.7 0.2 13.8 1.8

20 kV Powder PLSR 1.7 0.1 13.4 1.5

20 kV Pressed PLSR 1.5 0.2 15.2 2.3
40 kV Powder PLSR 1.6 0.2 14.3 1.5

40 kV Pressed PLSR 1.6 0.1 14.5 1.2

20+40 kV Powder PLSR 1.7 0.1 14.0 1.1

pH Elements Powder MLR 0.34 0.05 2.17 0.17
Elements Powder PLSR 0.33 0.05 2.18 0.15

Elements Pressed PLSR 0.35 0.05 2.11 0.20

20 kV Powder PLSR 0.33 0.06 2.22 0.19

20 kV Pressed PLSR 0.33 0.06 2.24 0.14

40 kV Powder PLSR 0.34 0.05 2.14 0.12

40 kV Pressed PLSR 0.32 0.03 2.24 0.12

20 + 40 kV Powder PLSR 0.31 0.05 2.32 0.14
CEC (mmolc kg−1) Elements Powder MLR 22 3.7 2.61 0.39

Elements Powder PLSR 23 4.3 2.59 0.43

Elements Pressed PLSR 22 4.1 2.68 0.49

20 kV Powder PLSR 23 3.7 2.53 0.37

20 kV Pressed PLSR 22 3.6 2.63 0.38

40 kV Powder PLSR 23 3.9 2.56 0.41

40 kV Pressed PLSR 21 3.1 2.76 0.35
20 + 40 kV Powder PLSR 23 4.0 2.52 0.41

Note: Results of Approach I (use of elemental predictors for powder samples with multiple linear regression [MLR]) and the best performing approach are bold.

Abbreviations: PLSR, partial least squares regression; RMSEv, root mean squared error in validation; RPIQv, ratio of prediction to deviation in validation.
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F I G U R E 2 Boxplots of ratio of performance to interquartile

distance in validation (RPIQv) for five random dataset partitions

depending on the predictor type (elemental contents [El], 20 kV, 40 kV,

or concatenated [20 + 40 kV] spectral intensities), sample preparation

(powder [Po] or pressed [Pr] samples), and the algorithm applied

(multiple linear regression [MLR] or partial least squares regression

[PLSR]). Means of each variant are given with the black dots. Outliers,

shown with open circles, are defined as points lying 1.5 times the

interquartile range above or below the interquartile range. The red

dashed line shows the mean of approach I (El_Po_MLR) and the blue

dashed line shows the mean of the optimal approach.

F I G U R E 3 Measured versus estimated soil properties in training

(black filled circles) and testing (blue open circles) after random

partitioning. Data from the partition with median validation

performance is shown, while an average root mean squared error

(RMSE) for training (train) and testing (test) across all five dataset

partitions is given. The plots on the left and right show performance for

Approach I and the optimal approach, respectively, where elements

(El), 20 kV, 40 kV, or 20+40 kV (concatenated spectra) refers to the

model predictor, powder (Po) or pressed (Pr) is the sample preparation,

and multiple linear regression (MLR) or partial least squares regression

(PLSR) is the algorithm. CEC, cation exchange capacity.
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F I G U R E 4 Interrelation of (a) clay, silt, and sand contents (%), cation exchange capacity (CEC, mmolc kg−1), pH, inorganic carbon content

(IC, %), and organic carbon content (OC, %) at Friemar (blue squares), Lüttewitz (green circles), and Zschortau (red triangles) and (b) the subset of

measured soil properties to be predicted by X-ray fluorescence (XRF) with elemental contents determined by XRF after measurement on powder

samples. Numbers give the average slope of the element predictor in the stepwise multiple linear regressions across the five model partitions.

Elemental contents (%) were z-transformed prior to modeling to allow comparison of slopes despite varying magnitudes of contents. No plot is

shown for elements that were not utilized in any of the regressions for a given property.

of the element predictors in the MLR after stepwise
simplification. For clay, 15 of the 16 element predic-
tors remained after stepwise simplification in at least one
of the five dataset partitions used for model training
(Figure 4b). Since the matrix of element predictors was z-
transformed prior to modeling, the importance of the element
predictors can be compared using their slopes. Here, elements
with an absolute value of the slope larger than the average
of the absolute values of the slopes are mentioned. The most
important element predictors for clay were, in descending
order, Fe (slope = 4.0), Al (3.0), Si (−1.0), Mg (−1.0), and
Ti (−0.9). To interpret the mechanisms behind these results,
it must be considered that the overall direction of the relation-
ship between elemental contents and soil properties (sign of
the coefficients in the MLR) is determined by the elemental
contents in one size fraction relative to the others. For exam-
ple, although Si is a key component of aluminosilicates in the
clay fraction, Si makes up a larger proportion of quartz min-
erals in the sand fraction (Sparks, 2003), and was therefore
negatively related to clay content for this dataset. The posi-
tive relationships between Fe and Al with clay could be due to
their presence as interlayer metal cations in montmorillonite
and vermiculite (Sparks, 2003), which are high-activity clays
commonly found in Luvisols (IUSS Working Group WRB,
2022). The positive relationships could also be explained by
the presence of Fe-oxides in the clay fraction, which may also
undergo isomorphic substitution to include Al (Schwertmann,
2008). Silva et al. (2020) likewise found for n = 502 surface
soils collected throughout five Brazilian states that Fe, Al,
and Si were the most important element predictors for clay
content, with coefficients in their stepwise generalized lin-
ear models matching the signs of those in the present study.
Finally, Zhu et al. (2011) and O’Rourke, Stockmann et al.

(2016) likewise found a useful positive relationship between
Fe and clay contents.

For silt, 14 elements were used in at least one of the dataset
partitions. Important element predictors included Ni (−10),
Fe (8.5), Ti (8.2), Al (−5.9), and Zr (2.9). Relationships
between silt contents and elemental contents were consistent
at Lüttewitz and Friemar for several elements, whereas rela-
tionships differed substantially at Zschortau. This indicates
some variability in the mineralogy or extent of weathering
between the sites, which poses a problem for XRF predic-
tion models (Zhu et al., 2011), and makes interpretation of
prediction mechanisms more difficult. Interpretation is fur-
ther hampered by the mineralogical diversity of the silt-sized
fraction, which can contain a range of primary and secondary
minerals, whereas the sand fraction is dominated by primary
minerals and the clay fraction by secondary minerals (Sparks,
2003). A mineralogical analysis of particle size fraction by
X-ray diffraction may give more insights into the predic-
tion mechanisms. However, despite differing relationships
between elemental and silt contents between the sites, silt esti-
mation models were nonetheless successful, with an average
RMSEv of 2.0%.

For sand, 15 elements were used in at least one of the
dataset partitions. Important elements overlapped substan-
tially with those for clay and silt prediction, and included Fe
(−12), Ni (9.2), Ti (−7.4), Si (3.8), and Al (2.8). The nega-
tive coefficient of Fe could be due to the inverse relationship
between sand content and Fe-containing minerals in the clay
fraction, and the positive coefficient for Si could be due to
the positive correlations of sand with quartz (Drewnik et al.,
2014). Some results, such as the positive coefficient for Al
despite a seemingly similar relationship as Fe to sand, are
harder to explain and seem to arise from multicollinearity
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between element predictors for sand. This issue is discussed
further in Section 3.2, comparing use of MLR versus PLSR.
With random partitioning into training and test sets, sand
prediction was successful in validation despite substantially
higher sand contents at Zschortau (29% on average) compared
to Lüttewitz (3%) and Friemar (4%).

pH predictions were satisfactory for all model partitions
with random partitioning into training and test sets, with
an average and range of RMSEv of 0.34 (0.28–0.42) and
RPIQv of 2.17 (2.01–2.46) (Table 2, Figure 2). Measured
versus estimated values show some tendency for overesti-
mation of pH at low and high values (Figure 3). All 16
element predictors were used in at least one model parti-
tion (Figure 4b). Important element predictors included Mg
(slope = 1.0), Fe (−0.8), Ni (−0.4), Ca (0.4), Si (0.4), and S
(−0.3). Prediction mechanisms are difficult to interpret, first,
given multicollinearity between the element predictors and,
second, due to the influence of agricultural management as
well as organic and inorganic soil fractions on pH (Curtin &
Trolove, 2013). Based on the positive nonlinear relationship
between pH and IC content in these loess soils (Figure 4a), it is
feasible that Mg and Ca bound to carbonates in the soil, which
buffer soil acidity, were useful for predicting pH (Stevens
& Blanchar, 1992), whereas relationships between pH and
OC as well as soil texture fractions were much less consis-
tent across the sites. Tavares et al. (2020) and Silva et al.
(2017) likewise found that Ca content was a useful predictor
for pH.

Finally, CEC predictions ranged from satisfactory to very
good for all model partitions with random partitioning into
training and test sets, with an average and range of RMSEv
of 22 mmolc kg−1 (18–28 mmolc kg−1) and RPIQv of
2.61 (2.20–3.26) (Table 2, Figure 2). The plot of mea-
sured versus estimated values shows unbiased predictions
(Figure 3). Ten element predictors were used in at least one
model partition (Figure 4b). Important element predictors
included Mg (slope = 28), Ni (−24), K (16), S (12), and
Ca (11). In general, CEC is affected by both the amount
and pH-dependent exchange capacity of soil organic matter
and clay colloids (Curtin & Rostad, 1997). For these loess
soils, a relationship between CEC and clay was absent, but
there was a positive correlation between CEC and OC con-
tent, particularly at Zschortau (Figure 4a). Several of the
key elemental predictors (Mg, K, S, and Ca) for CEC are
important components of both plant and microbial biomass
(Khan et al., 2009; Shrivastav et al., 2020), from which
soil organic matter is derived. Furthermore, Mg, K, and
Ca are additionally present in soil as cations held against
leaching by CEC. Silva et al. (2017) likewise found posi-
tive coefficients for Ca in regressions to predict CEC, while
Tavares et al. (2020) found positive coefficients for both
Ca and K.

3.2 Effect of the algorithm on model
performance

In addition to the use of stepwise MLR with elemental con-
tents measured on powder soils, we additionally tested the
use of PLSR with this data. As spectral intensities are eval-
uated with more sophisticated algorithms such as PLSR out
of necessity due to the large number of predictors, compari-
son of PLSR and MLR for elemental data was used to isolate
the effect of using different algorithms from the effect of using
different predictors. In our case, the difference in performance
between models calculated with MLR versus PLSR was very
minor and did not show a consistent advantage of one algo-
rithm over another. The difference in error ranged from 2.3%
lower with MLR for silt prediction to 0.4% lower with PLSR
for pH (Table 2, Figure 2). Thus, in terms of accuracy, neither
algorithm was consistently superior.

However, calculation of VIF for the model predictors for
the MLR equations showed severe multicollinearity between
element predictors for all soil properties, with an average of
55 for clay, 59 for silt, 61 for sand, 64 for pH, and 20 for
CEC considering all predictors retained after stepwise model
simplification and across all dataset partitions. According to
Myers (1990), a VIF of 10 or higher is a cause for concern.
Multicollinearity among explanatory variables is very com-
mon in observational studies such as this one (Crawley, 2015).
Multicollinearity results in higher standard error of slope pre-
dictions between samples, and thus lower trustworthiness of
slope estimates (Field et al., 2013). Multicollinearity also
makes it more difficult to interpret prediction mechanisms
because predictors are somewhat interchangeable (Field et al.,
2013). Therefore, despite frequent and successful application
of MLR in studies using XRF elemental contents to predict
soil properties with high accuracy, our results show that MLR
prediction mechanisms must be interpreted with caution, and
that PLSR may be appropriate due to their adequate handling
of multicollinearity between predictors. Despite these consid-
erations, both the PLSR and MLR models presented above
were useful, as demonstrated by the successful prediction
of all soil properties in model testing with a closed popu-
lation of soils. The robustness of such models for unknown
soils (leave-one-site-out training-testing strategy) is explored
subsequently (Section 3.6).

3.3 Effect of sample preparation on model
performance

As sample homogeneity reduces the influence of matrix
effects and surface roughness (Haschke et al., 2021), we addi-
tionally tested the effect of forming soil powders into press
pellets (17% wax on a mass basis, 200 kN) in combination
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with use of elemental contents, 20 kV spectral intensities, or
40 kV spectral intensities as model predictors. When elements
were used as predictors, sample preparation as a press pel-
let did not make a large or consistent difference on model
performance, with the scale of the effect of pressing rang-
ing from a 3% decrease in RPIQv for pH to a positive 4%
increase in RPIQv for sand (Table 2, Figure 2). Pressing was
the most consistently advantageous for the 20 kV spectra, with
the effect ranging from a marginal positive effect for pH (1%
increase in RPIQv), to a small positive effect for clay and
CEC (4% increase in RPIQv), to more substantial improve-
ments for silt and sand (11% and 13% increases in RPIQv,
respectively). Finally, for 40 kV spectra, the effect of press-
ing ranged from inconsistent for texture estimations (−2%
to 1% change in RPIQv), to a small positive effect for pH
and CEC (5% and 8% increase in RPIQv, respectively). The
explanation for the inconsistent to minor improvements from
measurement of press pellets could be that sufficient steps
were already taken to ensure the homogeneity of powder sam-
ples. These steps included drying and grinding (Goff et al.,
2020; Li et al., 2022), rotation of the sample during mea-
surement to compensate for minor sample inhomogeneities
and surface roughness, and measurement in He atmosphere
with reduced air pressure to limit fluorescence attenua-
tion, which could vary for uncompacted powder samples
(Haschke et al., 2021).

3.4 Effect of the XRF predictor type on
model performance

Considering only powder soils analyzed by PLSR, a com-
parison was made between models using elemental contents,
20 kV spectral intensities, 40 kV spectra intensities, or con-
catenated 20 + 40 kV spectral intensities as model predictors.
For clay, the performance rankings in descending order were
20 + 40 kV (RPIQv = 12.6), 20 kV (11.8), 40 kV (11.7),
and elements (11.2), with a 13% increase in RPIQv from the
worst to best model (Table 2, Figure 2). For silt, the per-
formance rankings in descending order were 20 + 40 kV
(RPIQv = 10.3), 40 kV (9.8), 20 kV (9.5), and elements (9.4),
with a 10% increase in RPIQv from the worst to best model.
For sand, the performance rankings in descending order were
40 kV (RPIQv = 14.3), 20 + 40 kV (14.0), 20 kV (13.4),
and elements (13.3), with an 8% increase in RPIQv from the
worst to best model. For pH, the performance rankings in
descending order were 20 + 40 kV (RPIQv = 2.32), 20 kV
(2.22), elements (2.18), and 40 kV (2.14) with an 8% increase
in RPIQv from the worst to best model. Finally, for CEC,
the performance rankings in descending order were elements
(RPIQv = 2.59), 40 kV (2.56), 20 kV (2.53), and 20 + 40 kV

(2.52), with a 3% increase in RPIQv from the worst to best
model. Thus, the optimal predictors varied by soil property
and comparative benefits ranged from marginal (3% for CEC)
to more substantial (13% for clay).

Use of elemental contents determined by spectral deconvo-
lution is considered an optimized data evaluation technique
for XRF due to the complexity of physicochemical relation-
ships, which create a risk of poor model outcomes due to
spectral artifacts arising from the X-ray tube source, but also
artifact peaks arising from the detection process (Arkadiev
et al., 2006; Haschke et al., 2021). Thus, extraction of element
predictors from the spectra is a mechanistic approach based on
knowledge of physicochemical relationships, whereas use of
spectral predictors is an empirical approach using automated
selection of spectral pretreatments and multivariate statistical
modeling to extract useful information from noise. Despite
these differences, neither approach was consistently more
accurate. Though the spectral approach lacks knowledge-
based extraction of information from noise, the scattering
present in the XRF spectra could actually contain useful infor-
mation about the presence of light elements (Morona et al.,
2017) and matrix properties (Haschke et al., 2021) that assist
in predicting complex soil properties.

3.5 Summary of performance improvement
through alternative approaches

The measured versus validation estimated values in model
training and testing following random dataset partitioning for
Approach I versus the single best approach for each soil prop-
erty are shown in Figure 3. Of the eight tested approaches for
the five soil properties of interest, Approach I (MLR model-
ing of powder samples with elemental contents as predictors)
was never optimal. For clay and pH, the optimal approach was
use of the 20 + 40 kV spectral intensities for powder sam-
ples, increasing RPIQv by 12% (from 11.3 to 12.6) and 7%
(from 2.17 to 2.32), respectively. For silt and sand, the opti-
mal approach was use of 20 kV spectral intensities for pressed
samples, increasing RPIQv by 10% (from 9.6 to 10.5) and 15%
(from 13.2 to 15.2), respectively. Finally for CEC, the optimal
approach was use of the 40 kV spectral intensities for pressed
samples, increasing RPIQv by 6% (from 2.61 to 2.76). Thus,
the optimal approach depended on the soil property of interest.
While benefits of alternative approaches were more moderate
for pH and CEC (7% and 6% increase in RPIQv, respectively)
than those for soil texture (10%–15% increase), optimiza-
tions may be superfluous for texture estimations given the
excellent performance across all tested approaches. Further
testing is required to determine the generalizability of these
results.
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F I G U R E 5 Measured versus estimated soil properties in training with data from two sites (black filled circles) and testing with data from the

third site (blue open circles) for the hold-one-site-out training-testing procedure. Data and root mean squared error (RMSE) are given for all three

dataset partitions. For each partition, models using Approach I as well as the optimal approach previously determined with random dataset

partitioning are shown. Elements (El), 20 kV, 40 kV or 20 + 40 kV (concatenated spectra) refers to the model predictor, powder (Po), or pressed (Pr)

refers to the sample preparation, and multiple linear regression (MLR) or partial least squares regression (PLSR) refers to the algorithm applied.

CEC, cation exchange capacity; FM, Friemar; LW, Lüttewitz; ZS, Zschortau.

3.6 Effect of dataset partitioning on model
performance

Finally, to test the robustness of Approach I as well as the
single most accurate approach for application at new sites,
a leave-one-site-out approach to training and testing was
conducted, whereby two sites were used for model training
and the third site was used for testing. Although the RMSE
in model training versus testing was very similar following
random dataset partitioning (Figure 3), RMSE increased in
model testing in all cases for models trained with a hold-
one-site-out approach, and often severely (Figure 5). While
the RMSE of the test sets for clay may be within an accept-
able range for certain applications (1.4%–4.2%), silt and sand
predictions for Zschortau and Lüttewitz test sets were unreli-

able. This is to be expected based on the relationships between
element predictors and soil properties in Figure 4b, which
showed relatively consistent relationships between elements
and clay across the three sites, whereas relationships between
elements and silt were different at Zschortau compared to
the other two sites, and sand contents were of a much higher
magnitude at Zschortau compared to the other two sites. For
pH, element predictors had partially consistent relationships
across the three sites, resulting in the magnitude of RMSE
roughly doubling to quadrupling from model training to test-
ing. Finally, the range of CEC overlapped across the three
sites to a greater extent than other properties, and RMSE at
most roughly doubled from model training to testing with the
hold-one-site-out approach. Thus, for datasets where the rela-
tionships between the property of interest and the elemental
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contents are not consistent and/or the magnitude of properties
do not overlap across sites, inclusion of the samples from the
target site in model training is strongly advised. This is consis-
tent with findings in the field of visible/near- and mid-infrared
spectroscopy, where the benefits of creating local soil calibra-
tion models or spiking national spectral libraries with local
soils are well established (Briedis et al., 2020; Seidel et al.,
2019). Also of note is that the best approach following ran-
dom dataset partitioning was not always superior to Approach
I with the hold-one-site-out training-testing procedure. Thus,
the optimal sample preparation, predictor type, and algorithm
were not only property specific, but also dependent on the
training-testing strategy.

4 CONCLUSION

This study demonstrated the usefulness of XRF spectrome-
try for prediction of soil texture, CEC, and pH at three loess
sites. When model training included soils from the target
site, validation estimates were reliable, and texture estima-
tions in particular were highly accurate. The generally minor
differences in performance regardless of sample prepara-
tion (powder vs. pellet), predictor type (elements vs. spectral
intensities), and algorithm (MLR vs. PLSR) demonstrate the
robustness of this approach and indicate that certain steps to
increase the efficiency of the method can be taken without
loss of accuracy.

These positive findings encourage exploration of further
efficiency gains to the modeling approaches demonstrated
here through the use of standard reference materials rather
than site-specific corrections to XRF elemental contents, as
well as through measurement of intact, field-moist soils, as in
the recent study by Li et al. (2022). For this, empirical correc-
tions for soil moisture have proven helpful (Stockmann, Jang
et al., 2016), but effects of poor detection of light elements
(Na, Mg, Al, Si, P, and S)—which were highly important
predictors in the current study—must be considered. The
combination of laboratory XRF with visible/near- and/or
mid-infrared handheld spectrometers (Greenberg et al., 2023;
Javadi & Mouazen, 2021) is a promising means to improve
model accuracy by providing complimentary information
about spectrally active organic molecules and soil minerals.
Therefore, combining handheld infrared and portable XRF
spectrometers could be a solution to achieving sufficient
accuracy with field measurement.
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