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Abstract
Previous studies on Bayesian situations, in which probabilistic information is used to 
update the probability of a hypothesis, have often focused on the calculation of a poste-
rior probability. We argue that for an in-depth understanding of Bayesian situations, it is 
(apart from mere calculation) also necessary to be able to evaluate the effect of changes 
of parameters in the Bayesian situation and the consequences, e.g., for the posterior prob-
ability. Thus, by understanding Bayes’ formula as a function, the concept of covariation is 
introduced as an extension of conventional Bayesian reasoning, and covariational reason-
ing in Bayesian situations is studied. Prospective teachers (N=173) for primary (N=112) 
and secondary (N=61) school from two German universities participated in the study and 
reasoned about covariation in Bayesian situations. In a mixed-methods approach, firstly, 
the elaborateness of prospective teachers’ covariational reasoning is assessed by analys-
ing the arguments qualitatively, using an adaption of the Structure of Observed Learning 
Outcome (SOLO) taxonomy. Secondly, the influence of possibly supportive variables on 
covariational reasoning is analysed quantitatively by checking whether (i) the changed 
parameter in the Bayesian situation (false-positive rate, true-positive rate or base rate), (ii) 
the visualisation depicting the Bayesian situation (double-tree vs. unit square) or (iii) the 
calculation (correct or incorrect) influences the SOLO level. The results show that among 
these three variables, only the changed parameter seems to influence the covariational rea-
soning. Implications are discussed.
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1  Introduction

Breathalyser tests are used in police controls to identify people under the influence of 
alcohol. The proportion of drivers under the influence of alcohol varies according to 
different factors, such as the time of the day. So, the question arises: Does a variation of 
this proportion affect the validity of a (positive) test result and if so how?

In answering this question, it is key to study the conditional probability of being under the 
influence of alcohol if tested positive. This conditional probability is called positive predictive 
value (PPV) and can be calculated by Bayes’ formula. Following Zhu & Gigerenzer (2006), 
we call such situations Bayesian situations, in which a binary information (positive vs. nega-
tive test result) is used to update the probability of a binary hypothesis (in this case, whether a 
person is under the influence of alcohol).

“The process of combining conditional probability information and base rate infor-
mation to update a posterior probability” (Reani et al., 2018, p. 63) is called Bayesian 
reasoning. It is—sometimes with reference to conditional probabilities or Bayes’ theo-
rem—considered a central concept of probability literacy (Biehler & Burrill, 2011; Díaz 
& Batanero, 2009; Gal, 2005). Proven as important among disciplines such as medi-
cine (Ashby, 2006) or law (Lindsey et  al., 2003), but also for lay-people (e.g., when 
using medical diagnostic self-tests), Bayesian reasoning is necessary within general 
society (Spiegelhalter et al., 2011). Therefore, an in-depth understanding of probability 
and Bayesian situations is demanded in school mathematics curricula (Borovcnik, 2016; 
Kazak & Pratt, 2021).

Studies on Bayesian reasoning have mainly focused on the ability to calculate a con-
ditional probability which we consider part of the aspect of calculation. However, in-
depth understanding of Bayesian situations entails more than calculation alone (Borovc-
nik, 2012). Specifically, evaluating the “influence of variation of input parameters on the 
result” (Borovcnik, 2012, p. 21) is an important aspect. Thus, we propose an extension of 
conventional Bayesian reasoning (often measured with calculation) by the aspect which 
we call covariation (Büchter et  al., 2022; Steib et  al., 2023). Concerning the example 
above, covariation could mean that it is important to recognise that as the proportion of 
drivers under the influence of alcohol increases (e.g., Friday night compared to Monday 
morning), so too does the PPV.

Covariation as part of an extended Bayesian reasoning has hardly ever been inves-
tigated before but is well-studied in other areas of mathematics educational research, 
particularly in the understanding of functions. With regard to understanding func-
tions, a person reasons “covariationally when she envisions two quantities’ values 
varying and envisions them varying simultaneously” (Thompson & Carlson, 2017, 
p. 425). The current article links these two fields—Bayesian reasoning and covari-
ational reasoning. Therefore, we understand Bayes’ formula as a function with 
three independent variables and the formula’s result as the dependent variable (see 
Section  2.1). Additionally, people’s covariational reasoning in Bayesian situations 
is studied empirically by focusing on people’s argumentation, about how changed 
parameters in a Bayesian situation influence the PPV. The results primarily inform 
the research on Bayesian reasoning, but may also contribute to research on (func-
tional) covariational reasoning.
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2 � Theoretical background

2.1 � Bayesian reasoning

In Bayesian situations, three probabilities are usually provided (Johnson & Tubau, 2015; 
Navarrete et al., 2015): the so-called base rate, true-positive rate and false-positive rate. 
In Table 1, we define these probabilities with references to the introductory context, in 
which the hypothesis H of being under the influence of alcohol is evaluated based on a 
positive test result (I), and provide authentic probabilities (see Ashdown et  al., 2014; 
Lipari et al., 2017).

The PPV, P(H| I), i.e., the probability that a positively tested person is actually under the 
influence of alcohol, can be calculated with Bayes’ formula, P(H|I) = P(I|H)∙P(H)

P(I|H)∙P(H)+P

(
I|H

)
∙P

(
H

) 

resulting in a 17% probability ( 0.1∙0.9

0.1∙0.9+0.9∙0.5
) . For calculation, a meta-analysis on 35 experi-

mental studies showed a low performance of 4%, if the given information is provided in prob-
abilities (McDowell & Jacobs, 2017). This is concerning, as performance is unsatisfyingly 
poor even in groups of experts who require Bayesian reasoning, such as medical practitioners 
(Hoffrage & Gigerenzer, 1998) and legal experts (Lindsey et al., 2003). One reason for the 
weak performance of calculation is base rate neglect (Kahneman & Tversky, 1982), by which 
people tend to overlook the influence of the base rate. Another reason is revealed by research 
into misleading strategies for calculation (e.g., Eichler et al., 2020; Zhu & Gigerenzer, 2006): 
people struggle to identify the correct sets and subsets in the complex nested-sets structure 
(Sloman et al., 2003) of a Bayesian situation for calculating a PPV. Rushdi & Serag (2020) 
pointed out that a Bayesian situation consists of 16 probabilities represented by sets and sub-
sets, namely four single-event probabilities such as P(H), eight conditional probabilities such 
as P(I| H), and four conjunctive probabilities such as P(H ∩ I). For clarifying this nested-sets 
structure, research has identified two helpful strategies for calculation:

1.	 Natural frequencies as the format of the given statistical information.
2.	 Visualisations as a tool to structure the Bayesian situation.

Using natural frequencies was introduced by Gigerenzer & Hoffrage (1995) as the 
presentation of the given statistical information in pairs of natural numbers, which may 
represent an expected frequency (Krauss et al., 2020). In Table 1, the statistical informa-
tion in the breathalyser context is presented in probabilities and natural frequencies. The 
meta-analysis of McDowell & Jacobs (2017) yielded that the supportive effect of natural 
frequencies increases performance from 4% with probabilities to 24% with statistical 
information in natural frequencies. Natural frequencies seemingly facilitate conven-
tional Bayesian reasoning due to the reduced complexity of Bayes’ formula for calculat-
ing the PPV (Johnson & Tubau, 2015) and due to their resemblance of a palpable situ-
ation including meaningful natural numbers instead of single-event probabilities (Todd 
& Gigerenzer, 2012). Moreover, the so-called nested-sets account proposes that natural 
frequencies more transparently represent the structure of sets and subsets in a Bayesian 
situation (Sloman et al., 2003).

The second helpful strategy concerns the visualisation of Bayesian situations. However, 
the supportive effect of this strategy is less consistently reported than the use of natural 
frequencies. For instance, Euler diagrams are not very supportive (Brase, 2008; Micallef 
et al., 2012), and a well-known tree diagram is more supportive with natural frequencies 
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than with probabilities (Binder et al., 2015). Nevertheless, regular tree diagrams are still 
less likely to increase the performance of calculation than other visual forms such as a dou-
ble-tree or a unit square. With these latter two, the performance of calculation increases to 
50–60% (Binder et al., 2020; Böcherer-Linder & Eichler, 2019). Other visualisations, such 
as icon arrays or 2 × 2 tables, may be even more supportive for the calculation (Böcherer-
Linder & Eichler, 2019). However, neither of these visualisations can (easily) represent 
changes, as the given parameters are not visualised or hundreds of icons would change 
(Büchter et al., 2022). Yet, in double-trees and unit squares, changes can be easily visual-
ised (see Figs. 1 and 2). Both types of visualisation have previously proven equally helpful 
for identifying the appropriate sets and subsets in a Bayesian situation (Böcherer-Linder & 
Eichler, 2019) and, thus, for calculation. Therefore, they are both used here to illustrate sit-
uational characteristics of covariation in Bayesian situations (understood as changes in one 
of the given parameters and its covarying probabilities). These can be illustrated by arrows 
in the double-tree or adjusted proportions in the unit square. Covariational reasoning refers 
to the person-specific cognitive processes involved in assessing these changes.

Covariational reasoning requires imagining how changes in the probabilities P(H), 
P(I| H) and P(I ∣ H ) affect the PPV as P(I∩H)

P(I)
=

P(I∩H)

P(I∩H)+P

(
I∩H

) =
P(I|H)∙P(H)

P(I|H)∙P(H)+P

(
I|H

)
∙P

(
H

) 

which is visualised in Figs. 1 and 2 with the relevant nodes and areas of a double-tree 
and a unit square, respectively, in a so-called “visual fraction” (Eichler & Vogel, 2010). 
Evaluating, how P(H ∩ I) and P(H ∩ I) are affected by changes of the given parameters is 
sufficient. Henceforth, these probabilities are referred to as the relevant probabilities.

The following differences between both visualisations are noticeable: The area pro-
portionality in the unit square allows investigation into changes of relevant probabilities 
by (mentally) moving one of the dividing lines (which each corresponds to one given 

Fig. 1   Visualisation of covariation of the relevant quantities in the double-tree. Note: The false-positive 
rate, P

(
I|H

)
= 50% ; true-positive rate, P(I| H) = 90% and base rate, P(H) = 10% are given in the double-

tree. The derived natural frequencies for calculating the PPV are given in a visual fraction. The given 
parameters are coloured, and the influences of their change on the PPV are visually outlined by arrows



486	 T. Büchter et al.

1 3

parameter). Conversely, double-trees represent the events as natural frequencies in nodes 
connected by branches. Therefore, with double-trees, a less visual-based but more sche-
matic approach seems necessary for linking changes of the percentages on the branches 
with changes of the relevant probabilities and the PPV. Area proportionality may be par-
ticularly important for analysing variations, as changes are not only represented descrip-
tively (i.e., numerically) but also depictively (Schnotz, 2014), i.e., through the changing 
areas. Additionally, for Bayesian reasoning, area proportionality has been interpreted as 
supportive (e.g., Micallef et al., 2012; Talboy & Schneider, 2017; Tsai et al., 2011). This 
may be most evident in evaluating the effect of changes of the base rate on P(I), which is 
possible with the unit square but not with the double-tree (column 4, Figs. 1 and 2). Con-
sequently, we expect more elaborate covariational reasoning with the unit square than with 
the double-tree.

Furthermore, differences in the reasoning about the different parameters (false-positive, 
true-positive and base rate) can be identified: When the false-positive rate changes, only one 
of the two relevant probabilities changes, i.e., P

(
H ∩ I

)
 , and only the denominator of the 

fraction of the PPV is affected (column 2, Figs. 1 and 2). With changes in the true-positive 
rate, only one parameter changes, but the numerator and the denominator of the fraction of 
the PPV are affected (column 3, Figs. 1 and 2). Most changes have to be considered for varia-
tions of the base rate (column 4, Figs. 1 and 2): both relevant probabilities change, and both 
numerator and denominator are affected. Consequently, the relevant changes increase from 
variations of the false-positive to the true-positive to the base rate, and, therefore, cognitive 
load (Sweller, 2011) should be highest for changes in the base rate and lowest for changes in 
the false-positive rate. Consequently, we expect covariational reasoning to be least elaborate 

Fig. 2   Visualisation of covariation of the relevant quantities in the unit square. Note: The false-positive rate, 
P

(
I|H

)
= 50% ; true-positive rate, P(I| H) = 90% and base rate, P(H) = 10% are given in a unit square. The 

derived natural frequencies and corresponding areas for calculating the PPV are given in a visual fraction. 
The given parameters are coloured, and the influences of their change on the PPV are visually outlined by 
changes in the areas
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for changes in the base rate and most elaborate when reasoning about changes in the false-
positive rate. To our knowledge, only Böcherer-Linder et al. (2017) have tested covariational 
reasoning of Bayesian situations referring to a covariation of the base rate and the PPV with 
four single-choice questions. The results showed that covariational reasoning was better with 
unit squares than with regular tree diagrams.

2.2 � Covariational reasoning outside of Bayesian reasoning

As pointed out by Zieffler & Garfield (2009), covariational reasoning has been studied 
in psychology, statistics education and mathematics education. Psychological research 
often studies prior beliefs and covariational reasoning, and research in statistics educa-
tion focuses on the association between two variables based on data represented, e.g., 
in contingency tables or scatterplots (e.g., Batanero et al., 1997; Konold, 2002; Miguel 
et al., 2019). In Bayesian situations, the association of the hypothesis and information is 
a precondition for meaningful inferences. Thus, we are particularly interested in a func-
tional covariation of different parameters in the Bayesian situation. Consequently, we 
focus on previous research in which covariational reasoning forms a crucial aspect for 
understanding functions.

Oerthmann et  al. (2008) suggested that developing a robust understanding of func-
tions entails “a conception that begins with a view of function as an entity that accepts 
input and produces output, and progresses to a conception that enables reasoning about 
dynamic mathematical content and scientific contexts” (p. 28). The view of a function as 
an “input-output-generator” is also referred to as the “mapping” aspect (Lichti & Roth, 
2019). The understanding of covariation is considered more elaborate than the mapping 
aspect and is even viewed as the most important meaning of functions (Thompson & 
Harel, 2021).

We rely on Thompson & Carlson (2017) to understand a function covariationally when 
variations of two quantities are conceived simultaneously. Covariational reasoning refers to 
the cognitive processes of envisioning simultaneous variations of two quantities. Like Cas-
tillo-Garsow et al. (2013) and de Beer et al. (2015), Thompson and Carlson additionally 
differentiate between covariational reasoning based on thinking either in discrete points 
(chunky) or as a continuous process (smooth); they regard smooth covariational reasoning 
as more elaborate than the chunky approach.

A theoretical framework which is often used to classify students’ covariational reason-
ing includes the five mental actions (MA) by Carlson et al. (2002) (compare Table 2).

Previous studies highlighted that students’ activities often stagnate on the second or 
third mental action (e.g., Carlson et al., 2002; Fuad et al., 2019; Johnson, 2012). However, 
Moore & Carlson (2012) showed that students who were able to (mentally) structure the 
changing quantities (e.g., with an adequate sketch of the situation) were more successful to 
reason covariationally about the volume and height of a box. Moreover, Moss & London 
McNab (2011) have argued that, even for young learners, the visual and geometric repre-
sentation was effective in developing a covariational understanding of linear functions (cf. 
also Vogel et al., 2007). Although there are also inconsistent results on the use of repre-
sentations, as some imply that the graphical construction does not improve covariational 
reasoning (Wilkie, 2020), we consider visual representations to be supportive for covari-
ational reasoning in Bayesian situations.
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2.3 � Covariational reasoning and Bayesian reasoning

Studying covariational reasoning in Bayesian situations entails a few peculiarities. Firstly, we 
understand covariational reasoning as a higher-order ability of an extended Bayesian reasoning 
(compared to calculation). In a Bayesian situation, the quantity of a given parameter (e.g., base 
rate) and of an output (e.g., PPV) covary only indirectly through other relevant quantities, e.g., 
P(H ∩ I). For this reason, it is necessary to be aware which parameters are necessary for calcu-
lating the PPV before making judgements about its variation. As pointed out earlier, research 
yielded that it is an obstacle to identify the correct probabilities or sets and subsets as an input 
of a function and process them correctly (in Bayes’ formula) for generating an output (e.g., 
PPV). This is different from situations such as the “bottle-problem” (Carlson et  al., 2002), 
where “the height as a function of water that’s in the bottle” (p. 360) make both the input and 
output explicit. For this reason, we expect more elaborate covariational reasoning when calcu-
lation is correct (as, in that case, the correct sets and subsets have been identified). Addition-
ally, it therefore makes sense to rely on double-trees and unit squares for studying covariation 
in Bayesian situations because they are supportive for identifying the correct nested-sets struc-
ture of a Bayesian situation (Böcherer-Linder & Eichler, 2019; Sloman et al., 2003). Moreover, 
the presented research about covariational reasoning implies that a unit square with its area 
proportionality potentially engenders smooth covariational reasoning (if people use the struc-
ture to imagine smooth changes in the areas and different sets and subsets), whereas working 
with double-trees is more likely to engender a chunky covariational reasoning (if people imag-
ine changes with this structure as discrete changes in the natural frequencies).

Secondly, quantities are a key element in the theory of covariational reasoning of func-
tions (Thompson & Carlson, 2017). By “quantity”, Thompson & Carlson (2017) refer to a 
conceptualisation of an object’s attribute which can be measured. Quantities in Bayesian sit-
uations may be probabilities that can be measured in a frequentist interpretation as a relative 
frequency in a long run of repetitions. Probabilities thus represent an estimation of a future 
relative frequency. Therefore, conceiving a probability as a quantity may entail imagining 
that an event, such as testing positive, can (in a long run of repetitions of testing people) be 
measured by the relative frequency of positively tested people among the entire test sample. 
Consequently, conceptualising quantities in a Bayesian situation which is characterised by 
probabilities, may be more challenging than in a situation which is characterised by natural 
frequencies, since probabilities require a frequentist interpretation for conceiving quantities.

Thirdly, often functions refer to physical quantities where the direction of change is eas-
ily understandable, such as the “bottle-problem” (e.g., Carlson et al., 2002; Johnson, 2015), 
in which the volume and height of a water bottle are studied simultaneously. Of course, the 
volume increases with an increase of the height. Thus, a mental action on the third level by 

Table 2   Mental actions of covariational reasoning by Carlson et al. (2002)

Mental action Description

1 Coordinating the value of one variable with changes in the other
2 Coordinating the direction of change of one variable with changes in the other variable
3 Coordinating the amount of change of one variable with changes in the other variable
4 Coordinating the average rate of change of function with uniform increments of change in 

the input variable
5 Coordinating the instantaneous rate of change of the function with continuous changes in 

independent variable for the entire domain of the function
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Carlson et al. (2002; cf. Table 2) seems possible. In Bayesian situations, probabilities as quan-
tities are not observable unlike the volume or height of a bottle. Accordingly, the effect of 
one quantity on a second is not as easily understandable as in such physical problems, and 
therefore reasonings on level 3 seem beyond an expectable covariational reasoning in Bayes-
ian situations. For instance, the influence of changes of the base rate on the PPV is not at all 
obvious, as previous research has repeatedly pointed out for the calculation but not yet for 
covariation (Kahneman & Tversky, 1982; Stengård et al., 2022).

3 � Research questions and hypotheses

The current study aims to investigate how people reason about covariation in Bayes-
ian situations, hence to measure covariational reasoning in Bayesian situations. The 
research questions (RQ), with hypotheses (H), are summarised in Table 3.

4 � Methods

4.1 � Participants

In our study, 173 prospective teachers (136 female, 35 male, 2 unknown) for primary 
school (112 participants) or secondary school (61 participants) from two German uni-
versities (82 at university 1, 91 at university 2) participated voluntarily, and written 

Table 3   Research questions with hypotheses

Research question Hypothesis

RQ1: Does the specific parameter (false-
positive rate, true-positive rate, or base rate), 
which is varied, affect the elaborateness of 
covariational reasoning?

H1a: We expect the covariational reasoning about changes 
to the false-positive rate to be more elaborate than that 
about changes to the true-positive rate.

H1b: We expect the covariational reasoning about changes 
to the true-positive rate to be more elaborate than about 
changes to the base rate (see Section 2.1).

RQ2: Does correct calculation affect the elabo-
rateness of the covariational reasoning in the 
Bayesian situation?

H2: Correct calculation is based on correctly identifying the 
relevant probabilities or, sets and subsets in the nested-
sets structure of a Bayesian situation. For this reason, 
we expect more elaborate covariational reasoning for 
subjects who calculate the PPV correctly, because then all 
parameters relevant for the covariation of the given and 
requested quantity have been identified (Section 2.1).

RQ3: Does the visualisation (double-tree or 
unit square), which is used to represent the 
Bayesian situation, affect the elaborateness 
of the covariational reasoning?

H3: Area proportionality of the unit square potentially engen-
ders smooth covariational reasoning while working with 
a double-tree more likely engenders chunky covariational 
reasoning (Section 2.1). Smooth covariational reasoning 
is regarded as more elaborate (Section 2.2). Moreover, the 
area proportionality of the unit square could be of particular 
support for covariational reasoning as it helps to observe 
how the relevant subsets change, especially for base rate 
changes (Section 2.1). Thus, we expect more elaborate 
covariational reasoning with unit squares compared to 
double-trees, particularly for base rate changes.
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informed consent was obtained. The 173 prospective teachers are part of a larger sample 
(N=229) that was tested beyond covariational reasoning as we operationalise it here. In 
this paper, we refer to the sub-sample of 173 prospective teachers, because the remain-
ing 56 participants received test items whose responses are not appropriate for a sys-
temisation of covariational reasoning as developed for this paper. From all participants, 
143 were in the first to third semesters, and 30 participants were in the fourth or higher 
semesters. The study programmes for all students include lectures and seminars in 
mathematics and mathematics education. Only the study programmes for future second-
ary school teachers include compulsory courses on probability, generally in the fourth 
semester. Thus, 26 out of the 173 students should have been enrolled on a probability 
course (without a specific focus on Bayesian reasoning) during or prior to participation. 
These 26 students showed no differences from the others regarding their (i) knowledge 
of the visualisation, (ii) calculation, (iii) selected single-choice answer about direction 
of change, and (iv) elaborateness of the given reasonings (chi-square tests, Bonferroni 
adjusted). Conditional probabilities are part of the German school curriculum, but in 
school, regular tree diagrams with probabilities or 2 × 2 tables are generally used as 
visualisations. Thus, we did not expect familiarity with the visualisations used in this 
study (double-tree and unit square). Participants could win one of three 75€ Amazon 
vouchers (university 1) or were allowed to skip a mandatory coursework for participa-
tion (university 2).

4.2 � Study design

The participants were randomly assigned to experimental groups. The Bayesian situa-
tion, the visualisation and the changed parameter in the situations varied between the 
experimental groups. About half of the participants were assigned to breathalyser tests 
(N=84) and the other half to mammography screenings (N=89). Because we found no 
differences between the elaborateness of the reasonings (for measurement of the elabo-
rateness, see Section 4.3), we refer to the responses of both Bayesian situations without 
further differentiation. Based on this, of the 175 participants, N=87 had a double-tree 
and N=86 had a unit square to represent the Bayesian situation. In both visualisation 
groups, parts of the groups worked with one changed parameter (false-positive rate, 
true-positive rate or base rate). The sizes of the related sub-samples are given in Fig. 3.

The study was carried out as an online survey. The participants received a short 
introduction to the visualisation used later, as no familiarity was expected and to ensure 
comparable familiarity with both visualisations (see supplementary material, https://​osf.​
io/​fbdn2/). Then, they were asked to calculate the PPV in a Bayesian situation to which 
statistical information was provided in the visualisation of their introductory exam-
ple (Fig. 3, Table 4). Next, a variation of the Bayesian situation was described, where 
the false-positive rate, the true-positive rate or the base rate was changed (base rate 
decreased, others increased). Next, the students were asked, in a single-choice ques-
tion, how this change affected the PPV (decreases, stays the same, increases) and then 
to provide reasoning for their selected answer. This design is displayed in Fig. 3 and the 
wording of the tasks in Table 4. According to Table 4, the calculation task required the 
numerator and denominator as absolute frequencies (in a whole number). As all par-
ticipants entered absolute frequencies in these two fields, it is likely that they conceived 
the sets which they entered as possible to measure, which is essential for covariational 
reasoning (see above).

https://osf.io/fbdn2/
https://osf.io/fbdn2/
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4.3 � Analysis

We first analyse our data qualitatively to structure the reasonings into less and more elabo-
rate categories, and then quantitatively by comparing the frequencies in the derived catego-
ries between experimental groups. Therefore, according to Kansteiner & König (2020), our 
study can be understood as mixed-methods research.

To qualitatively analyse our data, we used the Structure of Observed Learning Outcome 
(SOLO) taxonomy, which provides a classification “for discriminating between responses 
of different qualities” (Biggs & Collis, 1982, p. 17). The SOLO taxonomy is frequently 
used in statistics education, when deductive categories of observable elaborateness of sta-
tistical reasoning are investigated (e.g., Eichler & Vogel, 2012; Watson et al., 2003). Five 
levels are differentiated in the SOLO taxonomy, which differ in terms of the amount of rel-
evant information and their interrelation. Covariational reasoning in a Bayesian situation 
entails identifying the relevant sets and subsets (H ∩ I, H ∩ I and I), identifying changes in 
the relevant quantities, P(H ∩ I) and P

(
H ∩ I

)
 or P(I), and analysing how these changes 

affect the PPV (compare Section 2.1). We further argued above that this identification of 
the relevant sets and subsets is peculiar to covariational reasoning in Bayesian situations. 
Therefore, in comparison to other existing frameworks (e.g., the mental actions according 
to Carlson et al., 2002), the SOLO taxonomy in this case seems particularly fitting, as it 
can be judged by how far students are able to identify and covary the different relevant 
(sub)-sets. Thus, arguing with irrelevant quantities is treated as prestructural reasoning. 
Furthermore, since we included the variation of one quantity (false-positive rate, 

Fig. 3   Design of the study. Note: This figure primarily specifies the sample structure as well as the digital 
layout and order of the tasks (reasoning tasks highlighted, as they are the primary data which are analysed 
in this contribution). For the wording of the tasks, see Table 4



492	 T. Büchter et al.

1 3

true-positive rate, base rate) in the task and asked for the simultaneous variation of the 
PPV, every answer referring to the variation of any other relevant quantity is treated as 
covariational reasoning. Based on the SOLO taxonomy, we have developed a schema for 
the elaborateness of covariational reasoning in Bayesian situations (Table  5), which are 
assigned according to a coding system supplied in the supplementary material (https://​osf.​

Table 4   Wording of the different tasks and contexts

Page B (Calculation task)
Breathalyser test (BT) Mammography screenings (MS)

noitazilausiv
hti

wtxetno
C

In Regensburg, 1000 drivers were given a 

breathalyser test to check their intoxication in 

traffic controls last August. In Regensburg, only a 

small proportion of the drivers was under the 

influence of alcohol. The Dräger-6510 test has the 

following characteristics: the majority of people

who are under the influence of alcohol is detected 

by the breathalyser test, and therefore tests positive. 

A large proportion of the people who are not under 

the influence of alcohol still test positive.

In Hessen every year about 1000 women participate 

in a mammography-screening; these present no 

symptoms for breast cancer and their near relatives 

are not known to have had breast cancer. Of these 

women, only a small proportion actually has breast 

cancer. In the mammography screenings, a large 

proportion of the women with breast cancer is 

detected and therefore tests positive. A small 

proportion of the women without breast cancer is 

falsely tested positive.

Unit square (with statistical information)

Double-tree (with statistical information)

ksat
noitalucla

C

How likely is a person to actually be under the 

influence of alcohol if she tests positive in the 

breathalyser test?

How likely is a woman to actually have breast 

cancer if she tests positive in the mammography 

screening?

In order to calculate this probability, you need to form a fraction (numerator/denominator). 

Please determine:

Numerator (as a whole number): ______

Denominator (as a whole number): ______

Probability (in percent with two decimals): _____ %

Page C (Covariation tasks)

fo
noitazilausi

V
egapsuoiverp

eht
Si

ng
le

-c
ho

ic
e 

ta
sk

False-positive rate True-positive rate Base rate
Consider the 

probability that 

a person, who 

is not under the 

influence of 

alcohol, falsely 

tests positive is 

larger than 

50%. The other 

values are the 

same as in the 

visualisation. 

(BT)

Consider the 

probability that 

a woman 

without breast 

cancer falsely 

tests positive is 

larger than 

10%. The other 

values are the 

same as in the 

visualisation. 

(MS)

Consider the 

probability that 

a person, who 

is under the 

influence of 

alcohol, 

actually tests 

positive is 

larger than 

90%. The other 

values are the 

same as in the 

visualisation. 

(BT)

Consider the 

probability that 

a woman with 

breast cancer 

actually tests 

positive is 

larger than 

80%. The other 

values are the 

same as in the 

visualisation. 

(MS)

Consider the 

probability that 

a person is 

under the 

influence of 

alcohol is 

smaller than 

10%. The other 

values are the 

same as in the 

visualisation. 

(BT)

Consider the 

probability that 

a woman has 

breast cancer is 

smaller than 

6%. The other 

values are the 

same as in the 

visualisation. 

(MS)

How does that change the probability that a person is actually under the influence of alcohol, if she tests 

positive (compared to the original situation in the visualisation)? The probability … 

⃝ decreases                        ⃝ stays the same                        ⃝ increases

R
ea

so
ni

ng

Please provide reasoning for your selected answer: 

https://osf.io/fbdn2/
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io/​fbdn2/). The inter-rater reliabilities of two coders for all categories are reported as 
Cohen’s kappas in the coding system (all above 0.73 after a training phase).

To identify statistically significant predictors for the elaborateness of covariational 
reasoning, we used a multinomial logistic regression for predicting the SOLO level 
(Field et  al., 2012). As predictors, we rely on the changed parameter (false-positive, 
true-positive or base rate) in a first regression model. We also rely on the calculation 
(people’s ability to compute the PPV correctly) and the visualisation (double-tree or unit 
square) in two further regression models. Our data satisfies the assumptions for multi-
nomial logistic regressions (Field et al., 2012): the independence of errors is based on 
our between-subject design. As the predictors in the regression models cannot correlate 
due to the dummy coding of each predictor that signifies a different experimental group, 
multicollinearity is not given. Finally, a linear relationship between any continuous pre-
dictor and the logit of the outcome variable is not applicable, since we only use dummy-
coded predictors. Data analyses were carried out with R in version 4.3.0 and the package 

Table 5   Descriptions of the SOLO levels

In this table, both the original taxonomy (middle column) and their application to covariational reasoning in 
Bayesian situations (right column) are listed

SOLO level Description of the level 
according to Biggs & Collis 
(1982)

Description of the level for covariational reasoning in a 
Bayesian situation

Prestructural Irrelevant data is used in 
the response; the response 
closes without even see-
ing the problem; cue and 
response are confused.

As a result of changing one quantity (false-positive rate, 
true-positive rate, base rate), only effects on irrelevant 
quantities are described; incorrect changes of relevant 
quantities are described; direct link from the changed 
parameter to the change of the PPV is described.

Unistructural Only one relevant data 
is linked with the cue; 
response closes too 
quickly.

As a result of changing one quantity (false-positive rate, 
true-positive rate, base rate), the direction of change 
of one relevant quantity (P(H ∩ I), P

(
H ∩ I

)
 or P(I)) 

is correctly described (+incorrect changes of further 
relevant quantities are possibly given).

Multistructural Isolated relevant cues are 
linked to the cue; response 
does not relate the relevant 
cues to one another.

As a result of changing one quantity (false-positive rate, 
true-positive rate, base rate), directions of changes of 
at least two relevant quantities (P(H ∩ I), P

(
H ∩ I

)
 or 

P(I)) are correctly described, without relating these 
changes correctly to the direction of change of the 
PPV.

Relational The relevant cues are related 
to another and linked to 
the cue.

As a result of changing one quantity (false-positive rate, 
true-positive rate, base rate), directions of changes of 
both relevant quantities (P(H ∩ I) and P

(
H ∩ I

)
 , or 

P(H ∩ I) and P(I)) are correctly described, and these 
changes are correctly related to the direction of change 
of the PPV.

Extended abstract In addition to relational 
level, generalisations are 
provided to the given 
specific situation.

As a result of changing one quantity (false-positive 
rate, true-positive rate, base rate) and additionally to 
the observations necessary for the relational level, 
the strictly monotonous relation between the changed 
quantity and the PPV is identified and therefore the 
described changes are generalised to any given Bayes-
ian situation.

https://osf.io/fbdn2/


494	 T. Büchter et al.

1 3

“mlogit.” The data and the script of the analyses can be found in the supplementary 
material (https://​osf.​io/​fbdn2/).

5 � Results

5.1 � Qualitative analysis of covariational reasoning in Bayesian situations

The reasonings were assigned to four of the five SOLO levels. No reasonings were 
observed in the extended abstract level. For all other levels, we provide one example for 
each of the changed parameters in Table 6. As we focus on a probability which the par-
ticipant addressed, we do not further differentiate between the different ways to repre-
sent a probability, for example as a percentage, a fraction or as natural frequencies (cf. 
Section 2.1).

Reasonings without mentioning any quantities (examples 1, 6 and 11) were assigned to 
“non-codable.” In examples 2, 7 and 12, no change is described on either of the relevant 
quantities: example 2 only states that sensitivity and base rate (both irrelevant) remain con-
stant; example 7 falsely argues that the sensitivity equals the PPV (incorrect); example 12 
only repeats that the base rate decreases, without reaching any conclusions about the rel-
evant quantities. Thus, examples 2, 7 and 12 belong to the prestructural level. However, 
examples 3, 8 and 13 covary the changed parameter (provided in the instruction) with one 
other relevant quantity: example 3 correctly describes the change of number for all posi-
tively tested; example 8 correctly observes that H ∩ I increases; example 13 correctly rec-
ognises that with a decrease of the base rate (value of 0.1), the probability P(H ∩ I) with the 
value of 9% decreases as well. Yet, these responses fail to address the change of the other 
relevant quantities. Hence, examples 3, 8 and 13 link only one relevant data with the cue 
and belong to the unistructural level. In examples 4, 9 and 14, the consequences on both 
relevant quantities (the true and false-positives) are correctly identified. Still, these obser-
vations do not correctly describe how this affects the PPV: example 4 incorrectly assumes 
that the PPV remains unchanged; example 9 does not make any explicit inferences on the 
PPV; example 14 incorrectly describes the effect on the PPV, as the denominator actually 
decreases. Therefore, these reasonings belong to the multistructural level. Finally, exam-
ples 5, 10 and 15 correctly identify the relevant changes and also correctly interrelate them 
verbally (example 15) or by means of a calculation (examples 5 and 10).

In total, 173 participants provided reasonings for changes in the false-positive (57), true-
positive (56) or base rate (60) which were coded into the different SOLO levels (Table 7).

The proportion of reasonings with a specific SOLO level among each parameter is rep-
resented in Fig. 4.

5.2 � Quantitative analysis of RQ1: elaborateness of covariational reasoning 
in Bayesian situations with different parameter changes

Descriptively, the proportion of reasonings, which is non-codable, does not differ substan-
tially between the different parameter changes (compare Fig. 4). However, the results sug-
gest that from false-positive to true-positive to base rate, the proportion of prestructural 
level increases, whereas the proportion of the multistructural and relational level decreases. 
This may indicate a confirmation of our hypotheses that reasoning about the false-positive 
rate should be easier than reasoning about the true-positive rate (H1a) and that reasoning 

https://osf.io/fbdn2/
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Table 6   Examples of reasonings

Changed parameter Example (SOLO level) Reasoning (translated into English from German)

Increase of the 
false-positive rate

Example 1 (non-codable) Denominator increases, result of the fraction decreases.
Example 2 (prestructural) Because the probability that a person under influence 

of alcohol is tested positive has nothing to do with the 
probability of the people who are not under the influ-
ence of alcohol. The probability for people under the 
influence of alcohol remains the same (90%, 10%).

Example 3 (unistructural) Number of all positively tested increases.
Example 4 (multistructural) One probability does not influence the other. Even if 

more people are falsely tested positive, the number 
of people who are under the influence of alcohol and 
test positive remains the same.

Example 5 (relational) The number of positively tested increases, the 90 stays 
the same. Let’s assume that not 450 are falsely tested 
positive but 700, then this means 90/790 are actually 
positive and that is smaller than 90/540.

Increase of the true-
positive rate

Example 6 (non-codable) Then the tests are more precise.
Example 7 (prestructural) A person under the influence of alcohol who actually 

tests positive = a person who is actually under the 
influence of alcohol if she tests positive.

Example 8 (unistructural) It increases, as there are more drivers who are under 
the influence of alcohol and also test positive.

Example 9 (multistructural) The number of true-positive tests increases, while the 
number of false-positive tests remains the same.

Example 10 (relational) Original situation is 90/540=16.7%. Now, the same number 
is added to numerator and denominator: 95/545=17.34%. 
The number increases, as the ratio changes

Decrease of the 
base rate

Example 11 (non-codable) Because the probability is also smaller.

Example 12 (prestructural) Previously, the probability that a person is under the 
influence of alcohol was exactly 10%. If this propor-
tion decreases, the probability decreases as well.

Example 13 (unistructural) 0.1 × 0.9 = 9%; smaller than 0.1 × 0.9 = smaller than 9%

Example 14 (multistructural) Frequency of people under the influence of alcohol 
smaller, 90% of them positive ➔  fewer under the 
influence of alcohol and tested positive and number 
of false positively tested larger, denominator larger 
and numerator smaller, thus result is smaller.

Example 15 (relational) If the probability decreases that a person is under the 
influence of alcohol, then there is also a decrease in 
the number of people who are under the influence 
of alcohol, and consequently also in the number of 
people who are under the influence of alcohol and test 
positive. Simultaneously the probability increases that 
a person is not under the influence of alcohol, and the 
number of people who are not under the influence of 
alcohol and falsely test positive increases likewise. 
Therefore, the proportion of people who are actually 
under the influence of alcohol, among all people who 
test positive, decreases and therefore also the prob-
ability that a person is actually under the influence of 
alcohol, who tests positive.
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about the base rate should be even more difficult than reasoning about the true-positive 
rate (H1b). To test the statistical significance, we carried out a multinomial logistic regres-
sion with reasonings about the true-positive rate as the reference group. The base line of 
the SOLO level is set to the prestructural level. In all following analyses, those reasonings 
which are “non-codable” are excluded. Also, reasonings in the multistructural and rela-
tional levels are very rare (compare Table 7) and structurally very similar (e.g., both cor-
rectly describe changes in both relevant quantities and only differ with regard to the conse-
quence on the PPV). Thus, for the statistical analyses, they are combined in one level.

Table 8 shows the results of the multinomial logistic regression for predicting the differ-
ent SOLO levels. False-positive rate and base rate are predictors, which are compared to 
the changes of the true-positive rate in the reference group. The intercepts show how much 
more likely a specific SOLO level is in the reference group. For example, the unistructural 
level is 1.54 times as likely as the prestructural level in reasonings about the true-positive 
rate (calculation of odds: observations unistructural level

observations prestructural level
=

20

13
≈ 1.54 , compare Tables  7 and 8). 

Yet, the regression coefficient (b = 0.43, p = 0.23), and thus the difference between pre- and 

Table 7   Absolute frequencies of SOLO levels for different parameter changes

Proportion of SOLO level among each changed parameter (false-positive, true-positive, or base rate) is 
given in brackets

SOLO level Change in: Sum

False-positive rate True-positive rate Base rate

Absolute frequency of SOLO level (proportion among the changed parameter)

Non-codable 20 (0.35) 21 (0.38) 20 (0.33) 61
Prestructural 7 (0.12) 13 (0.23) 26 (0.43) 46
Unistructural 20 (0.35) 20 (0.36) 11 (0.18) 51
Multistructural 5 (0.09) 1 (0.02) 2 (0.03) 8
Relational 5 (0.09) 1 (0.02) 1 (0.02) 7
Extended abstract 0 (0.0) 0 (0.0) 0 (0.0) 0
Sum 57 56 60 173

Fig. 4   Proportions of the different SOLO levels among changes of the different parameters
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unistructural level in the reference group is not significant. However, the regression coeffi-
cient for the intercept for multistructural or relational level (b =  − 1.87, p = 0.01) is signifi-
cant; thus, it is less likely for a reasoning about the true-positive rate to belong to the multi-
structural or relational level than the prestructural level. Knowing that a reasoning is given 
about the base rate (instead of the true-positive rate) decreases the chances (odds ratio: 

observations unistructural level base rate

observations prestructural level base rate

observations unistructural level true−positive rate

observations prestructural level true−positive rate

=

(
11

26
20

13

)
≈ 0.28 , compare Tables  7 and 8) for a reasoning to 

belong to the unistructural (compared to the prestructural) level (b =  − 1.29, p = 0.01). Fur-
thermore, a reasoning about the false-positive rate is more likely than a reasoning in the 
reference group (about the true-positive rate) to belong to the multistructural or relational 
level compared to the prestructural level (b = 2.23, p = 0.01). Taken together, reasoning 
about changes in the base rate increases the chances of remaining on the lowest level (pre-
structural) whereas reasoning about changes in the false-positive rate increases the chances 
of belonging to the higher levels (multistructural or relational levels). Therefore, H1a and 
H1b are confirmed.

5.3 � Quantitative analysis of RQ2 and RQ3: calculation and visualisation 
as predictors for the elaborateness of covariational reasoning

We hypothesised that the calculation (RQ2) and the visualisation (RQ3) affect the elabo-
rateness of covariational reasoning. For testing these hypotheses, we ran two further mul-
tinomial logistic regressions. The proportions of the different SOLO levels among correct 
and incorrect calculation as well as in both visualizations is displayed in Fig. 5.

Table 8   Results of the multinomial logistic regression for predicting the elaborateness of the reasoning 
based on the changed parameter

Significance codes: *<0.05
The reference group of the regression are reasonings about the true-positive rate and the baseline of the out-
come variable is the prestructural level. The table contains the regression coefficients (b) and their standard 
errors (SE), the p-value of the regression coefficients (p), as well as 95% confidence interval (CI) for the 
odds ratios

b (SE) p 95% CI for odds ratio

Lower Odds ratio Upper

Prestructural vs. unistructural
  Intercept 0.43 (0.36) 0.23 0.77 1.54 3.09
  False-positive rate 0.62 (0.57) 0.27 0.61 1.86 5.63
  Base rate −1.29 (0.51) 0.01* 0.10 0.28 0.74
Prestructural vs. (multistructural or relational)
  Intercept −1.87 (0.76) 0.01* 0.04 0.15 3.09
  False-positive rate 2.23 (0.91) 0.01* 1.57 9.29 54.77
  Base rate −0.29 (0.97) 0.77 0.11 0.75 5.06
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Firstly, we tested whether calculation can predict the SOLO level of the reasoning. We 
set the reference group to reasonings with an incorrect calculation of the PPV and used the 
prestructural level as the baseline of the outcome variable. The results show that correct cal-
culation has no significant influence on the SOLO level. However, correctly calculating the 
PPV descriptively increases the chances that a reasoning belongs to the multistructural or 
relational level (b = 1.04, p = 0.15, OR = 2.82) while decreasing the chances of belonging to 
the unistructural level as compared to the prestructural level (b =  − 0.31, p = 0.45, OR = 0.73). 
Consequently, H2 cannot be confirmed despite a descriptive tendency for the hypothesis.

Secondly, we tested whether the visualisation (double-tree, unit square) can predict the 
SOLO level of the reasoning. According to H3, the visualisation’s influence should be 
greater for the base rate; thus, we also included the parameter as a predictor. We set the 
reference group to reasonings with the double-tree about the false-positive rate or true-
positive rate and used the prestructural level as the baseline of the outcome variable. The 
results show that a change from the double-tree to the unit square does not significantly 
alter the odds of a reasoning belonging to the unistructural level (b =  − 0.71, p = 0.20, 
OR = 0.49) or multistructural or relational level (b =  − 0.41, p = 0.58, OR = 0.67) compared 
to the prestructural level for the reasonings about the false-positive and true-positive rate as 
well as for reasonings about the base rate (b =  − 0.32, p = 0.73, OR = 0.72 for the unistruc-
tural level and b =  − 0.76, p = 0.61, OR = 0.47 for the multistructural or relational level). 
Therefore, H3 cannot be confirmed.

6 � Discussion

In the context of functions, reasoning about judgements of covariation has been shown 
to reveal understanding of covariation (e.g., Saffran et al., 2019). We applied this idea to 
study covariational reasoning in Bayesian situations by analysing how people reason about 
covariation in such situations. With this approach, new perspectives can be gained focusing 
primarily on Bayesian reasoning and, secondarily, about covariational reasoning.

The results of our study revealed that elaborateness of covariational reasoning differs 
and can be categorised according to the SOLO taxonomy. With this categorisation, it is 

Fig. 5   Proportions of the different SOLO levels among codable reasoning with (i) an (in)correct calculation 
of the PPV and (ii) a unit square or a double-tree
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possible to identify qualitative differences between the reasonings (e.g., outlining irrelevant 
changes vs. focusing only on isolated (relevant) changes of the Bayesian situation). Sec-
ondly, variables which affect the elaborateness of the covariational reasoning have been 
identified by a quantitative analysis of the distribution of the SOLO levels. Thereby, the 
changed parameter seems to be most influential. In accordance with our hypotheses, rea-
sonings about the consequence of changes in the false-positive rate are more elaborate than 
reasonings about the consequences of changes in the true-positive rate. Furthermore, rea-
sonings about the consequences of changes in the base rate are the least elaborate. The 
correct calculation in the Bayesian situation does not significantly predict the covariational 
reasoning even though it descriptively increases the chances of a reasoning belonging to 
the multistructural or relational level. The visualisation had no significant influence on the 
covariational reasoning.

6.1 � Implications about the association between calculation and covariational 
reasoning

Bayesian reasoning has previously been studied with a focus on calculation (McDowell & 
Jacobs, 2017). Using calculation in the form of a chunky covariational reasoning (de Beer 
et al., 2015) would have been possible, if the participants re-calculated the PPV with self-
set new values but was only observed in few reasonings (e.g., example 10 in Table  6). 
Additionally, our results indicate that correct calculation is not sufficient to predict covari-
ational reasoning and, therefore, covariation as part of an extended Bayesian reasoning 
may be a (partially) distinct aspect from conventional Bayesian reasoning (often measured 
by calculation). This would be in contrast to empirical results about functional thinking, 
where Lichti & Roth (2019) could not observe covariation as a separate dimension. This 
may be particularly surprising as, in our study, design calculation was tested before covar-
iational reasoning, differently from other studies on functional covariational reasoning 
(e.g., Carlson et  al., 2002), and could therefore have triggered a stronger connection 
between both aspects. Moreover, this result could be surprising from the perspective of 
Bayesian situations that necessitate the identification of relevant probabilities for calculat-
ing a PPV as well as for covariational reasoning. Yet, another interpretation is possible. 
The results suggest that calculation does not affect the unistructural level, and this could 
be in line with research on typical erroneous strategies in Bayesian reasoning (Binder 
et al., 2020; Eichler et al., 2020): Erroneous strategies for calculation often entail indicat-
ing one of the relevant quantities as the PPV (e.g., joint-occurrence strategy, which means 
erroneously identifying P(H ∩ I) as PPV), or combining one relevant quantity with an 
irrelevant quantity (e.g., Pre-Bayes strategy, which means erroneously identifying P(H)

P(I)
 as 

PPV). If these erroneous strategies are used for calculation, they may still lead to some-
what elaborate covariational reasonings, as changes in at least some of the relevant quanti-
ties are considered. This may suggest that correct calculation is primarily important for 
higher level reasonings, as only in the multistructural and relational level are both relevant 
quantities addressed. This is in line with the descriptively large difference in the propor-
tion of reasonings in the multistructural and relational level between reasonings with cor-
rect and incorrect calculation. However, also a small proportion of multistructural and 
relational reasonings occur, even if the PPV was calculated incorrectly. These reasonings 
concern changes in the false-positive rate, which may imply that elaborating changes of 
the false-positive rate prompts a switch in the calculation strategy. In conclusion, further 
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studies should analyse the consistency of the calculation strategy in tasks about covaria-
tion and identify whether covariation is a separate dimension of Bayesian reasoning.

6.2 � Implications about the effect of the visualisation

Visualisation did not affect covariational reasoning. This is remarkable, as the only previ-
ous study on covariation in Bayesian situations by Böcherer-Linder et al. (2017) showed an 
advantage of the unit square over the regular tree diagram for covariational reasoning. The 
authors interpreted this as a superiority of the area proportionality of the unit square. An 
alternative interpretation is possible: the regular tree diagram is already less supportive for 
calculation compared with the unit square (Böcherer-Linder & Eichler, 2017, 2019), thus 
the difference concerning covariational reasoning might have been based on the difference 
in the performance of calculation. Another explanation may be that the area proportionality 
of the unit square (possibly linked to a smooth covariational reasoning) is not actually any 
more supportive than the node-branch structure immanent in both regular and double-tree 
diagrams (possibly linked to a chunky covariational reasoning) for covariational reasoning. 
Finally, a difference of familiarity may have influenced the results about the visualisation. 
Even though both visualisations are unfamiliar, the node-branch structure of a double-tree 
diagram and its relation to the well-known probability tree diagrams may induce less alien-
ation than a unit square with the unknown area proportionality. Therefore, the participants 
may not have been capable to use the advantages of the unit square (Section 2.1) as they 
were not acquainted enough with it. Consequently, in our larger research project, Train-
Bayes (http://​bayes​ianre​asoni​ng.​de/​en/​bayes_​en.​html), we study covariational reasoning 
after participating in a training course on Bayesian reasoning with the double-tree or the 
unit square.

6.3 � Implications about the influence of the changed parameter

For changes in the base rate, it was particularly harder than for changes of the true- (or 
false-) positive rate to identify consequences on even one relevant quantity. Hence, many 
reasonings about base rate changes stagnate on the lowest level. This confirms previous 
results about Bayesian reasoning, as it has often been assumed that struggles with calcula-
tion are based on the base rate neglect (Kahneman & Tversky, 1982; Stengård et al., 2022). 
Furthermore, an analysis of reasonings in the unistructural level reveals that: mentioning 
the consequences on the quantity of the true-positives P(H ∩ I) is most likely for changes in 
the true-positive (75%) and base rate (64%). Hence, potentially, the quantity of the false-
positives is more easily overlooked than the quantity of the true-positives. This would be in 
line with research about erroneous strategies of Bayesian reasoning, as no erroneous strat-
egy is known, which focuses on the quantity of the false-positives (Binder et  al., 2020; 
Eichler et al., 2020). However, among reasonings in the unistructural level about changes 
in the false-positive rate, only 20% mention the true-positives, 30% mention the quantity of 
all positives and 50% the quantity of the false-positives. Thus, considering changes in the 
false-positive rate may accentuate the relevance of the quantity of false-positives, 
P

(
H ∩ I

)
 . Consequently, considering changes in the false-positive rate may also increase 

the performance of calculation, as it may clarify the identification of the false-positives as a 
relevant quantity for calculating the PPV.

http://bayesianreasoning.de/en/bayes_en.html
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Finally, with the prompted questions, we have induced reasonings on mental actions 1 
and 2 (Carlson et al., 2002) only. Even though previous studies on covariational reasoning 
have illustrated that students often stagnate on mental action 3 (Fuad et al., 2019; Johnson, 
2012), we have shown that even among mental actions 1 and 2 the reasonings are far from 
elaborate, with only a small minority reaching levels above the unistructural level. This 
may be based on the peculiarity in the current study of examining covariational reasoning 
with Bayes’ formula as the underlying function. This implies that it is necessary to iden-
tify the relevant quantities in a Bayesian situation—or, respectively, the relevant sets and 
subsets in the nested-sets structure of a Bayesian situation—not only to calculate a PPV, 
but also to reason about a covariation of a changed parameter in a Bayesian situation and a 
simultaneous change of the PPV.

6.4 � Limitations

Our sample consisted of future mathematics teachers and for this reason, it could be ana-
lysed if the results can be transferred to another population. Furthermore, our data are 
reasonings for a single-choice answer, which were categorised according to the SOLO 
taxonomy. Our results imply that the SOLO levels correlate strongly with answers in the 
single-choice format, which was the assessment method used in the only known previ-
ous study about covariational reasoning in Bayesian situations by Böcherer-Linder et  al. 
(2017). Still, we are aware that our results are limited to this assessment method (for alter-
native assessments see Steib et al., 2023). Moreover, the reasonings were provided by the 
participants without an opportunity to ask for clarification. Consequently, a considerable 
amount of data (about 35%) was not able to be coded with our coding scheme (category 
“non-codable”). Additionally, some answers were possibly coded to a lower level even 
though a participant actually had a more elaborate understanding. For instance, sometimes 
participants may not have been able to (correctly) verbally express their understanding of 
the situation, as this is challenging (Díaz & Batanero, 2009; Post & Prediger, 2020). One 
person wrote about an increase in the false-positive rate: “the quantity of positively tested 
increases. That means that, in total, the proportion of people who are under the influence of 
alcohol and test positive, decreases.” Possibly, the person confused the meaning of “and” 
with a conditional meaning (compare Hertwig et al., 2008). Moreover, in our analyses, we 
did not differentiate between varying representations which were used to refer to the prob-
abilities (e.g., percentage vs. natural frequency). Natural frequencies may ease the concept 
of the quantity, making it possible to measure and therefore facilitate covariational reason-
ing. Thus, these should be studied in the future, to check whether natural frequencies as 
the format of the given information have an effect on the covariational reasoning. Conclud-
ing, the current results should be interpreted as a first approach to covariation in Bayesian 
situations. A consecutive interview study might provide an in-depth understanding. Finally, 
all differences (regarding the Bayesian situation, visualisation and parameter change) are 
observed between distinct subgroups. Even though we could not identify significant dif-
ferences in the subgroups of the participants, future studies might need to validate whether 
the observed differences can also be replicated in a within-subject study design.
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7 � Conclusion

The results of our study provide a multi-faceted view on covariational reasoning in Bayes-
ian situations. We demonstrated that covariational reasoning differs with regard to its elab-
orateness and that the parameters of the Bayesian situation seem to be more influential 
for the covariational reasoning than the specific visualisation or the ability to calculate the 
posterior probability (i.e., the PPV). All things considered, covariational reasoning is not 
as elaborate as the relevance of Bayesian reasoning for an in-depth understanding of prob-
ability in school (as well as for the general public) would require. Thus, we recommend 
further research on covariation as an aspect of extended Bayesian reasoning, in order to 
identify helpful strategies and the development of covariational reasoning, possibly with 
the help of training courses.
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