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Abstract
Data-driven approaches are an effective solution for modeling problems in machining. To increase the service life of hard-
turned components, it is important to quantify the correlation between the cutting parameters such as feed rate, cutting speed 
and depth of cut and the near-surface properties. For obtaining high-quality models with small data sets, different data-driven 
approaches are investigated in this contribution. Additionally, models that enable uncertainty quantification are crucial for 
effective decision-making and the adjustment of cutting parameters. Therefore, parametric multiple polynomial regression 
and Takagi–Sugeno models, as well as non-parametric Gaussian process regression as a Bayesian approach are considered 
and compared regarding their capability to predict residual stress and surface roughness values of 51CrV4 specimens after 
hard-turning. Moreover, a novel method based on optimization of data driven non-linear models is proposed that allows for 
identification of cutting parameter combinations, which at the same time lead to satisfactory surface roughness and residual 
stress states.
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1 Introduction

Surface finishing machining processes are well-known to 
strongly influence the near-surface properties of a compo-
nent, i.e., topography, residual stress state, microstructure, 
strain hardening or crack pattern, among others [1]. As the 
surface usually represents the area being subject to highest 
stresses, especially in case of highly-loaded components, the 
state of the near-surface layer has a significant influence on 
the mechanical properties of the component. The correla-
tion of surface characteristics and mechanical properties is 
referred to as surface integrity (SI) [2]. As a result, robust 
surface conditioning in manufacturing processes control-
ling both geometric features and near-surface properties 
is of great importance in order to improve the service life 
time and reliability of components [3]. Here, data-driven 

modeling concepts represent a promising approach to 
overcome the challenges related to SI in surface finishing 
machining processes [2]. In this context, 12 projects within 
the Research Priority Program 2086 of the German Research 
Foundation (DFG) focused on the development of process 
control systems for surface machining using a combination 
of in-process soft sensors and process knowledge, which 
allows defined geometric features as well as near-surface 
properties to be adjusted simultaneously in metallic compo-
nents [4]. Within the Research Priority Program 2086 sev-
eral different surface machining processes such as turning 
(including hard-turning and external longitudinal turning) 
[5, 6], deep-hole drilling [7], grinding [8] and milling [9] 
were considered. In their project, the groups of the authors 
in this contribution focused on the prediction of the near-
surface layer properties for optimization of a hard-turning 
process using in-process measurement technology and data-
driven modeling methods. In this context, an online imple-
mentation of the Fraunhofer IZFP 3MA-II system in the hard 
turning process was realized [10]. A prediction model for 
post-process residual stress depth profiles was developed in 
[11] as well as for integral width in [12] including a com-
parison of different model approaches, i.e., global multi-
ple polynomial regression models and locally affine Takagi 
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Sugeno models. For the latter one, bounded-error parameter 
estimation and nonparametric Gaussian process regression 
were applied and compared in [13] allowing for quantifica-
tion of the uncertainty of the prediction.

Modeling of the surface layer (SL) state can be accom-
plished using analytical, numerical or empirical approaches 
[14]. Predictions using finite element models are computa-
tionally expensive and therefore, not suitable for real time 
application. Analytical models require in-depth knowledge 
of the process and can therefore, be difficult to develop [15]. 
Collection of experimental data for manufacturing processes 
is time and cost intensive. Therefore, empirical modeling 
approaches are advantageous, which achieve good model 
quality with small data sets. In [16], the relationship between 
cutting parameters and the resulting microhardness and surface 
roughness for hardened 100Cr6 (AISI 52100) was investigated 
using the response surface methodology. [17] used artificial 
neural networks (ANN) to predict residual stresses at five dif-
ferent depths for Ck 53 (AISI 1053) and Ck 67 (AISI 1070). 
Similarly, [18] used ANNs to model characteristic points of 
the residual stress profile for 100Cr6 (AISI 52100) depend-
ing on the cutting states and used FEM simulations to create 
additional training data since neural networks require a large 
number of training data. Existing literature mainly uses multi-
ple regression approaches or data intensive ANNs. In this con-
tribution nonlinear modeling approaches are investigated that 
can achieve better prediction performance with less data. The 
SL properties residual stress and surface roughness are inves-
tigated. Moreover, two intial hardness states are considered.

From a manufacturer’s point of view near-surface prop-
erties of a component, i.e., surface roughness and residual 
stress state, are of great interest. This applies in particular 
for components being subject to cyclic loads. In this case, 
surface roughness promotes fatigue crack initiation due to 
notch effects whereas compressive residual stresses are well 
known to delay or prevent crack initiation and propagation. 
Nevertheless, cutting parameter sets leading to a low sur-
face roughness do not necessarily result in an advantageous 
compressive residual stress state and vice versa. Here data 
driven modeling can help identifying cutting parameter val-
ues leading to satisfactory surface roughness and residual 
stress states.

2  Modeling and methods

2.1  Data‑driven modeling

In this contribution, empirical modeling approaches are 
considered, that allow for modeling nonlinear systems 
given only small data sets. The goal is to find a functional 

relationship between n input variables x ∈ ℝ
n and the output 

y ∈ ℝ of interest

given the experimental data set ZN = {x(l), y(l)}N
l=1

 with N 
elements. The function f ∶ ℝ

n
→ ℝ is the nonlinear func-

tion representing the system behavior to be modeled. For the 
hard-turning process, the model input x consists of the cut-
ting parameters vc, f , ap (cutting speed, feed rate and depth 
of cut) as well as the initial hardness HVinit . For models with 
a depth profile the depth under the surface ds is also con-
sidered as an input. The model output y ∈ ℝ is the respec-
tive SL state. For each SL state a multi input single out-
put (MISO) model is estimated. The term e(l) accounts for 
measurement errors and other disturbances. A more detailed 
discussion is given in Sect. 2.2 in the context of uncertainty 
modeling. Three model classes are considered: two para-
metric and one nonparametric approach. Firstly, multiple 
polynomial regression (MPR) is considered as a standard 
parametric approach in Sect. 2.1.1. Secondly, Takagi Sugeno 
(TS) models are utilized (Sect. 2.1.2), which provide for a 
more flexible parametric modeling approach by partition-
ing the system into local models. Thirdly, Gaussian process 
regression (GPR) is considered (Sect. 2.1.3), which is a very 
flexible nonparameteric modeling concept.

2.1.1  Multiple polynomial regression

MPR of degree m is considered as baseline:

with the model parameters �r ∈ ℝ ,  r = 0,… ,M  , 
M = (m + n)!∕(m!n!) − 1 , corresponding to the M + 1 model 
terms in (2). With

(2) can be written in linear regression form:

with �r(l) being the rth element of �(l) in (3). Model train-
ing consists of estimating all �r in (4), e.g. by minimizing 
the sum of squared errors for all N data, which is an ordi-
nary least squares estimation problem. Because of the large 
amount of potential regressors in (4), stepwise regression 

(1)y(l) = f (x(l)) + e(l), l = 1,… ,N

(2)

ŷ(l) = 𝜃0 +

n
∑

i=1

𝜃ixi(l) +

n
∑

i1=1

n
∑

i2=i1

𝜃i1i2xi1 (l)xi2 (l)

+⋯ +

n
∑

i1=1

⋯

n
∑

im=im−1

𝜃i1…im
xi1 (l)⋯ xim (l),

(3)
�(l) = [1 x1(l)… xn(l) x2

1
(l) x1(l)x2(l)

… xn−1(l)x
m−1
n

(l) xm
n
(l)]⊤

(4)ŷ(l) =

M
∑

r=0

𝜃r𝜑r(l),
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(SWR) is used in this contribution to successively add or 
remove parameters based on their statistical significance. 
The set of potential regressors in (2) is given by K = {�r} . 
The significance is evaluated by an F-test that compares the 
the performance of two models built of different subsets of 
regressors starting from a constant model ŷ(l) = 𝜃0 and fol-
lowing a greedy stepwise search strategy. In each step, the 
hypotheses

are tested against each other for a confidence level � . When 
the null hypothesis is rejected for a new model term, the term 
will be added to the model, otherwise it will be discarded.

2.1.2  Takagi Sugeno models

Locally affine TS models are characterized by a high 
model flexibility while having an exploitable model 
structure and a compact parametric representation. 
They can be used for identifying nonlinear systems. A 
TS model consists of c ∈ ℕ+ superposed local models 
ŷi(l) = f (�i,LM, �̃(l)) ∶ ℝ

n
→ ℝ weighted by their cor-

responding fuzzy basis function �i(z(l)) ∶ ℝ
nz → [0, 1] , 

which depends on the scheduling variable z(l) = [z1(l)… 
znz(l)]

⊤ ∈ ℝ
nz:

The local models are of the form

with �̃�r(l) being the r th element of the vector

and �i,r,LM being the r th element of the corresponding local 
model parameter vector �i,LM ∈ ℝ

n . The use of local models 
with different structure is also possible, but the locally affine 
structure enables better interpretability.

The fuzzy basis functions �i(z(l)) define the validity 
region of the corresponding local models. They are defined 
by

with the membership functions �i(z(l)) . In this contribution, 
fuzzy-c-means (FCM) type membership functions

(5)H0 ∶ �i = 0 and H1 ∶ �i ≠ 0

(6)ŷ(l) =

c
∑

i=1

𝜙i(z(l)) ⋅ ŷi(l).

(7)ŷi(l) =

n
∑

r=0

𝜃i,r,LM ⋅ �̃�r(l),

(8)�̃(l) = [1 x1(l)… xn(l)]
⊤

(9)�i(z(l)) =
�i(z(l))

∑c

j=1
�j(z(l))

,

with the fuzziness parameter 𝜈 ∈ ℝ
>1 are used. The proto-

types vi ∈ ℝ
nz are aggregated in the partitioning related 

parameter vector �MF = [vT
1
,… , vT

c
]T . In the remainder of 

the paper the scheduling variable is assumed to be z = x . 
Using a least squares type cost function, the identification of 
�LM =

[

�T
1,LM

…�T
c,LM

]

∈ ℝ
n⋅c and �MF is carried out as 

follows: 

1. �MF is estimated using FCM clustering.
2. Local model parameters �LM are estimated with ordinary 

least squares (OLS).
3. These estimates are used to initialize a simultaneous 

nonlinear optimization of �MF and �LM with a trust 
region reflective method using the MATLAB function 
lsqnonlin.

An alternative subsequent bounded error estimation method 
for �LM is described in Sect. 2.2.

2.1.3  Gaussian process regression

A nonparametric modeling approach is GPR. A detailed 
explanation and derivation of GPR can be found in [19]. 
The idea behind a Gaussian Process is to define a probability 
distribution over functions. For regression, the prior of the 
function to be learnt is defined as:

where m(x) is the mean function and �(x, x�) is the covar-
iance function for two points x and x′ in the input space 
(index l is omitted for brevity in the remaining section):

with a positive definite kernel �(x, x�) . The GP defines a joint 
Gaussian distribution for a finite set of points:

with the design matrix X ∈ ℝ
N×n describing the input data, 

the covariance matrix K ∈ ℝ
N×N ,Ki,j = �(x(i), x(j)) , and 

the vector of means m = [m(x(1))…m(x(N))]T ∈ ℝ
N . The 

kernel plays a key role in GPs as it describes the depend-
encies between the data points. The choice of the kernel 
strongly influences the model’s behavior. In this contribution 
a Matern 3∖2 kernel with automatic relevance determination 

(10)�j(z) =

⎡

⎢

⎢

⎣

c
�

i=1

�

‖z − vj‖2

‖z − vi‖2

�

2

�−1
⎤

⎥

⎥

⎦

−1

(11)ŷ(l) = GP(m(x(l)), 𝜅(x(l), x�(l)))

(12)m(x) = �[f (x)]

(13)𝜅(x, x�) = �[(f (x) − m(x))(f (x�) − m(x�))⊤]

(14)p(y|X) = N(y|m,K)
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(ARD) is used to assign individual length scale parameters 
to each variable:

with

with the individual length scales �2
l,M32+ARD,i

 and standard 
deviation �f,M32.

To predict the output y∗ for a new test input x∗ , the poste-
rior conditional probability is computed by conditioning the 
multivariate Gaussian (zero mean and no noise are assumed 
for simplicity):

with the new test input x∗ ∈ ℝ
n and the vector of outputs 

y ∈ ℝ
N . Usually, it is assumed that the observed output is 

affected by additive independent and identically, normally 
distributed noise i.e.

The GPR model is trained on the data set by optimization of 
its hyperparameters, i.e the kernel function parameters and 
the noise variance by maximizing its log marginal likeli-
hood function, using a Quasi-Newton optimizer from the 
MATLAB GPR toolbox.

2.2  Uncertainty modeling

Besides point predictions, regression models can provide 
for quantification of the uncertainty of the prediction. In this 
contribution two approaches for uncertainty quantification 
are considered. Using GPR from Sect. 2.1.3, the probability 
distribution p(f |ZN) can be inferred directly. In this proba-
bilistic setting the prediction error is described by a prob-
ability distribution. GPR assumes independent, normally 
distributed noise (18) and the noise variance is treated as a 
parameter that is estimated in model training.

An alternative error description, which is independent 
of probabilistic assumptions, is the bounded error (BE) 
approach. Here, the assumption is made that the prediction 
error e(l) lies in an interval:

Because BE methods use a set based framework, an exact 
determination of the BE estimation can become computa-
tionally expensive for a large number of parameters because 
of the "Curse of Dimensionality" [20]. An approximate BE 

(15)�M32(x, x
�)=�f,M32

�

1 +
√

3dM32

�

exp
�

−
√

3dM32

�

(16)dM32 =

√

√

√

√

n
∑

i=1

(xi − x�
i
)2

�2
l,SE+ARD,i

(17)p(y∗|x∗,X, y) = N(y∗|m∗, �∗)

(18)y(l) = f (x(l)) + e(l), e(l) ∼ N(0, �2
y
)∀l.

(19)emin ≤ e(l) ≤ emax, l = 1,… ,N.

estimation method that can be used for TS models with a 
large number of parameters is the Ray Shooting Bounded 
Error (RSBE) method that is described in [21].

2.3  Model validation

To validate and compare the modeling results, two common 
evaluation criteria for regression models are used. The root-
mean squared error (RMSE):

and the coefficient of determination ( R2):

with the sample mean ȳ are considered.
To asses the generalization capabilities for new data, 

cross validation (CV) is used. In k-fold cross validation 
the available data set is randomly partitioned into k sub-
sets {T1,… , Tk} of equal size. In each iteration m ∈ 1,… , l 
the model is trained with k − 1 subsets {T1,… , Tk}�Tm and 
validated on the remaining subset Tm . Here k = 10 is cho-
sen to adequately evaluate the prediction quality [22]. The 
k-fold cross validated variants of the metrics (20) and (21) 
are determined by

where ŷm is the prediction for Tm in each fold.

2.4  Experimental methods

Hard-turning experiments were conducted on cylindrical 
specimens made of a quenched and tempered (Q &T) steel 
51CrV4 in different initial hardness levels, i. e. 400 HV30, 
500 HV30 and 600 HV30. The focus of the present study 
will be on the hardness levels of 500 HV30 and 600 HV30. 
Prior to heat treatment, all specimens were manufactured 
with the same roughness requirements in order to ensure an 
almost identical surface finish before hard-turning. Three 
different sections of nine specimen of each hardness level 
(i.e. in total 27 section-specific areas per hardness level) 
were machined with varied cutting parameters feed rate (f), 
depth of cut ( ap ) and cutting speed ( vc ). Hard-turning of the 
specimens was carried out on a servo-conventional lathe of 
type Weiler C30 using polycrystalline boron nitride (PCBN) 

(20)RMSE =

√

1

N

∑N

l=1
(y(l) − ŷ(l))2

(21)R2 = 1 −

∑N

l=1
(y(l) − ŷ(l))2

∑N

l=1
(y(l) − ȳ)2

(22)RMSECV =
1

k

k
∑

m=1

RMSE(ym, ŷm)

(23)R2
CV

=
1

k

k
∑

m=1

R2(ym, ŷm)
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inserts with a corner radius of 0.8 mm. After hard-turning, 
residual stress ( �t ) depth profiles and surface roughness Ra 
were determined using X-ray diffraction (XRD) and tactile 
roughness analysis, respectively for each specific area of a 
specimen. Residual stress measurements were conducted 
using a Pulstec μ-X360 diffractometer equipped with a 0.3 
mm collimator and CrKα-radiation with an exposure time 
of 120 sec. Depth profiles were determined by successive 
removal of the material surface layer using electro-chemical 
polishing. The obtained data have been evaluated applying 
the cos α-method [23] without consideration of any math-
ematical stress correction. Surface roughness in axial direc-
tion was determined using a Mitutoyo SJ-210 tactile rough-
ness measuring device. For more detailed information on the 
material and the experimental setup, i.e., chemical composi-
tion, specimen geometry, machines and parameters used for 
hard-turning operations and post process measurements, the 
reader is referred to [10].

3  Results for empirical modeling

3.1  Data base

The data base for empirical modeling was generated from 
the experiments described in Sect. 2.4. A full factorial exper-
iment design was used with two levels for the initial hard-
ness HVinit and three factors for the cutting parameters, with 
the levels given in Table 1. The resulting data set consists of 
N = 54 samples. For the residual stress depth profile mod-
eling, measurements for 12 different depths are available: 
{0, 10, 20, 30, 40, 50, 60, 80, 100, 120, 150, 200} μ m, provid-
ing for N = 648 samples in total.

3.2  Modeling results for residual stress depth 
profiles

For MPR modeling, as compromise between a flexible 
model and the number of potential model terms, a maximum 
model order of m = 3 was chosen. For ds the data coverage 
is better, but tests with higher order model terms for ds did 
not provide for better results. The threshold for the p-value 
to add a model term was set to 𝛼 < 0.05 and to remove a 
model term to 𝛼 > 0.1 . The results of the variable selection 

using SWR are shown in Table 2 in the right section of the 
table. Besides for the interaction terms, third order model 
terms were only selected for ds . The model shows a signifi-
cant influence of all cutting parameters on �t . A significant 
nonlinear influence of f can be inferred.

For the TS models, preliminary tests were conducted to 
determine the number of local models c and the fuzziness 
parameter � , also see [11] for a systematic selection of these 
parameters for SL state modeling. Best results were achieved 
with � = 1.3 and c = 3.

For GPR models, the estimated lengthscale parameters 
can be used to evaluate the importance of the inputs [24]. 
Smaller lengthscales correspond to a higher relevance. 
Table 3 shows the estimated lenghtscales for the GPR model, 
showing high importance for the cutting parameter f.

The performance of the resulting models for depth pro-
files of �t is summarized in Table 4.

The results for the training data (RMSE, R2 ) as well as 
for cross-validation indicate that GPR achieves the best per-
formance. While TS achieves better results on training data 
for the parametric models, MPR shows better generalization 
performance. The R2

CV
= 0.94 for GPR indicates a very good 

prediction performance of the GPR model. In Fig. 1 exem-
plary prediction surfaces for the three model approaches 
together with the training data are shown. The models in the 
figures are trained with the complete data set. Regions in the 
data with high gradients are best approximated by GPR. Due 
to limited model flexibility of the global modeling approach, 
MPR does not approximate the surface residual stress well. 
TS models show better approximation than MPR but are 
worse than the local modeling approach GPR.

3.3  Results for uncertainty modeling

Using the methods described in Sect. 2.2, prediction inter-
vals where estimated for depth profile modeling. In Fig. 2 
an exemplary prediction of a residual stress depth profile 
with the inputs f = 0.25 mm, vc = 175 m/min, ap = 0.25 
mm, HVinit = 500 HV30 is shown. The uncertainty interval 
from the estimated TS model (RSBE) and the 95 % con-
fidence interval for GPR are both shown. Because of the 
different distribution assumptions for the error, the inter-
vals show different behavior. For the BE estimation the error 
bounds are not met for some data points because approxi-
mate estimation techniques were used. For the BE estima-
tion the � , i.e., the permissible error, was determined to be 
± 200 MPa. To determine an appropriate error bound � , an 
iterative search was used, see [13]. For GPR, the estimated 
�y is 37.2 MPa. This corresponds to a 95 % confidence value 
of 1.96 ⋅ �y of 72.9 MPa. In comparison, � is larger than �y , 
but the BE assumption is much stricter and the model fit of 
the TS multi models is worse than that for GPR models and 

Table 1  Levels for experimental design

HVinit in HV30 f in mm vc in m/min ap in mm

500 0.05 100 0.05
600 0.25 175 0.25

0.5 250 0.5
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therefore, has a larger model error. However, a Shapiro-Wilk 
test on the residuals of the GPR model shows that assump-
tion of normally distributed noise can not be accepted at 5 % 
significance level. The BE approach on the other hand only 
makes the assumption that the error is bounded.

3.4  Modeling results for characteristic SL values

To obtain models that enable useful model-based analysis 
with respect to the cutting parameters, characteristic val-
ues of the depth profile data were extracted: (1) tangential 

residual stress at the surface �t,surf and (2) maximum tan-
gential compressive residual stress �t,max . High maximum 
compressive residual stress in the depth and high compres-
sive residual stress at the surface are beneficial for the com-
ponents fatigue life [25]. Furthermore surface roughness Ra 
was modeled. The resulting performance criteria are sum-
marized in Table 5.

For all models GPR shows the best cross validated 
performance, whereby very good results were achieved 
for Ra with all model approaches, presumably because of 
less noise in the data and less nonlinear behavior. The 
performance on training data is better for TS models than 
for MPR but for cross validation this observation does 
not hold true, indicating overfitting of the TS models. For 
MPR again monomials and interaction terms up to the 
order of m = 3 were considered to capture the nonlineari-
ties. Results for variable selection and parameter estima-
tion are given in Table 2. For TS models analogous to 
Sect. 3.2 preliminary tests led to a choice of c = 3 and 
� = 1.3 . The estimated length scale parameters in Table 6 
give information about the importance of the input vari-
ables. For �t,max , �t,surf and Ra the feed rate f has the lowest 
value, i.e., the highest importance. This can be explained 
based on the fact that the feed rate strongly influences the 
specific cutting pressure [26], thus resulting in different 

Table 2  Results of regressor 
term selection and estimated 
coefficients (non standardized, 
units dropped for coefficient 
estimates for better readability)

Additional selected model terms for depth profile are recorded in the two right hand columns
p-value: ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01

Models for characteristic SL 
values from Sect. 3.4

Ra Model for depth profile from Sect. 3.2

�t,max �t,surf �t (Additional terms)

(Intercept) 733.00 1917.76∗ − 3.81∗∗∗ 1637.15∗∗∗ HVinit:vc:f − 0.02∗∗∗

HVinit − 0.72 − 3.57∗ 0.01∗∗∗ − 2.81∗∗∗ vc:f:ap 8.15∗∗∗

vc − 6.54∗ − 15.88∗∗ 0.02∗∗∗ − 6.70∗∗∗ vc:a2p − 10.66∗∗

f 7385.94∗∗∗ − 5012.71 31.96∗∗∗ 3633.41∗ ds − 15.62∗∗∗

ap − 2503.98 1680.68∗∗ − 2705.57∗∗ HVinit:ds 0.01∗∗∗

HVinit:vc 0.01 0.02∗∗ 0.01∗∗∗ vc:ds − 0.01
v2
c

0.02∗∗ 0.01 f:ds 12.64∗

HVinit:f − 16.02∗∗∗ 14.94∗∗ − 0.06∗∗∗ − 5.27 ap:ds − 7.79∗∗∗

vc:f 1.88 75.37∗∗∗ − 0.18∗∗∗ 6.93 d2
s

0.14∗∗∗

f 2 − 19052.72∗∗∗ − 13509.44∗∗∗ 18.32∗∗∗ − 12843.13∗∗∗ HVinit:f:ds − 0.03∗∗∗

HVinit:ap 5.55∗ 4.57∗∗ vc:f:ds − 0.02∗

vc:ap 19.36∗∗ 18.02∗∗∗ vc:d2s 0.01∗∗

f:ap − 5803.20∗∗∗ − 5036.04∗∗ − 6640.07∗∗∗ f:d2
s

0.06∗∗∗

a2
p

− 1099.44 − 2574.87∗ 1092.76 ap:d2s 0.04∗∗∗

v2
c
:f − 0.04∗∗ − 0.08∗∗ d3

s
− 0.01∗∗∗

HVinit: f 2 32.74∗∗∗ − 5.27
v
c
: f 2 26.91∗∗∗ 36.10∗∗∗ − 0.09∗∗∗ 17.95∗∗∗

HVinit:vc:ap − 0.03∗ − 0.02∗∗

f:a2
p

7999.75∗∗∗ 7093.74∗ − 6640.07∗∗∗

Table 3  Estimated length 
scale parameters for GPR 
(standardized for comparison)

�HVinit
�f �vc �ap �ds

6.19 2.19 4.54 4.54 1.10

Table 4  Prediction performance of models for �
t
 depth profiles

The best performing models are highlighted in bold

Output Model RMSE (MPa) RMSECV (MPa) R2 R2
CV

MPR 150.9 160.2 0.73 0.69
�t TS 116.0 169.3 0.84 0.65

GPR 16.5 72.3 0.99 0.94
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amounts of plastic deformation in front of the cutting 
edge. As the surface roughness and the residual stress 
state are known to have a strong correlation with the plas-
tic deformation, the observed correlation can be rational-
ized. This is further in line with literature [27], as e.g., for 

hard-turning experiments in [28] the feed rate was found 
to be the dominant parameter for the shape of the residual 
stress depth distribution. It can therefore be concluded, 
that the results of the model used in the present study 
coincides with the experimental findings.

3.5  Discussion of prediction modeling results

In Table 7 the results for previous case studies of residual 
stress depth profiles using the hard-turning data set, e.g., 
described in [12] are shown. The experimental conditions, 
type of tool and type of steel were the same but a different 
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Fig. 1  Prediction surfaces (surface) for three different model classes 
and measured data ( × ) for �t depth profiles depending on f (for con-
stant HVinit = 500 HV, vc = 175 m/min, ap = 0.25 mm)
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Fig. 2  Prediction error bounds for RSBE model (dotted) and 95% 
confidence interval for GPR model (solid) for �t depth profile models. 
Measured residual stresses ( × ) and errors bounds (bars) are shown

Table 5  Prediction performance of models of characteristic SL values

The best performing models are highlighted in bold

Output Model RMSE RMSECV R2 R2
CV

�t,max MPR 95.3 MPa 121.2 MPa 0.873 0.83
TS 58.4 MPa 119.0 MPa 0.95 0.85
GPR 10.5 MPa 85.9 MPa 0.99 0.90

�t,surf MPR 148.4 MPa 180.8 MPa 0.80 0.67
TS 84.5 MPa 181.2 MPa 0.93 0.64
GPR 74.7 MPa 144.3 MPa 0.95 0.82

Ra MPR 0.14 μm 0.19 μm 0.97 0.94
TS 0.05 μm 0.16 μm 0.99 0.96
GPR 0.04 μm 0.11 μm 0.99 0.98

Table 6  Estimated length 
scale parameters for GPR 
(standardized for comparison)

�HVinit
�f �vc �ap

�t,max 7.21 1.61 4.26 4.04
�t,surf 6.15 0.42 1.45 8.39
Ra 3.48 1.46 4.48 51.10
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lathe was used. In addition, a different design of experi-
ments was used. For sake of brevity, the reader is referred 
to [12] for details on the modeling process. The additional 
SL state axial residual stress �a was modeled in these case 
studies (not for GPR). These case studies confirm the results 
from this contribution in Sect. 3.2. GPR overall offers a bet-
ter prediction performance. However, the parametric TS 
and MPR models offer a more compact model structure. 
For prediction, GPR inversion of the covariance matrix is 
needed, while TS and MPR only require algebraic opera-
tions. Furthermore, the local-affine structure of TS models 
can be exploited for control design based on established 
approaches for linear systems. Depending on the require-
ments of the application, it must therefore be decided which 
model properties are preferred. For example, if the models 
are to be used in situ for feedforward control methods, the 
computation time is of great importance in order to ensure 
fast model evaluation, especially, if the models are adapted 
to changing process conditions.

Based on the results the GPR models are superior in 
terms of prediction performance. Hence, for a model based 
analysis and parameter optimization of the hard turning pro-
cess, the GPR models are used in the following.

4  Model application

4.1  Model based process analysis

In this section, the identified prediction models are used to 
perform a process analysis of the correlations between cut-
ting parameters and SL state. The SL properties residual 
stress and surface roughness show high correlation with 
machining parameters. For the analysis, the models for 
�t,max , �t,surf and Ra are used. In Figs. 3, 4 and 5 prediction 
plots for the models from Sect. 3.4 are shown. Thereby, 
Fig. 3 focuses on the prediction of �t,max for constant ap in 
(a) as well as for constant HVinit in (b). (For the sake of brev-
ity, in (b) only the case for HVinit = 500 HV30 is shown.)

As can be seen from the illustration in (a) and as already 
explained in 3.4 the highest influence on the resulting �t,max 
can be obtained for varying the feed rate f.

It can further be concluded that a higher HVinit provides 
a higher potential for compressive residual stresses as a 
consequence of the increased strength of this condition. 

This is in line with literature as higher compressive resid-
ual stresses after hard-turning of specimen with higher 
HVinit were likewise observed in [28]. Figure 3a moreover 
reveals that both initial hardness levels are characterized 
with �t,max for use of nearly the same cutting parameter 
set including a feed rate and cutting speed of 0.3 mm−1 
and 250 m/min, respectively. With increasing feed rates 
and decreasing cutting speeds the maximum stresses �t,max 
converge to similar levels. However, it has to be noted that 
despite comparable �t,max values for both considered hard-
ness levels, these do not necessarily have to be present in 
the same depth as has been shown in [10].

Comparing the maximum compressive residual stresses 
�t,max for one initial hardness level and varying cutting 
parameters as displayed in Fig. 3 (b), again the feed rate has 
the highest influence. Furthermore, for the lowest cutting 
depth as well as generally for decreasing the cutting speed, 
the maximum compressive residual stresses are decreasing 
due to the fact that the hard-turning process in this parameter 
range is dominated by plastic deformation in front of the 

Table 7  Summarized prediction performance of previous depth pro-
file modeling case studies [11–13]

MPR TS GPR

�t �a �t �a �t

R2
cv

0.67 0.68 0.81 0.87 0.93

(a) For constant ap = 0.25 mm and varied HVinit

(b) For constant HVinit = 500 HV30 and varied ap

Fig. 3  Prediction surfaces of GPR and measured data ( × ) for �t,max
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cutting edge rather than by cutting. In contrast, Fig. 4 illus-
trates the prediction of the surface residual stresses �t,surf . 
From Fig. 4 (a) it is clearly evident that unlike to Fig. 3 
similar residual stress surface ( �t,surf ) values are obtained 
irrespective of the initial hardness. This observation is 
assumed to be a result of higher surface temperatures thus 
decreasing the influence of the initial hardness. Moreover, 
the proportion of the Hertzian pressure at the surface is not 
as pronounced. Differences in the surface residual stresses 
�t,surf can only be obtained for low cutting speeds and high 
feed rates as the process temperatures are lower and increas-
ing plastic deformation can be obtained for these cutting 
parameter values. Analyzing the surface residual stresses 
for one initial hardness level as displayed in Fig. 4b, the 
prediction surfaces of the used GPR and the experimental 
data show no pronounced differences for the range of the 
cutting parameters considered. In line with the maximum 
residual stresses in Fig. 3b, a trend for a decreasing absolute 
value of the surface residual stresses �t,surf for very low cut-
ting depth and decreasing cutting speeds can be observed. 

However, this trend is not as pronounced for the surface 
residual stresses.

Figure 5 focuses on the prediction surfaces of GPR 
for the surface roughness Ra . In contrast to the results 
displayed in Figs. 3 and 4, a combination of high feed 
rates and low cutting speeds does not result in similar 
roughness values for both initial hardness levels. From 
the prediction and the measured data shown in Fig. 5a 
it becomes obvious that the higher initial hardness level 
is more or less independent of the used cutting speed. 
Unfortunately for both initial hardness levels, the cutting 
parameter sets resulting in advantageous residual stress 
states (both maximum and surface) do lead to high sur-
face roughness values. Furthermore, the variation of the 
cutting depth does not seem to have any influence on this 
fact as demonstrated by Fig. 5b. In line with the results 
of the parameter optimization in Sect. , the predictions 

(a) For constant ap = 0.25 mm and varied HVinit

(b) For constant HVinit = 500 HV30 and varied a p

Fig. 4  Prediction surfaces of GPR and measured data ( × ) for �t,surf

(a) For constant ap = 0.25 mm and varied HVinit

(b) For constant HVinit = 500 HV30 and varied ap

Fig. 5  Prediction surfaces of GPR and measured data ( × ) for Ra



390 Production Engineering (2024) 18:381–392

of the models in Figs. 3, 4 and 5 suggest that the models 
allow an exploration of the cutting parameter influences.

4.2  Model based cutting parameter optimization

To further demonstrate the usefulness and applicability of 
the models, multi objective optimization using the MAT-
LAB optimization Toolbox with a variant of the NSGA-II 
genetic algorithm [29] was used to find optimal values for 
the cutting parameters. The optimization problem can be 
formulated as

with ŷ𝜎t,max
 , ŷ𝜎t,surf , ŷRa

 the predictions of the GPR mod-
els for the respective SL state and the cutting parameters 
x = [f , ap, vc] as arguments, i.e., a minimization problem 
with 3 objective functions/target variables and 3 decision 
variables.

This multi objective optimization problem does not have 
a single best solution. The result of the optimization is the 
Pareto front, see Fig. 6 exemplary for HVinit = 500 HV30 
and Ra,max = 0.8 μ m. The surface roughness of a compo-
nent is majorly determined by the design specification and 
a high roughness should be avoided. Therefore, the desired 

(24)

min
x=[f ,ap,vc]

ŷ𝜎t,max
(x), ŷ𝜎t,surf (x), ŷRa

(x)

s.t. 0.05 mm < f < 0.5 mm

0.05 mm < ap < 0.5 mm

100 mm/min < vc < 250 m/min,

maximum value Ra,max was considered by penalizing values 
Ra > Ra,max during optimization.

As shown in Figs. 4 and 5, achieving compressive sur-
face residual stress and low surface roughness are competing 
goals. While �t,max is always in the compressive range, see 
Fig. 6, it is more critical to achieve a high level of compres-
sive residual stress at the surface �t,surf . Therefore, from the 
solution set the solution with the minimal �t,surf value was 
selected. Optimization was performed for both initial hard-
ness levels. Results for the optimization are summarized in 
Table 8. The selected optimal cutting parameter values are 
given together with the resulting predicted SL state, tak-
ing into account the roughness specification. The maximal 
allowed surface roughness was exemplarily defined as 0.8 
μ m and 1.8 μ m, respectively. For 500 HV30 and Ra,max = 0.8 
μ m a compressive residual stress is not achieved. Though 
for all other conditions high maximal residual stress and 
compressive surface residual stress can be achieved. As a 
consequence it can be concluded that depending on a pos-
sible application of a component and therefore on the desired 
SL state for a given initial hardness level, the model based 
optimization scheme can be used to obtain optimal cutting 
parameter values. However, it has to be noted that in order 
to analyze the accuracy of the results, further experimental 
evidence by hard-turning and post process determination of 
the SL state would be necessary and beneficial. Neverthe-
less, assuming a good prediction accuracy, as a next step 
an investigation on whether the methods presented in this 
study can be transferred to other machining finishing pro-
cesses such as grinding, deep-hole drilling or milling could 
be conducted.

For the exemplarily selected roughness ranges the results 
of the cutting parameter optimization further demonstrate 
that comparatively high maximum as well as surface com-
pressive residual stresses during hard-turning of the 51CrV4 
in the cutting parameter range considered can only be 
obtained at the expense of surface roughness or vice versa.

If the load scenario of a component in use, i.e., tribologi-
cal, mechanical or corrosive stresses is sufficiently known, 
from a manufacturer’s point of view the model presented 
could be used to chose appropriate cutting parameter val-
ues eventually resulting in increased service life and reli-
ability. Depending on the load situation actually a low sur-
face roughness, high residual compressive stress state or 
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Fig. 6  Determined Pareto front by genetic algorithm for HVinit = 500 
HV30 and Ra,max = 0.8 μ m. Selected optimal point regarding the SL 
state marked by circle ( )

Table 8  Results for cutting 
parameter optimization (not 
standardized)

Ra,max in μm HVinit in HV30 Cutting parameters Surface layer state

f in mm vc in mm/min ap in mm �t,max in MPa �t,surf in MPa Ra in μm

0.8 500 0.05 160.03 0.05 − 147.53 3.91 0.23
600 0.05 171.24 0.05 − 346.23 − 89.65 0.17

1.8 500 0.05 174.03 0.38 − 772.97 − 151.62 1.77
600 0.39 100 0.5 − 821.74 − 157.20 1.77
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a compromise solution may be most advantageous. Here, 
experimental evidence on the influence of different surface 
states for a given loading scenario, e.g., mechanical fatigue 
loading, could be of high interest and should therefore be 
investigated in future studies.

5  Conclusions and outlook

In this work, empirical modeling of the SL state depending 
on cutting parameters for hard-turning of 51CrV4 is investi-
gated. Three data-driven modeling approaches for small data 
sets were compared and their generalization performance 
was evaluated. The comparison has shown that GPR overall 
achieves the best prediction performance. However, for this 
nonparametric method, the whole data set has to be used for 
inference. Parametric TS models and MPR models offer a 
more compact process description. Furthermore, TS models, 
in combination with the BE method, allow for a uncertainty 
estimation and provide for a compact model structure. The 
MPR models allow for easier interpretation of the regressor 
parameters and therefore, for better interpretability.

Data driven models can be used for cutting parameter 
optimization. An optimization scheme was developed to 
optimize the competing SL properties residual stress and 
surface roughness. Depending on the actual application and 
therefore, the loading scenario of a component, a cutting 
parameter set can be computed that leads to the desired SL 
state values.

In future work, experimental validation of the optimized 
cutting parameters and of the influence of the SL states on 
the fatigue life will be examined. An additional experimental 
validation of the models outside the specified cutting param-
eter limits is also planned in order to explore and identify 
new process windows. Furthermore, it is planned to use the 
models in a process control scheme with the goal of improv-
ing the obtained surface state after machining. Because SL 
properties such as residual stresses cannot be be meas-
ured during the cutting process, standard feedback control 
methods cannot be used. Therefore, an approach combin-
ing feedforward control using the static models developed 
in this work and a workpiece-to-workpiece feedback control 
adapting the cutting parameters based on comparing pre- 
and post-process micromagnetic in situ measurements will 
be subject of future research.

In addition, the model approaches are to be applied to 
other manufacturing processes such as grinding, deep-hole 
drilling or milling and to different materials.
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