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Abstract

Data-driven approaches are an effective solution for modeling problems in machining. To increase the service life of hard-
turned components, it is important to quantify the correlation between the cutting parameters such as feed rate, cutting speed
and depth of cut and the near-surface properties. For obtaining high-quality models with small data sets, different data-driven
approaches are investigated in this contribution. Additionally, models that enable uncertainty quantification are crucial for
effective decision-making and the adjustment of cutting parameters. Therefore, parametric multiple polynomial regression
and Takagi—Sugeno models, as well as non-parametric Gaussian process regression as a Bayesian approach are considered
and compared regarding their capability to predict residual stress and surface roughness values of 51CrV4 specimens after
hard-turning. Moreover, a novel method based on optimization of data driven non-linear models is proposed that allows for
identification of cutting parameter combinations, which at the same time lead to satisfactory surface roughness and residual

stress states.

Keywords Surface integrity - Data-driven modeling - Hard-turning - Residual stress

1 Introduction

Surface finishing machining processes are well-known to
strongly influence the near-surface properties of a compo-
nent, i.e., topography, residual stress state, microstructure,
strain hardening or crack pattern, among others [1]. As the
surface usually represents the area being subject to highest
stresses, especially in case of highly-loaded components, the
state of the near-surface layer has a significant influence on
the mechanical properties of the component. The correla-
tion of surface characteristics and mechanical properties is
referred to as surface integrity (SI) [2]. As a result, robust
surface conditioning in manufacturing processes control-
ling both geometric features and near-surface properties
is of great importance in order to improve the service life
time and reliability of components [3]. Here, data-driven
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modeling concepts represent a promising approach to
overcome the challenges related to SI in surface finishing
machining processes [2]. In this context, 12 projects within
the Research Priority Program 2086 of the German Research
Foundation (DFG) focused on the development of process
control systems for surface machining using a combination
of in-process soft sensors and process knowledge, which
allows defined geometric features as well as near-surface
properties to be adjusted simultaneously in metallic compo-
nents [4]. Within the Research Priority Program 2086 sev-
eral different surface machining processes such as turning
(including hard-turning and external longitudinal turning)
[5, 6], deep-hole drilling [7], grinding [8] and milling [9]
were considered. In their project, the groups of the authors
in this contribution focused on the prediction of the near-
surface layer properties for optimization of a hard-turning
process using in-process measurement technology and data-
driven modeling methods. In this context, an online imple-
mentation of the Fraunhofer IZFP 3MA-II system in the hard
turning process was realized [10]. A prediction model for
post-process residual stress depth profiles was developed in
[11] as well as for integral width in [12] including a com-
parison of different model approaches, i.e., global multi-
ple polynomial regression models and locally affine Takagi
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Sugeno models. For the latter one, bounded-error parameter
estimation and nonparametric Gaussian process regression
were applied and compared in [13] allowing for quantifica-
tion of the uncertainty of the prediction.

Modeling of the surface layer (SL) state can be accom-
plished using analytical, numerical or empirical approaches
[14]. Predictions using finite element models are computa-
tionally expensive and therefore, not suitable for real time
application. Analytical models require in-depth knowledge
of the process and can therefore, be difficult to develop [15].
Collection of experimental data for manufacturing processes
is time and cost intensive. Therefore, empirical modeling
approaches are advantageous, which achieve good model
quality with small data sets. In [16], the relationship between
cutting parameters and the resulting microhardness and surface
roughness for hardened 100Cr6 (AISI 52100) was investigated
using the response surface methodology. [17] used artificial
neural networks (ANN) to predict residual stresses at five dif-
ferent depths for Ck 53 (AISI 1053) and Ck 67 (AISI 1070).
Similarly, [18] used ANNs to model characteristic points of
the residual stress profile for 100Cr6 (AISI 52100) depend-
ing on the cutting states and used FEM simulations to create
additional training data since neural networks require a large
number of training data. Existing literature mainly uses multi-
ple regression approaches or data intensive ANNS. In this con-
tribution nonlinear modeling approaches are investigated that
can achieve better prediction performance with less data. The
SL properties residual stress and surface roughness are inves-
tigated. Moreover, two intial hardness states are considered.

From a manufacturer’s point of view near-surface prop-
erties of a component, i.e., surface roughness and residual
stress state, are of great interest. This applies in particular
for components being subject to cyclic loads. In this case,
surface roughness promotes fatigue crack initiation due to
notch effects whereas compressive residual stresses are well
known to delay or prevent crack initiation and propagation.
Nevertheless, cutting parameter sets leading to a low sur-
face roughness do not necessarily result in an advantageous
compressive residual stress state and vice versa. Here data
driven modeling can help identifying cutting parameter val-
ues leading to satisfactory surface roughness and residual
stress states.

2 Modeling and methods
2.1 Data-driven modeling
In this contribution, empirical modeling approaches are

considered, that allow for modeling nonlinear systems
given only small data sets. The goal is to find a functional
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relationship between 7 input variables x € R" and the output
y € R of interest

y() = fxD) + e(D),

given the experimental data set ZV = {x(l), y(l)}f; , With N
elements. The function f : R" — R is the nonlinear func-
tion representing the system behavior to be modeled. For the
hard-turning process, the model input x consists of the cut-
ting parameters v, f, a, (cutting speed, feed rate and depth
of cut) as well as the initial hardness HV ;. For models with
a depth profile the depth under the surface d; is also con-
sidered as an input. The model output y € R is the respec-
tive SL state. For each SL state a multi input single out-
put (MISO) model is estimated. The term e(/) accounts for
measurement errors and other disturbances. A more detailed
discussion is given in Sect. 2.2 in the context of uncertainty
modeling. Three model classes are considered: two para-
metric and one nonparametric approach. Firstly, multiple
polynomial regression (MPR) is considered as a standard
parametric approach in Sect. 2.1.1. Secondly, Takagi Sugeno
(TS) models are utilized (Sect. 2.1.2), which provide for a
more flexible parametric modeling approach by partition-
ing the system into local models. Thirdly, Gaussian process
regression (GPR) is considered (Sect. 2.1.3), which is a very
flexible nonparameteric modeling concept.

I=1,...,N (1)

2.1.1 Multiple polynomial regression

MPR of degree m is considered as baseline:

S =0+ Y 05D+ DD 0,,x, (Dx, ()
i=1

i =11i=i

+oeee Z z 0, o x; () x, (D),

=1 i,=i

@

m—‘m—1

with the model parameters 6, €R, r=0,...,M,
M = (m+ n)!/(m!n!) — 1, corresponding to the M + 1 model
terms in (2). With

o) =[1 x;(D)...x,() x%(l) x (Dxy (D)

3
X DD )T @
(2) can be written in linear regression form:
M
S0 =Y 0,0,0), )
r=0

with @, () being the rth element of (/) in (3). Model train-
ing consists of estimating all 8, in (4), e.g. by minimizing
the sum of squared errors for all N data, which is an ordi-
nary least squares estimation problem. Because of the large
amount of potential regressors in (4), stepwise regression
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(SWR) is used in this contribution to successively add or
remove parameters based on their statistical significance.
The set of potential regressors in (2) is given by K = {¢, }.
The significance is evaluated by an F-test that compares the
the performance of two models built of different subsets of
regressors starting from a constant model y(/) = 6, and fol-
lowing a greedy stepwise search strategy. In each step, the
hypotheses

Hy:6,=0andH, : 6, #0 (5)

are tested against each other for a confidence level a. When
the null hypothesis is rejected for a new model term, the term
will be added to the model, otherwise it will be discarded.

2.1.2 Takagi Sugeno models

Locally affine TS models are characterized by a high
model flexibility while having an exploitable model
structure and a compact parametric representation.
They can be used for identifying nonlinear systems. A
TS model consists of ¢ € N, superposed local models
$:(D =f0;1m> @) : R" > R weighted by their cor-
responding fuzzy basis function ¢;(z(])) : R*= — [0, 1],
which depends on the scheduling variable z(l) = [z;(]) ...
z,,:(l)]T € R™:

=Y ¢&D) - 5i(D). ©)
i=1

The local models are of the form

5D =Y Oirim - 3,0, ™)
r=0

with @,.(]) being the rth element of the vector
@) =11x,(D) ...xn(l)]T 8)

and 0, 1, being the rth element of the corresponding local
model parameter vector 0, ; € R". The use of local models
with different structure is also possible, but the locally affine
structure enables better interpretability.

The fuzzy basis functions ¢;(z(/)) define the validity
region of the corresponding local models. They are defined
by

Hiz(D)

. l = =,
bt = ©)

with the membership functions y,(z(/)). In this contribution,
fuzzy-c-means (FCM) type membership functions

-1
2
e N
jl2
Hi(@) = <—> (10)
J 2} llz = vl
with the fuzziness parameter v € R>! are used. The proto-
types v; € R™ are aggregated in the partitioning related
parameter vector Oy = [v/,...,v"]". In the remainder of

Lo
the paper the scheduling variable is assumed to be z = x.

Using a least squares type cost function, the identification of
Oy = [GiLM GZLM]pE R and Oy is carried out as

follows:

1. Oy is estimated using FCM clustering.

Local model parameters 0, ,, are estimated with ordinary
least squares (OLS).

3. These estimates are used to initialize a simultaneous
nonlinear optimization of Oy and 6, with a trust
region reflective method using the MATLAB function
lsgnonlin.

An alternative subsequent bounded error estimation method
for 6y, is described in Sect. 2.2.

2.1.3 Gaussian process regression

A nonparametric modeling approach is GPR. A detailed
explanation and derivation of GPR can be found in [19].
The idea behind a Gaussian Process is to define a probability
distribution over functions. For regression, the prior of the
function to be learnt is defined as:

(D) = GP(m(x (D)), x (x (), x'())) an

where m(x) is the mean function and x(x,x’) is the covar-
iance function for two points x and x’ in the input space
(index [ is omitted for brevity in the remaining section):

m(x) = E[f(x)] (12)

K(x,x") = E[(f(x) — mx)(f(x") — m(x"))"] 13)

with a positive definite kernel «(x, x"). The GP defines a joint
Gaussian distribution for a finite set of points:

pOIX) = Ny|m,K) (14)

with the design matrix X € RV*" describing the input data,
the covariance matrix K € RV, K, = x(x(i), x(j)), and
the vector of means m = [m(x(1)) ... m(x(N))]” € RY. The
kernel plays a key role in GPs as it describes the depend-
encies between the data points. The choice of the kernel
strongly influences the model’s behavior. In this contribution
a Matern 3\2 kernel with automatic relevance determination

@ Springer



384

Production Engineering (2024) 18:381-392

(ARD) is used to assign individual length scale parameters
to each variable:

Kz (6, x") = 9f,M32<1 + \/ngsz )exp (— \/gdmz ) (15)

with

n /
(xi - -Xl')2

X (16)

i=1 Y], SE+ARD,i

dyizp =

2

| M324+ARD,j and standard

with the individual length scales 8
deviation 6y 3.

To predict the output y, for a new test input x,,, the poste-
rior conditional probability is computed by conditioning the
multivariate Gaussian (zero mean and no noise are assumed

for simplicity):
PO Ix,. X, y) = Ny, Im,. k) A7)

with the new test input x, € R” and the vector of outputs
y € RY. Usually, it is assumed that the observed output is
affected by additive independent and identically, normally
distributed noise i.e.

YD) = fxD) + e(D), e(l) ~ MO, 52)VL. (18)

The GPR model is trained on the data set by optimization of
its hyperparameters, i.e the kernel function parameters and
the noise variance by maximizing its log marginal likeli-
hood function, using a Quasi-Newton optimizer from the
MATLAB GPR toolbox.

2.2 Uncertainty modeling

Besides point predictions, regression models can provide
for quantification of the uncertainty of the prediction. In this
contribution two approaches for uncertainty quantification
are considered. Using GPR from Sect. 2.1.3, the probability
distribution p(f|Z") can be inferred directly. In this proba-
bilistic setting the prediction error is described by a prob-
ability distribution. GPR assumes independent, normally
distributed noise (18) and the noise variance is treated as a
parameter that is estimated in model training.

An alternative error description, which is independent
of probabilistic assumptions, is the bounded error (BE)
approach. Here, the assumption is made that the prediction
error e(/) lies in an interval:

emin S el) Lepaol=1,...,N. (19)

Because BE methods use a set based framework, an exact
determination of the BE estimation can become computa-
tionally expensive for a large number of parameters because
of the "Curse of Dimensionality" [20]. An approximate BE

@ Springer

estimation method that can be used for TS models with a
large number of parameters is the Ray Shooting Bounded
Error (RSBE) method that is described in [21].

2.3 Model validation

To validate and compare the modeling results, two common
evaluation criteria for regression models are used. The root-
mean squared error (RMSE):

_ LV S
RMSE = \/ D IMCICESIO) (20)
and the coefficient of determination (R?):

RP=1 —
Zl=1(y(l) - }_’)2

@

with the sample mean y are considered.

To asses the generalization capabilities for new data,
cross validation (CV) is used. In k-fold cross validation
the available data set is randomly partitioned into k sub-
sets {7, ..., T} of equal size. In each iterationm € 1, ...,/
the model is trained with k — 1subsets {7}, ..., T;}\T,, and
validated on the remaining subset 7,,. Here k = 10 is cho-
sen to adequately evaluate the prediction quality [22]. The
k-fold cross validated variants of the metrics (20) and (21)
are determined by

k
RMSE,y, = % > RMSE(".5") 22)
m=1
1 k
Rév — % 2 RZ(ym’j\/Jn) (23)
m=1

where 3" is the prediction for 7,, in each fold.
2.4 Experimental methods

Hard-turning experiments were conducted on cylindrical
specimens made of a quenched and tempered (Q &T) steel
51CrV4 in different initial hardness levels, i. e. 400 HV30,
500 HV30 and 600 HV30. The focus of the present study
will be on the hardness levels of 500 HV30 and 600 HV30.
Prior to heat treatment, all specimens were manufactured
with the same roughness requirements in order to ensure an
almost identical surface finish before hard-turning. Three
different sections of nine specimen of each hardness level
(i.e. in total 27 section-specific areas per hardness level)
were machined with varied cutting parameters feed rate (f),
depth of cut (a,) and cutting speed (v,). Hard-turning of the
specimens was carried out on a servo-conventional lathe of
type Weiler C30 using polycrystalline boron nitride (PCBN)
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inserts with a corner radius of 0.8 mm. After hard-turning,
residual stress (o,) depth profiles and surface roughness R,
were determined using X-ray diffraction (XRD) and tactile
roughness analysis, respectively for each specific area of a
specimen. Residual stress measurements were conducted
using a Pulstec p-X360 diffractometer equipped with a 0.3
mm collimator and CrKa-radiation with an exposure time
of 120 sec. Depth profiles were determined by successive
removal of the material surface layer using electro-chemical
polishing. The obtained data have been evaluated applying
the cos a-method [23] without consideration of any math-
ematical stress correction. Surface roughness in axial direc-
tion was determined using a Mitutoyo SJ-210 tactile rough-
ness measuring device. For more detailed information on the
material and the experimental setup, i.e., chemical composi-
tion, specimen geometry, machines and parameters used for
hard-turning operations and post process measurements, the
reader is referred to [10].

3 Results for empirical modeling
3.1 Database

The data base for empirical modeling was generated from
the experiments described in Sect. 2.4. A full factorial exper-
iment design was used with two levels for the initial hard-
ness HV,,; and three factors for the cutting parameters, with
the levels given in Table 1. The resulting data set consists of
N = 54 samples. For the residual stress depth profile mod-
eling, measurements for 12 different depths are available:
{0, 10, 20, 30, 40, 50, 60, 80, 100, 120, 150,200} pm, provid-
ing for N = 648 samples in total.

3.2 Modeling results for residual stress depth
profiles

For MPR modeling, as compromise between a flexible
model and the number of potential model terms, a maximum
model order of m = 3 was chosen. For d the data coverage
is better, but tests with higher order model terms for d, did
not provide for better results. The threshold for the p-value
to add a model term was set to a < 0.05 and to remove a
model term to a > 0.1. The results of the variable selection

Table 1 Levels for experimental design

HV,; in HV30 fin mm V. in m/min a, in mm
500 0.05 100 0.05
600 0.25 175 0.25

0.5 250 0.5

using SWR are shown in Table 2 in the right section of the
table. Besides for the interaction terms, third order model
terms were only selected for d,. The model shows a signifi-
cant influence of all cutting parameters on o,. A significant
nonlinear influence of f can be inferred.

For the TS models, preliminary tests were conducted to
determine the number of local models ¢ and the fuzziness
parameter v, also see [11] for a systematic selection of these
parameters for SL state modeling. Best results were achieved
withv=13andc =3.

For GPR models, the estimated lengthscale parameters
can be used to evaluate the importance of the inputs [24].
Smaller lengthscales correspond to a higher relevance.
Table 3 shows the estimated lenghtscales for the GPR model,
showing high importance for the cutting parameter f.

The performance of the resulting models for depth pro-
files of o, is summarized in Table 4.

The results for the training data (RMSE, R?) as well as
for cross-validation indicate that GPR achieves the best per-
formance. While TS achieves better results on training data
for the parametric models, MPR shows better generalization
performance. The Rév = 0.94 for GPR indicates a very good
prediction performance of the GPR model. In Fig. 1 exem-
plary prediction surfaces for the three model approaches
together with the training data are shown. The models in the
figures are trained with the complete data set. Regions in the
data with high gradients are best approximated by GPR. Due
to limited model flexibility of the global modeling approach,
MPR does not approximate the surface residual stress well.
TS models show better approximation than MPR but are
worse than the local modeling approach GPR.

3.3 Results for uncertainty modeling

Using the methods described in Sect. 2.2, prediction inter-
vals where estimated for depth profile modeling. In Fig. 2
an exemplary prediction of a residual stress depth profile
with the inputs f = 0.25 mm, v, = 175 m/min, a, = 0.25
mm, HV,; = 500 HV30 is shown. The uncertainty interval
from the estimated TS model (RSBE) and the 95 % con-
fidence interval for GPR are both shown. Because of the
different distribution assumptions for the error, the inter-
vals show different behavior. For the BE estimation the error
bounds are not met for some data points because approxi-
mate estimation techniques were used. For the BE estima-
tion the §, i.e., the permissible error, was determined to be
+ 200 MPa. To determine an appropriate error bound 6, an
iterative search was used, see [13]. For GPR, the estimated
o, is 37.2 MPa. This corresponds to a 95 % confidence value
0f 1.96 - o, of 72.9 MPa. In comparison, 6 is larger than 5,
but the BE assumption is much stricter and the model fit of
the TS multi models is worse than that for GPR models and
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Table 2 Results of regressor
term selection and estimated
coefficients (non standardized,

Models for characteristic SL R
values from Sect. 3.4

Model for depth profile from Sect. 3.2

units dropped for coefficient O max Oy surf o, (Additional terms)

estimates for better readability)
(Intercept)  733.00 1917.76* —3.81"" 1637.15™* HVovef —0.02"**
HViyie -0.72 —3.57* 0.01** —2.81"* vefia, 8.15"**
Ve —6.54" —15.88" 0.02"** —6.70""" vczaé —10.66"
S 7385.94* —-5012.71 31.96""  3633.41" d —15.62
a, —2503.98 1680.68" —2705.57** HV, :d, 0.01*
HVyive 0.01 0.02"* 0.01"* ved -0.01
v? 0.02* 0.01 fid, 12.64*
HVyif —16.02* 14.94** —0.06"* =527 ayd, —7.79%*
Vel 1.88 75.37 -0.18"" 693 d? 0.14
Vi —19052.72"*  —13509.44"" 18.32"™  —12843.13"" HV, fid; —0.03"**
HV;ca, 5.55% 4.57% vafid, -0.02*
Veid, 19.36™ 18.02"* ved? 0.01™
fa, —5803.20"*  —5036.04"" —6640.07**  fd? 0.06"*
aé —1099.44 —2574.87* 1092.76 ap:ds2 0.04*
vif —-0.04" —-0.08" d? -0.01""
HVief> 3274 -5.27
v f? 2691 36.10" -0.09""  17.95*
HViivea, —0.03" —0.02"*
f:aé 7999.75** 7093.74" —6640.07"

Additional selected model terms for depth profile are recorded in the two right hand columns

p-value: *p < 0.10; *p < 0.05; **p < 0.01

Table 3 Estimated length
scale parameters for GPR
(standardized for comparison)

Oa 0d

c P s

Onv,, O OV

6.19 2.19 454 454 1.10

Table 4 Prediction performance of models for o, depth profiles

Output Model ~RMSE (MPa) RMSEc, (MPa) R* R,
MPR  150.9 160.2 0.73  0.69
o, TS 116.0 169.3 0.84 0.65
GPR 165 72.3 0.99 0.94

The best performing models are highlighted in bold

therefore, has a larger model error. However, a Shapiro-Wilk
test on the residuals of the GPR model shows that assump-
tion of normally distributed noise can not be accepted at 5 %
significance level. The BE approach on the other hand only
makes the assumption that the error is bounded.

3.4 Modeling results for characteristic SL values
To obtain models that enable useful model-based analysis

with respect to the cutting parameters, characteristic val-
ues of the depth profile data were extracted: (1) tangential
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residual stress at the surface o,y and (2) maximum tan-
gential compressive residual stress oy ... High maximum
compressive residual stress in the depth and high compres-
sive residual stress at the surface are beneficial for the com-
ponents fatigue life [25]. Furthermore surface roughness R,
was modeled. The resulting performance criteria are sum-
marized in Table 5.

For all models GPR shows the best cross validated
performance, whereby very good results were achieved
for R, with all model approaches, presumably because of
less noise in the data and less nonlinear behavior. The
performance on training data is better for TS models than
for MPR but for cross validation this observation does
not hold true, indicating overfitting of the TS models. For
MPR again monomials and interaction terms up to the
order of m = 3 were considered to capture the nonlineari-
ties. Results for variable selection and parameter estima-
tion are given in Table 2. For TS models analogous to
Sect. 3.2 preliminary tests led to a choice of ¢ =3 and
v = 1.3. The estimated length scale parameters in Table 6
give information about the importance of the input vari-
ables. For 6, ..« 0 s and R, the feed rate f has the lowest
value, i.e., the highest importance. This can be explained
based on the fact that the feed rate strongly influences the
specific cutting pressure [26], thus resulting in different
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(a) Multiple polynomial regression (MPR)
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(b) Takagi Sugeno model (TS)
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(c) Gaussian process regression (GPR)

Fig. 1 Prediction surfaces (surface) for three different model classes
and measured data (X) for o, depth profiles depending on f (for con-
stant HV,; = 500 HV, v, = 175 m/min, a, = 0.25 mm)

init

amounts of plastic deformation in front of the cutting
edge. As the surface roughness and the residual stress
state are known to have a strong correlation with the plas-
tic deformation, the observed correlation can be rational-
ized. This is further in line with literature [27], as e.g., for

T

RSBE
—— GPR

1,500 |

ot in MPa

—500 |-

0 50 100 150 200 250

dg in pm

Fig.2 Prediction error bounds for RSBE model (dotted) and 95%
confidence interval for GPR model (solid) for o, depth profile models.
Measured residual stresses (X) and errors bounds (bars) are shown

Table 5 Prediction performance of models of characteristic SL values

Output Model RMSE RMSEy R? R(Z:V
Oy max MPR 95.3 MPa 121.2MPa  0.873 0.83
TS 58.4 MPa 119.0 MPa  0.95 0.85
GPR 10.5 MPa 85.9 MPa 0.99 0.90
Oy surf MPR 148.4 MPa 180.8 MPa  0.80 0.67
TS 84.5 MPa 181.2MPa  0.93 0.64
GPR 74.7 MPa 1443MPa 095 0.82
R, MPR 0.14 pm 0.19 pm 0.97 0.94
TS 0.05 pm 0.16 pm 0.99 0.96
GPR 0.04 pm 0.11 pm 0.99 0.98

The best performing models are highlighted in bold

Table 6 Estimated length P P 0
HV,, Yf v

scale parameters for GPR init

(standardized for comparison)

. Ba,

Cumae 721 161 426 4.04
it 615 042 145 839
R, 348 146 448 51.10

a

hard-turning experiments in [28] the feed rate was found
to be the dominant parameter for the shape of the residual
stress depth distribution. It can therefore be concluded,
that the results of the model used in the present study
coincides with the experimental findings.

3.5 Discussion of prediction modeling results
In Table 7 the results for previous case studies of residual
stress depth profiles using the hard-turning data set, e.g.,

described in [12] are shown. The experimental conditions,
type of tool and type of steel were the same but a different
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Table 7 Summarized prediction performance of previous depth pro-
file modeling case studies [11-13]

MPR TS GPR
Ot 0Oa Oy Oa Oy
R? 0.67 0.68 0.81 0.87 0.93

cv

lathe was used. In addition, a different design of experi-
ments was used. For sake of brevity, the reader is referred
to [12] for details on the modeling process. The additional
SL state axial residual stress o, was modeled in these case
studies (not for GPR). These case studies confirm the results
from this contribution in Sect. 3.2. GPR overall offers a bet-
ter prediction performance. However, the parametric TS
and MPR models offer a more compact model structure.
For prediction, GPR inversion of the covariance matrix is
needed, while TS and MPR only require algebraic opera-
tions. Furthermore, the local-affine structure of TS models
can be exploited for control design based on established
approaches for linear systems. Depending on the require-
ments of the application, it must therefore be decided which
model properties are preferred. For example, if the models
are to be used in situ for feedforward control methods, the
computation time is of great importance in order to ensure
fast model evaluation, especially, if the models are adapted
to changing process conditions.

Based on the results the GPR models are superior in
terms of prediction performance. Hence, for a model based
analysis and parameter optimization of the hard turning pro-
cess, the GPR models are used in the following.

4 Model application
4.1 Model based process analysis

In this section, the identified prediction models are used to
perform a process analysis of the correlations between cut-
ting parameters and SL state. The SL properties residual
stress and surface roughness show high correlation with
machining parameters. For the analysis, the models for
O max> Orsurf a0d R, are used. In Figs. 3, 4 and 5 prediction
plots for the models from Sect. 3.4 are shown. Thereby,
Fig. 3 focuses on the prediction of o, for constant q, in
(a) as well as for constant HV,;; in (b). (For the sake of brev-
ity, in (b) only the case for HV,;, = 500 HV30 is shown.)

As can be seen from the illustration in (a) and as already
explained in 3.4 the highest influence on the resulting o, ;.
can be obtained for varying the feed rate f.

It can further be concluded that a higher HV,;, provides
a higher potential for compressive residual stresses as a
consequence of the increased strength of this condition.
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This is in line with literature as higher compressive resid-
ual stresses after hard-turning of specimen with higher
HV,,; were likewise observed in [28]. Figure 3a moreover
reveals that both initial hardness levels are characterized
with o ., for use of nearly the same cutting parameter
set including a feed rate and cutting speed of 0.3 mm™!
and 250 m/min, respectively. With increasing feed rates
and decreasing cutting speeds the maximum Stresses o, .,
converge to similar levels. However, it has to be noted that
despite comparable o, ., values for both considered hard-
ness levels, these do not necessarily have to be present in
the same depth as has been shown in [10].

Comparing the maximum compressive residual stresses
Oy max TOT one initial hardness level and varying cutting
parameters as displayed in Fig. 3 (b), again the feed rate has
the highest influence. Furthermore, for the lowest cutting
depth as well as generally for decreasing the cutting speed,
the maximum compressive residual stresses are decreasing
due to the fact that the hard-turning process in this parameter
range is dominated by plastic deformation in front of the
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cutting edge rather than by cutting. In contrast, Fig. 4 illus-
trates the prediction of the surface residual stresses o, ¢
From Fig. 4 (a) it is clearly evident that unlike to Fig. 3
similar residual stress surface (o) values are obtained
irrespective of the initial hardness. This observation is
assumed to be a result of higher surface temperatures thus
decreasing the influence of the initial hardness. Moreover,
the proportion of the Hertzian pressure at the surface is not
as pronounced. Differences in the surface residual stresses
Oy sure €20 only be obtained for low cutting speeds and high
feed rates as the process temperatures are lower and increas-
ing plastic deformation can be obtained for these cutting
parameter values. Analyzing the surface residual stresses
for one initial hardness level as displayed in Fig. 4b, the
prediction surfaces of the used GPR and the experimental
data show no pronounced differences for the range of the
cutting parameters considered. In line with the maximum
residual stresses in Fig. 3b, a trend for a decreasing absolute
value of the surface residual stresses o, . for very low cut-
ting depth and decreasing cutting speeds can be observed.
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Fig.5 Prediction surfaces of GPR and measured data (X) for R,

However, this trend is not as pronounced for the surface
residual stresses.

Figure 5 focuses on the prediction surfaces of GPR
for the surface roughness R,. In contrast to the results
displayed in Figs. 3 and 4, a combination of high feed
rates and low cutting speeds does not result in similar
roughness values for both initial hardness levels. From
the prediction and the measured data shown in Fig. 5a
it becomes obvious that the higher initial hardness level
is more or less independent of the used cutting speed.
Unfortunately for both initial hardness levels, the cutting
parameter sets resulting in advantageous residual stress
states (both maximum and surface) do lead to high sur-
face roughness values. Furthermore, the variation of the
cutting depth does not seem to have any influence on this
fact as demonstrated by Fig. 5b. In line with the results
of the parameter optimization in Sect. , the predictions
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of the models in Figs. 3, 4 and 5 suggest that the models
allow an exploration of the cutting parameter influences.

4.2 Model based cutting parameter optimization

To further demonstrate the usefulness and applicability of
the models, multi objective optimization using the MAT-
LAB optimization Toolbox with a variant of the NSGA-II
genetic algorithm [29] was used to find optimal values for
the cutting parameters. The optimization problem can be
formulated as

min 9, - (x), 9, (), g (X)
xX= [f!ap VVC ] t,max t,sur a

s.t. 0.05mm < f < 0.5 mm

0.05 mm < a, < 0.5 mm

100 mm/min < v, < 250 m/min,

(24)

with §, ., 9, ., 9 the predictions of the GPR mod-
els for the respective SL state and the cutting parameters
x =[f, ap,vc] as arguments, i.e., a minimization problem
with 3 objective functions/target variables and 3 decision
variables.

This multi objective optimization problem does not have
a single best solution. The result of the optimization is the
Pareto front, see Fig. 6 exemplary for HV;;, = 500 HV30
and R, ., = 0.8 pm. The surface roughness of a compo-
nent is majorly determined by the design specification and
a high roughness should be avoided. Therefore, the desired

o 0.8
: 1
2 09 400
o Nl
00 5y oo 200 §
S
Ttsur in Mp,, &

Fig.6 Determined Pareto front by genetic algorithm for HV,; = 500
HV30 and R = 0.8 pm. Selected optimal point regarding the SL

a,max
state marked by circle (o)

maximum value R, ., was considered by penalizing values
R, > R, .., during optimization.

As shown in Figs. 4 and 5, achieving compressive sur-
face residual stress and low surface roughness are competing
goals. While o, ., is always in the compressive range, see
Fig. 6, it is more critical to achieve a high level of compres-
sive residual stress at the surface o, ;. Therefore, from the
solution set the solution with the minimal oy, ¢ value was
selected. Optimization was performed for both initial hard-
ness levels. Results for the optimization are summarized in
Table 8. The selected optimal cutting parameter values are
given together with the resulting predicted SL state, tak-
ing into account the roughness specification. The maximal
allowed surface roughness was exemplarily defined as 0.8
pm and 1.8 pm, respectively. For 500 HV30 and R, ., = 0.8
pm a compressive residual stress is not achieved. Though
for all other conditions high maximal residual stress and
compressive surface residual stress can be achieved. As a
consequence it can be concluded that depending on a pos-
sible application of a component and therefore on the desired
SL state for a given initial hardness level, the model based
optimization scheme can be used to obtain optimal cutting
parameter values. However, it has to be noted that in order
to analyze the accuracy of the results, further experimental
evidence by hard-turning and post process determination of
the SL state would be necessary and beneficial. Neverthe-
less, assuming a good prediction accuracy, as a next step
an investigation on whether the methods presented in this
study can be transferred to other machining finishing pro-
cesses such as grinding, deep-hole drilling or milling could
be conducted.

For the exemplarily selected roughness ranges the results
of the cutting parameter optimization further demonstrate
that comparatively high maximum as well as surface com-
pressive residual stresses during hard-turning of the 51CrV4
in the cutting parameter range considered can only be
obtained at the expense of surface roughness or vice versa.

If the load scenario of a component in use, i.e., tribologi-
cal, mechanical or corrosive stresses is sufficiently known,
from a manufacturer’s point of view the model presented
could be used to chose appropriate cutting parameter val-
ues eventually resulting in increased service life and reli-
ability. Depending on the load situation actually a low sur-
face roughness, high residual compressive stress state or

Table 8 Resul.ts for 'cutting R, max iInpm  HV,. in HV30 Cutting parameters Surface layer state
parameter optimization (not ’
standardized) finmm v inmm/min a,inmm o6, inMPa o inMPa R,inpm
0.8 500 0.05 160.03 0.05 —147.53 391 0.23
600 0.05 171.24 0.05 —346.23 —89.65 0.17
1.8 500 0.05 174.03 0.38 -772.97 —151.62 1.77
600 0.39 100 0.5 —-821.74 —157.20 1.77
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a compromise solution may be most advantageous. Here,
experimental evidence on the influence of different surface
states for a given loading scenario, e.g., mechanical fatigue
loading, could be of high interest and should therefore be
investigated in future studies.

5 Conclusions and outlook

In this work, empirical modeling of the SL state depending
on cutting parameters for hard-turning of 51CrV4 is investi-
gated. Three data-driven modeling approaches for small data
sets were compared and their generalization performance
was evaluated. The comparison has shown that GPR overall
achieves the best prediction performance. However, for this
nonparametric method, the whole data set has to be used for
inference. Parametric TS models and MPR models offer a
more compact process description. Furthermore, TS models,
in combination with the BE method, allow for a uncertainty
estimation and provide for a compact model structure. The
MPR models allow for easier interpretation of the regressor
parameters and therefore, for better interpretability.

Data driven models can be used for cutting parameter
optimization. An optimization scheme was developed to
optimize the competing SL properties residual stress and
surface roughness. Depending on the actual application and
therefore, the loading scenario of a component, a cutting
parameter set can be computed that leads to the desired SL
state values.

In future work, experimental validation of the optimized
cutting parameters and of the influence of the SL states on
the fatigue life will be examined. An additional experimental
validation of the models outside the specified cutting param-
eter limits is also planned in order to explore and identify
new process windows. Furthermore, it is planned to use the
models in a process control scheme with the goal of improv-
ing the obtained surface state after machining. Because SL
properties such as residual stresses cannot be be meas-
ured during the cutting process, standard feedback control
methods cannot be used. Therefore, an approach combin-
ing feedforward control using the static models developed
in this work and a workpiece-to-workpiece feedback control
adapting the cutting parameters based on comparing pre-
and post-process micromagnetic in situ measurements will
be subject of future research.

In addition, the model approaches are to be applied to
other manufacturing processes such as grinding, deep-hole
drilling or milling and to different materials.
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