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Abstract

This dissertation is dedicated to the analysis of the Navier-Stokes equations in a time-
periodic framework in the so-called layer domain IT = R? x (0, 1), described by:

du—vAu+ (u-Vju+Vp=»f in [0,7] x 1T,
divu=0 in [0,7] x II,
uls = a for all t € [0,T7],
Ult=0 = ul=r in IT.

The velocity field u and the pressure p are unknowns, while the external force f is
prescribed. Challenges arise due to unboundedness of the layer II and from introduction
of a nonhomogeneous boundary condition a. The investigated topics regarding this
system of differential equations are the theory of existence and the theory of asymptotics.

In the existence theory a case distinction with respect to the boundary condition has
to be made: For boundary values having zero flux — where flux is the balance of in- and
out-flow through the boundary — existence of solutions is proved without restrictions on
the (size of the) data. In the case of non-zero flux a statement of existence is achieved
for boundary values being small in a certain norm.

The theory of asymptotics is concerned with the behavior of solutions towards spatial
infinity. At first, the linear Stokes system is analyzed, continuing the work of Pileckas
and Specovius-Neugebauer in [42]. An asymptotic representation for solutions to this
problem is derived, which is a generalization of Pileckas and Specovius-Neugebauer’s
main result. Then, in investigations of the non-linear Navier-Stokes equations, this
theorem is employed to prove an asymptotic representation for solutions to the non-
linear system as well, where the leading term in fact coincides with that of the Stokes
problem.



Zusammenfassung

Diese Dissertation ist der Analyse der Navier-Stokes Gleichungen mit zeit-periodischem
Setting in der sogenannten Schicht IT = R? x (0, 1) gewidmet, welche beschrieben werden
durch:

ou—vAu+ (u-Vju+Vp="~f in [0,7] x IT,
divu=0 in [0,7] x IT,
ulsn =a for all t € [0,T7,
uli—o = ul¢=7 in IT.

Das Geschwindigkeitsfeld u und der Druck p sind Unbekannte, wohingegen die duflere
Kraft f vorgegeben ist. Besondere Herausforderungen stellen die Unbeschrénktheit der
Schicht II und die Einfiihrung eines Randwerts a dar. Die untersuchten Themen hin-
sichtlich dieses Systems partieller Differentialgleichungen sind die Existenztheorie sowie
die Theorie der Asymptotiken.

In der Existenztheorie miissen wir eine Fallunterscheidung beziiglich der Randbedin-
gung vornehmen: Fir Randwerte mit Nullfluss — wobei Fluss fiir die Ein- und Aus-
flussbilanz durch den Rand des Gebiets steht — wird Existenz von Lésungen ohne Ein-
schriankungen an die (Gréfie der) Daten gezeigt. Im Falle eines Nichtnullflusses wird eine
Existenzaussage unter einer zusétzlichen Kleinheitsbedingung an den Randwert erzielt.

Die Theorie der Asymptotiken befasst sich mit dem Verhalten von Lésungen im
rdumlich Unendlichen. Zunéchst wird die Arbeit von Pileckas and Specovius-Neugebauer
in [42] fortgesetzt: das lineare Stokes System wird analysiert. Eine asymptotische
Darstellung von Losungen dieses Problems wird hergeleitet und somit eine Verallge-
meinerung des Hauptresultats von Pileckas and Specovius-Neugebauer erreicht. Bei der
Untersuchung der nicht-linearen Navier-Stokes Gleichungen wird dieses Theorem dann
verwendet um flir Losungen des nicht-linearen Systems ebenfalls eine asymptotische
Darstellungen nachzuweisen, wobei der fithrende Term mit demjenigen des Stokes Prob-
lems iibereinstimmt.
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1 Introduction

The Navier-Stokes equations are a system of partial differential equations describing the
motion of an incompressible, viscous fluid in a region €2 contained in the euclidean space
R™. They are constituted by the balance of momentum

p(Bu+ (u-V)u) = pAu — Vr — pf
and the conservation of mass
diva =0,

where the following quantities occur: The time ¢, x is a point in €2, p denotes the constant
density, ¢ > 0 the shear viscosity coefficient and f = f(¢,z) is the external force. The
Eulerian velocity field u = u(¢,z) and the pressure m = 7(t,z) are unknown. We set
p:=7T2and v := %, calling p pressure still and v the kinematic viscosity coefficient.
Further, we append a Dirichlet boundary condition in form of the function a := a(¢, x).
Most commonly, a fixed initial state is prescribed, whereas we consider a time-periodic
regime, reducing the time scope of interest to a single period [0,7]. Finally, we arrive

at the system of Navier-Stokes equations investigated in this thesis:

du—vAu+ (u-Viu+Vp="=f in [0,7] x I,
divu =0 in [0, 7] x 11,
ulsp =a for all t € [0,T],
uli=o = uly=r in IT,

where T := R? x (0,1) is the layer domain.

Historically, these equations were developed by the French engineer C.L.M.H. Navier
in 1822 and clarified by the Irish mathematician G.G. Stokes in 1845 and are nowadays
regarded as one standard model for the analysis of hydrodynamic processes. In 1934
Leray [29, 30] proposed a reformulation of the problem, which marks the beginning of
the modern theory. The great contributions of Hopf [15] and Ladyzhenskaya [24] led
to the fundamental results of global in time existence of weak solutions respectively of
local in time existence of strong solutions in R3, extending Leray’s findings. In the 1950s
and 1960s, studies of Ladyzhenskaya, Prodi and Serrin ([18], [44], [50], [25]) revealed a
gap in regularity of so-called Leray-Hopf solutions and, up to this date, the questions
of uniqueness and smoothness of these solutions present themselves to be infeasible to
answer in a general way.

As foundation and motivation to this work, two specific areas of research in the context
of the Navier-Stokes equations are of great importance: The time-periodic framework
and domains having a noncompact boundary.

Situated “between” the steady-state and initial-value problem, the time-periodic set-
ting features characteristics of both. Consideration of this framework was first suggested
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by Serrin [49]. Prodi [43] and Yudovi¢ [61] (independently) expanded the theory by a
new approach — without providing a rigorous proof though. Prouse [45, 46] eventually
showed its validity, yielding existence of solutions to the time-periodic Navier-Stokes
equations in bounded domains. Their technique — referred to as Prodi- Yudovi¢ method -
is a refinement of Hopf’s ideas and couples a Galerkin method with the so-called Poincaré
map to derive time-periodicity from a classical initial-value setting. It since has been
employed broadly (by Morimoto, Miyakawa, Teramoto, Maremonti, Padula, to name a
few — Kyed put together a very comprehensive overview on this in [21]) and takes a
pivotal role in the proofs of existence herein.

Examination of domains having multiple exits to infinity started in 1959 with the pro-
posal of Leray’s problem by Ladyzhenskaya [22, 23], which is the problem of determining
a motion in an unbounded “distorted tube”. To be more precise, a domain with cylin-
drical exits to infinity is considered, where, in each bounded cross-section of the outlets,
the flux is prescribed. Picked up by Amick [3, 4], research in this direction accelerated
in the 1980s with contributions from Ladyzhenskaya & Solonnikov [26, 27|, Solonnikov
[53, 54], Kapitanskii [16], Nazarov & Pileckas [33, 36] and Kapitanskii & Pileckas [17].
For this work the more recent papers by Nazarov & Pileckas [34, 35], Pileckas [39] and
Pileckas & Specovius-Neugebauer [41] served as inspiration. Therein, results on exis-
tence and asymptotic behavior of solutions to the stationary Stokes and Navier-Stokes
equations were achieved, focusing on layer-like domains, which coincide with the layer
I = R? x (0, 1) outside a fixed ball.

In [5] Beirao da Veiga brought together these two branches, combining Leray’s prob-
lem in an unbounded cylindrical region with a time-periodic setting. Beirdao da Veiga
and Galdi & Robertson [10] accomplished a complete analysis of the associated existence
theory, including uniqueness of solutions. Hence, an extension to further domains with
noncompact boundaries was a logical next step and Pileckas & Specovius-Neugebauer
[42] started this by investigating the time-periodic Stokes equations in a layer. They ob-
tained an asymptotic representation of solutions and the corresponding existence theory
was treated by the author in [47].

This eventually led to the present thesis, which is structured as follows:

In Chapter 2 we introduce our conventions of notation and collect important inequali-
ties and statements regarding the Stokes operator, the nonlinear term, weighted Sobolev
spaces and Bochner spaces.

Chapter 3 is concerned with the existence theory. At first we investigate a “per-
turbed” Navier-Stokes system to incorporate for nonhomogeneous boundary conditions.
The considered perturbation inhabits some practical properties, which can be exploited
for certain boundary values. An existence result for bounded subdomains of IT is estab-
lished and, in a separate theorem, expanded to the whole layer domain by an “invading
domains” technique. Then, two types of problems need to be distinguished: Those sub-
ject to a zero flux and those with non-zero flux, where the flux F' is defined as flow rate
through cylindrical cross-sections of the layer. Due to Gauss’s Theorem, the flux thereby
equals

F:—/ a-ndS
all

imposing a respective requirement on the boundary datum a. In the case of zero flux
we derive an extension operator equipping the resulting extension of a boundary value



with the aforementioned sufficient properties of a perturbation. Existence of solutions
follows at once through direct application of the theory developed beforehand — without
any restrictions on the size of the data. Regarding non-zero flux we construct an exten-
sion function of a prescribed boundary value, which carries the present flux. Under a
smallness assumption on the boundary data, its properties allow for a proof of existence.

Chapter 4 is dedicated to the spatial asymptotic behavior of solutions. To fit our pur-
poses, a variant of the main theorem in Pileckas & Specovius-Neugebauer’s paper [42] —
on asymptotics of solutions to the time-periodic Stokes equations — is achieved. Appro-
priate estimates of the nonlinear term (in weighted Sobolev spaces) enable application
of this result, yielding an asymptotic representation of solutions of the time-periodic
Navier-Stokes equations.






2 Preliminaries

2.1 Basic notation

This first section is dedicated to the introduction of all basic notions used throughout
this thesis starting with the most common ones.

The symbol N denotes the natural numbers and Ny := NU{0}; Z is the set of integers,
Q contains all rational and R all real numbers.

Let n € N. A multi-index « is a n-tuple of non-negative integers, a = (a1, ..., ) €
N{, and we set |a| := >/ | o;. By d;; we mean the Kronecker delta.

The n-dimensional Euclidean space R" is equipped with the usual norm and scalar
product

n
e 2 2 . ! __ /
lz| = /af 4+ + 22 respectively ToT =) X
i=1

Elements of R? are frequently interpreted as x = (y,z), where y € R?, z € R, and
r:= |y|. The function dist(-,U) maps a vector to its distance from a set U C R™:

dist = inf |z — x9].
ist(zo, U) :;IEIU‘l' xo|

In the course of Section 3.2 the following geometric objects occur: The open ball with
radius R > 0 having (0,0,0) or (0,0, %) as its center is defined by

Br:= Br(0) = {x € R®: |2 — 0| < R}

respectively
Br := Br((0,0,3)) -

By
Cri={r=(y,2) eR*xR: |y <R, 0<z<1}

we mean the open cylinder with height 1 and radius R. The sets

Sp={r=(y,2) eR2xR: |y =R, 0<z<1},
Ip:=0CR\Sp={r=(y,2) ER*xR: |[y| <R, z=00rz=1}

are its lateral surface and union of top and bottom base, respectively.
By Q we denote a general domain in R™, not necessarily bounded. Vector fields

u: Q= R,z u(z) = (u(z),...,u.(x)) "
are printed in bold letters, whereas scalar functions

u: Q= R, z— u(z)
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are displayed in the standard font. The notation u’ collects the first n — 1 components
of a vector field u: ' := (uy,...,u,_1)'. Partial derivatives of a function u: Q — R in
spatial directions are described by

and
0% = 071052 - - O

is a partial derivative of order |a|. The derivative in time direction of a time-dependent
function w is written as dyu, alternatively %u or u'. The gradient V is a vector containing
all (spatial) partial derivatives, noted as

Vu:= (Ou,...,00u) and Vu:= (Ou,...,0,u)

for scalar respectively vector fields. By V? we mean the collection of all second order
derivatives giving the Hessian for scalar functions and a tensor for vector fields. The
divergence operator acts on vector fields as follows:

divu::V-u:i&-ui.

i=1
And the curl of a vector field in R3 is set to

aZUS - a3“2
Vxu:= 83U1 — (91U3
81162 - 82u1

The Laplacian of a function is the divergence of its gradient and is applied componentwise
for vector fields, i.e.

n Aul

Au = div(Vu) = Z@?u, Au = :
=1 Auy,

Lastly, concerning differential operators, the nonlinear term (u- V)v is

> i wilivt
(u-V)v=(u101 + -+ +upop)v = :
> iz Widivn

We use the index y in 8, V,, Ay to indicate derivatives taken with respect to plane
directions only.

For k € Ny, the space C*(2) consists of all functions u: @ — R having continuous
derivatives 9%u for all 0 < |a| < k. If k = 0 we simply write C(2) := C°(2). A function
is called smooth, if it is infinitely many times continuously differentiable and we define

C>(Q) = ) C*(Q).
keNp
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On C*(Q) a norm is given by

[ullor) == sup [0%u(z)|,
|a|<k,zeQ

where, in the case k = oo, we substitute “|a| < k” by “|a] < 00”. The support of a
function u: 2 — R is the closure of the set of arguments giving non-zero values:

suppu := {z € Q: u(x) # 0} .

Then, for £ € Ny or k£ = oo, the space C’(])“(Q) is comprised of all functions u € C*(Q)
having a bounded support in €. The restriction of a mapping to a subset ' C Q is
denoted by u|q. We define C*(Q2), k € NoU{oo}, to be the space of functions u € C*(R™)
restricted to € and, further,

CH(Q) := {ue C*Q) : suppu C Q}.
A function u: 2 — R is called Lipschitz continuous, if it fulfills the inequality
lu(z) — u(y)| < Clz —y|

for some constant C' > 0 and all z,y € €; the corresponding function space is C%!(£2)
with the norm

|u(z) — u(y)|
||U||0071(Q) = HUHCO(Q) + sup —F—
ryeQaty T =Y

We say a continuous function w is absolutely continuous on an interval I C R and write
u € AC(I), provided for each € > 0 there exists a § > 0 such that

m
> Julbi) — ulas)| < e
i=1
for every finite number of pairwise disjoint intervals (a;,b;) C I, i = 1,...,m, with

Z;‘ZI bl — Q4 S 0.
Based on this terminology, we describe the smoothness of the boundary 02 of a domain

Q. For 2° € 09 we consider appropriate new coordinates & = (£1,...,&,) by rotation
and translation, such that 20 lies in the origin, and set & := (£1,...,&,-1). Let 7 > 0,
s >0 and

h: & w—n&y, €l <r,
a continuous function. Then, we define
Ursn(2%) = {(€',6n) €R™ : h(€) =5 <& < h(§) + 5, [ <7}

A domain € is said to be of class C* or just called C*-domain, if for each 20 € 9Q there
exists a local coordinate system and r, s and h as introduced above, with h being a
C*-function, such that

Ur,s,h(wo) Nos) = {(‘Slagn) 16 = h(§,)> |§,‘ < T}

and

Upsn(z°) N Q= {(€. &) : () — 5 < & < h(€), |€] <7}
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In general, the constants 7, s and the function h may depend on z°. If the constants
can be chosen independently of 20 and additionally

Hhx‘)HCk <M,

for some M > 0, for all 2° € 99, we say Q is a uniform C*-domain. Naturally, these
definitions coincide for bounded domains, due to compactness of the boundary 0f2.
Likewise, €2 is called a Lipschitz or uniform Lipschitz domain, if the properties above
are fulfilled for a Lipschitz function A and

[P0l cor < M,

for some constant M > 0 and all 2% € 99, in the latter case.
Let p € [1,00). The linear space of all (equivalence classes of) Lebesgue measurable
functions u: 0 — R satisfying

1/p
lollsiy o= ([ 1) < o0

is denoted by LP(£2). For p = co the condition above is replaced by

[[wll oo () := esssup [u(z)] < oo
z€eQ

Equipped with the norm defined above LP(2) becomes a Banach space and, in the special
case p = 2, L%(Q) is a Hilbert space under the scalar product

(u,v) 2 = / wdr, u,ve L*Q).
Q

Throughout this work — where no confusion might arise — we abbreviate the L?-norm
and scalar product by || - || respectively (-,-). We write u € LY () if for each bounded
subdomain €' C Q with €/ C Q it holds u € LP(£Y').

The symbol W*P(Q) with k € Ny, 1 < p < oo stands for the Sobolev space consisting
of functions u € LP(2), which possess all weak derivatives 0%u up to order |a| < k
fulfilling 0%u € LP(Q2) for all |a| < k. Its norm is set to

1/p

e I S [
|| <k
for 1 < p < oo and to

U ooroy = max |[0%ul| o0
sy 2= mass 10l o

in the case p = 0o, rendering W*?() a complete space. With the scalar product

> (0%, 0%), uve WHA(Q),

la|<k

the Sobolev space W#2() becomes a Hilbert space and we alternatively denote H*(Q) :=
WH2(Q). Additionally, we set

n

((u,v)) := (Vu, Vv) := Z(ﬁiu, 0;v)

i=1
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where u,v € W12(Q). For k = 0, the definition of W%P(Q) coincides with LP(£2), hence
we observe W9P(Q)) = LP(Q). The subspace Wéc P(Q) of WkP(Q) is defined as closure of
C5°(R) in the norm || - [[yyrp(q) and we say u € I/VZIZCP(Q) if 9%u € L] () for all |of < k.

Let Q be a Lipschitz domain, & > 1. Then, for every function v in W? (Q) a trace v
on 9N exists; we write u|po = v. Provided Q is of class C*, we denote by Wk=1/Pr(9Q)

the space of traces of functions in W*P(Q), while
[ollwe-1/pp00) = inf{HuHWk,p(Q) cu € WEP(Q) such that ulpg = v}

for v € WE=1/PP(9Q). We say v € T/Vl’f)_l/p’p(ﬁﬁ), if pv € Wk=1/PP(9Q) for all smooth,

C

compactly supported functions ¢: 92 — R. Observe that for k > 2

WP () = {U € WEP(Q) : upn = Lulon = ... = %UBQ = 0} ,

if Q is a C*-domain and especially
Wol’p(Q) = {u € Wl’p(Q) Dulpn = 0} )

if Q) is Lipschitz.!

A vector field u: Q — R™ is contained in the Lebesgue space LP(£2)™ or Sobolev space
WHP(Q)™ or trace space WF=1/PP(9Q)" provided each component function lies in the
respective space. The corresponding norm is set to

n 1/p
Jallxn = (Z IIUi!!’;’(> < oo,
i=1

where X is to be substituted by LP(Q), WFP(Q) respectively WF=1/PP(9Q). Despite
introducing this notation, we do not distinguish between spaces of scalar functions and
vector fields and leave out the exponent n. Likewise, the spaces of continuous vector
fields — C*(Q; R™), CE(Q;R™), CF(Q;R™), CE(Q; R™) — are abbreviated as C*(Q), C§(Q),
C*(Q), CE(Q). A norm on these spaces is given by

”uHCk(Q;Rn) = ||u||c§(Q;Rn) = Z.:I?f‘ffnuuinck(g)-

For C*(€; R") and C¥(Q; R™), naturally, the supremum in the latter norm is taken over
Q instead of Q.

In the theory of the Navier-Stokes equations special types of function spaces are con-
sidered, in particular spaces constituted by divergence-free (also called solenoidal) vector
fields. Starting from

Coo(Q) = {p € C5°(Q) : divep = 0},

we define L2(f)) and Wolj(Q) as closure of C§%(€2) in the norm || - || 72(q) respectively
| - llw2(q)- Being closed subspaces of L?(2), Wh2(9), these are Hilbert spaces under
the corresponding scalar products. In particular, for a Lipschitz domain the following
identities hold?:

L2(Q) = {u e L*(Q) : divu = 0 and u - n|pq = 0 weakly},
Wgﬁ(g) = {ueW,*Q) :divu=0}={ueW"?(Q) :divu=0, ulsgg =0}.

cf. [28, Theorems 18.7 + 18.8]
2¢f. [11, Thm. I11.2.3] and [58, Thm. 1.1.6]
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The Helmholtz-Weyl decomposition splits a vector field u € L?(f) into a solenoidal part
and a gradient field, i.e.
L2(Q) = L3 () ® G*(9),

where G?(Q) = {Vp € L*(Q), for some p € VV;;?(Q)}

For a Banach space X the symbol X’ stands for its dual space and (-,-)xs x is the
corresponding dual pairing.

The letters ¢, C' denote local constants, which may vary from line to line. To highlight
dependence on certain variables or terms we append these quantities in brackets. Global
constants are displayed as C and have a referencing index.

All norms introduced above may be written without noting the underlying domain, if

this is clear from context. For the sake of brevity, we collect a sum of norms of elements

Ui, u2, ..., up € X, k € N, from a Banach space X in the following expression:
k
2 . Z 2
Hu17u27"'7uk||X T ||u]||X
J=1

Furthermore, the important concepts of weighted function spaces and Bochner spaces
are presented separately in Sections 2.5, 2.6.

2.2 Inequalities

For the sake of quick referencing we collect some frequently applied inequalities. A
formal division by oo in the requirements of some of these lemmas is interpreted as

«l _ »
= =0".
Lemma 2.1 (Young’s inequality). Let a,b> 0 and 1 < p,q < oo with % + % =1, then

aP  b?
ab < — + —.
p q

Lemma 2.2 (Holder’s inequality). Let 1 < p,g < oo satisfy % +% = 1. Suppose
u € LP(Q) and v € LI(QY), then
lwvll i) < llullze@)llvllLeq) -

Lemma 2.3 (Lyapunov’s interpolation inequality). Let 1 < p < ¢ < oo and u €

LP(Q)NLY(Q). For any intermediate exponent p < r < q there exists 0 € [0,1] such that
1 6 1-90

r . p q
and the following estimate holds
lull @) < Ml ooy el o ey -
In particular, this implies the inclusion LP(2) N L9(2) C L™(R).

Lemma 2.4 (Poincaré’s inequality). Let 2 be a domain lying between two parallel hy-
perplanes of distance less equal d > 0. Allu € Wol’p(Q), 1 < p < oo, fulfill the inequality

d
ullLr@) < WHVUHLP(Q)-
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Remark. The most common use case of Poincaré’s inequality in this thesis is for p = 2
in the layer domain II = R? x (0,1). Therefore, we denote the corresponding constant

by Cp := %
Proof. Cf. [1, Thm. 6.30]. O

Lemma 2.5 (Friedrich’s inequality). Let Q@ C R™ be a bounded domain and {e;}jen be
an orthonormal basis of L*(Q). For any n > 0, there exists N;, € N such that

Ny

[ullZ2 i) < Y (W, €))7z + 11Vl g
j=1

for all u € W, ?(9).
Proof. At first, we reformulate the assertion:

For any n > 0 and 0 > 0 there exists IV, s € N such that

Mg (2.1)

lalaioy < (14+8) S (W e5)2 g + 1 1Vl 2
j=1

If (2.1) is proven, then the original statement follows by the Bessel and Poincaré in-
equalities:

z

1M

lallfzio) < ) (s e)Tz ) + dlullizio) + 7 1Vul72q)

§2

< (u, ej)%z(g) + (cd + 77)HVUH%2(Q)

<.
Il
—

Assume (2.1) does not hold, i.e. there exist 19, dg > 0 and a sequence (uy)ken C WOI’Q(Q)
satisfying

k
HukH%% > (1+do) Z (ug, e;) L2 )y T 70 ||Vuk||2L2(Q)
7j=1
for all K € N. Set v, := HukHZQl(Q)uk, then we obtain
k
L= Vil gz > (1+80) Y (vi,e)) o) + 0 V¥Rl (2.2)
J=1

Therefore (v) is bounded in WO1 2((2) and we extract a weakly converging subsequence
(still denoted (vg)i). Let v € Wol’Q(Q) be the limit. Due to the compact embedding
Wy 2 () <> L%(Q), we find

Vi = vlz2@) — 0, k—o0.
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Regarding the right-hand side in (2.2), we infer

k k o0
Z Vk’e] L2 - HVH%Q(Q) = Z(Vk7ej LQ(Q Z V e] L2
j=1 Jj=1 j=1
k [e%S)
= Z(vkiv’ej)%ﬁ(fl) + Z (Vaej)%Q(Q)
j=1 j=k+1
oo
< Vi = Vligag +| 2o Vel -
Jj=k+1
Parseval’s identity then implies
k
k—o00
>V &)t — [Vl
7j=1
From (2.2) we get
k
1= Hka2L2(Q (14 do) Z (Vk,€j) Lz
7j=1

for all k € N and passage to the limit yields
1= [V = (1+80) VI = 1+ -
A contradiction. O

Lemma 2.6 (Gagliardo-Nirenberg’s embedding inequality). Let  be a domain in R3
and suppose u € Wol’Q(Q). Then:

1/4 3/4
lull sy < V2 lull g Vul g,
Proof. Cf. [58, Lemma IIL.3.5]. O

Lemma 2.7 (Differential Gronwall inequality). Let u € AC([0,T]) and
o, € LY(0,T) be scalar functions. Suppose u satisfies the inequality

u'(t) < a(t) + B(t)u(t)

for almost all t € (0,T), then
t
u(t) < u(0)els B / a(s)el B g e e (0,7,
0

Proof. We cite the arguments from the author’s master thesis [47]. Multiplying the
required inequality by exp(— fo , we find

W (e~ o BT < (#)e= Jo B AT 1 31y (t)e= Jo B4
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for almost all ¢ € (0,7"). Integration with respect to ¢ yields
t

u(t)e™ Jo Blrydr _ u(0) < / a(s)e” Jos(mdr g
0

t
& ult) gu(o)eféﬂ(r)d7+/ a(s)elt B g
0

2.3 The Stokes operator

Let Q C R? be a bounded C?-domain. The (stationary) Stokes equations are defined by
the system

—vAu+Vp="~ in Q,
divu=0 in Q, (Ss)
ulpo =0,

where the velocity field u and pressure p are unknown. A function u is called a weak
solution of (Sg), if u € Wolﬁ(Q) and

y/Vu-Vvdx—/f-de for all vEWol’j(Q).
Q Q ’

For f € L%(Q), the Stokes problem is uniquely solvable - in the weak sense (cf. [58,
Theorem 1.2.1]). Based on this result, we define the Stokes operator A: D(A) — L2(Q)
as the operator, assigning to a solution u the corresponding external force f, where

D(A) :={uce Wolg(Q) : If € L2(Q) s.t. u is the weak solution to f} .
Moreover, we have D(A) = L2(Q2) DWOLQ(Q) NW22(Q) (cf. [52, Theorem I11.2.1.1]), due

to the restrictions on €2 and A is a one-to-one correspondence. We note some convenient
properties of the Stokes operator:

Theorem 2.8. The Stokes operator is self-adjoint. Its inverse A=', regarded as operator
from L2(Q2) to L2(Q), is compact.

Proof. This is a well-known result, which can be found in the classic book of Ladyzhen-
skaya [24, Theorem 2.6]. Compare also [14, p. 650], [58, sec. 1.2.6]. O

Corollary 2.9. There exists an orthonormal basis of L2(Q2) consisting of eigenvectors
of A=1.  Further, these eigenvectors are orthogonal with respect to the inner product
((u,v)) = [, Vu-Vvdz and form a complete system in Wolﬁ(Q) as well.

Proof. A is self-adjoint, so its inverse A~! is self-adjoint too. Paired with compactness,
this guarantees the existence of an orthonormal basis {¢ }ren C L2(9) of eigenvectors
(cf. [8, Thm. 6.11]) to the eigenvalues {Ag}ren related to A, Ay > 0 for all k& € N,
A — 00. Moreover, {¢;, }ren is contained in Wolf (©) and they fulfill

(V) = /Q Ve - Vv di = g /Q i - vz = (. v) (2.3)

for all v € Wy 2(), hence (¢, ¢1) = Medp Let v € Wy 2(Q) with ((¢y,v)) = 0 for
all k. In view of (2.3) we find (¢, v) = 0 for all k, implying v = 0. Therefore, {¢}, }ren
is a (orthogonal) basis of W&”Q(Q) as well. O

g
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2.4 The trilinear form b

Let Q be an arbitrary domain of R3, having a Lipschitz boundary. For u,v,w € W12(Q)
we define the trilinear form b as

b(u, v, w) = ((u- V)v,w) 5

/Q( WV-wdr = Z/UZ v )w; d

3,j=1

and collect some properties, the first being continuity:

Lemma 2.10. The trilinear form b is continuous on the product space
WL2(Q) x WH2(Q) x WH2(Q).

Proof. Let u,v,w € WhH2(Q). We analyze (u- V)v - w pointwise:

[(u-V)v-w| <|(u-V)v|jw|

1/2
- (Z|u Vv,]2> |w|

1/2
< |ul Isz|2> Wl

) 1/2
3 3
=l { DD loil* ] Iw|
i=1 j=1
= [u[|[Vv||lw]|.

Consequently

b, v, w)| < / [l Vv]|w] de
Q

2.4
< [l [V oW o (2.4)

< cllullwrz([vllwr2llwlwre

by Holder’s inequality and the Sobolev embedding theorem (cf. [1, Thm. 4.12]). The
constant in the last line depends only on the domain ). O

Lemma 2.11. Let Q C R3 be a Lipschitz domain and let u € WH2(Q) with divu = 0,
v e Wh(Q) and w € Wy*(Q). Then it holds

b(u,v,w) = —b(u,w, V) (2.5)
and further

b(u,w,w)=0.
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Proof. Let w € C§°(f2) at first. We employ an integration by parts formula:
3
b(u,v,w) Z / (03 )w; dz

_ 1( /Q (Dyus)vyuw; dr — /Q uivj@iwj)dm)

3
Z/ (div u)vjw; dr — Z:/uz Ojwj)v; dx
W,

°°||

1,j=1

For w € WOI’Q(Q) there exists a sequence (Wp)peny C C§°(£2) converging to w with
respect to the W12-norm. By Lemma 2.10 we deduce

b(u,v,wy,) = b(u,v,w) and b(u,wp,v) = b(u,w,v)
as claimed. Now, the second identity is a direct consequence, since

b(u,w,w) = —b(u,w,w).

2.5 Weighted function spaces and interpolation

To investigate the spatial asymptotics of solutions to the Navier-Stokes system, we need
function spaces describing properly the changing behavior by differentiation in either
tangential or normal direction. These reflect the structure of the layer domain II =
R? x (0, 1) by inclusion of an anisotropic weight distribution in the norm. First, we start
with the definition of the Kondratiev space Vé, having isotropic weights. Let § € R,

1 < p < oo and let [, k be integers with [ > 0, 0 < k < [. The function spaces Vﬁl’p(ﬂ)
and Vl P(R?) are derived by closure of C§°(II) and C§°(R?) in the norm

1/p

ey oy = /Z (14 r2)PE-HD2 970 () P da
Iv|=0

respectively

1/p

Iy = | [ 5 (14 PP 3 dy
171=0

Most frequently these spaces are utilized with p = 2, which is why we abbreviate

VA(I) o= VIA(ID),  VA(R?) = Vi (R?).
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To incorporate anisotropic weights we define Vé .(II) as the closure of C§°(II) in the
norm

1/2
b,y o= | [ 3 (e g an |
’ a+ly|<i
where (t); = t%lt' is the positive part of ¢ € R. For vector fields these spaces are

understood just as explained in Section 2.1. Observe, in particular, that Vgp(H) = VB0 (IT)
and VY (IT) = L3(10).

These weighted Sobolev spaces are complete and separable and equipped with the
scalar products

(. 0y Z/ (1+ 7220 ru(a) - v () da,

[v]=0

(u, U)Vl ®2) = Z/ (1+r )5 gl 87u( ) - 871)( ) dy,

[v]=0

(uv Z /1+r yBFhI=(rl=r)+ 07 0ju(x) - 07 0)v(x) dx
at|y[<i

the spaces V,é (1ID), VEI(RQ) and Véﬁ(ﬂ), respectively, become Hilbert spaces.
In the next two lemmas from Pileckas’s paper [39] we note down the embedding
properties of the latter spaces.

Lemma 2.12. (i) The embeddings
Vi (D) = Vg (), 1>1,0<k<i-1,
Vi, (1) = Vh (IT), 1>0,0<k<1,B1>0,
are continuous.
(ii) Let v € Véﬁ(H), 1 >1,0< k<1, Be R Then O € V[la+11 o1 1I) and
0,v € VlTHI(H), and
||ay”‘|vé—+117kl(n) + “8zv|yvgj,j(n) sc ||7)HV}3’N(H) .
Proof. These assertions are direct consequences of the definition. O
In the following lemma a further weighted space occurs:
C’g(ﬁ) = {u e COI) : ”UHcg(ﬁ) < oo},

[ull oy = sup (1 + )82 u(z)] .
7 zell

The proposition provides an analogue to Sobolev’s embedding theorem for these specific
weighted spaces.
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Lemma 2.13. (i) Letu e Vj (1), 1>2,0<k <I, B €R.
Ifa+|y|<1—2and |y| <k — 2, then 0%9)u € 02+1+w(ﬁ) and
gy
102 ayuHCgHHw\
But if |y| > k — 1, then 020,u € Cg+h\—(h\—ﬂ)+(ﬁ) and

0%0)u
1959, Hcgﬂw—w—n

@ < <llullvy -

LM S cllullvy -

(ii) Let u € Véﬁ(ﬂ), I >1,eR Ify|+a=1—-1and |y| < k-1, then

o 0,
020 u € V5+p|7|+172/p(n)’ p € [2,6], and
gy
102 8y“”v§fw+172/p(n) <c HUH%’K(H) - (2.6)
But if |y| > k, then 020ju € Vﬁoﬁy|7(|7|fn)+(n) and

!
I2: 8yuHVﬁOﬁw|—<m—n>+(H) < ellullvy - 27)

Proof. See [39, Lemma 2.4]. O

In the context of Bochner spaces — specifically Theorem 2.17 — we need a statement on
interpolation of weighted Sobolev spaces. Therefore we present the following notation:
Let X,Y be Banach spaces, then (X,Y ), with 0 < 6 <1, 1 < p < o0, stands for the
interpolation space derived by the K-method (cf. [57, Chapter 22]).

Lemma 2.14. Suppose | > 2, f € R. Then the following relation holds:
1 1—2 -1
(VB,O(H>7 V@o (H))l/gg = Vﬁ,o (H) :
Proof. Based on the well-know result on classical Sobolev spaces, where
(Wh2Q), W), ,, = WI2(Q),
we want to derive an analogous identity for weighted spaces. Consider the linear mapping
w: Vi o(IT) — Wh(1)
u s (14 1r2)8/%y,.

Then w as well as its inverse w™! are bounded (for any [ > 0), since ‘V'y‘:(l + |y|2)6/2‘ <

c(1+]y>)?2, 0 <k <l. Now, Lemma 22.3 from Tartar’s book [57] implies that
w: (Vho(ID), VEG (D), , , = (W (1D, W'>2(1D))
W™t (WD), WI22(I) |, = (Vho(ID), Vi (ID)

1/2,2°

1/2,2 1/2,2

are linear and bounded too. Thereby, we obtain the desired identity:
l -2 : l -2
(V@O(H)’ Vﬁ,o (H))1/2,2 =id ((VB,O(H)’ V,B,o (H))1/2,2)
—wlow ((vg,o(n), Vi 2am), /272)

=w ! (Wl’2(H)’ Wl_2’2(ﬂ))1/2,2>
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2.6 Bochner spaces

Let X be a Banach space. The Bochner space LP(0,7;X), 1 < p < oo, consists of all
(equivalence classes of) measurable functions u: (0,7) — X having finite norm

[wllzeo.rix) == [l xllze o)

and is a Banach space as well. A function v € LP(0,T; X) is called weak derivative of

u € LP(0,T; X), if
T T
/ ugo’dt——/ v dt
0 0

for all o € C5°((0,T)) and we write d;u = v. The vector-valued Sobolev space WP(0,T; X)
is comprised of all functions uw € LP(0,7;X) which possess a weak derivative dyu €
LP(0,T; X) and its norm is set to

HUHWLP(O,T;X) = HUHLP(O,T;X) + ”atuHLP(O,T;X) .

The notion C°(I; X) stands for all strongly continuous (i.e. with respect to || - ||x)
functions u: I — X, where I C R is an interval. If for v € CO(I; X) =: C(I; X) the
limit

Opu(t) := %im %(u(t +0) — u(t))

—0

exists for all t € I and satisfies dyu € C(I; X), we write u € C1(I; X). Likewise C*(I; X)
denotes the space of all functions u € C(I; X) whose derivatives dyu, dfu, . . ., OFu exist
and are continuous. Then, let

C®(I; X) := ﬁ CH(I; X).
k=0

And lastly, C¥((0,7T); X), 0 < k < oo, is the space of functions u € C*((0,T); X) having
bounded support in (0,7").
We recall some important statements in the context of Bochner spaces.

Lemma 2.15. Let S be a bounded, linear operator on a Banach space X into a Banach
space Y. Suppose u € L*(0,T; X), then S(u) € L*(0,T;Y) and

/OTS(u)dt:S</OTudt).

Proof. Cf. Corollary V.5.2 in [60]. O

Theorem 2.16. Let X be a reflexive Banach space and 1 < p < oco. Then LP(0,T; X)
is reflexive and its dual space is isomorphic to LV (0,T; X"), where % + I% =1, in the
sense that for F € LP(0,T; X)" there exists exactly one f € Lp/(O,T;X’) such that for

allwe LP(0,T; X):

T
(F,u) Lo (0,7, L7 (0,T: X) :/0 (f(),ut))x xdt.
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Proof. Cf. [20, pp. 124f]. O

Theorem 2.17 (Lions-Magenes Lemma). Let X,Y be two separable Hilbert spaces,
X CY dense, with continuous injection. Suppose u € L*(0,T; X) with time-derivative
Owu € L*(0,T;Y), then

u € C([0,T]; (X, Y)1/22)

with the a-priori estimate

sup [u(t) | xv), 0 < € (lull a0z, + 10l 7)) 2

t€[0,T]
Proof. A general version of this theorem can be found in Lions and Magenes’s book
[31] (Theorem 1.3.1). The original statement is formulated with the interpolation space
[X,Y]p, described in [31, Definition 1.2.1]. Due to Theorem 15.1 of [31], [X, Y]y is equal
to the interpolation space (X,Y)g 2, derived by the K-Method. O

Theorem 2.18 (Aubin-Lions Lemma). Assume X C B C Y are Banach spaces with
compact respectively continuous embeddings, which we denote by

X——=B and B<=Y.

Let F be a bounded set in LP(0,T; X), where 1 < p < oo, and assume O,F = {0,f : f €
F} is bounded in LY(0,T;Y). Then F is relatively compact in LP(0,T; B).

Proof. The lemma including a proof is contained in Simon’s paper [51], see Corollary 4
therein. O






3 Existence

To incorporate for nonhomogeneous boundary data, in Section 3.1 we firstly start with an
investigation of a “perturbed” Navier-Stokes system. Sections 3.2 and 3.3 are dedicated
to the zero flux case. An extension operator is derived, such that the existence theory
of the perturbed problem is applicable. In Sections 3.4 and 3.5 we consider the Navier-
Stokes equations subject to a non-zero flux. Construction of an extension function — in
line with the present flux — leads to existence of solutions, under an additional smallness
assumption on the boundary data.

3.1 Solving the perturbed Navier-Stokes equations

In this section II denotes a subdomain of the layer IT (which may coincide with II itself).
The perturbed time-periodic Navier-Stokes system reads as follows:

du—vAu+ (u+w)-Vju+ (u-V)w+Vp="f in [0,7] x II,
divu =0 in [0,7] x I,
(NSp)
ul,5=0 for all t € [0,T],

uli—o = uli=r in IT.

This system plays an important role in treatment of the Navier-Stokes equations with
nonhomogeneous boundary condition. Therefore it is in our interest to investigate its
solvability. We need a suitable notion of solution first.

Definition 3.1. Suppose f € L*(0,T; Wolf(ﬁ)’), w € Wh2((0,T) xII) are time-periodic
and divw = 0. A function u € L*(0,T; Wolg(ﬁ)) N L>®(0,T; L2(I0)) is called a weak

solution of the perturbed time-periodic Navier-Stokes equations (NSp), if it satisfies

T
/0 — (u,0) + v (Vu, Vo) + ((u- V)u, )
+ ((u . V)W, QO) + ((W . V)u, QO) dt (31)

—/UT<f7so> di

for all time-periodic test functions ¢ € C*(]0,T); Cgf,(ﬁ)).
Based on this definition, we directly deduce the following:

Corollary 3.2. A weak solution u of (NSp) satisfies dyu € L*(0, T} Wolf(ﬁ)’) and u €
c([o,T7; Wolﬁ(ﬁ)’) Additionally, u is weakly continuous from [0,T] to L2(II).
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Proof. We set g :=f +vAu— (u-V)u— (u-V)w — (w - V)u, which lies in the space
L0, T; Wolg(H)’) To verify this, we evaluate g(t) in v € Wol”f(ﬂ):

(g V)]
<[, V) + v [(Au,v)| + [((u- V)u, v)| + [((u- V)w,v)[ + [((W - V)u, V)|
< [l w2y Ivllwez +v[(Va, V)| + [b(u, u, v)| + [b(u, w, v)] + |b(w, u, V)|

4)
< el gy Ivlwre + v (9l 2 9 2 + el vl
+ 2c|lullpre|wlwrz | viwz
< ¢ (1€l a2y + v ullwre + e + il wiwes ) 1V .

This just means
&) 2y < e (IO g2y + @) oz + @z + [wO)]m2)

and integration over t yields the regularity claimed above. Let ¢ € Wolf(ﬁ) and
h € C§°((0,T)). Especially, h is time-periodic, so the integral identity (3.1) holds (by
approximation of ¢):

T
/0 ~(u(t), @) () dt
T
- /0 [(£(1), &) — (Vu(t), Ve) — ((u(t) - V)u(t), )

This identity can be rewritten as

</OT u(t)h'(t) dt+/0Tg(t)h(t) dt, ¢> —0.

Hence, fOT u(t)h'(t)dt = — fOT g(t)h(t)dt in W&’j(ﬁ)’, meaning that g is the weak deriva-
tive of u:

du=g e LY0,T; W&f(ﬁ)’) .

In particular, u is absolutely continuous (cf. [2, Chap. III.1.2]), which yields u €
C([O,T];W&f(ﬂ)’). Trivially u is weakly continuous from [0,7] to Wolﬁ(l_[)’. We

obtain weak continuity of u from [0,7] to L7(II) by [58, Lemma II1.1.4], since u €
L>=(0,T; LA(11)). O

As stated above a weak solution is determined for each point in time. Still open to
this point though, is the question, whether a solution adopts periodic behavior, which is
demanded in (NSp)4, but not reflected in Definition 3.1 at first glance. In the following
remark we derive an answer to this question.
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Remark. Let u be a weak solution with corresponding data f and w. As seen in Corollary
3.2 the function u is determined pointwise, assuming values in L2 (II). Now, it is in our
interest to prove u(T) = u(0) in L2(II).

Take ¢ € C§%(II) and h € C([0, 7)) with 7(0) = 1 = A(T), furnishing an admissible
test function he for (3.1). Let g be defined as above. The integration by parts formula
from Theorem 30.1 of [6] justifies the following deduction:

T
< 0 u(t)h(t)dt+/o u(t)h (t)dt,cp>
T T
— [ W@ ne) i [ (). ) d
0 0
T T
- / (&(), h(t)p) dt + / (u(t), 1 (t)p) dt
0 0

T T
= / f+rvAu— (u-V)u— (u-V)w — (w-V)u, he) dt+/ (u, W) dt
0 0

T
= [ —(wle)+v(Vu,hVe) + ((u- V)u, hy)

T
+ ((u-V)w, he) + ((w- V)u, he) dt + / (f, hep) dt
0
=0.
By density of Cg5, (IT) in L2(II), the identity above holds for ¢ in this greater function
space. With respect to Lemma I1.2.5.1 in Sohr’s monograph [52] we conclude, that

u(7T) —u(0) must be a gradient field. But at the same time u(7") —u(0) € L2(I). So we
find u(7T) — u(0) = 0 in L2(II) as a consequence of the Helmholtz-Weyl decomposition.

In the following theorem we need to impose some restrictions on the subdomain I1.

Theorem 3.3. Let II C II be a bounded C2-subdomain. Suppose £ € L2(0,T; Wolf(ﬁ)')

is a volume force and w € WH2((0,T) x ﬁ) a divergence-free perturbation, time-periodic
(as in Definition 3.1). Further, let

(v DIW),v) oy | < IV VI,

forallv € Wolz(ﬁ), t € (0,T). Then, there exists at least one solutionu € L*(0, T} Wolg(ﬁ))
of the integral identity (3.1) with a-priori estimate

)y + 191y dr < I

for almost all s € (0,T). Hence, u is, in fact, a weak solution of the perturbed time-
periodic Navier-Stokes equations.

Proof. The proof is divided into five steps. We reduce the problem to finite dimensional
function spaces at first and show existence of time-periodic approximating solutions in
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these spaces. The toughest part is to get sufficient convergence properties for the approx-
imating sequence (or rather a suitable subsequence). In the end, an energy inequality
for the weak solution is developed.

Step 1: Galerkin ansatz.
Let {¢ }ren C L2(II) be the complete orthonormal system composed of eigenvectors of
the Stokes operator (described in Corollary 2.9). In particular, {¢;, } ey is an orthogonal

basis of Wolo?(H) as well. To approximate a solution u of the differential equation we
start with the ansatz

n
U—n(t) - Z a?(t) ¢j .
j=1
To derive the coefficients a?, j=1,...,n, we demand u, to satisfy the equations

 (unl0), 60) + v (Tun(t), o) + (walt) - Vyunlt), &)
F ((nlt)- V)wlt), 1) + (W) - V)ual). 6)

+ > (¢ - VIW(t), @) ai (t) + Y (W(t) - V)y, by )all (t)
=1 =1

= (£(t), &) »

for k =1,...,n. Defining

X(t) = (af (1), ... al(0)"

C(t) :== (Vci&-j + (((i), -V)w(t), ¢j) =+ ((W<t) V)i, ¢j))i,j:1,...,n )
D:R" - R", a+ Z ((qbZ -V)o,, ¢k) a;a;j = (aTDka)k:L..‘,n )
i,j=1 k=1,...n

F(t) = ((E(t) br)) ey >

we see that (3.2) is actually a system of ordinary differential equations, having the form
X'(t)=-Ct)TX(t) — D(X(t)) + F(t). (3.3)
Due to the linear and quadratic occurrence of X,
G(t,X) := —Ct)TX — D(X) + F(t)

satisfies a generalized Lipschitz condition in X on each closed ball in R™ (depending on t).
Further, G(t, X) is measurable with respect to ¢ (for fixed X) and the Lipschitz constant,
in the corresponding estimate, is integrable over [0, 7]. Thus Carathéodory’s existence
theorem (Theorem 1.5.3 in [13] or Theorem 10.XX in [59]) guarantees the existence of
a unique solution X € AC([0,7%]) of (3.3) respectively (3.2) for every prescribed initial
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value Xo = (b7,..., b)) € R". Therefore we set u,, o := ZJ 107 9; for an arbitrary but
fixed vector (b7,...,b') and define u,, based on the corresponding solution

)= aj(t)e

Now, either T% = T, if ||u,(t)||;2 < oo for all ¢t € [0,T], or T* < T, in case of a blow
up limsup,_ 7« [[u,(t)||f2 = oo. The latter case can be excluded, due to an a-priori
estimate, which we derive in the next step.

Step 2: A-priori estimate.
In order to prove boundedness of the term [ju,(t)]|2, + Vfg IV, |3, dr, we multiply
(3.2) by a}(t) and sum over k =1,...,n:

(Opup, uy,) + v (Vuy,, Vu,) + ((un . V)un,un) + ((un . V)W,un) + ((w . V)un,un)
_1d
o s 4 IVl + (0 V)W)
= (f,u,),
where

((un : V)un, un) = b(una Up, un) =0,
b

((w - V)uy, un) =b(w,u,,u,) =0,

due to Lemma 2.11. Hence

1d

53 + v T2 = (£, ua) — (0, 9)w,un)

To estimate the right hand-side of this equation, we examine the last term and obtain
v
[ (- V)w,wa) | < 21V |72
by the assumptions on w. Application of Poincaré’s and Young’s inequality leads to

(£,un) — (0 - V)w,u,) < (£, )|+ | (0 - V)w, )|
Ch+1

< B+ ST + SV
sfufn(wm §HVunHiz,

taking into account that the Poincaré constant Cp is less equal in the layer II.

S

Altogether we conclude
d 2 2
gpllunllze +vlVuaalz. < HfH(Ww (3.4)

for almost all t. Since AC([0,T*]) € WH1(0,T*) and

T* T* n T*
'/ 2w, |2, dt| = / zzaygt al dt <2HXHCOZ/ an dt,
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we are able to integrate over ¢, which yields the energy inequality we were looking for:

t 3 t
a4 [ IVulRadr <2 (1R dr + Ol (39

for all t € [0,T%], at first. Extending the region of integration to [0,7] on the right,
we find that the resulting expression is finite. Thus, we are in a position to exclude a
blow-up of u,, implying T* =T.
Step 3: Time-periodicity of approrimating solutions.

So far we discovered that to each prescribed initial value u, o there exists a solution u,
of (3.2) satisfying the energy inequality (3.5). Our next goal is to find an initial value
to (3.2) giving a time-periodic solution, i.e. u,(7T) = u,,0 = u,(0). Rearranging (3.4)
yields

d
ﬁllunH%z_ HfII(Ww = 2v|[uy |72

Then, by Gronwall’s inequality (Lemma 2.7), we derive

t
3
I (®)]122 < ua(0)]22 e fo 25 4 / 2y 20

< ol 2+ 2 [ IET Gy

< Hun,OH%2 672” 7HfHL2 0,T; Wl 2( ION

Choosing R large enough, i.e.

3 1/2
R:= ((1_6—M)V> VEll 220,722 iy

we obtain [(a(T),...,an(T))| = [[un(T)| 2 < R, if [(b],...,0})] = [[unoll2 < R.
Based on these findings, we define the Poincaré map assigning to each initial condition
u, o or rather (b7,...,b5) the value u,(T") respectively (a}(T),...,an(T)):
P: Br(0) = Br(0), (8,....b0) " = (a (D), ..,al(T)) .

In particular, P is continuous as a composition of continuous functions: The function,
which maps an initial value to its corresponding solution,

P1: R" — C([0, T|;R™) ,
and evaluation of a continuous function at time T,
Py: C([0, T;R™") - R"™, h+ h(T).

Clearly, the latter is continuous and P; is continuous due to continuous dependence of
solutions to the ordinary differential equations (3.2) on the initial value ([13, Theorem
1.5.3]). As pointed out beforehand, P = Py o P; maps the ball of radius R into itself
and, moreover, is continuous. By Brouwer’s fixed-point theorem, P has a fixed point,
meaning
n
u,(0) =u,p = Z bid; = Z a’ =u,(T).

=1
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Henceforth, u,, denotes such a specific (time-periodic) function belonging to a fixed point

Un,0-
We summarize the properties of u,, found so far. By (3.2), u,, satisfies

(O, agy) + v (Vuy, aVey) + ((u, - V)un, agy)

+ ((un - V)W, ady,) + (W V)u,, agy,) (3.6)
- <f7 Od(,bk>
pointwise for each ¥ = 1,...,n and an arbitrary mapping «: [0,7] — R. Continuing

with a smooth and time-periodic function h: [0,7] — R (in place of «), we find

T
/0 — (up, W' pp) + v (Vun, V) + ((wy - V)up, hey,)
+ ((un -V)w, h(j)k) + ((W -V)uy, hqbk) dt (3.7)

T
:/0 (f, hepy,) dt

by integration over t.
Further, the energy inequality (3.5) can now be reformulated as

t 1
A e R = L PR ()

Step 4: Passage to the limit.
According to inequality (3.8), the sequence (Vu,), is bounded in L*(0,T’; L2 2(11)) and
then, by Poincaré’s inequality, (uy,), is bounded in L?(0,T; WO1 2( IT)). Therefore it
exists a subsequence — still denoted by the index n — converging weakly to a limit u in
L%(0,T; W&UQ (II)). This gives reason for the following limit passages in (3.7) (n — 00):

T T
/ (un, W' hy) dt — / (w, Hby) dt. (3.9)
0 0
T T
/ (Vian, AV ) dt — / (Vu, hV e, dt (3.10)
0 0
Recall now that b is continuous and trilinear (see Lemma 2.10). Thus,
T T
/ b(-,w, hep,) dt as well as / b(w,-, hey,) dt
0 0

define linear, continuous functionals on L?(0, T’ Wolj (IT)) — due to boundedness of & in
C([0,T]) — meaning

T
/ ((un - V)W, hepy,) dt—>/ V)w, hey,) dt (3.11)
0
T
/ (W V)un, hepy) dt — / (w-V)u, hey) dt . (3.12)
0 0
Furthermore, (uy)y is bounded in L2(II), since lunollz2 < R, and (uy), is bounded

in L>(0,T; L2(II)), by inequality (3.8). Yet another subsequence satisfies u, 0 — U in
L2(II) — thus also ||ug||;2 < R — and u, = u in L>(0, T; L2(II)).
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Weak convergence, however, does not suffice to pass to the limit in the convective
term ((u, - V)uy, hey,). To gain better convergence results we wish to utilize the Aubin-
Lions Lemma (Theorem 2.18), for which boundedness of the sequence of time-derivatives
(O¢tn)n in L1(0, T; Wy 2(I1)') is needed.

Let v € L*0,T; W01’2(~)). Then v has a Fourier series representation v(z,t) =
> i1 aj(t)d;(x), where a;j(t) = (v(t), ¢;). We define v, := 377 aj¢;. Taking into ac-
count Theorem 2.16, the space L*3(0,T; Wolf(ﬁ)’) is isomorphic to L*(0, T; Wolg(ﬁ))’
Hence, it suffices to show that the sequence of functionals (9yuy), is bounded in the

latter:
T
/ (8tun,v) Clt‘ =
0

T
/ (atun,vn) dt‘
0

‘(atunv >L4(W1 2) L4(W53)

_ ((un . V)w,vn) — ((W . V)un,vn) dt’

(2.5

) T T T
< / |<f,vn)|dt+y/ |(Vun,an)|dt+/ (W - V)V, w,)| dt
0 0 0

T T
+/ (W - V)V, w )\dt+/ (W V) v, uy)| dt
0
<l Lo wrzyy IVnllLzowrzy + VIVl 22 [Vl 22y + o+ Lo + I
< T”“‘Hfllmwgg),)an\|L4<W1,z) + TV ]V | 22y [V | o 2)
+ L+ 1+ 13.

For I, I, I3, by the Gagliardo-Nirenberg (Lemma 2.6) and Lyapunov interpolation
(Lemma 2.3) inequalities, we find

T
Ilg/ /un]2|VVn]dxdt
0 JII

T
< / Il Vvl 2 dt
0

1/2 3 2
e A P
1/2
< V2 a2 oy Va1 350 o V0 22

and
T
Ig+13§2/ /~]un|\an|]W|dtdt

0 11
T

<2 /0 lnll oo Wl | Vvl 2 dt
T 2 2

< /0 (lunlZa + w0 Vvl 2 dt

1/2 3/2
V2 [l 2T 27
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1/2 3/2
b [ I v
1/2 3/2
VRl sy [ IV

1/2 3/2
+ e(TT) || w2 L2/ W3 o1Vl 2 dt

1/2
< V2 a2 o V]l 350 o) [V (22

1/2 3/2
(M) W 2 oy W15ty V0 22

In view of (3.8) we altogether obtain

‘@un, V) LAWE2y LA W)
1/2 3/2

<c (HfHLz((Wl 2y + ’/HvunHL2 L2y + ”unH p)”vun”]ﬁ L?)

1/2
w2 o 15 ng))nvnnwma)
(3-8) 1/2 3/2
< e (112 wazyy + IE qazyy + W2 o) 1w 1250 ) IV a2y

The right-hand side is independent of n, due to the estimate ||vy|[pa12y < [[V[[ L2y,
as a consequence of Parseval’s identity. Hence, (9;uy,)nen is bounded in L*/3(0, T; Wolf (I1)) c
LY0,T; Wy 2(I1)).

The Aubin-Lions Lemma (applied with X = Wolﬁ, B=1I12Y = (Wolz)’ ) gives relative
compactness of (1), in the space L%(0,T; L?,(ﬁ)), implying strong convergence of a
subsequence in the corresponding norm. Coupling Lyapunov’s interpolation inequality
(Lemma 2.3) with a Sobolev embedding we have

V125 g1y < V02 IV oy < €IV aqin IV ey

where v € WH2(IT). Therefore (uy), is converging strongly in L2(0,T; L3(II)) as well.
This allows us to calculate

‘/OT((un.V)un,hqbk) dt/OT((u'V)u, héy) dt'

T
/ b(una Up, h¢k) - b(una u, h¢k) + b(unv u, h¢k) - b(u7 u, h¢k) dt
0

T
/ b(uy,u, —u, hey) + b(u, — u,u, hey) dt‘
0

(25) (T (3.13)
< /0 1b(tn, gt — )| + b — 1, by, w)| 1] it

T
S/O /ﬁ’un||v¢k”un—u|+|un—u|]V¢k||u|dx‘h|dt

T
< [|Allco /0 [ [ L6Vl 2llun = ull s + [[un —ull s [Vl 2 [[all 6 dt

<cl[hllcollgpllwre ([wnll 2wy + [l 2wrzy) lun —alflz2(zs),
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which converges to 0 for n — oo.
Summarizing all convergences of occurring terms in the integral identity leads to the
equation

T
/0 — (w, W' ¢y,) + v (Vu,hVey) + ((u- V)u, hey)
+ ((w- V)w, hepy) + (W V)u, hepy,) dt

T
:/0 (f, hepy,) dt

for all k € N. Let ¢ € C*°([0,T7; C’(‘)’fa(ﬁ)) be time-periodic. The test function ¢ can
be approximated by a sequence (hj3;);, where hy € C°°([0,T]) is time-periodic and
P, € Cg5,(I1). Each 9, then has a representation as countable linear combination of the
base elements ¢;,. In conclusion the identity from above is also valid for ¢:

T
/0 —(u,0ip) + v (Vu, Vo) + ((u- V)u, ) + ((u- V)w, @) + ((w-V)u, ) dt

Z/OT<f7so>dt,

which is just (3.1). Hence, u is a weak solution of the perturbed time-periodic Navier-
Stokes equations.

Step 5: Energy inequality.
In this step we wish to show that (3.8) is valid for the limit u too. To this end, we set
h € C3°((0,T)) to be a non-negative function, multiply (3.8) by h and integrate over

[0, T7:
[ 00 [ty [Cn [ [ v ira
T

1 3
= (1 ! 1_2T> Wiz [ o

Recall that (u,), converges weakly in L?(0,T; Wolg(ﬁ)), implying h'/2u, — h'/?u in

L2(0,T; L2(1I)). By weak lower-semicontinuity of the norms, we infer

n—o0

liminf/ / |uy, (t) |2 dx dt = hmlnf ||hl/2 un||L2(0TL2(H))

1/2
> Hh / u”LQ(OTL2(H))

= / h(t)/ lu(t)|? dx dt
0 1
and, taking into account Fatou’s Lemma,

T t
liminf/ h(t)/ /~\Vun\2dxd7dt2/ <hm1nf/ / Vu,|? dxd7>
T
z/ h(t)/ /JVu\dedet.
0 0 JII
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Passing to the limes inferior on both sides, we obtain

T T t
/ h/~\u|2d:cdt+1// h/ ﬁ\vqudxdrdt
0 11 0 0 JII
<<1+1>3||fy - /Thdt
= 1_e—2T ), L2(Wy'2)) 0 :

As an explicit test function we choose the standard mollifier (in time) h = 7. (cf. [9,
§C.4]) centered in s € (0,7T), where € > 0 such that [s —e,s 4 ¢] C [0,7]. Sending ¢ to
0, we conclude

s 1
2 2
s +v [ IValedr < (14 1 ) 2 1602 ey,

for almost all s € (0,7). O
The next step is to “extend” the previous result to the whole domain II.

Theorem 3.4. Let f € L?(0,T; W&f(ﬂ)’) and w € WH2((0,T) x II) be time-periodic.
Assume the perturbation w is solenoidal in II and satisfies the inequality

(v DIW). V) | < 1YV Iy

forallv € Wol”az(ﬂ), t € (0,T). Then, there exists a weak solutionu € L%(0, T Wolﬁ(ﬂ))ﬂ
L>(0,T; LE(T1)) of the perturbed time-periodic Navier-Stokes equations fulfilling the a-
priort estimate

”u( HL2 + V/ HquL2(H dr < c ”fHL2(0T 01773(1-[))/) (314)

for almost all s € (0,T).

Proof. The proof is carried out by an “invading domains” approach. We consider an
ascending sequence of C%-subdomains, II; C Iy C --- C II, such that Uken Hxe = 11,
and define the operator £ = & : Wol”j (Ilg) — Wolﬁ (IT), which extends a function by zero
outside of II;. Note that the operator £ is an isometry.

Step 1: Solutions in the subdomains Il.
Trivially, we get the following for all £ € N:

w € L*(0, T; WY(10y)), 9yw € L*(0,T; L*(T1;)), divw =0 a.e. in Tl

as well as

(fi(t),v) = (£(t), E(v)) .



32 Chapter 3. Existence

Hence, fj(t) is linear and continuous, since
(€ (8), V)| = [{E(0), VDT < IE@ w2y 1€V w2 my = IEO w2 oy 1V w2y -

1,2
Therefore also f;, € L?(0, T; Wy, (Ig)") and kaHLQ(WOI’,j(Hk),) < ”fHL?(WOlﬁ(H)')‘
Now we are in a position to apply Theorem 3.3. For each subdomain II;, we obtain a
weak solution 1, € L?(0,T; Wolg(ﬂk)) satisfying the inequality

”ﬁk(S)H%Q(Hk) + V/O HVﬁkH%Q(Hk) dr <o kaHiQ(WOl’j(Hk)/)

< <o HinQ(WOl’f(H)’) )

(3.15)

where ¢g := % (1 + Hﬁ) Setting uy := £(0y), gives us a sequence (uy)ken in the
space L%(0,T; Wolf(l'[)) The estimate (3.15) holds for uy too, with II in place of II.
By the Poincaré inequality, we find that (uy)j is bounded in L%(0, T WOIU2 (I)). Hence,
it is possible to extract a subsequence, which is denoted by the same index, converging
weakly in L?(0,T; W010_2(H)) and weak-star in L>°(0,T; L2(IT)) to a function u.

Step 2: Developing convergence properties.
Let ¢y € C([0,T]; C§5,(Ily)) be time-periodic, where N € N is arbitrary (but fixed
in this step). For £ > N we deduce — notice the change of domains in the first and last
step:

/OT — (uk,BtcpN)Lz(HN) + v (Vuy, V‘PN)LZ(HN) + ((uk -V)ug, ‘PN)LQ(HN)
+ (e VIW, 08) 12 gy T (W V)W o) 2y, A
— /OT — (w, %(EpnN)) 2,y + v (Vug, V(IEPN)) 2y
+ ((uy, - V)uk75<PN)L2(Hk) + (- V)W’SLPN)LQ(Hk) (3.16)
+ ((w - V)uk,&PN)p(nk) dt

T
- /0 B Eendwz iy w2an) 4

T
= /0 (E Eonhwg 2any wyzan 94
since uy, is a weak solution with respect to II. Further, from (3.15) we get (k > N)

”uk”%"o(LQ(HN)) +v Hvuk‘H%Q(le?(HN)) = ||uk||%oo(L2(nk)) +v ’\VukH%2(W1,2(nk)) (3.17)
< o €12 w221y '

implying that yet another subsequence (ul); converges weakly in L2(0,7; W2(Ily)),
where the limit is just u|m, .

Our goal is to show that a subsequence of (u} ), is strongly convergent in L2(0, T’; L3(Ily ).
To this end we want to apply, as before, the Aubin-Lions Lemma (Theorem 2.18) and
need to verify that (pu)y ) is bounded in L*/3(0, T} W&”f(ﬂ ~)"), which is isomorphic to
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L40, T; Wolﬁ(HN))’. Let @y € C§°((0,T); C3%,(Ily)). We examine dyuj in the dual
space, as a linear functional:

N -
’ (O’ 9°N>L4(W5;3(HN>>',L4<W&:3<HN>> ‘
N -
= ‘_ (uy ’3’f‘PN>L4<W&;3(HN>>',L4(W&:3<HN>>‘
T
= ‘_/ (uk aatSON)L2( ~) dt

(3.16) N
‘/ f,€pnN) w2y, w, (H)—I/(Vuév,chN)B(HN)
(

- (uk ’ V)uk ’¢N)L2(HN) - ((u{c\f ’ V)W, ¢N)L2(HN)

— (WD), @) o |

HfHL2(W01:§(H)/)||¢NHL2(W1’2(HN)) + V”VUfCVHL?(L?(HN)) "V¢N|’L2(L2(HN))
T N T N

+/0 ‘((u V)@n,up), ‘dt+/ ‘((uk 'V)fDNaW)p(Hw)‘ dt

T
+/0 ’((w-va,ukN)Lg(HN)‘ dt .

From here on the arguments follow the exact same lines as in the proof of Theorem 3.3
(step 4). Observe that, for the application of the Gagliardo-Nirenberg inequality, we
must consider uév in IIj; (to guarantee zero trace), meaning that in the treatment of I,
Iy and I3 the term HukN||L4(HN) needs to be estimated to ”U‘iVHL‘l(Hk,) directly. To obtain
an estimate independent of the subdomain II, we further have to pay attention to the
Sobolev embedding of w. Namely [[w| o1y < Wz < c(ID)||wllywr2¢m), in that
specific order. Eventually this yields (by density of the test functions):

||8tuk ||L4 L2 (1))

< e(ID) (||f\|L2 wizany + VIVl |2z

1/2 3/2 1/2
152 o I 15 oy + W2 gy 90552y )
(317) 1/2 3/2
< (D) (11 a2 anyy + Itz + 19012 gy 19 oz ) -

Now, due to the Lemma of Aubin-Lions, there is a subsequence, converging strongly in
L?(0,T; L3(Iy)). Therefore, all terms in (3.16) converge to the desired limits,

T
/o (u ) L2(Ty dt_>/ W oN) 2y 4t
T
[ Faon) gy e [ Fuonia, i
T T
| Vowaon) g = [ (0 V)wion) g

T T
/0 (<W-V)ug7<pN)L2<nN>dt%/o (W - V) 01) L2y O
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T T

for ¢, from above, which can be justified as in step 4 of the proof of Theorem 3.3 (see
(3.9),(3.10),(3.11),(3.12), (3.13)).

Step 3: Passage to the limit for an appropriate subsequence.

Starting with N = 1, we iteratively find, for each N € N, a subsequence with the
convergence properties shown above, allowing us to select a further subsequence (u,),
consisting of the diagonal elements u].

Let ¢ € C°°([0,T]; Cg%,(I)) be a time-periodic test function (on the whole domain
IT). In particular, ¢ is compactly supported in [0,7] x II, meaning that there exists
an integer N € N such that suppe C [0,7] x IIy. Exploiting now all established
convergence properties, we conclude

T
/0 — (0, 0i0) oy + ¥ (VU, V) oy + ((u- V)u, ) L2(I1)

+ ((u-V)w, ‘P)L2(n) +((w-V)u, ‘P)LQ(H) dt

T
= /0 — (0, 06p) 211y + ¥ (VU V) o,y + (- V)W) oy

+ ((u-V)w, cp)LQ(HN) + ((w-V)u, ¢)L2(HN) dt
T
= lim — (up, at(P)LQ(HN) +v (Vuy, VS")L2(HN) + ((un - V)uy, ‘P)LQ(HN)

4 ((un . V)W, (,D)LQ(HN) + ((W . V)Una ‘P)LQ(HN) dt

T
(3.16)
= /0 <f, ('0>W01’3(H)’ Wl’Q(H) dt .

20,0

Thereby, u satisfies the integral identity (3.1) regarding the whole layer domain II. Also
ue L*0,T; Wolf(l_[)) N L>(0,T; L2(I1)), meaning that u in fact is a weak solution.

Step 4: Energy inequality.
At last, we need to verify the energy inequality for u. As noted before, estimate (3.15)
is valid for u,, with II instead of II,, on the left-hand side. With this inequality at hand
we are able to reason in the same way as before, in step 5 of the preceding proof, to get

2 ’ 2 < 2
Hu(S)HL2(H) + V/O ||quL2(H) dr < ¢o HfHL2(0,T;(W(},‘f(H))’) ’

for almost all s € (0,7). This completes the proof. O

3.2 A solenoidal extension operator

First we prove a statement, which is essential for our derivation of a solenoidal extension
operator in Lemma 3.6.

Lemma 3.5. Let 2 be a bounded domain and suppose v € WOIUQ(Q) Then, there exists
a function w € W22(Q) such that

v=VXxw
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almost everywhere. Furthermore, the following estimate holds:
[wllw2z2@) < cllviiwrzg)

for any subdomain € with ¥ C Q. The constant ¢ in the inequality depends only on
and Q.

Proof. By ®(z) := —ﬁﬁ we denote the fundamental solution of Laplace’s equation.

Consider ¢ € CF5, () at first. The convolution

W)= (o) = [ D= 1)) dy

:/qum_y)(p(y) dy
- / B(y)p(z — y) dy
RS

defines a classical solution to Poisson’s equation —AW = ¢ in ). Notice that ¢ was
implicitly extended to R3. We also find that

divW(z) = /]R3 O(y) divep(zr —y)dy =0

for all x € Q). Set w :=V x W. Then, we obtain
Vxw(z)=Vx (VxW)(z)=V(divW)(z) - AW (z) = p(z), x €.
The stated inequality follows from potential theory. Since ® and 0;® are weakly singular

and 0;0;® is a singular integral kernel, the Theorems of Sobolev and Calderén-Zygmund
(cf. [11, Theorems I1.11.2, 11.11.3, I11.11.4] or [24, pp. 21f]) contain the desired estimate:

Let ' be an arbitrary subdomain of €, €/ C €, then
[Wllw22) = IV X W22y < cl[Wllwsz @y < (€, Q) lellwizg) -

Due to density, we find a sequence (¢,,), C C§%(€2) converging to v in Wolf (2). Passage
to the limit leads to

IWllw220) < (€, Q) V]2
and
V X W =1V.

O]

Our next lemma was inspired by Lemma I1X.4.2 of Galdi’s monograph [11], con-
structing a - in some sense - controllable extension of a function from the trace space
W1/22(911) having zero flux.
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Lemma 3.6. Let IT C R? be the layer domain and a € W/22(911) with bounded support
suppa C I'r,, Ro > 0, and fana -ndS = 0. Let n > 0, then there exists an extension
v =v(n) € WLII) of a fulfilling

divv =0, [vlilwrza < cllallyrrzz@m,  suppv C Cryta

where ¢ depends on Ry only and A > @ In particular, for all u € Wolﬁ(ﬂ),
1/2
([ e as) ™ <l Va0
implying

<7 HaHWUQ’?(aH)”V“H%Q(H) :

/H(u'V)V-ud:r

The extension operator

for D(Ey g,) = {a € WY22(91I) : suppa C Tg, , Jopa-ndS =0}, is linear and con-
tinuous.

Remark. The domain D(E,, g,) of E, g, is a closed subspace of W'/%2(91I), thus it is a
Banach space as well.

Proof. At first we make use of an extension operator from Necas’s book [38, Lemma 2.5.6]
coupled with a suitable partition of unity over OII, to obtain the linear and continuous
operator

Eo: WY22(511) — Wh2(11) .
Setting vy := Ep(a), we find

HVOHWI’Q(H) S o ||a||W1/2,2(8H)

and the support of v lies in Cr,42 UI'g,+2. Note that the constant ¢y in the inequality
depends on I'g, only.

The next step is to find a solenoidal vector field having the same trace as vg. To this
end we employ the linear, continuous operator resulting from Bogovskii’s formula (see [7,
Lemma 1] or [11, Lemma II1.3.1]) to the scalar function divvg. The cylinder Cg,+2 is a
star-like, Lipschitz domain and div vy € L2(C Ro+2)- The requirement fCR " divvgdr =
0 still needs to be checked. This, however, is a direct consequence of the §ssumptions on
a, due to Gauss’s Theorem. Therefore, the Lemma yields a function v; € VVO1 ’2(0 Ro+2)
satisfying

divv; = divvg
and, further,

IVillwrz(cp, ) < C1lldivvollzzcg, o) < E1livollwrzcg, )
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with ¢ = ¢ (CRry+2). The solenoidal vector field we were looking for is given by v :=
vo — v1 and, hence,

IVillwrzer, 2) < IVollwrzer, o) + IVillwrzicr, ) < (L4 81) IVollwrz g, 40 -

=:ic1
Let Ro+ YA < Ry < Ry + A. Since

(Ro + =((Ro+2)— 2+@)2

— (Ro +2)% + 214 (Ry + 2) + (VAI=4)?
> (Ro >+4f4 (V57
=(R0+2)

= max{|z — (0,0,1)|* : 2 € Cryy2},

we have Cp,42 C Bg, = Bg, ((0,0,3)). Next, we apply Corollary I11.3.1 of [11] to extend
the solenoidal function vy, receiving a function vy € I/VO1 ’2(B R,), V2 = v1 in CRyto, with

diVVg =0 in §R1 y HV2HW1’2(§R1) < cy HV1HW1,2(CRD+2) 5

Co = CQ(CR0+27 ERl)' ~ ~
Redefine vy as the extension by 0 from Bg, to Bg,, where By < Ry < Ro + A and
choose Ry < R < Rs. Then, vy € Wolﬁ(BRz) and by Lemma 3.5 we get w € W22(Bg,)

satisfying vo = V x w in B R, and
IWllw22(e) = e l[vellye g, ) = e lIvellyia gy,

for any domain Q' with Q' C §R27 c3 = c;;(Q’,éRz). Let w := 0 outside of ERQ, such
that w: R? — R3.

To get hold of the integral estimate we need a cut-off function limiting the extension
to a strip near the boundary of II. Therefore, we define ¢.: II — [0,1], € > 0, as the
cut-off function from Lemma II1.6.2 of [11], being a type of regularized distance with
respect to the boundary OII. In particular,

Ye(x) =1 for o(z) < ﬁed/s, Ye(x) =0 for 6(x) > 2e /¢

and |V (x)] < (g%va), where 6(z) = dist(z, OIT). Furthermore, ). € C(II). Let ¢ be
another smooth cut-off function fulfilling 0 < ¢ <1,

¢(x)=1 for € Bp,, ¢(x)=0 for x€R3\§R/2.

Since ¢ € C§°(R?), the gradient V¢ is bounded, so |[V¢| < M for some constant M =
M(Bpy,) > 0.

Now we are in a position to the define the actual extension function and verify its
stated properties. Set

vo: T =R, v.(x):=V x (V- pw) ().
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T T
1 1
| |
: CR0+2 :
| |
| |
| |
1 1

Figure 3.1: Stepwise expansion of domains in a 2D cross-section.

By definition we obtain directly:
ve e WH(ID), divv. =0, vesn=a
and
supp ve C ﬁﬂéRé CC’iR2 C m

Let u e Wolf(H) We notice

/(u-V)vE-ud:c / (u-V)v.-ude
1 Chry

/ (u-V)u-v.dz
Chr,

/H(u-V)u-vgd:E

1/2
< IVl 2 ( / |u12|v512dx)

and, hence, it suffices to investigate an appropriate estimate for [i;|ul?|v|*dz. Let

(2.5)
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z€ll, and I, :=1I, py == {z €Il : 0(z) < 2¢1/51 N ER%- At first we consider

Ve(@)] = [V X (¢ew) |
< V(thed) x W] + [0 (V x W)
< V(o) l[w] + [¢e] |l Vw]

< |V ||| W] + [ ][Vl w] + 9| |¢] [ Vw|
{“%WH+WMM+WM@

<

0,

Thereby, we infer

1/2
(/"hﬂﬂv42dx)
II
1/2

=</ mmwﬁm)

II.

5 1/2

< </ (S22 w| + MIw| + [V |u]2da:)

s

) 1/2
<c / (%2)" jwPpuPar) e / (jwf2 + |Vw}?) Ju? do
m N0 .

1/2
< chge </ |W||%/v2’2(n5)|“5_1’2d$>
.

1/2

& (IWlBsry + VW12 ) allzeqr,

< chne [Wllypaagp,, ) 100 2 + VWl sy llallw2q)
2

< Chge HaHW1/22 (Try) HVUHL2 + ¢ |11, ’1/12 HVWHL4 (TIe) a2 2(1T)

< ckae Hanl/z,z(aH) Hvu||L2(H)

) L N\1/12
+c (2 . 7TR22 - 2e 1/5) HWHW2,2(§R,) HVUHLQ(H)
2

< Cellallyr/zzm IVullz2a ,

due to the Sobolev embeddings W22(Il.) «— C°(II.) and W?22(Il.

the elementary estimate — - < In(12¢). Moreover,

||115—1||%2(n)

</ |ui|2(52d$+/ lui|* 6~ dm)
Iy

I Mw NgE

< 2[|Vul72

(/2/ il ® (1 — 2) "2 dz d(y1,y2) //|Uz|2 ZdZd(yl,y2)>
R
3
§2Z //|3zui|2dzd(y1,y2)+/ / |0,u;|* dz d(y1, yo)
-1 \/R? /3 Rz Jo

— WH4(I1,), and
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is a consequence of Hardy’s inequality
[e.9] o
[ 1P as <2 [T If)Pds, £ e CRR),
0 0

since u € T/VO1 ’Q(H). The subdomains II; and II_ above denote the upper respectively
the lower half of II. The constant C' depends only on Bp,, BR'z’ Bpr,, Cry+2, I'r, and
Ry, RL, Ry were successively derived from Ry. So, we essentially find

C= C(§R27 ER’Qa ERNCRoJr?? FRO) = C(RU) .

Fixing g9 < &, we altogether conclude:

1/2
< [Vallzm ( / |u\2|vaor2da:>

Ui
< |[Vul[ 2 C'6Ha”vw/w(an)||V11||L2(H)

/ (u-V)vg, -ude
1

= 1 [|ally/22m I Vall72m -

To justify continuity of the operator Ej, gr,, we prove that ||ve,|ly1.2(m) can be esti-
mated by ||ally1/2.2(9m):

[Veollwrzan = Ve w2,

= IV X (¥eooW) (w121, )
<V (Wed) X Wiz, + V2@ (V x W)llwrzq,)

< cllpedlicaany (IWwlwaany) + IVWlweaq.,) )
< CHWHW2,2(§R,2)
S CC3CaC1 () HaHW1/2,2(3H) .

Thus, v := v, is an extension with the asserted properties. ]

3.3 Existence in the case of zero flux

With the preparatory results of Sections 3.1 and 3.2 we are now able to investigate the
time-periodic Navier-Stokes equations with inhomogeneous boundary condition:

du—vAu+ (u-Vju+Vp=_~ in [0,7] x IT,
divu=0 in [0,7] x IT,
ulr, =a for all t € [0,77, (NShe)
u|8H\FRO =0 for all t € [0,7T7,
uli—o = uli=r inII.

For the definition of a corresponding weak solution, we need an appropriate extension
of the boundary value a, which is achieved with the help of Lemma 3.6.
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Let a be a T-periodic function in W12(0,T7; W/22(dII)). We suppose that a has
bounded support suppa(t) C I'p, for all ¢t € [0,7], Ry > 0, and satisfies the zero flux
condition:

F(t)=— /an a(t) - ndS=0 faa.t, (3.18)

with n the unit outer normal vector to 9II. Due to a Sobolev-type embedding (see
Theorem 2.17, or [48, Lemma, 7.1] for a direct version), we find a € C([0, T]; W/>2(d11)).
Hence,

o = [lall oo, rpw1/22(0m) = tes[lélgr] la()[lw1/2.20m) < oo

Let E, r, be the extension operator of Lemma 3.6 with 1 set to ;. We define Ag(t) :=
Ey Ry (a(t)) for all ¢ € [0,T7], implying [|Ao(t)llwr2qm < clla(®)|lwi/22(om)- Thereby, Ag
has the following properties:

Ap € L*(0, T; WH(IT)), divAg(t) =0 in T, suppAg C Cryrx,

for A > YIT and

/ (v-V)Aq(t) - vdr
I

14 1%
< Ena(t)HWl/?,Q(aH)HVVH%F(H) < ZHVVH%Z(H)

for all v € Wolﬁ(ﬂ), t € [0,T]. Obviously Ay is T-periodic too. Regularity of the
time-derivative 0;A( follows due to Lemma 2.15, exploiting linearity and continuity of

T
_/0 En,Ro ) ' dt = / E,Ro acp
ano< /0 ap dt)
ol [ @)

T
_ /0 Ey ro (912) ) dt

T
= / EH,RO (8ta)<p dt
0

En Ry

for all ¢ € C3°((0,T)), therefore 0;Ag = 0y g, (a) = Ey ry(0ra). We conclude 0; A €
L2(0,T; WHA(ID)) as well as [|0;Ao(t) |2 < ¢ [0wa(t) lly1/22(om)-
With this explicit extension at hand, we note:

Definition 3.7. Let f € L%*(0,T; W&f(ﬂ)’) be T-periodic and Ay the extension of a
derived above. We call a function u € L*(0,T; W12(I)) a weak solution of the inhomo-
geneous Navier-Stokes equations (NSy.) with zero fluz, if

u— Ag € L*(0, T; Wy 2(IT))
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and if the integral identity

T T
/ —(u,0ip) + v (Vu, V) + ((u- V)u, @) dt = / (f, ) dt
0 0

is satisfied for all time-periodic test functions ¢ € C*([0, T]; C§%,(I1)).
Now, this notion enables us to tackle the question of existence.
Theorem 3.8. Let f € L2(0,T; Wy'2(I1)') anda € W'2(0, T; WY/22(011)) be T-periodic,

Ay € WH2(0,T; WE2(TD)) the extension of a. Then, there exists a weak solution u of
the time-periodic Navier-Stokes equations (NSp.) satisfying an a-priori estimate:

1l oo 220y + VIVl 21201y

<c (Hinz(WOli(H)/) + ||aHI2/Vl’2(W1/2’2(8H)) + ||a||;l/V1a2(W1/272(8H))> .

Proof. We reformulate the Navier-Stokes equations by demanding u = u* + Ay, which
leads to the perturbed system

u* — vAu* + ((u* + Ag) - V)u* + (u* - V)Ag + Vp =£* in [0,7] x IT,
divu* = 0 in [0, 7] x I,
ulogn =0 for all t € [0,77,

u*li=o = u*jy=r inlI,

with f* = f—0;Ag+vAAp—(Ap-V)Ay. We examine the functionals AAg(t): W&f (I1) —
R and (Ag - V)Ag(t): Wy (II) — R, where

(AAy,v) = —/ VAy-Vvdr,
i

<(A0 . V)Ao,V> = ((A() : V)Ao, V) = /H(AQ . V)AO -vdzr.

Since

[AA(t) = sup  [(AAg(t), V)]

IVIly1,2=1

sup VAol L2 [V VI 2y

||VHW1,2:1
< Ao (®)llwr2am

< clfa(t) /2o

lwe2any

IN

it follows

||AA0”L2(W(};3(H)/) <c HaHLQ(W1/2»2(8H)) :
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Further, we calculate

(A0 V) A0 lyragy = s |{(Ag- V) Ao(t),v)]

vily1,2=1

(2.5)

/H (Ao(t) - V) - Ag(t) da

sup
[Vllyy1,2=1

< sup / |[Ao(t)||VV]|Ap(t)| dx
W172:1 11

vl

< sup HAO(t)H%‘l(H)HVVHLQ(H)

vlly1,2=1
< ¢ Ao(t) 312
< clal) I m

giving us the estimate
(Ao - V)AOHLz(WO{g(H)/) <c ||a‘|%4(W1/2,2(aH)) <c Ha”%vlz(wl/zz(an)) .

Therefore f* € L?(0,T; W&’UQ(H)’ ). Checking closely, we find that all assumptions of
Theorem 3.4 are satisfied and receive a weak solution

u* € L2(0,T; Wy (1)) N L(0, T; L2 (11))

of the perturbed Navier-Stokes equations. Then u = u* + Ay is a weak solution of the
inhomogeneous problem, as described in Definition 3.7.

With the weak solution u* of the perturbed system, we also obtain inequality (3.14).
Thereby, we conclude

HU*”%oo(m(H)) + VHVH*H%?(P(H))
< o I 12 2y
= CO(”fHLZ(w&,ﬁ(Hw 10 Aoll L2 w2y + ¥ 1AMl a2y
2
+11(A0- ) Aol 2 2y

< C<||fHL2(W01’g(H)/) + 10: Aol 2wr2qmy) + v llall L2 w22 amy)

+ a3 2220y )

<c <||f’iQ(W3:U2(H)/) + ||a||12/1/1,2(W1/2,2(3H)) + ”a||é[/1’2(W1/272(8H))>
leading to the a-priori estimate
[l Foe 22y + VIVl 2 (2 my)

<2 (HU*H%w(m(n)) + VHVH*H%?(LQ(H))) + 2| Ao Foe 120y + 2V [V Aoll72(12(my)

<c <||f||i2(W&’3(H)’) + ”a||12/[/1v2(W1/272(8H)) + Ha”;lj[/lz(wl/Q,Q(BH))) .
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3.4 A flux-carrying extension

Our next goal is to find an appropriate flux driver function to compensate a non-zero
balance of flow through the surface 0Il. The flux driver A g we construct is an extension
of the boundary value a € L?(0,T; W3/22(91I)) N W2(0, T; W1/22(91I)) with support
in I'p, and consists of three components.

The first one being the function D, which describes the asymptotic behavior we assume
a solution to have and thereby in particular transports the flux

F(t):—/ana(t)-ndS.

In [42] Pileckas and Specovius-Neugebauer develop an asymptotic expansion of a solution
to the time-periodic Stokes system in II. Therein, the flux-carrying term is identified to
be

T
D(t,2) = (w7 (t,2) V,PO(y),0) |

where P(%~) is the harmonic function P(*:)(y) = — 5 In7, hence vV, PO (y) = —%T%,
and w(®7) is part of the unique solution (w(o’_), 3(0’_)) of the inverse heat equation
ow — 0*w = s in [0,7] x (0,1),
w‘Z:0=w|Z:1 =0 in [O,T],
wle=0 = wl=r in (0,1),
1
/ wdz =F in [0,77,
0

for prescribed F. This problem is thoroughly investigated by Galdi and Robertson in
[10]. Especially, the following a-priori estimate holds:

T
w3 o 20,1 + / 100w @201 + 10200004y + 15O dt
. 0 (3.19)
<c [ PP IF P
0

We collect some properties of D. At first, as desired, it carries the flux, meaning f.a.a. ¢

T T
D(t) nds= [ (w7 (t,2)v,PO(y),0) - (2,2 0) dr
[ b0y [, (00w 06.0) - (7. 500)
1 2 4 2
__1 0,-) Y1 T Y3
5 SRw (t, 2) 73 dx
! /1 O, 2)d 2W1Rd0
= —— wr’ z z ey
2w 0 ’ 0 R
=—F(t).

Furthermore, D|gp = 0 in [0, 7] and
T T
8D — AD = (9,uw®™) — 92w(©)) (VyP(O’_), 0) — () <AyvyP<Ov—>, 0)
_ (s0y, PO, O>T (3.20)

— 5(07_)VIP(07_) ,
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as well as
divD =8, (w9, PO + 9y, (w©9,,PO)
— w(o’f)AyP(Orf)
=0
in [0,7] x II.

The next component is an extension of a from OII to II. Let Fy be the linear, contin-
uous extension operator W3/2:2(9I1) — W22(II) based on Lemma 2.5.6 of Necas’s book
[38] combined with a partition of unity corresponding to squares covering I', D supp(a).
We have the pointwise estimate

1Eo(a(t)llw22am) < e(T'ro ) |a(t)llyws/2.2(am) (3.21)

for almost all ¢ and the support of Ey(a) is contained in C'r,12. The explicit construction
of the extension allows for an additional estimate:

1Eo(a(t)llwr2am) < e(T'ro)a(®)llyw1/2.2(om) - (3.22)

Due to linearity and continuity, we further conclude 0;Ep(a) = Ep(d:a) (cf. Section 3.3
for an analogous derivation of the time derivative of Ag). Hence,

10 Eo(a(t) lwzm < (Try) 191220 - (3.23)

Altogether this furnishes: Eg(a) € L2(0,T; W22(II)) N W2(0, T; WL2(11)).
The purpose of the third component is to establish a divergence-free extension. Con-
sider the differential equation

div(g) = le(Eo(a)) - VX -D in CRQ y

3.24
8locg, =0, (3.24)

for almost all ¢, where x is a smooth truncation function in II depending on y only:
X=0 for |y <1 and x =0 for |y| > Ry,

with Ry > 1 large enough to allow |Vx| < 1 and Ry > max(Ry + 2, R;). The domain
CR, is star-like and Lipschitz. Based on Bogovskii’s formula a continuous, linear solution
operator to (3.24) is defined, mapping Wol’2(C’Rz) N L3(CR,) to Wg’z(CRQ) as well as
L3(CRr,) — WOI’Q(CRZ) (cf. Lemma II1.3.1 and Remark I11.3.2 in [11]), where L3(Cg,) :=
{f € L*(CR,) : fCR2 f =0}. Since

/ div(Ep(a)) — Vx -Ddz = / div (Eo(a) — xD) dx
CRr, Cr,

:/ a-ndS — D -ndS
oIl Sk,

=—-F+F
=0,
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we obtain a solution g(t) € WO2 2(CR,) for almost all ¢. Continuity implies
Igllw22(c,) < clldiv(Eo(a)) — VX - Dllwizcy,)

< ¢ (IEo(@)llwaaqm + IDllwr2ica \co) (3.25)

(3.21)
<" e (llallwarzaom + DIz, \cn))
and
Igllwr2(cp,) < clldiv(Eo(a)) = Vx - Dllr2(cp,)

< ¢ (I1Bo@) lwszan + 1Dl 20 \c1)) (3.26)
(3.22)
<" ¢ (Jlallwrr22om + 1Dl 2icm \cn))

for almost all ¢. Further, linearity and continuity of the corresponding operator yield
10egllwr2(cp,) < cll0:(div(Eo(a)) — Vx - D)l12(cp,)

< ¢ (10 Eo(@) lwam + 10D 2(ci ) )
(3.23)
§ C <||8ta||W1/2,z(3H) + ||8tD||L2(CR1\Cl)) fa.a. t.

Altogether we find g € L%(0, T} W0272(C'RQ)) NW12(0,T; Wol’z(CRQ)) and extend g to the
whole domain IT (without changing notation) by setting g = 0 in II\Cg,. In conclusion,

g € L*(0, T; W>*(1I)) n Wh2(0,T; W2(1T)),

the support is bounded, supp g C Cr,, and zero trace on the boundary OII is preserved.
Now, we are in a position to define the actual flux-driving extension

Ap = FEp(a) - xD - g,

where x is the truncating function as before. In the following lemma we summarize
properties of Ap.

Lemma 3.9. The function Ap is a solenoidal extension of a € L?(0,T; W?/22(01I)) N
W2(0,T; W/22(011)) with supp(a) C T'g,, carrying the fluz:

Ap-ndS=F
Sgr
for large R > 0. Additionally,

Ap € L2(0,T; W2A(ID) N W30, T; Ly, (I1))

loc

and, in particular, (Ap - V)Ar € L*(0,T; L*(I1)). For v € Wolg(ﬂ) there holds the
estimate

/H(v-V)AF-vd:ﬁ < Cap iV faa t, (3.27)

with k= |ally120rwr220m) + (VIn(R1) + D|[Fllwizor) and Ca, depending on
Ry, R1, Ry only.
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Proof. The properties Ar|srr = a and div Ap = 0 are clear by construction. Let R > Rs.
Then, since supports of Eyp(a) and g are contained in Cg,, we find

Ar-ndS = —D-ndS=F.
SR SR

Concerning the regularity, we recall
Ey(a), g € L*(0,T; W**(I1)) N W2(0, T WH(II)) |

hence investigation of xD is sufficient for this part of the assertion. Since, by definition,
D = (w®)v, P02 0)T with

w %) e L2(0,T; W22(0,1)) n Wh2(0,T; L?(0,1)) N L>=(0,T; Wh2(0, 1)),

we can focus on V, PO (y) = —ﬁ— The gradient of P(0 =) asymptotically behaves

like 1 - and the second and third derivatives decline like 2 respectively L for ly| — oo.
The singularity in y = 0 gets cut out by x, leading to the conclusion that xD, VxD,
V2xD and 9;xD are locally squaresummable (in space) for almost all ¢. Therefore,

XD € L*(0, T; Wi (1)) N WH(0,T; L, (1))

and notice, in particular: YD € L*(0,T; W,22(11)).

loc

Next, we analyze (A - V)Ap. Denote V := Ep(a) — g and observe
(Ap -V Ap=(V-V)V = (V- V)xD - (xD- V)V + (xD - V)xD. (3.28)

Due to bounded support of V, the first three terms in (3.28) are L2(0,7T; L?(II))-
functions. The last term requires a separate treatment. We deduce the estimate

T
/ / |(xD - V)XD|2dxdt</ / IxD?|V(xD)|? dz dt
0 CRI\CI CRI\CI
T 2 2
S/O IXDIZsn o) IV ODIZa (g, \) O

T
< C/O ||XDHI2/VL2(CR1\C’1)HXDH%V?,Q(CRl\Cl) dt
<c HXDH%oo(Ww(ch\cl)) HXDH%z(Ww(ch\Cl))

and pointwise there holds the following

1
(D -V)D| < ||V, D] = [u® |V, PO V; PO = efu®) P

These two combined yield

T
/ / |(xD - V)xD|? dz dt
0 11

T
—/ / |(xD - V)XD2da:dt+/ / V)D|? dx dt
0 JCgr\C1 H\CR1

<c HXDH%oo(WLZ(ch\ol)) HXD||L2(W272(CR1\01))
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T 1
+/ / c[w(o’_)\4—6 dx dt
0 JII\Cg, r

2 2
< XDl zee w1.2(0n, \or IXPllz2r22(08,\01))

T 1 27 % q
+c/ / (@) 4 dzdt/ / —rdrdf
o Jo 0 R T

T _
=c HXDH%OO(WLQ(C’Rl\C’l))HXD”%Q(WQ»Q(C’Rl\C&)) + CR—#Hw(O’ N2y

< 00,
meaning (xD - V)xD € L%(0, T; L*(IT)).

To verify the last assertion, we need the following estimates: For almost all ¢,

1
DOm0 = / WP [ 9,PORay

1<|y|I<R1

2 R1
— H (0,— ”L2 0.1) Td?“ do (3.29)
4

= 5 In(R) @) (¢ )||L2(o 1)

and, pointwise for = € II,

IV(xD)|
< |(Vx) @ D| + [xVD|
{r )|, PO + [w®) || V2 PO 418,00V, PO [y] > 1,
~ 0, ly[ <1 (3.30)
< 2 (Jw @ + 9,00 7)]) |s1‘1>%(|v y PO +|v2pO)))
)
1++2

= (|w(01—), + |azw(0,—),) )

™

Now, we are able to prove inequality (3.27). Let v € WOIUQ(H) Using a Gagliardo-
Nirenberg-type inequality (Lemma 2.6), we deduce for almost all ¢

/H(V-V)Ap-vdx

g/ V2|V AR dx
1T

< / VI2(IVEo(a)| + [Vg| + [V(xD)|) dz
II

< |v|4dx>1/2 <( / |VE0(a)|2d$>1/2+ (f |Vg|2dx)m)

1
+ 1+ \/i/ / \V\Q(lw(o’f)\ + lﬁzw(o’f)\) dz dy
™ R2 JO

(3.22),(3.26)
< eIV (lallwzeom + (lallwzeem + 1P cg, o))
Im) 1
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1 1/2 1 1/2
+ Lt V2 </ lv|* dz) <2/ Jw© |2 4 19,w )2 dz) dy
™ R2 0 0

(3.29)
< e (llallwraem + VIED [0 20 ) V]2

e 0 o / IV I220.1) 4
]R2

< Car (lallwi2zen + (VI(R) + 1) 0 lyrzon ) 193, -

Therefore,

/H(V-V)AF~de

(3.19)
< Ca, (HaHWI,Q(Wl/2,2(8H)) + ( In(Ry) + 1) HFHWL?(O,T)) HVVH%Q(H) .

At last, we wish to investigate the expression O;Ap — VAAPR.

Remark. Inserting the definition of A we obtain
OAp —vAAfp = 0,Ey(a) — vAEy(a) — 0ig + vAg — 0:(xD) + vA(xD).
We break down further the terms including D - recall (3.20):

9(xD) — vA(xD)
= x0:D — v ((Ax)D +2Vx - VD + YAD)
=x (0D —vAD) — 2Vx - VD — v(Ax)D
= xs©v, PO —2vy . VD — v(Ax)D
= 50V, (xPO)) = O (V,x) PO —2Vy - VD — v(Ay)D,

where Vy - VD = w(®7) (V,x - V(0,, P"7)), Vyx - Vy (9, P07)), o)T.
Note, in particular, that all terms except V,(s(>=)xP(©=)) are in L2(0,T; L2(11)),
which is the reason we split these up in the following section.

3.5 Existence in the case of non-zero flux

With the preparatory results of the preceding section we are now in a position to study
the non-zero flux problem, which differs from the situation in Section 3.3 only in the
“detail” that the balance of flow through the boundary is not necessarily zero. The
physical setting presents itself in the absence of requirement (3.18), namely

F(t)——/ana(t)-ndS—O,

where a is a prescribed boundary condition.
Once more, we need to formulate clearly the definition of a weak solution, to investigate
existence in the following.



50 Chapter 3. Existence

Definition 3.10. Let f € L?(0,T; L*(I1)) be T-periodic and Af the extension of the T-
periodic boundary value a € L*(0,T; W3/22(911)) N W12(0, T; W/22(91I)), supp(a) C
TRy, derived in Section 3.4. We call a function u € L*(0,T; Wllof(ﬂ)) a weak solution
of the inhomogeneous Navier-Stokes equations (NSp.) with non-zero fluz, if it suffices

the integral identity

T T
/ —(u,0ip) + v (Vu, Vo) + ((u- V)u, @) dt = / (f, ) dt
0 0

for all time-periodic test functions ¢ € C*([0,T]; C§%,(I1)). Further, we demand u—Ap
to be an element of L?(0,T; W&f(ﬂ)).

Theorem 3.11. Let £, a be as in the definition above. Suppose the following condition
on the data is fulfilled:
v
k= ”aHleQ(O,T;Wl/QJ(aH)) + ( In(Ry) + 1) [ Fllw20.1) < Ca.’
F
Then, there exists a weak solution u of the inhomogeneous Navier-Stokes equations with
non-zero flux.

Proof. To show existence of a weak solution u we reformulate the problem (NSy.) by
setting u = u* + Ap. The system we obtain is

ou* —vAu* + ((u* + Ap) - V)u* + (u* - V)Ap + Vp* = f* in [0,7] x IT,
divu* =0 in [0,7] x 1T,
ulogn =0 for all ¢t € 0,77,

u*’t:() = 11*\t=T in IT,
(3.31)
where p* = p — s(07)yP(:) and

f*=f—0,Ey(a) + vYAEy(a) + O0,g — vAg
— 8(0’7)(VX)P(0’7) —2vVx - VD —v(Ax)D — (Ap - V)Ap.
As described in the previous section, especially f* € L2(0, T; L?(II)).

The proof is executed in four steps. We start by breaking down the problem to finite
dimensional spaces.

Step 1: Galerkin ansatz.
Let {¢y, k € N} C C§5,(II) be a complete orthonormal system of L2(T1) and define
H,, C L2(II) as the space spanned by the first n basis vectors. Hence, we are looking for
approximating solutions wj,(t,z) = Y i_; ai(t)¢;(z). In H, problem (3.31) translates
to a system of ordinary differential equations:

n

Sa0) +v Y (Vo Vo)al () + 3 (0 V), bo)al (a1
=1

ij=1

+) (- VIAE(®), d)al(t) + > ((AR(t) - V), dy)al (t)
i=1 =1

=(f*(t),dp), 1<k<n.

(3.32)
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Per Carathéodory’s theory — for each prescribed initial condition (b7,...,0}') € R™ —
there exists a corresponding (unique) solution (a¥,...,al) € AC(]0,T%]), where T* < T

r'n

in case of a blow-up (cf. [13, Theorem 1.5.3], [59, Theorem 10.XX] or the analogous
derivation in the proof of Theorem 3.3). In step 2 we establish an energy inequality,
excluding a blow-up, hence T* = T.

Step 2: A-priori estimate.
Multiplying (3.32) with a} and summing k = 1,...,n gives

(O, wy) + v(Vuy, V) + ((u) - V)uy, uy)
+ ((w, V)Ap,ug) + (Ap - V)ug, up)
= (f*,u}).

There is a bounded Lipschitz domain Q with suppu;, C 2 C II. Thus, due to Lemma
2.11, the third term on the left-hand side vanishes and, since Ap € WH2(Q) and
div Ar = 0, so does the last:

1d

5 g lze + vIVaRllze = (£, w) = (- V)Ap,uy).

Applying Poincaré’s and Young’s inequalities we obtain
(£, wp) [ < N1 2 lwillze < CpllE)|2IVuy 2 < ele,v) [£5]172 +ev [V |17
and from Lemma 3.9 we know
(0}, V)Ap,w))| < Capr ||V ]72

for almost all . Together this yields
d * (12 1 * 12 * (12
SR+ 20 (1= Capr— ) VULl < 2 )18, (3.33)

Since AC([0,T*]) ¢ WH1(0,7*) and %HunH%z =237 a?%a}f‘, we find %HuZH%Q €
L'(0,T*) and deduce through integration

1 t
Ol + 20 (1= Capn—c) [ IVui(e)13ds
t
<o [ IF I ds + O],

for all ¢t € [0,7*]. The right-hand side is finite for ¢ = T', thereby a blow-up of u}, is not

C
possible and T™ = T as preannounced. Note, #Ii < 1, which enables 1— %CAFH—E >0
for sufficiently small €.

Step 3: Time-periodicity of approximating solutions.
We rearrange (3.33) with the help of Poincaré’s inequality:

d 1
Gl < I 4o (1 S Cap = o) .
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By Gronwall’s inequality (Lemma 2.7) we then find for all ¢:
1 t
* * —4v(1-=C —e )t %
Jun 0l < Fus)ee 0o ) e [ ds,

which, in particular, holds for ¢ = T. Motivated by this estimate, we define the operator
— called Poincaré map — assigning to uy, g ~ (b7, ...,b) € R™ its corresponding solution
evaluated in t =T uj, , — uy,(T') respectively b — (at(T),...,an(T)) € R". Choosing

r'n

Ce

1/2
= <1 — 6_4V(1—V1CAFI€—€)T> Hf*||L2(0»T;L2(H)) ’

this operator maps the ball Br(0) C R”™ into itself. Furthermore, the Poincaré map
is continuous as composition of two continuous functions (cf. step 3 in the proof of
Theorem 3.3), guaranteeing the existence of a fixed point by the theorem of Brouwer.
In the following u; denotes the solution emerging from this fixed point and therefore
uw’(0) = u) (7). Moreover, u} is a solution of (3.32), hence, it fulfills the identity

(Our,, agy) +v(Vuy, aVey) + ((uy - V)uy, ady)

+ ((u} - V)Ap, agy) + (Ap - V)ul, ady) (3.34)
= (f*7 a¢k) )
for all k = 1,...,n, where a: [0,7] — R is an arbitrary mapping. Given a smooth and

time-periodic function h: [0,7] — R, we conclude
T
|~ ay) +0(Vu,16,) + (- Vyus b
0
+ ((u), - V)Ap, hepy) + ((Ap - V)uj, hepy,) dt (3.35)
T

= / (£, hepy,) dt

0

Another immediate consequence is the energy inequality

()32 + 20 (1—VCAFK—5) /O IV ()32 ds < I 2aorpeqny . (3:36)

for all ¢ € [0, T, since [Ju}(0)/|2, < R* = < 741/(17”0_51% NE)T> Hf*HQLQ(QT;LQ(H)).
l1—e F
Step 4: Passage to the limit.

For each n € N we found an approximating solution. Considering now the arising
sequence (u}), we want to examine convergence properties to allow for a proper passage
to the limit. Firstly, coupling (3.36) with Poincaré’s inequality grants boundedness of
(u?), in L?(0,T; Wolf(l'[)) Thus, there is a subsequence - still denoted by (u}), -
converging weakly in L?(0,T; Wolg (IT)) to a limit u*. This convergence directly justifies
the following limit processes, n — oo:

T T
/ (ut, W) di —» / (u*, Wby et
0 0

T T
/ (Vi hV ) dt — / (Vu*, hVeby) dt
0 0
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and

T T
/ (w% - V) Ap, heby) dt:/ bt Ap, heby) it
0 0
T T
0 0
T T
/ ((AF~V)u:,hq’)k) dt:/ b(AF,uZ,hqﬁk) dt
0 0
T T
— [ bar g di= [ (ArVu ey dr,
0 0

where we exploit Ar’s local integrability in combination with the compact support of
¢;.. Also, recall that b is a continuous trilinear form (cf. Lemma 2.10).

The remaining convective term needs more careful treatment. Our goal is to prove
strong convergence of u} in L2(0,T; L?(2)) for each bounded subdomain Q C II. To
this end we first show u’ (¢) is weakly converging in L?(IT) for almost all ¢. Investigating
on the sequences ((u;*l(-),cﬁk,))neN C C([0,T]), k € N, we find each is bounded due to
inequality (3.36). Further, for ¢, s € [0,T], we establish the estimate

| (ur (1), &) — (wi(s), )]

(t).
/; ¢k) dr
/ (Vg V) — (0 - V)us, i)

S

(3.34

- ((u;kz : V)¢k, AF) - ((AF : V)u;’l, ¢k) + (f*, ¢k) dr
t
< / IV 2| Vbl 2 + /H ||V e d
T /H [V byl | Ap| dr + /H A | [V [l dr + (87| | by 2 i

t
S/ vIVupll 2 [Vepliz + gl 2 ([ Vg [l 22 [ @ ll oo
S

+Cp ||vu1*1HL2Hv¢k”COHAF||L2(supp¢k)
+ [ AF L2 supp ) VRl L2 | D]l o

+ [£7]| 2l @l 2 d7
1/2

t
< v [Vl ( / w) 19 ey
) t 1/2
ooyl el ( / m) IVl ey
’ ¢ 1/2
- Cp I AF ] i (2 e o [V el o < / 1dT) 19 ey

t 1/2
AP 2 z2enp a0 ( / 1d7) IVt 2z,
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t 1/2
T lbille ( / 1d7> T

(3.36)
< e VIVl € 2w + lbelcollE e 2
+ Cr AR oo (22 (supp o)) IV il co 1M 2222
+ | APl oo (22 (supp d)) | il co [1£7] L2 (L2
el lzzay ) (¢ = )12,

implying uniform equicontinuity of ((ufl,(bk))n oy for each fixed & € N. Therefore,
Arzela-Ascoli’s Theorem enables extraction of a subsequence (iteratively for every k)
converging uniformly to a continuous limit function. Selecting a further subsequence
diagonally from this array of sequences, we obtain a sequence — still denoted by index n
— which satisfies the aforementioned convergence for all £ € N:

)) C([OvTD

((u;kwd)k Gk .

Due to (3.36), for fixed t € [0,T] there is a subsequence (u’,(t)),s converging weakly in
L2(T0) to a limit G(t) and we find

(8(t), ¢r) = Tim (wly(8), &) = Gi(t)

Since {¢},}x is a basis of L2(IT), we derive through this identity that @(t) is the weak
limit of u¥(t) for all t. Note that u¥(t) is in fact weakly convergent in L?(II), because
of the Helmholtz-Weyl decomposition. Now, let v € L?(0,T; L2(II)). We observe

T

T T
im [ (us(0),v(0) di = /0 lim (wh(e), v()) dt = /0 (a(t), v (1)) dt,

n—oo 0 n—oo

by the dominated convergence theorem, where the integrable upper bound is provided
by (3.36). Therefore, u}, — @ in L?(0,T; L2(IT)). On the other hand, we already know
uf — u* in L?(0,T; L2(I)), implying &« = u*. Furthermore, notice time-periodicity of
u* is preserved thanks to pointwise weak convergence:

u*(0) = w-lim u;,(0) = w-lim u; (7)) = u*(T).

n—oo n—o0

Now, we apply Friedrich’s inequality (Lemma 2.5): Let © C II be a bounded subdomain
and 7 > 0, then

Ny

* * * * 2 * *
||un(t) —u (t)H%Q(Q) < Z (un(t) —u (t)7ej)L2(Q) +1 ||vun(t) —Vu (t)HZLQ(Q)
j=1

for almost all ¢ € [0, 7. Integration over ¢ gives

T , No .1 ) T )
/O\u;_u*um(mdtgz/o (u;—u*,ej)Lz(Q)dt—i-n/o [V, — T ey .
j=1
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Weak convergence of (u,),, in L?(0, T} Wolj (IT)) guarantees boundedness of the last term.

*

The inner product (un — u*,ej) 2(n) converges to zero pointwise. By the dominated

convergence theorem (combined with (3.36) again), we infer

T
/0 (u, — u*,ej)iQ(Q) dt — 0.

Altogether, appropriately choosing 7 leads to an arbitrary small right-hand side, when
n — 00, i.e.

u, —u’ in L2(0,T; L*(2)) for each bounded Q C II.

Finally, we are in a position to justify convergence of the convective term. Due to
compact support of the base functions ¢, there are bounded Lipschitz domains Qj D
supp ¢;. We conclude

T
[ D) — (ko) o

(2.5)

T
[l 91gew) - (- Vg dt1

T
/0 h [(((u;‘Z —u”)- V)(bk,u:;) + ((u* V), u;, — u*)] dt'

T
< [ =i et [ Ve - o] d
k

Qp

T
< Illegoay Iellonn | [ I = wllao o

T
[ = g0 )
< Irlleqoml@nllcra iy, — ol 2z sl czzan) + a2z

This last expression tends to zero, since weak convergence of (u}),, implies boundedness
of the term in brackets.

We pass to the limit in (3.35) and recall that {h¢y, : k € N, h € C*([0,T]) T-periodic}
is dense in the space of time-periodic test functions C'*°([0, T]; C§< (I1)). Thus, for such
a test function ¢, we deduce

T
[t w5l (0w
+ (0" - V)Ap, @) + (Ap - V)u*, ) dt

:/OT(f*,cp)dt.

Reformulating this identity in terms of u yields

T T
|~ o) 40 (T Vo) + (@ Viug)de= [ (£.0)dr.
0 0

And since u — Ap = u* € L?(0,T; Wolﬁ(ﬂ)), the function u indeed is a weak solution
of the inhomogeneous Navier-Stokes equations with non-zero flux. O






4 Asymptotics

The aim of this chapter is to identify an asymptotic representation of solutions of
the time-periodic Navier-Stokes equations in the layer II, containing the flux driver
as leading term. At first, in Section 4.1, we achieve a variant of Pileckas and Specovius-
Neugebauer’s main theorem of [42]. Their theorem states the asymptotic decomposition
of solutions to the time-periodic Stokes problem, which is crucial for the investigation
of spatial behavior of solutions to the Navier-Stokes system. In Section 4.2 we prove
estimates for the nonlinear term in weighted Sobolev spaces. This enables application
of the linear theory to derive an asymptotic expansion of solutions of the Navier-Stokes
equations.

Note that we set T'= 27 and v = 1 in this chapter in alignment with the setting in
Pileckas and Specovius-Neugebauer’s paper [42].

4.1 Asymptotics in the linear case

Before analyzing the spatial behavior of solutions of the full Navier-Stokes system we
treat the linear Stokes cases first, which is given by

ou—Au+Vp=f in [0, 27] x IT,
divu=g in [0,27] x I, (s)
ulpn =a for all t € [0, 27],
uli—0 = uli=2r in IT.

In [42] an asymptotic expansion for distributional solutions (u, p) was implemented and
we develop a variant of their main theorem ([42, Theorem 2.2]) in this section.
Firstly, we cite Lemma 3.4 from [42], which proves to be an essential tool:

Lemma 4.1. Let f ¢ LQ(V[?H(H)), g,Vg,0ig € LQ(VEH(H)) be time-periodic, B €
R, and a = 0. Suppose (u,p) € LQ(VﬂO(H)) is a distributional solution of the Stokes
equations (S), dpu € L*(L} (II)). Then u,Vu,V?u,du,Vp € LQ(VEH(H)) and the
following estimates hold true:

[, Va2, ) < ¢ (HfHL2(v0 @y T 9l 2y, ,am) + ”u7pHL2(VL§)(H))) :

B+1
HatuHLQ(VgH(H)) <c (HfHL?(VgH(H)) + llg, a1t9HL2(Vg+2(H)) + ||uaP||L2(Vg(H))> )

IV, V211||L2(v§+1(n)) <c (HfHL?(ng(n)) +19:V9: gl r2ve, ) + HU,pHm(vg(n))) :

To develop an asymptotic representation the plane harmonics pE). R2\{0} — R,
with

PEH) () = L ¥ cos(kg), P®(y) =

27 |k| 27 |k|

rk sin(ko)
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for k € Z\{0} and

1
P(07+) — 1, P(07_) e ln
() () Nors (r),
(written in polar coordinates (r,¢)) play a crucial role, making its appearance in the
following lemma already:

Lemma 4.2. Let F € V_271( 2y ¢ V_QV(R2)I; v,71 € R\Z, 1 > 7. Suppose 1) € VVO(RZ)

s a solution of Poisson’s equation
_Afl/} = Fa

with —A: VI(R?) = V2(R?), ¢+ (¢, —A-). Then, ¢ admits the representation

w<y>=x(r>< > Z (55 ph5)( >> + W (y),

—v1— 1<k< v—1,
where x is a smooth cut-off function, x(r) =1 for r > 2, x(r) =0 for r < 1 and &%)
are constants. Additionally, there holds v(1) € V2 (R?) and

1M v @2y + > (D14 1) < e (1Fllvz, @2y + [lvoss) -
—y1—1<k<—y—1

This lemma is a derivation of a far more general statement on elliptic equations in
corner domains from Nazarov and Plamenevskii’s book [37] (see Theorems 3.5.7 and
4.2.4 therein).

A key ingredient to obtain an asymptotic representation of solutions to the Stokes
equations is the investigation of the mean pressure p in the plane R? and its behavior as
ly| = co. We define

1
=p+pr, with p(t,y) ::/ p(t,y,z)dz.
0

Theorem 4.3. Let (u,p) € L*(0,2m; VO(IT)) x L*(0,2m; VY(I)) be a distributional so-
lution pair of the Stokes equations (S) with time-periodic data £ € L*(0,2; V$1+1( ),

g,Vg,0ig € L*(0, 2m; V~/1+2( ), where y1,7 € R\Z, v <1 <~v+1, and a = 0. Further,

suppose yu € L?(0,2m; L2 (ID)).

(i) The mean pressure D admits the representation

plt,y) = x(r) < Y. =sEHmPE(y) - S(k’_)(t)P('“")(y)> +pW(ty),

—v1—1<k<—vy-1,
kEZ

with pV) € L(0, 2r; VO (R?)) and x as before (cf. Lemma 4.2). There holds the
a-priort estimate

Plag e+ 2 (1% liaam + 155l 2n )

—v1—1<k<—vy-1,
kEZ

¢ (Ilz2wo ,, cmy + 19 V9,09 2o cmy + I, pllzvoqy ) -
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(ii) If the interval (y,71) does not contain any integers, (’y m)NZ = 0, then p €
L2(0,2m; V) (1)) and v, Vu, V?u, 8y, Vp € L*(0,27; V2, (IT)) with

1ol L2 ve, (my + 10, Va, VZu, dpu, Vpllzzwe )

< e(lllzas , my + 19: V9, Oeglaqwo ) + I, pllzzvoqy ) -

Proof. ad(i): At first we use Lemma 4.1 inserting u,p € LQ(VO( ), f € LQ(V,YH( ),
9,Vg,0ig € L*(VY,5(IT)) and Lemma 3.5 of [42] withu,p € LQ(V;YO1 ((ID), f € L2(V$1+1( ))s
9,0.9,0i9 € L*(V2 (1)), Vyg € L*(VY 4(II)) to improve the weight exponent of u, p.

o] ol
We find
Hu,Vu,VQu,atu,VpHLQ(Vo ()
< C(HfHL2 (@) +119: V9, 0egll 2o, qmy) + 1w pll2vog ))) (4.1)

< C(Hf||L2(v$1+l(n)) +19: V9,09l 2o, ,amy) + HU,pHm(vg(n))) ;

IVyu, vvyu||L2(v$1+1(n))
(4.2)
< c(lfllz2wo ) + 19,09, 09ll 2qwo ) + Iyl 2oy + 0wl )

< C(HfHLz vo ) + 19 V9 llraqvo ,amy + Hu,pHm(vg(n))) :

In order to apply Lemma 4.2 we write down the Fourier series of p with respect to the
orthogonal basis {1} U {cos(nt), n € N} U {sin(nt), n € N} of L*(0,2m;H) — for any
Hilbert space H:

_ p .
pty CO )4 chn ) cos(nt) + P, (y) sin(nt),
1Bl 20 2mve g2y = 5 1Peo o ey + > (1Penlo g2y + 1oy ) -
n=1

Furthermore, we need auxiliary functions solving the inverse problem

Oth(t, 2) + 02h(t, z) = s(t) in [0,27] x (0,1),
h(t,0) = h(t,1) =0 in [0, 27],
h(0,z) = h(2m, 2) in (0,1), (4.3)
1
/0 h(t,z)dz = ¢(t) in [0, 27],

where h, s are unknown and ¢ is a given time-periodic function. This problem is analyzed
by Pileckas, Specovius-Neugebauer in [42, Section 4] and by Galdi, Robertson in [10].
We denote by (hco, Sc0)s (hens Sen), (Bsn, Ssn) the solutions regarding the data

Geo(t) == 2 y Qen(t) :=cos(nt) and @s,(t) := sin(nt),
for n € N. These functions satisfy the following estimates (see (4.10),(4.11) in [42]):

21

ha(t, 2) wl(t, -, 2) dz dt ¢ (||wcn||zvﬁo(n) + ||w5n||%/[9(n)> : (4.4)

Vg (R?)
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2w 2

sp(t)w(t, -, z)dzdt

< ch( Wenl|? + ||w 2 ) , 4.5
g( 2) = H cn”vﬁ?(n) || sn”Vé)(H) ( )
21 2

Scow(t, -, z)dzdt

< C||ch||20 ) (46)
VO (R2) Vs (M)

with 3 € R, w € L?(0, 2m; V,B[’)(H)) and its Fourier coefficients weg, Wep, Wepn. The indices
n (4.4), (4.5) are abbreviated, such that h,, may be substituted by either hcy, hs, or
he and s, by either s., or sg,. Then, we set

fﬂﬂ<z>:::Jﬁ heo(£) d€ — ooz,
Hen(t,2) == /OZ hen(t,€) d€ — ¢en(t)z, n €N,
Hon(t 2) = /O hon(t,€) dE — bun(t)z, n €N,

For H.y, Hen, Hs, we have at hand the decomposition H,(t,z) = H, (z)cos(nt) +
H, (z)sin(nt) and [|Hyl r20,27:22(0,1)) < I HL2 0,2m12(0,1)) T \/g < ¢ independent of
n (cf. [42, (4.7)]). Therefore

1
Arwﬁ+uﬁﬁw:;wm@@MBWNSa (4.7)

Now, the proof is executed for p,,; verifying the assertion that p,, is a solution of
Poisson’s equation

_Aﬁcn =F

for some F € V_Z%( 2)/ as in Lemma 4.2. The argumentation is completely analog for
Psn and with minor adjustments for p,, only. The following identity holds!

2

\/Eﬁcn = ¢cnﬁdt

0

27 1
—/(/%wwﬁ

21
/ / —0,Hen + hen) pdzdt

21 27
—/ / Hmazpdzdt+/ / heppdzdt.
o Jo o Jo

Recall the notation W' = (u1, u2), f' = (f1, f2). Assuming p € C§°(R?), we infer
<_Aﬁcn7 90>
— [ P g0l
R2

27 1 27 1
:/ JI;</ / H,, d.p dzdt+/ / hen D dzdt> (—Ayp) dy
R2 0 0 0 0

nsert \/g as factor here and in the following, in the case of D.
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2 1
=: /RQ}'OAygpdy—l—\/l;r/o /0 hcn/RQVyp-Vygpdydzdt

21
= (Fo, Ayep) + ﬁ /R2 /0 /0 (f' — o' + Au')hey, dzdt - Vyp dy
21 1
= (Fo, Ayep) + \/1%/ / / hen £ dz dt - Vo dy
RrR2Jo Jo

21 1
+ L / / / hen Ayu/ dzdt-Vypdy
v R2 J0O 0

2 rl
+ ﬁ / / / (athcn + Eghcn)u’ dzdt - Vy(p dy
R2
= ((Fo. &y y9) + (F2, V)

fl)
27r
+f/ //stcn u’ -Vyp dydzdt.

We elaborate on the last term:

27 1
/ / / Sep - Vyp dydzdt
0 0 R2
2T 1
—/ scn/ / @ divy u dydzdt
0 0o Jr2
2 1 1
—/ / Sen (/ gdz—/ 8ZU3dz><pdtdy
R2 0
2T
/ / / Sen gdzdt o dy
R2

\/>]:3a

In summary, we have (F, @) = (Fo, Ayp) + (F1, Vyo) + (F2, Vyp) + (F3, ¢), where

2
Foly) = ——= / H,., 0,p dzdt,

271'
_L /
_f/ /hcnf dz dt,
2
:\f/ / hanu dz dt ,

2
Fi(y) = ——= / Sen gdz dt,

as derived above. We note the following estimates

) o pl 2
—— hen £ dz dt
E

VO 11 (B2)

(4 4) 9 /12
H cn||V$1+1(H) + ||fanV,$1+1(H) ’

2 _
178 o =
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L 27 1 2
— hen Ay’ dz dt
E s

VO 4 (R2)

2 —_
||‘F2||V,$1+1(R2) =

(4.4) R o (4.2)
< c(layu >m||vgl+l<m+||myu Jonllio ) < oo

21
/ / Sen g dz dt

(45)
< cn? <|]gcn||%/$l+2(n) + ||gsn||%/$l+2(l_[)>

2
I1Fali2o o) =

+2(R?)

respectively

2T
1738, = |V2 [ A o dzat]|

Regarding Fy we find

2T
/ / H., 0,p dz dt

2 00
/ (HZ, cos(nt) + H, sin(nt)) 0, (7% + chn cos(nt) + psn sin(nt))dt dz

n=1
2
<27
0 0
1 1 1 1
< 77(/ \H;]de/ |8chn|2dz—|—/ |Hc_n|2dz/ |8Zpsn2dz>
0
(47
( / Oupenl?dz + / 10:penl? dz),

resulting in

4.6 9
< c "900“v$1+2(n) .

Vi 2 (R?)

| Fo(y)|?
2

2

HCJ;L 02Pen dz

H_, 0.psn dz

1FoliZ0 ey < ¢ (10:penll () + 19:25n B0 () ) -

For v € V2, (R?) we then obtain

<F’ ’U> (VE’YI )/’Vzﬂ
= ‘(}—OaAyU) + (]:bvyv) + (}—27va) + (~7:3aU)|
< [Follvg 1Ayvllve + I Fllve  [IVyvllve,

1—1

1 Flvs  IVyollve,  + 1Fslvs oo

7112

< (IFollvg, + 1F1llve ., + 1F2llvs ., + 1 Fsllvs ) lollve,
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hence F € VE,YI (R2)". As claimed the functions P, D, and Py, are solutions of Poisson’s
equation with respective right-hand side F and by Lemma 4.2

Den = x( DDRNC R S cEﬁ”P(’“’)) +20), neN,

—v1—1<k<—vy-1,

kEL
psnzx( )> cg':;+>P<k:+>+cgz>P<k’>>+pg13, nen,
—v1—1<k<—v-1,

kez
with

Plvo gy + S0 (e + 1)
77171;k<7771,
€7

¢ (IF vz, y + Penllvoe)

IN

<c (Hazpcna azpsn”\/$1 ) + Hf(/:n’ f;nHV,glJrl(H) + H(Ayul)cm (Ayu/)sn||v$1+l(n)

1 gens Gonllys -y an + [P Ivoe))

and an analogous estimate for ;52}3, as well as

_(1 k,+ k,—
B9 e ey + > (e + 1))
—y1—1<k<—v-1,
keZ

< ¢ (J10zpeallvg am + IElallve  am + 1A )eollvs

+ lgeollvs, ) + IPeollvoces) ) -

We set
(k,£) C(g’i) = (k,£) (k,£) o
—s\OF)(t) = —5 T nZ:l co ) cos(nt) + ¢y sin(nt) ,
1 T?(l)(y) — (1 1
P (ty) = 20+ DB (v) cos(nt) + L) (y) sin(nt)
n=1

which finally furnishes

plt,y) = x(r) ( > =@ PR (y) - S(k’_)(t)P(k")(y)> +pM(t,y)

—y1—1<k<—v—-1,
kEZL
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and

HT)(I)HLQ(V% (R2)) T+ Z (HS(k’Jr)HB(o,%) + Hs(k’_)HL2(0,27r))

—y1—1<k<—v-1,
keZ

n=1

o 1/2
D S (LR R
n=1

—y1—1<k<—v-1,
kezZ

- 1/2
T (1 _ _
= [2”2920)”%/% @)+ HP%)H%/% ®2) HPE%)H%/% (R?)]

_l’_

n=1

00 1/2
Sl P+ Y IO + rcg’x—)P] )

<c [(nazpcona% m + 1€l + 1Al
lgeollEe ) + 1P Eoe) )
V’\/1+2(H) ¢ V’Y (R?)

+ 37 (102, D-palig W Enl o+ 1AW ()l

n=1
1/2
2 2 T |
+n chn7gsn‘|‘/$1+2(n) + ||pcn7panV$(]R2))]

2 2 2
= e [10:p v amy + I v, amy + 1899 I, om)

_ /
+llgeollo ary + 191320y + IPIEavoeey)

4.1),(4.2)
< ¢ (Hme(vgﬁl(n)) +119: V9, 0egll 2o, any) + Hu,pHL2(v$(n))) :

ad(ii): Let (v,71) NZ = 0, which implies {k € Z: —y1 —1 < k < —y — 1} = () for the
summation index. Hence, the representation of (i) reduces to

p=p" € L*(V)(R?).

Obviously fol pLdz = fol p —pdz = 0, so Poincaré’s inequality yields

1 1 1
/ \pJ_\degc/ lasz_Ide:c/ |8Zp\2dz,
0 0 0

27 1
[ [y [Py
0 R2 0

27 1
§/ / (1—1—7”2)7“0/ \Vp|? dzdy dt
0o Jr2 0

ie. ||pL||L2(V$+1(H)) <c HVp||L2(V$+1(H)). Since V2, (II) C V2, (IT), we obtain

leading to

p=D+pL €LA(VO(I),
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and
Ipll L2 (v, (my)

< ||T?(1)HL2(V$1 ®2) F IPLlicze, , )
(i),(4.1)
< ¢ <||fHL2(v$1+1(n)) +1l9: V9, 0egllL2ve ) + |’u7pHL2(V$(H))> :
To conclude this proof we apply Lemma 4.1 once more with u € L*(V?, () C

LAV (), p € LA(Vy (), £ € LX(V) 1(IT)), 9,Vg,dg € L*(V}) »(IT)). This fur-
nishes

l, Vu, V2, O, Vpllzavo |

< c(fllizae ) + 19, V9,09l 2o amyy + 10 pllzavy, (n))>

v1+1

<c

7~ N 7 N

£l L2qvo , any + 195 V9, Oegll o oy + Hu,pHm(vg(n))) :
O

The final part concerning the linear case is a variant of Theorem 2.2 from Pileckas and
Specovius-Neugebauer’s paper [42], which presents an asymptotic expansion for solutions
of the time-periodic Stokes equations.

Theorem 4.4. Let m € Ny, ky € Z and 5 € (—k1 — 2,—k1 — 1). For the data suppose
that

feL?0,2mVEo,,, (D), g,Vg,dg € L*(0,2m; Vg, 5,,,(I)), a=0

and £, g time-periodic. Let (u,p) € L%(0,2m; VE(H)) x L2(0, 27; Vé)(H)) be a distributional
solution pair of the Stokes equations (S). Additionally, assume dpu € L?(0,2m; L2 (I1)).
Then, u and p admit the following asymptotic representation:
ki+m
u(t,z) = »_ x(r) (w(k’ﬂ (t, 2)V . PEH () + w7, z)VxP(k”)(y)) +a(t,z),
k=k1
ki1+m

plta) = 3 xr) (=B PED () — sED @ PE ) +5(t,2)
k=k1

Moreover, there holds an a-priori estimate

ki1+m

> (Hs(k’i)HLQ(o,zn) + [ poo 10,1y + 10| L2 rr20.0)) + |\3tw(k’i)||L2(L2(o,1)))
k=k1

+ ||13”L2(vg+1+m(n)) + [la, Va, Va, g, Vﬁ”L2(vg+2+m(n))
<c <Hf||L2(vg+2+m(n)) + 19, V9,09l r2vg, ., amy) + HU,pHm(vg(n))) :

Remark. The main difference to the original version lies in differentiability of the data.
In [42] f has to be differentiable twice and for g derivatives up to third order need to
exist (leading, naturally, also to statements on higher derivatives of & and p). Further,
assumptions on the asymptotic behavior of g are stricter here, but in exchange we
achieve better results concerning the weight exponents of Vj and a1, Vi, V2. Compare
inequality (2.6) in [42], in particular.
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Proof. The proof mostly resembles the one from [42, Theorem 2.2]; cf. Section 6 in [42].
The crucial difference is application of Theorem 4.3(i) instead of [42, Corollary 5.3].
Set k = k1, p € (—k1 —2,—ky — 1), for the first iteration. Using Lemma 4.1 we derive

|u, Vu, V2u, du, VPHLQ(VBOH)
<c (Hmeng) +119, Vg, Ol 2w, ) + Hu,pHLQ(VéJ)) .
Therefore, it holds

HPLHL2(V§+1) <c HVPHLQ(V£+1) )

by Poincaré’s inequality (just as in the proof of Theorem 4.3(ii)). Further, Theorem
4.3(i) yields

Pt,y) = x(r) (=s® (O PED () — 501 () PE () + 50 (t,y),

1PV z2wg, ey + (15 llzz02m + 5% lp202m) ) (4.8)

<c (||f||L2(Vg+2(n)) + 19, Vg, 09l r2vy, ) + ||U,P||L2(vg(n))) :
Now, let w*1:%) be the unique solution to the time-periodic Dirichlet boundary value
problem of the one-dimensional heat equation with right-hand side s**%) and boundary
condition 0, if k; # 0 and for (w(©®%),s(O+)). For (w®~),s07)), consider the inverse
problem

opw(t, z) — 02w(t, z) = s(t) in [0,27] x (0,1),
w(t,0) =w(t,1)=0 in [0, 27],
w(0, z) = w(2m, 2) in (0,1),
1
/0 w(t, z)dz = ¢(t) in [0, 27],

with prescribed ¢(t) = F(t) = [;g(t,z) dz. This system is equivalent to (4.3), thus we
take (w(®7), 5(%7)) to be the corresponding solution.
Based on these, we construct the first asymptotic term

UM (t, ) = w D (8, 2)V, PR (y) + w7 (8, 2) Vv, PR (y)
PO (1,2) 5= —stb1:8) () P10 ) — stb107) () P )
and therefore, define
PV = p —PE) = 45D

Outside of y = 0 the functions P(f“i), k € Z, are smooth and regarding spatial decay
we have

PEH) Ve, 5(R?) foralld>0.
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07+)

Being a solution to the heat equation, w13, k; % 0 and w(®1), fulfill the inequality

kl:

[w* B oo 0.1y + [0F ) | 22 0.0y + 100w E | 1222 0.0y

< CHS(kl’i)HLZ(o,zw)
(4.8)
< (\\f||L2(vg+2(n)) + |’97V978t9HL2(V§+3(H)) + HU,PHL2(\/§(H))) :

In case k1 = 0, we require a similar estimate for (w(O’*), 3(0’*)), shown in [42, Lemma
4.2] respectively [10, Theorem 2.2]:

w2 0,0)) + 10 2m20,1)) + 100l 2(220,1y) + 1157 N 220,2m)
< c|Fll g 0,2m)
< cllg, 9egll L2 L2
<cllg, 8t9||L2(V5°+2(H)) ’

where the last step is due to the embedding VL?JFQ(H) < L2(I0), since B € (—2,—1) for
k1 = 0. Hence, we conclude

”Xu(kl)HLQ(V/%H,z(H)) + ||Xatu(k1)||L2(V1§)+1(H))

< e (0™ 2 0.y + 10w # D | a(za 1)) ) IV, PO

2, . (R2)

+c <||w(k1’7)||L2(H1(o71)) + Hatw(kl’i)||L2(L2(0,1))) ”XVyP(kl’*)vaH(R?)

<c <||f||L2(V50+2(H)) + 19, Vg, 09l r2(vs, ) + ||uap||L2(V§(H))> ;

and, in particular, u, 9,u® e LQ(V£+1(H)).

The pair (U(kl), 73("“1)) is a solution of the homogeneous, time-periodic Stokes problem
outside of y = 0, which stems from the following: The functions w1 solve the
(inverse) heat equation in [0, 27] x (0, 1) with right-hand side s(*1%) | suitable periodicity
and zero boundary value and P*1%) are harmonic in R?\{0}. Therefore, (u™™),p(M) is
a distributional solution of the following Stokes system:

du — Au® 4 vp®) = £ in [0,27] x II,
divu® = g™ in [0,27] x II,
u =0 on [0,27] x OII,
u(l)!t:o - u(1)|t:27r inII,

where

£ = £ 4 2vy - VU + (AU — (V)P |
g =g — vy Uk,
All additionally occurring terms have compact support, thus the asymptotic behav-

ior of f1) and ¢(!) equals that of f respectively g: £f() ¢ LQ(VBO+2+m) C LQ(VﬁoJrQ),
g0, VgW, 0,9V € LA(VQ 4,,) C L*(VE,,). Since pM = p, +p1) € L(VQ,,) and
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ulM ¢ LQ(VBO_H) we infer with Lemma 4.1:

[u®, vu® v gul®), vpt )||L2( V9,,)

< (I zwp.) + 19, Vo, 09l aqvp, ) + 10D, 5D 2, ))
< (1€,
+ ey [l w T a1y + ey [8F, sEE T L2 0

+Hg7v.gvatg||lz2 0 )

+ ek, (w®r ) w kl’ Mz + 10w0® 0 0w ™ | 12120.1))

Nz, )
+ Hg) v.ga atg||L2

+ [Ju, xtd k) py  p

< (Il 2w, 0,0+ I pllzwe))

where ¢y, is composed of integrals of pluE) v pkit) and V2PEE) oyer the support
of Vx.

In case m = 0, we just need to relabel @1 := u®, p := p(M. For m > 1, we repeat
the argumentation above with k = k; + 1 for the pair (uM, p()) ¢ LZ(Vﬁoﬂ( )) X
LA(V9,, (M), B+1 € (=k—2,—k -
representation and a new remainder (u(®, p(?).

1), to derive the next term in the asymptotic

This iteration is continued until & = k;4+m. Then, we finally set @1 := u(™t1), j .= p(m+1)
to close the proof. O
4.2 Spatial behavior of solutions in the nonlinear case
Now, we focus on the full Navier-Stokes system:
ou—Au+(u-Viju+Vp=f in [0, 27] x II,
divu = in |0, 27| x 1T,
g [0, 2] (NS)
ulsn = a for all t € [0, 27],
uli—o = uli=2r in IT.

Treatment of the Navier-Stokes equations requires a thorough investigation of the non-
linear part. We start with a preparatory lemma on estimates of a product uv in weighted
spaces, enabling us to deduce respective properties regarding (u- V)v.

Lemma 4.5. Let 81,52 € R.

(a) Suppose u € Véljl(H), v e VéQ,I(H). Then w := uv € V£1+62+1(H) and

lolvg o < elllog, anlivlbg, - (49)
1 1 0
(b) Suppose u € Vg 1(II), v € Vg, o(II). Thenw €V, +62+3(H) and
folle o < el alivlhy, - (.10



4.2. Spatial behavior of solutions in the nonlinear case 69

(c) Suppose u € Vél,o(ﬂ)y v e VéQ,O(H)' Then w € V501+62 (I) and
“w”v§1+ﬁ2(n) <c HuHVél,O(H)Hv”vé%o(ﬂ) . (4.11)

Proof. The proof relies on a statement about embedding properties of Kondratiev spaces
from [39] (Lemma 2.4 therein), which we recall in Lemma 2.13.

ad(a):

/H(1+r2)ﬁ1+52+1\u|2\uy2dx

N 1/2 ) 1/2
< (/ (1 +r2)2(61+§)|u|4 diL‘) </ (1 +T2)2(52+§)|U|4 dl‘)
11 11

= llullfos V)70
51+% 52+%

6)
< cllullyy o}y
ad(b):

/(1 2B 22 de
11

, 1/3 s 2/3
(et (s
II I

= ullfos lvlos
Vavg B2
(2.6

=

(2.7)
< cluly ol -

ad(c):

(1432 uf? o] da

1/2 1/2
< (/ (1 +T2)251\u|4 dl‘) </ (1 +r2)2ﬂ2|v|4 dx)
IT 11

2 2
= ||u (%
lellyollvllyes

(2;) 2 2
< cllully ol -

g

The next lemma gathers a couple of estimates for the nonlinear term (u-V)v.
Lemma 4.6. Let 81,32 € R.
(a) Suppose u € L>(0, 2m; Véhl(ﬂ)), v € L?(0,2m; VEQJ(H))- Then
(u-V)v e L*(0,2m; Vg | 5,1 (ID))
and

[(u- V)VHL2(\/§

i) S cllullzeqr  aplviizeez -



70 Chapter 4. Asymptotics

(b) (i) Suppose u e L*>(0,27; Véhl(ﬂ)), v € L%(0,2m; V§2,0(H))- Then

(u ’ V)V € LQ(O’ 2m; V/801+/82+%(H))

and

[(a- V)vllzzo +,62+%(H)) <c HuHLw(vg,l,l(H))HVHL?(V?;Q,O(H)) '

(ii) Suppose u € L*(0, 2, Vél,o(ﬂ))’ v € L?(0,2m; Vg%l(ﬂ)). Then

(u-V)v € L20,2m Vg 5, (1D))

and
[(a- V)VHLQ(V;1+62+%(H)) <c HuHLoo(vél’o(H))||VHL2(V§2,1(H)) '
(c) Suppose u € L>(0,27; Vého(ﬂ)), v € L*(0,2m; Vg%o(ﬂ)). Then
(- V)v € L2(0,2m; V3, 5, (ID)

and

102 V)Vllaqg , any < cllallzmy aylVilzesz ) -

(d) Suppose u = (u',ugz) € L>(0, 27, Véhl(ﬂ)) x L*>(0, 27r;Vé,1+170(H)), v = (v, u3) €
L2(0,2W;V§2’1(H)) x L2(0, QW;VgZH’O(H)). Then
(u-V)v € L*0,2m; V;1+62+%(H))

and

[(w- V)V 20 (1))

51+52+%

1/2
2 2
<ec <||u/HL°°(v;1,1(H)> + Hu3||Loo(V/131+1y0(n)))

1/2
2 2
. (HV ||L2(V§271(H)) + H'U3’L2(yg2+170(1_[))>

= el us) e r mxrey, o 1V 08) 20, amyxrzo, , gam -

Proof. The proof is based mainly on Lemma 4.5.
ad(a):

9 2
109Vl 0 < MRV

4.9 2w
< 20 IVv|? dt
< [ ell, 1vviz

<c Hu”%‘x’(]}ﬁl,l) HV”%2(V§2,1) ’
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ad(b)(i):

IV < MlIVVIITaqe
51+62+% 51+ﬂ2+%
(4.10)

2
< 2 ;
- /0 CHHHVI%JHVVHVI%LO dt

<c HuHioo(v}ﬁ’l)H"Hé(vgyo) :

ad(b)(ii):

IV < lIVVIITaqe
Bl+ﬁ2+f2§ /81"',62‘9'%

4.10 2m
a0 [ ety 1oV,
o 0 V51a0 Vﬁ2’1

<c HuHiw(V}al,o) HV”%2(V§2’1) .

ad(c):

9 2
I V)VIZag o < M9Vl )

4.11 2
(<)/ cllally [Vv]3, dt
- 0 Vﬁlvo v13270

<ec HUH%C’O(%I’O)HVH%Q(VEQ,O) .

ad(d): Estimation in this case is a little more involved. We start by decomposing
(u-V)v into

. . (u’ : Vy)V/ + U38zvl
(w- Vv = ( " Vy)vz +uzdvz)

For each individual term in this representation we directly obtain by Lemma 4.5:

I V)V lawe < IV e

(4<10) 2 1112 V 112 dt
< ey VB,

§ C Hu/”%oo(]}él 1)|’V/Hi2(\;§2 1) )
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lus0:v a0y < Muslldov'llzego
B1+62+3 B1+B2+3
(4.10) 2 9 12
<
2 /0 cllusly | 1071, dt
2 /112
< clluslimy |, o IVIZ202 )
I - Vyosliago < I IVyoslliage
51+B2+§ 51+52+§
(4.10) 27 o 9
<
< el IVl e
"2 2
<c|lu HLO"(Vél,l)HU3HL2(V§2+1,0) )
u0zvs]|2 0 < [lusdzvsll7 20
( ﬁ1+ﬁ2+%) ( ﬂ1+52+2)
< 2
__H’U3H5k03|HL20Q%+52+9
(4.11) 2 2 2
<
B /0 ‘ HU3HV/§1+1,0HaZU:iHVllferLO o
2 2
<c ||U3||Loo(vél+170)||U3||L2(V§2+170) :
Summarizing these inequalities we derive the asserted estimate. O

With these results we establish the main theorem of this chapter.

Theorem 4.7. Let (u,p) € L*(HZ (1)) x L>(L? (I1)) be a distributional solution of the

time-periodic Navier-Stokes equations (NS). For the outer force and boundary condition,
suppose

f e L*(0,2m; Vg, (1)), g =0,
a € L2(0,2m; Wi/ (0M0)), d,a € L2(0,2m; W,/ 2 (o10))

loc

all time-periodic, B € (—2,—1). Let there exist an extension A of a with

A’ € LQ(Oa 27Ta V§+271(H)) ) A3 € L2(0’ 27[-; V§+3,O(H)) )

A’ € L*(0,2m V5,5, (1), 0iAs € L*(0,2m; V5, 3,0(I1)) .
Additionally, let the solution satisfy Opu € L*(0,2m; L? (1)),

ll/ € LQ(Oa 277-7 V3+1,1(H)) N Loo(oa 27T, Vi-{—l,l(n)) )

9 9 o 1 (4.12)

and p € L?(0, 27T;V70(H)), where vy € (—%,—1). Then, (u,p) admits the asymptotic
representation

u(t,z) = x(r)w(t,2)V. PO (y) + at,z),

p(t,x) = x(r) (=sOH (1) = s PO () + Bk, w)
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with p € L*(0, 2; Vgﬂ(l—[)) and
a,Va, V*a, 0, Vi € L*(0,2m; Vi, (ID)) .
Further, the following a-priori estimate holds

||3(O’i)HL2(o,27r) + Hw(Oﬁ)HLOO(Hl(O,l)) + ”w(Oﬁ)HL%H?(O,l)) + ||atw(0’7)||L2(L2(0,1))

+\|13HL2(V§+1)+Hﬁ,Vﬁ,VQﬁ,atﬁ,Vﬁ\\Lz(Vg+2)

< e[ Iflpawg, ) + (A" As) 200z

B+2,1

<1235 0) T | (0:A', 0, A3) lz2vy,, oxr2ovt, g0
21€

/ 2 ! 2
+ H (u ’ug)HLOO(V%Jrl,l)XLOO(V}/JrZO) + ”(u 5 U3) HL2(V3+1’1)XL2(V3+2Y0) + Hu’pHLZ(V,S) ’

where k € Ny is determined by the inequality 28! (7 + %) > p+2.

Remark. This theorem can easily be extended to the case of g # 0 — provided g, Vg, 0;g €
L?(0,27; VBO+3(H)) time-periodic — by setting ¢* := g—div A in the following proof. Then,
corresponding norms need to be added to the right-hand side of the a-priori estimate.

Proof. Define u* := u — A, which thereby is a solution of

ou* — Au* 4+ Vp =f~* in [0, 27| x 1T,
divu* = g¢* in [0, 27| x 1T,
ulogn =0 for all ¢t € [0, 27],
U*\tzo = U*\t:% in IT,

having f* :=f— (u-V)u—0,A + AA and g* := — div A. Observe, that the assumptions
on A directly yield 0;A € L2(V£+2), AA € LQ(VB[)+2) and ¢g*, Vg*, 0,g* € LZ(V[?JF?)).
Now, we infer by Lemma 4.6(d) that (u-V)u € L2(V29Y+Q) with
3

[(u- v)u”LQ(V207+%) sc H(ulau3)HLOO(V$+171)><L°°(V%+2’O)H(u/7u3)|’L2(V3+1Y1)XL2(V3+2’0) )

motivating the following case distinction. Set v + 2 := 2y + % (implying 1 > —2).

Figure 4.1: v in dependence of 7.

Case 1: v1+2> B+ 2.
This case implies V,YOHQ(H) C Vﬁ()JrQ(H), hence f* € LQ(V/?H). Moreover it is u*,p €
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LA(VY). If v > 3, we directly have V(IT) C VﬁO(H). If B > ~ instead, we need to apply
Theorem 4.3(ii) to find: u*,p € L2(Vﬁ0).

All assumptions of Theorem 4.4 are satisfied, which gives the asymptotic representa-
tion

u(t,z) = x(r)w® ) (t, 2) V. PO (y) + a* (¢, z) ,
p(t,@) = x(r) (=s0D() = s PO () + bi(t, 2)

along with the following inequality:

(0,&

15N L2 0.2m) + 1w oo 10,1y + 10 L2200y + 1000 | L2 (22(0.0))

~ ~ % ~ % 2~ % ~ ok ~
+ |’pHL2(Vg+1) + Hu 7vu 7v u ,8,511 7VP||L2(V/§)+2)

IN

¢ (I g,y + 9% Vo™ Bug L aqve, ) + 0" ol

IN

e (1€ Nzwg, ) + 19", V9", 009"l 2w, ) + 10 P2

IA
o

£, (w- V)w 04 AAl| e ) + [ div A, V(div A), a(div A)ll e,
+ HU*7P|’L2(V,$)

<c|lfllzawe,,) + 1A A2z, xrzez,, ) + 1(OA 00 As) 2y, 2o, )

I s r zmer, 100502z | w2z, ) + 5Dl |

+1,1

<c|lflrap,, + 1A A)lreqz,, yxrzoz,, ) + 1(OA 0iAs) Iz, 2w

1
ﬁ+3,0)

2 2
+ H(UI’u3)||L°°(V$+1,1)><L°°(V$+2,o) T H(U/’u3)||L2(V—3+1,1)><L2(V$+2,0) + Hu’pHLQ(V“?)] '
Setting 1 := u* + A, we finally arrive at
u(t, ) = x(rw® (¢, 2) V. PO (y) + a(t, x)

and the asserted a-priori estimate lies at hand.

Case 2: v1 +2 < B+ 2.
In this case V60+2(H) C V,%H(H), therefore f* € L2(V$1+2) and further, g%, Vg*, 0,9* €
LQ(VWOHF?)). Again, it is u*,p € LQ(V$). If v > 71, we directly have V$(H) C VVO1 (IT). If
~v1 > 7 instead, we need to apply Theorem 4.3(ii) to find: u*,p € L2(V701). Note that
(v,71) NZ = is granted by 11 < .

Due to Theorem 4.4 we get, just as in Case 1:
' (t,2) = x(r)w @) (8, 2) V. PO (y) + 0 (¢, @)
= x(MU* T (t,2) + (¢, ),
plt,@) = x(r) (=sO D) = DO PO () + it w)

= x(r) (PO (t9) + PO ty)) + (k)
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and
HS(O’i)HL?(o,zw) + Hw(o’i)HL‘x‘(Hl(O,l)) + w @ 12 (H2(0,1)) T 9w HL2 L2(0,1))
HIBllL2ve ) + ||f1*7Vﬁ*,VQﬁ*af)tﬁ*vvam(v ) (4.13)
< eIz ) + 197 V" 0g" 2o ) + 10" Pl

Thus, our goal now is to improve the Welght exponent of the remainder (a*,p).

In particular, the inequality above contains the information that u* L2(V,Y1 +2,0) and

da* € L*(V) ,,). Lions-Magenes’s Lemma (Theorem 2.17) coupled with Lemma 2.14,
on interpolation of weighted spaces, implies

u* e C([0, 2n]; (V21+2 O(H)7V’}(’)1+2(H))l/2,2)
= C([O 277]7 Y1+2, O(H))
C L®(0,2m; VY, 45 o(1D))

with

1/2
R (L PR X S
Therefore, Lemma 4.6(c) yields

1@ V)@l 2y L, < ell@flp=pr o0 2

+20 ~,+20)

Observe, in particular that 21 +4 > v + 2, since y; > —2.
The remainder (a*,p) is a solution of the following Stokes system:

du* — Au* + Vp = f* in [0,27] x 1T,
divi* = §* in [0,2n] x 11,
u o =0 for all ¢ € [0, 27],
uli—0 = Ult=2 in IT,

where £* := £* — U0+ A (UO)) =V (PO 4y PO, g* := g* —div (U4 *7)).
Since div(U*)) = Vx - UO) + x divid©) = Vx - U ) has bounded support, we
obviously have: g*,Vg*, 0;g* € LQ(V£+3). We need to break down f*. On one hand:
= OO + AU = v (xPOD) 4 PO
= (AU 42V - VU — (V) PO — (V)P0
—X (atuwf) — AU 4 v7><07*>) .

~~

=0

And on the other:
f*=f—(u-V)u—9,A+AA
—f— ((u* - V)u* + (A - V)u* + (u* - V)A + (A-V)A) — %A + AA
=f— (@ V) — U Vet — @ V)xuUO) — (O vy o
(A VU —(A-V)a - (U V)A - (@ V)A - (A-V)A
— 0 A+ AA.
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Having a compact support, we find
(2ouU ) vy - U (VPO (V) PO e L2(V0 (D))
for all € € R (especially € € (0,1)). The statement
(0 V)" € LAV, 44(ID)

is derived above and for the remaining terms we conclude with Lemma 4.6:

U e LW 1), 0" € LZ(V21+2 0) = a7 vyt e L2(V° 6+~/1+8)
i€ LWL o) U e 1202, MY (D vy e IAVY, L),
UOD € L2 ) U0 € L2025 (GO V) ) € IA(VY,,),
ACL¥Whoy) UOD e L20%,) (A VU € (VY 40),
UOTD € LW ), A e PV3,,) 28 (U V)A€ LV h,,),
A€ L®WVhy,), i € L2A(V2 400) 1800 (A-V)a" € LA(VE, ).
@€ LV n0), A € L2(V2,)) 4600 (8" V)A€ LA(VD ),
: -
N < e e (8T L)

for all 6 > 0. Notice =6 + 5+ 3 > B+ 2 (for § sufficiently small), 8+ v + 4 > 271 +4
and 23 + 17 > B + 2 resulting in corresponding embeddings.
With these inclusions at hand, we distinguish further:

1): 21 +4>p6+2.
If 294 +4 > B+ 2, then also —0 + 1 + % > [+ 2 (for ¢ sufficiently small). This
is due to the fact that 8 < —1, hence g > [+ % leading to 1 + 8 > ﬁ -1 —|—% >
8+ % + % > B + 2. Checking now all summands of £*, we find f* € LQ(Vf?_FQ) and since
9", V§*, 0" € LQ(Vﬁo_s_ig)7 we are able to apply Theorem 4.3(ii) with a*,p € L2(V,Yl+1)
Note that (v1 + 1,8+ 1)NZ =0, due to —2 < 1 < 8 < —1. Thereby, we establish

peLX(VE, (), &, Var,V2ir, 0", Vi € LX (Vg ,(IT)
and the following a-priori estimate:
||I3HL2(VB0+1) + [lut, vat, via®, g, Vﬁ||L2(Vg+2)
< e [IFl sz, ) + 157 95 00l ) + 1655l o )
< c|JJf (@ Va7 vyar, @ VD, 6O v,
(A-V)xUO) (A-V)ar, (U - V)A, (T V)A, (A - V)A,0A, AA,
(AU ), Vo VU (V) PO, (V)P

(0,—)
Mz,

+ ||div A, V(div A), dy(div A), V- U v (Vx - u®)), v - ou” }|L2 Vo)
B+3
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+ 18 Blaws )
< e [Ellaqvp, ) + 108 D)8 ey, )+ 10O - V)E, @ VU a0

—6+y 1+8)
+ (A VU U VAo A V)R (87 V)AllLzwe oas)
+[I(A - V)AHLQ(V2OB+1T7) +110:A, AA | 2y, )
+ (AU V- vuO (VPO (VPO e )
+ || div A, V(div A), 9 (div A), Vx - U, V(Vx - UOD), V- 0O Vi)
+ [0 Bl 2o 1)]
Sc[\lflle Vo) T Il ) Il z2002 ) ) DO et 1871202 L+20)

+ 0 e

1 i20) HXU HLQ(VEM) + [ )HLoo(vl(s1 [P HL?(VEM)
Ao,

XUz, )+ IO, Al 22

542,1)
Aoy, o022, ) F I lzepn L, ALz

+[[(AY, A3) | L 1

B+2, 1)

Y1 +2, o) 5+2 1)

X Lo vgpr30 A, A2z, yxrzvz,, ) + 10:A AAl 2o, )

+ (Hw ™) 2 (0,1)) + s HL2 0,27 )”P( =, v, PO Vv, PO 2 supp vy
(A Al 2wz, yxrez,, ) + 1OA, % A) 2y, xrzo,, o)

+ (Hw(o’f)HB(Hl(o,n) + || 0w ’7)||L2(L2(o,1)))HVyP 07 V2 PO L upp v

18 Blaws )
< C[HfHL2 vo,,) T[T 1 +\|1~1*||2LQ(V2 L+20)

+ [|w® HLoo 101 IXVy P( ’ )||V1 (R2) T w® )||%2(H2(0,1))||XVyP(O’_)||%/35+2(R2)

/ /
+ H(A 7A3)||L°°(Vé+2yl)><L°°(V}3+3 + ||(A 7A3)||L2 2 ) L2(v§+3’0)

+ (A Al 2z, yxre( B+30) + (0 A, atAS)”LQ v}m DXLV, o)
+ 0O 20,1y + 1000 L2201y + 150 1202,

+ [la” ,pIILz(v$1+1)]
2 2
<c [Hf”L%V[?H) + ||(A/7 A3)HL2(V§+271)XL2(V[23+3’0) + ||(8tA/7 atA?’)HLQ(VéJrQ’l)xL?(Vl

5+370)
+ H(Al7A3)HLQ(V§+2,1)><L2(V§+3,O) +[[(:A, AN 2wy, , )xL208 5 )

+ 1w N2 2 01y) + 10O oo (101
+ 0O p2mz(0,1y) + 1000 22 0,1)) + 1505 1202,
+ o ||L2(v31+2,0) + [|oa” ||L2(v$1+2) +a Pllagve )
(4.14)

(1 2g, + A A By s+ IO A s paen

5+3,0)
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+ (A Al 2wz, yxrzoz,, ) T 1OA A2, yrzon )

(18 2y + 110 90" 80" v ) + I pllzzrs)
(I8 2oy + 19" V9", 09" 2o )+ ", pllz2us,) )

4 (I8l + 19" V" 00" L an ) + I bl v )
w)]

< [I€l 2w, + I A',A3>|rL2(V§+2ﬁl)xL2W§+3,O) + @A A s, xrs,,

+ (A Al 2wz, yxrz0z,, ) + 1@A 0 As) 2, )

(I8 2o )+ 9% V9" 09" lraqvn | + I, ple

x L2 (VB+3 o)

2
+ (IF, (- V), 08, Al agyo )+ | div A, V(div A), 9y(div A)|2qyo )+ 10 pll 2qv) )
+ (Hf, (- V)u, A, AAllpaws ) + || div A, V(div A), 9(div A)l o )+ \|u*,p||Lz(V$)>]

<1+ Elzag, ) + 1A A5)ll 22

2,) XL

2(V§ + ”(atAl 875*’43)HL2 Vé_‘_z 1)XL (VEH_;;,())

+ (- V)ull 2o ot I, pll L2 vo)

< [U+ Bz, + 1A A3z, o2, 0+ I@A B A2, xzzon, o

2
/ / 2
+ H(u 7U’3)||L°°(V;+171)><L°°(V$+2,0) + H(u ’u3)HLQ(V3+1,1)><L2(V$+2,0) ™ HuvaL2(V$)]

Finally, setting 1 := @* + A we obtain the claimed representation and estimate.

(i): 2v1 +4 < B+ 2. N
Otherwise if 2v1 +4 < B+ 2, we have f* L2(V2,Y 44)s since 2y +4 < f+2<1 &
< — 1mphes 2y +4< —6+y+3 3. Notice, further, that (v, + 1 271 +3)NZ =10,
due to —2 <y <271 +2 < B < —1. By Theorem 4.3(ii), with f* € LQ(VQMM),
g*,Vg*, 0" € L? (V271+5) and u*,p € L? <le+1) we infer

pe LV, s), a*,va',var, o', Vpe L (Vy, ,10).

Define v9 + 2 := 27 + 4, whereby vo > 1. We iteratively repeat the argumentation
above starting with an improved embedding u* € LOO(VI2 +2,0(IT)) and, consequently,
(u*-V)a* € L*(Vy),,4(IT)). The distinction (i) / (i) then becomes: “2y5+4 > B+2 or
29 +4 < 5427,

If 295 + 4 > B 4 2 we conclude the proof as before, with (i) inserting 2. Thus, the
final inequality is carried out for vo, where

Il 202, o) 190" 2o Ly 107 Bl L2y,

+20 +1)

in line (4.14) need to be estimated by
£ 2 v ) + 197V 05" L2 ) + 107 Bll 2o )

due to Theorem 4.3(ii) (instead of using (4.13)). Then, these terms get treated exactly
as in (i) for the first iteration — applying appropriate embeddings of weighted Sobolev

spaces first (in particular, V° b+ (IT) = V3, .4 (IT) and V[B+ 414 u (I) = V3, ().
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72
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Figure 4.2: Tterated weight indices in dependence of the initial index ~.

In the latter case we continue the iteration up to the point where
2 +4=2"(m+2) =2 (v+ ) = 8+2
for some k € N. Then, the proof is closed by (i). O

By a slight adjustment in its proof, the statement of the preceding theorem can be
preserved, whilst altering assumptions on u, to furnish an overall greater picture:

Corollary 4.8. Let f, g, a, p and u satisfy the assumptions of Theorem 4.7.

(i) Suppose u e L*(0,2m; V2, (1)) N L0, 2m; V1,5 o(IT)) (in place of (4.12)), then
Theorem 4.7 is valid for v € (—2,—1) and the iteration index k results from the
inequality 281 (v +2) > B+ 2.

(ii) Suppose u € L*(0,2m; V2, (1)) N L>®(0,2m; V1, 1 (D)) (in place of (4.12)), then
Theorem 4.7 is valid for ~v € (—%, —1) and the iteration index k results from the
inequality 2841 (v + %) > B+ 2.

Proof. The proof is carried out exactly like the one of Theorem 4.7, with the only
difference being the usage of another estimate for the nonlinear term (u- V)u.

ad(i): In the first lines of the proof of Theorem 4.7 we use Lemma 4.6(c) (instead of
Lemma 4.6(d)), due to the new assumptions on u. This yields

(u- V)u € L*(0,27; V3, 4(11))

and, thereby, we set v; + 2 := 2y 4+ 4. To continue with the identical scheme as before,
we need 1 > —2, which is satisfied for v > —2. This eventually results in the iteration

2y +4 =2 +2) =2 (v +2).

Hence, the iteration terminates, since there exists an index k € Ny such that 2’“*1(7—1—2) >
B+ 2 for all y € (-2, —1).

ad(ii): Following the same idea as in (i), we start with an application of Lemma 4.6(a)
(instead of Lemma 4.6(d)), taking into account the altered assumptions on u. We obtain

(u- V)u e L*(0,2m; V3, 5(11))
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and set y; + 2 := 2v 4+ 3. In order to proceed as in the proof of Theorem 4.7 we verify
v1 > —2: Since v € (—%, —1), 1 = 2y+ 1 > —2. This leads to the iteration

2y, +4=2"(n +2) =2 (v + )

and, for each v € (=3, —1), there exists an index k € Ny with 28+ (v 4+ 3) > g +2. O
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