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Abstract 

The determination of the site-specific wind conditions has a significant influence on the 

development and use of offshore wind energy. Lower uncertainties of wind potential result in 

cost-effective project financing. Floating lidar systems (FLS) or wind lidar buoys have become 

increasingly common in recent years as a measuring technology for the determination of 

offshore wind resource. However, due to harsh offshore environmental conditions, offshore 

measurements with FLS are prone to reliability issues which might result in lower data 

availabilities than required by industry guidelines. FLS are hard to reach during winter times in 

high wind periods with higher wave heights. It is not an exception that several months of FLS 

data would not be available for an MCP process. 

Motivated by this purpose, this work used a measure-correlate-predict (MCP) method to 

determine whether an interim step of gap-filling was required as part of a long-term correction 

procedure. With an hourly temporal resolution, the performance of a data filling algorithm with 

omnidirectional linear least squares was analyzed in depth. KPIs including MBE, MAE, and 

RMSE of mean wind speeds throughout concurrent periods were summarized from the 

investigation of deviations introduced by incremental sliding gaps of 1-day to 60-days gap 

scenarios. The model performance was assessed both for the training (SelfDF) and validation 

(ValDF) periods. The long-term wind speeds were derived for each iteration with and without 

a data-filling algorithm.  

Between the SelfDF and ValDF root mean square error of mean wind speed, a strong negative 

association was identified for all gap scenarios. This novel relationship (ISPE method) was 

used to determine the uncertainties in data-filling. The jackknife algorithm was deployed to 

assess the uncertainties in the long-term correction of both scenarios.  

One of the study's main questions was whether a short-term data filling phase was required 

before applying the long-term correction. Both scenarios showed identical long-term wind 

speed predictions negating this requirement for the considered MCP method. This was 

primarily due to the omnidirectional regression parameters and the reduced impact of the 

proportion of gaps on the model fit. 

The study reaffirmed the industry recommendation of 80% minimum availability for 

measurement campaign data as a reliable threshold since the mean deviation during 60-day 

gap periods was not more than 0.3% throughout the investigated iterations. 
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1 Introduction 
The recent coalition agreement by the government laid out specific targets for renewables, 

aiming to achieve 80% of electricity demand by renewable energies. Part of this plan envisions 

remarkable investments in offshore wind, targeting 30 GW by 2030 and ramping up to 70 GW 

by 2045 [1]. 

As the fuel of the wind energy projects is wind, the assessment of the wind resource for 

offshore projects plays a fundamental role in project financing. The stakeholders in the industry 

have therefore established best practices and standards. One of the key institutions is a group 

of commercial institutes named as the Measuring Network of Wind Energy Institutes 

(MEASNET), which aims for the standardisation of wind energy measuring processes so that 

findings may be recognised and used interchangeably. 

The MEASNET guideline for "EVALUATION OF SITE-SPECIFIC WIND CONDITIONS" has 

established the methodology and standards for a site assessment approach that will result in 

well-founded outcomes using state-of-the-art techniques/procedures [2]. The guideline 

prescribes a clear requirement for site-specific wind measurements as input to wind resource 

and energy yield assessments. 

Floating lidar technology was first launched in 2009 as an offshore wind measuring technology 

aimed at the wind industry's particular demands for wind resource assessment applications. 

Floating lidar systems (FLS) or wind lidar buoys have become since then increasingly common 

in recent years as a measuring technology for determination of the offshore wind resource. 

They replace wind measuring masts with comparable accuracy at significantly lower costs and 

shorter mobilization, saving a large portion of the project's initial capital expenditure (CAPEX) 

[3]. 

As the FLS technology matured and several commercial deployments were made, it became 

apparent that the post-processed data availability of the FLS measurement campaigns 

exhibited data gaps [4]. The typical way to handle data gaps in an onshore campaign would 

be to use an intra-mast anemometer and conduct synthesis, as well as use a correlation 

analysis from nearby measurement masts. In the offshore environment, the FLS failure results 

in the unit's complete downtime, thus making an intra-FLS correlation impossible. Therefore 

other methods for dealing with the data gaps within the measurement period is being 

investigated [4]. 

This study aims to investigate the impact of the data gaps on the long-term wind speeds as 

part of the "Digital Wind Buoy" project, which has been started by Fraunhofer IWES to develop 

procedures to address the limitation of the above-mentioned data gaps. Within the scope of 
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this project, methods will be analyzed, evaluated and developed to synthesize and extend 

measurement data to long-term periods by means of numerical models [5]. 

Further, as the stakeholders in the offshore wind industry are looking for ways to minimise the 

uncertainties in the energy yield prediction, the impact on the uncertainty has been 

investigated. 

In the subsequent subsections, a literature review, research questions, the feedback from 

stakeholders and the design of the particular analysis are presented. 

1.1 Research questions 

FLS are the de-facto standard measurement technology for offshore wind resource 

assessment. However, the relatively lower post-processed system availabilities of FLS 

compared to offshore platforms bring the requirement that the uncertainty and bias introduced 

by a data gap are understood in a quantifiable manner [3]. 

Gap filling of meteorological time series is required for various applications requiring 

continuous data series, such as time series analysis, meteorological and climatological 

modelling [6]. Motivated by the industry problem stated in the previous paragraph, Fraunhofer 

IWES looked at the effect of data gaps in terms of bias in estimating siting parameters and 

how to mitigate it by correlating and filling in the gaps with data from mesoscale models [4]. 

The authors of [4] have shown that the influence of gaps grows steadily with gap length during 

the measurement periods. 

On both short and extended time periods, wind speed (WS) is subject to irregular variation with 

a wide variety of time scales superimposed on each other [7]. Current procedures prerequire 

at least one year (defined as a short-term) of measured wind data at the location of interest to 

provide a meaningful wind resource evaluation[2]. That, however, is not sufficient to predict 

the wind characteristics from year to year. 

Measure-Correlate-Predict (MCP) methods or a form of long-term scaling approach must be 

used to estimate long-term wind conditions based on the short-term measurement at the 

measurement location (target) [2]. The MCP methodology is summarized in Figure 1-1 as 

defined by the MEASNET. 
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Figure 1-1. Scheme of the measure-correlate-predict (MCP) procedure  

 
Source: [2] 

In the same guideline, Measnet characterises an MCP methodology suitable for both long-

term correction and data filling of the wind speed time series. Similarly, Fraunhofer IWES 

applied the MCP procedure to test the impact of data gaps in its recent study [4].  

Therefore, this study investigated the MCP methods as the initial step, which are broadly used 

within the industry to understand why the state-of-the-art techniques are being used by the 

stakeholders and not other ways. This is further extended by discussing whether the industry 

can learn from this experience and short-list methods with good prospects.  

By investigating the best method for data filling and the applicability for a wind resource 

assessment, this study aims to identify a suitable method to fill out the data gaps for an offshore 

measurement. The impact of the data gap on the robustness would be a key criterion to enable 

a robust wind resource assessment. Hence an indication of the maximum duration of the data 

gap from the study is considered very valuable. Basic functions with the different methods 

should be laid out briefly to ensure proper application, and an appropriate method should be 

applied for the analysis. 

In order to evaluate the uncertainty of the findings, users of an MCP method must have long-

term data at each location from which to draw conclusions. There is a resulting concern about 

whether it is possible to assess the MCP prediction uncertainty using just the long-term 

reference site data and the shorter-term concurrent data at the target site [8]. This problem 

could be investigated by recording key performance indicators (KPIs) for the different analysis 

steps. 

The definition of KPIs to identify the most appropriate data filling method is a challenge. What 

would be the minimum acceptable criteria (key parameter) to perform the operations of the 

selected method? Is the uncertainty calculation a proxy to define the "best method"? Or, should 

the selected uncertainty method be applicable to the data-filling (DF) process and not 
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„long-term correction“? How should the uncertainties (step 1 – gap filling) and (step 2 – long-

term correction) be combined as they might be dependable on each other? 

This study proceeds with the primary question of whether an interim step of data filling is 

necessary before the application of the long-term correction. A tangible method to define the 

uncertainty of the analysis has been investigated. 

Typically the expected end results of a concluded gap filling and long-term correction operation 

constraints the type of analysis. As the wind industry goes in the direction of energy time series 

as a key deliverable, the investigated method should ideally be suitable to deliver such output. 

Other final deliverables are a Weibull statistic or sector-wise wind frequency distribution. 

Finally, the best combination of methods (sequence) to conduct a data-filling (also referred 

sometimes as data synthesis or gap-filling) and long-term correction exercise is investigated 

as the final step. 

The first research question has been approached twofold. The first part consisted of a literature 

review on existing MCP methods, followed by the second step of a stakeholder questionnaire. 

The results of the literature review and questionnaire informed the decision about the 

methodology. 

A tangible outcome of this study is to inform the reader about the overall maximum acceptable 

gap duration in a year for an offshore measurement campaign for a robust wind resource 

assessment. 

It is noted that possible secondary investigations can be done to confirm the robustness of the 

gap-filling process. Environmental variables could be investigated within such analysis. Such 

analysis could explore the relationship between reference and target data in the best way 

possible to account for different weather conditions. There could be a situation where a certain 

“outlier“ weather condition is available within the concurrent data, which is not representative 

of the expected long-term. Further consideration of specific environmental conditions might be 

relevant for the procedure. There could be the risk that certain weather events could skew the 

results. 

And as the frequency of extreme weather events is expected to increase due to climate 

change, one should think about whether this assumption is likely to influence the investigated 

method beyond the fact that such extreme events are likely to increase the data gaps in 

commercial floating measurement campaigns. 
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1.2 Literature review and questionnaire 

A review of the literature on MCP methods and the use of data-filling of gaps was conducted 

to inform and structure the rest of the master’s thesis. The literature review included industry 

publications, white papers, user manuals of industry-standard software, published books and 

peer-reviewed journal articles. Cross-references from well-known studies like Carta [9] were 

helpful to obtain more information on the research topics. Further, a stakeholder questionnaire 

was designed and distributed to key industry experts to collect feedback on the research 

questions and suitable methods. 

As the long-term wind climate properties are needed in wind resource and energy yield 

assessments, and as obtaining complete time series data over the whole historical period is 

typically not possible, the purpose of any long-term wind correction is to derive a statistical 

representation of the expected long-term climate or an equivalent time series. The initial MCP 

methods were introduced in the 1940s to estimate the long-term mean annual wind speed 

based on a single reference station [9]. 

The relationship between the reference and observed datasets can be mathematically defined 

as a transfer model. According to [10], there are at least four main kinds of transfer models: 

1. Models that represent the physics of the wind flow (e.g., CFD flow models) 

2. Statistical models 

3. Empirical models 

4. Other (combinations of the above, such as Wind Atlas Analysis and Application Program 

(WAsP)) 

MCP models may fall into any category or a combination of them, showing that MCP models 

can be used in a broad range of situations [10]. According to Addison [11], MCP techniques, 

in comparison to physical modelling methods, often give a better degree of accuracy, 

particularly in complex terrain. Physical models like CFD or WAsP might also introduce 

unquantifiable uncertainty into the prediction process. As a result of these improvements, MCP 

techniques have become a frequent tool for wind farm developers and have been integrated 

into wind energy software packages [9]. 

The statistical MCP methods and corresponding correlation techniques introduced by Derrick 

[12], Mortimer [13], Taylor [14], Bechrakis [15], and Rogers [8] were investigated [16]. These 

methods are introduced and discussed in Section 2.3 alongside selected empirical methods. 

It is noted that, typically, MCP methods are used to estimate the magnitude of the wind speed 

at the target location but not the wind direction (WD). Nothing in the literature on MCP 

approaches specifically specifies stand-alone wind direction prediction at a target location [17]. 



Introduction 

University of Kassel WES MScThesis Sargin - MCP Methodology for a Digital Wind Buoy 6 | 110 

Mifsud also mentions that MCP techniques predict the long-term wind speed at a location but 

not the wind direction (WD) [17]. As referred in Section 2.4, the wind direction measurements 

are used typically as a classifier to divide the wind speeds into different bins or sectors, which 

are further processed in the respective algorithms. 

1.3 Methodology overview 

Following the literature review and stakeholder questionnaire, the different MCP methods are 

discussed, followed by the preparation of the target and reference datasets for MCP to select 

a suitable method for a gap-iteration algorithm. The complete methodology applied within this 

study is presented in Figure 1-2. 

In line with the standard industry convention, the data-filling for gaps and long-term correction 

methods used in this study do not replace the observed (measured) time series but instead 

extends the existing observed dataset to the long-term [18]. 

The long-term correction of the entire measured period was conducted repeatedly with the 

industry-standard engineering software Windographer and WindPRO, equating to a total of 43 

MCP runs. Further, a performance test algorithm has been run within the Windographer 

software to compare the available MCP methods in terms of their performance. Based on the 

sensitivity analysis of the final long-term wind speeds (LTWS) and results of the performance 

test, the omnidirectional linear regression method, with least-squares model fit with offset, was 

identified as a suitable solution for iterative analysis. It is noted at this stage that the sectorwise 

results were analyzed in parallel during the concurrent period to gain confidence in the MCP 

algorithm's performance and collate the KPI metric. 

The KPIs were evaluated under three groups. The first group is the “PreDF”, the acronym for 

“prerequisites for data filling”. PreDF looks at the relationship between the reference and 

observed datasets in order to make the judgement of whether the reference dataset is suitable 

for the MCP application. The PreDF-KPI also gives a benchmark about the performance of the 

MCP, as it does not involve any model and compares only two independent variables set for 

the concurrent short-term measurement period. 

A common analysis option for MCP performance is to test the result of predictions versus a 

known result, which is referred to as “self-predictions” [19]. Typically this method is used to 

slice sufficiently long-term measured data into chunks and compare the prediction results of 

these chunks with the measured data [20]. It is noted that the terminology “self-prediction” is 

used in a slightly different context here, where the time period of the initial and target period is 

identical. In statistics, the difference between model output and observed value is sometimes 

referred to as a residual, defining the accuracy of the model using the prediction error [21]. It 
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is noted that in this study, the term “residual” is reserved for a random error introduced by the 

model, as discussed in [22].  The second group of KPIs were obtained from evaluating the 

model performance from the concurrent periods. The linear fit obtained from the correlations 

between the measured and reference datasets for the concurrent periods is used to obtain the 

self-predictions for the same period. The results are compared with the measured data. From 

the comparison, the KPIs are defined, referred to as the self-predictions for data-filling 

(SelfDF).  

The third KPI group is gathered from the analysis of the gap periods, as these provide the 

“true" performance of the MCP data-filling procedure. The focus was laid on the mean wind 

speed mainly. The relationship between the measured and gap period was investigated as 

well to gain an understanding of the related uncertainties. The signifier for this KPI group is 

ValDF, standing for “validation for data-filling”. 

Different gap periods starting with one day up to sixty days were investigated to find a 

quantifiable metric to forecast the performance of the data-filling and long-term correction 

algorithm with European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 

5th Generation (ERA5) as a reference dataset. For each gap period, the gap was cut from the 

combined dataset, introducing a measured period with an artificial gap. A sectorwise linear 

least regression was applied within this training period (measured period with a gap) between 

the measured and reference hourly wind speeds values before obtaining the linear regression 

model to confirm the applicability. In the subsequent run, an omnidirectional linear regression 

model was run due to computational limitations. This model fit was used to obtain both self-

prediction performances and to predict the wind speeds at the introduced artificial gap. 

The performance of a measure-correlate-predict (MCP) algorithm for data-filling with linear 

least squares was analysed in detail using two years of the Ijmuiden met mast (MMIJ) 

measurements (see Section 2.9.3) both with a data-filling process and without. A temporal 

resolution of one hour was selected for the correlations and model. 

The comparison of the root mean square errors (RMSE) of the mean wind speed (MWS) of 

the self-prediction and validation period show a strong negative correlation for the investigated 

periods, obtained from the metrics of the incremental gaps within the calculated gap period. 

The function of this relationship was used as a proxy to assess the quality of the prediction 

(following the MCP approach). This process is used to calculate the uncertainty in the 

data-filling of the gaps. The data-filled short-term period average is referred to as data-filled 

short-term wind speeds (DFWS). 

The analysis was proceeded by obtaining the long-term wind speeds in a new set of iterations 

in two loops. Within the inner loop, the single-day gap was moved through the measurement 
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period by shifting the start time by one day. The outer loop increased the gap duration 

incrementally by one day, starting with one day up to a total of 60-days.  

The LTWS was calculated in two scenarios for each iteration as mentioned above, using a 

data-filling and without data-filling procedure. The regression model was used to fill out the 

gap in the first scenario. Subsequently, the gap-filled dataset was used as if it was a measured 

time series, and a new regression model was obtained for long-term correction. This 

relationship was used to calculate the final LTWS for the first scenario. The second scenario 

was designed to obtain the LTWS without the data-filling procedure. The regression model 

was obtained from the relationship between the measured period, including the gap and the 

concurrent reference time series. Similarly, the LTWS was calculated using the same method. 

The uncertainties in the long-term correction were calculated using a jack-knife (JK) algorithm 

[8] using four subsets for each iteration. The results of the LTWS and uncertainties are 

compared to derive the conclusions. Subsequently, the final uncertainty in the MCP method 

was obtained by combining the uncertainty in data-filling and long-term correction. The 

shortcomings and future work are also discussed. 
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Figure 1-2. Flow chart of the methodology 

 
Source: Author’s own illustration 
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2 Methods and materials 
The statistical methods commonly used in MCP procedures are introduced within this section, 

and a brief introductory paragraph about wind resource assessment is given. The review of 

MCP methods summarises the available MCP algorithms based on a literature review. After 

that, the reviewed methods are grouped into classes to gain an overview of their applicability 

for the purpose of the study. Key performance indicators are introduced and discussed, 

followed by uncertainty assessment methods. Finally, the selection of the base-case algorithm 

for the iterative gap analysis is introduced. The code design based on the base-case algorithm 

and the used datasets is described in the last sections. 

2.1 Wind resource assessment 

Wind resource assessment (WRA) is the discipline of determining the long-term wind climate 

and expected seasonal, diurnal, spatial and temporal variation at a proposed renewable 

energy project location. The outcome of a wind resource assessment typically includes long-

term representative wind conditions at a hub height of a wind turbine generator (WTG), and 

sometimes across the rotor plane. Following flow modelling based on the wind climate 

statistics, the energy yield is modelled at a project location using WTG specific power and 

thrust curves as well as project-specific loss and uncertainty estimations.  This information is 

used as input to a financial model to calculate the financial performance of the wind project. 

As a result, WRA is the most important activity in determining the feasibility of a wind energy 

project [23]. 

The purpose of this small part is to refresh the reader's memory on the link between kinetic 

energy of wind to rotor radius and wind speed, to emphasize that an increase in accuracy in 

per mille range as well as an increase in uncertainty estimates has a high impact on the 

financial model of offshore projects. 

Wind energy is proportional to the cube of the wind speed. The wind power density (WPD), or 

the power per unit of area normal to the direction the wind is blowing, is a commonly used unit 

of measurement as shown in the below equation [24]; 

 pw = 
1

2
ρvw

3      [W/m²] [e1] 

 where:  

 ρ =air density at standard atmosphere [kg/m³]  

 vw =wind velocity [m/s]  

The kinetic energy advected by an air stream is proportional to the wind speed to the third 

power. Emeis states, therefore, that the climatological mean wind speed is insufficient to 
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determine the amount of wind energy available at a particular location since wind turbines may 

react to real wind speeds in seconds. Additionally, stresses and vibrations on structures such 

as wind turbines are highly dependent on the wind spectrum's high-frequency components. As 

a result, it is critical to quantify the wind speed's spatial structure and temporal oscillations. 

This may be accomplished by the computation of the wind speed distribution at a given location 

using representative long-term time series [25]. 

Data distributions are commonly approximated by mathematical functions with a small number 

of parameters. Emeis summarizes commonly used wind statistics parameters as shown in 

Table 2-1 [25]. 

Table 2-1. Statistical characteristics of the wind [25] 

Parameter Description 

Mean wind 
speed 

Indicates the overall wind potential at a given site, expected wind speed for a 
given time interval (first central moment) 

Wind speed 
fluctuation 

Deviation of the momentary wind speed from the mean wind speed for a given 
time interval 

Wind speed 
increment 

Wind speed change for a given time span 

Variance Indicates the mean amplitude of temporal or spatial wind fluctuations, expected 
fluctuation in a given time interval (second central moment) 

Standard 
deviation 

Indicates the mean amplitude of temporal or spatial wind fluctuations (square root 
of the variance) 

Turbulence 
intensity 

Standard deviation normalized by the mean wind speed 

Gust wind 
speed 

Maximum wind speed in a given time interval 

Skewness Indicates the asymmetry of a wind speed distribution around the mean value 
(third central moment) 

Kurtosis 
(flatness) 

Indicates the width of the wind speed distribution around the mean value (fourth 
central moment) 

Excess kurtosis Kurtosis minus 3 

Frequency 
spectrum 

Indicates the frequencies at which the fluctuations occur 

Autocorrelation Indicates the gross spatial scale of the wind speed fluctuations, Fourier transform 
of the spectrum 

Structure 
function 

Indicates the amplitude of wind speed fluctuations, computed from wind speed 
increments 

Turbulent 
length scale 

Indicates the size of the large energy-containing eddies in a turbulent flow 

Turbulent time 
scale 

Indicates the time within which wind fluctuations at one point are correlated 

Probability 
density function 

Indicates the probability with which the occurrence a certain wind speed or wind 
speed fluctuation can be expected 

Source: [25] 
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2.2 Statistical methods 

This section discusses the fundamental statistical procedures that were used in the 

investigations for this study. When dealing with substantial statistical populations, in this 

specific case, wind measurements in the boundary layer, counting every object in the 

population is impossible. Hence the computation must be done on a sample of the population. 

Therefore a subset of the dataset is assumed to represent the statistical population subject to 

analysis [26]. 

The dataset used in this analysis is considered a sample of the available statistical population. 

Following definitions are made with regards to the notation: 

 y i =  sampled predicted value 

[e2]  yi =  sampled measured value 

 xi = sampled reference value 

2.2.1 Definition of uncertainty 
The formal definition of "uncertainty of measurement" provided for use in this analysis is – as 

defined in [27] the quantity associated with a measurement result representing the scatter of 

values that may reasonably be assigned to the physical amount measured. Standard 

uncertainty is a standard deviation resulting from a measurement [27]. 

Annex E of IEC 61400-12-1 includes a comprehensive summary of the theoretical basis for 

determining the uncertainty using bin-wise calculations [28]. 

2.2.2 Definition of type A and type B uncertainties 
Type A uncertainty is defined by the statistical analysis of a sequence of observations which 

is used to assess uncertainty, whereas Type B uncertainty does not rely on statistical 

evaluation [27]. The Type A and Type B classifications are intended to identify the two distinct 

ways of assessing uncertainty components. It should be noted that both forms of evaluation 

are based on probability distributions, and the uncertainty components produced by either type 

are quantified using variances or standard deviations. [27] states that Type B uncertainties are 

obtained by scientific judgement based on the pool of available information. The uncertainty 

assessment conducted within this study is categorised as Type A uncertainty. 

2.2.3 The mean 
The summation of the observations divided by the count of observations gives the arithmetic 

mean [29]. Time is considered as an independent variable for averaging.  The sample mean, 

𝑥 , is given by the following equation: 
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 x̅ =  
x1+x2+…+ xn

n
=

1

n
∑ xi

n
i=1  [e3] 

 

2.2.4 Variance and standard deviation 
The expectation of a random variable's squared difference from its population mean or sample 

mean is called variance. Variance is the measure of the spread, or how much a data group 

deviates from its average value [30]. The following equation gives the sample variance: 

 sx
2 = 

1

n−1
∑ (xi − x̅)2n

i=1  [e4] 

The standard deviation is the positive square root of the variance. The number 𝜎𝑥 represents 

the experimental standard deviation of the measurement dataset and provided by the formula 

for a series of n measurements of the same measurand [27]: 

 sx = √
1

n−1
∑ (xi − x̅)2n

i=1  [e5] 

2.2.5 Covariance and correlation coefficient 
Covariance measures how two variables change together, whereas variance examines how a 

single variable varies. Covariance is, therefore, can be interpreted for this paired co-

movement. The expectation value is used to describe the covariance between two random 

variates, x and y, each having a sample size of n [31]. The equation of covariance is given in 

the [e6];  

 
cov (x, y) =  

1

n
∑

(xi − x̅)(yi − y̅)

n

n

i=1

 [e6] 

The Pearson correlation coefficient or Pearson product-moment correlation coefficient (PMCC) 

is a statistic that calculates the linear correlation between two sets of data. The sample 

Pearson correlation coefficients'  absolute values vary between -1 and 1. The Pearson 

correlation coefficient will be referred to as the “correlation coefficient” in this study [32]. 

The correlation coefficient is a measure of how well two variables are related and is obtained 

by dividing the covariance by the product of each variable's standard deviations, whereas the 

increase and decrease of the correlation coefficient show the direction of the linear relationship 

[32]. In the case of the sample correlation, correlations of +1 or 1 correspond to data points 

sitting perfectly on a line. The equation is given [e7]: 

 rxy = 
sxy

sxsy
 [e7] 
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2.2.6 Coefficient of determination 
The square of the sample correlation coefficient is commonly abbreviated as R², and is a 

subset of the coefficient of determination. R² is simply the square of the sample correlation 

coefficient between the observed outcomes and the observed predictor values when just an 

intercept is given [33]. 

A percent can be used to represent the coefficient of determination giving an indication of how 

many data points are contained inside the regression equation's results line: if the R² is 0.80, 

then the regression line can define 80 percent of the points in consideration [34].  

2.2.7 Mean bias, absolute bias and root mean square errors 
Mean bias, absolute bias and root mean square errors are important metrics for the definition 

of the method uncertainty in data-filling, as discussed later in this study in Section 2.6.2 [35].  

Mean bias error, or the statistical bias, occurs when the predicted value of the results differs 

from the genuine underlying quantitative parameter being evaluated [36]. The mean bias error 

(MBE) is, therefore, the metric that determines how closely a collection of projected values 

matches a set of observed values and given in the following equation: 

 
MBE =

1

n
∑(y i − yi)

n

i=1

 [e8] 

The mean absolute bias, or mean absolute error (MAE) is the arithmetic average of absolute 

errors and is defined as the measure of errors between paired observations in statistics that 

reflect the same phenomena [37]. The MAE is defined in the following equation: 

 
MAE = 

1

n
∑|y i − yi|

n

i=1

  [e9] 

The root-mean-square error (RMSE) is a metric for comparing the values predicted by a model 

or estimate to the values observed. When based on a sample population, the variances are 

defined as prediction errors [38]. 

The standard deviation of the prediction errors is derived by taking the square root of the 

average of squared errors. The root mean square error (RMSE) is a measure of how spread 

out these prediction mistakes are, and it's often used to validate experimental results in 

climatology, forecasting, and regression analysis [39]. The RMSE is defined in the following 

equation: 
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RMSE = √

1

n
∑(y i − yi)

2

n

i=1

  [e10] 

2.2.8 Standard error 
The standard deviation of a statistics sample distribution is the standard error of that statistic. 

The standard error of the mean is the standard deviation of the means sample distribution. For 

the application of confidence intervals and significance testing, standard errors are crucial [40]. 

A statistical accuracy is commonly expressed in terms of its standard error, which is the 

measure of the distributions spread [40]. Standard error, in other words, is a measure of the 

uncertainty in the model parameter values estimated [41] and given with the following formula: 

 sx̅ =
s

√n
  [e11] 

2.2.9 Kolmogorov-Smirnov statistic 
The two-sample Kolmogorov-Smirnov (named after Andrey Kolmogorov and Nikolai 

Smirnov) test is used to determine how closely the distribution of a set of predicted values 

matches that of observed or true values. 

The Kolmogorov–Smirnov test (KS test) is a nonparametric test used to compare two samples 

(two-sample KS test) in statistics [42]. The test examines the cumulative distributions of two 

datasets and calculates the greatest vertical distance between their empirical distribution 

functions. The test is sensitive to changes in the location and shape of the samples [42]. A test 

statistic of zero will result from two datasets with identical cumulative distributions. 

Figure 2-1 illustrates the KS test statistic, where the black arrow represents the two-sample 

KS statistic, whereas the red and blue lines are empirical distribution functions.  
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Figure 2-1. Illustration of KS test 

 
Source: [42] 

The KS test is defined in the following equation: 

 D = supx|F0(x) − Fdata(x)| [e12] 

 where; 

F0(x) = the cumulative distribution function (CDF) of the predicted distribution 

Fdata(x) = the empirical distribution function of the observed dataset 

 

In addition to the KS test, distribution error (DE) introduced by UL [43] can also be calculated 

using the following equation, following the creation of the predicted and observed frequency 

distributions as defined in the manual of Windographer [43]; 

 
DE = ∑

(Fî − Fi)
2

Fi

N

i=1

 [e13] 

 where; 

Fî= frequency of the ith bin of the true observed distribution 

Fi=frequency of the ith bin of the predicted distribution 

 

2.2.10 Normal distribution 
The normal distribution is a continuous probability distribution for a real-valued random 

variable, which is the most important and extensively used distribution in statistics [44]. Normal 

distributions are broadly used in statistics, for example, to describe real-valued random 

variables whose distributions are unknown in the natural sciences. The probability density 

function (PDF) of the normal distribution is given with the following formula [44]: 

 f(x) =  
1

σ√2π
e−

1
2
(
x−x̅
σ

)
2

 [e14] 
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2.2.11 Weibull distribution 
The frequency distribution of wind speed is typically defined in a compact form by means of a 

Weibull distribution [45]. The two-parameter Weibull distribution is expressed mathematically 

in [45] as: 

 f(u) =  
k

A
(
u

A
)
k−1

e−(
u
A
)
k

 [e15] 

 where:  

 u=horizontal wind speed [m/s]  

 f(u)=Frequency of occurrence of wind speed  

 A=Scale parameter [m/s]  

 k=shape parameter [-]  

2.3 Review of MCP methods in wind resource assessments 

A common approach used within MCP methods is shown in the block diagram in Figure 2-2. 

The operation is divided into two steps by the authors of [9].  

The first part is to study the concurrent period to establish a link between the reference and 

observed datasets. The observed relationship is applied to the reference dataset to obtain the 

long-term site-specific time series in the second step. However, it is noted that this is not 

always identical in each MCP method, and sometimes the relationship might be applied to the 

short-term dataset [9]. Further, within the wind resource industry, it is prevalent to use the 

relationship only to the remaining period of the reference dataset and combine it with the 

measured dataset to obtain the long-term site-specific datasets. This is commonly referred to 

as an extended dataset and refers to the long-term time series. 

Reference data is defined as consistent, sufficiently long time series data with the same 

measurement types (in this case, wind speed and wind direction), with a high temporal 

resolution like hourly resolution and high quality. Wind measurement data collected over long-

term, reanalysis data, mesoscale analysis, the long-term yield from wind turbines or yield; or 

wind indexes derived from wind turbine yield data or wind data might be used as reference 

data depending on the use case and application [35]. 
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Figure 2-2. Block diagram of a typical MCP 

 
Source: As presented in [9]  

As stated by Addison [11], MCP's main difficulty is with the prediction model. Historically the 

MCP methods have been interested in deriving the long-term wind speed as accurate as 

possible. Nevertheless, the MCP procedure accounts for the wind direction deviation as well 

as described in the next paragraph. 

When predicting long-term site wind speed and direction distribution, systematic direction 

changes between reference and site observations may be employed. But typically, it is 

expected that the long-term wind direction distributions remain the same.  The direction shift 

between time series is determined by obtaining the difference between the site direction and 

the reference mast for each time step after binning the reference time series. The mean of all 

reference wind directions within a direction sector is computed as an offset [46]. The offset is 

then added to the reference site wind direction measurements to obtain the long-term 

representative site wind direction time series. 

The main MCP methods are presented briefly in the subsequent sections to inform the rest of 

the study. 



Methods and materials 

University of Kassel WES MScThesis Sargin - MCP Methodology for a Digital Wind Buoy 19 | 110 

2.3.1 Linear regression methods 
Linear regression models the relationship between two variables by fitting a linear equation to 

observed data. One variable is regarded as an independent variable, while the other is 

regarded as a dependent variable [47]. For visualisation of the relationship, a scatterplot is 

often deployed where the correlation coefficient (see Section 2.2.5) is used as a numerical 

measure of association between these two variables. The linear regression line has the 

following formula, where x is the independent variable, m the slope, b the offset and y the 

dependent variable. 

 y = mx + b  [e16] 

There are various methods for how the linear regression line can be fitted. The most common 

sub-methods (please refer to Section 2.4.2 regarding the taxonomy used in this analysis) are 

linear least squares (LLS) and total least squares (TLS). Further, the variance ratio method is 

discussed. 

There are three primary LLS formulas to choose from, as shown in [48]: 

• Ordinary least squares (OLS) 

• Weighted least squares  

• Generalized least squares 

As OLS is primarily used within the wind industry and recommended practices, the LLS is 

referred to as the OLS method within this analysis, mainly due to the broad implementation of 

the LLS acronym within the wind industry [49]. As shown in Figure 2-4, it minimizes the vertical 

distance (residual) between data points and the model fit. Derrick [12] presented that the 

simplest and most often used method for obtaining a model from a collection of points is the 

LLS fitting approach for wind resource assessments [50]. The linear fit parameters of the LLS 

are calculated using the equations [46] as shown below: 

 
m =

∑ ( xi − x̅)i (yi − y̅ )

∑ (xi − x̅)2i
 [e17] 

 b =  y̅ − mx̅ [e18] 

 where, y̅=predicted mean  

On the other hand, the TLS submethod is a technique for minimizing the sum of squared errors 

(residuals) measured orthogonally to the line of best fit as shown in Figure 2-4. It is also known 

as 'orthogonal least squares’ and sometimes referred to as York Method [51]. Industry-

standard WindFarmer software refers to TLS as the principal component analysis (PCA) 
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method [20]. PCA is the technique of calculating the principal components and utilizing them 

to modify the change of basis of the data [52]. WindFarmer theory manual notes that the 

principal components are the uncorrelated parameters of the dataset [46]. The TLS method is 

illustrated in Figure 2-3 with the orthogonal distance from the fit as given by the below 

equation: 

 
di =

di − mxi − b

√m2 + 1
  [e19] 

Figure 2-3. Illustration of the TLS method 

 
Source: Author’s illustration based on [46] 

The slope and offset values of the TLS fits are calculated as shown in the following equations 

in [46]; 

 m = −B + √B2 + 1  [e20] 

 
B = 

1

2

∑ ( xi − x̅)2i − (yi − y̅ )
2

∑ (xi − x̅)(yi − y̅)i
 [e21] 

 b =  y̅ − mx̅ [e22] 
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Figure 2-4. Minimization of errors in LLS (left) and TLS (right) with respect to model fit 

  

Source: [53] (left), [54] (right)  

In statistics and economics, orthogonal regression has a long-standing tradition [51]. In certain 

cases, it has been thought to be preferable to standard least squares. The primary reason for 

this is that when there is no clear confidence in the independent (reference) dataset, and the 

dependent and independent variables are likely to have the same error margin, the 

conventional LLS might fail, as the vertical distance between the data and the fitted line is 

minimized using conventional least squares [51]. On the other hand, if there is more confidence 

in the independent variable, the LLS might perform better. 

It is noted that higher-order polynomials may be used in modelling the relationship between 

the reference and measured (target) datasets. This was not further investigated within this 

analysis as linear fits were found to provide reasonable results for wind resource applications 

[10].  

According to [10], regression MCP techniques can be improved beyond typical linear 

regression methods if they contain a residual distribution model. WindPRO, for example, 

implemented this approach to capture the energy content of MCP adjusted site wind 

distributions better than regression models without this option [10]. The residual is defined as 

the random error in the model. In WindPRO, the residuals can be introduced to the linear 

regression model by assuming a zero mean Gaussian distribution or a model constrained on 

both wind direction and wind speed [22]. 

Rogers [8] created the variance method (VM) approach in response to a limitation of linear 

regression in which the wind resource may be underestimated in poorly correlated datasets 

[16]. It entails reducing the variation of the predicted wind speed at the target location to the 
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same level as the variance of the observed wind speed at the target site. This is presented in 

the following equation: 

 yi − y̅

sy
= 

xi − x̅

sx
 [e23] 

 Source: [16]  

Multiple linear regression is a type of regression model in which more than one regressor 

variable is included [17]. With the development of statistical computer packages,  multiple 

linear regression has become one of the most frequently utilized statistical procedures [55]. In 

multiple linear regression, the independent variables or functions of independent variables 

could consist of quadratic or hyperbolic elements. However, the relationship is still considered 

a linear regression, as the corresponding coefficients are linear [56]. 

2.3.2 Bin methods 

The method of bins was introduced by Beltran as an alternative to linear regression. It is based 

on the approach of bins of the power curve performance measurement standard [28], which is 

a performance measurement standard for power curves. It has been shown that this approach 

can be used to estimate wind speed data in nacelle anemometers, in addition to being 

employed in power curve measurements [57]. 

The dataset is separated into bins and sectors to determine the wind speed. The goal wind 

speeds are binned by 0.5 m/s versus the reference wind speeds. In each bin with more than 

10 data points, the mean of reference and target wind speed is determined.  Then, as 

illustrated in the equation, a linear interpolation between these positions provides the target 

wind speed [57]. 

 
Ŵi

tar = Wi
tar + (Wi

ref − Wb
ref)

Wb+1
tar − Wb

tar

Wb+1
ref − Wb

ref
 [e24] 

 Ŵi
tar=  predicted target wind speed  

 Wb
tar= bin average of the target measured wind speed in bin b  

 Wb
ref= bin average of the reference measured wind speed in bin b  

 Source: [57]  

The model fits based on measurements, and the representative algorithm points are illustrated 

in Figure 2-5 
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Figure 2-5. Model fits [57] based on measurements (left) and representative algorithm 
points (right)  

  
Source: [57] 

The “Vertical Slice” (VS) MCP method fits a piecewise linear curve to a scatter plot of target 

wind speeds versus reference wind speeds [58]. Wind speed at the target site versus 

concurrent wind speed at the reference location is used to create a scatter plot.  The scatter 

plot for pairs is sectioned into equal-sized vertical stripes. The mean values of the target site 

wind speed for each stripe are calculated, and a pair between the latter values and the mean 

values of each stripe is shown on the diagram. The linear fit is then performed by connecting 

the pairs linearly, where the initial line starts at zero origin [59]. 

Leblanc further introduced a slightly revised version of the VS method similar to the LLS. This 

method is called the Non-Linear Method of Moments (NL-MoM), and is similar to the VS 

method in that it likewise splits the wind speed plot into bands or slices. However, as seen in 

Figure, the slices are perpendicular to the TLS linear fit of the data [58]. 

The VS method and NL-MoM are illustrated in Figure 2-6. 
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Figure 2-6. VS method (left) and NL-MoM (right) with bins and resulting piecewise linear 
fits 

  
Source: [58]. 

2.3.3 Matrix methods 
Matrix methods are nonlinear models employing a joint probability distribution (JPD) instead 

of attempting to impose a linear connection between two variables [51]. The prerequisite of 

linear models having residuals with a normal distribution is not required [51] for this method. 

According to [60], matrix methods is the general overarching definition for MCP methods where 

the wind speed and wind direction measurements are used to classify the data into bins of 

more than a single dimension. Hanslian [37] also notes that the use of the terminology “matrix 

method” within the industry is not consistent and often refers to different methods, and 

sometimes identical methods are referred to differently. It is noted that the classic matrix 

method introduced by [61] and Anderson [51], as applied within WindPRO, is discussed here 

as it is a commonly used approach. 

The matrix methods are based on the notion that long-term site data can be described using 

simultaneous onsite and reference data measurements. A combined joint distribution between 

the two variables, wind speed-up and wind veer, is used to represent the relationship [62]. The 

wind speed-up and wind veer are calculated based on the differences between the site and 

the reference concurrent wind speed and wind directions. The outcome of the differences is 

then sorted according to the reference wind speed and wind direction in the form of two 

matrices, with each element corresponding to a user-inferred reference wind speed and 

reference wind direction bin [10]. An example of the wind speed model for three sectors is 

shown in Figure 2-7. 
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Figure 2-7. Sample data and first-order model for the wind speed-up 

 

Source: [10] 

Thøgersen notes in [19] that the method for modelling the joint distribution matrix should be 

determined by the specific dataset. According to [19], a mix of binned sample distributions and 

modelled joint Gaussian distributions might provide reasonable results. 

As mentioned above, the matrix approach is based on the joint distribution of the measured 

wind speed-ups and wind veers [19]. Hence for each measured sample following pairs of the 

quantities are calculated as shown below per [19]; 

 ∆y = yobserved − yreference [e25] 

 ∆θ = θobserved − θreference  

 where,  

 ∆y= wind speed u  

 yobserved= observed wind speed  

 yreference= reference wind speed  

 ∆θ= wind veer  

 θobserved= observed wind veer  

 θreference= reference wind veer  

The flowchart of the above-discussed matrix method is shown in Figure 2-8. 
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Figure 2-8. Flowchart of the matrix method 

 
Source: Author’s illustration based on [10] 

As shown in the concurrent period container of Figure 2-8, whenever observed data pairs were 

not available, the sample distribution statistics were used to fit a model. The model is then 

used to conduct interpolations and extrapolations into bins where no data is available. The 

sample distributions are calculated using a Wood and Watson (WW) method as discussed in 

[61]. The WW method is a sector-bin approach that uses regression analysis to identify the 

transfer function that describes the relationship between observed and reference datasets [63]. 

The parametric distribution is defined by the mean, standard deviation and correlation values. 

The sample and fitted polynomial model is shown in Figure 2-9 below. 
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Figure 2-9. Polynomial model used within matrix method, samples (left) and polynomial 
model (right) 

 
Source: [10] 
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The matrix time series (MTS) by Lambert [64] is an adapted version of the matrix method [51]. 

The MTS method is applied within Windographer industry software. The first step of the MTS 

is to build this joint probability distribution. The algorithm generates a cumulative distribution 

function (CDF) using the joint probability distribution and the reference dataset, which is then 

used to convert the observed dataset to a percentile time series. The percentile time series 

with a 50% is the expected average based on the reference time series at the corresponding 

time step [51]. Finally, a Markov-based-reconstruction algorithm is used to extend the 

observed percentiles time series to the long-term. This algorithm generates artificial data 

matching the measured data in terms of frequency distribution, seasonal and diurnal patterns, 

and autocorrelation [43]. 

Windographer converts the synthetic percentile time series results into desired wind speed 

values in the final step. By utilizing the JPD to determine the target wind speed for each 

percentile value and reference wind speed in each time step, Windographer is reversing the 

previous procedure. Windographer employs the percentile value instead of the reference wind 

speed to get the predicted wind speed for that time step. Rather than retaining seasonal and 

diurnal patterns and autocorrelation, this step preserves the statistical link between observed 

and reference wind speeds [43]. 

Mortimer's approach [13] is another nonlinear method similar to the matrix method. The wind 

speed observations are binned by the reference site's wind speed and direction. Then two 

matrices are created by deriving ratios of the average of the observed wind speed to the 

reference site's wind speed, and the other including the standard deviations, respectively [65]. 

The below equation is used to predict the wind speed: 

 yi = (r + e)xi [e26] 

 Where; 

r is the average of wind speed ratios at the target site 
 

 e is the random variable from the triangular distribution corresponding to the standard 
deviation of the ratios 

 

 Source: [13] , [65]  

2.3.4 Novel computational methods 
Amongst the linear regression and matrix models, there are also a couple of novel 

computational methods to conduct an MCP. These are mainly artificial neural networks (ANNs) 

and machine learning (ML) methods, including support vector regression (SVR) and decision 

trees (DTs) [17]. 

Due to their capacity to identify patterns in noisy or otherwise difficult data, ANNs have been 

employed to correlate and predict wind data [66]. A neural network comprises linked neurons 
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that take a set of weighted inputs. The function causes the neuron to provide an output when 

the weighted inputs are above the threshold. A feedforward neural network has layers of 

neurons with no lateral or backward connections. The network's input layer is the data from 

the reference location in the case of MCP. The network's last layer is the output layer providing 

the extended time series [16].  

The weights of the interconnections and biases between the neurons in the different levels are 

updated through a learning process. The Levenberg–Marquardt algorithm may be used for this 

process [17]. Feedforward networks with multilayer perceptrons (MLPs) are typically used to 

do the regression [67].  

Within an example study in [9], various reference stations' wind speed and direction were fed 

into an ANN's input layer. The model performed better when the wind direction was added to 

the input signal. As the number of reference stations increased, so did estimation inaccuracies. 

The schematic diagram is shown in Figure 2-10. 

Figure 2-10. Schematic diagram of an ANN with 2N wind speed and wind direction input 
signals of N reference stations and two wind data output signals of the target station 

 
Source: [9] 

The following ANN setup was used for the study in [17], as shown in Table 2-2. 

Table 2-2. ANN settings at the example of regression methodologies used for the MCP 
methodology 

Parameter Value 

WS - input values Wind speed and wind direction at the reference site 

WS - output values Wind speed at the target site 

WD - input values Wind velocity vector in selected directions at reference 
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Parameter Value 

WD - output values Wind velocity vector in selected directions at target 

Number of layers three 

Number of neurons 
in layer 

30, 30, 10 

Training 
methodology 

Levenberg–Marquardt algorithm 

Percentage of points 
used for training 

70% 

Percentage of points 
used for verification 

15% 

Percentage of points 
used for testing 

15% 

Source: Author’s compilation, extract from [17] 

Provided that input data is accurate enough and the training was done effectively, ANN is a 

potential method that may serve as an alternative for long-term corrections in the wind sector 

[68]. 

2.3.4.1 Machine learning algorithms 

Machine learning is the study of computer algorithms that learn from experience and 

data.  Machine learning algorithms create a model using training data to make predictions or 

judgments without being explicitly programmed. Machine learning algorithms can be based on 

ANN as well [69]. ML is typically divided into supervised learning, unsupervised learning, and 

reinforced learning.  

By resolving the surrogate model construction problem as a quadratic programming problem, 

the SVR method offers a novel method for constructing smooth, nonlinear regression 

approximations [66]. The transfer function is shown in the below equation: 

 f̃(x) = 〈w,∅(x)〉 + b [e27] 

 |f̃(xi) − f(xi)| ≤ ε  

 where,  

 f(xi) = function to be approximated  

 w  = set of coefficients  

 ∅(x)= map from input space to feature space  

 ε= maximum tolerated error, predefined  
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It is further noted in [66] that the coefficient w may be found by solving a quadratic programming 

problem with slack variables and a cost function. An exemplary parametrisation of an SVR 

application is provided in Table 2-3. 

Table 2-3. SVR settings at the example of regression methodologies used for the MCP 
methodology 

Parameter Value 

WS - input values Wind speed and wind direction at the reference site 

WS - output values Wind speed at the target site 

WD - input values Wind velocity vector in selected directions at reference 

WD - output values Wind velocity vector in selected directions at target 

Method Hyperparameter optimisation 

Kernel Gaussian 

Solver Sequential minimal optimisation 

Source: Author’s compilation, extract from [17] 

A decision tree method is an ML application with a hierarchical data structure that uses the 

"divide and conquer" strategy [17]. A single decision tree model divides the feature space into 

regions and fits a basic model to each zone [70]. Assuming an example with a continuous 

response variable y and two independent variables x1 and x2; each part of the space specified 

by x1 and x2 is modelled separately in the first stage of the regression. The operation is 

repeated until a preset stopping rule is met. The best fit is attained at the end of each partition 

by selecting variables and a split-point in two [70].  

Another method was proposed by Nielsen named as diffusion-based transformation. In this 

method, measurements and reference data are transformed to Gaussian variables prior to 

creating a statistical correlation. For this purpose, a novel transformation algorithm was 

inspired by Gastner and Newman's cartogram approach, which was initially created for 

showing themed maps in geographic information systems. Additionally, by converting wind 

data to Gaussian variables, conditional simulation of time series was performed using Fourier 

transformation [71]. 

Gradient boosting is another application of machine learning. The gradient boosting technique 

gradually improves prediction capacity by creating many models and focusing on difficult-to-

estimate training cases [70]. Gradient boosting has been shown to be a very effective 

technique for filling gaps in meteorological time series by Körner [6]. There are various 

advantages to using multiple linear regression or neural networks over multiple linear 

regression or neural networks. Compared to neural networks and multiple linear regression, 

the computations may be performed in 1/500 to 1/300 on a standard desktop PC [6]. 
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2.3.5 Quantile mapping methods 

The primary basis of the U&N method is the Q-Q method. This is a quantile method that 

consists of plotting quantile values derived from probability distributions of two datasets. If the 

relation between the two datasets is linear, then the Q–Q plot shows a straight line. It 

ignores simultaneity and focuses on the statistics of the datasets [20]. The U&N technique is 

oriented around the wind direction and wind speed, focusing on the probability distributions of 

both parameters. In contrast to the majority of other LTC methods, concurrency is merely used 

to ensure that the data represents the same time period. According to the authors, the 

approach could be enhanced by incorporating stability [20]. 

The SpeedSort approach includes sectorwise fitting a linear regression model with a non-zero 

intercept by comparing observed wind speeds data to the reference dataset. Because the line 

fitting procedure requires separate sorting of reference and site wind speeds, the fitted line 

assesses the relationship between wind speed frequency distributions rather than hourly 

values. Additionally, a veer analysis is performed, which results in the direction and speed of 

long-term reference sites being adjusted. The technique includes sector binning, sorting wind 

speeds, fitting the line and calculating the average veer for each sector prior to extending 

the short-term time series to the long-term [72]. 

2.3.6 Empirical methods 

The bulk speed ratio (BSR) algorithm is an empirical method deployed by ISo1. It uses a 

relatively straightforward approach of matching observed (target) and reference wind speed 

data, assuming a linear connection with just slope parameter and no offset. The slope is 

computed by dividing the target mean wind speeds by the reference mean [73]. 

The 'Weibull Fit' algorithm is an MCP method proposed by van Lieshout [74] and implemented 

within ISo1. The scale factor of the Weibull fit is equal to the difference between the Weibull 

scale factors at the target and reference sites, multiplied by the exponent b. The Weibull fit 

method employs a power law model of the following form [73]: 

 y̅ =  αxβ [e28] 

 where:  

 
β =

kx

ky

  

 
α =

Ay

Ax
β
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Wind index is an empirical MCP approach that is utilized in ISo3. It leverages MCP analysis 

by using monthly averages of the energy production without consideration of the directional 

distribution of the wind climate. While this approach may seem simplistic and rudimentary 

compared to more advanced MCP methods, it offers significant benefits in terms of stability 

and performance — even when other MCP methods appear to fail [10]. 

The KH (Knut Harstveit) method is a non-linear MCP technique, utilized at Kjeller Vindteknikk. 

This approach organizes non-zero reference and site concurrent wind speed data into 12 

equal-width direction bins and the zero wind speed values into an additional 13th bin for both 

site and reference datasets. The average wind speed for each bin is then determined and 

weighted based on its frequency. Then, for each bin, the reference and site weighted averages 

are compared. These ratios are used as adjustment factors. While the adjustment factors are 

based on short-term data, they are expected to be true throughout time. Using this assumption, 

the weighted average of the reference long-term data for each bin is corrected. This yields the 

long-term site sector mean wind speed [20]. 

Tallhaug and Nygaard invented the non-regression T&N MCP method, which was published 

in 1993 and is utilized at Kjeller Vindteknikk. The mean and standard deviation of the site's and 

reference wind speeds, as well as the correlation coefficient of their relationship, are 

determined for each direction bin of the reference data. This technique explicitly incorporates 

the correlation coefficient of the relationship between the site and reference data when 

estimating the site's long-term wind speeds but does not employ the relationship's regression 

function. The authors note that the strength of the link between measured site data and 

contemporaneous reference data is critical to the method's accuracy [20]. 

2.4 Definition of the measure-correlate-predict (MCP) algorithms 

Based on the literature review in Section 1.2, the MCP methods are classified, and 

subsequently, an MCP algorithm is selected for the study. 

2.4.1 Type classification of MCP 
The classification of MCP methods proposed by Hanslian [60] is considered a useful tool to 

gain an overview of the applicable methods and thus to select a suitable method for this study. 

This is shown in Table 2-4.  

Table 2-4. Classification of MCP methods according to Hanslian 

Description Type 1 Type 2 Type 3 

Results based on Reference Target Target 

Provides time series Yes No No 
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Description Type 1 Type 2 Type 3 

Prediction of wind distribution No Yes No 

Suitable for the MCP application considered Yes No No 

Source: Author’s own visualisation based on [60] 

As the topic of interest requires a time series output, only type 1 MCP methods are of interest. 

2.4.2 Definition of an algorithm 
The process for solving a mathematical problem in a limited number of steps, which typically 

requires the repeating of an action, is referred to as an algorithm [75]. In this study, an MCP 

algorithm is defined as the combination of a method, sub-method, model and concept. 

The MCP methods are already described in Section 2.3. The sub-methods are the primary 

tools available within the method, whereas the primary settings to conduct the model fits are 

categorized under the model header. There might be further options to run the MCP algorithm, 

where the user needs to make project-specific judgements to conduct a robust MCP; these 

are grouped into concepts. For the example of linear regression, the sub-methods are LLS and 

TLS, describing how the model is optimised to obtain the linear fit, whereas the model options 

are focused on the details of the model selections. Finally, the model can be fitted, several 

times repeatedly for different sectors, or be based on multiple values like with a high temporal 

resolution (hourly) or fewer values like in a monthly resolution. For the example of a monthly 

resolution, one might consider the weights of different months. These scenarios define the final 

MCP algorithm, as shown in Figure 2-11. 

In the subsequent section, the classification of the MCP methods is further presented in 

overview tables. 



Methods and materials 

University of Kassel WES MScThesis Sargin - MCP Methodology for a Digital Wind Buoy 35 | 110 

Figure 2-11. Definition of an MCP algorithm at the example of linear regression 

 
Source: Author’s own illustration 

2.4.3 Classification of MCP methods 
Within this section, the MCP methods are further summarized, with examples given from 

engineering software used within the wind industry. Following software solutions were 

available at the time of the assessment; 

• Industry software 1 (ISo1): Windographer 

• Industry software 2 (ISo2): Windfarmer 

• Industry software 3 (ISo3): WindPRO 

The previously discussed MCP methods are summarized in the following tables. It is observed 

that most of the methods are classified as Type 1, with an output of time series. Further, it is 

clear that linear regression, empirical, and matrix methods have a broader industry application 

based on the investigated industry software. As Hanslian stated, Type I methods are 

considered most appropriate for filling data gaps and point predictions. In contrast, Type II 

methods should be used for an accurate representation of the wind distribution [60]. 

Accordingly, only Type I methods available within industry software were evaluated in the next 

Section 2.7 to select the base-case algorithm suitable for iterative analysis. 

Based on the above classification criteria and literature review discussed in Section 2.3, the 

MCP methods are summarized as shown in Table 2-5 to Table 2-10 with respect to their types 

and applications in the specific software. 
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Table 2-5. MCP method 1: Properties of linear regression methods 

Method: Linear regression 

Reference classification WD WD 

Type classification Type 1 Type 2 

 ISo1 ISo2 ISo3  

Sub-method 

✓ ✓ ✓ LLS - 

✓ ✓ - TLS - 

✓ - - VM - 

Source: Author’s own calculation/assessment 

Table 2-6. MCP method 2: Properties of bin methods 

Method: Linear regression 

Reference classification WD WD 

Type classification Type 1 Type 2 

 ISo1 ISo2 ISo3  

Sub-method 
- - - Method of bins - 

✓ - - Vertical slice - 

Source: Author’s own calculation/assessment 

Table 2-7. MCP method 2: Properties of properties matrix methods 

Method: Matrix 

Reference classification WD WS+WD WS+WD 

Type classification Type 1 Type 2 Type 1 +  
Type 2 

 ISo1 ISo2 ISo3   

Sub-method 

- - ✓ Classification - WindPro matrix  

✓ - - - Joint probabilistic [76] MTS 

- - - - - Matrix-analog 
(Hanslian) 

Source: Author’s own calculation/assessment based on  

Table 2-8. MCP method 3: Properties of novel computational methods 

Method: ANN 

Reference classification - - 

Type classification Type 1 Type 2 

 ISo1 ISo2 ISo3  

Sub-method 
- - - ANN - 

- - - SVR - 
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Method: ANN 

- - - DT - 

Source: Author’s own calculation/assessment 

Table 2-9. MCP Method 4: Properties of quantile mapping methods 

Method: Quantile mapping 

Reference classification - - WS 

Type classification Type 1 Type 2 Type 1 +  
Type 2 

 ISo1 ISo2 ISo3   

Sub-method 
- - - - - U&N 

✓ - - - - SpeedSort 

Source: Author’s own calculation/assessment 

Table 2-10. MCP Method 5: Properties of empirical methods 

Method: Empirical methods 

Reference classification - WS+WD 

Type classification Type 1 Type 2 

 ISo1 ISo2 ISo3  

Sub-method 

✓ - ✓ Bulk speed ratio - 

✓ - ✓ - Weibull scaling 

- - ✓ - Wind index 

- - -  KH method 

- - -  T&N method 

Source: Author’s own calculation/assessment 

2.5 Questionnaire results 

The questionnaire was designed based on the research questions in the empiro environment 

[77], which is a free survey tool for students. It has been distributed to key industry 

analysts/experts through direct links using the LinkedIn platform as well as the online 

community “wind resource assessment group” (WRAG) with more than 400 registered 

members [78]. It is noted that the questionnaire was not accessible by other persons through 

a search engine or a publicly available link on the LinkedIn platform. The detailed charts of the 

answers to the questionnaire are presented in Annex A. The following paragraphs give a brief 

summary of the outcome as well as comments and recommendations of the participants. 

25 analysts answered a total of 31 questions with an average total answer duration of 15 

minutes. The majority (50%) of the respondents were consultants, followed by 25% developers 
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and other groups (WTG OEM, research and miscellaneous). More than 80% of the analysts 

had a master’s degree or PhD, with 60% more than 10 years of industry experience. For about 

half of the participants, the percentage of offshore work in their daily wind analysis job 

surpassed 25%. 

The majority of respondents (55%) believed that new approaches were essential to address 

data gaps in FLS measurements, while 40% expressed no view, and one analyst said it was 

unnecessary. There was a consensus with more than 75% that the interim step of data-filling 

(DF) should be applied prior to the long-term correction. According to the majority of the 

participants, an algorithm's output should be a time series with the same temporal resolution 

as the measurement time series (88%), or at least a time series with lower temporal resolution 

(16%). The response to the similar question, but this time for the end result of a concluded 

long-term correction operation, was broader; output with a temporal resolution identical to the 

measurement dataset led with 64%, followed by 48% lower resolution time series. 

In terms of data filling, the majority of respondents (36%) agreed that the most extended 

permissible gap duration each year should be less than 15 days, followed by 30 days (28 per 

cent), and the highest duration was 60-days, which was selected by just one analyst out of a 

total of 25. 

Among those that participated in the survey, 72% utilized in-house tools based on Python and 

Excel, while 36% used Windographer, and 24% chose WindPRO for usage in the workflow for 

an MCP operation, respectively. Other in-house solutions used by the participants included an 

internally designed tool programmed in R and with a web interface, Vortex LTC, Brightwind 

open-source python, in-house Java software analysis and database, as well as Matlab. 

Regarding the question of which metrics (key performance indicators, KPI) should be used to 

assess the performance of a DF / LTC process, the coefficient of determination received the 

highest percentage of responses (72%), followed by the root mean square error (RMSE), 

which received 60%. With a 56% share, most participants believed that the number of samples 

collected was an essential critical factor to consider when doing the MCP analysis. The 

distribution of responses per metric and type of the participant is presented in Table 2-11. 

Table 2-11. Summarized survey response to the question regarding KPI metrics 
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Mean bias error (MBE) 8 3 0 1 0 1 13 
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Metric 
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Mean absolute error (MAE) 7 3 1 0 0 1 12 

Root mean square error (RMSE) 7 5 1 1 0 2 16 

R² (coefficient of determination) 10 5 1 0 0 2 18 

Mean wind direction 3 3 1 0 1 1 9 

Wind veer 2 3 0 0 1 1 7 

Weibull scale parameter (A) 1 2 0 1 0 1 5 

Weibull shape parameter (k) 1 2 1 1 0 1 6 

Wind power density 3 2 1 1 0 0 7 

Kolmogorov-Smirnov test statistic regarding wind 
speed distribution 

4 2 0 0 0 1 7 

Number of samples in bin/sector (depending on the 
method) 

8 4 1 0 0 1 14 

Other (please use next question to enter your 
preference) 

1 2 1 1 0 0 5 

Source: Author’s own calculation/assessment 

Additional important criteria, stated by the experts, included the number of overlapping data 

points, the (theoretical) power production of a wind turbine using a real power curve (or several 

power curves), and whether the data filling is conducted inter- (with nearby measurements) or 

intra- (from the same measurement location and instrumentation). 

One response emphasised that it was critical to pay close attention to how effectively the 

reconstruction captured the energy content of the ensuing wind regime. This might be 

accomplished by using a synthesis check on data from an identical period. 

One of the experts stressed that all adjustments, whether they are data filling or long-term 

corrections, should be evaluated in terms of their influence on the uncertainty of the annual 

energy output estimate. Another expert stated that it is also necessary to compare the final 

long-term mean of monthly means (LTMOMM) wind speeds in order to determine the influence 

of the data-filling procedure chosen. In other words, if the source of data-filing reference data 

and the technique used to process it do not have a significant influence on the final LTMOMM, 

then greater confidence may be placed in the results. 
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The participants were asked whether they could assign a rating to the previously described 

KPIs based on how important they were to the MCP process. It ranged from one to ten, with 

one being not significant and ten being highly important. For MBE, MAE, and RMSE, the 

percentage share of outcomes that were greater than the score 5; was 72%, 68%, and 76%, 

respectively. The coefficient of determination achieved the same outcome as the root mean 

square error (RMSE) at 76%. The distribution of responses was more uniform for wind 

direction, wind veer, Weibull scale, and shape characteristics. It should be emphasized that 

the KS statistic was also regarded as important, with a 56% share of scores over 5, indicating 

that it is significant. 

For data-filling and long-term correction in wind analysis, 80% of the experts indicated that 

they utilize the linear regression method for data-filling and long-term correction MCP. The 

matrix (48%) and ANN methods (40%) were the next most popular. Specifically, the Variance 

Ratio approach was mentioned directly in the category "alternative ways." In response to a 

question, one participant replied that he/she had no visibility to the details of the in-house 

algorithm. 

The next question requested participants to elaborate on their choice of sub-method. The LLS 

and TLS sub-methods of linear regression received 52% and 28% of the votes, respectively, 

but a sizable part (48%) answered that it depends on the study and that they have no pre-

defined preference. 

When utilizing linear regression for DF and LTC, 64% of respondents reported that they use a 

linear first-order polynomial. Linear regression forced through zero, linear regression forced 

through zero with cut-off wind speed, and second-order polynomial each obtained 16% of the 

vote, while the “other” choice received 20%. 

When doing a data-filling / long-term correction study for mean wind speed, 12 sectors were 

the dominant response (80%) for the typical number of wind direction sectors. This was 

followed by 16 sectors (32%), 36 sectors (24%), and omnidirectional (single sector, 20% ). 

The leading temporal domain for the data-filling & long-term correction used by the analysts 

was an hourly resolution with 52%, followed by a 10-minutes resolution (44%). 84% of 

respondents indicated that they take seasonality into account during the data-filling/LTC 

process, either through seasonal balancing prior to MCP (32%), using monthly intervals (32%), 

or applying yearly divisions (20%). Another 20% of responders said that seasonality was not 

considered in their MCP workflow. For linear regression applications based on monthly values, 

52% of respondents indicated using a weighted technique, while the remainder indicated that 

it was not relevant. 
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68% of respondents indicated that atmospheric stability should be taken into account when 

performing a data-filling/MCP activity. This agreement was reduced to 48% in the following 

question, which questioned participants whether metocean conditions such as waves, 

currents, or air, pressure, or water temperature should be included in the process. It is worth 

noting that 24% and 32% of voters, respectively, abstained from answering the above-

mentioned questions. When analysts were asked for their view on the most important 

metocean parameter that should be studied in relation to the data-filling process, a slight 

majority (60%) chose wave height, followed by air temperature (44%). 

Finally, experts were asked to comment on whether their choice of data-filling (DF) / long-term 

correction (LTC) methodology was based on performance testing and/or uncertainty analysis. 

The overwhelming majority (88%) affirmed this question. The experts discussed their 

recommended performance test and approach in greater detail. Two experts stated that they 

do LTC performance evaluations using industry-standard software (WindPRO/Windographer). 

Another individual stated that they employ a variety of ways and analyze the statistical 

distribution of all approaches in order to determine the consensus opinion. Along with 

determining how well the synthesised data and correlation capture wind speed and energy 

content, significant KPIs such as jack knife uncertainty, MBE, MBA, and distribution error were 

mentioned. Finally, another participant proposed applying methods used in well-known 

offshore meteorological masts and offshore lidar data sets, such as the FINO mast. 

The questionnaire was ended with expert advice and recommendations for this study.  

One expert objected to the questionnaire, hinting that it omitted a question on analysts' 

willingness to agree to data filling. One participant added that he would recommend conducting 

as many various approaches to the LTC as possible and then selecting the most appropriate 

methods after comparing final LTMOMM estimates, as this would provide a good sense of the 

ultimate result's sensitivity to the approaches employed. The eagerness was expressed that it 

would be interesting to compare long-term results obtained from a measured dataset that was 

not data filled to those obtained from the same dataset that was data-filled, which would be 

derived from measurements at the same location with the same instrumentation. The 

concluding comment was from another expert suggesting that data filling should be performed 

when it can be proved that the uncertainty associated with filling with unmeasured or non-

targeted data is less than the uncertainty associated with leaving the gaps unfilled. 

2.6 Definition of the key performance indicators and uncertainties 

Based on the findings of the literature research and the results of the questionnaire, the key 

performance indicators (KPIs) shown in Table 2-12 have been established. These key 
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performance indicators (KPIs) are divided into two primary categories: test statistic and test 

parameter.  

The lower MAE, MBE and RMSE values, as well as the higher the R² value, indicate that the 

predictions are closer to the measured values [6].  

Table 2-12. Definition of KPIs 

KPI [Generic] Test 
Statistic? 

Test 
Parameter 

Generic 
Parameter 

Mean bias error (MBE) Yes - - 

Mean absolute error (MAE) Yes - - 

Root mean square error (RMSE) Yes - - 

R² (coefficient of determination) Yes - - 

Mean wind speed (MWS) - Yes - 

Mean wind direction (MWD) - Yes - 

Wind direction deviation (WDD) - Yes - 

Weibull scale parameter (A, Weib_A) - Yes - 

Weibull shape parameter (k, Weib_k) - Yes - 

Wind power density (WPD) - Yes - 

Kolmogorov-Smirnov test statistic regarding wind speed 
distribution (KS) 

Yes - - 

Number of samples in bin/sector (depending on the 
method) (TS) 

- - Yes 

Source: Author’s own calculation/assessment 

The selection of the reference dataset requires high quality and consistently measured wind 

speeds in order to obtain accurate estimations of the target site's wind resource [62]. As 

described in Section 2.9.2, this reference dataset is often a modelled dataset due to a set of 

limitations. In any case, the consistency and quality measurements are still valid. Further, the 

representativeness of the reference dataset is another important criterion [35]. In conclusion, 

one needs to compare the measured and reference dataset before conducting an MCP. The 

KPIs are summarized as the prerequisite to data-filling KPIs (PreDF). The test statistics used 

for PreDF KPI are shown in Table 2-13 below. 
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Table 2-13. PreDF KPI 

Test statistic MWS MWD WDD Weib_A Weib_k WPD Wind 
rose 

MBE ✓ - Single value ✓
2 ✓

1 ✓ - 

MAE ✓ - - - - ✓ - 

RMSE ✓ - - - - ✓ - 

R² ✓ ✓ - - - - - 

KS ✓ - - - - - - 

Representativeness 
parameter 

- - - - - - ✓ 

Number of samples in 
bin/sector 

✓ - - - - - - 

Source: Author’s own calculation/assessment 

Table 2-14 and Table 2-15 illustrate the test statistics that were utilized for the SelfDF and 

ValDF KPIs, respectively, in the same manner. 

Table 2-14. SelfDF KPI 

Test statistic MWS Weib_A Weib_k WPD 

MBE ✓ ✓
2 ✓

2 ✓ 

MAE ✓ - - ✓ 

RMSE ✓ - - ✓ 

R² ✓    

KS ✓ - - - 

Source: Author’s own calculation/assessment 

 

 

2 Measured and reference values are calculated sectorwise, MBE is obtained from a weighted average 
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Table 2-15. ValDF KPI for the gap 

Test statistic MWS 

MBE ✓ 

MAE ✓ 

RMSE ✓ 

Source: Author’s own calculation/assessment 

2.6.1 The interface of the KPIs to the uncertainty method 
Validating MCP approaches by quantifying and modelling the uncertainty would improve the 

confidence in the long-term analysis. Uncertainty in on-site wind conditions might be evaluated 

by modelling the uncertainty in the MCP process [66].  

Rogers advocated that as an uncertainty measure, the standard deviation of long-term forecast 

estimations be used. He suggested predicting the long-term target site data's properties using 

shorter contemporaneous data sets from the lengthier set. The uncertainty associated with the 

prediction is then assessed using the standard deviation of predictions across many data sets. 

The disadvantage of this strategy is that it can only be used with sufficiently high-quality and 

long-term measurable data (target). Saarnak also used a similar technique to calculate the 

mean and standard deviation of the biases for the long-term correction based on each 

subgroup of a longer dataset and use them as a measure of uncertainty [63]. 

Klinkert [68] did a very comprehensive literature review of uncertainty estimators in long-term 

correction procedures. His conclusion was that the correlation and standard deviation were the 

most common estimators used within the industry, at the same time presenting different 

metrics suitable for different purposes. Seasonality and long-term trends, for example, may 

contribute to uncertainty [68]. 

Even though Klinkert’s final evaluation of this research comprised just 19 papers on long-term 

uncertainty correction, the breadth of uncertainty approaches and parameter applications is 

extensive [68]. The parameters are often used to determine their sensitivity to other variables. 

Long-term studies often analyze uncertainty in terms of the time period between the 

measurement station and the reference dataset. Another typical approach is a comparison of 

the uncertainty introduced by the length of on-site measurements versus the use of sufficiently 

accurate reference datasets.  
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Table 2-16. Uncertainty estimators in the area of long-term corrections method 
uncertainty  

Parameter Description Usage 

MBE MBE  is a measure of the systematic 
errors in a measurement sample to 
some extent. 

To determine if the inaccuracy is 
systematic and, in that case, whether it 
is over-or underestimating the wind 
speed. Industry-wide application 

MAE The MBE's magnitude. The average 
difference is displayed to ensure that all 
variations are captured during the 
analysis 

MAE is used in displaying the error and 
analyzing a process. While the 
disparities may fluctuate significantly, 
the sign change might bring them to 
zero. MAE demonstrates the 
magnitude of the oscillations 
independent of their sign. Used in 
normalized and percentage forms and 
to a large extent in the ANN approach. 

Coefficient of 
determination 

The fraction of observed response 
variable variability can be explained by 
a linear regression model. 

Used to determine the degree to which 
linear regression, e.g. the MCP 
approach, adequately explains the 
variability. Frequently used in the 
reporting of wind assessment 
uncertainty. 

RMSE A simple-to-understand error indication, 
as it uses the same unit as the 
estimated variable. 

RMSE is involved in all instances 
involving error analysis. This is a 
frequent occurrence in short term 
analysis, as the length of the prediction 
interval is dependent on the length of 
the prediction interval. The purpose of 
long term analysis is to demonstrate 
the error's convergence with the period 
of concurrent data. 

Standard 
deviation 

The most often used method of 
expressing uncertainty in long-term 
adjustments 

The standard deviation for each result 
should be included. It is critical to 
determine and appropriately estimate 
the standard deviation, which can be 
challenging when dealing with serially 
correlated data. 

Source: [68]. 

In a recent study, Basse [74] noted that further research is needed to determine how 

systematic biases and, ultimately, the uncertainty associated with long-term correction of short-

term wind data may be decreased efficiently and expeditiously. 

2.6.2 Uncertainties in the long-term correction 
The below Figure 2-15 gives a comprehensive overview of the different uncertainty 

components relevant for the energy production of a WTG. It can be observed, that the long-

term adjustment (correction) is a sub-component of the historical wind resource category in 

the proposed draft IEC 61400-15 framework [79]. 
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Figure 2-12. Mind map of energy production uncertainty according to the draft 
IEC 61400-15 

 
Source: [79] 

The proposed framework is mapped in Figure 2-15 below to the current technical guideline 

TG6 and an example from the industry practice [18]. It may be noticed that there is no 

unanimity in the nomenclature used to describe the components of the uncertainty impacting 

the historical wind resource. The fundamental purpose of this research is to get an 

understanding of the representativeness of the experimental performance test (method 

uncertainty) in the event of missing data in line with the research questions. This study does 

not aim to thoroughly compare and test the remaining uncertainty components of long-term 

correction. The topic of this thesis is correlation and on-site data synthesis uncertainties which 

are the sub-components of the method uncertainty. The method uncertainty is covered in more 

detail in the next section. 

2.6.3 MCP method uncertainty 

TG6 states that the quality of the chosen long-term correction technique should be checked by 

the long-term correction procedure's reconstruction of the original measurement data or yield 

data [35]. The overlap period of existing short-term measurement and a long-term reference 

time series is separated into training and test periods [35]. The correlation calculated during 

training is applied to the long-term reference time series during testing [35]. The generated 

dataset is compared to the test period's original short-term data. This is done using statistical 

factors like mean and standard deviation, as well as measurement data like wind speed and 
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direction frequency distribution. The mean bias error, mean absolute error, root mean squared 

error, and distribution error may all be calculated [35]. It is also a requirement that a self-

consistency test must be used to determine the quality of the applied MCP extrapolation and 

the validity of the MCP result [35]. An illustration of the assessment of MCP uncertainty sub-

uncertainty components using an example from industry practice and the TG6 technical 

guideline is shown in Figure 2-16. 

The standard deviation metric of the estimates introduced by Rogers was initially introduced 

in Section 2.6.1, which is not suitable for use cases when no long-term measured (target) 

dataset is available [8]. Additionally, Rogers referred to Derrick, mentioning that the uncertainty 

of the slope and offset is typically used to simulate the relationship between the reference and 

target sites in linear regression. Derrick [12] described estimating the standard deviation of the 

expected wind speed using the slope and offset variances and covariances [8]. But Rogers 

dismissed this approach because it makes the assumption that the data are not serially 

correlated, which is not true in the specific use case. 

Windfarmer refers to correlation uncertainty by stating that it is calculated using the scatter of 

the correlation between the reference and site masts. The smaller the scatter, the less 

questionable the association [46]. This is not regarded to be an objective test-based technique 

that is appropriate for this sort of analysis. 

Brower [80] suggests estimating the method uncertainty using an empirical formula. The 

following simple equation approximates the overall uncertainty in the long-term mean wind 

speed as a function of the correlation coefficient, assuming normally distributed yearly wind 

speed variations and a homogenous reference station data record [80]. This is given in the 

following equation, valid only if the concurrent dataset is longer than a single year: 

 
σ = √

r2

NR

σR
2 +

1 − r2

NT

σR
2  [e29] 

 where,  

 r= Correlation coefficient  

 NR= Number of years of reference data  

 NT = Number of years of concurrent reference and target data  

 σR= Standard deviation of the annual mean wind speed of the reference site as a 
percentage of the mean 

 

 σT= Standard deviation of the annual mean wind speed of the target site as a percentage 
of the mean 

 

Similar to the method referred to in the Windfarmer manual, the empirical method of Brower is 

not a test-based approach and was not used in this study.  
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It is possible to execute a performance test using Windographer [43], which offers KPIs for 

MBE, MAE, RMSE, and DE of the various MCP approaches that have been applied. Version 

4 of Windographer does not have any feature for evaluating uncertainty. 

Another common method to assess uncertainties is Bootstrapping, which is intrinsically linked 

to Monte Carlo. Monte Carlo techniques have been used to simulate and approximate 

distributions in various sectors, including the wind industry. However, the Monte Carlo 

techniques are the general term for any methods employing random numbers. Accordingly, 

using the LTC approaches and not restricting the computations to likely values and without 

implying any underlying distribution, bootstrapping may be regarded as a branch of these 

Monte Carlo simulations [68]. It is noted by Valk, that resampling serves the same purpose as 

Monte-Carlo simulation for evaluation of MCP uncertainties. However, unlike the latter, 

resampling does not need an explicit probabilistic model [81]. 

According to Nielsen, the bootstrap technique is the most used resampling approach. The idea 

is to create artificial data sets of the same size as the actual time series by randomly sampling 

from it [71].  An example of the bootstrap for uncertainty assessment is provided in [81]. The 

authors noted that simulations might be used to determine the effect of random error on long-

term correction methods. However, when assessing the uncertainty of a wind resource 

estimate, it is not always required to explicitly address random errors in the data source [81]. 

Valk added that the block length should be adequate for the bootstrap strategy to succeed. In 

the study [81], the authors have chosen a block length of 62.5 days corresponding to the 

satisfactory de-correlation of wind speed.  

The random sampling procedure of bootstrapping can be repeated several times, and the DF 

and LTC algorithms can be used to generate a new synthetic dataset. The uncertainty 

associated with the MCP approach can be expressed as the standard deviation of the final 

estimates. It is necessary to perform a large number of simulations in order to obtain reliable 

estimates. Unfortunately, this is one of the disadvantages of this method, which renders it 

unsuitable for the sliding gap window analysis used in this study. 

In DNV's recommended practice DNV-RP-J101, the jack-knife (JK) and bootstrap techniques 

are recommended for assessing uncertainty. The jack-knife estimate of variance quantifies the 

uncertainty of a study's conclusions by taking into account the variability of outcomes as 

succeeding subsets of data are excluded from the analysis [82]. 

When conducting the JK, Rogers arrived at a final decision regarding the number of jackknife 

subsets. The number of jackknife subsets was chosen to represent the median of the 12 data 

sets' best-performing number of jackknife subsets he used in his study [8]. It denotes the 

number of jackknife subsets that produces the lowest overall root mean square error for these 
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data sets [8]. As a result, four subsets are relevant for the context of this research as a two-

year assessment period is used. This quantity of jackknife subsets was employed throughout 

the entirety of this master thesis' analysis. 

Figure 2-13. Selection of number of subsets based on concurrent period 

 
Source: [8] 

The difference between JK and bootstrapping is presented in Figure 2-14. 

Figure 2-14. Sketch of the difference between JK and bootstrap resampling 

 
Source: [71] 

In conclusion, it is proposed that the RMSE of the validation phase is employed as an 

uncertainty metric for the interim data-filling stage. This is compared with Brower's empirical 

uncertainty method. In terms of the uncertainty associated with the MCP method's long-term 

correction, the JK method is shown to be suitable, primarily to computational limitations. An 

exemplary bootstrapping uncertainty is produced in Section 3.3 for a single gap duration of 60-

days at a given gap time start period to demonstrate a rudimentary comparison. 
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Figure 2-15. Mapping of sub-uncertainty components 

 
Source: Author’s own illustration based on the example of industry practice [18], TG6 technical guideline  [35] and new proposed framework within IEC 61400-15 [79] 
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Figure 2-16. Flowchart of evaluation of MCP uncertainty sub-uncertainty components at 
the example of industry practice [18] and TG6 technical guideline [35], with "correlation" 
uncertainty shown in amber as target of this study 

 
Source: Author’s own illustration based on [18] and [35] 

2.7 Selection of the base-algorithm 

Whilst each strategy has advantages and disadvantages, Brower [80] recommends tried-and-

true methods for day to day applications in the wind industry. In that regard, linear regression 

methods are highlighted as simple to use and calculate long-term mean wind speed as 

accurately as any linear technique [80].  

Table 2-17 shows the possible number of MCP algorithms using a linear regression method. 

In the case of linear regression, up to 20 scenarios are easily possible for a single method. As 

the focus is to understand the impact on the data filling with an iterative analysis, it should be 

possible to implement the selected method using open source programming language without 

significant computational effort. 
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Table 2-17. MCP algorithms for implementation of linear regression (LinReg) 
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Method 
Model 

Se
ct

or
 

Ti
m

e 
D

om
ai

n 

W
ei

gh
ts

 Algorithm identifier 

1 LinReg TLS 1OFtO 12 Hourly nW LinReg_TLS_1OF_12_Ho_nW 

2 LinReg TLS 1OFtO 16 Hourly nW LinReg_TLS_1OF_16_Ho_nW 

3 LinReg TLS 1OFtO 36 Hourly nW LinReg_TLS_1OF_36_Ho_nW 

4 LinReg TLS 1OFtO omni Hourly nW LinReg_TLS_1OF_omni_Ho_nW 

5 LinReg TLS 1OFtO N/A Monthly We LinReg_TLS_1OF_nS_Mo_We 

6 LinReg TLS 1OFtO N/A Monthly iW  LinReg_TLS_1OF_nS_Mo_iW 

7 LinReg TLS 1OwOf 12 Hourly nW LinReg_TLS_1Ow_12_Ho_nW 

8 LinReg TLS 1OwOf 16 Hourly nW LinReg_TLS_1Ow_16_Ho_nW 

9 LinReg TLS 1OwOf 36 Hourly nW LinReg_TLS_1Ow_36_Ho_nW 

10 LinReg TLS 1OwOf omni Hourly nW LinReg_TLS_1Ow_omni_Ho_nW 

11 LinReg TLS 1OwOf N/A Monthly We LinReg_TLS_1Ow_nS_Mo_We 

12 LinReg TLS 1OwOf N/A Monthly iW  LinReg_TLS_1Ow_nS_Mo_iW 

13 LinReg LLS 1OFtO 12 Hourly nW LinReg_LLS_1OF_12_Ho_nW 

14 LinReg LLS 1OFtO 16 Hourly nW LinReg_LLS_1OF_16_Ho_nW 

15 LinReg LLS 1OFtO 36 Hourly nW LinReg_LLS_1OF_36_Ho_nW 

16 LinReg LLS 1OFtO omni Hourly nW LinReg_LLS_1OF_omni_Ho_nW 

17 LinReg LLS 1OFtO N/A Monthly We LinReg_LLS_1OF_nS_Mo_We 

18 LinReg LLS 1OFtO N/A Monthly iW LinReg_LLS_1OF_nS_Mo_iW 

19 LinReg LLS 1OwOf 12 Hourly nW LinReg_LLS_1Ow_12_Ho_nW 

20 LinReg LLS 1OwOf 16 Hourly nW LinReg_LLS_1Ow_16_Ho_nW 

21 LinReg LLS 1OwOf 36 Hourly nW LinReg_LLS_1Ow_36_Ho_nW 

22 LinReg LLS 1OwOf omni Hourly nW LinReg_LLS_1Ow_omni_Ho_nW 

23 LinReg LLS 1OwOf N/A Monthly We LinReg_LLS_1Ow_nS_Mo_We 

24 LinReg LLS 1OwOf N/A Monthly iW LinReg_LLS_1Ow_nS_Mo_iW 

25 LinReg VR - 12 Hourly nW LinReg_VR_12_Ho_nW 

26 LinReg VR - 16 Hourly nW LinReg_VR_16_Ho_nW 

27 LinReg VR - 36 Hourly nW LinReg_VR_36_Ho_nW 

28 LinReg VR - omni Hourly nW LinReg_VR_omni_Ho_nW 

Source: Author’s own calculation/assessment 

Table 2-18 presents the other MCP algorithms possible for the study, which were tested prior 

to the implementation of the iterations. 
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Table 2-18. MCP algorithms for implementation of other methods3 
A

lg
or

ith
m

 
ID

 
Method Sub 

Method 
Model 

Se
ct

or
 

Ti
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D
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W
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 Algorithm identifier 

29 Bin 
Method VS - 12 Hourly 10_WSb

ins 
BinMethod_VS_12_Hourly_10_W
Sbins 

30 Bin 
Method VS - 16 Hourly 10_WSb

ins 
BinMethod_VS_16_Hourly_10_W
Sbins 

31 Bin 
Method VS - 36 Hourly 10_WSb

ins 
BinMethod_VS_36_Hourly_10_W
Sbins 

32 Bin 
Method VS - omni Hourly 10_WSb

ins 
BinMethod_VS_omni_Hourly_10
_WSbins 

33 Matrix MTS Def 12 Hourly - Matrix_MTS_Def_12_Hourly 

34 Matrix MTS Def 16 Hourly - Matrix_MTS_Def_16_Hourly 

35 Matrix MTS Def 36 Hourly - Matrix_MTS_Def_36_Hourly 

36 Matrix MTS Def omni Hourly - Matrix_MTS_Def_omni_Hourly 

37 Matrix 
Wind-
PRO Def 12 Hourly - 

Matrix_WindPRO_Def_12_Hourly 

38 Matrix 
Wind-
PRO Def 16 Hourly - 

Matrix_WindPRO_Def_16_Hourly 

39 Matrix 
Wind-
PRO Def 36 Hourly - 

Matrix_WindPRO_Def_36_Hourly 

40 Matrix 
Wind-
PRO Def omni Hourly - Matrix_WindPRO_Def_omni_Hou

rly 

41 QM 
Speed 
Sort Def 12 Hourly - 

QM_SpeedSort_Def_12_Hourly 

42 QM 
Speed 
Sort Def 16 Hourly - 

QM_SpeedSort_Def_16_Hourly 

43 QM 
Speed 
Sort Def 36 Hourly - 

QM_SpeedSort_Def_36_Hourly 

44 QM 
Speed 
Sort Def omni Hourly - QM_SpeedSort_Def_omni_Hourl

y 

45 EM BSR ISo1 12 Hourly - EM_BSR_ISo1_12_Hourly 

46 EM BSR ISo1 16 Hourly - EM_BSR_ISo1_16_Hourly 

47 EM BSR ISo1 36 Hourly - EM_BSR_ISo1_36_Hourly 

48 EM BSR ISo1 omni Hourly - EM_BSR_ISo1_omni_Hourly 

49 EM 
Weibull 
scale ISo3 12 N/A - 

EM_Weibull scale_ISo3_12_N/A 

50 EM 
Wind 
index ISo3 N/A N/A - 

EM_Wind index_ISo3_N/A_N/A 

Source: Author’s own calculation/assessment 

 

3 Selected list of methods available in industry software. 
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The particular focus of this study is on offshore applications. Thus, the complexity in the 

transfer functions between the target and reference sites are expected to be low. As stated by 

Duncan, over land and water, the diurnal and annual changes of near-surface wind speed are 

vastly different [83]. Wind speeds offshore are often thought to be stronger and less turbulent 

than onshore. Furthermore, the diurnal and annual changes of near-surface wind speed vary 

significantly between land and water. The diurnal cycle is almost non-existent at sea 

throughout the whole year due to the considerable thermal inertia of the sea surface. Because 

of the increased synoptic activity in the winter, wind speeds are higher than in the summer 

[83]. Accordingly, the MCP method suitable for offshore might not necessarily be complex. 

Therefore a widely used simplistic MCP algorithm might prove good enough results, whereby 

it could be validated easily during the coding process. In other words, the repeatability of the 

analysis of the gap-filling impact would be easier with a simple but proven method. 

Regarding the submethod, the selection was based on the LLS, as there was high confidence 

in the measured dataset.  A first-order linear regression model with offset (1OwOf) was 

selected, as this is a well known and widespread method, providing robust results. This 

assumption is further tested and confirmed for this specific analysis with the performance 

testing algorithm within Windographer within Section 3.1. 

Similarly, the consideration of the wind directions, or the number of sectors, is an essential 

feature of the MCP algorithm. In general, terrain greatly influences wind direction, with the 

distance to the coastline from offshore locations having a considerable impact on the 

directional distribution [68]. The omnidirectional analysis was based on 41910 iterations for a 

total of 60 gap periods in sequential steps. The sectorwise approach would scale the number 

of iterations by the multiple factors of sector numbers accordingly due to the design of the 

code. Therefore, following sensitivity runs with sectorwise runs, the necessity of directional 

MCP was assessed. The selected target dataset location MMIJ is located far offshore without 

any coastal effects in the different sectors. Therefore, an omnidirectional analysis was found 

to be suitable, as there were no directional influences.  Finally, it was concluded that the 

omnidirectional MCP was a reasonable simplification for the purpose of the study. 

The hourly temporal resolution was selected for the study, as this was considered important to 

understand the impact of the data filling. 

Finally, considering the above-mentioned criteria, the linear regression method with the LLS 

sub-method (MCP algorithm ID 22) has been chosen as the base case scenario for this study. 
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2.8 Design of the code for iterative analysis 

Table 2-19 illustrates the relationships and datasets utilized for data filling and long-term 

correction. The study begins with the complete measured dataset covering a two-year period 

of 17472 hours. Gaps ranging from one day to sixty days are added in an outer loop, with a 

24-hour increment (1-day). This gap is removed from the measured period in 24-day 

increments in a sliding window. This is referred to as the inner loop. At the time of the analysis's 

inception, the code was implemented sectorwise. As a result, the inner loop comprises a 

secondary loop across the sector bins. As previously noted, KPIs are gathered throughout 

each sector for the PreDF, SelfDF, and ValDF groups, based on the correlations provided in 

Table 2-20. During the validation step, the decision was taken to change the code to an 

omnidirectional (1 sector) version, primarily due to computational constraints. 

The outer loop has been designed in Jupyterlab. JupyterLab is an interactive development 

environment for notebooks, code, and data that is available over the web. Users may create 

and organize data science and scientific computing processes using the interface's flexibility 

[84]. The inner loops have been developed using Python [85]  within the latest Anaconda 

environment [86]. NumPy [83]  and pandas [84] were used within the python environment for 

calculations. Matploblib [87] module was utilized for visualisations, whereas 

sklearn.metrics [88], scipy.stats [89] and dc_stat_think [90] were deployed for statistical 

analysis. The module xlsxwriter was implemented to export the results to Excel. The overall 

design of the code is presented in Figure 2-17.  

It is noted that the training and test periods as defined in Table 2-19 are not random and don’t 

have equal durations but are always complimentary. The extension (creation of the 

synthesized data) does not replace observations. It should be mentioned that throughout the 

code's creation, the output of the Python code was compared to the output of Windographer 

in numerous phases to validate the findings. For bin analysis, a separate function was built to 

partition the data into matching bins. Furthermore, directional averaging was performed using 

the wind direction's vector components during sectorwise analysis. 
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Figure 2-17. Flow chart of the code 

 
Source: Author’s own illustration 
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Table 2-19. Relationships and datasets for data filling at the example of data segments 

Ab
b. Dataset Period Goal Note KPI 

Group 
KPI 

Description 
Relation-
ship for 
model 

LT
 

1 LT
 

…
 

S1
 

S2
 

S3
 

S4
 

S5
 

S6
 

S7
 

S8
 

S9
 

S1
0 

S1
1 

S1
2 

LT
…

-1
9 

Y.1 Measured w artificial 
gap - - - - - -                

Y.2 Measured gap - - - - - -                

Y.3 Measured full - - - - - -                

X.1 Reference-DF - - - - - -                

X.2 Reference-DF - - - - - -                

X.3 Reference full - - - - - -                

X.4 Reference LT - - - - -                 

B.0 Concurrent_w_gap Training Suitability Prerequisite PreDF Reference-observed None                

B.1 Model_w_gap Training Uncertainties 1. Step SelfDF Predicted-observed Y.1-X.1                

B.2 Model-
gap_self_prediction 

Not part of this study 
Y.2-X.2                

B.3 Model_self_prediction Y.3-X.3                

C Model_gap Test Validation 2. Step ValDF Predicted-observed (gap) Y.1-X.1                

D Model_gapfilled DF Input to F 3. Step PostDF Predicted-observed Y.1-X.1                

E Model_ltc LTC Impact of DF 4. Step Ltc Jackknife uncertainty Y.1-X.1                

F Model_df_ltc LTC LTC 5. Step LtcDF Jackknife uncertainty D-X.3                

Source: Author’s own calculation/assessment 
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Table 2-20: Reference relationships for the KPI classification 

Dataset Scenarios Uncertainties Case PreDF 
(no model) 

SelfDF 
(self-predictions) 

ValDF 
For verification - onsite 
metrics 

ConcurrentPeriod  - Use PreDF_KPI_p0 

Relation    : -  

Reference : X.3 

Target       : Y.3 

PreDF_KPI_p0 

Relation    : Y.3-X.3  

Reference : X.3 

Target       : B.3 

Not available in the use 

case. 

ConcurrentPeriod_gap 1-day to 60-

days 

- Test PreDF_KPI_p2 

Relation    : - 

Reference : X.2 

Target       : Y.2 

SelfDF_KPI_p2 

Relation    : Y.2-X.2 

Reference : X.2 

Target       : B.2 

ValDF_KPI_p1 
Relation    : Y.1-X.1 

Reference : X.2 

Target       : C 

ConcurrentPeriod_w_gap 1-day to 60-

days 

- Test PreDF_KPI_p1 
Relation    : - 

Reference : X.1 

Target       : Y.1 

SelfDF_KPI_p1 
Relation    : Y.1-X.1 

Reference : X.1 

Target       : B.1 

- 

ConcurrentPeriod_gap_filled 1-day to 60-

days 

RMSE-MWS 

(ValDF) 

Test - SelfDF_KPI_p3 

Relation    : Y.1-X.1 

Reference : X.3 

Target       : D 

- 

Source: Author’s own calculation/assessment 

The greyed relationships in the above Table show possible investigations that were not part of this study. 
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2.9 Datasets 

The measurement and reference datasets are discussed in the subsequent sub-sections. 

2.9.1 Selection of the measurement dataset 
The meteorological met mast Ijmuiden (MMIJ) dataset was preselected and provided by Dr 

Gottschall for this analysis based on a previous investigation of impacts of gaps on offshore 

datasets [4]. 

TNO Energy Transition's wind energy division conducted a four-year meteorological 

measuring study by installing and operating the MMIJ  in the Dutch North Sea between 2011 

and 2015 by the commission of The Ministry of Economic Affairs, Agriculture, and 

Innovation [91].   

MMIJ was located approximately 75 km west of Ijmuiden’s coast. Sensors are positioned at 

various heights (between 25 m and 100 m) to observe and record wind speed, direction, 

temperature, and pressure changes. A light detection and ranging (lidar) system was installed, 

measuring wind speed and direction up to 300 meters above the mast. The campaign included 

measurements on sea current and wave data using a wave buoy in order to construct safe and 

cost-effective foundations for future offshore wind turbines. 

The MMIJ dataset can be requested for research purposes by the TNO's data cloud manager 

[92]. 

A two full years dataset was provided by Dr Gottschall for the analysis at the top height with 

wind direction and wind speed data at 10 minutes temporal resolution. 

2.9.2 Selection of the long-term reference dataset 

ERA5 was used as the reference dataset in the initial study conducted by Gottschall [4]. In 

order to conduct this study, this dataset has been pre-selected. It satisfies the criteria for 

reference dataset properties established by TG6 [35]. 

ECMWF is producing the ERA5 reanalysis as part of the Copernicus Climate Change Service 

(C3S), which contains a thorough record of the global atmosphere, land surface, and ocean 

waves from 1950 to the present. ERA5 benefits from a decade of advances in model physics, 

core dynamics, and data assimilation. In addition to a greatly improved horizontal resolution of 

31 km, ERA5 includes hourly output [93]. ERA5 is accessible in the geographical domain 

worldwide, is well-documented, and has been extensively validated. 
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In addition to ERA5, MERRA-2 and KNMI datasets were also evaluated during the analysis of 

the long-term period, as discussed in Section 2.9.4.3 

2.9.3 Measurement campaign overview 
The details of the MMIJ instrumentation is provided in the ECN-Wind Memo-12-010 [94]. Thies 

First Class anemometers were deployed during the measurement campaign by ECN [94], as 

shown in Table 2-21.  

Table 2-21. MMIJ Instrumentation 
Sensor type Heights 

 above 
LAT 
[m] 

Analysis 
use case 

Arrangement Distance 
from 
mast  
[m] 

Vertical 
distance 

from 
boom 
[cm] 

Sensor Measured 
variable 

Anemometer 92 Primary Top anemometer  

dual boom, 17.5° 

and 197.5° 

orientation 

- 1500 Thies First 

Class 

Advanced 

anemometer 

10-minute 

average, 

standard 

deviation, 

minimum 

and 

maximum 

values 

Wind vane 87 Primary Triple boom 

arrangement 

with, 46.5°, 

166.5° and 

286.5° 

orientation 

Triple boom 

arrangement 

with, 46.5°, 

166.5° and 

286.5° 

orientation 

Triple boom 

arrangement 

with, 46.5°, 

166.5° and 

286.5° 

orientation 

4.6 70 Thies First 

Class wind 

vane 

Anemometer 58.5 Secondary 7.0 150 Thies First 

Class 

Advanced 

anemometer 

Anemometer 27 Secondary 9.2 150 Thies First 

Class 

Advanced 

anemometer 

Source: Author’s own summary based on [94] 

The MMIJ is shown in Figure 2-18. 
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Figure 2-18. Picture of the MMIJ station 

 
Source: [94] 

2.9.4 Pre-processing and data preparation 
Fraunhofer IWES has conducted the screening and pre-processing of the measured time 

series for the time period 01 June 2012 until 30 June 2014 (short-term period). The pre-

processed time series at the 92 m wind speed and 87 m wind direction level 

(Ijmuiden_filled_2012-2014) was provided as a “txt” file as input into this analysis.  

The measurements were done using several anemometers at the same heights. The 

anemometers were combined into a virtual anemometer representing the relevant height by 

removing tower shadow effects following the screening. An example methodology of obtaining 

the virtual anemometer without the tower shadow effects is provided within [94] in 

“Chapter 7.5”, header “True wind speed”. 

Further, the data coverage of the top height was increased by means of intra-mast correlation 

analysis. This was done to have the highest data coverage possible for the research exercise. 

The below comparison figure of the time series shows very good alignment with the results 

obtained by Fraunhofer IWES and ECN [83] for the period in question. As the start of the short-

term period does not cover full years in 2012 and 2014, the year 2013 is suitable for a like-a-

like comparison. In the below Figure 2-19, it can be observed that the difference in Weibull fit 

and histogram is negligible between the Fraunhofer IWES and ECN datasets.  
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Figure 2-19. Weibull fit and histogram of MMIJ measurements in 2013 (left: ECN 
analysis, right: Fraunhofer IWES dataset) 

  
Source: Left: [83], right: Author’s own illustration via Windographer 

2.9.4.1 Summary statistics of the short-term dataset 

The summary statistics of the short-term dataset is shown in Table 2-21. 

Table 2-22. MMIJ short-term statistics 
Variable Value – WS92 
Measurement height [m] 92 

Mean wind speed [m/s] 9.88 

Median wind speed [m/s] 9.48 

Minimum wind speed [m/s] 0.29 

Maximum wind speed [m/s] 37.92 

Standard deviation [m/s] 4.78 

Weibull k [-] 2.18 

Weibull A [m/s] 11.16 

Possible data points 105120 

Available data points 104844 

Data availability [%] 99.74 

Variable Value - WD87 
Measurement height [m] 87 

Mean wind direction [°] 223.1 

Median wind direction [°] 207.5 

Possible data points 105120 

Available data points 104842 

Data availability [%] 99.74 

Source: Author’s own calculation/assessment 
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2.9.4.2 Time synchronisation 

Following the selection of the reference dataset, a combined dataset consisting of the 

reference and measured (target) dataset was created. The Pearson correlation coefficient was 

used within Windographer to calculate the maximum correlation between two data sets for the 

wind speed. This analysis step shifts the reference time step automatically to obtain the offset, 

which maximises the degree of correlation. In the below Figure 2-20, the results are presented, 

showing a minus one hour shift was required. This is done subsequently in Windographer. 

Figure 2-20. Time synchronisation 

 
Source: Author’s own illustration via Windographer 

2.9.4.3 Definition the reference long-term reference period 

It should be determined whether there were any trends in the long-term reference dataset. The 

study looked at different long-term durations ranging from 10 to 20 years in length with the 

same method proposed in [18]. The slope of the fit was calculated by fitting normalized yearly 

wind speeds using a linear regression approach. The analysis has been repeated for each 

MERRA-2, KNMI, ERA5 nodes nearest to the MMIJ location. A time range was chosen that 

minimizes the impact of a probable trend while still being representative of the long-term 

reference period. 

Following the trend analysis, the ERA5 reference dataset “R5” located at 52.69° North and 

3.60° East from 2000 to 2018 with 19 years of duration has been selected as the reference 

dataset for the analysis. 

The trend analysis is shown in Figure 2-21. 
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Figure 2-21. Annual trend analysis and comparison of reference datasets for the selected long-term period 2000-2018 

 
Source: Author’s own illustration 
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2.9.4.4 Summary statistics of the concurrent and long-term reference period 

The summary statistics of the long-term reference dataset is shown in Table 2-23. 

Table 2-23. Reference dataset statistics for the concurrent and long-term periods 

Variable 
Long-term period 

Value – WS100 
Concurrent period 

Value – WS100 
Model height [m] 100 m 100 m 

Mean wind speed [m/s] 9.28 9.34 

Median wind speed [m/s] 8.91 9.01 

Minimum wind speed [m/s] 0.02 0.07 

Maximum wind speed [m/s] 32.98 29.24 

Standard deviation [m/s] 4.44 4.50 

Weibull k [-] 2.23 2.25 

Weibull A [m/s] 10.50 10.63 

Possible data points 166559 17519 

Available data points 166559 17472 

Data availability [%] 100.0 99.7 

Variable Value - WD87 Value - WD87 
Model height [m] 100 100 

Mean wind direction [°] 247.7 229.00 

Median wind direction [°] 218.1 211.9 

Possible data points 166559 17519 

Available data points 166559 17472 

Data availability [%] 100.0 99.7 

Source: Author’s own calculation/assessment 
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3 Results 

Based on the evaluation of the MCP algorithms, the base-case scenario for the Python code 

was developed. The most critical performance indicators during the procedure were evaluated 

and presented. The outcomes of data-filling and long-term correction are detailed in the 

following sections. The uncertainty evaluation is given at the end of this section. The detailed 

results presented in this section are provided in the annexes from Annex B to Annex N. 

3.1 Evaluation of the MCP algorithms 

In addition to the linear regression concepts shown in Table 2-17, the following concepts were 

tested to understand the suitability of the base case scenario. 

In order to gain confidence and select a reasonably robust MCP algorithm, the MCP methods 

presented in Section 2.7 were tested with an omnidirectional selection. This is done in ISo1 

using the performance test functionality. This test is conducted within ISo1 with a cross-

validation experiment, where a selected number of segments are created within the concurrent 

period, and the datasets are divided into training and test periods. The model is fit using the 

data within the training segments, and the output is generated for the testings periods. The 

observed and predicted are compared for a total of 400 randomized datasets, and the following 

test statistics are generated as shown in Figure 3-1 for this study. 

Figure 3-1. MBE, MAE and DE results of the investigated MCP methods 

  

 

Source: Author’s own illustration, generated in ISo1 
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It can be observed that MTS and LLS perform best in the case of MBE and MAE with error 

values of -0.0005 m/s and 1.0 m/s for MBE and MAE, respectively, whereas TLS, VR, SS and 

BSR methods perform slightly better regarding the distribution error. 

The coefficient of variation (COV) is defined by the ratio of mean and standard deviation. COV 

results of the considered methods and submethods are shown in Table 3-1. It can be seen 

that despite the high number of algorithms considered for linear regression, the COV values 

are similar to the other methods. 

Table 3-1. Coefficients of variation of considered MCP methods 
Method Count Subtotal submethods COV 
BinMethod 4 1 0.05% 
EM 6 3 0.17% 
LinReg 21 3 0.30% 
Matrix 8 2 0.46% 
QM 4 1 0.03% 

Source: Author’s own calculation/assessment 

The long-term wind speed (LTWS) results of the different methods are presented in Figure 3-2, 

showing that the LTWS of the base-case algorithm is in good alignment with the other results. 

Figure 3-2. Comparison of LTWS with different MCP methods 

 

Source: Author’s own illustration, generated in ISo1 

3.2 Evaluation of the base-case algorithm results 

The application of the base-case algorithm has been conducted in line with the flow chart 

shown in Figure 2-17 presented previously. During the validation and simulation runs, the 
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output of the python code was monitored for plausibility. In the subsequent subsections, the 

findings of the simulations are presented. 

3.2.1 Key performance indicators during the process 

The KPI defined for PreDF in Table 2-12 were evaluated as a prerequisite to running an MCP 

for both data filling and long-term correction. This analysis was conducted sectorwise. Another 

use of calculating PreDF KPIs is to evaluate the performance of self-predictions to observed 

metrics changes. The sectorwise exemplary results of the concurrent periods are presented in 

detail in Annex B. 

The heatmaps of measured Weibull scale and shape factors, as well as R² values of sectorwise 

hourly wind speed correlations, are shown in Figure 3-3 and Figure 3-4, respectively, for 1-day 

and 60-days gap scenarios. The description “feature” represents the sector, the colours within 

the vertical columns represent the iteration results within the gap. In each heatmap, the 

evolution of iteration results is shown starting from top to bottom. As shown in the images 

below, the larger intervals cause a minor distortion in the A and k Weibull parameters. 
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Figure 3-3. PreDF – Heatmap of measured Weibull scale and shape factors for 1-day 
(left) and 60-days gap scenarios (right) in each column, respectively 

Scale factors Shape factors 

 

 

 

 

Source: Author’s own illustration, the description “feature” represents the sector, the colours within the vertical 
columns represent the iteration results within the gap. Scale factor in m/s, shape factor dimensionless. 

Figure 3-4 depicts the heatmaps of R² values of sectorwise hourly wind speed correlations for 

scenarios with 1-day and 60-day gaps scenarios. The hourly wind speed correlations (R²) are 

very good (>0.85) across all sectors and uniform throughout the sliding gap window in the 

respective period. A slight decrease in correlations can be observed in the longer 60-days-gap 

period, especially in the easterly sectors. In general, the R² values are considered very good, 

showing a significant correlation between the reference and measured datasets. As a result, 

a sector-based MCP approach is deemed appropriate. 
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Figure 3-4. PreDF – Heatmap of R² values of sectorwise hourly wind speeds correlation 
for 1-day (left) and 60-days gap scenarios (right) 

 

 

Source: Author’s own illustration, the description “feature” represents the sector, the colours within the vertical 
columns represent the iteration results within the gap. 

The coefficient of determination of sectorwise hourly wind speeds for 1-day and 60-days gap 

periods are presented in Figure 3-5 with a whisker plot. The "whiskers" plot (also box plot) is 

defined by the third quartile on the top and the first quartile on the bottom. The box is divided 

by the median. The whiskers represent error bars, with one extending upward from the third 

quartile to the maximum and the other extending downward from the first quartile to the lowest. 

Dot markers are also used to identify the outliers in the data.  
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For the single-day gap period, the sectorwise R² values show excellent correlation (R²>0.9) 

throughout the majority of sectors, as well as a very narrow distribution between the 25% and 

75% quantiles for the whole duration. Similarly, the correlations do not diminish throughout the 

60-day gap period, while the extent of the boxes increases somewhat during this time. 

Accordingly, the sectorwise correlations are deemed appropriate for hourly modelling of a 

linear regression MCP, both for data filling and long-term correction. 

Figure 3-5. PreDF – Box plot of R² values of sectorwise hourly wind speeds correlation 
for 1-day 

 

Source: Author’s own illustration, the description “feature” represents the sector. 
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Figure 3-6. PreDF – Box plot of R² values of sectorwise hourly wind speeds correlation 
for 60-days gap 

 

Source: Author’s own illustration, the description “feature” represents the sector. 

The MBE, MAE, and RMSE of mean wind speeds over concurrent periods are summarized for 

1-day and 60-days in Table 3-2. The reader is reminded that the PreDF metrics do not involve 

any modelling and just show a comparison of the reference and target datasets in order to 

determine the dataset's appropriateness and representativeness for an MCP method, as 

specified in the technical standards [35]. 

The MBE, MAE, and RMSE values for the PreDF period are relatively high, indicating that 

despite its good correlations, the reference dataset cannot match the precision of wind speed 

observations. This is to be expected, given that the reference dataset is a global reanalysis 

with a coarse grid resolution, as opposed to a mesoscale modelling dataset. Although this is 

not a concern for this type of study, it does provide an opportunity to evaluate the algorithm's 

performance against a mesoscale modelling solution in a future exercise. It is noted at this 

stage that mesoscale simulations are not entirely independent from reanalysis solutions as 

they use dynamic downscaling methods driven by reanalysis data [35]. 

Summary statistics of the RMSE of MWS for 1-day and 60-days period are presented in Table 

3-2. The summary statistics of the MBE and MAE of MWS are shown in Annex C.  
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Table 3-2. PreDF - Summary statistics of RMSE of MWS for 1-day and 60-days gap 
scenarios 

Sector 
Mean [m/s] Standard deviation [m/s] Max [m/s] 

1-day 60-days 1-day 60-days 1-day 60-days 

0 1.184 1.084 0.206 0.378 1.229 1.283 

1 1.182 1.087 0.206 0.381 1.230 1.366 

2 1.460 1.343 0.254 0.468 1.515 1.546 

3 1.673 1.535 0.291 0.536 1.736 1.804 

4 1.692 1.559 0.294 0.544 1.764 1.824 

5 1.677 1.545 0.292 0.539 1.743 1.787 

6 1.600 1.476 0.278 0.515 1.658 1.755 

7 1.427 1.313 0.248 0.458 1.476 1.529 

8 1.500 1.381 0.261 0.481 1.551 1.587 

9 1.228 1.130 0.214 0.394 1.272 1.302 

10 1.199 1.101 0.209 0.383 1.245 1.264 

11 1.151 1.054 0.200 0.367 1.194 1.234 

Source: Author’s own calculation/assessment 

Heatmaps of the mean bias error observed in the Weibull shape and scale factors for all 

iterations and gap scenarios – weighted from sectorwise analysis - are shown in Figure 3-7 for 

1-day, 30 days and 60-days gap scenarios. The evolution of the scale and shape factors are 

provided in the following figures, indicating a good alignment between the reference and 

measured datasets. The MBE for shape factor ranges from -0.03 (blue) to -0.00 (yellow), 

indicating that the Weibull shape factor is nearly identical between the measured and reference 

datasets. The MBE of the scale factors demonstrates a greater discrepancy but similar low 

dispersion, ranging from 0.61 m/s (blue) to 0.67 m/s (red) (yellow). 
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Figure 3-7. PreDF – Heatmap of MBE of Weibull shape (left) and scale (right) factors for 
all iterations and gap scenarios – weighted from sectorwise analysis 

  
Source: Author’s own illustration, grey means no data values, feature stands for gap. 

The MBE, MAE and RMSE of WPD for 1-day and 60-days gap scenarios were documented 

during the iteration, which is presented in Annex C. The greatest difference in wind power 

density is seen in the south sector with the fewest samples. The MBE, MAE, and RMSE of 

WPD distributions are comparable across sectors, and they marginally decrease for the largest 

gap scenario. 

The overall statistics of the KS values are presented in Table 3-3, showing a moderate 

performance. The KS-statistic has a similar error margin distribution as the wind power density, 

with greater errors in the easterly sectors. A somewhat reduced KS error is detected in the 

primary wind direction components of sectors 7 and 8, which does not increase with gap size. 

This revealed that the distribution is unlikely to be influenced by increasing gap size. It should 

be highlighted that a mesoscale model product would have higher KS-statistic performance 

(lower value) when compared to this observed dataset. 

Table 3-3. PreDF - Summary statistics of KS of MWS for 1-day and 60-days gap 
scenarios 

Sector 
Mean Standard deviation Max 

1-day 60-days 1-day 60-days 1-day 60-days 

0 4.9% 4.4% 0.8% 1.6% 5.2% 6.1% 

1 5.6% 5.3% 1.0% 1.9% 6.1% 7.0% 

2 8.6% 8.0% 1.5% 2.8% 9.2% 10.3% 

3 11.2% 10.5% 2.0% 3.7% 11.9% 13.2% 

4 8.6% 8.1% 1.5% 2.9% 9.2% 10.3% 

5 8.7% 8.3% 1.5% 2.9% 9.2% 10.9% 

6 6.4% 6.1% 1.1% 2.1% 6.7% 7.8% 



Results 

University of Kassel WES MScThesis Sargin - MCP Methodology for a Digital Wind Buoy 75 | 110 

Sector 
Mean Standard deviation Max 

1-day 60-days 1-day 60-days 1-day 60-days 

7 4.1% 3.8% 0.7% 1.4% 4.3% 4.9% 

8 5.0% 4.7% 0.9% 1.7% 5.3% 5.9% 

9 4.5% 4.2% 0.8% 1.5% 4.7% 5.3% 

10 7.1% 6.6% 1.2% 2.4% 7.6% 8.3% 

11 6.4% 6.0% 1.1% 2.1% 7.0% 7.6% 

Source: Author’s own calculation/assessment 

Annex C contains heatmaps showing sectorwise wind direction deviation of wind speeds for 

1-day and 60-day gap situations. Wind direction discrepancies are relatively moderate 

throughout sectors, ranging from -4.5° to -1.1°, with the primary sectors having the biggest 

offsets. 

In light of the aforementioned metrics, it is clear that the reference dataset chosen is 

appropriate and representative of the target location and that it may be utilized to make 

predictions with the chosen LLS algorithm. 

SelfDF KPIs are used to compare the outcome of predictions to a known outcome, which is 

represented by the true measured values. It is possible to assess the performance of the model 

with the use of the SelfDF key performance indicators. The relationships for SelfDF were 

previously detailed in Table 2-19 and Table 2-20. It should be mentioned at this point that, in 

real-life circumstances, there is no long-term dataset available for analysts to use in order to 

analyze the true performance of a model. Furthermore, because technical analysis time is 

often limited, it is necessary to execute a simplified procedure in order to evaluate the 

performance of any chosen MCP approach as rapidly as possible. In order to get further insight 

into the performance of the model, it is critical to judge the SelfDF performance and, if possible, 

look for a relationship with the validation performance, in which predicted values of a training 

model are compared to unknown true observed values, as described above. This is covered 

in further detail under the ValDF KPI. In the subsequent paragraphs, tables and figures, the 

performance of the LLS model is presented during the concurrent period.  

The R² correlations of hourly wind speeds between the model predictions and actual values 

are shown in Annex C with heat maps for scenarios with a 1-day and 60-day gap period. The 

results demonstrate that the distributions of R² are consistent across the sliding gap periods. 

A similar pattern can be observed in terms of correlations throughout bins; they are outstanding 

up to 0.92 with the exception of the eastern sectors, which have poorer correlations down to 

0.77. The box plots of the data are shown in Figure 3-8 and Figure 3-9. 
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Figure 3-8. SelfDF – Boxplot of R² values of sectorwise hourly wind speeds correlation 
for 1-day scenario 

 

Source: Author’s own illustration, the description “feature” represents the sector. 

Figure 3-9. SelfDF – Boxplot of R² values of sectorwise hourly wind speeds correlation 
for 60-day scenario 

 

Source: Author’s own illustration, the description “feature” represents the sector. 
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Figure 3-10. SelfDF - 3D evolution of RMSE of MWS for all sectors and gaps 

 

Source: Author’s own illustration with Paraview [95] 

For the examined periods, the model's mean bias error is zero, and for the 1-day gap scenario, 

the MAE is roughly 1 m/s throughout the bins, as shown in Table 3-4. These findings are easily 

comparable to those previously given in Figure 3-1 for the various MCP investigations. A total 

of 1 m/s approximates a 10% relative MAE, which is in excellent agreement with previous MCP 

methods and demonstrates better performance. The 60-days scenario results in a somewhat 

lower average MAE. The root mean square error of mean wind speeds in the bins is visualized 

in a ParaView plot as shown in Figure 3-10, where the x-axis represents the number of 

iterations in time, the y-axis the gap duration from 1 to 60-days and the z-axis the directional 

sectors from 1 to 12. The magnitude of RMSE is represented with a colour. 

The plot is shown to emphasize that an RMSE value exists for each bin, iteration within the 

gap, and gap period, and secondly to demonstrate that the results are remarkably uniform 

around 1.2 m/s and consistent across bins, iterations, and gap periods, with the minor 

exception of sectors 4 to 7, where a higher error can be observed up to 1.6 m/s 

Table 3-4. SelfDF - Summary statistics of RMSE of MWS for 1-day and 60-days gap 
scenarios 

Sector 
Mean [m/s] Standard deviation [m/s] Max [m/s] 

1-day 60-days 1-day 60-days 1-day 60-days 

0 1.133 1.038 0.197 0.362 1.175 1.218 

1 1.153 1.061 0.201 0.372 1.200 1.325 

2 1.324 1.219 0.230 0.425 1.378 1.452 

3 1.281 1.177 0.223 0.411 1.329 1.408 
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Sector 
Mean [m/s] Standard deviation [m/s] Max [m/s] 

1-day 60-days 1-day 60-days 1-day 60-days 

4 1.461 1.347 0.254 0.470 1.521 1.583 

5 1.473 1.356 0.256 0.473 1.528 1.577 

6 1.404 1.295 0.244 0.452 1.455 1.566 

7 1.353 1.243 0.235 0.433 1.399 1.439 

8 1.435 1.322 0.250 0.461 1.485 1.525 

9 1.162 1.070 0.202 0.373 1.204 1.238 

10 1.088 0.999 0.189 0.348 1.127 1.147 

11 1.087 0.996 0.189 0.347 1.127 1.156 

Source: Author’s own calculation/assessment 

The heatmaps of the MBE of Weibull shape and scale factors are shown in Annex C of this 

document. When comparing the differences between the measured and reference periods, an 

anticipated improvement in the MBE values are seen, with a minor variation between the 

measured and model scale factors of 0.13 to 0.15 for the scale factors between the two 

periods. Scale factor deviations are insignificant with values between 0.008 m/s and -0.001 

m/s. 

Figure 3-11. SelfDF – Heatmap of MBE of Weibull shape (left) and scale (right) factors 
for all iterations and gap scenarios – weighted from sectorwise analysis 

  
Source: Author’s own illustration, grey means no data values, feature stands for gap. 

The WPD statistics for the SelfDF period is provided in Annex C. With regard to the PreDF 

KPI, an improvement in the MBE, MAE, and RMSE of the WPD has been noticed.  The root 

mean square error of WPD is reduced by 18% in the sector with the maximum error. This is to 

be anticipated, given the global reanalysis dataset was not originally intended to align well with 
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the absolute values in a measurement dataset. The comparison of WPD revealed no more 

information. 

A similar observation was made for the KS-statistic. Following the model fit, the predicted 

distribution exhibits good performance with an error margin of 1.9% to 2.4% in the primary 

wind directions. 

Figure 3-12 depicts the progression of the root mean square error of the MWS for the 1-day 

(top) and 60-day (bottom) scenarios of the omnidirectional analysis, with the heatmap shown 

for all iterations and gap situations in the next Figure 3-13. The findings of the omnidirectional 

root mean square error (RMSE) are now in great agreement with the results of the initial 

Windographer performance test of different MCP methods. In the 1-day gap case, it can be 

seen that the spread of the root mean square error during the measurement period is very 

limited. Despite the fact that this grows significantly for the 60-day case, the range of RMSE of 

MWS stays within a 0.05 m/s interval. 

Figure 3-12. SelfDF – Evolution of RMSE of MWS for 1-day (top) and 60-days (bottom) 
scenarios – omnidirectional analysis 

 

 

 
Source: Author’s own illustration 
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Figure 3-13. SelfDF – Heatmap of RMSE of MWS for all iterations and gap scenarios – 
omnidirectional analysis 

 
Source: Author’s own illustration, grey means no data values, feature stands for gap. 

MBE, MWS, and RMSE of mean wind speeds were examined throughout the validation period 

to determine the genuine performance of the tested approach. The difference between 

predicted and observed values are used to calculate the ValDF KPI, where predicted values 

are trained using the concurrent period rather than the validation period. Due to the fact that 

such a comparison is not attainable in real-world projects, any knowledge acquired from this 

part might prove very valuable. It is noted that the validation period KPIs are derived from an 

omnidirectional LLS modelling. 

The evolutions of MBE, MAE and RMSE of MWS are shown in Figure 3-14, Figure 3-15 and 

Figure 3-16, respectively, for 1-day  and 60-days scenarios. 
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Figure 3-14. ValDF – Evolution of MBE of MWS for 1-day (top) and 60-days (bottom) 
scenarios 

 

 
Source: Author’s own illustration 

The mean bias error shows a strong oscillation around zero. This is considered reasonable 

considering the good performance of the model shown in the SelfDF period. As a result, the 

absolute errors are much larger. MAE and RMSE of ValDF mean wind speeds both 

demonstrate a higher dispersion around the mean. The coefficient of variance declines from 

48% in the case of a single-day gap to 9% in the scenario of a 60-day gap. It's worth noting 

that this COV behaviour is the opposite of what was seen for the SelfDF KPI, as the increase 

in the gap size results in a higher number of samples. Hence the downwards trend is plausible. 

The summary statistics of the ValDF period over the gap periods are shown in Table 3-5. 

Table 3-5. Summary statistics of ValDF for all gap periods 

Description MBE MAE RMSE 

Mean of gap MWS [m/s] -0.003 0.930 1.243 

Mean of standard-deviation [m/s] 0.200 0.293 0.397 

Mean of maximum gap MWS [m/s] 0.446 1.457 1.948 

Standard deviation of the mean [m/s] 0.003 0.026 0.025 

Standard error [m/s] 0.000 0.003 0.003 

Source: Author’s own calculation/assessment 
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Figure 3-15. ValDF – Evolution of MAE of MWS for 1-day (top) and 60-days (bottom) 
scenarios 

 

 
Source: Author’s own illustration 

Figure 3-16. ValDF – Evolution of RMSE of MWS for 1-day (top) and 60-days (bottom) 
scenarios 

 

 
Source: Author’s own illustration 

The link between SelfDF and ValDF RMSE was examined with the goal of establishing a proxy 

approach for assessing the uncertainty associated with data filling. For all gap situations, a 

very high negative relationship was observed between the SelfDF and ValDF RMSE of MWS. 

It is noteworthy to highlight that the relatively small RMSE error interval for self-prediction is 

linked with the larger error interval seen during the validation period. The inverse correlation 
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suggests that if MWS's self-prediction RMSE is quite large, the uncertainty in the data-filled 

gap period is very likely to be reduced. This relationship has the potential to be used to 

empirically assess the anticipated uncertainty in data-filling using normalized transfer 

functions. 

The regression plots of SelfDF and ValDF RMSE of MWS are shown in Figure 3-17, with 

detailed figures shown in Annex H. 

Figure 3-17. Regression plots of self-prediction and validation RMSE for 1-day (top) and 
60-days (bottom) scenarios 

 
Source: Author’s own illustration 

When a representative measurement campaign is accessible, the strong negative connection 

discovered between the ValDF and SelfDF KPIs might be used as a proxy to judge the 

performance of a nearby future measurement campaign. More crucially, in a sufficiently 

offshore situation, this can serve as a credible empirical tool for assessing the uncertainties 

associated with data gaps. 

It should be emphasized that this link has not been mentioned or discussed in any related 

literature before. Because these results show a strong association, independent validation of 

these results would be required before this novel approach could be used in future studies. 
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For the remainder of this work, the approach is referred to as the inverse self-prediction error 

(ISPE) method. 

3.2.2 Data filling results 

Figure 3-18 illustrates the evolution of the mean difference between actual and predicted wind 

speeds during a 60-day period. Additionally, the Figure for the 60-day gap period beginning on 

01.07.2012 gives insight into the findings by displaying both actual and forecasted wind speed 

time series.  

Figure 3-18. Evolution of MBE of observed vs predicted wind speeds for 60-days gap 
period 
 

 
Source: Author’s own illustration, generated in ISo1 

The overall mean bias error for the first day of July 2017 is minimal at -0.05 m/s; however, in 

the plot with time series deviations up to 3-4 m/s may be seen distinctly between the observed 

and predicted time series as shown in Figure 3-19. When the scatter plot, as seen in Figure 

3-20, is evaluated, the magnitude of this variance becomes even more apparent. The 

parameters of the regression fit are shown in Figure 3-6, presenting a good correlation between 

the independent datasets.  

Table 3-6. LLS model parameter of validation period for 60-days gap period (start at 
01.07.2012) 

Gap period Model Time steps Intercept 
[m/s] Slope R² 

60-days Trained from concurrent time series 1438 0.856 1.058 0.79 
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Figure 3-19. Time series of observed vs predicted wind speeds for 60-days gap period 
starting on 01.07.2012 
 

 
Source: Author’s own illustration, generated in ISo1 

Figure 3-20. Scatter plot of observed vs predicted wind speeds for 60-days gap period 
starting on 01.07.2012 

  
Source: Author’s own illustration, generated in ISo1 

Comparison of wind direction frequency of observed versus predicted wind speeds for 60-days 

gap period starting on 01.07.2012 is shown in Figure 3-21. While there is acceptable 

agreement across the broad sectors, it should be noted that the predicted primary wind 

direction of simplified MCP is offset approximately by a sector. 
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Figure 3-21. Comparison of wind direction frequency of observed vs predicted wind 
speeds for 60-days gap period starting on 01.07.2012 

  
Source: Author’s own illustration, generated in ISo1 

The standard deviation of all calculated STWS is 0.007 m/s, encompassing all gap times. The 

STWS has a low coefficient of variation, demonstrating a linear trend for the gaps, ranging 

from 0.01% for a single day gap to 0.12% for a 60-day gap. The highest and smallest deviations 

from the recorded short-term wind speed are respectively 0.26% and -0.34%, indicating 

outstanding performance. Figure 3-22 illustrates the progression of STDF-WS for 1-day (top) 

and 60-day (bottom) gap situations. 
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Figure 3-22. Evolution of STDF-WS for 1-day (top) and 60-days (bottom) gap scenarios 

 

 
Source: Author’s own illustration 

3.2.3 Long term correction results 

The study’s key research question was whether an interim phase of data filling is required prior 

to applying the long-term correction. Therefore two versions of LTWS were constructed using 

the Python code and the procedures outlined above for each sliding window of the gap, ranging 

from a 1-day gap to a 60-day gap, starting with a 1-day gap and increasing to a 60-day gap 

afterwards. The first LTWS was produced by fitting an omnidirectional linear regression model 

to concurrent time series and reference datasets. Only concurrent measurements with gaps 

were utilized in the second relationship. The following Figure 3-23 depicts the evolution of the 

LTWS over a period of one day and sixty days. 

The following Figure 3-24 shows the comparison of data-filled long-term time series with long-

term wind speed time series that did not go through the intermediate step of data filling for a 

60-day gap period beginning on the first of July 2012. 
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Figure 3-23. Evolution of LTWS without DF and LTWS with DF for 1-day (top) and 60-
days (bottom) gap scenarios 

 

 
Source: Author’s own illustration 

 

Figure 3-24. Scatter plot of DF predicted vs LTC predicted wind speeds for 60-days gap 
period starting on 01.07.2012 

  
Source: Author’s own illustration, generated in ISo1 

As seen above, both variants of the LTWS are identical and do not differ at all for the largest 

gap studied. This is predicted, given the omnidirectional regression parameters and the 

lessened influence of any change in model fit caused by the proportion of gaps. This conclusion 

may be drawn by examining the following Table 3-7 more closely; the LLS-slope model’s and 
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intercept parameters are equal for data-filled and starting (with gap) time series. The 

percentage of the biggest gap is 6.9%, which means that any change in the connection after 

the gap is filled affects just 7% of the final linear relationship. 

Table 3-7. LLS model parameter of LTC for 1-day, 20-days and 60-days scenarios 

Gap period Data-filling Fraction 
of data 
gap [%] 

Time steps Intercept 
[m/s] Slope R² 

1-day Data-filled time series - 17472 0.441 1.011 0.918 
 

Without data-filling 0.1% 17448 0.442 1.011 0.918 

20-days Data-filled time series - 17472 0.435 1.012 0.922 
 

Without data-filling 2.7% 17018 0.435 1.012 0.921 

60-days Data-filled time series - 17472 0.404 1.014 0.926 
 

Without data-filling 6.9% 16057 0.404 1.014 0.922 

Source: Author’s own illustration, x-axis start of the gap-time. 

Additionally, the study is interested in observing and comprehending the effect of gaps on the 

LTWS. It can be seen that the long-term correction results vary considerably more than a 

quarter downward during the gap periods beginning in the early weeks of January 2013. 

Similarly, for the gap periods beginning in September 2013 and ending at the end of the 

corresponding year, the divergence is more upward. Annex K has thorough documentation of 

the LTWS for each gap period, including the measured wind speeds for comparison. While 

examining these figures, it is critical to note that the gap periods listed above omit a time of 

high wind periods. 

Basse [96] examined the seasonality and behaviour of reanalysis datasets in considerable 

detail using the linear regression method with residuals. For the majority of the investigated 

cases,  the mean of the adjusted wind speed time series is underestimated for summer 

measurements, whereas it is overestimated for the winter season, where the outcome was 

dominated by the reanalysis data’s significant seasonality. 

Considering the aforementioned observations and the literature findings, the modest step-up 

in LTWS increase may be explained by the predicted “overcorrection” of the model fit, slightly 

overestimating average short-term wind speeds. This also highlights the importance of having 

a seasonally balanced short-term dataset while conducting an MCP. 

While the above argument may explain the overestimation of LTWS in that particular case, it 

does not explain the underestimation of wind speeds fully in the winter period from February 

to March 2013, as well as in February to March 2014. Figure 3-25 shows the course of monthly 

wind speeds throughout the measurement period for the concurrent combined measured and 
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reference dataset. On the other hand, Figure 3-26 illustrates the normalized monthly wind 

speeds obtained from the data, as well as the projected average normalized wind speed at the 

target site. As seen in Figure 3-26, the period from October 2013 to January 2014 was an 

exceptional high-wind season. As a result, it is expected that a significant gap established over 

such a period will raise the LTWS. In comparison, during a typical average year, normalized 

wind speeds fall below the 100% range beginning in February and gradually recover until 

September, when an underestimation of LTWS is predicted. 

Figure 3-25. Concurrent measured and referenced monthly wind speeds during short-
term period 

 
Source: Author’s own illustration, via ISo1 

Figure 3-26. Monthly windiness comparison of the short and long-term period 

 
Source: Author’s own illustration 
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It is noted that the underestimation of the LTWS during the first February-March period is more 

pronounced than the second phase of the measurement period.  

Figure 3-27. Measured wind frequency roses, measurement period 2013 (top left), 
measurement period 2014 (top right), measurement period 2015 (bottom left), long-term 
reference period (bottom right) 

  

  
Source: Author’s own illustration, via ISo1 

As may be seen in Figure 3-27, the wind rose was slightly different in 2013, with a high 

frequency of easterly winds in February and March. An omnidirectional linear model, as 

demonstrated by the sectorwise linear model fit parameter in Table 3-7, is bound to 

underestimate such periods. This argument identifies a disadvantage of omnidirectional 

evaluation and suggests that sector-specific analyses may be more suitable. Nonetheless, it 

should be highlighted that the disadvantage of a sector-based correlation would be fewer 

points in sectors for rare weather events. There might also be a restriction in analysing very 

brief gaps. This is thought to be a future study subject. 



Results 

University of Kassel WES MScThesis Sargin - MCP Methodology for a Digital Wind Buoy 92 | 110 

Table 3-8. Sectorwise LLS model parameter – full measurement period 

Sector Range Time steps Intercept 
[m/s] Slope R² 

0 345° - 15° 1280 -0.179 1.062 0.905 

1 15° - 45° 1066 0.22 1.006 0.863 

2 45° - 75° 1131 0.428 1.024 0.885 

3 75° - 105° 1307 -0.183 1.130 0.917 

4 105° - 135° 834 0.73 1.019 0.879 

5 135° - 165° 792 0.64 1.023 0.896 

6 165° - 195° 1600 0.75 1.004 0.924 

7 195° - 225° 2651 0.754 0.974 0.923 

8 225° - 255° 2513 0.431 1.002 0.903 

9 255° - 285° 1828 0.45 0.996 0.922 

10 285° - 315° 1280 0.314 1.023 0.938 

11 315° - 345° 1190 0.32 1.009 0.917 

Source: Author’s own illustration 

In conclusion, whilst it is self-evident that the intermediate step of data filling was unnecessary 

within this study for the purpose of generating long-term wind speeds, generalizing this result 

without testing more sophisticated methods would be incorrect. Combining alternative data-

filling procedures and/or using more advanced methodologies may result in a different output. 

For instance, ISo1 uses a Markov-based reconstruction mechanism to generate synthetic data 

to fill in gaps in a measured time series. This synthetic data has the same frequency 

distribution, seasonal and diurnal trends, and autocorrelation as the observed data [73]. 

Additionally, it would be beneficial to use statistical testing techniques with hypothesis testing 

where such methods are implemented. 

3.3 Evaluation of the DF and LTC uncertainties 

Figure 3-28 illustrates the progress of DF uncertainty for 1-day and 60-day gap scenarios, as 

well as the percentage deviation from the observed short-term mean average. The coefficient 

of variation for short-term wind speed estimates is between 0.01% and 0.15% for 1-day and 

60-day gaps, respectively.  

With a 52-day gap, the calculated maximum variation of the STWS average is -0.34%, which 

is considered a modest level. A similar deviation can be observed in Figure 3-28 for the 60-

days gap scenario for the gap period starting in February 2013. The detailed evolution of the 

DF uncertainties can be seen in Annex L, alongside the measured time series at the bottom of 

each chart. A visual similarity between the deviation and uncertainty bounds is visible. Similar 
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to the discussion in Section 3.2.3, the evolution of DF uncertainties is driven primarily by the 

seasonality of the reference dataset and MCP method. This is a direct consequence of the 

inverse relationship from the predictions in the validation period. Furthermore, it can be 

observed that the averaged mean deviation in percentage is significantly lower than the 

associated uncertainty. 

Figure 3-28. Evolution of DF uncertainties for 1-day and 60 days gap scenarios 

 

 
Source: Author’s own illustration 

Figure 3-29 below illustrates the evolution of JK uncertainties in LT correction for scenarios 

with a 1-day and 60-day gap, respectively.  

The difference between the JK uncertainties for the scenario with data-filling and the scenario 

without data-filling is quite minor, with the difference growing somewhat for the scenario with 

the largest 60-day gap. While it can be observed that the JK uncertainties for the scenario 

without data-filling are more uniform, the other scenario, with data-filling, exhibits greater 

variability in the 60 days scenario with an increased COV of 38%, as compared to an increased 

COV of 18% in the scenario without data-filling. Throughout the 2013/2014 winter season, for 

example, the compensatory impact of the linear model for the very high wind period is highly 

visible in the JK uncertainties with DF. During that time, a reduction in the JK uncertainty is 

apparent, which can be attributed to the more uniform dataset due to data filling. 

The overall level of uncertainty with DF is around 0.21%, whereas the same figure is 0.02%, 

slightly less for the scenario without data-filling. 
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Figure 3-29. Evolution of JK uncertainties in LT correction for 1-day and 60 days gap 
scenarios 

 

 
Source: Author’s own illustration 

It was suggested to take into account the DF and JK uncertainty while assessing the MCP 

method's uncertainty. Assuming that each source of uncertainty is statistically independent of 

the others, the total uncertainty is defined as the square root of the squared uncertainty 

estimations. This is referred to as the final uncertainty in DF and LTC as shown in Figure 3-30. 

Figure 3-30. Evolution of combined uncertainties in LT correction for 1-day and 60 days 
gap scenarios 

 

 
Source: Author’s own illustration 
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It can be seen in the above figure that the total uncertainty is predominantly driven by the data 

filling uncertainty, which is not surprising. In light of the residual mean square error metrics 

from the validation periods, this is deemed reasonable. This also suggests the possibility that 

the missing gaps from an ideal representative 1-year assessment might account for a 

considerable portion of the LTC uncertainty.  

The standard error of LTWS predictions was determined to be 0.0% for all gap periods, 

indicating that the model is consistent. This is reasonable given the large number of forecasts 

made throughout the gap period, which totals more than 669 for each gap. Regarding the 

expected uncertainty,  the standard deviation of the LTWS predictions might be a more 

appropriate comparison metric than the standard error. This metric is sometimes referred to 

as “standard error” in the literature [72]. Nevertheless, it is clear that the standard deviation of 

the LTWS considerably underestimates the uncertainty margin, as shown in Figure 3-31. 

Figure 3-31. Comparison of empirical and calculated uncertainties in wind speeds for 
60 days gap period starting on 01.07.2012 

  
Source: Author’s own illustration  

In a recent wind resource assessment study conducted in the Dutch North Sea [18], the 

omnidirectional correlation uncertainty has been assessed as 1.47% with a Monte Carlo 

simulation for an FLS measurement campaign with 69 days of a gap. It is interesting to see 

the good alignment with the above Figure 3-31, as we would expect to see at a minimum 1.4% 

total uncertainty in the MCP method for a similar gap size.  

Section 2.6.3 introduced bootstrapping, which may be thought of as a variant on Monte-Carlo 

simulations. This technique was not implemented due to the high computational power needed 
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for bootstrapping each iteration as a sliding analysis with several loops. Nonetheless, based 

on the findings of this study, it can be concluded and proposed that bootstrapping should be 

studied for MCP corrections, preferably in a comparable research project. 

Figure 3-32 presents a sensitivity case using the newest test version 5 of ISo1, which includes 

a bootstrapping analysis algorithm to estimate the uncertainties in long-term correction. The 

graph represents the results of a 500-iteration bootstrapping simulation utilizing an hourly 

omnidirectional LLS technique for the 60-day gap for both the data-filled and gap-free versions 

of the concurrent time series. Clearly, the acquired uncertainty level is substantially more than 

the estimate achieved in this research, which is around 1.4% for the 60-day gap scenario. This 

might be related to a large number of simulations or to other components of the analysis that 

were not examined at this point. This is unquestionably another area of research that warrants 

more exploration. 

Figure 3-32. Comparison of bootstrap and calculated uncertainties in wind speeds for 
60-days gap period starting on 01.07.2012 

  
Source: Author’s own illustration  

3.4 Proposed combined MCP uncertainty method 

Suppose a high-quality, wake-free measurement dataset (benchmark dataset) with at least 

two years of data in an offshore environment is available. In that case, a combined ISPE & JK 

approach might be used to estimate the uncertainty in the long-term correction of a nearby 

FLS measurement campaign with data availability issues. 

Provided an FLS measurement campaign is in a representative location to the benchmark 

dataset, the combined ISPE & JK method could be tested as follows 

• Conduct a gap analysis for the benchmark dataset 



Results 

University of Kassel WES MScThesis Sargin - MCP Methodology for a Digital Wind Buoy 97 | 110 

• Obtain self-prediction RMSE and validation period RMSE of mean wind speed as described 

in this study 

• Investigate the linear relationship, and obtain transfer functions if there exists a strong 

correlation as found in this study for the benchmark dataset 

• Apply the transfer function of the benchmark dataset to estimate the DF-uncertainty based 

on the data gap period (1 to 60-days). 

• Conduct a JK uncertainty for long-term correction 

• Combine the DF-uncertainties with the JK uncertainty to obtain a final uncertainty in the long-

term correction 

In the case of an FLS measurement campaign in the Dutch North Sea, in a representative 

location to MMIJ, the transfer functions provided in the Annex I of this study could be tested. 

Finally, maintaining representative offshore measurement masts in far-offshore conditions – 

wake-free environment and representative for broader regions are considered highly valuable 

for research. This can be done with joint-industry projects, can provide a valuable function for 

verification and validation of FLS campaigns for pre-deployment.  
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4 Discussion and conclusions 

Wind resource assessment for offshore projects is critical for project financing. The duration of 

the data gap would be a critical criterion for determining the robustness of a wind resource 

assessment. Gap filling is required of meteorological time series for a variety of applications 

that require continuous data series. Fraunhofer IWES examined the effect of data gaps on the 

estimation of siting parameters in order to identify an appropriate method for filling in data gaps 

for an offshore measurement. This study sought to determine the effect of data gaps on long-

term wind speeds as part of the "Digital Wind Buoy" project. 

This problem could be investigated by recording key performance indicators (KPIs) for different 

analysis steps. Therefore, the study aims to establish the maximum acceptable gap duration 

in a year for an offshore measurement campaign for a robust wind resource assessment. 

Secondary investigations can be done to confirm the robustness of the gap-filling process.  

After literature review and the conduction of a stakeholder questionnaire, the MCP method 

was selected, the target (MMIJ) and reference datasets (ERA5) for MCP were prepared. A 

performance test algorithm has been run to compare the available MCP methods. The 

omnidirectional linear regression method, with least-squares model fit with offset, was 

identified as a suitable solution. Different gap periods starting with one day up to sixty days 

were investigated to find a quantifiable metric to predict the performance of the data-filling and 

long-term correction algorithm. An omnidirectional linear regression model was used to obtain 

both self-prediction and to predict the wind speeds at the introduced artificial gap. 

The performance of a measure-correlate-predict (MCP) algorithm for data-filling with linear 

least squares was analysed in detail using two years of the Ijmuiden met mast (MMIJ) 

measurements. A temporal resolution of one hour was selected for the correlations and model. 

This model fit was used to obtain both self-prediction performances and to predict the wind 

speeds at the introduced artificial gap. An inner loop repeated the predictions with a moving 

gap within the concurrent period, whereas an outer loop increased the gap duration 

incrementally by 1-day, starting with one day up to a total of 60-days. This modelled 

relationship was utilized to derive the LTWS twofold. The first scenario generated short-term 

data-filled time series, which were then used to re-establish the model with the reference 

dataset and generate the final LTWS. The second scenario was created to acquire the 

extended (long-term) time series without the need for data-filling. 

Different MCP methods were tested with an omnidirectional sectoral selection within 

Windographer using the performance test functionality, and the base-case algorithm was 

selected as the omnidirectional linear regression with offset for the Python code. 
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The KPI defined for PreDF was evaluated as a prerequisite to running an MCP for data filling 

and long-term correction. The MBE, MAE, and RMSE of mean wind speeds over concurrent 

periods were summarized for 1-day and 60-days. Despite its good correlations, the reference 

dataset could not match the precision of wind speed observations. Although this was not a 

concern for this type of study, it does provide an opportunity to evaluate the algorithm's 

performance against a mesoscale modelling solution. 

SelfDF KPIs were used to compare the outcome of predictions to a known outcome, which is 

represented by the true measured values. A total of 1 m/s approximated a 10% relative MAE, 

which was in excellent agreement with previous MCP methods. For the examined periods, the 

model's mean bias error was zero, and for the 1-day gap scenario, the MAE was roughly 1 m/s 

throughout the bins. 

When comparing the differences between the measured and reference periods, an anticipated 

improvement in the MBE values was observed. MBE, MWS, and RMSE of mean wind speeds 

were examined throughout the validation period to determine the genuine performance of the 

tested approach. In the 1-day gap case, the spread of the root mean square error during the 

measurement period was very limited. Despite the fact that this grew significantly for the 60-

day case, the range of RMSE stayed within a narrow 0.05 m/s interval. 

A high negative relationship was observed for all gap situations between the SelfDF and ValDF 

RMSE of MWS. This relationship had not been addressed or discussed in any related 

literature. Because the data revealed a substantial correlation, independent validation is 

essential before using this unique technique in future investigations. This method is referred 

to as the inverse self-prediction error (ISPE) method. The ISPE method might serve as a 

credible empirical tool for assessing the uncertainties associated with data gaps in a sufficiently 

offshore situation. 

The evolution of the mean difference between actual and predicted wind speeds was 

investigated following the data-filling procedure. The short term average wind speed (STWS) 

predictions had a low coefficient of variation, demonstrating a linear trend for the gaps, ranging 

from 0.01% for a single day gap to 0.12%. The STWS's maximum and minimum deviations 

from the measured short-term wind speed were 0.26% and -0.34%, respectively, indicating 

exceptional performance. Considering that a 60-day gap time equates to 83% availability, the 

study reaffirmed the industry standard of 80% for measurement campaign data availability. 

One of the study's main questions was whether a short-term data filling phase was required 

before applying the long-term correction. The LTWS predictions were identical in both 

versions. This was mainly due to the omnidirectional regression parameters and the lessened 

influence of any change in model fit caused by the proportion of gaps.  
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The long-term correction predictions varied seasonally. Extremely strong winds and sectoral 

fluctuations during times influenced the predictions slightly. As expected, the LTWS results 

showed overcorrection of linear regression methods. In conclusion, the intermediary stage of 

data filling was redundant in this investigation. However, generalizing this result without doing 

additional tests might be misleading. It is recommended to explore more advanced approaches 

for generating synthetic data to fill in gaps in a measured time series. 

The standard error of LTWS predictions was determined to be 0.0% for all gap periods, 

indicating that the model was consistent. This was comprehensible given the large number of 

predictions made throughout the gap period, which totals more than 669 for each gap. 

The evolution of DF uncertainties was driven primarily by the seasonality of the reference 

dataset and MCP method as a direct consequence of the inverse relationship from the 

predictions in the validation period. The total uncertainty was assessed as the square root of 

the squared uncertainty estimations of data-filling (ISPE-Method) and jackknife uncertainties. 

The combined uncertainty was driven by the data filling uncertainty suggesting that the 

possibility that the missing gaps from an ideal representative 1-year assessment might account 

for a considerable portion of the LTC uncertainty.  

Furthermore, it has been observed that the standard deviation of the LTWS considerably 

underestimated the uncertainty margin. Therefore it is suggested to take into account the DF 

and JK uncertainty while assessing the MCP method's uncertainty. Bootstrapping should be 

studied for MCP corrections as a suitable method in further detail, preferably in a comparable 

research project. 

The questionnaire's answers are considered extremely valuable and may help shape future 

studies' conceptualizations. These may include additional variables that may affect the MCP, 

more advanced non-linear MCP algorithms, data-filling approaches, and sensitivity analysis of 

metocean parameters.  

Finally, it is important to highlight that there might be significant year-to-year fluctuations in 

windiness, which may affect data-filling and MCP operations. According to Burton, many 

factors might contribute to these changes. According to the researchers, global climate 

phenomena such as El Nino, volcano eruptions, and solar activity oscillations may be 

connected. Additionally, the expected effects of human-induced global warming on the climate 

are controversial and are likely to affect wind conditions in the following decades [97]. 

This master thesis contains a thorough set of appendices and a summary of the data collected 

to allow for verification and investigation of any obtained results. 
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