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Abstract
Information on microbial biomass carbon (MBC) is crucial to assess their stocks and role for plant nutrient release in soil. 
Next to fumigation-extraction, molecular methods are routinely used to estimate the contribution of fungi, bacteria, and 
archaea to the soil microbial community. However, more information on the links between these different indices would 
deepen the understanding of microbial processes. The current study is based on 11 datasets, which contain MBC and MBN 
data obtained by fumigation-extraction and information on bacterial, archaeal, and fungal gene abundance, totalling 765 
data points from agricultural, forest, and rangeland soils. Some of these datasets additionally provide information on double-
stranded deoxyribonucleic acid (dsDNA) and fungal ergosterol. MBC varied around the median of 206 µg  g−1 soil. MBN 
followed with a median MB-C/N ratio of 4.1. Median microbial gene abundance declined from bacteria (96 ×  108) to archaea 
(4.4 ×  108) to fungi (1.8 ×  108). The median ratio of MBC/dsDNA was 15.8 and that of bacteria/dsDNA was 5.8 ×  108 µg−1. 
The relationships between MBC and dsDNA as well as between bacterial gene abundance and dsDNA were both negatively 
affected by soil pH and positively by clay content. The median ergosterol/MBC and fungi/ergosterol ratios were 0.20% and 
4.7 (n ×  108 µg−1), respectively. The relationship between fungal gene abundance and ergosterol was negatively affected by 
soil pH and clay content. Our study suggests that combining fumigation-extraction with molecular tools allows more precise 
insights on the physiological interactions of soil microorganisms with their surrounding environment.
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Introduction

Soil microorganisms are key drivers of biogeochemical 
processes in soil and considered the active fraction of soil 
organic matter (SOM). The soil microbial biomass com-
prises C as well as macro- and micronutrients stored in liv-
ing microorganisms (Hemkemeyer et al. 2021). Fungi and 
bacteria are the two dominant groups of the soil microbial 
biomass (Joergensen and Wichern 2008), but less abun-
dant groups like archaea and protists are also important for 
soil functioning (Gattinger et al. 2002; Geisen et al. 2023). 
Most microorganisms in soil are dormant and do not grow 
as energy is limited (Jenkinson 1988; Joergensen and Wich-
ern 2018). For this reason, the composition of the micro-
bial groups in most soil is rather stable, comparing different 
soils (Joergensen and Wichern 2008) or seasons (Birgander 
et al. 2014). Changes in composition of the microbial groups 
require death and regrowth of microorganisms, decomposing 
their dead neighbours, which reduced the microbial biomass 
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by 60–85% in comparison with the original level (Harden 
et al. 1993; Joergensen et al. 1990).

Microbial growth is nearly exclusively provided at the 
hot spots of energy availability, i.e., the rhizosphere around 
roots, the detritussphere around freshly incorporated plant 
residues and to some extent also the drilosphere around 
earthworm burrows (Banfield et al. 2018; Kuzyakov and 
Blagodatskaya 2015). Approximately 2 to 3% of soil micro-
organisms live in these areas where plenty of energy is 
available. However, most soil microorganisms inhabit areas 
of energy limitation and therefore starve, which results in 
dormancy. Nevertheless, dormant microorganisms also have 
important functions (Joergensen and Wichern 2018). They 
catabolize nutrient-containing organic components, leading 
to nitrogen, sulphur, and phosphorus mineralization. In addi-
tion, dormant microorganisms are an important reservoir for 
the maintenance of microbial biodiversity in soils.

Microbial biomass carbon (MBC) is a defined SOM frac-
tion, which is relatively easy to quantify and to understand 
and can therefore be used in quantitative biogeochemi-
cal models. MBC data allow turnover calculations, which 
draws a quantitative relationship between MBC, microbial 
basal respiration, and soil organic C (SOC) (Anderson and 
Domsch 1989, 2010). Different approaches have been devel-
oped to estimate MBC, such as microscopic methods, sub-
strate-induced activities, specific cell components, and fumi-
gation methods (Jenkinson 1988; Joergensen and Wichern 
2008; Kaiser et al. 1992), which all have specific advantages 
and disadvantages as discussed elsewhere (Martens 1995). 
The most common method of measuring MBC and micro-
bial biomass nitrogen (MBN) is nowadays the fumigation-
extraction (FE) method (Brookes et al. 1985; Vance et al. 
1987), which gives access to the cytoplasm through cell-
lysis. The advantages of this method are the clear separation 
between living and dead organisms, no discrimination of any 
microbial group, and the possibility to measure virtually all 
elements rendered extractable after fumigation (Khan et al. 
2009; Schwalb et al. 2023a, b). The main disadvantage of the 
FE method is an insufficient difference in C concentration 
between fumigated and non-fumigated in low SOM environ-
ments, e.g., subsoils (Jörgensen et al. 2002) or desert soils 
(Wichern and Joergensen 2009).

Specific cell components are an important approach for 
measuring microbial biomass (Joergensen and Emmerling 
2006; Joergensen and Wichern 2008), often with the advan-
tage of giving additional information on major microbial 
groups, such as fungi, bacteria, and archaea. Cell-membrane 
components, such as PLFA and ergosterol (Joergensen 2022; 
Meyer et al. 2021), provide mainly information on the cell 
envelope but their quantity is affected by the cell volume and 
the number of organelles in eukaryotic fungi. Ergosterol is 
highly specific for the fungal phyla Ascomycota and Basidi-
omycota but has the advantage not to occur in plants or other 

organisms (Baldrian et al. 2013; Joergensen and Wichern 
2008; Weete et al. 2010). Double-stranded deoxyribonucleic 
acid (dsDNA) gives information on the genomic core of a 
cell and is the basis for further molecular-genetic tools such 
as quantitative real-time polymerase chain reaction (qPCR), 
elucidating, inter alia, microbial diversity in soil (Hemke-
meyer et al. 2014).

The main problem of utilising specific cell components 
for estimating soil microbial biomass is the absence of 
appropriate conversion values to biomass (Joergensen and 
Emmerling 2006). This is partly caused by their accumula-
tion in dead organisms for a certain time (Joergensen and 
Wichern 2008) and their high variation in the biomass 
(Djajakirana et al. 1996; Jenkinson 1988). This is also true 
for molecular genetic tools to measure bacterial and archaeal 
(Stoddard et al. 2015) as well as fungal gene abundance 
(Baldrian et al. 2013; Heidrich and Beule 2022), which are 
increasingly used as routine approaches to estimate the con-
tribution of these different groups to the soil microbial com-
munity (Meyer et al. 2021). The problem of many studies 
on the diversity of the soil microbiome is the determination 
of the relative and not of the absolute abundances by qPCR.

For unifying the view on soil microorganisms considering 
quantitative (MBC) and qualitative (microbial domains or 
diversity) data, the current study uses 11 datasets provided 
by the Sustainable Food Systems Research Centre at Rhine-
Waal University of Applied Sciences in Kleve, Germany. 
All datasets contain MBC and MBN values obtained via 
FE and information on bacterial, archaeal, and fungal gene 
abundance. Some of these datasets additionally provide 
information on dsDNA and fungal ergosterol. With this set 
of data, we investigated the following three research ques-
tions: (1) What are the relationships between indices for 
total microbial biomass, i.e., MBC and dsDNA? (2) What 
are the relationships between dsDNA and the indices for 
prokaryotic microorganisms, i.e., bacterial and archaeal gene 
abundance? (3) What are the relationships between fungal 
indices, i.e., fungal gene abundance and ergosterol?

Materials and methods

Data sources

Data were acquired from 11 recent soil datasets: six derived 
from agricultural soils without additions: (1) Cover crops 
(Germany): experimental soil was taken at 0–30 cm in 
March 2016 from two fields: Neulouisendorf (52 m asl, 
51°42′16″ N, 6°18′01″ E) and Bedburg-Hau (17 m asl, 
51°45′53″ N, 6°11′17″ E). In both soils, ten different cover 
crops and six mixtures with six plants per pot were grown 
for 60 d at 70% water holding capacity in a greenhouse at 
an average of 22 °C (Hemkemeyer et al. unpublished data). 
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(2) Neulouisendorf (Germany) soil samples were taken at 
0–30 cm from 2016 until 2018 from a field experiment in 
Neulouisendorf (50 m asl, 51°42′07″ N, 6°18′18″ E) from 
two parts of the same field, which were in the crop rotational 
stage of carrying cover crops in 2016 and 2017, respectively. 
Besides fallows, there were seven species and five mixtures 
in 2016 and four species and two mixtures in 2017. Sam-
pling took place in October/November of the same year and 
in March of the following year, with the latter differing in 
plots, which had either been harvested in autumn or mulched 
in winter (Hemkemeyer et al. unpublished data). (3) Pfalz-
dorf-2019 (Germany) soil samples, were taken at 0–30 cm 
from the Pfalzdorf (26 m asl, 51°42′15″ N, 6°09′41″ E) long-
term intensive potato trial after six full three-year crop rota-
tions in October 2019 (Hemkemeyer et al. 2024). (4) For 
Pfalzdorf-2015 (Germany) partly the same, partly different 
plots were already sampled in February 2015 at different 
stages in the crop rotation (Schwalb 2016, unpublished BSc 
thesis; partly published in Hemkemeyer et al. 2024).

(5) DOK (Switzerland) soil samples were collected at 
0–20 cm depth in July and August 2019 from the long-term 
fertilization trial on arable land (Schwalb et al. 2023a), close 
to Therwil (307 m asl, 47°30′09.3″ N 7°32′21.6″ E), Switzer-
land, established in 1978 (Mäder et al. 2002). (6) Askov (Den-
mark) soil samples were taken at 0–20 cm depth in October 
2019 from field B5 of the long-term experiment on arable land 
(Schwalb et al. 2024), established in 1894 and located at the 
Askov Experimental Station (63 m asl, 55°28’ N, 09°07’ E) 
in South Jutland, Denmark (Christensen et al. 2022).

Two datasets derived from non-agricultural soils: (7) 
Issyk-Kul (Kyrgyzstan) soil samples were taken in late 
September 2021 from natural vegetation at 0–30 cm depth 
around the Issyk-Kul lake (Iskakova et  al. unpublished 

results), Kyrgyzstan, with sea buckthorn (Hippophae rham-
noides L.) and barberry (Berberis vulgaris L.) vegetation. 
Sampling sites were the eastern shore near Karakol (1726 m 
asl, 42°29′39″ N, 78°24′9″ E), the southern shore near Ton 
(1619 m asl, 42°33′59″ N, 78°16′49″ E), the northern shore 
near Korumdu (1629 m asl, 42°40′49″ N, 77°19′42″ E), and 
the western shore near Balykchy (1611 m asl, 42°27′35″ 
N, 76°14′2″ E). (8) Jalal-Abad (Kyrgyzstan) soil samples 
were collected at 0–30 and 30–60 cm depth in October 2019 
close to Charbak (1000 m asl, 41°51′11″ N, 73°00′29″ E), 
Kyzyl-Unkur (1300 m asl, 41°23′31″, 73°03′40″ E), and Jay-
Terek (1600 m asl, 41°17′16″ N, 72°53′03″ E) from natural, 
partly-managed walnut (Juglans regia L.) forests (Oskon-
baeva et al. 2023).

The soils Pfalzdorf-2019, DOK, Askov, Issyk-Kul, and 
Jalal-Abad had been incubated at 22 °C for 14 or 28 d in the 
dark at 50% water holding capacity prior to analyses. Basic 
soil characteristics of all 11 soil datasets are presented in 
Table 1.

Finally, three datasets are derived from incubation experi-
ments with agricultural soils, which received amendments in 
comparison with controls without amendments: (9) Salin-
ity (Bangladesh) soil samples were taken after an incu-
bation experiment with NaCl, rice (Oryza sativa L.) straw, 
and manure application treatments to investigate the salinity 
effects on C and N mineralization (Wichern et al. 2020). The 
paddy rice field soils were sampled in 2015 at 0–15 cm depth 
in Mymensingh (23 m asl) and Nalitabari (32 m asl), Bang-
ladesh. (10) Frass (Germany) soil samples received two 
types of frass from black soldier fly (Hermetia illucens) lar-
vae, differing in their feeding regime (Rummel et al. 2021). 
The arable soil was collected at Rotthalmünster, Germany 
(360 m asl, 48°21′39″ N, 13°11′33″ E). (11) Microplastics 

Table 1  Soil types (IUSS 
Working Group WRB 2022), 
median contents of sand, silt, 
soil organic carbon (SOC), and 
total N as well as median soil 
pH of the different datasets

ND Not determined; a field part in 2016/17; b field part in 2017/18

Dataset Soil type Sand Silt Clay Soil pH SOC Total N
(%) (H2O) (mg  g−1 soil)

Cover crops Stagnic Luvisol 16 62 22 6.8 14.2 ND
Cover crops Cambisol 77 13 11 7.5 22.4 2.15
Neulouisendorf Stagnic Luvisol a 12 71 16 7.6 ND ND
Neulouisendorf Stagnic Luvisol b 42 45 13 7.7 ND ND
Pfalzdorf-2019 Stagnic Luvisol 19 72   9 7.3 11.6 0.90
Pfalzdorf-2015 Stagnic Luvisol 19 72   9 7.0 16.3 ND
DOK Stagnic Luvisol 15 70 15 6.1 13.6 1.49
Askov Orthic Luvisol 65 25 10 6.4 10.6 0.80
Issyk-Kul Cambisol 87   5   8 8.4   8.6 0.67
Jalal-Abad Cambisol   5 55 40 7.7 45.6 3.15
Salinity Fluvisol 28 48 24 7.1 ND ND
Salinity Cambisol 22 64 14 5.0 ND ND
Frass Haplic Luvisol 10 71 19 7.7 12.3 1.40
Microplastic Fluvisol 20 26 54 6.5 ND ND
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(Germany) soil samples were obtained from an incubation 
study with low density polyethylene and polypropylene addi-
tions, using soil samples collected at 0–15 cm depth from 
two arable fields in Kleve, (20 m asl, 50°08’ N, 6°02’ E), 
North Rhine-Westphalia, Germany (Blöcker et al. 2020).

Soil characteristics

Soils were sieved (< 2 mm) and air-dried before analysis. 
Soil pH was measured in a soil suspension with  H2O (1:5 
w/v) or 0.01 M  CaCl2 (1:2 w/v), stirred in 5 min intervals 
and measured after 30 min. Soil pH-CaCl2 was converted 
to pH-H2O using the following equation: pH-H2O = (pH-
CaCl2 + 0.373) / 0.923 according to Ahern et al. (1995). 
Total C and N were measured after milling by dry combus-
tion at 900 °C using an elemental analyzer (Vario Max Cube 
CHN, Elementar, Langenselbold, Germany). Carbonate was 
measured gas-volumetrically after adding 10% HCl, using 
a Scheibler apparatus. SOC was calculated as the difference 
between total C and carbonate C.

Microbial biomass

MBC and MBN were determined in moist 20 g subsam-
ples using the FE method (Brookes et al. 1985; Vance et al. 
1987). Briefly, one 10 g portion at 50% water holding capac-
ity was fumigated for 24 h at 25 °C with ethanol-free  CHCl3. 
After  CHCl3 removal, samples were extracted with 40 ml 
0.5 M  K2SO4 for 30 min by horizontal shaking at 200 rev 
 min−1 and filtered (VWR 305, particle retention 2–3 μm). 
The other 10 g portion of non-fumigated soil was extracted 
similarly. Organic C and total N in the extracts were meas-
ured after combustion at 850 °C using an automated Multi 
N/C 2100S analyzer (Analytic Jena, Germany). MBC was 
EC/kEC, where EC = (organic C extracted from fumigated 
soils) − (organic C extracted from non-fumigated soils) 
and kEC = 0.45 (Joergensen 1996; Wu et al. 1990). MBN 
was EN/kEC, where EN = (total N extracted from fumigated 
soils)—(total N extracted from non-fumigated soils) and 
kEN = 0.54 (Brookes et al. 1985; Joergensen and Mueller 
1996).

Ergosterol

The fungal cell-membrane component ergosterol was 
extracted for 30 min with 100 ml ethanol (96%) from a 2 g 
moist soil according to Djajakirana et al. (1996). Ergos-
terol was determined by reversed-phase HPLC (1260 Infin-
ity, Agilent, Santa Clara, USA), using a C18 column and 
HPLC-grade methanol (100%) as liquid phase at a detection 
wavelength of 282 nm.

Double‑stranded DNA

As a microbial biomass index (Bardelli et al. 2017), dsDNA 
was extracted from frozen soil samples using the FastDNA 
Spin Kit for Soil (MP Biomedicals, Santa Ana, USA) with 
modifications according to Hemkemeyer et al. (2014), which 
included bead-beating for 2 × 45 s at 6.5 m  s−1, an addi-
tional washing step with 5.5 M guanidine thiocyanate to 
remove contaminants, and re-use of the eluate for a second 
elution step. Subsequently, dsDNA was quantified using the 
intercalating-dye system QuantiFluor (Promega, Mannheim, 
Germany) at 485 nm excitation and 520 nm emission in the 
microplate reader FLUOstar Omega (BMG Labtech, Orten-
berg, Germany). Considering DNA loss during the extrac-
tion procedure, obtained dsDNA content and abundances 
of marker genes (see below) were corrected by dividing the 
data by the extraction efficiency as described in Hemke-
meyer et al. (2024).

Microbial gene abundance

Quantification of microbial domains/kingdoms was done 
via quantitative real-time PCR (qPCR) targeting the Internal 
Transcribed Spacer 1 region (ITS1) for fungal quantification 
and the 16S rRNA gene for quantification of bacteria and 
archaea using the Light Cycler 480 SYBR Green I Master 
and Light Cycler 480 Probes Master, respectively, in a Light 
Cycler 480 Instrument II (Roche Diagnostics, Mannheim, 
Germany). Primers were NSI1 and 58A2R for fungi (Martin 
and Rygiewicz 2005), BAC338F and BAC805R in combina-
tion with the probe BAC516F for bacteria, and ARC787F 
and ARC1059R with probe ARC915F for archaea (Yu et al. 
2005). Reaction mixtures and cycling conditions have been 
described by Wichern et  al. (2020). Cloning fragments 
for qPCR standards originated from the following species 
Fusarium graminearum (fungi), Bacillus subtilis (bacteria), 
and Methanobacterium oryzae (archaea) and were used in 
serial dilutions:  107 –  101 copies µl−1 for fungi and archaea 
and  108 –  102 copies µl−1 for bacteria. Preparation of the 
standards has been described by Rummel et al. (2021).

Statistical analyses

The results presented in tables and figures are expressed on 
an oven-dry basis (about 24 h at 105 °C). Outliers of repli-
cated data were removed according to the test proposed by 
Doerffel (1984). Normality was tested by the Shapiro–Wilk 
test and equal variance by the Levene test. All microbial 
data were log-transformed to normalize the distribution. 
The significance of differences between the datasets was 
tested by the Kruskal–Wallis One-way Analysis of Vari-
ance on Ranks, followed by Dunn’s pairwise multiple 
comparison procedure. Multiple regression models were 
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calculated between MBC, bacterial gene abundance, and 
fungal gene abundance as dependent variables and dsDNA, 
ergosterol, clay content, and soil pH-H2O as independent 
variables. All regression models were tested for normality 
(Shapiro–Wilk), homogeneity of variance, absence of cor-
relation between the residuals (Durban-Watson statistics) 
and absence of multi-collinearity, calculating the variance 
inflation factor (VIF), which never exceeded 4.0. All statis-
tical analyses were performed using SigmaPlot 13.0 (Systat, 
San José, USA).

Results

MBC varied in a sixfold range around the median of 
206 µg  g−1 soil across the 11 soil datasets (Table 2). MBN 
followed MBC with a median MB-C/N ratio of 4.1, rang-
ing from 3.3 to 7.3. Median microbial gene abundance 
declined from bacteria (96 ×  108), archaea (4.4 ×  108) to 
fungi (1.8 ×  108). The range between minimum and maxi-
mum number increased in the same order from 9-, 12- to 
15-fold, respectively. In contrast to the MB-C/N ratio, the 
median bacteria/archaea (27) and especially the bacteria/
fungi gene abundance ratio (57), showed similar or even 
larger variation.

The median dsDNA content was 15.7 µg  g−1 soil in the 5 
datasets (Table 3). The median ratio of MBC/dsDNA ratio 
was 15.8 and that of bacterial gene abundance-to-dsDNA 
was 5.8 ×  108 µg−1 soil. The relationships between MBC and 
dsDNA (Table 4) as well as between bacterial gene abun-
dance and dsDNA were both negatively affected by soil pH 

and positively by clay content (Table 4). This means that 
the ratios of MBC and bacterial gene abundance to dsDNA 
declined with increasing soil pH and decreasing clay con-
tent. Both soil properties were implemented into the multiple 
non-linear regression analysis to improve the prediction of 
MBC (Fig. 1a) and bacterial gene abundance (Fig. 1b) from 
dsDNA.

The median ergosterol content was 0.42 µg  g−1 soil in 7 
datasets (Table 5), the median ergosterol/MBC and fungi/
ergosterol ratios were 0.20% and 4.7 ×  108 µg−1, respectively. 
The non-linear regression between fungal gene abundance 
and ergosterol was negatively affected by soil pH and clay 
content (Table 4, Fig. 2). This means that the ratios of fungal 
gene abundance-to-ergosterol declined with increasing soil 
pH and clay content. The correlation coefficients of ergos-
terol (r = 0.22) and fungal gene abundance (r = 0.26) with 
dsDNA were less close than those with archaeal (r = 0.52) 
and bacterial gene abundance (r = 0.65).

Discussion

Total microbial biomass indices

In our study, MBC and MBN covered a quantitative range 
known for many soils, such as from arable soils (Kaiser 
et al. 1992; Nieder et al. 2008; Wardle 1998), rangeland 
(Joergensen 2010), and forest soils (Anderson and Joer-
gensen 1997) under humid temperate but also under tropi-
cal climatic conditions (Joergensen 2010). MBC depends 
on the C input by root and shoot residues or litter fall 

Table 2  Median microbial 
biomass C (MBC) and N 
(MBN), MB-C/N ratio, number 
of gene copies for bacteria, 
archaea, and fungi, ratios of 
bacteria/archaea and bacteria/
fungi, for the total number of 
soil samples and separated 
according to 11 different 
datasets

Different letters within a column indicate a significant difference between medians (Dunn’s pairwise multi-
ple comparison procedure, p < 0.05)

Dataset Number MBC MBN MB-C/N Bacteria Archaea Fungi Bacteria/ Bacteria/
(µg  g−1 soil) (n ×  108  g−1 soil) Archaea Fungi

Cover crops 160 210   65 3.3 e 118   6.4 2.1 19 e   58 d
Neulouisendorf 226 175   45 3.9 d   56   1.3 1.7 40 c   34 de
Pfalzdorf-2019   28 128   25 5.1 bc 143   2.8 2.0 45 c   70 cd
Pfalzdorf-2015   39 192   27 7.3 ac 503   5.8 1.3 92 a 362 ab
DOK   32 244   58 4.4 d 134   5.0 1.7 27 cd   78 cd
Askov   31   95   24 4.2 d 121   2.0 1.4 60 ab   80 cd
Issyk-Kul   18 546 111 3.9 d   94   7.7 2.9 10 e   37 de
Jalal-Abad   57 492   85 5.2 c 136   8.4 1.1 21 de 129 bc
Salinity 124 564   81 7.0 a 113 10.0 5.8 12 e   20 e
Frass   21 254   58 4.5 d 145   1.6 4.3 92 a   36 de
Microplastic   29 335   70 4.9 abc 200 15.4 0.4 15 e 521 a
Total number 765 765 732 728 758 758 757 758 757
Median 206   53 4.1   96   4.4 1.8 27   57
25% percentile 160   36 3.5   65   1.6 1.0 17   27
75% percentile 311   70 5.4 147   8.1 3.3 44 118
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but also on the environmental turnover conditions, i.e., 
wtemperature (Conant et al. 2011; Kätterer et al. 1998; 
Kirschbaum 2006), soil moisture (Faust et al. 2019; Lak-
shmi et al. 2003; Moyano et al. 2013), soil pH (Anderson 
and Domsch 1993; Lauber et al. 2008; Rousk et al. 2009), 
and clay content (Müller and Höper 2004; Wentzel et al. 
2015).

The significant relationship between MBC and dsDNA 
(Fig. 1a) had marked deviations in specific datasets, e.g., 
caused by the low dsDNA content in the clayey and carbo-
naceous Kyrgyzstan soils. Clay content and soil pH have 
strong effects on the adsorption of organic compounds 
(Baldock and Skjemstad 2000; Schweizer et al. 2021), par-
ticularly phosphorus (P) containing compounds (Gérard 
2016) such as MBP (Brookes et al. 1982) or adenosine 
triphosphate (ATP) (Jenkinson 1988). Consequently, high 
clay content and high soil pH might have lowered the 
extraction efficiency of dsDNA in these soils, emphasiz-
ing the need for extraction protocols adapted to specific 
soil conditions (Guerra et al. 2020). However, clay content 
and soil pH certainly also affect composition of microbial 
groups and their physiological status.

Conversion of dsDNA to MBC

The median MBC/dsDNA ratio of 15.8 observed in the cur-
rent study falls within the range observed in other studies 
(Table 6). The weighted mean of these datasets from the lit-
erature is 15, clearly above the weighted mean of 6 proposed 
by Joergensen and Emmerling (2006). Also, the median 
MBC/dsDNA ratios observed in the current five datasets, 
ranging from 7.6 to 43.7, are like the means presented in 
Table 6, ranging from 2.2 to 38. Čapek et al. (2023) stated 
that the lower and upper slope bounds of the linear relation-
ship between MBC and dsDNA can be expected within 3.5 to 
22. The current relationship between MBC and dsDNA was 
significantly affected by clay content and soil pH. These two 
soil properties are the dominant factors, controlling the com-
position of microbial groups and their physiological status.

An increasing clay content promotes bacteria (Wentzel 
et al. 2015) and reduces microbial maintenance requirements 
(Filip et al. 1972; Höper and Kleefisch 2001). As the turno-
ver rate is the product of maintenance × yield coefficient, 
lower maintenance requirements slow down the microbial 
turnover in soil (Joergensen and Wichern 2018; van Veen 

Table 3  Median dsDNA content 
and ratios of MBC/dsDNA 
and dsDNA/bacterial gene 
copies for the total number 
of soil samples and separated 
according to 5 datasets

Different letters within a column indicate a significant difference between medians (Dunn’s pairwise multi-
ple comparison procedure, p < 0.05)

Dataset Number dsDNA MBC/dsDNA Bacteria/dsDNA
(µg  g−1 soil) (n ×  108 µg−1 soil)

Cover crops 160 23.7   8.9 c   5.1 c
Neulouisendorf 189 11.9 15.8 b   4.8 c
Pfalzdorf-2015   23 23.5   7.6 c 21.4 a
Jalal-Abad   57   7.5 43.7 a 15.0 a
Salinity 124 17.2 32.8 a   7.1 b
Total number 560 560 553 558
Median 15.7 15.8   5.8
25% percentile 10.6   9.3   4.4
75% percentile 23.4 30.0   8.4

Table 4  Multiple non-linear 
regression analysis of microbial 
indices with clay and soil pH 
properties; all microbial data 
were log transformed

***  P < 0.001

Dependent variable Constant Independent Regression Adjusted  R2 Number
Variables Coefficients

Microbial biomass C 2.593*** dsDNA 0.413*** 0.48*** 552
pH-H2O  − 0.140***
Clay 0.017***

Bacterial abundance 1.197*** dsDNA 0.811*** 0.50*** 557
pH-H2O  − 0.047***
Clay 0.009***

Fungal abundance 2.364*** Ergosterol 0.764*** 0.47*** 262
pH-H2O  − 0.222***
Clay  − 0.011***
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et al. 1984). Similarly, also a higher soil pH lowers the 
microbial demand for maintenance energy (Anderson and 
Domsch 1993, 2010). In addition, a high soil pH has positive 
effects on bacteria (Strickland and Rousk 2010) in agree-
ment with the current results. These relationships largely 
explain clay and pH effects on the link between MBC and 
dsDNA, particularly as bacteria are the dominant and highly 
variable source of dsDNA (see discussion below).

The conversion of ATP (Jenkinson 1988) and substrate-
induced respiration (SIR) (Anderson and Domsch 1978) to 
MBC are affected by the physiological activity of soil micro-
organisms. For this reason, ATP and SIR require a pre-incu-
bation period after sieving (Jenkinson 1988). It is unknown, 
whether dsDNA measurements need a similar pretreatment 
if the data should be used as microbial biomass index.

Extracellular relic DNA (eDNA) from dead microorgan-
isms is abundant in soil (Ascher et al. 2009; Levy-Booth 

et al. 2007) and contributes to the blurring of the rela-
tionship between MBC and dsDNA. Carini et al. (2016) 
examined eDNA in a wide range of soils, using the PCR 
viability based on the photoreactive DNA intercalating 
dye propidium monoazide. In their study, they found that 
on average 40% of both prokaryotic and fungal DNA was 
extracellular or from cells that were no longer intact. This 
value is in line with Gómez-Brandón et al. (2017), who 
observed that approximately 25% of dsDNA were not part 
of the microbial biomass. However, propidium monoazide 
may not work in every soil and provided sometimes only 
qualitative assessments of eDNA (Wang et al. 2021).

A largely unknown percentage of bias is introduced 
by the soil conditions at sampling time and the sample 

Fig. 1  Relationships between measured and predicted (a) MBC and 
(b) bacterial gene abundance according to multiple regression analy-
sis of dsDNA, soil pH, and clay content (Table 4), separated accord-
ing to 5 datasets

Table 5  Median ergosterol content and ratio of fungal gene copies/
ergosterol for the total number of soil samples and separated accord-
ing to 8 datasets

Different letters within a row indicate a significant difference (Dunn’s 
pairwise multiple comparison procedure, P < 0.11)

Dataset Number Ergosterol Ergosterol/ Fungi/ergosterol
(µg  g−1 soil) MBC (%) (n ×  108 µg−1)

Pfalzdorf-2019   17 0.30 0.22 ab 7.0 ab
DOK   32 0.31 0.14 b   4.8 b
Askov   20 0.30 0.29 a   4.7 b
Issyk-Kul   20 2.98 0.44 a   1.1 c
Jalal-Abad   57 0.96 0.20 b   1.2 c
Salinity   98 0.47 0.10 b 13.2 a
Frass   21 1.16 0.51 a   3.4 b
Total number 265 265 260 263
Median 0.42 0.20   4.7
25% percentile 0.27 0.11   1.7
75% percentile 1.76 0.35 11.0

Fig. 2  Relationship between measured and predicted fungal gene 
copies according to multiple regression analysis of ergosterol, soil 
pH, and clay content (Table 4), separated according to 7 datasets
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handling, e.g., dry matter determination, weighing, and 
pipetting. Also, different DNA extraction kits always 
showed significant differences (Fredricks et  al. 2005; 
Zielińska et al. 2017). However, most studies (Table 6) 
used the FastDNA Spin Kit for Soil as extraction tool 
without systematic bias on the MBC/dsDNA ratios in 
comparison with other approaches. The datasets used 
in our study all implemented an additional washing step 
according to Hemkemeyer et al. (2014) to remove contami-
nants and considered DNA losses during the extraction 
as described by Hemkemeyer et al. (2024). Most studies 
used PicoGreen as dye (Table 6), again without apparent 
systematic differences to QuantiFluor, used in the current 
datasets, and Hoechst 33258.

MBC can be calculated from dsDNA, in sand and silt 
loams, using a conversion factor of 15, based on the current 
datasets and the weighted mean obtained by the literature 
survey (Table 6). Due to the large variation between the 
current datasets, we recommend checking this relationship 
for unknown soils by measuring both indices. In clayey and 
tropical soils, particularly with high contents of iron oxides 
(Huang et al. 2016), the calculated MBC data should be 
related to SOC as plausibility check.

Contribution of the main taxonomic groups to gene 
abundance and dsDNA

Bacteria contributed approximately 94% to the microbial 
marker gene abundance, archaea 4%, and fungi only 2%. 
These percentages agree with several other publications 
(e.g., Beule et al. 2019; Hartmann et al. 2015; Meyer et al. 
2021; Tamez-Hidalgo et al. 2016). The close relationship 
between dsDNA and bacterial marker genes indicates that 
soil dsDNA is mainly of bacterial origin. Different reasons 
for the low contribution of fungi to the microbial gene abun-
dance are known. The most important reason is the lower 
DNA concentration in the biomass of eukaryotic fungi com-
pared to prokaryotic bacteria.

In the cultured marine species Cycloclasticus oligotro-
phus, Button and Robertson (2001) measured a bacterial 
biomass C-to-bacterial DNA ratio of 3.0 (µg µg−1), assum-
ing 48% C in bacterial biomass dry weight. This ratio was 
considerably lower in starving bacteria in their natural envi-
ronment. Starvation has been reported to decrease the DNA 
content of marine bacteria from 30 to 1 fg per cell (Moyer 
and Morita 1989), which finally leads to cytoplasm-less 
ghost particles (Hessenberger et al. 1996). This generally 

Table 6  Mean conversion 
factors from dsDNA into MBC 
obtained from the previously 
published studies: MBC (µg 
 g−1 soil) = FDNA × dsDNA (µg 
 g−1 soil)

FastDNA FastDNA spin kit for soil; a CFE Chloroform fumigation extraction method using a conversion 
value of 0.45 (Joergensen 1996); b using a conversion factor of 5.8 from total PLFA to MBC (Joergensen 
and Emmerling 2006); d assuming an MBC/SOC ratio of 1.6% (Bhople et al. 2019)

dsDNA detection dye / extraction MBC FDNA Number Reference

Hoechst 33258 / FastDNA CFE   2.2   6 Agnelli et al. (2004)
PicoGreen / Marstorp and Witter (1999) CFE a   3.2   8 Marstorp et al. (2000)
PicoGreen / own procedure CFE a   3.9   3 Marstorp and Witter (1999)
PicoGreen / FastDNA CFE   4.4 18 Semenov et al. (2018)
PicoGreen / Marstorp and Witter (1999) CFE   4.6   8 Gong et al. (2001)
PicoGreen / Blagodatskaya et al. (2003) SIR   5.0 44 Anderson and Martens (2013)
PicoGreen / FastDNA CFE   5.2   5 Loeppmann et al. (2018)
Hoechst 33258 / FastDNA SIR   5.6   4 Lloyd-Jones and Hunter (2001)
PicoGreen / FastDNA SIR   5.9   6 Chernysheva et al. (2023)
QuantiFluor / FastDNA CFE   6.0   1 Watson et al. (2021)
PicoGreen / own procedure SIR   7.2 24 Blagodatskaya et al. (2003)
PicoGreen / own procedure PLFA b   8.4   3 Widmer et al. (2001)
PicoGreen / Fornasier et al. (2014) CFE 14.2   3 Bragato et al. (2016)
Ethidium bromide / FastDNA CFE a 14.5   6 Leckie et al. (2004)
Hoechst 33258 / FastDNA CFE a 18.6 12 Gangneux et al. (2011)
PicoGreen / FastDNA SOC c 21 40 Bardelli et al. (2018)
PicoGreen / ISOIL + BB SP1 CFE a 24 35 Yokoyama et al. (2017)
Hoechst 33258 / FastDNA CFE 25   7 Tomlinson et al. (2008)
PicoGreen / own procedure CFE 28   8 Fornasier et al. (2014)
NanoDrop / PowerSoil CFE 38 28 Gong et al. (2021)
Weighted mean (≈ median) 15 269
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means the lower the gene copy numbers, the lower the 
microbial activity (Stoddard et al. 2015). In contrast to bac-
teria, Tellenbach et al. (2010) obtained a fungal biomass 
C-to-fungal DNA ratio (µg µg−1) for endophytic symbi-
onts colonizing Norway spruce roots, which varied at least 
between 4,400 and 8,200, assuming 48% C in fungal bio-
mass dry weight. Similarly, Baldrian et al. (2013) measured 
a mean fungal biomass C-to-fungal DNA ratio (µg µg−1) of 
5,300, varying from 2,100 to 13,300 for different soil and 
litter colonizing fungi.

One reason for this strong variation is that fungi can 
contain up to several hundred copies of rRNA genes, 
which are interspaced by ITS sequences (Heidrich and 
Beule 2022) and vary by orders of magnitude across dif-
ferent fungal species (Lofgren et al. 2019). However, even 
among isolates of a single fungal species, copy numbers 
of 18S rRNA genes per genome can vary largely (Her-
rera et al. 2009; Lofgren et al. 2019; Zhao and Gibbons 
2018). Nonetheless, the ratios of cell surface, cell volume, 
and genome are most likely more variable in laboratory 
cultures than in soil organisms, which has been shown for 
ATP (Contin et al. 2001; Dyckmans et al. 2003; Jenkinson 
1988) and ergosterol (Djajakirana et al. 1996; Joergensen 
and Wichern 2008).

The thick and complex cell walls of fungi may result 
in poor release of DNA from the cells during extrac-
tion and after cell death (Fredricks et al. 2005; Tellen-
bach et al. 2010; Starke et al. 2019). In addition, the 
fungal DNA is densely packed in protein complexes in 
the nucleus (Galliano et al. 2021). However, according 
to the manufacturer, the FastDNA Spin Kit for Soil is 
also able to destroy even spores and, thus, presumably 
also fungal cell walls. Also, the friction by soil particles 
during bead beating may affect fungal mycelia stronger 
than prokaryotic cells.

Another reason for the low contribution of fungi to micro-
bial gene abundance is that the primers NSI1 and 58A2R 
targeting ITS, used in the current datasets, are designed for 
Dikarya and are, thus, not representative for many fungal 
species from other phyla, especially Mucoromycota (Bon-
fante and Venice 2020). For example, arbuscular mycorrhi-
zal fungi belonging to the Glomeromycota (Bodenhausen 
et al. 2021; Lekberg et al. 2018; Řezáčová et al. 2016; Vic-
torino et al. 2020) can contribute 30% or more to the soil 
fungal biomass (Faust et al. 2017).

Based on amino sugar measurements, the contribution of 
fungal biomass to total soil microbial biomass was in most 
soils 75% and that of bacteria 25% (Joergensen and Wich-
ern 2008), whereas archaea are not covered by this type of 
measurement. From the mean bacterial-to-archaeal gene 
abundance ratio, the biomass ratios of these prokaryotic 
microorganisms can be estimated. However, as the number 
of 16S rRNA gene copies per cell is 6.5 times lower for 

archaea (majority 1, ranging from 1–5) than for bacteria 
(majority 6–7, ranging from 1–21) according to the data-
base rrnDB 5.8 (Stoddard et al. 2015), the bacterial-to-
archaeal biomass ratio would decline from 23.5 to 3.6. In 
this case, fungi contribute on average approximately 70%, 
bacteria 23% and archaea 7% to the soil microbial biomass. 
This contribution of archaea would be markedly above the 
2% proposed by Joergensen and Emmerling (2006), solely 
based on just one study by Gattinger et al. (2002), measur-
ing phospholipid ether-lipids in soil.

Relationship between fungal indices

A median fungal gene abundance-to-ergosterol ratio of 
4.7 ×  108 µg−1 is close to the lower range Meyer et al. (2021) 
found in their soil (5.3 ×  108 µg−1), but much higher com-
pared to findings from sources other than soil (Table 7). 
These different comparisons of genome markers with the 
fungal cell membrane component ergosterol reveal that 
fungal cells are much larger in energy-rich litter, liquid cul-
tures, and faeces as compared to C- and energy-limited soil 
ecosystems (Meyer et al. 2021).

The high ratio of fungal gene abundance-to-ergosterol 
after rice straw addition (Salinity, Wichern et al. 2020), 
indicates that the fungal cells remain small, although the 
organic amendment promoted fungal activity. The combina-
tion of low ergosterol-to-MBC ratio (Sardinha et al. 2003; 
Wichern et al. 2006) and high fungal gene-abundance-to-
ergosterol indicates unfavorable conditions for soil fungi. 
In contrast, N-rich black soldier fly larvae frass application 
caused a stronger increase in ergosterol than in fungal gene 
abundance (Frass, Rummel et al. 2021), indicating that this 
organic amendment led to larger fungal cells. However, a 
higher number of comparisons between fungal gene abun-
dance and ergosterol would help to strengthen this view, 
which is based on the current dataset.

Table 7  Fungal gene abundance-to-ergosterol ratios from different 
sources

Source Abundance/ergosterol Reference
 ×  108 µg−1 (range)

Litter 0.10 Baldrian et al. (2013)
Liquid cultures of 

wood-decaying 
fungi

0.11 Song et al. (2014)

Cattle faeces 0.27 (0.01–1.11) Meyer et al. (2021)
Fungal sporocarps 0.99 Baldrian et al. (2013)
Forest soil 1.34 Baldrian et al. (2013)
Different soil datasets 4.7 (1.2–13.2) Current study
Silt loam soil 7.1 (5.3–9.3) Meyer et al. (2021)
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Conclusions

Microbial biomass carbon (MBC) and double-stranded 
desoxyribonucleic acid (dsDNA) are closely related, but 
their ratio is not 42 and declined with increasing soil pH 
and decreasing clay content. MBC can be calculated from 
dsDNA, in sand and silt loams, using a conversion factor 
of 15. However, in clayey and tropical soils, the calculated 
MBC data should be related to soil organic C as plausibil-
ity check. Bacteria contribute 94%, to the total microbial 
gene abundance and are, thus, the main but highly variable 
source of dsDNA. The fungal gene abundance is signifi-
cantly related to the fungal cell membrane component ergos-
terol. A low fungal gene abundance/ergosterol ratio indi-
cates large fungal cells, and a high ratio the reverse. Due to 
group specific difference in gene concentration within the 
biomass, bacteria contribute 23%, archaea 7% and fungi 70% 
to MBC. The reasons for the variation between the different 
microbial indices and their respective ratios require further 
and stronger experimental explanations, which would allow 
more precise insights on the physiological changes of soil 
microorganisms in response to their surrounding environ-
ment. We, thus, recommend combining fumigation-extrac-
tion with cell-membrane components and molecular genetic 
tools to deepen our understanding of soil microbial com-
munities and their involvement in biogeochemical cycles.
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