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Abstract 
Background and aims  The bicinchoninic acid 
(BCA) method was not yet applied on soil extracts of 
extracellular polymeric substances (EPS) to quantify 
polysaccharides, although this might be possible by 
introducing a cleavage step to produce monosaccha-
rides. A pre-extraction with CaCl2 to remove interfer-
ing substances is usually performed before extracting 
EPS. The main objective of this study was to opti-
mize the BCA assay for total carbohydrates quan-
tification by applying a hydrolysis step to the EPS 
extracts, while also testing carbohydrate contents of 
CaCl2 pre-extracts.
Methods  Total carbohydrates were quantified with 
BCA in EPS extracts of three soils, after hydroly-
sis with H2SO4, using two acid concentrations (0.75 
and 1.0 M), three hydrolysis temperatures (100, 120 
and 130  °C), and five hydrolysis times (10, 30, 50, 
70, and 90 min). EPS were extracted with the cation 
exchange resin (CER) method adapted to soils. Two 

versions of pre-extraction with CaCl2 were tested 
twice consecutively.
Results  More carbohydrates were measured after 
hydrolysis with 0.75 M H2SO4 at below 100 °C and 
after 10 min for all soils. Decreasing values were seen 
after longer reaction times and higher temperatures. 
CaCl2 extracted no or negligible amounts of carbohy-
drates from the soil.
Conclusion  The pre-extraction step can be done 
without in most cases. The BCA assay is free of 
toxicity and easily performed, while also tolerant to 
interferences from most compounds in EPS extracts. 
These characteristics highlight the potential of this 
method for a rapid quantification of carbohydrates in 
studies of extractable polymers in several areas of soil 
biogeochemistry.

Keywords  Bicinchoninic acid · BCA · 
Carbohydrates · Polysaccharides · Extracellular 
polymeric substances · EPS

Introduction

Extracellular polymeric substances (EPS) are an 
important component of microbial residues that embed 
microorganisms (Wingender et  al. 1999). They can 
improve soil aggregate stability (Cania et  al. 2020; 
Chenu and Plante 2006; Guhra et  al. 2022) and pro-
tect microbial cells and extracellular enzymes against 
drought (Bhattacharjee et  al. 2020; Kakumanu et  al. 
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2013, 2019). EPS can also trap and store nutrients 
(Costa et al. 2018; Flemming and Wingender 2010; Or 
et al. 2007).

The presence of EPS in soils is usually investi-
gated by quantification of their components, i.e., 
polysaccharides (Costa et  al. 2018), after extrac-
tion. Currently, a variety of methods are available for 
such quantifications. The bicinchoninic acid (BCA) 
method has been extensively used for total carbohy-
drate quantification in a wide range of areas, from 
automated high-performance liquid chromatogra-
phy (Joergensen and Meyer 1990; Mopper and Gin-
dler 1973; Sinner and Puls 1978) to manual spectro-
photometry (Arnal et  al. 2017; Hussain et  al. 2003; 
McFeeters 1980; Nadour et  al. 2015; Utsumi et  al. 
2009; Waffenschmidt and Jaenicke 1987). The reac-
tion of Cu2+ with reducing sugars of mono- and oli-
gosaccharides, and the consequent chelation of the 
reduced Cu+ with BCA produces a purple colour 
(Mopper and Gindler 1973; Sinner and Puls 1978), 
which can be read colorimetrically at an absorbance 
of 562 nm, similarly to protein assays (Huang et  al. 
2010). The BCA assay has been used to quantify 
carbohydrates in litter (Joergensen and Meyer 1990; 
Khan et  al. 2012; Rottmann et  al. 2011), in K2SO4 
soil extracts Joergensen et al. 1990, 1994), but also in 
the soil microbial biomass (Joergensen et al. 1996).

However, the BCA assay does not appear to have 
been applied to soil EPS extracts to date. Since pol-
ysaccharides mostly do not exhibit reducing ends 
(BeMiller 2019), using the BCA assay to quantify 
total carbohydrates in EPS extracts might require the 
addition of a hydrolysis step. In cellulose and hemi-
cellulose extracts from litter, hydrolysis has already 
been applied as an additional step before the BCA 
method (Rottmann et  al. 2011). The frequently used 
phenol sulphuric method (DuBois et al. 1956) applies 
a concentrated sulphuric acid to break down poly-
saccharides, oligosaccharides and disaccharides to 
monosaccharides, before they can react with phe-
nol to produce colour (Nielsen 2010). This method, 

however, has been shown to suffer interference from 
glycoproteins (DuBois et  al. 1956) and phenol is 
known to be highly toxic and carcinogenic (Velama-
kanni et  al. 2021). The high sensitivity of the BCA 
assay for reducing ends and its higher tolerance to 
interference from most compounds (Walker 1996) 
highlight its advantages. The optimization of condi-
tions for the application of the BCA assay on EPS 
extracts has the potential to yield reliable and consist-
ent values from EPS extracts free of toxicity.

The main objective of the present work is to opti-
mize the BCA assay for quantification of total carbo-
hydrates in EPS extracts after introducing a hydroly-
sis step. We investigate carbohydrates present in the 
EPS extracts of three distinct soils to cover a range 
of EPS carbohydrate contents, after hydrolysis with 
sulphuric acid (H2SO4), using two different acid con-
centrations, three hydrolysis temperatures, and five 
hydrolysis times. Another objective was to check the 
carbohydrate and SOM content in the 0.01 M CaCl2 
pre-extract of the current three soils. This pre-extrac-
tion is usually conducted as a mean to reduce inter-
fering effects of extractable non-EPS SOM (Bérard 
et al. 2020; Redmile-Gordon et al. 2014; Zhang et al. 
2023), although it is not always performed (Sher et al. 
2020).

Materials and methods

Soils

Three arable soils under conventional winter rye 
cultivation were sampled at 0–20  cm depth in 
March 2022. Soil 1 was sampled at Herberhausen 
(51°32′47.3”N 9°59′49.3″E) and soil 2 at Gleichen 
(51°27′43.9”N 9°58′59.0″E), both near Göttingen, 
Lower Saxony, Germany. Soil 3 was sampled at Neu 
Eichenberg (51°22′35.0”N 9°53′52.0″E), Hessia, 
Germany (Table 1). Soil 1 was a Cambisol developed 
from Loess, soil 2 was a Eutric Cambisol developed 

Table 1   Information on 
sampling sites, soil type and 
average soil organic carbon 
(SOC), total nitrogen (N) 
and extracellular polymeric 
substances (EPS) protein 
content

No. Soil type pH SOC Total N EPS-proteins
(H2O) (mg g−1 soil) (μg g−1 soil)

1 Cambisol (Loess) 6,22 19.7 1.95 122
2 Cambisol (New Red Sandstone) 7,46 13.3 1.29 42
3 Stagnic Luvisol (Loess) 7,44 13.7 1.31 60
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from New Red Sandstone, and soil 3 was a Stagnic 
Luvisol again developed from Loess according to 
the WRB-FAO classification system (IUSS Working 
Group WRB 2022). All field moist soils were sieved 
(< 2 mm) and stored at 4 °C. Soil samples were ana-
lysed for total C and N, using a Vario MAX (Elemen-
tar, Hanau, Germany) elemental analyzer after being 
dried for 24 h at 105 °C and ball milled. Soil organic 
C (SOC) was determined as total C minus carbonate 
C, which was gas-volumetrically determined after 
the addition of 10% HCl to the soil using a Scheibler 
apparatus (Blume et al. 2011). Soil pH was measured 
potentiometrically using a soil to water ratio of 1 to 
2.5 (w/v).

Pre‑extraction

In their original method description, Redmile-Gordon 
et  al. (2014) suggested an initial pre-extraction with 
0.01 M CaCl2 to reduce interfering effects of extract-
able non-EPS SOM. To check the relevance of this 
step for the current soils, this pre-extraction was per-
formed twice consecutively in two different versions: 
(I) Following the original method proposed by Red-
mile-Gordon et  al. (2014), three replicates of 2.5  g 
(on an oven-dry basis) moist soil were extracted with 
25 ml 0.01 M CaCl2.at 120 rev min−1 for 30 min at 
4  °C in the dark. The soil slurry was centrifuged at 
4000 g for 10 min and the supernatant was decanted. 
To examine the effect of multiple extractions, we 
added a step to the method, wherethe remaining soil 
was extracted again with 25  ml 0.01  M CaCl2 and 
centrifuged. (II) To increase the yield of extractable 
SOM, the shaking force was increased to 200 rev 
min−1 and the temperature from 4 °C to room temper-
ature. Organic C was determined immediately after 
both tests using a Multi N/C 2100S analyser (Analy-
tik Jena, Germany). Carbohydrates were measured as 
described below with and without the final hydrolysis 
step the next day after storage at 4 °C.

EPS extraction

EPS extraction followed the cation exchange resin 
(CER) method by Frølund et  al. (1996), adapted to 
soils by Redmile-Gordon et al. (2014), except that no 
pre-extraction with CaCl2 was performed.

For extracting EPS, first CER (Dowex ‘Mara-
thon C’ Na form, strongly acidic, 20–50 mesh) 

was washed with phosphate buffered saline (PBS) 
solution (2  mM Na3PO4· × 12 H2O [0.760  g  L−1], 
4  mM NaH2PO4· × H2O, [0.552  g  L−1], 9  mM NaCl 
[0.526 g  L−1], 1 mM KCl [0.0746 g  L−1]) for 1 h at 
4  °C in the dark. Three replicates of each field-moist 
soil, equivalent to 2.5 g dry weight, were weighed into 
centrifuge tubes, washed CER was added together with 
25  ml chilled PBS and tubes were shaken for 2  h at 
120 rev min−1 in the dark. The amount of CER used 
for each soil was calculated based on the soil organic 
carbon (SOC) content according to Redmile-Gordon 
et  al. (2014), i.e. 177.8 g CER g−1 SOC. After shak-
ing, tubes were centrifuged at 4200 g for 20 min and 
supernatant containing EPS was frozen at −20 °C. A 
temperature of 4  °C was maintained throughout the 
extraction process.

EPS-proteins were estimated using a modified 
Lowry assay (Lowry et  al. 1951) adapted to soil 
extracts for evading potentially confounding poly-
phenolic compounds (Redmile-Gordon et  al. 2013, 
2020). Protein was colourimetrically quantified on a 
microplate reader (FLUOstar Omega, BMG Labtech, 
Ortenberg, Germany).

EPS polysaccharide hydrolysis was performed 
by adding H2SO4 to EPS extracts in reagent tubes, 
tightly closed to avoid evaporation and placed in 
an autoclave. The autoclave was chosen for the test 
because of its high temperature capacity. A reflux 
system might also be used for hydrolysis. Two differ-
ent final H2SO4 concentrations were evaluated (0.75 
and 1.0  M), together with three temperatures (100, 
120 and 130 °C), and five durations (10, 30, 50, 70, 
and 90 min.). A final 0.75 M acid concentration was 
achieved by adding one ml 1.5 M H2SO4 to one ml 
EPS extract, whereas 1 M acid concentration was pre-
pared adding 0.75 ml H2SO4 to 1.25 ml EPS extract. 
The EPS extract from each soil was examined in trip-
licate, resulting in nine samples for each acid concen-
tration, and this was repeated for each temperature 
level and hydrolysis time, yielding a total of 270 sam-
ples. Total carbohydrates were determined according 
to Mopper and Gindler (1973), adapted by Joergensen 
et al. (1996), by the reduction of Cu2+ to Cu+ in the 
ends of mono- and disaccharides. The BCA reagent 
was prepared by combining 50 ml of an aqueous solu-
tion of 4% Na2CO3, 4% (NaPO3)6 and 0.2% aspartic 
acid with 6 ml of a 4% bicinchoninic acid disodium 
salt solution and 0.9  ml of a 4% CuSO4 solution. 
D(+)-glucose was used as standard. Hydrolysed 
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extracts were then neutralized by adding 0.3 ml 5 M 
NaOH ml−1 hydrolysate for extracts with a 0.75  M 
final H2SO4 concentration, and 0.4  ml 5  M NaOH 
ml−1 hydrolysate for extracts with a 1.0  M final 
H2SO4 concentration. Carbohydrates were quantified 
by adding 2  ml BCA reagent to 0.5  ml neutralized 
hydrolysates in a test tube, placing it into a heating 
cabinet at 60 °C for 120 min and reading it colouri-
metrically at 562 nm, using a microplate reader.

Statistical analysis

Data were evaluated using R version 4.3.1 (R Core 
Team 2023). Mean values of EPS-carbohydrate con-
tents were examined using a two-factor ANOVA for 
the effect of soil, acid concentration, temperature, and 
hydrolysis time on the data, followed by the Tukey 
HSD (honestly significant difference) post-hoc test 
to check differences between groups. Variance and 
homogeneity were checked using a Levene’s test, and 
the normal distribution of the residuals was checked 
with a Shapiro-Wilk-test. To check for a possible 
random effect of soil, a mixed linear model was per-
formed using the “lme4” package in R, with restricted 
maximum likelihood (REML), using hydrolysis time, 
temperature and acid concentration as fixed effects, 
and soil as random variable. Significance of fixed 
effects was verified using the Kenward-Roger approx-
imation for degrees of freedom (Kenward and Roger 
1997). Total SOC and carbohydrates in pre-extracts 
were analysed with a one-way ANOVA, using soil as 
factor and extraction version as repeated measures.

Results

Pre‑extraction

No organic C or total carbohydrates were observed 
in the pre-extracts of version I (the method origi-
nally proposed by Redmile-Gordon et  al. (2014)) at 
both steps (Table 2), indicating that carbohydrates in 
the extracts were below the limit of detection (LOD, 
0.15  μg carbohydrates ml−1 extract). Version II, 
applying higher shaking force, rendered an average 
of 8.5 μg organic C g−1 soil extractable with 0.01 M 
CaCl2 in the pre-extracts of the first step. This mean 
was reduced by 50% in the pre-extracts of the sec-
ond step. In contrast, extractable carbohydrates using 

version II, varied around a mean of 0.30 μg  g−1 soil 
without any effect of soil and pre-extraction step 
(Table  2). A 10  min hydrolysis of the extract with 
0.75 M H2SO4 at 100 °C did not increase the carbo-
hydrate content (results not shown).

EPS extracts

Loess-originated soils 1 and 3 had significantly 
greater carbohydrate yields than sand-originated soil 
2 (Table 3), which was in accordance with the higher 
mean protein content (Table 1). ANOVA results show 
a non-significant effect of acid concentration on car-
bohydrates, but the mixed linear model shows a signif-
icant effect, highlighting the random effect of soil type 
(Table 3). Temperature and hydrolysis time presented 
significant effects on carbohydrates in both statistical 
tests. There were no significant interactions between 
soil type and the abovementioned parameters. Greater 
carbohydrate values are visible after hydrolysis with 
0.75 M H2SO4 (Fig. 1a), under 100 °C (Fig. 1b) and 
after 10 min (Fig. 1c) for all soils. The hydrolysis time 

Table 2   Results from tests version I and II: Extractable SOC 
and total carbohydrates in two consecutive extractions with 
0.01 M CaCl2; probability values of a one-way ANOVA, using 
soil as factor and extraction as repeated measures

CV mean coefficient of variation between replicates (n = 3); 
different letters within a column indicate an extraction-specific 
significant difference (P < 0.05; Tukey-HSD)

Organic C Total carbohydrates

Version I Version II Version I Version II

(μg g−1 soil)

Extraction 1
  Soil 1 0 9.4 a 0 0.35
  Soil 2 0 7.0 b 0 0.28
  Soil 3 0 9.0 a 0 0.35

Extraction 2
  Soil 1 0 5.0 a 0 0.44
  Soil 2 0 2.8 b 0 0.25
  Soil 3 0 2.8 b 0 0.19

Probability 
values
  Soil – 0.01 – NS
  Extraction – <0.01 – NS
  Extraction × 

soil
– NS – NS

  CV (± %) – 13 – 24



703Plant Soil (2024) 498:699–709	

1 3
Vol.: (0123456789)

× temperature as well as acid concentration × temper-
ature interactions were both significant (Table 3). Car-
bohydrates hydrolysed at 120 °C and 130 °C already 
reached their maximum value after 10  min, whereas 
maximum carbohydrate values occurred after 50 min 
when hydrolysing at 100 °C (Fig. 2).

Discussion

Pre‑extraction

The current three arable soils contained negligible 
amounts of extractable SOM and carbohydrates that 
might interfere with the CER method for extracting 
soil microbial EPS. The organic compounds observed 
in pre-extracts (Zhang et  al. 2023) have sometimes 

been named soluble microbial products (Wang et al. 
2019) or loosely bound EPS (Bérard et  al. 2020). 
However, this is misleading as soil extracts always 
contain soluble SOM from various origins, includ-
ing non-EPS, non-microbial residues, and a range of 
other compounds (Zhang et al. 2023) even after one 
pre-extraction. In soils, the extractable fraction sim-
ply reflects the cation- and anion-specific equilibrium 
between the liquid and solid phase of SOM (Joer-
gensen 1995a, b; van Erp et al. 1998), which slowly 
declines only after repeated extraction steps (Mueller 
et al. 1992), as also demonstrated for the current soils.

The omission of the pre-extraction step in low-
organic matter soils facilitates the use of the EPS-
extraction method proposed by Redmile-Gordon et al. 
(2014). However, this might be different in experi-
ments where easily decomposable material has been 
added, such as glycerol (Redmile-Gordon et al. 2014) 
or bio-diesel coproducts (Redmile-Gordon et  al. 
2015). The same should be true for high-organic mat-
ter soils, developed on peat or forest land (Wang et al. 
2019).

EPS extracts

Carbohydrate yields in the current study were closely 
connected to the soil origin, whereas the influence 
of hydrolysis parameters is applicable to all soils in 
a similar trend. In other words, temperature, time, 
and acid concentration affected all soils equally. Our 
results indicate that hydrolysing carbohydrates with 
0.75  M H2SO4 resulted in a generally higher carbo-
hydrate yield than with 1.0  M (Fig.  1). Mild sugar 
hydrolysis (0.5–1.0 M H2SO4) without pre-treatment 
has already been successfully performed in soil 
(Cheshire and Mundie 1966) and marine particulate 
organic matter (Hanisch et  al. 1996; Mopper 1977; 
Tanoue and Handa 1987), with 1.0 M being reported 
as the best concentration, also when compared to 
other acids (Mopper 1977).

Carbohydrates in soil are known to show resist-
ance to hydrolysis due to polysaccharide bonding to 
soil components and trace metals like iron and cop-
per, resulting in aggregation and salt formation (Mar-
tin 1971; Martin et  al. 1972; Parfitt and Greenland 
1970), whereas such conditions do not apply in liq-
uid EPS extracts. Melton et al. (1976) performed par-
tial hydrolysis of industrial EPS from Xanthomonas 
campestris using 0.5  M H2SO4, whereas Goo et  al. 

Table 3   Mean EPS-carbohydrates; probability values of two-
way ANOVAs using soil and acid concentration, soil and tem-
perature, or soil and hydrolysis time as factors, and a mixed 
linear model using soil as random variable

CV mean coefficient of variation between replicates (n = 3); let-
ters represent differences between soils (P < 0.05, Tukey HSD)

EPS-carbohydrates
(μg g−1 soil)

Soil 1 398 a
Soil 2 239 c
Soil 3 264 b
Probability values of three two-way 

ANOVAs
  Soil <0.01
  Acid concentration NS
  Soil × acid concentration NS
  Soil <0.01
  Temperature <0.01
  Soil × temperature NS
  Soil <0.01
  Hydrolysis time <0.01
  Soil × hydrolysis time NS

Probability values of mixed linear model
  Acid concentration <0.01
  Temperature <0.01
  Hydrolysis time <0.01
  Hydrolysis time × acid concentration NS
  Hydrolysis time × temperature <0.01
  Acid concentration × temperature <0.01
  CV (± %) 5.0
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Fig. 1   EPS-carbohydrates 
in three soils (a) after 
hydrolysis with 0.75 M 
and 1.0 M H2SO4 (error 
bars represent one standard 
error (SE), n = 45), (b) after 
hydrolysis at 100, 120, and 
130 °C (error bars represent 
one SE, n = 30), and (c) 
after a hydrolysis time of 
10, 30, 50, 70 and 90 min 
(error bars represent one 
SE, n = 18)
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(2013) used 0.5–1.5% H2SO4 solutions for hydrolysis 
of dry EPS.

Polysaccharide hydrolysis in aqueous EPS 
extracts are not common, except when the cleavage 
of glycosidic bonds of polysaccharides is already 
included in EPS-carbohydrates quantification meth-
ods, such as the phenol-sulphuric acid method 
(DuBois et  al. 1956). This method, however, was 
found to overestimate EPS-carbohydrate quantities, 
since it presents variable absorbances to different 
sugar structures, and therefore is not suitable for 
complex samples (Pierce and Nerland 1988). The 
use of 0.75  M H2SO4 in EPS extracts might avoid 
overestimation and prevent unnecessary sugar deg-
radation if, otherwise, a more concentrated acid 
were be used (Josefsson 1970).

Carbohydrate yield in the present study was found 
to be generally highest when hydrolysing extracts 
at 100  °C. Hydrolysis temperatures of 100  °C with 
H2SO4 are widely reported for detecting carbohy-
drates in marine particular organic matter (POM) 
(Hedges et al. 1994; Sigleo 1996; Tanoue and Handa 
1987), marine dissolved organic matter (Cauwet et al. 
2002; Kirchman et  al. 2001; Mopper 1977; Sweet 
and Perdue 1982), marine extracellular polymer par-
ticles (Mopper et  al. 1995; Zhou et  al. 1998), and 
soil (Cheshire and Mundie 1966). The application of 
higher temperatures and acid concentrations on poly-
saccharides may not only hydrolyse, but may further 

degrade their monosaccharides into furan derivatives, 
leading to inaccurate underestimation of carbohy-
drates (Antonetti et  al. 2016; Bajpai 2018; Li et  al. 
2007).

A detailed temperature × time analysis showed that 
50 min would be the most suitable hydrolysis time at 
100 °C, however, with small differences compared to 
10 and 30  min. The absence of an increasing trend 
visible over time indicates that the peak at 50  min 
may be caused by the natural variability between 
soils. Acid hydrolysis comes with intrinsic side reac-
tions and mass losses are always prone to occur, so 
hydrolysis conditions need to be selected carefully 
(Uçar and Balaban 2003). When looking at the gen-
eral data (Fig. 2c), lower carbohydrate yields are visi-
ble after longer periods of hydrolysis. This might be a 
consequence of degradation processes from the heat-
ing times (Teh et al. 2017), decreasing the amount of 
reducing sugars and increasing that of by-products.

Hang et al. (2020), when using H2SO4 on EPS of 
Ophiocordyceps sinensis, employed a reaction time of 
2 h at 55 °C, using concentrated sulphuric acid, while 
Yan et al. (2010) hydrolysed EPS from the same fun-
gus for 8 h at 100 °C using 2.0 M H2SO4. Both quan-
tified monosaccharide constituents by gas-chromatog-
raphy and the results showed mannose, galactose and 
glucose as the three main monomers in EPS extracts, 
similarly to other findings (Soltani et al. 2013; Zhang 
et al. 2011).

Fig. 2   EPS-carbohydrates 
at three temperatures after 
a hydrolysis time of 10, 30, 
50, 70, and 90 min (error 
bars represent one SE, 
n = 18)
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The reaction time and acid concentration selected 
vary greatly among authors. The traditional col-
ourimetric method of DuBois et al. (1956) also uses 
concentrated acid (95.5%), resulting in a final con-
centration in sample of approximately 7.0 M. In this 
method, however, the objective is to obtain furfural 
derivatives, resulting from a further monosaccha-
ride degradation, which then form yellow-coloured 
complexes when in contact with phenol (Kurzyna-
Szklarek et al. 2022). Such derivatives are of no use 
when in contact with bicinchoninic acid, so a reaction 
of this magnitude is not needed in the current assay.

It is important to note that the BCA method for 
carbohydrate quantification might present some back-
ground information in the measurements due to the 
interference from other reducing substances such as 
proteins, which are also commonly quantified using 
BCA (Eklöf et  al. 2012). A detailed compositional 
analysis employing more specific methods, as in 
high-performance liquid chromatography might be 
necessary to determine the degree of overestimation 
in such samples. Utilizing the same EPS extraction 
method, coupled with the phenol-sulphuric technique, 
Redmile-Gordon et al. (2020) reported an average of 
376 μg  g−1 soil for an arable land with high silt and 
clay content, similar to the currently analysed soil 1, 
with 398  μg  g−1 EPS carbohydrates, and, in another 
study, showed a mean of 401  μg carbohydrates g−1 
soil for grasslands with high SOC content (Redmile-
Gordon et  al. 2014). Similar studies on agricultural 
soils are not frequent, and isolated EPS are often 
applied to soils for the beneficial effects of such sub-
stances instead of field characterizations. The present 
paper represents a relevant attempt at simplifying field 
analysis for the detection of the reaction of EPS to 
environmental conditions.

Conclusion

The low carbohydrate contents obtained after pre-
extraction with 0.01  M CaCl2 indicate that this step 
can be done without in most cases. Carbohydrate 
hydrolysis at 100 °C for 10 min using a final H2SO4 
concentration in extract produced optimal carbohy-
drate yield, with decreasing amounts after longer reac-
tion times and higher temperatures. The BCA assay 
is easy to perform, non-toxic, sensitive, and tolerant 
to interferences from most compounds. The ability 

to rapidly quantify carbohydrates in EPS extracts has 
ample potential for improving and simplifying pro-
cesses in studies of extractable polymers in several 
areas of soil biogeochemistry.
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