
Energy 301 (2024) 131690

A
0

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Peak shaving at system level with a large district heating substation using
deep learning forecasting models
Ulrich Trabert ∗, Felix Pag, Janybek Orozaliev, Ulrike Jordan, Klaus Vajen
Institute of Thermal Engineering, University of Kassel, Kurt-Wolters-Str. 3, Kassel, 34125, Hesse, Germany

A R T I C L E I N F O

Keywords:
Forecasting
Machine learning
Incremental learning
Large district heating substation
Thermal storage
Peak shaving

A B S T R A C T

The decarbonisation of urban district heating (DH) systems requires increased heating grid flexibility.
Therefore, this article examines the optimised operation of a tank thermal energy storage (TTES) on the
secondary side of a new DH substation for an industrial site in a German city, in order to shave the peaks of
the whole DH system and thus reduce the need for heat-only boilers (HOB). The accuracy of heat load and
return temperature forecasts for both the industrial consumer and the DH grid is critical to the performance of
the optimisation-based operating strategy of the TTES. Therefore, long short-term memory neural networks are
used in combination with continuous model updates through incremental learning to create two forecasting
scenarios, one using only preceding data for the forecasts and the other including future weather data. The
results show that high forecasting accuracy is most relevant for reducing the annual maximum peak, with a
reduction of 2.8% in the preceding data scenario, 4% with future weather data and 7% in a benchmark with
perfect forecasts. The economic viability of the storage through HOB heat savings is primarily affected by
lower forecasting accuracy when the additional cost of HOB heat is less than 60 e/MWh.
1. Introduction

The ongoing transformation of the energy system towards a renew-
able energy supply is accompanied by an increasing integration of the
heat and electricity sectors. The efficient use of limited and intermittent
renewable resources requires greater flexibility on both the production
and consumption sides of the energy supply. In this context, the district
heating (DH) sector offers the opportunity for relatively cheap storage
options to support the concept of smart energy systems [1,2].

Tank thermal energy storage (TTES) is a well-known technology in
DH systems today, but its potential for flexible use to support sector-
coupled energy systems has not yet been fully exploited [3]. However,
TTES play an important role in optimising the operation of DH systems
by providing flexibility to balance supply and demand, operate in line
with energy prices, or respond to weather conditions [4].

While DH systems are still predominantly centralised, the shift to-
wards renewable heating technologies such as heat pumps, solar energy
and industrial waste heat also brings a more decentralised approach
with a need for distributed storage to exploit all the potentials of
renewable heat [5].

This study investigates the impact of a novel operating strategy for
a decentralised TTES to shave the peak loads of an urban DH system.

∗ Corresponding author.
E-mail address: solar@uni-kassel.de (U. Trabert).

1.1. Forecasting in DH systems with machine learning

An important aspect of integrating the DH sector into a flexible,
smart energy system is the forecasting of heat demand in order to
optimise the control of the components of the DH system. In recent
years, research has shown that the use of machine learning algorithms
is very well suited to perform this task. The following literature review
provides an overview of the various options available in this area.
It is common for studies to test several different machine learning
algorithms, as it is difficult to anticipate which method will deliver the
best results for a particular application or data set.

Protić et al. [6] emphasise the importance of heat load forecasting
for the implementation of model predictive control strategies for DH
consumers. For this purpose, they developed a novel method based on
the support vector machine algorithm that performed better in their
experiments to forecast heat loads compared to genetic programming
and artificial neural network models. The support vector machine
algorithm also performs best in a comparison by Idowu et al. [7],
but they find that feed forward neural networks and multiple linear
regression were also suitable options to predict the thermal load in
buildings.

Suryanarayana et al. [8] present methods based on linear, ridge, and
lasso regression that require low computational effort, but they find
vailable online 20 May 2024
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Nomenclature

Latin symbols

�̇� Heat load (kW)
𝐴 Area (m2)
𝐶 Cost (e)
𝑐 Specific cost ( e

MWh )
𝑐𝑝 Specific heat capacity of water ( Wh

kg K )
𝑓 Factor (–)
𝑄 Heat (kWh)
𝑇 Time period (h)
𝑈 Heat transfer coefficient ( W

m2 K )
𝑉 Volume (m3)

Greek symbols

𝜌 Density of water ( kg
m3 )

𝜗 Temperature (◦C)

Abbreviations and subscripts

𝑎 Annual
𝑎𝑚𝑏 Ambient
CAPEX Capital expenditures
CHP Combined heat and power
DH District heating
𝑓𝑐 Forecast
HOB Heat-only boiler
𝑖𝑛𝑑 Industry
LSTM Long short-term memory
𝑚𝑎𝑥 Maximum
𝑚𝑖𝑛 Minimum
𝑛𝑜𝑚 Nominal
NRMSE Normalised root mean square error
OPEX Operational expenditures
𝑜𝑝𝑡 Optimised
𝑜𝑟𝑔 Original
RL Return line
𝑠𝑖𝑚 Simulated
SoC State of charge
𝑠𝑡𝑜 Storage
𝑡 Timestep
𝑡ℎ Thermal
TTES Tank thermal energy storage

that the use of a deep neural net is more accurate in day-ahead fore-
casting of the load in DH systems. Saloux and Candanedo [9] confirm
that machine learning algorithms such as decision trees, support vector
machines, or artificial neural networks improve heat load forecasts
compared to linear regression and see the potential for their inclusion
in control applications. This aspect also plays a role for Potočnik et al.
[10], who select the Gaussian process regression algorithm for an online
forecasting solution for a DH utility in Ljubljana, mainly because the
algorithm provides confidence intervals for the forecasts.

Huang et al. [11] and Wang et al. [12] are using graph neural
networks to address spatiotemporal dependencies of data from heat
meters in DH grids.

Another algorithm that has received a lot of attention recently due
to its good performance in various studies is the Long Short-Term
Memory (LSTM) algorithm. Leiprecht et al. [13] identify it as the best
2

option when developing a web interface for heat load forecasting for
a DH utility. Furthermore, Jesper et al. [14] show that LSTM models
are also applicable to heat load profiles from the industrial and tertiary
sectors when electricity consumption is included as an input parameter.
Their intended application is the detection of anomalies in energy
monitoring systems. In a new method developed by Chung et al. [15],
the LSTM algorithm is combined with a convolutional neural network
to take into account the importance of spatiotemporal characteristics
of the input data.

In a comprehensive study of various artificial intelligence mod-
els, Runge and Saloux [16] find that the LSTM algorithm again provides
the most accurate forecasts, although it requires the longest training
time. In this study, they suggest the XGBoost algorithm as a less
computationally intensive alternative. This result is confirmed by Xue
et al. [17], where an XGBoost-based forecasting model performed best
in a case study of a DH system in China.

The most frequently reported application for head load forecasts in
the literature is to optimise the operation of heat production units. In
this case, it is common that new measurement data is constantly avail-
able. In a concept called incremental learning, constant data streams
are used to continuously update the machine learning models. Aragon
et al. [18] apply this concept in combination with the LSTM algorithm
to predict the electrical loads of a household for energy management
systems.

From the literature review it is clear that machine learning algo-
rithms and especially the LSTM algorithm appear to be an excellent fit
for performing forecasting tasks in DH systems. However, the architec-
ture of the models in most cases differs slightly and depends on the
conditions and requirements of a particular case.

The challenges that this study addresses are how to improve results
for small training data sets, but also how to account for changing heat
load profile characteristics, which is common for developing industrial
sites or DH consumers implementing energy efficiency measures.

1.2. Peak shaving in DH systems

There are various strategies to reduce the maximum peak load in
DH systems described in the literature. Verda and Colella [19] show
that a centralised TTES at the heat production site can be used to
shave the peak loads in DH grids, reduce the use of heat only boilers
(HOBs), and consequently reduce primary energy consumption and
costs. Similar results are presented by Kauko et al. [20] and Knudsen
et al. [21], who developed a model predictive control for the operation
of a TTES at a heating plant that reduces the peak heating by 12%,
thus minimising the use of HOB and maximising the use of industrial
waste heat. Another common approach is to use the distribution grid as
a heat storage by raising the supply temperature before the peak load.
The underlying control strategies are studied by Laakkonen et al. [22]
and Svensen [23]. A similar concept is implemented by van Oevelen
et al. [24] to test a smart controller at a demo site in a subnetwork of
the DH system of Brescia (Italy), leading to a reduction of the peak load
energy supply. Despite the measures on the supply side of DH systems,
several studies have also focused on the possibility of managing the
demand side. As long as the thermal comfort is maintained, it is possible
to use the thermal inertia of buildings to optimise the load in DH
systems [25]. Guelpa and Marincioni [26] propose a control strategy
for DH substations based on limiting the primary return temperature
to reduce peak loads, while using a building model to keep indoor
temperatures at the desired levels. A combination of reinforcement
learning and agent-based modelling is used by Solinas et al. [27] to
consider end-user acceptance of indoor temperature variations due
to load shifting when optimising peak demand of the DH system.
Combining demand side management by shifting the load of consumers
with production optimisation through the use of thermal storage at
the heat production site, Capone et al. [28] find that annual costs can
be reduced by 3.8%. In a comprehensive literature review Guelpa and

Verda [29] conclude that thermal peak loads can be reduced by up to
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30% through demand response strategies in DH systems. In contrast to
peak shaving at the system level, Li et al. [30] show how DH prosumers
can optimise their own heat production from waste heat or renewable
energies by using a thermal storage to reduce their individual peak load
and maximise waste heat self-utilisation, achieving annual heating cost
savings of up to 9%.

The strategies described in the literature for peak shaving in DH
systems are mostly focused on either the system level or individual
consumers. However, large DH consumers such as industrial sites bear
the potential to have a major impact on the whole system, so this
article explores an operational strategy for the individual consumer that
supports the whole system, with the underlying case study described in
Section 2. Furthermore, the operational optimisations in the mentioned
studies have mostly been based on measured heat load profiles of the
consumers. Whilst this provides a benchmark for the potential benefits
of the strategies described, implementation in real systems relies on
forecasts for heat loads and system temperatures and the accuracy of
these can affect the performance of the proposed optimisations.

1.3. Research objective and scope

The main purpose of this article is to develop an optimisation-based
operating strategy for a TTES at large DH consumers and to assess the
effect of varying TTES dimensions using the case study described below
as an example. The objective of the operating strategy is to decrease
the peak load in the DH system by shifting the heat demand of the
industrial DH consumer on the primary side through the use of a TTES
on the secondary side, thus decreasing the need for HOBs based on
fossil fuels.

To optimise the operation of the TTES, it is essential to forecast the
heat demand profiles for both the DH system and the industrial con-
sumer. In addition, forecasts of the return temperature of the secondary
grid of the industrial consumer are necessary to calculate the TTES
capacity, which depends on its minimum and maximum temperatures.
Therefore, the upstream aim of this study is to use deep learning models
to create accurate forecasts and to evaluate the impact of forecasting
accuracy on the operating strategy.

In a real system, the proposed operating strategy could be imple-
mented with a model predictive control. However, implementing a
control that benefits the system, but acts on the consumers secondary
equipment presents several challenges, such as data and control signal
exchange, ownership, and tariff structures. To overcome these chal-
lenges, and as a first step towards automated control, the optimised
operating strategy could be implemented as a decision support system,
with the actuators (e.g. valves and pumps) still being operated under
human supervision. However, human interaction should be kept to a
minimum, so that the third aim of this article is to study the effect that
the length of the optimisation interval may have on TTES operation.

This article is structured into the following sections:

• Section 2: Description of the underlying case study.
• Section 3: Methodology for the forecasting model, the optimisa-

tion framework for TTES operation, the TTES simulation model,
and the evaluation metrics for forecasting accuracy and the sim-
ulation.

• Section 4: Results showing the forecasting accuracy, the simulated
operation of the TTES, the simulation evaluation, and a discussion
of the results.

2. Case study

The methods developed in this work are applied to a case study of a
large urban DH system in Germany. Fig. 1 shows a simplified diagram
of the components, load and temperature profiles from the case study
that are relevant to this article. The primary heat production unit of
the DH system is a central combined heat and power (CHP) plant that
3

is operated with the energy carriers natural gas, waste, and biomass.
Additionally, heat-only boilers (HOBs) based on natural gas and oil are
used at another location near the city outskirts to cover peak loads in
the system. At the end of 2022, an industrial manufacturing facility
located near the CHP plant has been connected to the DH system with
a nominal maximum heat load of 15 𝑀𝑊𝑡ℎ, which is around 7% of
the total heat load in the DH system. The load profile of the new
industrial consumer is dominated by space heating with only a low
share of process heat. So far, the substation is operating according
to the demand in the secondary grid of the consumer. However, the
infrastructure of the industrial site offers the opportunity to install
a tank thermal energy storage (TTES) at the secondary side of the
substation that could be used to implement demand response strategies
to benefit the DH system.

The presented research is based on operational data in hourly res-
olution from 2019 to 2021 of the industrial consumer (supply, return,
and ambient temperature, load profile) and from 2021 to 2022 of the
DH system (ambient temperature, load profiles, and heat production
profiles of the CHP and the HOBs).

3. Methods

The following sections provide a brief overview of the forecasting
techniques, followed by an elaboration on the optimisation framework
and the model for simulating the TTES operation.

3.1. Forecasting

The long-short-term memory (LSTM) algorithm, which was devel-
oped to improve the prediction of time series with recurrent neural
networks, is selected to perform the forecasting tasks for this work.
Several studies demonstrated that the algorithm performs well in fore-
casting sequential data such as heat demand or return temperature
profiles, which is an aim of this study [14,16,31,32].

The framework for creating deep learning models for multistep
forecasts is set up in Python [33]. The forecast horizon is chosen to
be 24 h to meet the demands of the optimisation problem that deals
with the short-term operation of a TTES.

In the first step, the data sets from the case study are prepro-
cessed using the Python library Scikit-Learn [34]. The input parameters
to predict the load and return temperature profiles include ambient
temperature, the preceding values of the forecast variable, and the
timestamp. All data are available with an hourly resolution. The am-
bient temperature is first converted into a standardised timeseries, so
that the mean of the values is 0 with a standard deviation of 1. It is
then transformed into a lagged series, which means that the values of
the previous time period (lag interval of 12 h) are input parameters.
In this context, it should be mentioned that weather forecasts for the
forecast horizon may be considered when practically applied. As his-
toric ambient temperature forecasts are not available for the study, the
measured ambient temperature for the forecast horizon is included in
one scenario to predict future time steps (referred to as ’future weather
data’ in Section 4.1) to estimate the potential benefit from including
weather forecasts. The preceding values of the forecast variable (load
or return temperature) are normalised, i.e. rescaled to the interval [0,1]
and also transformed into a lagged series with a lag interval of 24 h.
Finally, the timestamp is encoded into sequences of 1s and 0s, with
each set of digits representing an hour of the day or a day of the week.

Only data from 2021 were available for both the industrial con-
sumer and the DH system. Consequently, it is chosen as the test year.
The load and return temperature models for the industrial consumer
are trained with data from 2019 and 2020, while the load model of
the DH system is trained with data from 2022. The models are created
using the Keras deep learning library [35]. A wide set of parameters can
be tuned to improve model performance, which is done manually here.
The parameters used are given in Table 1 and will not be discussed



Energy 301 (2024) 131690U. Trabert et al.

w

Fig. 1. Schematic representation of the case study.
Table 1
Parameters used for model training.

Profile LSTM
layers

No. of
neurons

Batch
size

Training
epochs

Update
epochs

Update
interval

Industry 2 10 12 100 2 12 h
DH 2 10 24 100 2 24 h

in detail, since fine-tuning of the forecasting models is not the main
topic of this article, but rather the effect of forecasting accuracy on the
optimised operation of a TTES.

Another concept used in this work to improve the performance of
the LSTM models is incremental learning. It is especially relevant for
applications that involve constant data streams, such as the short-term
optimisation of energy systems with data that is continuously recovered
from the sensors of a physical system [18]. In this work the LSTM
models are updated in a defined interval (12 or 24 h) with a data set
that includes the most recent measurement data. A moving window
is used to keep the length of the update training data set constant to
account for the seasonality in the load and return temperature profiles.

The performance indicators that are used to evaluate forecasting
accuracy are the coefficient of determination (R2) and the normalised
root mean square error (NRMSE) according to Eqs. (1) and (2):

𝑅2(𝑦, �̂�) = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
(1)

NRMSE(𝑦, �̂�) =

√

1
𝑛 ⋅

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑦
(2)

here 𝑦 is the measured value, �̂� is the predicted value, 𝑦 is the mean of
the measured values in the test data set and 𝑛 is the number of samples.

3.2. Storage operation at the industrial DH substation

The method for investigating the impact of a TTES at the industrial
DH substation is partially similar to the concept of a model predictive
control. The idea is to take an optimised operating strategy already into
account when designing the system.

The basic procedure is depicted in Fig. 2. The starting point is the
initial training of the LSTM models described in the previous section.
The 24-hour forecasts of the three profiles industrial load �̇�𝑖𝑛𝑑,𝑓𝑐 ,
industrial return temperature 𝜗𝑅𝐿,𝑖𝑛𝑑,𝑓𝑐 and DH load �̇�𝐷𝐻,𝑓𝑐 are used in
the subsequent optimisation (see Section 3.2.1) to create an operating
schedule for the TTES. Afterwards, the actual storage operation is
simulated using the measured load profile of the consumer �̇�𝑖𝑛𝑑 and
a capacity model that was developed in Python (see Section 3.2.2).
Finally, the LSTM models are fed with the preceding measured values
4

for a new forecast. Optionally, the LSTM models are updated in the
defined update interval. The new forecasts and the last storage state
of charge (SoC) from the simulation are then used in the next opti-
misation. The chosen optimisation interval determines how often this
process is repeated. The interval is varied between 1 and 24 h. The
simulation was conducted for the year 2021, during which the data
sets from the industrial consumer and the DH system overlapped.

3.2.1. Optimisation framework
The optimisation problem is formulated using the open-source

Python library cvxpy [36,37] and solved with the embedded ECOS
solver [38]. At the start of an optimisation cycle the storage capacity
is estimated based on the temperature limits and the volume of the
tank. The minimum storage temperature 𝜗𝑠𝑡𝑜,𝑚𝑖𝑛,𝑓𝑐 is estimated as an
average of the return temperature of the industrial consumer 𝜗𝑅𝐿,𝑖𝑛𝑑 in
the previous 24 h and its respective forecast 𝜗𝑅𝐿,𝑖𝑛𝑑,𝑓𝑐 for the next 24 h
according to Eq. (3). This is done to account for the mixing of water
inside the storage and water flowing into the storage from the return
line of the secondary grid at the industrial site.

𝜗𝑠𝑡𝑜,𝑚𝑖𝑛,𝑓𝑐 (𝑡) =

∑𝑡=0
𝑡=−23 𝜗𝑅𝐿,𝑖𝑛𝑑 (𝑡)

24 +
∑𝑡=24

𝑡=1 𝜗𝑅𝐿,𝑖𝑛𝑑,𝑓𝑐 (𝑡)
24

2
(3)

The maximum storage temperature 𝜗𝑠𝑡𝑜,𝑚𝑎𝑥 is given by the storage
charging temperature, which is assumed with a fixed value of 90 ◦C.
This ensures an upper terminal temperature difference at the heat
exchanger of the substation of at least 5 K, as the minimum supply
temperature of the DH grid in summer is 95 ◦C. The storage charging
temperature could also be assumed to be a function of ambient tem-
perature or the supply temperature in the DH grid in order to increase
storage capacity in winter. However, this would result in higher return
temperatures on the primary side of the heat exchanger, which is not
desired by the DH utility.

Subsequently, the minimum and maximum storage capacity 𝑄𝑠𝑡𝑜 are
determined depending on the TTES volume 𝑉𝑠𝑡𝑜 according to Eqs. (4)
and (5).

𝑄𝑠𝑡𝑜,𝑚𝑖𝑛,𝑓𝑐 (𝑡) = 𝑓𝑏𝑎𝑐𝑘𝑢𝑝 ⋅ 𝑉𝑠𝑡𝑜 ⋅ 𝑐𝑝 ⋅ 𝜌 ⋅ (𝜗𝑠𝑡𝑜,𝑚𝑎𝑥 − 𝜗𝑠𝑡𝑜,𝑚𝑖𝑛,𝑓𝑐 (𝑡)) (4)

𝑄𝑠𝑡𝑜,𝑚𝑎𝑥,𝑓𝑐(𝑡) = 𝑓𝑛𝑒𝑡 ⋅ 𝑉𝑠𝑡𝑜 ⋅ 𝑐𝑝 ⋅ 𝜌 ⋅ (𝜗𝑠𝑡𝑜,𝑚𝑎𝑥 − 𝜗𝑠𝑡𝑜,𝑚𝑖𝑛,𝑓𝑐 (𝑡)) (5)

where 𝑐𝑝 is the specific heat capacity and 𝜌 is the density of water.
𝑓𝑏𝑎𝑐𝑘𝑢𝑝 (= 0.1) is a factor to maintain a backup capacity that is not
used in the optimisation, but is available to the simulation to buffer
differences between forecasted and actual load. 𝑓𝑛𝑒𝑡 (= 0.9) is a factor
to reduce the storage volume to account for dead volume in the tank.

The optimisation problem is formulated with the objective function
in Eq. (6a) and the respective constraints in Eq. (6b) to (6i):
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Fig. 2. Procedure diagram for the continuous optimisation.
minimize
𝛿

max(2 ⋅ 𝛥�̇�𝐷𝐻 + 𝛥�̇�𝑖𝑛𝑑 + max
𝑡=1…24

∇�̇�𝑖𝑛𝑑,𝑜𝑝𝑡(𝑡)) (6a)

subject to 𝛥�̇�𝐷𝐻 = max
𝑡=1…24

�̇�𝐷𝐻,𝑜𝑝𝑡,𝑓𝑐 (𝑡) − min
𝑡=1…24

�̇�𝐷𝐻,𝑜𝑝𝑡,𝑓𝑐 (𝑡), (6b)

𝛥�̇�𝑖𝑛𝑑 = max
𝑡=1…24

�̇�𝑖𝑛𝑑,𝑜𝑝𝑡(𝑡) − min
𝑡=1…24

�̇�𝑖𝑛𝑑,𝑜𝑝𝑡(𝑡), (6c)

�̇�𝐷𝐻,𝑜𝑝𝑡,𝑓𝑐 (𝑡) = �̇�𝑖𝑛𝑑,𝑜𝑝𝑡(𝑡) + �̇�𝐷𝐻,2021,𝑓𝑐 (𝑡), (6d)

�̇�𝑖𝑛𝑑,𝑜𝑝𝑡(𝑡) = 𝛿(𝑡) ⋅ �̇�𝑖𝑛𝑑,2021,𝑓𝑐 (𝑡), (6e)

�̇�𝑖𝑛𝑑,𝑜𝑝𝑡(𝑡) ≥ 0, (6f)

�̇�𝑖𝑛𝑑,𝑜𝑝𝑡(𝑡) ≤ �̇�𝑖𝑛𝑑,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 , (6g)

𝑄𝑠𝑡𝑜,𝑡−1 +
24
∑

𝑡=1
(�̇�𝑖𝑛𝑑,𝑜𝑝𝑡(𝑡) − �̇�𝑖𝑛𝑑,𝑓𝑐 (𝑡)) ≥ 𝑄𝑠𝑡𝑜,𝑚𝑖𝑛,𝑓𝑐 (𝑡), (6h)

𝑄𝑠𝑡𝑜,𝑡−1 +
24
∑

𝑡=1
(�̇�𝑖𝑛𝑑,𝑜𝑝𝑡(𝑡) − �̇�𝑖𝑛𝑑,𝑓𝑐 (𝑡)) ≤ 𝑄𝑠𝑡𝑜,𝑚𝑎𝑥,𝑓𝑐 (𝑡) (6i)

where 𝛿(𝑡) is the vector to modify the original load profile and �̇�
represents the heat loads of the industry (ind) and the DH system (DH).

The objective function aims to minimise the maximum of a weighted
sum. This sum is made up of the difference between the maximum
and minimum value of the DH load 𝛥�̇�𝐷𝐻,𝑜𝑝𝑡, the difference between
the maximum and minimum value of the industry load 𝛥�̇�𝑖𝑛𝑑 , and its
maximum gradient ∇�̇�𝑖𝑛𝑑,𝑜𝑝𝑡 during the forecast horizon. The weights
of the objective function (2, 1, 1) depend on the relative share of the
industrial load in the total DH load and are selected by comparing
operational results from simulations with different weighting factors.
The criteria used in this process are, on the one hand, the (prioritised)
reduction of the peaks and filling of the valleys of the DH load profile
and, on the other hand, the avoidance of sudden load changes at the
industrial consumer to keep the additional stress on the components of
the substation low. For example, a stronger weight on the industrial
load profile reduces the peak reduction in the DH load profile.

The constraints in Eqs. (6f) and (6g) keep the optimised industry
load profile within the limits of the heat exchanger at the substation.
The boundaries of the storage capacity are described through Eqs. (6h)
and (6i).

3.2.2. Storage simulation
The detailed modelling of a thermal storage requires rather complex

models that include several heat and mass flows within the storage and
with its surroundings. This results in a relatively high computational
effort. Therefore, a simplified simulation model for the TTES is devel-
oped in Python for this work, which is considered to be sufficiently
accurate during the design phase of a system. The parameters used for
the storage model are documented in Appendix A.2.
5

To calculate the minimum storage temperature and the maximum
storage capacity, the same equations as described in Section 3.2.1 for
the optimisation problem are used. However, the forecasted return
temperature is replaced with the actual return temperature and the
backup capacity, which was excluded in the optimisation problem, may
be used in the simulation.

The storage is simulated for each timestep 𝑡 depending on its state
of charge with the following algorithms:

1. TTES is neither full nor empty (Algorithm 1),
2. TTES is almost full (Algorithm 2), and
3. TTES is almost empty (Algorithm 3).

The algorithms are described in detail through pseudocode in Ap-
pendix A.1. The deviations between forecasted and actual profiles
require a control for the storage, that adjusts the charging or discharg-
ing load when the storage capacity is close to its upper or lower limit.
This feature is implemented in Algorithm 2 and 3 as a damping factor
and is inspired by temperature based controls in more complex models
or real systems.

A large number of storage cycles and therefore a relatively short
storage time are expected for a TTES used for daily peak shaving. This
also means that the relative storage losses only play a minor role for the
operating strategy, so they are not included in the optimisation problem
and are estimated after the simulation according to Eqs. (7) and (8):

𝜗𝑠𝑡𝑜,𝑚𝑒𝑎𝑛(𝑡) = 𝜗𝑠𝑡𝑜,𝑚𝑖𝑛(𝑡) + (𝜗𝑠𝑡𝑜,𝑚𝑎𝑥 − 𝜗𝑠𝑡𝑜,𝑚𝑖𝑛(𝑡)) ⋅
𝑄𝑠𝑡𝑜(𝑡)

𝑄𝑠𝑡𝑜,𝑚𝑎𝑥(𝑡)
(7)

�̇�𝑠𝑡𝑜,𝑙𝑜𝑠𝑠(𝑡) = 𝑈𝑠𝑡𝑜 ⋅ 𝐴𝑠𝑡𝑜 ⋅ (𝜗𝑠𝑡𝑜,𝑚𝑒𝑎𝑛(𝑡) − 𝜗𝑎𝑚𝑏,𝑠𝑡𝑜) (8)

where 𝜗𝑠𝑡𝑜,𝑚𝑒𝑎𝑛 is the mean storage temperature of a fully mixed storage,
�̇�𝑠𝑡𝑜,𝑙𝑜𝑠𝑠 is the heat loss, 𝑈𝑠𝑡𝑜 is the heat transfer coefficient of the storage
envelope and 𝜗𝑎𝑚𝑏,𝑠𝑡𝑜 is the ambient temperature at the TTES location.

The outcome of the simulation algorithms is a timeseries for the
storage capacity 𝑄𝑠𝑡𝑜. Using Eq. (9) the resulting storage charging or
discharging load �̇�𝑠𝑡𝑜(𝑡) can be calculated:

�̇�𝑠𝑡𝑜(𝑡) = (𝑄𝑠𝑡𝑜(𝑡) −𝑄𝑠𝑡𝑜(𝑡 − 1)) ⋅ 1
𝛥𝑡

+ �̇�𝑠𝑡𝑜,𝑙𝑜𝑠𝑠(𝑡) (9)

The simulated load �̇�𝑖𝑛𝑑,𝑠𝑖𝑚 is determined with the original load profile
�̇�𝑖𝑛𝑑 and the storage load �̇�𝑠𝑡𝑜 according to Eq. (10):

�̇�𝑖𝑛𝑑,𝑠𝑖𝑚(𝑡) = �̇�𝑖𝑛𝑑 (𝑡) + �̇�𝑠𝑡𝑜(𝑡) (10)

Finally, the original and the optimised DH load profiles �̇�𝐷𝐻,𝑜𝑟𝑔 and
�̇� , which are compared to evaluate the operating strategy, are
𝐷𝐻,𝑜𝑝𝑡
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given through Eqs. (11) and (12). It should be noted that the new sub-
station had not yet been connected to the DH system in the simulation
year 2021.

�̇�𝐷𝐻,𝑜𝑟𝑔(𝑡) = �̇�𝐷𝐻,2021(𝑡) + �̇�𝑖𝑛𝑑,2021(𝑡) (11)

�̇�𝐷𝐻,𝑜𝑝𝑡(𝑡) = �̇�𝐷𝐻,2021(𝑡) + �̇�𝑖𝑛𝑑,𝑠𝑖𝑚(𝑡) (12)

3.2.3. Simulation evaluation
This study analyses the effects of varying forecasting accuracy,

storage capacity (𝑉𝑠𝑡𝑜 = [100, 200, . . . , 2500] m3), and optimisation
interval (𝑇𝑜𝑝𝑡 = [1, 2, 3, 4, 6, 8, 12, 24] h) on TTES operation.

Three forecasting scenarios are considered:

1. Preceding data,
2. Future weather data, and
3. Perfect forecast.

The ’preceding data’ scenario only considers recent measured data to
forecast load and return temperature profiles. In the ’future weather
data’ scenario, the measured ambient temperature of the forecast hori-
zon is used as an additional input parameter due to the lack of historical
weather forecasts for the year 2021. In the ’perfect forecast’ sce-
nario the actual load and return temperature profiles are used in the
optimisation to provide a benchmark for the best possible solution.

The nominal storage capacity 𝑄𝑠𝑡𝑜,𝑛𝑜𝑚 is calculated as shown in
Eq. (13):

𝑄𝑠𝑡𝑜,𝑛𝑜𝑚 = 𝑉𝑠𝑡𝑜 ⋅ 𝑐𝑝 ⋅ 𝜌 ⋅ (𝜗𝑠𝑡𝑜,𝑚𝑎𝑥 − min
𝑡=1…8760

𝜗𝑠𝑡𝑜,𝑚𝑖𝑛(𝑡)) (13)

This is analogue to the calculation of the maximum storage capacity
in Section 3.2.1, except that for the nominal capacity the full stor-
age volume 𝑉𝑠𝑡𝑜 and the lowest minimum storage temperature 𝜗𝑠𝑡𝑜,𝑚𝑖𝑛
throughout the whole year is considered.

To draw more generalised conclusions from this work, the nominal
storage capacity 𝑄𝑠𝑡𝑜,𝑛𝑜𝑚 is then converted from an energy amount to a
time period 𝑇𝑠𝑡𝑜,𝑛𝑜𝑚 according to Eq. (14):

𝑇𝑠𝑡𝑜,𝑛𝑜𝑚 =
𝑄𝑠𝑡𝑜,𝑛𝑜𝑚

max𝑡=1…8760 �̇�𝑖𝑛𝑑 (𝑡)
(14)

here 𝑇𝑠𝑡𝑜,𝑛𝑜𝑚 is the storage capacity in hours and represents the time
hat a full storage could provide the maximum load of the industrial
onsumer �̇�𝑖𝑛𝑑,𝑚𝑎𝑥.

The simulated peak shaving is evaluated with the relative reduction
f the annual maximum peak of the DH load profile 𝑑𝐷𝐻,𝑚𝑎𝑥,𝑝𝑒𝑎𝑘 and
he mean relative reduction of the daily maximum peaks of the DH
oad profile 𝑑𝐷𝐻,𝑑𝑎𝑖𝑙𝑦,𝑝𝑒𝑎𝑘. Their calculation is described in Eqs. (15) and
16).

𝐷𝐻,𝑚𝑎𝑥,𝑝𝑒𝑎𝑘 = 1 −
max𝑡=1…8760 �̇�𝐷𝐻,𝑜𝑝𝑡(𝑡)

max𝑡=1…8760 �̇�𝐷𝐻,𝑜𝑟𝑔(𝑡)
(15)

𝐷𝐻,𝑑𝑎𝑖𝑙𝑦,𝑝𝑒𝑎𝑘 = 1 −

∑364
𝑖=0

max𝑡=(𝑖⋅24+1)…(𝑖⋅24+24) �̇�𝐷𝐻,𝑜𝑝𝑡(𝑡)
max𝑡=(𝑖⋅24+1)…(𝑖⋅24+24) �̇�𝐷𝐻,𝑜𝑟𝑔 (𝑡)

365
(16)

Additionally, it is analysed how the operating strategy can shift heat
production from HOB to the CHP plant. This is done by determining the
HOB heat 𝑄𝐻𝑂𝐵,𝑎, that is additionally required to supply the industrial
consumer, using Eq. (17):

𝑄𝐻𝑂𝐵,𝑎 =
8760
∑

𝑡=1
�̇�𝑖𝑛𝑑 (𝑡) ⋅ 𝑓𝐻𝑂𝐵(𝑡) (17)

where 𝑓𝐻𝑂𝐵 represents the share of heat supplied through the HOBs to
the industrial consumer. It is determined through Algorithm 4, which is
shown in detail in Appendix A.3. It is based on the production schedule
of the DH system in the reference year 2021 and describes the following
rules:

• 𝑓 is 1, if the HOBs are already in operation,
6

𝐻𝑂𝐵 i
• 𝑓𝐻𝑂𝐵 is 0, if the HOBs are not in operation and the new DH load
is below the threshold for CHP supply (�̇�𝐶𝐻𝑃 ,𝑚𝑎𝑥 = 135 𝑀𝑊𝑡ℎ),
and

• 𝑓𝐻𝑂𝐵 is between 0 and 1, if the new DH load is just above
�̇�𝐶𝐻𝑃 ,𝑚𝑎𝑥, but the HOBs are not in operation during the reference
year.

Subsequently, the heat supplied through the HOBs with a TTES is
compared to an unaltered load profile through the difference 𝛥𝑄𝐻𝑂𝐵
following Eq. (18):

𝛥𝑄𝐻𝑂𝐵,𝑎 = 𝑄𝐻𝑂𝐵,𝑎,𝑜𝑟𝑔 −𝑄𝐻𝑂𝐵,𝑎,𝑜𝑝𝑡 (18)

The technical evaluation is followed by a basic economic evaluation to
determine an optimal storage capacity. The capital and operational ex-
penditures (𝐶𝐶𝐴𝑃𝐸𝑋 and 𝐶𝑂𝑃𝐸𝑋) for the TTES are estimated depending
on the storage capacity with Eqs. (19) and (20) using the cost functions
given in Große et al. [39]. The capital expenditures are adapted to
the year 2023 with 𝑓𝑖𝑛𝑑𝑒𝑥,𝑖𝑛𝑣𝑒𝑠𝑡 (= 1.229) using an index for investment
goods [40].

𝐶𝐶𝐴𝑃𝐸𝑋 (𝑄𝑠𝑡𝑜,𝑛𝑜𝑚) = (−8⋅(𝑄𝑠𝑡𝑜,𝑛𝑜𝑚 ⋅10−3)+23, 000)⋅𝑄𝑠𝑡𝑜,𝑛𝑜𝑚 ⋅10−3 ⋅𝑓𝑖𝑛𝑑𝑒𝑥,𝑖𝑛𝑣𝑒𝑠𝑡
(19)

𝐶𝑂𝑃𝐸𝑋 (𝑄𝑠𝑡𝑜,𝑛𝑜𝑚) = 0.009 ⋅𝑄𝑠𝑡𝑜,𝑛𝑜𝑚 (20)

The additional costs 𝐶𝐻𝑂𝐵 that arise from using the HOBs instead of
he CHP are calculated using Eq. (21):

𝐻𝑂𝐵 = 𝛥𝑄𝐻𝑂𝐵 ⋅ 10−3 ⋅ 𝛥𝑐𝐻𝑂𝐵 (21)

ince a distinct value for the additional specific cost 𝛥𝑐𝐻𝑂𝐵 was not
vailable for the study, 𝛥𝑐𝐻𝑂𝐵 was varied between 20 e/MWh and
20 e/MWh.

Finally, the expenditures are compared to the costs by determining
static payback time 𝑇𝑝𝑎𝑦𝑏𝑎𝑐𝑘 with Eq. (22):

𝑝𝑎𝑦𝑏𝑎𝑐𝑘 =
𝐶𝐶𝐴𝑃𝐸𝑋

𝐶𝐻𝑂𝐵 − 𝐶𝑂𝑃𝐸𝑋
(22)

. Results and discussion

This section compares the results of the ’preceding data’ and ’fu-
ure weather data’ forecasting scenarios and the effect of using model
pdates to implement incremental learning. The results of the storage
imulation with the optimised operating strategy are then shown for the
wo forecasting scenarios and additionally with a ’perfect forecast’ in
erms of annual maximum peak reduction, mean daily peak reduction
nd HOB heat reduction.

.1. Forecasting accuracy

In February 2021, there was a very cold winter period that caused
igh loads in the DH system and for the industrial consumer. These
igh loads are unique to the 2021 data set and are not included in the
raining data for the DH system model (2022) or the training data for
he industrial consumer (2019 and 2020). Therefore, the load profile of
he DH system (black line) from this period is shown in Fig. 3, as this
eriod is well suited to show the differences between the forecasting
cenarios. The load profile is normalised using its annual maximum
alue and plotted together with the forecasts for the next 24 h, which
re renewed every eight hours (green lines with red markers at the
tart).

In the ’preceding data’ scenario with no updates, the forecasts are
pproximately at the same level as the actual load (black line), but
he shape of the daily profiles cannot be predicted (see subplot (a) in
ig. 3). This improves when the model is updated, but the forecasts still
nderestimate the actual load because the peak data was not included

n the original training (see subplot (b) in Fig. 3). In the ’future weather
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Fig. 3. Comparison of the normalised load of the DH system in the forecasting scenarios (a) Preceding data no updates, (b) Preceding data with updates, (c) Future weather data
o updates, and (d) Future weather with updates from 7th to 13th of February 2021 (24-hour forecasts shown with new forecasts (x) every 8 h).
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Table 2
Mean values of R2 and NRMSE in the forecast horizon.

Forecasting scenario Industrial load DH load

R2 NRMSE R2 NRMSE

Preceding data no updates 0.841 0.210 0.860 0.224
Preceding data with updates 0.924 0.144 0.945 0.139
Future weather data no updates 0.912 0.155 0.977 0.090
Future weather data with updates 0.967 0.096 0.986 0.072

data’ scenario the same effect can be seen, but the forecasting accuracy
is generally higher than in the ’preceding data’ scenario (see subplots
(c) and (d) in Fig. 3). The height of the peaks may still not be predicted
exactly, but the time of the peak is very well matched.

Fig. 4 shows the same trend as just described for the peak load in
February when comparing the scores (R2 and NRMSE) of the forecast-
ng scenarios for the whole year for each hour of the forecast horizon.

hile the model updates for the industrial profile result in a vertical
hift of the score curves in the ’preceding data’ scenario, they mainly
ead to an increase in accuracy in the later hours of the forecast horizon
n the ’future weather data’ scenario. Another effect of model updates
an be seen when looking at the scores for the DH load profile. The
core curves do not fall monotonically with an increasing hour of the
orecast, but this is achieved by including the model updates. This
s an indication that the training data set of only one year for the
H load impairs the robustness of the model. However, this effect is

elatively small in the ’future weather data’ scenario, as the scores are
lready very good due to the high dependence of the DH load profile
n ambient temperature.

The mean values for R2 and NRMSE within the forecast horizon
or the different variants are given in Table 2. Since the scores when
sing model updates are always higher, the scenarios without updates
re disregarded for the evaluation of storage operation in the following
ection 4.2.
7

.2. Evaluation of storage operation

This section analyses the impact of the varied parameters (forecast
cenario, storage capacity, and optimisation interval) on the simulation
esults. The storage capacity in hours is calculated according to Eq. (14)
n Section 3.2.3. An example of the fundamental operating principle
ehind the optimisation is given in Fig. 5. It depicts the normalised
H load profile (a), the normalised industry load profile (b) and the
orresponding storage SoC (c) for the first week of March. The nor-
alisation for both profiles is done using the annual maximum value

f the DH load as reference. The original load profiles are shown in
lack (DH) and blue (industry), while the profiles modified by the
ptimisation are shown in red (DH) and magenta (industry). When the
odified profile of the industrial consumer deviates from the original
rofile, the storage is charged (green areas) or discharged (red areas).
harging is done primarily in the valleys of the DH load profile, while
ischarging reduces the peaks. If the load forecasts (grey and light blue
ines) deviate strongly from the actual profile, the optimisation does not
ead to the desired operation and the peak is not reduced (i.e. end of
ay on 2nd of March).

The storage is used extensively during this period with several
torage cycles per day. In this specific example, 290 storage cycles are
eached within the whole year, while the relative storage losses are
nly 0.7%. When the storage limits are reached, the simulated industry
oad (magenta line) deviates from the optimised operating schedule
dashed magenta line). A storage SoC of 100% corresponds to the max-
mum temperature difference at the top and the bottom of the storage
hroughout the year, which is reached when the return temperature of
he industrial consumer is at its minimum during winter. In contrast,
ow loads tend to be accompanied by high return temperatures, so that
he usable storage capacity is reduced in summer.

The two main reasons for seeking lower annual maximum peaks in
DH grid are to minimise the back-up capacities that a utility needs

o provide for heat production, and to increase the amount of heat
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Fig. 4. Comparison of forecasting accuracy for one year: Coefficient of determination (R2) and normalised root mean square error (NRMSE) for each hour of the forecast horizon.
Fig. 5. Simulation results for the optimised storage operation from 1st to 7th of March 2021 with a storage capacity of 1.5 h (𝑉𝑠𝑡𝑜 = 600 m3) and an optimisation interval of six
ours.
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ransported through the grid by keeping seasonal variation low. As
hese peaks are rare and were not included in the training data for the
orecasting models, heat load forecasts during these periods are less
ccurate in this study. Fig. 6 shows the relative annual maximum peak
eduction 𝑑𝐷𝐻,𝑚𝑎𝑥,𝑝𝑒𝑎𝑘 in the three forecasting scenarios. Theoretically,
ith perfect forecasts (a), the annual peak of the DH load profile could
e reduced by around 7% with a storage capacity of four hours. This
alue is at around 4% in the future weather data scenario (b) and
round 2.8% in the preceding data scenario (c) at the same storage
apacity. The reduction depends on the load profile of one specific
ay (12.02.2021) within the whole year. The optimisation interval is
herefore a sensitive parameter, as it determines at which hours of
his day the optimisation is performed in respect to the peak hour.
specially in the preceding data scenario (c), it is observed that the
imulated peak reduction is lower, when an optimisation is performed
8

uring the peak hour (here: 8 a.m.), which is true for 𝑇𝑜𝑝𝑡 = [1, 2, w
, 8] h. In the future weather data scenario (b) this is only visible
t 𝑇𝑜𝑝𝑡 = 8 h, so that improved forecasting accuracy and consequently
ess underestimation of the load in the hours before the peak seem to
ancel out this effect (see also plot (b) and (d) in Fig. 3 to compare the
orecasts during the peak day 12.02.2021). In general, a low forecasting
ccuracy during these peak hours affects the ability to operate the TTES
ptimally. Nevertheless, the trend of the results shows that a short
ptimisation interval in combination with the use of weather forecasts
re recommended to reduce annual maximum peaks.

The mean daily peak reduction 𝑑𝐷𝐻,𝑑𝑎𝑖𝑙𝑦,𝑝𝑒𝑎𝑘, which is shown in
ig. 7, is much less sensitive to the optimisation interval and depends
ainly on the storage capacity. However, the 3D plots in Fig. 7 show a
lateau, which means that at some point increasing the storage size no
onger leads to a significant improvement of 𝑑𝐷𝐻,𝑑𝑎𝑖𝑙𝑦,𝑝𝑒𝑎𝑘. The plateau
tarts with a storage capacity of three hours and is around 6% to 7%

ith perfect forecasts (a), while it starts with a storage capacity of 4 h
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Fig. 6. Relative annual maximum peak reduction 𝑑𝐷𝐻,𝑚𝑎𝑥,𝑝𝑒𝑎𝑘 in the three forecasting scenarios (a) to (c) for varying storage capacities and optimisation intervals.
Fig. 7. Relative mean daily peak reduction 𝑑𝐷𝐻,𝑑𝑎𝑖𝑙𝑦,𝑝𝑒𝑎𝑘 in the three forecasting scenarios for varying storage capacities and optimisation intervals.
and is around 4% to 5% in the future weather data scenario (b) and
around 3% to 4% in the preceding data scenario (c). It is also noticeable
that an optimisation interval of 24 h on average seems to work best to
reduce the daily peaks. This is because the optimisation interval in this
case is the same as the forecast horizon and the optimisation is always
performed for a period of a single day. If the optimisation interval does
not match the forecast horizon, it is possible that a new daily peak is
created to charge the storage at the end of a day to reduce the peak of
the next day.

The evaluation of storage operation is concluded with the analysis of
how much heat from the DH system for the industrial consumer can be
shifted from HOB to CHP supply. The 3D plots in Fig. 8 show that with
decreasing forecasting accuracy 𝛥𝑄𝐻𝑂𝐵 also decreases from up to 3
GWh/a with perfect forecasts (a) down to 2.4 GWh/a in preceding data
(c). Once again, the benefit of a larger storage diminishes at a storage
capacity of around three to four hours. The optimisation interval only
has a minor influence on 𝛥𝑄𝐻𝑂𝐵 . However, for future weather data (b)
and preceding data (c), 8 and 24 h optimisation intervals are slightly
out of trend, which can be caused by load underestimations in the
forecasts before the daily peak hour (on average 9 am). In general,
the results indicate that longer optimisation intervals do not affect the
performance of the operating strategy.

Finally, 𝛥𝑄𝐻𝑂𝐵 is used to calculate a static payback period 𝑇𝑝𝑎𝑦𝑏𝑎𝑐𝑘
for the installation of a TTES for different specific values for the
additional cost 𝛥𝑐𝐻𝑂𝐵 caused by HOB heat compared to CHP heat.
Fig. 9 indicates that the economic optimum is reached with storage
capacities between one and two hours. The influence of forecasting
accuracy on 𝑇𝑝𝑎𝑦𝑏𝑎𝑐𝑘 increases with larger storage capacities and lower
additional costs 𝛥𝑐𝐻𝑂𝐵 . Assuming a technical lifetime of 25 years, the
TTES can be an economically viable solution for the DH utility starting
from specific additional costs of 40 e/MWh for HOB heat even in the
scenario with the lowest forecasting accuracy.
9

4.3. Discussion

The LSTM models developed in this work for forecasting achieve
good scores in terms of the coefficient of determination R2 and the
normalised root mean square error NRMSE. They are on the same level
or better compared to similar studies on the use of machine learning
models to predict head loads [6,7,14–17]. However, the models are
tuned to work well on the specific data set that was available from the
case study, so that an application with new data may require re-tuning
of the model parameters and a new selection of input parameters. In
general, the results of the ’future weather data’ scenario are overesti-
mated because in a real application the measured ambient temperature
would have to be replaced by weather forecasts. It is expected that this
will result in a forecasting accuracy between the ’preceding data’ and
the ’future weather data’ scenario. In contrast, the forecasts in this study
are only based on one year of data for the DH load and two years of
data for the industry load. The forecasts and subsequent benefits are
expected to increase with a larger database.

In principle, the results of this study can be transferred to other
cases. The benefits of the proposed TTES in combination with a large
consumer in a DH grid depend on the ratio of the peak demands of the
DH system and the industrial (or other large) consumer in combination
with the ratio of the installed capacities of CHP and HOBs.

The formulation of the objective function is a critical step in the
design of multi-objective optimisation problems, and in the case of
TTES in DH systems it is often determined by the individual frame-
work conditions given by a case study. While Capone et al. [28]
and Nakama et al. [41] include the operational costs for peak heating
in their objective function, this study only considers the load profiles
due to uncertain economic framework conditions. Knudsen et al. [21]
use a similar objective function in a model predictive controller that
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Fig. 8. HOB heat reduction 𝛥𝑄𝐻𝑂𝐵 in the three forecasting scenarios (a) to (c) for varying storage capacities and optimisation intervals.
Fig. 9. Payback period 𝑇𝑝𝑎𝑦𝑏𝑎𝑐𝑘 and HOB heat reduction 𝛥𝑄𝐻𝑂𝐵 in the three forecasting scenarios (a) to (c) for different specific additional costs 𝛥𝑐𝐻𝑂𝐵 and storage capacities with
𝑇𝑜𝑝𝑡 = 1.
minimises peak heating. However, the results are difficult to compare
in terms of peak heating reduction due to different heat generation
technologies and the location of the TTES at the production plant as
opposed to the decentralised TTES considered in this study.

The simulation model developed for the TTES is a simple approach
that considers the storage as a capacity. Details such as the mass flows
at inlet and outlets and within the storage, as well as temperature
stratification, are neglected in order to keep computational effort low
and to perform a wide parameter variation. These details should be
addressed in the further planning process for the implementation of
the proposed operating strategy and in the translation of the methods
into control signals for the actual system. Preliminary results of detailed
thermal simulations of the substation heat exchanger and the TTES,
which are part of future work, indicate that the absolute values of
the considered KPIs will differ, but the determined relatively broad
economic optimum of a storage capacity between 1 and 2 h should be
in the same range.

The decision whether to install a TTES is highly dependent on the
economic framework conditions of a DH utility and its relationship
with its customer. The proposed application requires good coopera-
tion between the parties involved in order to achieve data transfers,
exchange of control signals, and a mutually beneficial tariff structure.
If this is the case, the economic evaluation should take into account
more details such as the interest rate, an investment estimate based on
manufacturers quotes, and the actual additional cost of HOB heat. The
results of this study suggest that the demand response strategy outlined
could be a viable business model in the DH sector.
10
5. Conclusions and future work

In this work, a novel operating strategy was developed for the
integration of a TTES at a large industrial DH consumer with the aim
of reducing peaks in an urban DH system. An important aspect of the
analysis was the development of accurate forecasting models, which
are necessary for the operating strategy to reach its full potential. The
strategy is based on an optimisation problem that aims to modify the
load profile of the industrial DH consumer by charging the TTES during
the valleys and discharging it during the peaks of the DH system’s
load profile. This helps to reduce the use of carbon-intensive HOBs and
increases the use of CHP heat.

The data used in this study is historical measurement data from a
real system in Germany with the described design. It includes load,
supply, return, and ambient temperature profiles as well as heat pro-
duction data. The data is used to train LSTM machine learning models
to produce 24-hour forecasts of the heat load and return temperature of
the industrial consumer and the heat load of the DH system. Forecasting
accuracy was assessed using the coefficient of determination R2 and
the normalised root mean square error as metrics. Applying continuous
model updates through incremental learning significantly improves the
forecasts only based on preceding data, reaching an R2 of 0.924 for
the industrial profile and 0.945 for the DH load profile, and a NRMSE
of 0.144 and 0.139 respectively. In a scenario that included ’future
weather data’, further improvement of forecasting accuracy through the
inclusion of weather forecasts as an input parameter was outlined.
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The operating strategy was tested with a simulation of the TTES
operation for the year 2021. A simplified capacity-based storage model
was developed to allow for a wide parameter variation, including
forecasting scenarios, storage capacity and the optimisation interval.
The results showed that accurate forecasting and a short optimisation
interval are particularly important for reducing the annual maximum
peak. With a storage capacity of four hours the peak in the DH load
profile can be reduced by about 4% in the ’future weather data’ scenario
just by modifying the industrial load profile. It was also found that a
storage capacity above four hours did not lead to a further reduction
in daily peaks. Longer optimisation intervals of up to 24 h have no
significant impact on the performance of the operating strategy in terms
of annual mean daily peak reduction, nor on the shift from costly HOB
to CHP heat in the DH system. A storage capacity between one and
two hours (400 to 700 m3) was determined as the economic optimum.
The installation of a TTES in combination with the implementation of
the proposed operating strategy can be an economically viable solution
starting from an additional cost of HOB heat compared to CHP heat
of 40 e/MWh. The forecasting accuracy is important for economic
viability, if the additional costs for HOB heat are less than 60 e/MWh.

As a next step, the results of the study can serve as a starting point
for the development of a model predictive control or an on-line decision
support system for the potential operators of a TTES at the industrial
site investigated in the case study. This requires a more detailed and
complex simulation model that includes, in addition to the TTES, other
components at the DH substation such as the heat exchanger, pumps,
and control valves. In addition, it should be investigated whether the
integration of an electricity price-driven heat pump to utilise industrial
waste heat can transform the substation into a prosumer, supporting
the transformation of the urban DH system towards renewable energy
supply.
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Appendix. Algorithms and parameters for modelling

A.1. Simulation algorithms

Algorithm 1 Storage neither full nor empty

1: �̇�sto,theo(𝑡) = �̇�𝑖𝑛𝑑,𝑜𝑝𝑡(𝑡) − �̇�𝑖𝑛𝑑 (𝑡)
2: for 𝑡 = 1 to 𝑇𝑜𝑝𝑡 do
3: if 𝑄sto(𝑡 − 1) ≤ 𝑓𝑓𝑢𝑙𝑙 ⋅𝑄sto,max(𝑡)
4: and 𝑄sto(𝑡 − 1) ≥ 𝑓𝑒𝑚𝑝𝑡𝑦 ⋅𝑄sto,max(𝑡)
5: and 𝑄sto(𝑡 − 1) + �̇�sto,theo(𝑡) ≤ 𝑄sto,max(𝑡)
6: and 𝑄sto(𝑡 − 1) + �̇�sto,theo(𝑡) ≥ 0 then
7: 𝑄sto(𝑡) ← 𝑄sto(𝑡 − 1) + �̇�sto,theo(𝑡) ⋅ 𝛥𝑡
8: end if ⊳ to be continued

Algorithm 2 Storage almost full (continued)
9: if 𝑄sto(𝑡 − 1) > 𝑓𝑓𝑢𝑙𝑙 ⋅𝑄sto,max(𝑡)
0: or 𝑄sto(𝑡 − 1) + �̇�sto,theo(𝑡) > 𝑄sto,max(𝑡) then

11: if �̇�sto,theo(𝑡) > 0 then
12: 𝑓𝑑𝑎𝑚𝑝𝑖𝑛𝑔 ←

𝑄sto,max(𝑡−1)−𝑄sto(𝑡−1)
(1−𝑓𝑓𝑢𝑙𝑙 )⋅𝑄sto,max(𝑡−1)

13: if 𝑄sto(𝑡 − 1) + 𝑓𝑑𝑎𝑚𝑝𝑖𝑛𝑔 ⋅ �̇�sto,theo(𝑡) ⋅ 𝛥𝑡 ≤ 𝑄sto,max(𝑡) then
14: 𝑄sto(𝑡) ← 𝑄sto(𝑡 − 1) + 𝑓𝑑𝑎𝑚𝑝𝑖𝑛𝑔 ⋅ �̇�sto,theo(𝑡) ⋅ 𝛥𝑡
15: else
16: 𝑄sto(𝑡) ← 𝑄sto,max(𝑡)
17: end if
18: else
19: 𝑄sto(𝑡) ← 𝑄sto(𝑡 − 1) + �̇�sto,theo(𝑡) ⋅ 𝛥𝑡
20: end if
21: end if ⊳ to be continued

Algorithm 3 Storage almost empty (continued)
22: if 𝑄sto(𝑡 − 1) < 𝑓𝑒𝑚𝑝𝑡𝑦 ⋅𝑄sto,max(𝑡)
3: or 𝑄sto(𝑡 − 1) + �̇�sto,theo(𝑡) < 0 then
4: if �̇�sto,theo(𝑡) < 0 then
5: 𝑓𝑑𝑎𝑚𝑝𝑖𝑛𝑔 ←

𝑄sto(𝑡−1)
𝑓𝑒𝑚𝑝𝑡𝑦⋅𝑄sto,max(𝑡)

6: if 𝑄sto(𝑡 − 1) + 𝑓𝑑𝑎𝑚𝑝𝑖𝑛𝑔 ⋅ �̇�sto,theo(𝑡) ≥ 0 then
27: 𝑄sto(𝑡) ← 𝑄sto(𝑡 − 1) + 𝑓𝑑𝑎𝑚𝑝𝑖𝑛𝑔 ⋅ �̇�sto,theo(𝑡)
28: else
29: 𝑄sto(𝑡) ← 0
30: end if
31: else
32: 𝑄sto(𝑡) ← 𝑄sto(𝑡 − 1) + �̇�sto,theo(𝑡) ⋅ 𝛥𝑡
3: end if
4: end if
5: end for

�̇�sto,theo(𝑡): Theoretical storage charging/discharging load; �̇�𝑖𝑛𝑑,𝑜𝑝𝑡(𝑡):
Optimised industry load; �̇�𝑖𝑛𝑑 (𝑡): Original industry load; 𝑡: Timestep;
𝑇𝑜𝑝𝑡: Optimisation interval; 𝑄𝑠𝑡𝑜(𝑡): Storage capacity; 𝑄𝑠𝑡𝑜,𝑚𝑎𝑥(𝑡): Max-
imum storage capacity; 𝑓𝑓𝑢𝑙𝑙: Percentage of the state of charge from
which on the storage charging is damped; 𝑓𝑒𝑚𝑝𝑡𝑦: Percentage of the state
of charge from which on the storage discharging is damped; 𝑓𝑑𝑎𝑚𝑝𝑖𝑛𝑔 :
Damping factor applied to storage charging or discharging load

A.2. Simulation parameters

See Table A.3.
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Table A.3
Parameters used for the storage model.

Parameter Value Parameter Value Parameter Value

𝑓𝑏𝑎𝑐𝑘𝑢𝑝 0.1 𝜗𝑠𝑡𝑜,𝑚𝑎𝑥 90 ◦C 𝑈𝑠𝑡𝑜 0.18 W
m2 K

𝑓𝑛𝑒𝑡 0.9 𝜗𝑎𝑚𝑏,𝑠𝑡𝑜 15 ◦C 𝐴𝑠𝑡𝑜 0.75 1
m
⋅ 𝑉𝑠𝑡𝑜

𝑓𝑓𝑢𝑙𝑙 0.9 𝜌 975 kg
m3

𝑓𝑒𝑚𝑝𝑡𝑦 0.25 𝑐𝑝 1.16 Wh
kg K

𝑓𝑖𝑛𝑑𝑒𝑥,𝑖𝑛𝑣𝑒𝑠𝑡 1.229

A.3. Determining HOB share

Algorithm 4 Determining HOB share
1: for 𝑡 = 1 to 8760 do
2: if �̇�𝐻𝑂𝐵,𝑜𝑟𝑔 > 0 then
3: 𝑓𝐻𝑂𝐵 ← 1
4: end if
5: if �̇�𝐷𝐻,𝑜𝑟𝑔∕𝑜𝑝𝑡 ≥ �̇�𝐶𝐻𝑃 ,𝑚𝑎𝑥 then
6: if �̇�𝐷𝐻,𝑜𝑟𝑔∕𝑜𝑝𝑡 − �̇�𝑖𝑛𝑑,𝑜𝑟𝑔∕𝑜𝑝𝑡 < �̇�𝐶𝐻𝑃 ,𝑚𝑎𝑥 then

7: 𝑓𝐻𝑂𝐵 ←
�̇�𝐷𝐻,𝑜𝑟𝑔∕𝑜𝑝𝑡−�̇�𝐶𝐻𝑃 ,𝑚𝑎𝑥

�̇�𝑖𝑛𝑑,𝑜𝑟𝑔∕𝑜𝑝𝑡
8: else
9: 𝑓𝐻𝑂𝐵 ← 1
0: end if
1: else
2: 𝑓𝐻𝑂𝐵 ← 0
3: end if
4: end for

�̇�𝐻𝑂𝐵,𝑜𝑟𝑔 : Original heat generation of HOB; 𝑓𝐻𝑂𝐵 : Share of indus-
trial heat load provided through HOB; �̇�𝐷𝐻,𝑜𝑟𝑔∕𝑜𝑝𝑡: Original/optimised
DH heat load; �̇�𝑖𝑛𝑑,𝑜𝑟𝑔∕𝑜𝑝𝑡: Original/optimised industry heat load;
�̇�𝐶𝐻𝑃 ,𝑚𝑎𝑥: Maximum heat generation of CHP (= 135 𝑀𝑊𝑡ℎ)
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