
Job-shop scheduling with flexible

energy prices and time windows:

A branch-and-price-and-cut approach

By

Andreas Linÿ

A thesis submitted for the

degree of Doktor der Naturwissenschaften (Dr. rer. nat.)

in the

Faculty of Mathematics and Natural Sciences

University of Kassel

Date of submission: December 18, 2023
Disputation date: April 11, 2024

First Reviewer: Prof. Dr. Andreas Bley

Second Reviewer: Prof. Dr. Marc Pfetsch

Kassel, June 17, 2024.

Abstract

Energy-aware scheduling is crucial in the current economy and green production initia-
tives. However, with the rise of renewable energy sources, power production is subject to
uncertain weather conditions. Hence, within a network, some balancing group managers
must maintain a balance between production and demand, which requires precise energy
orders for speci�c times. Therefore, those managers must prioritize accurate energy orders
to manage this complex problem.

The primary aim of this thesis is to manage one customer's energy order for a series of
energy-dependent tasks e�ciently. It is crucial to recognize that energy costs are subject
to �uctuations and that the customer's primary concern is to minimize costs, assuming all
orders are completed.

To embed the customers' interests into a mathematical model, we consider the job-shop
scheduling problem with time windows, precedence constraints and machine states, where
the challenge is to organize the energy required to process a set of jobs. We aim to create a
feasible processing start for each task while ensuring that the machines consume the least
amount of energy. To that end, we use an integer programming formulation that couples
the scheduling of tasks with the assignment of the corresponding machine states. The
objective function is the price of the consumed energy. It turns out that the considered
scheduling problem is NP-hard in general. Nevertheless, we present some relevant cases
that are solvable in polynomial time. Scheduling problems are notoriously di�cult due to
the intertwining of time-based events and job processing start times. To address this, we
use a time-indexed formulation using many variables. Additionally, proving the optimality
of primal solutions becomes increasingly time-consuming as the problem size grows. To
handle a huge number of variables, we use presolving rules speci�cally designed for the
problem and involve combinatorial conditions to reduce the number of variables quickly.
Those presolving rules can also be used as constraint propagation rules within the branch-
and-bound tree. For faster problem-solving, we consider problem-adapted branching rules,
constraints, and heuristics. This work highlights that the classical scheduling techniques
are ine�cient when considering energy prices since they are designed to schedule the tasks
as early as possible. Therefore, new techniques need to be developed that involve the total
energy cost when scheduling the tasks to di�erent periods. To get an e�cient branch-
and-bound algorithm, near-optimal primal bounds within the early stages are required.
Therefore, classical list scheduling heuristics and large neighborhood search algorithms are
used to compute near-optimal primal solutions. However, these algorithms do not consider
the objective in the �rst place. To address this issue, a dynamic programming approach
is implemented to compute the optimal solution for a �xed order of jobs. Additionally,
a neighborhood search is implemented, which reuses the dynamic program to evaluate
candidates within the neighborhood. Techniques such as diving heuristics and genetic
algorithms are also employed to �nd early, near-optimal primal solutions. As a result, we
obtain a problem-adapted dual bound driving solution approach, which is able to compute
near-optimal solutions and dual bounds e�ciently.

Acknowledgments

This work would not have been possible without the support of numerous individuals.
I extend my sincere gratitude to Professor Andreas Bley for his exceptional guidance,

support, and invaluable mentorship throughout the completion of this thesis. His expertise,
constructive feedback, and encouragement have played a pivotal role in shaping this work
and its implementations.

I also express my heartfelt appreciation to my esteemed colleagues at the University
of Kassel, whose support and camaraderie have been indispensable throughout this jour-
ney. The collaborative spirit and intellectual exchange within our team have enriched my
understanding and provided valuable perspectives.

Special thanks to Thomas Izgin and Philipp Hahn for their insightful discussions and
willingness to share their expertise. The positive and collaborative environment at the
University of Kassel signi�cantly contributed to the completion of this academic endeavor.

My sincere gratitude extends to Arthur Linÿ and Ilija Afanasyev for their meticulous
proofreading of this thesis. Their keen attention to detail and insightful suggestions have
greatly enhanced the clarity and precision of the thesis. I am thankful for their dedicated
e�orts in ensuring the accuracy of the language and formatting, undoubtedly elevating the
quality of this work. Their commitment to excellence has had a positive impact on the
�nal presentation of this thesis. I would also like to thank my parents, whose support
and encouragement made the path to write this thesis possible in the �rst place. Last
but most importantly, I want to express my heartfelt gratitude to my wife, Carolin. Her
unwavering support and encouragement were my anchors throughout this PhD journey.
I am profoundly thankful for her sacri�ces and belief in my abilities, which made this
academic endeavor not only possible but immensely ful�lling. To Carolin, my greatest
supporter, thank you.

Contents

1 Introduction 1

1.1 Focus of This Thesis . 1
1.2 Overview of the Thesis Structure . 1
1.3 Main Contributions . 2

2 Problem Description and Notation 5

2.1 Formal Notation and Problem Setting . 5
2.2 Summary of the Problem Parameters . 8
2.3 Relevance of This Problem . 8
2.4 Remarks on the Electricity Market . 9
2.5 Related Literature . 10
2.6 Complexity Analysis . 15

3 Integer Linear Programming Formulations 23

3.1 A State-Based Model . 23
3.1.1 Additional Modeling Variants . 25

3.2 A Partial Dantzig�Wolfe Reformulation . 27
3.2.1 Dantzig�Wolfe Reformulation in General 27
3.2.2 Application to Job-Shop Scheduling With Energy Prices and Time

Windows . 28
3.2.3 Special Properties of the Polytopes 31
3.2.4 Model Extensions . 36

4 Problem-Speci�c Solution Strategies 43

4.1 Problem Reductions . 43
4.1.1 Presolve Reductions for ILP . 43
4.1.2 Presolving Techniques for Task Variables 48
4.1.3 Reductions of the Break Variables 54

4.2 The Branch-and-Bound Algorithm . 68
4.2.1 Branch-and-Bound in General . 69
4.2.2 Challenges in Fractional Solutions 70
4.2.3 Workload Branching . 74
4.2.4 Branching on Assignment Constraints 79
4.2.5 Branching Rule Selection . 82

4.3 Separation of Valid Inequalities . 82
4.3.1 Con�icts and Clique Cuts . 83
4.3.2 Generalized Upper Bounds . 88
4.3.3 Valid Constraints From Linear Ordering 98

4.4 Column Generation . 100
4.4.1 Solving the Pricing Problem With a Shortest Path Algorithm 101
4.4.2 A Hop-Constrained Shortest Path Problem 102
4.4.3 Fast Enumeration of All Break Variables 103

4.5 Primal algorithms and Heuristics . 105
4.5.1 Heuristics in MILP-Solvers . 105
4.5.2 List Scheduling . 105
4.5.3 Biased Random-Key Genetic Algorithm 107
4.5.4 Dynamic Programming . 109
4.5.5 Local Search Algorithms . 112
4.5.6 Diving Heuristics . 114

5 Implementation and Computational Experiments 117

5.1 Implementation . 117
5.2 Parameter Choices . 117
5.3 Generation of Test Instances . 118
5.4 Experimental Results . 119

5.4.1 Comparison of the State-Based and the Break-Based Formulation . 120
5.4.2 Analyzing Gurobi's Performance . 124
5.4.3 Analysis of the Implemented Algorithms 126
5.4.4 Analysis of the Column Generation Approach 140
5.4.5 Summary and Con�rmation of Performance 143

6 Conclusions 147

A Appendix 149

A.1 Settings of Our Implementation . 149
A.2 Instances . 150

A.2.1 Dataorig_ver_1 with T = 72 . 150
A.2.2 la01_7_s_s with T = 108 . 151
A.2.3 la02_8_r_s with T = 99 . 153

Bibliography 201

Chapter 1

Introduction

We consider the job-shop scheduling problem with �exible energy prices and time windows.
The job-shop scheduling problem is an NP-hard combinatorial optimization problem. A
well-known fact is that switching the objective function can increase or decrease the com-
plexity of scheduling problems. Also, adding precedence constraints, which decrease the
number of feasible solutions, can increase or decrease the complexity of the considered
scheduling problem. We consider the sum of weighted energy consumption to be the ob-
jective. This objective requires the computation of associated machine states, as well as
their coupling to the processing starts of the respective tasks. The formulation of the tasks'
scheduling and the machine states' modeling to compute the objective function highly in-
�uences the e�ciency of the resulting solution approach. Scheduling problems can be
formulated as integer programming problems and solved with commercial solvers. Often,
commercial solvers require many branch-and-bound nodes and a lot of time to prove the
computed solutions' optimality. This thesis presents an approach which uses less branch-
and-bound nodes to compute the optimal solution in less time as one selected commercial
solver.

1.1 Focus of This Thesis

The job-shop scheduling problem is one of the hardest combinatorial optimization prob-
lems. This thesis describes the development of a problem-speci�c branch-and-cut, as well
as a branch-and-price algorithm to solve the job-shop scheduling problem with �exible en-
ergy prices and time windows. The problem can be formulated using integer programming,
and commercial solvers can solve this problem formulation. However, commercial solvers
are implemented to solve a variety of optimization problems e�ciently and therefore many
properties of scheduling problems are not exploited. To that end, we �rst analyze the
problem to learn about its special properties. Using the results of this analysis leads to
a problem-adapted integer programming formulation. In particular, the analysis of frac-
tional solutions reveals that well-known techniques of classical scheduling problems are
misleading. Thus, we develop, present and implement well-known and new algorithms and
techniques within the problem-speci�c setting. In addition to the set of algorithms, the
branching, separating and heuristic algorithms are developed and implemented so that we
pro�t from the collaboration of the di�erent techniques. The arising subproblems will be
discussed, and at the end of the thesis, we will obtain an algorithm that determines near-
optimal solutions quickly and outperforms commercial solvers using the same number of
threads.

1.2 Overview of the Thesis Structure

This thesis is divided into four major parts: the introduction of the problem and the discus-
sion of its complexity in Section 2, the presentation of integer programming formulations
and the comparison of the descriptions of the feasible solution spaces in Chapter 3, the
presentation of the solution approach and the implemented algorithms in Chapter 4, as
well as the computational experiments in Chapter 5. This work closes with a summary
and a conclusion.

In the �rst part, we present the problem in Section 2.1 followed by the substantiation of
the problem's relevance. This section is followed by a presentation of the related literature

1

in Section 2.5 and a categorization of the considered research topic. This part closes with
the analysis of the problem's complexity in Section 2.6, which also justi�es the intensi�ed
study of the problem.

The second part commences with the presentation of the model in Section 3.1: a
straightforward time-indexed problem formulation will be presented, followed by a partial
Dantzig�Wolfe reformulation. Both formulations are integer linear programs (ILP), re-
spectively mixed-integer linear programs (MILP). Various valid inequalities are presented
to improve the description of the feasible solutions. In addition, inequalities, which cut o�
non-optimal solutions, are considered to accelerate the solving process. We compare the
Dantzig�Wolfe reformulation and the straightforward time-indexed formulation to show
that the partial Dantzig�Wolfe reformulation leads to a tighter description of the integral
feasible solutions.

The third part deals with the problem-solving process and the strengthening of the
linear programming formulation relaxation at each branch-and-bound node. We start with
the reduction of the problem size in Section 4.1. The classical presolving techniques, like
dominating columns and probing, are brie�y reviewed. Then, the presolving reduction is
transferred into a problem-speci�c combinatorial counterpart. These counterparts have
been assigned to combinatorial optimization problems, and e�cient solution techniques
are proposed and presented. The next Section 4.2 summarizes the consequences of classi-
cal scheduling-related branching rules and our implemented branching rules. Moreover, we
justify the implementation of a new branching algorithm, creating equally strong branches.
Additionally, the implemented branchings are designed so that the propagation algorithms
(former presolving rules) detect more domain reductions. In general, the branch-and-
bound nodes are solved by linear programming (LP). The linear programming relaxation
of branch-and-bound nodes is strengthened by additional valid inequalities called cutting
planes. Section 4.3 includes the presentation of problem-speci�c cutting planes. We con-
sider the known general upper bound (GUB) cover constraints for single-machine schedul-
ing and extend them to be strong within our problem setting. Moreover, we derive con�icts
from combinatorial substructures and add them manually to the con�ict graph, which is
used to derive clique cuts. This section closes by presenting valid constraints derived from
the linear ordering subproblem of the single-machine scheduling problem. A lifting scheme
is proposed to strengthen those inequalities within our problem setting. Implementing a
column-generation algorithm is natural since we proposed a Dantzig�Wolfe reformulation.
We present in Section 4.4 the di�erent algorithms we implemented to solve the pricing
problems. As mentioned before, branch-and-bound algorithms are more e�cient if we can
compute near-optimal primal solutions earlier. We then proceed in Section 4.5 with the
description of the implemented heuristics, which include list scheduling heuristics, genetic
algorithms and local search approaches. In addition, we developed a dynamic program-
ming approach that can be used to compute the optimal solution for a �xed execution
order of the tasks.

This thesis closes with the fourth part describing the implementation in C++ and the
choice of parameters in Chapter 5. Furthermore, computational experiments are presented
and analyzed to demonstrate the implemented methods' and heuristics' e�ciency. Finally,
we give a summary of the implemented methods and the experimental results. Moreover,
we provide a brief outlook on further approaches for future research work.

1.3 Main Contributions

The main contributions of this thesis are the following.

1. We provide a (partial) Dantzig�Wolfe reformulation of a time-indexed formulation for
an energy-aware job-shop scheduling problem. This reformulation can be regarded
as a set partitioning problem with precedence constraints and is proven to provide
a better description of the machine transitions. The number of variables thereby
increases only polynomially in the size of the variables of the original formulation. In
particular, our partial Dantzig�Wolfe reformulation introduces variables representing
periods of ramping. Ramping is the change of machine state from o�ine to online
or from online to o�ine within at least one period. The reformulation is described
in [BL20].

2. We provide problem-speci�c presolving techniques using con�ict analyses and known
presolving rules. The latter are encoded in combinatorial conditions that could be
checked more easily than the steps in classical preprocessing rules. The presolving
rules are presented in [BL23].

2

3. We present speci�cally designed branching schemes and a branching selection rule
to explore the solution space e�ciently. Those branching rules are variants of the
special ordered set (SOS)-branching. We propose a new and descriptive way of
computing the branching disjunction in the case of job-shop scheduling with �exible
energy prices and time windows. Moreover, we extensively analyze the fractional
solutions of the considered optimization problem.

4. We devise a dynamic program to solve the job-shop scheduling problem in the case
of a �xed order of the tasks on each machine. We embed the dynamic program
into a large neighborhood search and obtain the possibility to solve the optimization
problem by investing a lot of time.

3

4

Chapter 2

Problem Description and

Notation

In this chapter, we will introduce the formal notation of the problem formulation. Then,
in addition to the classical parameters of the job-shop scheduling problem, new attributes
such as machine states, di�erent energy requirements and energy costs will be introduced.
Subsequently, a feasible problem solution is formally described. Then, we present some
background information on the electricity market, which provides energy prices and helps
to de�ne the objective function of our considered optimization problem. After that, the
research-related literature is reviewed, followed by some relevant results concerning the
computational complexity of the problem.

2.1 Formal Notation and Problem Setting

To describe the problem, we use a special notation for intervals of integral numbers.

De�nition 2.1.1. Let n ∈ N. The set, including the �rst n nonnegative integral numbers,
is de�ned by

[n[Z := {0, . . . , n− 1}.

Moreover, we are also interested in specifying the left bound of the numbers.

De�nition 2.1.2. Let n,m ∈ N. The set including the integral numbers between inclusively
m and exclusively n, is de�ned by

[m,n[Z := [n[Z \[m[Z = {m, . . . , n− 1}.

In the case of the job-shop scheduling problem with �exible energy prices and time
windows, the planning horizon [T [Z := {0, . . . , T − 1} consists of T uniform time periods.
For each period t ∈ [T [Z , we are given a time-indexed weight Pt ∈ Q. The weight Pt is
valid during period t and represents the energy price in that period. In addition, we are
given a set of nM ∈ N (non-)uniform machines, denoted by M := [nM [Z , and a set of
jobs J := [nJ [Z , nJ ∈ N. Each job j ∈ J is associated with a list OJ

|j of nj ∈ N tasks,
de�ned by OJ

|j := {(j, 0), . . . , (j, nj−1)}. The pairwise distinct tasks (j, k), (j, l) ∈ OJ
|j have

to satisfy a precedence order. The order is de�ned as follows: task (j, k) has to precede
task (j, l) i� k < l. The precedence relation of two pairwise distinct tasks is described by
(j, k) → (j, l) and denotes that the preceding task (j, k) needs to complete its processing
before the succeeding task (j, l) can start its processing. Each task (j, k) must be set up
and processed on a prede�ned machine mj,k ∈M . Note that the setup and the processing
are completed on the same machine. It is assumed that the processing has to immediately
follow up on the setup. To summarize the set of all tasks of a given problem, we introduce
the set O :=

⋃
j∈J O

J
|j . To easily describe all tasks that need to be processed on machine

m ∈M , we introduce the set OM
|m = {(j, k) ∈ O | mj,k = m}. For each task (j, k) ∈ O, we

are given its setup duration dsej,k ∈ N ∪ {0} and its processing duration dprj,k ∈ N.
In addition, we are given a release date aj ∈ [T [Z and a due date fj ∈ [T [Z for each

job j ∈ J , which apply to the �rst and the last task of the job, respectively. The �rst task
(j, 0) of job j ∈ J can only start processing in or after period aj , but the setup of task (j, 0)
can start before period aj . The last task (j, k) of job j ∈ J can only start processing after

5

all its predecessors have completed their processing. Moreover, the task (j, k) must �nish
processing before period fj . Therefore, the last processing start of task (j, k) is period
fj − dprj,k.

One constraint of the problem is that in each period t ∈ [T [Z , each machine m ∈ M
must be in exactly one of the operating states o�, processing, setup, standby, ramp-up or
ramp-down, summarized as S := {o�, pr, se, st, ru, rd}. A machine is called active if its
operating state is setup, processing, or standby. Otherwise, it is called inactive.

The machine is not allowed to switch between its states arbitrarily. A feasible machine-
state transition must follow the rules:

1. If the machine is running in machine state o� in period t ∈ [T − 1[Z , then the
machine can be o� or in state ramp-up in period t+ 1.

2. If the machine is running in machine state ramp-up in period t ∈ [T − 1[Z , then the
machine can be in any state s ∈ {ramp-up, standby, setup, processing, ramp-down} in
period t+ 1.

3. If the machine is running in machine state standby in period t ∈ [T − 1[Z , then the
machine can be in any state s ∈ {standby, setup, processing, ramp-down} in period
t+ 1.

4. If the machine is running in machine state setup in period t ∈ [T − 1[Z , then the
machine can be in any state s ∈ {setup, processing} in period t+ 1.

5. If the machine is running in machine state processing in period t ∈ [T − 1[Z , then
the machine can be in any state s ∈ {standby, setup, processing, ramp-down}

6. If the machine is running in machine state ramp-down in period t ∈ [T − 1[Z , then
the machine can be in any state s ∈ {ramp-up, o�, ramp-down} in period t+ 1.

The transition to another machine state is only valid if the switch is feasible and no setup,
processing, or ramping is interrupted prematurely. The duration of the ramp-up phase,
changing from o� to any state s ∈ {se, pr, st, rd}, is drum ∈ N. Analogously, the duration of
the ramp-down phase is drdm ∈ N. We explicitly prohibit instances with drdm = 0 or drum = 0.
A ramping duration of zero periods needs to be described by another set of rules, which
is not part of this thesis. The minimum duration of the ramping is 1 to ensure that the
switching rules can be satis�ed.

Moreover, the parameter Ds
m ∈ Q denotes the energy demand of machine m ∈ M in

state s ∈ S. Using the energy demand, the direct ramping can be approximated by allowing
an energy demand of 0 for the ramping.

From the release and due dates, the precedence constraints of the job sequences and
the ramping duration, we can derive the implied allowed processing starts for each task
(j, k) ∈ O, with the placeholder aj,−1 = aj , as

aj,k = max
(
aj,k−1 + dprj,k−1, d

ru
mj,k

+ dsej,k
)

and

fj,k = min(fj , T − drdmj,k
) + 1−

|Oj |∑
q=k

dprj,q.

The allowed processing starts can be summarized by Aj,k := {aj,k, . . . , fj,k}.
The machine is assumed to be o�ine at the beginning of the time window as well as

at the end of the time window. However, the machine can start the ramp-up in period 0
and use the period T − 1 to �nish the ramp-down.

Summary of a Feasible Solution

A feasible solution consists of the processing start for each task and a machine state for
each machine and each period. Each task is processed non-preemptively, and each task's
setup immediately precedes (also non-preemptively) its processing. The processing of a
task can start only after the processing of its predecessor has been completed, but its setup
can already start on the same machine if the machine can complete the setup in time. In
contrast, the predecessor is processing (on another machine). The start of the �rst task
and the completion of the last task of each job must obey this job's release and due dates,
respectively. Only one task can be processed or set up on a machine simultaneously. A
machine, processing or setting up for a task, must be in the state processing or setup,
respectively. Otherwise, the machine can be active in standby or become inactive (ramp-
down, o�, or ramp-up) while respecting the ramping durations and state switching rules
mentioned above. Each machine must be o� at the planning horizon's beginning and end.

6

Nevertheless, the machine can start the ramp-up in period 0 and �nish the ramp-down in
period T − 1. We aim to �nd a schedule of tasks with minimized energy costs. To describe
the feasible solution, we use an extended time window [T+[Z = [T [Z ∪{−1, T}.

De�nition 2.1.3 (Feasible solution). The tuple (SJ ,SM), with

SJ : O → [T [Z

and

SM :M × [T+[Z → S

is called a feasible solution of the job-shop scheduling problem with �exible en-
ergy prices if the following conditions hold:

1. SJ(j, k) + dprj,k ≤ S
J(j, k + 1) for all (j, k), (j, k + 1) ∈ O.

2. SJ(j, k) ∈ [aj,k[Z fj,k for all (j, k) ∈ O.
3. For all m ∈M and t ∈ [T [Z the condition SM (m, t) = pr must hold, if the period t

satis�es t ∈ [SJ(j, k),SJ(j, k) + dprj,k[Z .

4. For all m ∈ M and t ∈ [T [Z the condition SM (m, t) = se must hold, if the period t
satis�es t ∈ [SJ(j, k)− dsej,k,SJ(j, k)[Z .

5. SJ(j, k)+dprj,k +d
se
i,l ≤ SJ(i, l) or SJ(i, l)+dpri,l+d

se
j,k ≤ SJ(j, k) holds for all distinct

(j, k), (i, l) ∈ OM
|m and m ∈M .

6. SM (m,−1) = SM (m,T) = o� for each m ∈M .

7. If SM (m, t) = o� and SM (m, t + drum + 1) ∈ {st, pr, se, rd}, then SM (m, q) = ru for
q ∈ [t+ 1, t+ drum + 1[Z ⊆ [T+[Z .

8. If SM (m, t) ∈ {st, pr, se, rd, o�} and SM (m, t + drdm + 1) = o�, then SM (m, q) = rd
for q ∈ [t+ 1, t+ drdm + 1[Z ⊆ [T+[Z .

9. For each m ∈ M and t ∈ [T [Z the condition SM (m, t) ∈ {o�, rd, ru, st} must hold
for t /∈

⋃
(j,k)∈OM

|m
{SJ(j, k)− dsej,k, . . . ,SJ(j, k) + dprj,k − 1} ⊆ [T+[Z .

10. If SM (m, t) = s for s ∈ {rd, ru}, then there exists a period t0 ∈ [T] and a subset
{t0, . . . , t0+dsm−1} ⊆ [t−dsm, t+dsm[Z with SM (m, q) = s for all q ∈ [t0, t0+d

s
m[Z ⊆

[T+[Z .

The mapping SJ describes the tasks' processing starts, and the mapping SM denotes
the assignment of the periods to the machine states for each machine.

Suppose we are given a large time window and a feasible task schedule SJ . Then, for
example, the machine could run in state standby for an arbitrary number of periods until
the machine �nally ramps down. Thus, several valid machine state assignments are feasible
for the given task schedule SJ .

Lemma 2.1.4. Let SJ denote a feasible scheduling of the tasks. Then, the corresponding
feasible machine state assignment SM is generally not unique.

The machine state assignment SM of a single machine is visualized in Figure 2.1.

time
inactive

active

.

t0 t0 + drum t − dsej,k t t + dprj,k

Processing
start of
(j, k)

Ramp-up start of m

drum periods dprj,kdsej,k

. . . o� ru ru ru ru . . . se se pr pr pr . . .

Figure 2.1: Visualization of ramping, setup, and processing durations, and the corresponding machine
states. This visualization demonstrates that the start of the ramp-up in period t0 blocks the machine in
the following drum periods. In period t0 + drum , the machine is active and must switch to another machine

state. The processing start of a task (j, k) ∈ OM
|m blocks the machine from period t− dsej,k until the start

of period t + dprj,k. The machine �nishes the processing at the end of period t + dprj,k − 1 and is allowed

to switch the state in period t + dprj,k.

7

2.2 Summary of the Problem Parameters

Altogether, the problem parameters can be stated as follows:

Name: Job-shop scheduling with �exible energy prices and time windows.

Goal: Compute a feasible schedule SJ , and the corresponding machine states SM , such
that the energy costs for ramping, standby, setup, and processing are minimal.

Problem parameters

� A set of machines M .
� The set of tasks O
� A mapping mj,k of the tasks (j, k) ∈ O to the machines m ∈M .
� A release and a due date for each job j ∈ J .
� A set of precedence relations between the tasks (j, k) ∈ OJ

|j for each j ∈ J .
� A time window [T [Z .
� A processing duration dprj,k ∈ N and a setup duration dsej,k ∈ N ∪ {0} for each
task (j, k) ∈ O.

� Ramping durations drdm ∈ N and drum ∈ N for each m ∈M .
� An energy demand Ds

m ∈ Q for each machine m and each machine state s ∈ S.
� An energy price Pt for each period t ∈ [T [Z .

2.3 Relevance of This Problem

The problem of computing a schedule with minimal energy costs is not the same as comput-
ing a schedule with a minimum makespan. The minimum makespan optimization compute
a schedule that minimizes the time from the start of setup on any machine to the com-
pletion of the last process on any machine. The following example shows that a shorter
schedule does not automatically mean lower energy costs.

Example 2.3.1. We consider the job-shop scheduling problem with three jobs, each with
two tasks. All processing and setup durations are equal to 1. The time window is set to
T = 11. We are given two machines with ramping durations drdm = drum = 1 and Ds

m = 1 for
each m ∈ M and s ∈ S \ {o�}. There are no task-depending time windows, so the release
and due dates of the jobs are aj = 0 and fj = T . The �rst task always starts on machine 1,
and the second task of each job sequence starts processing on machine m = 2. The energy
prices are chosen to always be 1 except in the period of 4. We �x the energy costs to some
large value k ∈ Z. The optimal solution of a schedule regarding the minimum makespan

time

energy price

0 1 2 3 4 5 6 7 8 9 10 11
0

1

k

is shown in Figures 2.2 and 2.3. A ramp-up of length 1 is represented here by a change
from 0 to 1 within one period. A ramp-down of length 1 is visualized by a switch from 1
to 0 from period 7 to period 8 on machine 1. A delimited block, like the one from t = 1 to
t = 3 on machine 1, represents the setup and processing of a single task. We assume that
the tasks are processed in order according to their job ID.

0 1 2 3 4 5 6 7 8 9 10 11

machine 1

machine 2

0 1 2 3 4 5 6 7 8 9 10 11

Figure 2.2: Solution of the makespan optimization.

8

machine 1

machine 2

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

Figure 2.3: Solution of the energy price optimization.

Shifting the makespan solution to the best location does not a�ect the objective value
since either the processing end or the processing start of the complete schedule is scheduled
to the expensive period of 4. Therefore, the optimal objective value of the makespan solution
is always 7 · 1 + 7 · 1 + 2 · k = 2 · k + 14. In contrast, we present a feasible solution to the
job-shop scheduling problem with �exible energy prices in Figure 2.3. This solution uses an
additional ramp-down and ramp-up on machine 2. Thus, the machine can save the energy
price of the period 4 once. The objective of this solution is 7 · 1 + k + 9 · 1 = 16 + k.
Therefore, the objective of the energy-price optimized solution will always be cheaper for
k > 2. It is worth mentioning that the makespan solution would also be an optimal solution
for k ≤ 2 and would be computed by the energy-aware scheduling problem.

2.4 Remarks on the Electricity Market

The considered objective function is the minimization of the weighted consumption of
energy. The weights of the energy consumption are considered to be the energy prices of
the electricity market. To describe the realization of those energy prices and the knowledge
about the costs of each period, a short review of the functionality of the electricity market
of Europe is proposed.

The electricity market in Europe is called European Power Exchange (EPEX SPOT)
SE. The market is based in Paris and has other o�ces in many European capitals. The
European electricity market allows di�erent companies to organize the production and
supply of electricity and the trading, marketing, and transmission. Due to the lack of
batteries, electricity cannot be stored, and thus, supply and demand should always be
balanced. Furthermore, power losses need to be considered due to long transport distances.
Moreover, the operational failures of producers or transmission lines, which cause reduced
energy production, need to be considered in real-time. The electricity market ensures
balanced demand and production to maintain the safety of the network.

The market participants can order electricity at various markets, which di�er in delivery
time. At the day-ahead market, once per day, there will be a blind auction. All hours of the
next day will be treated within the same auction. The participants send two o�ers for each
hour: one that includes their demand or supply of energy for each period of the next day
and an o�er that provides block orders and links the delivery periods. The power exchange
price is determined as the market-clearing price from the o�ers and bids of energy prices
and volume. Buyers who accept to buy for a higher price will pay the market-clearing fee.
The sellers who accept to sell for a lower price will sell for the market-clearing price.

On the intraday market, the participants trade electricity that must be delivered within
the same day. The distance between trade and delivery can go down to �ve minutes. The
participants use the intraday market for adjustments in supply production to adapt their
supply or demand to real-time data. If the energy production or supply is not balanced,
compensation energy needs to be used to withdraw or give energy to the grid at a high
price. The compensation energy is provided by companies and by energy producers that
can increase or decrease their production within seconds. In addition to long-term contracts
for buying a �xed part of the energy, renewable energy strongly impacts the prices. For
example, storms and sunny days may lead to low energy prices, while rainy or wind-free
days can lead to high prices. Figure 2.4 illustrates the advantage of optimizing the energy
demand a day ahead. Moreover, Figure 2.5 depicts an example of an objective function
the customers would need to optimize daily.

9

Date (GMT+2)

P
ow

er
 (

M
W

)

P
rice (E

U
R

/M
W

h, E
U

R
/tC

O
2)

Electricity production and spot prices in Germany in week 27 2023

Energy-Charts.info; Data Source: ENTSO-E, EPEX SPOT; Last Update: 11.07.2023, 10:45 MESZ

Non-Renewable Renewable Load Day Ahead Auction Intraday Continuous Average Price

03.07.2023 04.07.2023 05.07.2023 06.07.2023 07.07.2023 08.07.2023 09.07.2023
0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

-50

0

50

100

150

200

250

300

350

400

450

Figure 2.4: The graphic shows the energy prices of the market area of Germany and Luxembourg from
July 3, 2023, to July 10, 2023. The green area depicts the amount of renewable power within the network.
The gray area describes non-renewable power. Renewable energy changes within a day-night rhythm.
In addition, the 27th week was really hot and sunny. The red line describes the energy price of the
day-ahead auction. The blue line represents the intraday auction price, which must be paid to balance
the power demand. One can also see that the energy price decreases when the amount of renewable
power increases. Moreover, one can observe on the evening of July 3, 2023, that the intraday market
price can signi�cantly increase if the energy demand surpasses the amount of provided energy.

Date (GMT+2)

P
ow

er
 (

M
W

)

P
rice (E

U
R

/M
W

h, E
U

R
/tC

O
2)

Electricity production and spot prices in Germany in week 28 2023

Energy-Charts.info; Data Source: ENTSO-E, EPEX SPOT; Last Update: 11.07.2023, 10:45 MESZ

Non-Renewable Renewable Load Day Ahead Auction Intraday Continuous Average Price

10.07.2023 10.07.2023 10.07.2023 11.07.2023 11.07.2023 12.07.2023 12.07.2023 12.07.2023
0

10.000

20.000

30.000

40.000

50.000

60.000

70.000

0

25

50

75

100

125

150

175

200

225

250

Figure 2.5: The graphic shows the energy prices of the market area of Germany and Luxembourg from
July 10, 2023, up to July 12, 2023. We see about an energy-market customer on July 11, 2023. Moreover,
the energy price (red line) for the next 24 hours is known. Thus, the customer can use this information
to schedule the next tasks so that the peak is avoided. The energy price of the next 24 hours corresponds
to the considered weights of our optimization problem 2.2.

Figure 2.4 and Figure 2.5 are generated by the website energy-charts [Fra23].

2.5 Related Literature

We now consider the related literature on job-shop scheduling problems with energy prices
and time windows. The job-shop scheduling problem is part of the set of classical scheduling
problem variations. There are also open-shop scheduling and �ow-shop scheduling prob-
lems. Furthermore, there are single-machine and parallel-machine scheduling problems.
In addition, there are the traveling salesperson problem and vehicle routing problems,
which are similar to scheduling problems. These problems di�er in additional constraints
(precedence constraints, assignment to particular machines, resource constraints). The

10

scheduling problems also di�er in the number of considered machines and the description
of the jobs as a list of several tasks. Since the di�erent scheduling problems can have some
constraints in common, the valid inequalities of other scheduling problems could also be
valid and should be transferred to the setting at hand.

This thesis considers the job-shop scheduling problem with energy prices and time
windows. This problem is strongly related to the classical job-shop scheduling problem.
If we do not consider the objective function, which in our case is the optimization of
the energy costs of the resulting schedule, multiple techniques and algorithms of classical
job-shop scheduling could be applied. However, unlike real-world scenarios, we assume
that energy prices are known with certainty for the entire time window. Moreover, the
processing and ramping durations are �xed. Therefore, the problem is deterministic, and
we do not consider stochastic approaches to solve the scheduling problem. We provide a
short review of job-shop scheduling-related work to embed the thesis within the context
of former and modern solution approaches to classical job-shop scheduling and energy-
aware scheduling. This review includes articles on problem formulations, presolving and
propagation schemes, branching and separation algorithms, and techniques to determine
primal solutions.

When considering the energy-aware scheduling problems in the case of integer linear
programming, the resulting formulations depend on two parts: the scheduling of tasks and
the computation of the energy. Therefore, the classical scheduling formulations are often
reused and should be discussed before the energy-aware scheduling models are considered.

Scheduling problems arise in various forms in di�erent research areas. A traveling
salesperson problem can also be interpreted as a scheduling problem as well as a vehicle
routing problem. An overview of di�erent scheduling problems can be found in the basic
books [Pin08, BJS94].

The classical job-shop scheduling problem with makespan is a well-known NP-hard
combinatorial optimization problem [LR79, LK78, GJS76]. Minor changes within the ob-
jective or the problem settings can increase or decrease its computational complexity. The
complexity classes of general scheduling problems in multiple settings are listed in several
papers and reviews [BDP96, JM99, CPW98]. The basic theory of complexity can be read,
for example, in the book of Korte and Vygen [KV12], the book of Garey and Johnson
[GJ79] or the book of Arora [AB06].

Job-shop scheduling problems can be solved by integer programming or heuristically
by combinatorial algorithms and metaheuristics, for example, [Pin08]. The history of com-
putational approaches in the case of job-shop scheduling starts with the papers of Johnson
[Joh53], Smith [Smi56], and Jackson [Jac57]. The authors consider di�erent variants of job-
shop scheduling with limited problem sizes and present algorithmic approaches to schedule
the jobs in the optimal order to minimize the makespan or total weighted tardiness. The
latter is also studied within further research [HG14, PVW85, ARPV90].

The formulation by Manne [Man60] was an early approach to solve scheduling prob-
lems by integer programming. Manne used continuous variables to describe the processing
start of the jobs and binary variables to describe the precedence order of two distinct jobs.
The binary variables are so-called linear ordering variables and are, among others, reused
in the article of Grötschel et al. [GJR84, GJR85], where he considers a linear ordering
problem. He also introduces additional valid inequalities and proposes a cutting-plane
algorithm to solve the problem e�ciently. An extension to linear ordering variables is the
so-called betweenness variables, which were introduced in the article of Caprara [COR+11]
and reused in the paper of Bley, and D'Andreagiovanni and Karch [BDK13]. Betweenness
variables are binary variables, �xing the order of three tasks each. Integer linear pro-
gramming (ILP) models using ordering variables correspond to disjunctive programming,
introduced by Balas [Bal79, Bal85]. However, disjunctive programming will have only a
minor role in this thesis. Nevertheless, the disjunctive graph and the detection of valid
execution orders will be used. For more insights, we refer to the book of Pinedo [Pin08]
and the paper of Baptiste et al. [BLPN06].

Another technique to order the tasks on the machines is a so-called rank-based formu-
lation. This formulation was introduced by Wagner [Wag59] and assigns tasks to positions
within the same machine. Additional variables are introduced to describe the feasible
processing start of each task from the given position on the machine.

Within this thesis, we are using a third way of formulating the scheduling problem,
called time-indexed formulation. This way of modeling assumes that the time window can
be discretized and was introduced by Bowman [Bow59]. The formulation requires a require
one variable for each task and each period. The variables explicitly depict if the task starts
processing in a speci�c period. In contrast to the previously mentioned formulations, the

11

number of variables of this formulation depends on the size of the time window. This
means that the formulation su�ers from many variables when solving instances with large
time windows.

Computational experiments of Ku and Beck [KB16] show that the disjunctive pro-
gramming approach outperforms the time-indexed formulation regarding the objective
makespan. However, the rank-based model and the disjunctive programming model of-
fer the possibility of branching on precedences or positions within the list of jobs. The
time-indexed formulation is only allowed to �x the processing of certain jobs to selected
periods in each branch. Thus, problem-adapted branching rules could signi�cantly change
the results of the computational experiments. Moreover, the problem formulation could
be strengthened by disaggregation of the precedence constraints. Another computational
study of scheduling formulations is in the paper of Unlu [UM10]. The author analyzes
the problem formulations in the case of di�erent processing durations and claims that the
time-indexed formulation is suitable if the processing durations are small in relation to the
time window.

Time-indexed formulations often lead to strong dual bounds [QS94, DW90]. Addition-
ally, the time-indexed models allow easy linking of period-dependent events and constraints
to the jobs processed at that point in time, for example, the description of interruptions
of links within the �ber replacing scheduling problem [BDK13]. Various discussions of
time-indexed formulations of several scheduling problems with additional constraints are
possible [DW90, Wol97, CS96, Art17]. Modern surveys on the di�erent classical job-shop
scheduling formulations are conducted in [XSRH22, HSRH22].

Additional constraints extend scheduling applications. There are resource-constrained
scheduling problems that deal with the limited workforce employed to process the tasks
[Tal82, Art13, HDD98]. Moreover, the consideration of precedence constraints often in-
creases the computational complexity of the problem [QW91, BSV08, CRd06, MSS04].
Scheduling applications also appear with di�erent additional constraints and need to be
handled di�erently than without the additional constraints. There can be precedence con-
straints between arbitrary tasks [QW91, BSV08, CRd06, MSS04], as well as release and
due dates for the jobs [DW90, SVDVZ96, BLSV98, BSV08]. Furthermore, one can consider
setup times [ANCK08, LP97, Yan99] describing the parts of the tasks' processing that can
be done before its predecessor running on a distinct machine is �nished.

The fundamental explanations of solving integer linear programs by branch-and-bound,
branch-and-cut, and branch-and-price-and-cut are described in standard works [KV12,
GNM16, CCZ14, Sch86]. The corresponding algorithms and approaches will be introduced
shortly in Sections 4.2, 4.3, and 4.4.

Branch-and-price uses column generation to solve the LP-relaxations, and it is intro-
duced by Dantzig and Wolfe [DW60]. The main idea of branch-and-price is solving the
branch-and-bound nodes by column generation. Column generation treats a subset of vari-
ables implicitly and only generates the variables (columns) and includes them in the prob-
lem description if needed. Column generation and some additional remarks on branch-and-
price are presented in the papers [Van05, DL05, LD05, Sad19]. The Dantzig�Wolfe reformu-
lations are also frequently used in current research, for example, in [LW18, MR23, MDL23].

Column generation was successfully applied in the case of scheduling, for instance, by
van den Akker, Hurkens and Savelsbergh [AHS00, vdAvHS99]. They proposed a Dantzig�
Wolfe reformulation of a time-indexed formulation. The authors present a branch-and-
price-and-cut algorithm as well as a reformulation of the time-indexed single-machine
scheduling formulation with weighted completion times. To that end, they replaced the
original time-indexed variables with variables describing (in)complete schedules. In addi-
tion to the column generation scheme, they present the inclusion of the column generation
approach into the branch-and-bound algorithm. Van den Akker derived all facet-de�ning
inequalities of right-hand-side 1 and 2 of the non-preemptive single-machine schedul-
ing problem within her thesis [vdA94]. The facet-de�ning inequalities of single-machine
scheduling also apply to job-shop scheduling, as single-machine scheduling remains a sub-
problem. Moreover, column generation was successfully applied in scheduling-related ap-
plications, such as nurse scheduling [JSV98] or air-crew scheduling [BSSW06]. These ex-
amples visualize that a Dantzig�Wolfe reformulation is useful if the new variables group
properties that need to be described by more complex formulations.

Similar valid inequalities for the time-indexed formulation of the single machine schedul-
ing problem are derived in the publication of Sousa and Wolsey [SW92]. The authors aggre-
gate problem constraints and derive a structure for valid cover inequalities of the generated
knapsack constraints. Bergham, Spieksma and T'Kindt [BS15] extended the idea of Sousa
and Wolsey to the unrelated parallel machine scheduling problem. They present new valid

12

inequalities involving a subset of tasks on two distinct machines. Moreover, the authors
suggested a presolving approach, where variables are �xed to zero by knowledge about the
best incumbent and the reduced costs of the variable. The article by Applegate and Cook
[AC91] presents multiple classes of valid inequalities of scheduling formulations. However,
these inequalities mostly need to be considered in the case of the continuous formulation
of [Man60] and are not considered within this thesis. An extensive survey of polyhedral
approaches to solving scheduling problems is given in [QS94]. Therein, di�erent problem
formulations are revised, and known valid constraints and the corresponding proofs are
discussed.

Scheduling problems, formulated as ILPs, can be solved by branch-and-bound. More-
over, the computation branching disjunctions should be problem-speci�c to guarantee ef-
�cient solution times, for example [RF81]. Van den Akker compares di�erent branching
schemes in the case of single-machine scheduling in [vdA94]. She presents variable branch-
ing (most infeasible branching), assignment constraint branching and branching based on
the rank of the task. She summarizes that the di�erent branching schemes perform quite
di�erently and concludes that problem-adapted branching rules perform better than clas-
sical variable branching in the case of time-indexed scheduling formulations. Brucker et
al. [BJS94] consider the job-shop scheduling problem with makespan. They present a
branching rule, which is related to the objective of the considered scheduling problem.
The branching scheme is based on searching for so-called critical paths within the disjunc-
tive graph and �xing ordering decisions between tasks. The authors additionally describe
strengthening approaches, like presolving, propagation and cutting planes. Caseau [CL95]
describes constraint propagation for job-shop scheduling. The mentioned rules aim to re-
duce the variable domains and highlight the similarity of propagation and cutting planes.
The developed branching algorithm supports the constraint propagation algorithm by com-
puting the branch so that the resulting number of domain reductions will be maximized.
Since the authors considered the makespan optimization, the branching rule aims to order
the tasks by introducing new precedence constraints. Further branching approaches to
solving job-shop scheduling problems are mentioned within the survey of Jain and Meeran
[JM99].

Near-optimal primal solutions are crucial to solve integer programs e�ciently by branch-
and-bound. Heuristics, approximation algorithms and metaheuristics compute the primal
solutions. One well-known heuristic in the �eld of job-shop scheduling problems is the shift-
ing the bottleneck heuristic [ABZ88]. This heuristic solves each machine's single-machine
scheduling problem one by one. Iteratively, the previously locally solved machines are
reoptimized. The selected single-machine scheduling with the highest infeasibility is de-
rived from time windows or precedence constraints. This machine is called the bottleneck.
The heuristic idea can also be adapted to job-shop scheduling, minimizing total weighted
tardiness [Pin08].

Additional heuristics are classical list-scheduling heuristics, which greedily add tasks
to machines until all tasks are scheduled or no further tasks can be added within their
time window. List scheduling is explained in standard works [Pin08, WS11]. In the case
of makespan optimization, there are di�erent ordering strategies that always provide an a
priori worst-case guarantee.

Another approach is to start with an initial (feasible) solution to search the neighbor-
hood of the current feasible solution for improvements. This procedure is called neigh-
borhood search or tabu search, and in the case of job-shop scheduling, it is mentioned in
[DT93, NS05, Yin04]. Next to algorithmic approaches, arti�cial intelligence solutions have
become more and more popular. Genetic algorithms [GR11, SOMGSOM14, CGT96] have
become more and more successful in determining (near-optimal) primal solutions. More
modern approaches use deep-learning [KFH22].

After brie�y mentioning the classical scheduling approaches, now, the additional con-
sideration of energy consumption and energy-aware scheduling is considered.

Nolde and Morari [NM10] consider a scheduling problem in the application area of steel
plants. The authors use a continuous time formulation, since time-indexed formulations
are computationally intractable for realistic cases. However, the authors must record the
events of starting and �nishing the jobs. The recorded events are used to determine if the
processing of a task a�ects a certain load interval. Thus, the resulting objective value, the
energy demand and the resulting costs will be computed from continuous processing starts.
Nolde and Morari state that a 10% gap solution is acceptable. The authors state that the
solution process to optimality is too time-consuming. Moreover, the authors mention that
idling and breakdowns of the machines need to be considered to improve the solutions,
re�ect reality and thus also alternative solutions.

13

A straightforward way to introduce energy demands and consumption into the context
of a scheduling model is by introducing variables to record the machines' states during
the di�erent periods. This is done in [SOMGSOM14], where di�erent machine states are
included to describe operational states with di�erent energy demands. In addition to
the integer programming model, the author presents a genetic algorithm leading to near-
optimal solutions. The author highlights using energy-aware scheduling solutions instead
of makespan solutions since avoiding energy-demand peaks leads to schedules with less
deployment of power generator emissions. In [LDL+14], the authors use a multi-objective
scheduling method using continuous processing start variables and binary ordering vari-
ables. The �rst objective of this multi-objective scheduling problem is the total weighted
tardiness. The second objective is the minimization of energy consumption. The authors
assume constant energy demand and reduce the problem by minimizing the number of idle
periods. Primal solutions are derived by a non-dominant sorting genetic algorithm. This
algorithm divides the population into levels and guarantees a diversity of the population.

The proceedings [SCH+16], by Selmair, Claus, Herrmann, Bley and Trost, introduce
a time-indexed formulation for the job-shop scheduling problem. The authors consider
di�erent energy prices and multiple machine states. This paper will be discussed in detail
since it is the starting point of this thesis. The authors of [B�M+18] concern a branch-
and-price approach to solve a parallel machine scheduling problem with machine modes
and mode-transition cost and durations. The authors present a branch-and-price and a
constraint programming approach. The constraint programming approach su�ers from
the symmetry present in the problem setting. Moreover, they suggest an extension to
accelerate the solution process. The article [MDG19] by Masmoudi et al. includes two
integer programming formulations for energy-aware job-shop scheduling. The article in-
cludes a comparison of the computational performance. The authors consider a job-shop
scheduling problem with additional constraints to model a power-peak limit. One ILP is
a time-indexed formulation, and a second formulation is also a time-indexed formulation,
extended by disjunctive variables to order the tasks and multiple variables to measure the
overlap of tasks on di�erent machines to limit the energy peak. The computational results
indicate that the smaller time-indexed formulation outperforms the more complex formu-
lation. Further integer programming models for energy-aware scheduling are presented in
by Park and Ham [PH22] and by Bruzzone et al. [BAPT12]. The authors of [BAPT12]
present a time-indexed �exible �ow-shop formulation. The processing starts of the jobs are
coupled to an energy-requirement variable. This variable is additionally bounded by a total
limit. The considered objective is a combination of weighted tardiness and the makespan.
The consideration of energy is considered a resource constraint. In [PH22], the authors
introduce a constraint programming and an integer programming approach. The authors
consider the �exible job-shop scheduling with objective makespan in combination with
the total energy price. The authors conclude that shifting production to o�-peak periods
leads to energy savings. More approaches to describe ramping in energy-aware scheduling
models are present within the articles [CGW00, ANCK08, SCH+16, SOMGSOM14]. More
approaches to tackle scheduling problems concerning energy consumption or energy prices
are reviewed in the surveys [WX06, GDDT16, Kou94, GHSW20, RM21].

There are various approaches for solving energy-e�cient scheduling problems by genetic
algorithms [MSTP15, DTG+13]. For additional information about research on algorithms
to derive primal solutions for energy-aware scheduling, see [GDDT16, ZDZ+19]. There is
a modern proposed algorithm for the min-cost and max-pro�t single machine scheduling
under electricity tari�s [PR21]. The article results that the general case of this optimization
problem remains NP-hard. Still, the problem can be solved using greedy algorithms and
dynamic programming approaches for exceptional circumstances with identical processing
times.

The scheduling approach seems to be related because the scheduling problem with re-
laxed integrality constraints remains on processing the tasks fractionally as cost-e�ectively
as possible concerning the ramping and processing duration of the machines and tasks. An
extensive survey of integer programming approaches to solve the unit commitment problem
is in [KOW20].

A real-world application of energy-e�cient scheduling is the energy consumption of
computing devices. There is, for example, the possibility of increasing the speed of the
machine [TV15], which in�uences the processing times of the jobs. Some further articles
on scheduling in real-world applications are referred to in [DW19, BMAB16]. Moreover,
there is also the possibility to consider social criteria. One social criterion that could be
considered is the availability of workers at the machines. A further constraint is considered
by Trost [TCH17] and extends the classical scheduling problem by modern aspects.

14

Studies have been carried out to con�rm the need to include energy e�ciency in the
objective of scheduling manufacturing processes [BVS+11, TRM+13] as well as research on
integrating energy e�ciency into the modern industry [TCTB13]. The articles address the
problem of cleaner production and energy usage in industry. They point out the problem
of lack of energy e�ciency in manufacturing processes [BVS+11, p.675]. Moreover, the
problems and needs of research and change are de�ned to reach the goals of European
improvement in energy e�ciency.

Categorization of the thesis

The mentioned literature considers classical and energy-aware scheduling problems. We
mentioned di�erent ways of modeling the scheduling of the jobs and the coupling of energy
consumption and processing. The di�erent successfully applied ways of computing feasible
primal solutions by combinatorial algorithms are considered, as well as branch-and-bound
methods to prove optimality. Within this thesis, we use techniques from mixed-integer pro-
gramming, linear programming and combinatorial optimization to accelerate the solution
process of a devised branch-and-bound algorithm. To that end, we present a Dantzig�Wolfe
reformulation [DW60] to model the job-shop scheduling problem with �exible energy prices
and time windows. The model considers di�erent machine states [SOMGSOM14, SCH+16].
Moreover, the problem formulation is strengthened by implicitly treating blocks of inac-
tive periods. The problem can be solved by brand-and-price [DL05, LW18]. However,
we can propose combinatorial presolving rules to reduce the number of possible variables.
Among others, there are combinatorial problem-adapted versions of dominated columns
and probing [ABG+20, BS15, BJS94]. Moreover, we can implement the presolving rules
to be useful in propagation. Valuable inequalities from the literature are considered to
strengthen the LP relaxation and to cut o� (non-optimal) feasible solutions early. We
analyze possible con�icts to �ll the con�ict graph [ANS00], implement cutting plane sep-
aration [vdAvHS99, SW92, BS15] and derive projected inequalities from linear ordering
[GJR84]. The derived constraints are strengthened by lifting [Bal75]. The integer pro-
gramming formulation is solved by branch-and-price and branch-and-cut. To explore the
branch-and-bound tree e�ciently, we develop our own branching rules, which fall into the
category of constraint-branching [vdA94, FP17, Van05, RF81]. To provide a feasible pri-
mal solution, we use classical list scheduling heuristics [Pin08], neighborhood searches and
dynamic programming. Moreover, we use the genetic algorithm of [GR11] to compute fea-
sible initial solutions. Further heuristics are problem-speci�c implementations of classical
list scheduling heuristics mentioned in [Pin08, WS11].

2.6 Complexity Analysis

Before the presentation of solution approaches to solve the job-shop scheduling problem
with �exible energy prices and time windows, we �rst want to understand the complexity
of the problem. This involves analyzing various aspects of complexity theory and their
consequences. Once we have done this, we can then demonstrate how the optimal machine
state assignment can be calculated for a given schedule S : O → [T [Z using a polynomial
time algorithm based on O and T . Finally, we will prove that the scheduling problem being
considered is NP-hard.

Combinatorial problems are classi�ed using computational complexity theory. This
theory also investigates the relationship between di�erent problem classes. It seeks to
determine whether problems are equally di�cult or if there are easier problems.

To determine if an algorithm can e�ciently solve a speci�c problem, the problem is
categorized into di�erent complexity classes. An algorithm is assumed to be e�cient if a
polynomial function f : N → N, n 7→ nc1 + c2, with two constants c1, c2 ∈ N bounds the
running time while n describes the problem size. To divide the problems into e�ciently
solvable and not e�ciently solvable ones, so-called decision problems are considered, where
the solution of the problem is either yes or no. Complexity theory can be described by the
usage of Turing machines, alphabets and languages. The necessary basics are explained in
the books [KV12, AB06]. Since we do not require the theory of languages and alphabets,
we want to reduce the de�nitions to the important aspects.

To de�ne classes of problems it is common to use decision problems. For a optimization
problem max{c⊤x | x ∈ V } the corresponding decision problem is a problem of a form

Exist a solution x ∈ V with c⊤x ≥ k

with k ∈ Z.

15

De�nition 2.6.1 ([Wol98] De�nition 6.1). For a problem instance X, the length of the
input L = L(X) is the length of the binary representation of a �standard� representation
of the instance.

De�nition 2.6.2 ([Wol98] De�nition 6.2). Given a problem P , an algorithm A for the
problem, and an instance X, let fA(X) be the number of elementary calculations required
to run the algorithm A on the instance X. f∗(l) = sup{fA(X) : L(X) ≤ l} is the running
time of algorithm A. An algorithm A is polynomial for a problem P if f∗(l) = O(lp) for
some positive integer p.

De�nition 2.6.3 ([Wol98] De�nition 6.3). NP is the class of decision problems with the
property that: for any instance for which the answer is YES, there is a polynomial proof
of the YES.

De�nition 2.6.4 ([Wol98] De�nition 6.5). If P,Q ∈ NP, and if each instance X of P can
be converted by an algorithm into an instance Y of instance Q in O(L(X)p), p ∈ N steps,
then P is polynomial reducible to Q.

De�nition 2.6.5 ([Wol98] De�nition 6.6). If each problem P ∈ NP is polynomial reducible
to problem Q ∈ NP, then the problem Q is called NP-complete.

De�nition 2.6.6 ([Wol98] De�nition 6.7). An optimization problem P is NP-hard if the
corresponding decision problem is NP-complete.

In classical job-shop scheduling problems the objective makespan is used. Makespan
denotes the length of time from the start to the completion of a sequence of tasks. The
objective makespan describes, that the objective is the minimization of the duration of the
processing.

The classical job-shop scheduling problem with objective makespan is known to be
NP-hard [Pin08].

To start our analysis of the complexity of the job-shop scheduling problem with �exible
energy prices and time windows, we �rst examine how the optimal machine states are
computed for a given feasible schedule SJ : O → [T [Z .

De�nition 2.6.7. Let SJ : O → [T [Z be a feasible schedule of an instance of the job-
shop scheduling problem with �exible energy prices and time windows. The value obj(SJ)
denotes the best objective value of valid machine states corresponding to the schedule.

De�nition 2.6.8. Let m ∈M be one machine and t0, t1 ∈ [T [Z with t0 < t1 two periods.
The value best(m, t0, sa, t1, sb) denotes the best costs of the transition from period t0 in
state sa ∈ {o�, on} to period t1 in state sb ∈ {o�, on} with o�ine, ramping and standby
states. If there is no feasible transition, the value is obj(S) =∞.

The �rst theorem declares that obj(S) can be e�ciently computed in polynomial time
using a shortest path algorithm.

Theorem 2.6.9. Let SJ : O → [T [Z be a feasible schedule of an instance of the job-shop
scheduling problem with �exible energy prices and time windows. The objective obj(SJ)
can be computed by the usage of a shortest path algorithm in O(|M |T).

Proof. The proof will follow the following steps.

1. In the �rst place, the network N = (D = (V,A), l) is created. The network represents
the valid machine state switches from inactive to active, active to active and active
to inactive within the time window.

2. Secondly, we show that each path from (start) to (end) corresponds to a feasible
machine state assignment for schedule SJ .

3. The third part shows that the optimal machine state assignment is present within
the network as a path.

4. The last part is the computation of the number of operations required for building
the network, computing the shortest path and reconstructing SM .

The computation of the objective, resulting from the assigned machine states, can be
independently done for each machine individually since the machine states are not coupled
for di�erent machines.

16

Therefore, let m ∈ M be one machine. Since the schedule SJ is already computed,
the tasks (j, k) ∈ OM

|m can be �xed to their processing starts. The machine m is blocked
within certain periods, de�ned by the set

T :=
⋃

(j,k)∈OM
|m

{SJ(j, k)− dsej,k, . . . ,SJ(j, k) + dprj,k − 1}.

The remaining non-�xed periods [T [Z \T of machine m must be used for transitions
from o�ine to o�ine, o�ine to online, online to o�ine and online to online. The allowed
machine states for the transitions are standby, o�ine, and ramping up and down. The
required ramping durations must be considered and cannot be preempted.

Additional conditions are that the machine is o� in period −1 and in period T , and
the machine must be online if a task is being set up or processed in period t.

The network N = (D = (V,A), l) has the following nodes and arcs.

1. The set of nodes is de�ned by V = {(on, t) | t ∈ [T [Z } ∪ {(o�, t) | t ∈ [T [Z }.

2. The set of arcs is built from the online → online arcs, the o�ine → o�ine arcs and
the ramping arcs from o�ine to online and from online to o�ine. The o�ine →
o�ine arcs are only present for periods t ∈ [T [Z \T . The set is de�ned by

A =
{(

(on, t), (on, t+ 1)
)
| t, t+ 1 ∈ [T [Z

}
∪
{(

(o�, t), (o�, t+ 1)
)
| t, t+ 1 ∈ [T [Z \T

}
∪
{(

(on, t), (o�, t+ drdm)
)
| t, t+ drdm ∈ [T [Z , [t, t+ drdm [Z ∩T = ∅

}
∪
{(

(o�, t), (on, t+ drum)
)
| t, t+ drum ∈ [T [Z , [t, t+ drum [Z ∩T = ∅

}
.

The set A only contains the feasible transitions. A start of a ramp-up in period t,
such that t + drum − 1 ∈ T is not created as well as a ramp-down in period t, such
that t ∈ T .

3. The arc lengths are de�ned as follows:

l(
(on,t),(on,t+1)

) = Pt ·Dst
m ∀ t, t+ 1 ∈ [T [Z \T

l(
(o�,t),(o�,t+1)

) = 0 ∀ t, t+ 1 ∈ [T [Z \T

l(
(on,t),(o�,t+drdm)

) =

t+drdm−1∑
q=t

Pt ·Drd
m ∀ t ∈ [T [Z \T [t, t+ drdm [Z ∩T = ∅

l(
(o�,t),(on,t+drum)

) =

t+drum−1∑
q=t

Pt ·Dru
m ∀ t ∈ [T [Z \T [t, t+ drum [Z ∩T = ∅

and for each (j, k) ∈ OM
|m we set

l(
(on,t),(on,t+1)

) = Pt ·Dse
m ∀ t ∈ [SJ(j, k)− dsej,k,SJ(j, k)[Z

and
l(

(on,t),(on,t+1)
) = Pt ·Dpr

m ∀ t ∈ [SJ(j, k),SJ(j, k) + dprj,k[Z .

Therefore, the arc lengths lu,v are the energy costs of the corresponding transition of arc
(u, v) = ((sa, t), (sb, q)) with sa, sb ∈ {on, o�} and t, q ∈ [T [Z .

Note that the arcs are always directed from a node (s, t)→ (s, q) with t < q. Thus, the
constructed network is acyclic. The created network can be visualized as follows: Now, we
will show that each path from (o�, 0) to (o�, T) in N corresponds to a feasible machine
state solution.

Let P be a path from (o�, 0) to (o�, T) in N . Obviously, the path visits the nodes
(on, t) for t ∈ T .
Suppose the path P misses at least one node (on, q) for q ∈ T .

� The path cannot visit the node (o�, q) since this node has either no ingoing arcs or
no outgoing arcs by construction.

� The path is using a ramping arc ((o�, t0), (on, t0 + drum)) with q ∈ [t0, t0 + drum]. This
arc cannot be used since it is forbidden by the construction of N .

17

Task 2Task 1

0 1 2 3 4 5 6 7 8 9 10 11 T

online-nodes

o�ine-nodes

time index

Figure 2.6: Visualization of an acyclic network to compute, for one machine with drdm = 1 and drum = 2,
the best matching costs for ramping and standby, if the tasks processing starts are �xed. The redundant
nodes and edges are not drawn to improve the visualization.

� The path is using a ramping arc ((on, t0), (o�, t0 + drdm)) with q ∈ [t0, t0 + drdm]. This
arc cannot be used since it is forbidden by the construction of N .

By construction, the machine needs at most drum periods to ramp up and drdm periods
to ramp down. Therefore, the machine cannot use shorter ramping within the path P .
Thus, the representation of the ramping is valid. We only forbid ramp arcs that start or
end within a period t ∈ T or that lead to the absence of a period t ∈ T . As a result,
the remaining ramp arcs are automatically feasible. Thus, the ramping, used by the best
corresponding solution SM , is present within the network. Between the periods of �xed
online presence of the solution SM , the solution can switch between online and o�ine if
there is enough space for the ramping. Therefore, the best machine state assignment can
be re-detected as a path within the network N .

The computation of the machine states from the path is straightforward. For each
m ∈M and t ∈ [T [Z set:

� SM (m, t) = o� if ((o�, t), (o�, t+ 1) if t+ 1 ∈ [T [Z and (o�, t) ∈ V (P).
� SM (m, t) = pr if t ∈ [SJ(j, k),SJ(j, k) + dprj,k[Z .
� SM (m, t) = se if t ∈ [SJ(j, k)− dsej,k,SJ(j, k)[Z .
� SM (m, t) = st if t ∈ [T [Z \T and (on, t) ∈ V (P).
� SM (m, q) = ru if there exists a t ∈ [T [Z with ((o�, t), (on, t + drum)) ∈ A(P) and
q ∈ [t, t+ drum].

� SM (m, t) = rd if there exists a t ∈ [T [Z with ((o�, t), (on, t + drdm)) ∈ A(P) and
q ∈ [t, t+ drdm].

The network construction requires O(T) operations. There are at most O(T) nodes
to denote the standby and o�ine periods. For each node v ∈ V , there are at most two
outgoing arcs. Therefore, the number of arcs can be limited by O(T). Thus, the size of the
network is bounded by O(T). Since the network is acyclic, the runtime of the shortest path
algorithm is bounded by O(|V | + |A|) = O(T). Therefore, the number of operations to
compute the objective value of SJ is polynomially bounded in T . The number of operations
required to compute SM can be described as follows: for each m and t, the machine state
must be computed by detecting the current period in the computed path P . This operation
can be described by an iteration in a list of visited nodes to check, whether the period is
assigned the start of an arc, hidden within an arc, or an o�ine or online node. We can
limit the number of operations by T 2 per machine.

The reconstruction of the machine states requires additional O(T) operations to de-
termine for each period t ∈ [T [Z the corresponding machine state. The reconstruction of
the machine states can be avoided by using additional labels at each node to track the
machine state of the path within the algorithm.

However, the construction of the network and acyclic shortest path algorithm ensure
the fast computation of the best machine states and the corresponding objective value of
a given feasible schedule S.

Lemma 2.6.9 leads to the following lemma.

Lemma 2.6.10. For m ∈M , t0, t1 ∈ [T [Z and sa, sb ∈ {on, o�}, the number of operations
to compute best(m, t0, sa, t1, sb) is polynomially bounded in |M | and T .

We will come back to the result in sections 3, 4.1 and 4.5.

Theorem 2.6.11. We can decide in polynomial time whether a mapping S : O → [T [Z
describes a feasible schedule.

18

Proof. The feasibility of the provided schedule can be validated in polynomial time:

� The feasibility of all job-sequences can be veri�ed in O(|O|), since one has to compare
the start of S(j, k) with a start S(j, k+1) and has to verify that the di�erence is at
least dprj,k, for (j, k), (j, k + 1) ∈ O.

� The feasibility of the schedule S can be validated in O(|M |·T ·|O|·T) = O((|O|·T)2).
By computing a matrix W ∈ RnM×T with

Wm,t =
∑

(j,k)∈OM
|m

t+d
pr

j,k
−1∑

q=t−dse
j,k

1.0 ∀ t ∈ [T [Z

and validating Wm,t ∈ {0, 1} for each m ∈M and t ∈ T , the validity of the schedule
is proven. Otherwise, two tasks are processed on the same machine, disrespecting
the setup or processing times. In addition, the release and due date conditions of
each task must be validated by two additional comparisons per task. Another way to
verify the feasibility of the schedule is to do O(|O|2) comparisons of the processing
starts of the tasks on the same machine.

Thus, the veri�cation process can be completed in O(|O|2) operations.

Theorem 2.6.12. Given a feasible schedule SJ : O → [T [Z one can decide in polynomial
time whether a mapping SM :M × [T [Z → S describes a feasible machine state assignment
corresponding to the schedule SJ .

Proof. We are given the feasible schedule SJ : O → [T [Z and the machine state assignment
SM :M × [T [Z → S. Then, the veri�cation of whether the machine states are set correctly
is also done in polynomial time:

1. First, the correct setting of the machine states se, and pr in the period t ∈ [S(j, k)−
dsej,k,S(j, k) + dprj,k[Z needs to be done for each task (j, k) ∈ O. We can bound them
by O(|O| · T) operations. Since for each task (j, k) ∈ O, there are at most T · 2
queries of the machine state.

2. Secondly, if the machine states of processing and setup are without any mistakes, the
further machine states must be checked. Therefore, all machines states s ∈ {st, se, pr}
are transformed into on. Then, the network of proof 2.6.9 is created. If the sequence
of machine states corresponds to a (0, o�) − (T, o�) path within the network, then
the machine states are set correctly, and the solution is feasible. The validation that
the sequence of the machine states corresponds to a path within the created network
is bounded by O(T) for each m ∈M .

Thus, the veri�cation process can be completed in O(nM · T) operations.

Corollary 2.6.13. We can decide in polynomial time, whether a schedule SJ : O → [T [Z
and a machine state assignment SM :M × [T [Z → S are feasible or not.

Remark 2.6.14. If there are additional constraints, such as the energy demand of the
machines is not allowed to exceed a limit the computation of the optimal machine states
can become harder, and the usage of a shortest path algorithm to compute the objective
value is not guaranteed.

Now, we show that the job-shop scheduling problem with �exible energy prices and
time windows is NP-hard.

Theorem 2.6.15. The job-shop scheduling problem with �exible energy prices and time
windows is NP-hard.

Proof. Let k ∈ N. The decision problem for the classical job-shop scheduling problem with
objective makespan, whether there exists a schedule with Cmax ≤ k, is NP-complete for
m ≥ 3 [SS95, p.239]. The mentioned decision problem can be reduced in polynomial time
to the job-shop scheduling problem with �exible energy prices and time windows using the
following transformation:

1. The number of machines in the job-shop scheduling problem with �exible energy
prices and time windows equals the number of machines in the classical job-shop
scheduling problem.

2. Jobs and tasks are copied.

3. The processing time of each task is not changed.

19

4. The setup time of each task is set to 0.

5. The ramping durations are set to 1 for each machine.

6. The energy demand is set to Ds
m = 1 for each m ∈M and s ∈ S.

7. The time window is set to T = 2 · k.
8. The time windows of the tasks satisfy aj,k = 0 and fj,k = 2 · T .
9. Set Pt = 0 for t ∈ [0, k + 2[Z .

10. Set Pt = 1 for t ∈ [k + 2, T [Z .

Each machine must at least ramp up and down once. The required space is drdm + drum =
1 + 1 = 2. If there exists a feasible schedule of length ≤ k for the classical job-shop
scheduling instance, then the job-shop scheduling problem with �exible energy prices and
time windows has a solution with objective 0. Suppose each solution of the job-shop
scheduling problem with �exible energy prices and time windows has an objective greater
than 0, but the classical job-shop scheduling problem has a solution S with Cmax ≤ k.
Let S be the solution of the classical job-shop scheduling problem. Then, the solution
S(j, k)∗ = S(j, k) + 1 is a feasible schedule with C∗

max ≤ k + 1 and the earliest start is in
period 1. The schedule S∗ is a feasible schedule of the job-shop scheduling problem with
�exible energy prices and time windows if we imply the best corresponding machine states.
Since the scheduling �nishes in period k, the earliest ramp-down can start in period k+1.
Therefore, each machine is o�ine on period t ≥ k + 2, and the objective value is 0. This
is a contradiction to the assumption.

This implies that the existence of a polynomial time algorithm for the job-shop schedul-
ing problem with �exible energy prices and times would also solve the classical job-shop
scheduling problem, which is known to be NP-hard. Thus, the job-shop scheduling problem
with �exible energy prices and time windows is also NP-hard.

Within this thesis, the execution order of the tasks is sometimes assumed to be �xed
to compute feasible primal solutions. Less challenging is the analysis of the single-machine
scheduling problem with the objective ��exible energy prices� and a �xed execution order
of the tasks. We only provide an analysis of the single machine scheduling result.

The following theorem states that the single-machine scheduling problem with �exible
energy prices and time windows can be solved in polynomial time. Therefore, we provide
an algorithm to compute the solution of the single-machine scheduling problem with en-
ergy prices and a total order of the tasks and prove that the algorithm's solution time is
polynomially bounded in the size of the number of tasks, the number of machines and the
size of the time window.

Theorem 2.6.16. The single-machine scheduling problem with �exible energy prices, time
windows and a total order of tasks can be solved within polynomial time.

Proof. We are given one machine and a set of n tasks o = (j, k) ∈ O. The operations
oi ∈ O are ordered, such that oi ≺ oj , if i < j for i, j ∈ [n[Z . We build the following
network N = (D = (V,A), l):

� The set of nodes is de�ned by

V ={start, end}
∪ {(o, t) | ∀ o ∈ O, t ∈ [T [Z }.

� The set of arcs is de�ned by

A = {(start, (o0, t)) | t ∈ [T [Z }
∪ {((on−1, t), end) | t ∈ [T [Z }
∪ {((oa, t), (ob, q)) | oa = (j, k), ob = (i, l) ∈ O, b = a+ 1

t, q ∈ [T [Z with q ≥ t+ dprj,k + dsei,l}.

.

The network contains n · T + 2 nodes and O(n · T 2) arcs. The arc lengths are set to

l(start,(o,t) = best(m, 0, o�, t− dsej,k, on) + obj(j, k, t) ∀ t ∈ [T [Z , (j, k) = o ∈ O,
l((o,t),end) = best(m, t+ dprj,k, on, T, o�) ∀ t ∈ [T [Z , (j, k) = o ∈ O,

l((oi,t),(oj ,q)) = best(m, t+ dprj,k, on, q − d
se
i,l, on) + obj(i, l, t) ∀ ((oi, t), (oj , q) ∈ A.

20

start

j0, 1

j0, 2

j0, 3

j0, 4

j0, 5

j0, 6

j0, 7

j1, 1

j1, 2

j1, 3

j1, 4

j1, 5

j1, 6

j1, 7

j2, 1

j2, 2

j2, 3

j2, 4

j2, 5

j2, 6

j2, 7

end

Figure 2.7: This �gure visualizes the network, which is used to compute the optimal schedule with a
prede�ned �xed execution order. In this example, we set the setup duration to 0 and the processing
duration to 1 for each job. The ramping durations are set to one for ramp-up and ramp-down. Moreover,
the complete time window is set to T = 9. There is a start node and an end node for the path. The
jobs {j0, j1, j2} must be processed in the order j0 ≺ j1 ≺ j2. The job j0 can start processing in period
t ∈ {1, . . . , 7}. Then, the job j1 must start processing. However, the task j1 cannot start in period t = 0
since j0 must be processed before. Therefore, the resulting digraph only contains arcs (ji, t) → (ji+1, q)
with q > t. The arc lengths correspond to the best energy demand of the transition. Any path from
start to end must de�ne the valid processing starts of the tasks j0, j1 and j2.

One example of such a graph is visualized in Figure 2.7. The computation of obj(j, k, t) is
polynomially bounded. The computation of best(m, t0, t1) is polynomially bounded. This
fact follows from Corollary 2.6.9. The network is acyclic. Therefore, the runtime of the
shortest path algorithm is bounded by O(n·T 2). The computation of the arc weights needs
O(n · T 3) operations. Thus, the construction and computation are polynomially bounded
by the length of the time window and the number of tasks.

If at least one path exists, the shortest path within the network describes the optimal
solution to the single-machine scheduling problem with �exible energy prices and a �xed
total order of the tasks. Suppose we are given an optimal and feasible schedule. Then,
the path through the network is �xed since the processing starts are �xed. Thus, the
resulting objective value is also �xed, and the network algorithm will �nd the associated
solution. Since the network only allows feasible processing starts and valid transitions
between the start and the �rst processing start, between processing starts of successive
tasks, and between the last processing start and end, there cannot be any further feasible
solution with a lower objective than the optimal solution. Therefore, the single-machine
scheduling problem with �exible energy prices can be solved within polynomial time.

The additional consideration of start and due dates does not change the algorithm's
complexity. However, the number of nodes for each task will be reduced to the set of
feasible processing starts within the time windows.

In the case of multiple machines, the complexity of the job-shop scheduling problem
with �exible energy prices and the total order of the tasks on the machines is unknown.
However, if we allow further precedence constraints between arbitrary tasks, then the
complexity of the resulting problem is NP-hard [Har21]. In addition, if we neglect the
�xed execution order of the tasks, the problem becomes NP-hard if there are precedence
constraints or release and due dates [LK78, LLK77].

21

22

Chapter 3

Integer Linear Programming

Formulations

This chapter presents two modeling approaches for the job-shop scheduling problem with
�exible energy prices and time windows. First, we review the problem formulation of
[SCH+16] and suggest various ways in which the model can be strengthened. The main part
of this chapter is the introduction of a partial Dantzig�Wolfe reformulation of the model in
[SCH+16]. We only call the reformulation a partial Dantzig�Wolfe reformulation because a
part of the integer solutions of the problem formulation in [SCH+16] is not feasible in terms
of 2.1.3 and thus, those solutions are no longer feasible in the reformulation. The partial
Dantzig�Wolfe reformulation uses new variables explicitly describing intervals where the
machine is inactive (ramping down, o�ine, and ramping up). Furthermore, the objective
coe�cients are assigned directly to each model variable within the reformulation. Both
formulations have one thing in common: scheduling the tasks under precedence constraints.
The formulations only di�er in the description of the computation of the total energy price.
Before introducing the problem formulations, note that the basic concepts of integer linear
programming are covered particularly well in the books [KV12, WN14, CCZ14] and we do
refer to these books to explain the basics.

Remark 3.0.1. To not overload the ILP modeling with notation, the time index bounds
are not speci�ed down to the smallest detail. If the index of a summation is out of bounds,
the associated sum will be assumed to start later or end earlier to run within the limits.
Thus, for a ∈ RT and l, r ∈ Z with l ≤ r, we use the following notation:

r∑
t=l

ai =

min{T−1,r}∑
t=max{0,l}

ai.

3.1 A State-Based Model

The authors in [SCH+16] introduced an integer programming formulation for the job-shop
scheduling problem with �exible energy prices and time windows. They used time-indexed
variables for the processing starts of the tasks and time-indexed variables for the machine
states.

For each task (j, k) ∈ O and for each t ∈ [T [Z , there exists a binary variable xj,k,t ∈
{0, 1} with the following meaning

xj,k,t =

{
1, i� task (j, k) starts processing in period t,
0, otherwise.

The objective coe�cient of the variable xj,k,t is zero. Additionally, as mentioned in Sec-
tion 2, the setup of task (j, k) needs to be completed directly before the start of its pro-
cessing. To that end, the constellation xj,k,t = 1 means that the setup of (j, k) starts in
period t − dsej,k and the processing of task (j, k) �nishes in period t + dprj,k − 1. In period
t+ dprj,k, the machine is ready to switch to another machine state.

The energy price, and thus the objective value of the schedule, is computed by linking
the processing starts of the tasks to machine state variables. The machine state variable

23

ysm,t ∈ {0, 1} is created for each machine m ∈ M , each state s ∈ S, and each period
t ∈ [T+[Z . The variable de�nition is as follows:

ysm,t =

{
1, i� machine m runs in period t in state s,
0, otherwise.

The objective coe�cient of the variable ysm,t is the price of the consumed energy. These
costs are determined by Ds

m · Pt for running the machine m in state s in period t. The
x-variables correspond to the schedule SJ and the y-variables correspond to the machine
state assignment SM . We present the complete integer programming formulation for the
job-shop scheduling problem with �exible energy prices and time windows.

minimize
∑
m∈M

∑
t∈T

∑
s∈S

Ds
m · Pt · ytm,s (3.1a)

subject to ∑
t∈[aj,k,fj,k[Z

xj,k,t = 1, (j, k) ∈ O (3.1b)

t−d
pr

j,k∑
q=0

xj,k,q −
t∑

q=0

xj,k+1,q ≥ 0, (j, k), (j, k + 1) ∈ O, t ∈ [T [Z (3.1c)

∑
s∈S

ytm,s = 1, m ∈M, t ∈ [T+[Z (3.1d)

y−1
m,o� = 1, m ∈M (3.1e)

yTm,o� = 1, m ∈M (3.1f)∑
(j,k)∈OM

|m

t∑
q=t−d

pr

j,k
+1

xj,k,q ≤ ytm,pr, t ∈ [T [Z ,m ∈M (3.1g)

∑
(j,k)∈OM

|m

t+dsej,k∑
q=t+1

xj,k,q ≤ ytm,se, t ∈ [T [Z ,m ∈M (3.1h)

ytm,pr + ytm,se + ytm,st

+yqm,o� + yqm,ru ≤ 1, m ∈M, t ∈ [T+[Z , q ∈ [t+ 1, t+ drdm [Z ∩[T+[Z

(3.1i)

ytm,pr + ytm,se + ytm,st

+yqm,o� + yqm,rd ≤ 1, m ∈M, t ∈ [T+[Z , q ∈ [t− drum , t− 1[Z ∩[T+[Z

(3.1j)

xj,k,t ∈ {0, 1} (j, k) ∈ O, t ∈ [T [Z (3.1k)

ysm,t ∈ {0, 1} m ∈M, s ∈ S, t ∈ [T+[Z (3.1l)

Description of the Integer Programming Formulation

The objective (3.1a) describes the minimization of the total price of the consumed energy.
The assignment constraints (3.1b) enforce that each task (j, k) ∈ O starts processing
between its earliest and latest possible start time. The inequalities (3.1c) describe the
precedence constraints of successive tasks (j, k) ∈ O belonging to the job-sequence j ∈ J .
The equations (3.1e) and (3.1f) force the machine to be o�ine at the beginning and at the
end of the time window [T+[Z . Thus, the machine m ∈M must ramp up and ramp down
at least once if there exist some tasks (j, k) ∈ OM

|m to process. The equations (3.1d) ensure
that each machine m ∈ M is in each period t ∈ [T+[Z in one machine state s ∈ S. The
constraints (3.1h) couple the machine state variable ysem,t to the processing variables xj,k,t
with (j, k) ∈ OM

|m and t ∈ [T [Z for machine m ∈ M . The machine m must run in state
setup in period t, if a task (j, k) ∈ O starts processing in a period q ∈ [t+ 1, t+ dsej,k + 1[Z
with (j, k) ∈ OM

|m . Analogously, the inequalities (3.1g) describe that the machine m ∈ M
needs to be in state processing in period t ∈ [T [Z , if one task (j, k) ∈ OM

|m starts processing
in q ∈ [t− dprj,k + 1, t+ 1[Z .
The inequalities (3.1i) are the ramp-down constraints of machine m. The inequalities state
that if the machine is active in period t, at least drdm periods must pass before the machine
can be in the state o�ine or ramp-up. Analogously, the constraints (3.1j) are the ramp-up

24

constraint and describe the number of necessary periods of a ramp-up of each machine
m ∈ M . The inequalities describe that drum periods must pass if the machine is in the
state o�ine or ramp-down in period q until the machine can be active. The integrality
constraints are the remaining conditions (3.1l) and (3.1k).

The respective Polytopes

The polytope, spanned by the set of all feasible solutions to the problem formulation, is
de�ned by

PS := conv({(x, y) ∈ {0, 1}(O×T+M×S×T+) |
(x, y) is feasible for (3.1a)�(3.1j)}).

The polytope of the LP relaxation is de�ned by

PS
LP := conv({(x, y) ∈ [0, 1](O×T+M×S×T+) |

(x, y) is feasible for (3.1a)�(3.1j)}).

De�nition 3.1.1. The polytope

Pfeas = conv({(x, y) ∈ Nnstates

| (x, y) corresponds to a feasible solution (SJ ,SM)})

includes all feasible solutions in terms of 2.1.3.

Our goal is to provide a problem formulation which is as close as possible to Pfeas

but does not exclude any of its solution. Therefore the following part presents an existing
problem formulation. Afterward a new problem formulation for the job-shop scheduling
problem with �exible energy prices and time windows is introduced.

Further Remarks to the Formulation

The problem formulation describes the set of all feasible schedules and the respective
valid machine pro�les. The ILP formulation combines a classical time-indexed scheduling
formulation with a description of feasible machine state sequences. However, the ramping
constraints (3.1j) and (3.1i) allow an arbitrary enlargement of the ramping if it is useful
concerning the objective. Furthermore, the formulation in [SCH+16] is only valid for
the scenario when the energy demand satis�es Dst

m < Dpr
m and Dst

m < Dse
m , which is a

frequently occurring scenario. Moreover, the model assumes that the energy demand of
machine state standby is smaller than the machine states processing or setup. However,
running the machine on standby can be more expensive than running the machine in
setup or processing. For example, heating and cooling processes to ensure operational
readiness could increase the energy demand. Then, for realistic negative energy prices, the
problem formulation does not necessarily compute a valid optimal solution in terms of 2.1.
Therefore, here, the problem formulation gives a chance for improvement. Furthermore,
one can create an integer feasible solution of (3.1a)�(3.1l) with incomplete ramping between
a suitable number of o�ine periods, for example

(. . . , rd, rd, rd, o�, o�, ru, o�, . . .)

in the case of drdm = 3 and drum = 2. The constraints (3.1i) and (3.1j) only ensure that the
machine cannot switch directly from active to inactive. However, the computed schedule
represented by x is feasible. Thus, one can compute the respective best machine states
within polynomial time, see 2.6.9. Nevertheless, the model of [SCH+16] contains solutions,
which are infeasible in terms of the problem de�nition 2.1.3. The authors of [SCH+16]
know about the problems and only propose this formulation for instances with limited
energy demand and positive energy prices. Moreover, the authors remark that there is
a need for further constraints to ensure that the machines strictly satisfy the ramping
durations.

3.1.1 Additional Modeling Variants

The state-based problem formulation in [SCH+16], stated here as (3.1a)�(3.1k), is not used
for instances with negative energy prices. The problem formulation can compute solutions
where the machines can run in setup or processing, although the machines must run in

25

standby mode to be feasible in terms of 2.1.3. This wrong assignment can be corrected by
using the equations

∑
(j,k)∈OM

|m

t∑
q=t−d

pr

j,k
+1

xj,k,q = yprm,t t ∈ [T [Z ,m ∈M (3.2)

∑
(j,k)∈OM

|m

t+dsej,k∑
q=t+1

xj,k,q = ysem,t t ∈ [T [Z ,m ∈M (3.3)

instead of (3.1h) and (3.1g). While the inequalities (3.1h) and (3.1g) only ensure that the
machine is running in state processing, respectively setup if one task is processed or set
up in the given period on the machine, the constraints (3.2), respectively (3.3), ensure the
machine is only allowed to run in state processing or setup if one task is processed or set
up in the given period on the machine.
Therefore, if no task is set up or processed in period t ∈ [T [Z , but the machine should
be active, the machine must idle, and the machine state computation is always consistent
with the problem de�nition 2.2 and the description of a feasible solution 2.1.3.

Theorem 3.1.2. The constraints (3.2) and (3.3) are valid for Pfeas.

The constraints (3.2) and (3.3) describe the relationship between starting the processing
of a task on the dedicated machine and assigning the correct machine state. The former
constraints only describe an implication. Therefore, these constraints are valid, and the
proof is not necessary.
The state-based formulation does not ensure that the machines complete at least one full
ramp-up and ramp-down in fractional solutions. Moreover, the machine can run partially
in the state o�ine in each period t ∈ [T+[Z . The tasks are processed fractionally, since the
machine is only ramped up fractionally. Then, the machines save energy by only partially
ramping up and down. The following constraints can be used to improve the description
of the machine's fractional ramping.

Lemma 3.1.3. The constraints∑
t∈[T [Z

yrum,t ≥ drum ∀ m ∈M : OM
|m ̸= ∅ (3.4)

and∑
t∈[T [Z

yrdm,t ≥ drdm ∀ m ∈M : OM
|m ̸= ∅ (3.5)

are valid for Pfeas.

The validity of the constraints is obvious. Since the machine m ∈ M must be active
to process a task (j, k) ∈ OM

|m , the machine must ramp up once and ramp down once.
Therefore, the number of periods with machine state rd or ru is at least given by drdm ,
respectively drum .

Selmair et al. propose to strengthen the formulation of the ramping and machine states
by adding additional constraints of similar structure as (3.1i) and (3.1j). We present further
valid inequalities of the machine states.

Theorem 3.1.4. The constraints

yrdm,t ≤ 1− yo�m,t−1 − y
se
m,t−1 ∀ m ∈M, t ∈ [T+[Z , t ≥ 0 (3.6)

and

yrum,t ≤ 1− yo�m,t+1 m ∈M, t ∈ [T+[Z t ≤ T − 1 (3.7)

are valid constraints of Pfeas.

Proof. Let (x, y) ∈ Pfeas. Suppose the machine is in the state rd in period t ∈ [T+[Z , t > 0
and in the state setup in period t − 1. Each task (j, k) ∈ OM

|m has a processing time of
dprj,k ≥ 1 and the processing of a task must follow immediately on its setup. Since the ma-
chine runs in period t in rd, the processing cannot succeed the setup immediately. Thus,
the machine cannot run in rd in period t. Therefore, the solution (x, y) is not valid in
terms of 2.1.3, and the constraints (3.6) are valid for Pfeas.

26

The validity of constraints (3.7) can be proven analogously. Let (x, y) ∈ Pfeas. Suppose
the machine runs in period t in ru and in state o� in period t + 1. The machine must
satisfy the switching rules and cannot directly switch from ru to o�. Since the ramping
durations are chosen to be greater than 0, the machine cannot be in state o� in period
t+ 1. Therefore, the constraint (3.7) also describes a valid con�ict.

The constraints (3.6) and (3.7) cut o� the integral solutions of the form solution

(. . . , yo�m,t, y
rd
m,t, y

o�
m,t, . . .) = (. . . , 1, 1, 1, . . .)

from PS , which are not feasible in terms of 2.1.3.
These integer feasible solutions only appear in the cases with negative energy prices

and instances, with Do�
m > Ds

m with s ∈ {ru, rd}. Using the additional constraints (3.5),
(3.4), (3.6), and (3.7) leads to integer solutions, without non-natural machine behavior and
extensions of processing and setup. Furthermore, the point-wise ramping can be delimited.
However, the number of required constraints is large, and a more compact formulation is
desirable. Therefore, we exploit the fact that the variables for shutdown and startup only
appear in groups of a �xed size.

Moreover, the variables for the machine states o�ine, ramp-down, and ramp-up only
appear in describable sequences. This fact will be exploited within our next modeling
approach.

3.2 A Partial Dantzig�Wolfe Reformulation

Before discussing the reformulation of the state-based formulation of the job-shop schedul-
ing problem with �exible energy prices and time windows, we brie�y mention some impor-
tant facts concerning Dantzig�Wolfe reformulations.

3.2.1 Dantzig�Wolfe Reformulation in General

A Dantzig�Wolfe reformulation is a well-known technique to reformulate integer linear
programs. A short explanation and details of its implementation are given in [DW60].
Further explanations of the basic concepts used in column generation are, for example, in
[CCZ14]. We consider an integer program of the form

min{c⊤x | Ax ≤ b, x ∈ Zn}

with A ∈ Qm×n, b ∈ Qm and c ∈ Qn. We partition the set of constraints into two
subsystems AIx ≤ bI and AJx ≤ bJ with [m[Z = I∪̇J . The set of feasible solutions of the
subsystem AJx ≤ bJ is described by

QJ := {x ∈ Rn | AJx ≤ bJ , x ∈ Zn}.

Then, we can rewrite the original optimization problem min{c⊤x | Ax ≤ b, x ∈ Zn} as

min{c⊤x | AIx ≤ bI , x ∈ conv(QJ), x ∈ Zn}.

Now, let {vk ∈ Rn | k ∈ K} be a �nite set of all extreme points of conv(QJ) and {rl ∈
Rn | l ∈ R} a �nite set of all extreme rays of conv(QJ). Then, we can describe each point
in x ∈ conv(QJ) by

x =
∑
k∈K

λkvk +
∑
l∈R

µlrr∑
k∈K

λk = 1

0 ≤ λk ≤ 1 ∀ k ∈ K
0 ≤ µl ∀ l ∈ R.

27

Substituting x in the problem formulation min{c⊤x | Ax ≤ b, x ∈ Zn} leads to the
so-called Dantzig�Wolfe reformulation:

min
∑
k∈K

λkc
⊤vk +

∑
l∈R

µlc
⊤rl

subject to:
∑
k∈K

λkAIvk +
∑
l∈R

µlAIrr ≤ bI∑
k∈K

λk = 1

∑
k∈K

λkvk +
∑
l∈R

µlrr ∈ Zn

0 ≤ λk ≤ 1 ∀ k ∈ K
0 ≤ µl ∀ l ∈ R.

The variables of this formulation are λk for k ∈ K and µl for l ∈ R. The challenge is
to describe {vk ∈ Rn | k ∈ K} and {rl ∈ Rn | l ∈ R} e�ciently, since these sets can be
exponentially sized. Often, those sets are too large to enumerate their members. Further
details can be read in [WN14, GL10, DW60].

3.2.2 Application to Job-Shop SchedulingWith Energy Prices
and Time Windows

The analysis of the problem formulation (3.1a)�(3.1l) and the attempts to describe the
state transitions in a meaningful way lead to the approach of introducing a Dantzig�Wolfe
reformulation. One idea is the introduction of variables for each machine describing the
machine states of each period t ∈ [T [Z . However, the number of variables is O(nM · |ST |)
and thus too large.

We observed that the descriptions of the transitions from o�ine to active and from
active to o�ine have a special property: they always appear in groups or sequences. The
groups are as follows:

� O�ine periods followed by drum ramping-up periods.
� drdm ramping-down periods, o�ine periods and dum ramping-up periods
� drdm ramping-down periods and some o�ine periods.

Instead of formulating constraints to describe the ramping durations and the switching
rules from inactive to active and from active to inactive, we introduce variables describing
all valid intervals of inactivity. The inactive intervals always have the form: ramping-down,
zero or more o�ine periods, and ramping-up. The correct ramping down and ramping
up duration is always guaranteed. The main reason for this simpli�ed notation is the
implementation of the respective column generation algorithm, see Section 4.4. A further
advantage of the uniform shape is the computation of the respective energy costs. The
uniform shape of the inactive periods will, of course, be respected in the objective function
and by an enlarged time window.

Since the uniform shape of the inactive intervals adds a ramp-down, respectively, and
an additional ramp-up to some inactive intervals, the time window needs to consider that
additional ramping, too. Therefore, the valid starts and ends of inactive intervals on
machine m ∈ M are chosen from the extended time window Tm

B = [−drdm , T + drum [Z to
encode the constraints (3.1e), (3.1f) by inactive intervals of the similar form. Otherwise,
we would describe that the machine has to initially ramp down before the machine can be
ramped up for processing the tasks and shorten the time window similarly. Note that Tm

B

contains periods, which are irrelevant within the following context. Note that Tm
B is a set,

while T is an integer.
Now, we can introduce our structure, describing the inactive intervals on the machines.

De�nition 3.2.1 (De�nition of a break). Let m ∈M be one machine. The tuple (t0, t1) ∈
TB × TB with t1 − t0 ≥ drdm + drdm and t1 > t0 is called a break on machine m ∈M .

The name break is motivated by the association of being inactive by leaving the work-
station, resting and going back to the workstation.

A break (t0, t1) ∈ Bm satisfying t0 = −drdm is called an initial break, and the ramp-down
from t0 to 0 is called the initial ramp-down. A break (t0, t1) ∈ Bm satisfying t1 = T + drum
is called a �nal break, and the ramp-up from T to T + drum is called the �nal ramp-up. An
example of a break (t0, t1) is visualized in Figure 3.1.

28

t0 t0 + drdm t1 − drum t1
ramp down o�ine ramp up

Figure 3.1: Visualization of a break and the respective machine states.

For each break (t0, t1) ∈ Bm, we create a binary variable zrd,rum,t0,t1
to describe whether

the machine is inactive in the interval [t0, t1[Z . Moreover, the respective machine states
are treated implicitly: the machine m is starting to ramp-down at t0, is in state o�ine
from t0 + drdm until inclusive period t1 − drum − 1, and in ramp-up from t1 − drum to t1 − 1.
The machine can be active in period t1, if t1 ̸= T + drum holds.

The set of all breaks belonging to a speci�c machine is necessary to describe all valid
variables.

De�nition 3.2.2 (Set of all breaks). Let m ∈M be one machine. The set

Bm := {(t0, t1) ∈ TB × TB | t1 − t0 ≥ drum + drdm}

is the set of all breaks belonging to machine m.

Note thatBm contains breaks that cannot be used in a feasible integral solution in terms
of problem de�nition 2.2. These variables will be detected and deleted in a presolving step,
see Chapter 4.1.

The usage within the beginning and the end of the time window of the break variables
is visualized in Figure 3.2.

usable periods

0 T

initial break �nal break

-drdm T+drum

Figure 3.2: Illustration of the usage of the expanded time window.

We set the energy price Pt = 0 for each t ∈ [Tm
B [Z \[T [Z to ensure that the objective

value of a feasible solution is not a�ected by the design of the breaks. These energy prices
do not a�ect further variables except the breaks.

The objective coe�cient of the break variable zrd,rum,t0,t1
, for m ∈M and (t0, t1) ∈ Bm is

d̂t0,t1,m :=

t0+drdm−1∑
q=t0

PqD
rd
m +

t1−1∑
q=t1−drum

PqD
ru
m . (3.8)

The objective coe�cient d̂t0,t1,m depicts the energy price of ramping the machine down
within the periods t0 to t0 + drdm − 1 and ramping the machine up between the periods
t1 − drum to t1 − 1. Thus, the usage of the variables yrdm,t, y

o�
m,t, y

ru
m,t becomes redundant

for each t ∈ [T [Z and for each m ∈M , since the objective costs and the assignment of the
periods to the respective machine states are well de�ned by the usage of the break. Since
the energy price for the initial ramp-down and the �nal ramp-up are 0, the objective is set
correctly for initial and �nal breaks.

The machine state variables for state setup and state processing are redundant since
the energy costs can be directly linked to the processing start variables. Moreover, our
reformulation does not require the explicit machine state variables to formulate the ramping
constraints (3.1i) and (3.1j).

Thus, the machine state of machine m ∈M in period t ∈ [t− dsej,k, t+ dprj,k[Z is �xed, if
the task (j, k) ∈ OM

|m starts processing in period t ∈ [aj,k, fj,k[Z . Therefore, the respective
machine state variables are redundant since we can directly link the respective energy
costs to the processing start variable. Furthermore, the machine state variables are not
necessary anymore to formulate the transition constraints. Thus, the objective coe�cient

29

of starting the processing of task (j, k) ∈ O in period t ∈ [T [Z is

ĉj,k,t =

t−1∑
q=t−dse

j,k

PqD
se
mj,k

+

t+d
pr

j,k
−1∑

q=t

PqD
pr
mj,k

. (3.9)

The remaining machine state is standby. We introduce a variable zstm,t for each m ∈M and
t ∈ [T [Z to describe the standby usage of machine m in period t. The variable corresponds
to ytm,st. However, the variables describing the machine states are removed. Thus, we
changed the variable name for standby usage.

Now, we list the used variables and their formal description and de�nition. For each
(j, k) ∈ O and each period t ∈ [T [Z , there is the task variable

xj,k,t =

{
1, i� task (j, k) starts processing in period t,
0, otherwise.

For each m ∈M and t ∈ [T [Z , there is the standby variable

zstm,t =

{
1, i� machine m is in state standby in period t,
0, otherwise.

There is a break variable for each m ∈M and (t0, t1) ∈ Bm, denoted by

zrd,rum,t0,t1
=

{
1, i� machine m performs a break from t0 to t1,
0, otherwise.

The following integer linear program describes the feasible solutions of the job-shop schedul-
ing problem with �exible energy prices and time windows.

minimize
∑
m∈M

(∑
t∈[T [Z

(
PtD

st
mz

st
m,t +

∑
(j,k)∈OM

|m

ĉj,k,txj,k,t
)

+
∑

(t0,t1)∈Bm

d̂t0,t1,mz
rd,ru
m,t0,t1

)
(3.10a)

subject to ∑
t∈[aj,k,fj,k[Z

xj,k,t = 1, (j, k) ∈ O (3.10b)

t−d
pr

j,k∑
q=0

xj,k,q −
t∑

q=0

xj,k+1,q ≥ 0, t ∈ [T [Z , (j, k), (j, k + 1) ∈ O (3.10c)

∑
(j,k)∈OM

|m

t+dsej,k∑
q=t−d

pr

j,k
+1

xj,k,q + zstm,t

+
∑

(t0,t1)∈Bm:
t∈[t0,t1[Z

zrd,rum,t0,t1
= 1, m ∈M, t ∈ [T [Z (3.10d)

∑
(−drdm,t1)∈Bm

zrd,ru
m,−drdm,t1

= 1, m ∈M (3.10e)

∑
(t0,T+drum)∈Bm

zrd,rum,t0,T+drum−1 = 1, m ∈M (3.10f)

xj,k,t ∈ {0, 1}, (j, k) ∈ O, t ∈ [T [Z (3.10g)

zrd,rum,t0,t1
∈ {0, 1}, m ∈M, (t0, t1) ∈ Bm (3.10h)

zstm,t ∈ {0, 1}, m ∈M, t ∈ [T [Z (3.10i)

Problem Description

The objective (3.10a) describes the total energy cost generated by the processing and
setting up of the tasks, running on the machines, and energy costs by standby and ramp-
ing the machines up and down. The equations (3.10b) ensure that each task is started

30

and processed once within its release and due date. The constraints (3.10c) describe the
precedence relations between consecutive tasks of each job. The equations (3.10d) enforce
that each machine is either processing or setting up a task or using a break or running
in standby in each period of the original time window [T [Z . The equations (3.10e) and
(3.10f) ensure each machine is inactive in the periods 0 and T by �xing the machine to use
the corresponding breaks. The remaining constraints (3.10g), (3.10h), and (3.10i) are the
integrality conditions of the de�ned variables.

Dantzig�Wolfe reformulation is often brought into connection with the column genera-
tion technique, since a Dantzig�Wolfe reformulation can su�er from an exponential sized set
of variables. In Section 4.4 a column generation approach considering the break-variables
is introduced.

The Polytopes

The dimension of the solution space is nbreak = |O × [T [Z | + |M × [T [Z | +
∑

m∈M |Bm|,
and the polytope is de�ned by

PB := conv({(x, zst, zrd,ru) ∈ {0, 1}nbreak |

(x, zst, zrd,ru) is valid for (3.10b)�(3.10i)}) (3.11)

and the polytope of the LP-relaxation

PB
LP := conv({(x, zst, zrd,ru) ∈ [0, 1]nbreak |

(x, zst, zrd,ru) is valid for (3.10b)�(3.10d)}). (3.12)

3.2.3 Special Properties of the Polytopes

The state-based formulation (3.1a)�(3.1l) includes a classical scheduling formulation and a
linkage to the description of the valid machine state transitions. The valid machine state
switches are only described by con�icts disallowing invalid switches. The machine state
variables are used to compute the respective objective value. The reformulation (3.10b)�
(3.10i) is a classical scheduling model, extended by the constraints (3.10d), (3.10e), (3.10f)
forcing to declare each period either to be blocked by a task, standby or a break.

Due to the encoding of the breaks, the problem description has

O(|O| · T + nMT + T 2 · nM) = O(T · nM · T + nMT + T 2 · nM) = O(T 2 · nM)

binary variables. One important property of the break-based formulation is that we can
relax the integrality conditions (3.10h) and (3.10i). Thus, the break and the standby
variables could be chosen as continuous variables and become automatically integral if
the task variables are integral. Now, we need the following well-known theorems and
de�nitions, which are also present in standard works, for example, [KV12, p. 125 -129].

De�nition 3.2.3 (Totally unimodular matrix). Let A ∈ Zm×n be a matrix with n,m ∈ N.
The matrix A is totally unimodular if the determinant of each quadratic submatrix of A is
in {0, 1,−1}.

De�nition 3.2.4. Let P ⊆ Rn be a rational polyhedron with n ∈ N. We call P an integral
polyhedron, if P = conv(P ∩ Zn).

Theorem 3.2.5. Let A ∈ Zm×n be totally unimodular matrix. Then, for all integral
b ∈ Zm, the polyhedron P = {x | Ax = b, x ≥ 0} is an integral polyhedron.

Theorem 3.2.6. Let A ∈ Zm×n be a totally unimodular matrix. Then, for all b ∈ Zm

the nonempty polyhedron {x ∈ Rn | Ax = b, x ≥ 0} has an integral point in each minimal
face.

Using those theorems, we can prove that the break and standby variables can be
continuous, and the integrality of the task variables directly leads to integral values for
standby and break variables.

Theorem 3.2.7. Let (x∗, zst
∗
, zrd,ru

∗
) ∈ PB be an integer feasible solution. Then, the

polytope PB
LP

fixed
= {(x, zst, zrd,ru) ∈ PB | xj,k,t = xj,k,t

∗ ∀ ((j, k), t) ∈ O × [T [Z } is
integral.

31

Proof. The idea of the proof is as follows: We take a feasible integral solution of the
task variables. Then, we analyze the problem formulation after �xing the feasible integer
solution values of the x-variables and show that the remaining inequalities and variables
build a totally unimodular matrix.
Let (x∗, zst

∗
, zrd,ru

∗
) ∈ PB a feasible integral solution. Now, we �x the task variables to

the values of the integral solution. The resulting polytope can be described by the following
formulation:

minimize
∑
m∈M

(∑
t∈[T [Z

CtD
st
mz

st
m,t +

∑
(t0,t1)∈Bm

d̂t0,t1,mz
rd,ru
m,t0,t1

)
subject to ∑

(−drdm,t1)∈Bm

zrd,ru
m,−drdm,t1

= 1, m ∈M

zstm,t +
∑

(t0,t1)∈Bm:
t∈{t0,...,t1}

zrd,rum,t0,t1
= 1−

∑
(j,k)∈OM

|m

t+dsej,k∑
q=t−d

pr

j,k
+1

xj,k,q
∗, m ∈M, t ∈ [T [Z

∑
(t0,T+drum−1)∈Bm

zrd,rum,t0,T+drum−1 = 1, m ∈M

zrd,rum,t0,t1
≥ 0, m ∈M, (t0, t1) ∈ Bm

zstm,t ≥ 0, m ∈M, t ∈ [T [Z .

Let A be the associated coe�cient matrix of this optimization problem. Then, A has only
entries in {0, 1}. The right-hand-side b has also only entries in {0, 1}.

Each break variable zrd,rum,t0,t1
appears only within the constraint (3.10d), (3.10e), (3.10f),

from period t0 to period t1 − 1 on machine m. The standby variable zstm,t only appears
within the t-th (3.10d) constraints of machine m. The remaining entries of those columns
are zero. If the model is built for each machine as a block, sorted by machine index and
time period, then the consecutive one's matrix property is visible.

The matrix A is a consecutive one's matrix known to be totally unimodular. Since the
right-hand-side b integral, the polytope of the discussed optimization problem is integral.
Therefore, at least one vertex exists with integral break and standby variables respective
to the �xed x.

Theorem 3.2.8 can be used to provide a second proof of Theorem 2.6.9. We have
already shown that we can compute the objective value of a schedule in polynomial time.

Within the analysis of the problem formulation (3.1b)� (3.1l), we mention the existence
of integral solutions where the ramping duration is enlarged. However, the ramping dura-
tion is �xed and should not be enlarged to reduce the objective value. This enlargement
is not possible in the case of the problem formulation using break variables. Thus, the
problem formulation (3.1b)� (3.1l) also contains (infeasible) integral solutions that cannot
be created by the reformulation (3.10b)�(3.10i).

Although there is the presumption that the reformulation is a more precise description
of the convex hull of the feasible solutions in terms of 2.2 than the state-based formulation,
this is to be proven. To compare the polytopes, we project the solution (x, zst, zrd,ru) into
the space of the variables (x, y). We de�ne a suitable transformation of the solution values
of the breaks to the machine state variables for o�ine, ramp-up and ramp-down.

Theorem 3.2.8. Consider the polytopes PB
LP and PS

LP . Then, the relation PB
LP ⊆ PS

LP

holds within the linear space Rnstates , with nstates = |O| · T + nM · |S| · |T+|.

Proof. Let (x, zst, zrd,ru) ∈ PB
LP a feasible (fractional) solution of the LP relaxation of

the break-based formulation. The following linear transformation projects the solution
(x, zst, zrd,ru) into the space of the variables (x, y). The projection

Ψ : Rnbreaks → Rnstates , (x, zst, zrd,ru) 7→ (x, y)

maps the breaks and standby variables to the machine state variables y. The mapping is

32

de�ned as follows:

yo�m,t =
∑

(t0,t1)∈Bm:

t∈[t0+drdm,t1−drum−1[Z

zrd,rum,t0,t1

yrum,t =
∑

(t0,t1)∈Bm:
t∈[t1−drum ,t1[Z

zrd,rum,t0,t1

ysem,t =
∑

(j,k)∈OM
|m

t+dsej,k∑
q=t+1

xj,k,q

yprm,t =
∑

(j,k)∈OM
|m

t∑
q=t−d

pr

j,k
+1

xj,k,q

ystm,t = zstm,t

yrdm,t =
∑

(t0,t1)∈Bm:

t∈[t0,t0+drdm[Z

zrd,rum,t0,t1

and for each m ∈M and t ∈ [T+[Z \[T [Z

yo�m,t =
∑

(t0,t1)∈Bm:
t∈[t0,t1[Z

zrd,rum,t0,t1
.

The proposed linear transformation of the variables (x, zrd,ru, zst) to the solution (x, y)
need to be checked for feasibility of PS

LP in the space of the (x, y) variables

� The task variables satisfy the constraints (3.1b), which are part of the formulation
(3.10b)�(3.10i), namely constraint (3.10b).

� The task variables satisfy the constraints (3.1c), which are also part of the formula-
tion (3.10b)�(3.10i), namely (3.10c).

� The task variables satisfy the constraints (3.1h), since for each m ∈M and t ∈ [T [Z ,
the inequality

∑
(j,k)∈OM

|m

t+dsej,k∑
q=t+1

xj,k,q ≤ ysem,t =
∑

(j,k)∈OM
|m

t+dsej,k∑
q=t+1

xj,k,q

holds.
� Analogously the task variables satisfy the constraints (3.1g), since each m ∈M and
t ∈ [T [Z , the inequality

∑
(j,k)∈OM

|m

t∑
q=t−d

pr

j,k
+1

xj,k,q ≤ yprm,t =
∑

(j,k)∈OM
|m

t∑
q=t−d

pr

j,k
+1

xj,k,q

holds.
� The machine state variables satisfy the constraints (3.1e) and (3.1f) because of

yo�m,t =
∑

(t0,t1)∈Bm:
t∈[t0,t1[Z

zrd,rum,t0,t1
∀ m ∈M , t ∈ [T+[Z \[T [Z

and constraints (3.10e) and (3.10f).
� The machine state variables satisfy the ramping constraints (3.1i). Let m ∈ M ,
t ∈ [T [Z and q ∈ [t+ 1, t+ drdm + 1[Z , then substituting the y within the inequality

yqm,o� + yqm,ru + ytm,pr + ytm,se + ytm,st ≤ 1

33

by their linear transformation's counterpart leads to

yqm,o� + yqm,ru + ytm,pr + ytm,se + ytm,st =

yqm,o� + yqm,ru + zstm,t +
∑

(j,k)∈OM
|m

t+dsej,k∑
q=t−d

pr

j,k
+1

xj,k,q =

∑
(t0,t1)∈Bm:

q∈[t0+drdm,t1[Z

zrd,rum,t0,t1
+ zstm,t +

∑
(j,k)∈OM

|m

t+dsej,k∑
q=t−d

pr

j,k
+1

xj,k,q ≤

∑
(t0,t1)∈Bm:
q∈[t0,t1[Z

zrd,rum,t0,t1
+ zstm,t +

∑
(j,k)∈OM

|m

t+dsej,k∑
q=t−d

pr

j,k
+1

xj,k,q =1.

The last inequality holds, since∑
(t0,t1)∈Bm:
q∈[t0,t1[Z

zrd,rum,t0,t1
≥

∑
(t0,t1)∈Bm:

q∈[t0+drdm,t1[Z

zrd,rum,t0,t1

holds. Thus, the ramping-down constraints (3.1i) is ful�lled by y.
� Analogously, for each m ∈M , t ∈ [T [Z and q ∈ [t− drum , t− 1[Z , the transformed y
lead to

ytm,pr + ytm,se + ytm,st + yqm,o� + yqm,rd =

∑
(t0,t1)∈Bm:

q∈[t0,t1−drum [Z

zrd,rum,t0,t1
+ zstm,t +

∑
(j,k)∈OM

|m

t+dsej,k∑
q=t−d

pr

j,k
+1

xj,k,q ≤

∑
(t0,t1)∈Bm:
q∈[t0,t1[Z

zrd,rum,t0,t1
+ zstm,t +

∑
(j,k)∈OM

|m

t+dsej,k∑
q=t−d

pr

j,k
+1

xj,k,q =1.

Thus, the projected solution ψ(x, zst, zrd,ru) is a feasible solution of PS
LP .

We already have stated that PS ̸= ψ(PB) in Rnstates holds because there are integral
solutions of PS that cannot be linearly transformed to feasible solutions of PB in Rnstates .
We provide an example of non-negative energy prices and show an example of a fractional
solution of PS

LP that cannot be represented in PB
LP within the space Rnbreak . This will

support the focus of concentrating on the break-based formulation.

Remark 3.2.9. Consider the polytope PS
LP and the projection ψ(PB

LP) onto the space
Rnstates of the (x, y). Then, there exists an instance satisfying the relation ψ(PB

LP) ⊊ PS
LP .

Consider the following instance. The time window is set to [T [Z = {0, . . . , 50} and the
machine and job data is de�ned as follows in Table 3.1

Table 3.1: Data of the instance.

j k mj,k dprj,k dsej,k

0 0 0 3 4
0 1 1 4 5
0 2 2 3 4
1 0 2 4 5
1 1 1 3 4
1 2 0 3 4
2 0 2 3 4
2 1 0 3 4
2 2 1 4 5

id m = 1 m = 2 m = 3

drum 3 3 3
drdm 10 10 10
Do�

m 0 0 0
Dru

m 1 1 1
Dse

m 2 2 2
Dpr

m 2 2 2
Dst

m 1 1 1
Drd

m 10 10 10

Each job has the release date 0 and the due date T = 50. The energy price is Pt = 1
for each t ∈ [T [Z \{20}. For t = 20, the energy price is set to P20 = 0. One can easily
validate that the constraints (3.1i) and (3.1j) hold. In the period of t = 20, the ramp-
down starts without the machine being ramped up completely. The problem formulation
PB

LP forces to block drdm successive periods if the machine needs to be ramped down in one

34

period. Thus, the fractional solution cannot be feasible for PB
LP within the space of the

(x, zst, zrd,ru, y)-variables.

Table 3.2: Excerpt from a solution of the LP-relaxation of the state variable formulation.

m t price yo�m,t yrum,t ysem,t yprm,t ystm,t yrdm,t

2 11 1 1
3

2
3 0 0 0 0

2 12 1 1
3

2
3 0 0 0 0

2 13 1 1
3

2
3 0 0 0 0

2 14 1 1
3 0 2

3 0 0 0

2 15 1 1
3 0 2

3 0 0 0

2 16 1 1
3 0 2

3 0 0 0

2 17 1 1
3 0 1

3
1
3 0 0

2 18 1 1
3 0 0 2

3 0 0

2 19 1 1
3 0 0 2

3 0 0

2 20 1 0 0 0 2
3 0 1

3

2 21 1 1
3 0 1

3
1
3 0 0

2 22 1 1
3 0 1

3
1
3 0 0

2 23 1 1
3 0 2

3 0 0 0

2 24 1 1
3 0 2

5
4
15 0 0

2 25 1 1
3 0 1

3
1
3 0 0

2 26 1 1
3 0 1

3
1
3 0 0

2 27 1 1
3 0 0 2

3 0 0

2 28 1 1
3 0 4

15
2
5 0 0

2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

2 61 1 1 0 0 0 0 0

The solution presented in Table 3.2 is feasible. We only verify the feasibility for a
selected number of periods. The veri�cation of the machine state transition constraints
(3.1i) looks as follows:

(t, q) yqm,o� + yqm,ru + ytm,pr + ytm,se + ytm,st ≤ 1

(t = 18, q = 19)
1

3
+ 0 +

2

3
+ 0 + 0 = 1 ≤ 1

(t = 18, q = 20) 0 + 0 +
2

3
+ 0 + 0 =

2

3
≤ 1

(t = 18, q = 21)
1

3
+ 0 +

2

3
+ 0 = 1 ≤ 1

...
...

The veri�cation of the machine state transition constraints (3.1j) looks as follows:

(t, q) ytm,pr + ytm,se + ytm,st + yqm,o� + yqm,rd ≤ 1

(t = 22, q = 21)
1

3
+ 0 +

1

3
+

1

3
+ 0 = 1 ≤ 1

(t = 22, q = 20) 0 +
1

3
+

1

3
+

1

3
+ 0 = 1 ≤ 1

(t = 22, q = 19)
1

3
+ 0 +

1

3
+

1

3
+ 0 = 1 ≤ 1

...
...

The veri�cation process will always be the same, and we only assert that the remaining
inequalities of the machine state are also satis�ed. One can see that the machine will not
be completely ramped up. However, the machine m = 2 starts a ramp-down in period 20
but only for one isolated period. There are 9 ramp-down periods later. It is impossible to
realize an isolated ramping by a break: a ramp-down, realized by a break, always consists
of 10 consecutive periods of state ramp-down. Thus, each convex combination of those
solutions has at least 10 consecutive periods of state ramp-down. Thus, this solution
cannot be represented in PB

LP .
This observation only con�rms that the formulation, using breaks, is a tighter descrip-

tion of the set of the feasible integer solutions of De�nition2.1.3, even if the energy prices
are nonnegative.

35

Corollary 3.2.10. The break-based formulation (3.10b)�(3.10h) provides a stronger de-
scription of the integer feasible solutions of Problem 2.2 than the state-based formulation
(3.1b)� (3.1l), even if the energy prices are non-negative.

3.2.4 Model Extensions

The break-based formulation (3.10b)�(3.10h) only includes a minimum number of necessary
conditions to exclude invalid integer solutions. Additional constraints can be used to
tighten its linear relaxation.

Linear Ordering Subproblem

The linear ordering problem is a subproblem of the job-shop scheduling problem with
�exible energy prices and time windows.

In the linear ordering problem, we are given a digraph D = (V,A). The aim is to �nd
a total ordering of the vertices of D such that the number of backward arcs (v, w) ∈ A,
which start at a node v with a higher ordering label lv and point to a node with a lower
ordering label lw, is minimized. In our application, the vertices of the directed graph are
the tasks processed by machine m ∈ M , and the computed line describes the execution
order of the tasks.

It is valid to extend the problem formulation by additional variables and inequalities
that are necessary to describe the integer solutions of the corresponding linear ordering
problem. The linear ordering problem and some inequalities of the linear ordering problem
are, among others, discussed in [GJR84, GJR85]. The linear ordering problem requires
additional indicator-variables pi,lj,k ∈ {0, 1} for each pair of tasks (j, k), (i, l) ∈ OM

|m , (j, k) ̸=
(i, l), executed on the same machine m ∈ M to describe the execution order of the tasks
(j, k) and (i, l). The indicator variables' meaning is de�ned by

pi,lj,k =

{
1, if (j, k) starts before (i, l),
0, otherwise.

The combination of all indicator variables describes the execution order of the tasks pro-
cessed by machine m ∈ M . The linear ordering variables must satisfy two kinds of con-
straints: for each m ∈M and for each pair of task (j, k), (i, l) ∈ OM

|m with (j, k) ̸= (i, l) the
constraint

pi,lj,k + pj,ki,l = 1 (3.13)

forces the tasks (j, k) and (i, l) to either be executed in order (j, k) → (i, l) or (i, l) →
(j, k). Both relations cannot hold simultaneously since both tasks are assigned to the same
machine, and the machine must process the tasks non-preemptively. Furthermore, the
constraint

pi,lj,k + pi3,l3i,l + pj,ki3,l3
≤ 2 (3.14)

must hold for each m ∈ M and the pairwise distinct tasks (j, k), (i, l), (i3, l3) ∈ OM
|m must

hold. The constraints (3.14) are the so-called no-cycle constraints. These constraints
prevent the ordering variables from creating the following execution order of the tasks

(j, k)→ (i, l)→ (i3, l3)→ (j, k)

in fractional solutions. The linear ordering problem allows further valid constraints men-
tioned in [GJR84, GJR85]. However, the presented inequalities (3.13) and (3.14) describe
all feasible integral solutions, and the ordering part of the tasks will not be a central topic
in the following, and thus, the consideration of the additional constraints will not be further
discussed.

The ordering variables de�ne the execution order of the tasks. Therefore, the informa-
tion of the ordering variables must be linked to their respective task variables.

The following inequalities link the ordering variables and the task variables by big-M
constraints. Note that we can choose the big-M to equal 1.

t−d
pr

j,k
−dsei,l∑

q=0

xj,k,q −
t∑

q=0

xi,l,q ≥ pi,lj,k − 1 ∀ t ∈ [T [Z (3.15)

and

t−d
pr

i,l
−dsej,k∑

q=0

xi,l,q −
t∑

q=0

xj,k,q ≥ pj,ki,l − 1 ∀ t ∈ [T [Z . (3.16)

36

The constraints (3.15) and (3.16) are so-called un�xed precedence constraints of tasks
running on the same machine.

Example 3.2.11. Consider the constraints (3.15) and (3.16). Let (j, k), (i, l) ∈ OM
|m two

distinct tasks and m ∈ M . Suppose the variable pi,lj,k = 1 is �xed. Then, by constraint

(3.13), the variable pj,ki,l must be 0. The un�xed precedence constraints can be simpli�ed as
follows for t ∈ [T [Z :

t−d
pr

j,k
−dsei,l∑

q=0

xj,k,q −
t∑

q=0

xi,l,q ≥ pi,lj,k − 1 = 1− 1 = 0.

These constraints have the shape of the presented precedence constraints (3.10c) and only
di�er within the additional consideration of the setup times. The un�xed precedence con-
straints for (i, l)→ (j, k) reduce to

t−d
pr

i,l
−dsej,k∑

q=0

xi,l,q −
t∑

q=0

xj,k,q ≥ pj,ki,l − 1 = 0− 1 = −1.

And thus, the inequality is redundant, since

t−d
pr

i,l
−dsej,k∑

q=0

xi,l,q −
t∑

q=0

xj,k,q ≥ −1

always holds for a feasible solution (x, zst, zrd,ru) ∈ PB.

The tasks (j, k), (i, l) are processed by the same machine. Thus, the setup durations
of the later task must be considered within this precedence relation. The constraints get
active if the precedence order is chosen, e.g., pi,lj,k is �xed to either 0 or 1.

The un�xed precedence constraints add the information of the disjunctive graph to the
problem formulation. Otherwise, the information of the un�xed precedence constraints
often cannot be detected within the problem structure provided by the initial variables and
constraints of (3.10b)�(3.10i). By integrating the un�xed precedence constraints into the
initial formulation, the information is present in the formulation, and many implemented
techniques can exploit the new information. However, the number of un�xed precedence
constraints is O(|O|2 · T). Thus, their number would dominate the size of the model.

Within our implementation, we treat the un�xed precedence constraints implicitly, see
Section 4.3.

Corollary 3.2.12. Let m ∈ M be one machine. The constraints (3.15) and (3.16) in
combination with the inclusion of the linear ordering variables pi,lj,k for the pairwise distinct

pairs (j, k), (i, l) ∈ OM
|m are a valid model extension for PS.

Corollary 3.2.13. Let m ∈ M be one machine. The constraints (3.15) and (3.16) in
combination with the inclusion of the linear ordering variables pi,lj,k for the pairwise distinct

pairs (j, k), (i, l) ∈ OM
|m are a valid model extension for PB.

Knapsack Constraints Limiting the Total Duration of the Breaks

0/1-Knapsack constraints are well-known constraints of the form

n∑
i=1

aixi ≤ b

x ∈ {0, 1}n

with non-negative a ∈ Zn and b ∈ Z and describe the combinatorial problem called knap-
sack problem. Combinatorial algorithms and solution strategies to solve this problem
e�ciently are mentioned in [KV12]. The constraints describe that only a subset I ⊂ [n[Z
�ts into the knapsack with size b. Although we consider scheduling problems with machines
instead of a knapsack, a similar structure could be detected within our problem setting:
Which combination of breaks still allows the setting up and processing of all tasks on the
respective single machine?

All tasks (j, k) ∈ OM
|m must be processed within the time window [T [Z by machine

m ∈M . The setup and processing of the tasks (j, k) ∈ OM
|m requires

∑
(j,k)∈OM

|m
(dsej,k+d

pr

j,k)

37

periods. Thus, the machine m o�ers only a limited number of periods for breaks and
standby, which can be computed by:

Tm
B −

∑
(j,k)∈OM

|m

(dsej,k + dprj,k).

Now, the idea is to formulate constraints limiting the length of the used breaks on a machine
by knapsack constraints. Therefore, the apparent idea is to aggregate the constraints
(3.10d), (3.10e), (3.10f) for a certain interval to limit the size of the breaks a�ected by
this interval. Then, we collect the information on tasks that need to be �nished in the
considered interval to reduce the right-hand side of the generated knapsack constraints.
Then, the resulting constraints describe a knapsack problem.

Theorem 3.2.14 (Knapsack by aggregation). Let m ∈M be a machine. The aggregation
of (3.10d), (3.10e), (3.10f) of machine m for all t ∈ [l, r[Z ⊆ [T+[Z lead to the knapsack
constraint ∑

(t0,t1)∈Bm

πB
(t0,t1)z

rd,ru
m,t0,t1

+

r∑
q=l

(
zstm,q +

∑
(j,k)∈OM

|m

πT
j,k,qxj,k,q

)
≤ r − l (3.17)

with
πB
t0,t1 = max

{
0,min{r, t1} −max{l, t0}

}
∀ (t0, t1) ∈ Bm

and

πT
j,k,q = max

{
0,min{q + dprj,k, r} −max{q − dsej,k, l}

}
, ∀ (j, k) ∈ O and q ∈ [T [Z .

Proof. The aggregation of the constraints (3.10d), (3.10e), (3.10f) for all t ∈ [l, r[Z lead to

the constraint (3.17). The break (t0, t1) ∈ Bm participatesmax
{
0,min{r, t1}−max{l, t0}

}
times within the aggregated constraints, since the intervals and the breaks are built exclu-
sively the period r, respectively t1. The standby variable zstm,t only appears in constraint
(3.10d) with machine index m and period t. Thus, its coe�cient is always 1, if t ∈ [l, r[Z
holds. Similar to the coe�cient of the breaks, the coe�cient of a task variable can be
computed. The right-hand side r − l equals the number of aggregated constraints with
right-hand side 1. Note that the constraint for t = r is not included within the aggrega-
tion.

This validity of the constraint (3.17) follows from the validity of a conic combination
of valid constraints.

Clearly, the knapsack constraints (3.17) can also be generated by commercial solvers.
To that end, the solver has to detect the substructure of the time windows of the tasks in
combination with aggregation of the respective constraints. This could be ine�ective, and
our preparation for this step does not disturb the solution process.

The following part considers di�erent aggregation strategies and presents the respec-
tive knapsack constraints. After adding the knapsack constraints to the break-based for-
mulation, so-called knapsack covers can strengthen the formulation in a second step.
Algorithms for detecting strongly violated knapsack cover constraints are introduced in
[Bal75, BZ78].

We will present some knapsack constraints, describing the limited duration of breaks
in speci�c intervals. The �rst knapsack constraint considers l = −drdm and r = T + drum and
thus, limits the length of breaks within the complete time window. The associated maximal
knapsack constraint can be generated by lifting the other variables into the constraints,
using the coe�cients proposed in Theorem 3.2.14.

Theorem 3.2.15 (Knapsack constraint for the maximum duration of breaks). Let m ∈M
be one machine. Then, the knapsack constraint∑

(t0,t1)∈Bm

(t1 − t0) · zrd,rum,t0,t1
+

∑
t∈[T [Z

zstm,t ≤ Tm
B −

∑
(j,k)∈OM

|m

(dsej,k + dprj,k). (3.18)

is valid for PB.

Proof. Consider the constraint (3.17) and [l, r[Z = [−drdm , T + drum [Z . The coe�cients can
be computed as follows:

πB
t0,t1 = max

{
0,min{r, t1} −max{l, t0}

}
= t1 − t0 ∀ (t0, t1) ∈ Bm

38

and for each (j, k) ∈ OM
|m and q ∈ [aj,k, fj,k[Z :

πT
j,k,q = max

{
0,min{q + dprj,k, r} −max{q − dsej,k, l}

}
= dprj,k + dsej,k

and πT
j,k,q = 0 for all q ∈ [T [Z \[aj,k, fj,k[Z .

Moreover, each task (j, k) ∈ OM
|m has to be processed within [l, r[Z . Therefore, the

equation ∑
(j,k)∈OM

|m

(dprj,k + dsej,k)xj,k,q =
∑

(j,k)∈OM
|m

(dprj,k + dsej,k)

holds, and thus, we obtain the constraint∑
(t0,t1)∈Bm

(t1 − t0) · zrd,rum,t0,t1
+

∑
t∈[T [Z

zstm,t ≤ Tm
B −

∑
(j,k)∈OM

|m

(dsej,k + dprj,k).

The constraint (3.18) limits the size of initial, middle and �nal breaks by the same
bound. To that end, we could derive knapsack constraints for the initial, middle, and �nal
parts of the time windows in detail.

Theorem 3.2.16 (Knapsack constraint for initial breaks). Let m ∈ M be one machine.
The maximal length of an initial break belonging to m is given by

min
(
min{fj,k − 1− dsej,k | (j, k) ∈ OM

|m},

max{fj,k − 1 + dprj,k | (j, k) ∈ O
M
|m} −

∑
(j,k)∈OM

|m

(dsej,k + dprj,k)
)
+ drdm = L+ drdm

and the respective knapsack constraint∑
(t0,t1)∈Bm: t0=−drdm

(t1 − t0) · zrd,rum,t0,t1
+

L∑
t=0

zstm,t ≤ L+ drdm . (3.19)

is a valid constraint for PB.

Proof. Let m ∈ M be one machine. The machine must be already ramped up before the
�rst task starts its setup. The latest possible setup of all task (j, k) ∈ OM

|m can be computed
as

min{fj,k − 1− dsej,k | (j, k) ∈ OM
|m}.

A longer initial break would prevent at least the �rst task from completing the processing
before its due date.

Furthermore, the machine must be active such that all tasks (j, k) ∈ OM
|m can �nish

their setup and processing. The processing of all the tasks must be �nished in the period

max{fj,k − 1 + dprj,k | (j, k) ∈ O
M
|m}.

Thus, the latest possible start of the complete processing and setup sequence is in period

max{fj,k − 1 + dprj,k | (j, k) ∈ O
M
|m} −

∑
(j,k)∈OM

|m

(dsej,k + dprj,k).

Thus, all initial breaks cannot exceed L+ drdm .

Analogously, a bound for �nal breaks can be derived.

Theorem 3.2.17 (Knapsack constraint for �nal breaks). Let m ∈ M be one machine.
The maximal length of a �nal break is given by

R = T + drum −max
(
max{aj,k + dprj,k | (j, k) ∈ O

M
|m},

min{aj,k − dsej,k | (j, k) ∈ OM
|m}+

∑
(j,k)∈OM

|m

(dsej,k + dprj,k)
)

and the knapsack constraint∑
(t0,t1)∈Bm: t1=Tm

B

(t1 − t0) · zrd,rum,t0,t1
+

T∑
t=R

zstm,t ≤ Tm
B −R. (3.20)

is a valid constraint for PB.

39

The knapsack constraints considering middle breaks are described by the following
theorem.

Theorem 3.2.18 (Knapsack constraint for inner breaks). Let m ∈ M one machine. In
addition, the earliest start of a setup and the latest �nish of a processing is described by

L = min{aj,k − dsej,k | (j, k) ∈ OM
|m}

U = max{fj,k − 1 + dprj,k | (j, k) ∈ OM
|m}.

Then, the knapsack constraints∑
(t0,t1)∈Bm: L≤t0≤t1≤U

(t1 − t0) · zrd,rum,t0,t1
≤ U − L−

∑
(j,k)∈OM

|m

(dsej,k + dprj,k). (3.21)

is a valid constraint for PB.

Those constraints can be strengthened by including further variables with positive
coe�cients. However, those constraints describe the maximum length of initial, middle,
and �nal breaks.

Another interesting interval is provided by time windows of tasks.

Theorem 3.2.19 (Knapsack constraints for local time windows). Let m ∈M one machine
and (j, k) ∈ OM

|m one task processed by machine m. For l = aj,k − dsej,k and r = fj,k + dprj,k,
we derive the knapsack constraint∑
(t0,t1)∈Bm

πB
(t0,t1)z

rd,ru
m,t0,t1

+

r∑
q=l

(
zstm,q +

∑
(i,l)∈OM

|m
\{(j,k)}

πT
i,l,qxi,l,q

)
≤ r − l − (dsej,k + dsej,k)

(3.22)
with

πB
t0,t1 = max

{
0,min{r, t1} −max{l, t0}

}
∀ (t0, t1) ∈ Bm

and

πT
j,k,q = max

{
0,min{q+dprj,k, r+d

pr

j,k−1}−max{q−dsej,k, l−dsej,k}
}
∀ (j, k) ∈ OM

|m q ∈ [T [Z .

For each (j, k) ∈ OM
|m the constraint (3.22) is a valid constraint of PB.

The validity follows by 3.2.14 and the fact that
r∑

q=l

πT
j,k,qxj,k,q =

r∑
q=l

(dsej,k + dsej,k) · xj,k,q = dsej,k + dsej,k

holds. Section 4.1 will reuse this information when discussing the presolving and propaga-
tion techniques.

A further class of valid constraints is the class of knapsack conditions describing the
relation between a ramp-up and the ramp-down on two distinct machines.

Theorem 3.2.20. Let (j, k) ∈ O be one task processed by machine m ∈M and (j, l) ∈ O a
succeeding task processed by machine m2 = mj,l with k < l ≤ |OJ

|j |−1. Then, the knapsack
constraint ∑

(t0,t1)∈Bm:t0=−drdm

(t1 − t0)zrd,rum,t0,t1

+
∑

(t0,t1)∈Bm2 :t1=Tm
B

(t1 − t0)zrd,rum2,t0,t1

≤ T − (dsej,k +

l∑
l3=k

dprj,l3) + drdm + drum2
(3.23)

is a valid constraint of PB.

Proof. The task (j, k) ∈ OJ
|j needs to be processed before task (j, l) ∈ OJ

|j as k < l holds.
An initial break belonging to machine m = mj,k and a �nal break belonging to machine
m2 = mj,l need to allow the completion of the setup and processing of (j, k), respectively
(i, l), in each feasible solution of PB . The entire sequence of tasks from task (j, k) to (j, l)
needs (dsej,k +

∑l
l3=k d

pr

j,l3
) periods to complete setup and processing. Thus, the remaining

number of periods from the T + drdm + drum2
can be used by initial breaks before (j, k) on

machine m and �nal breaks on machine m2 after (j, l). Thus, the constraint is a valid
constraint of PB .

40

More constraints, describing feasible combinations of breaks on di�erent machines, are
possible by even greater exploitation of the problem structure. Note that constraints like
(3.23) become weaker when the time window gets larger, and the gain from introducing
those constraints decreases. The presented knapsack constraints are added initially to
the problem formulation, such that classical presolving techniques can use the additional
information to eliminate breaks.

41

42

Chapter 4

Problem-Speci�c Solution

Strategies

4.1 Problem Reductions

This section considers problem size reduction techniques for the proposed break-based
formulation (3.10a)�(3.10h). As mentioned before, the problem (3.10a)�(3.10h) is a time-
indexed formulation and su�ers from its large number of variables. There are T many
variables for each task. Moreover, in each feasible solution, exactly one variable per task
can be non-zero. In addition, each machine has at most O(T 2) many break variables.
Even if T many breaks are used in an optimum solution, there are T · (T − 1) many breaks
�xed to zero. Some of these breaks can be detected and eliminated initially. Moreover,
the limitation of the number of breaks leads to a more precise description of the objective
of the optimal primal objective value by fractional solutions. This is reasoned by the fact
that fewer breaks allow fewer combinations in fractional solutions.

The initial preparation of the integer program is called presolving or preprocessing. Pre-
solving reductions are one of the most important components in MILP solvers [GKM+15].
Classical preprocessing techniques detect dominating columns, do bound tightening, use
con�ict analysis, and detect implied bounds. The goal of presolving is to reduce the prob-
lem size by reducing the number of variables and the number of constraints.

General purpose presolvers, however, must detect those special substructures from the
MILP, which often requires computationally expensive aggregations of many constraints
etc. Typically, the preprocessing needs to detect special substructures to work e�ciently.

The device of problem-speci�c presolving techniques improves the solution algorithm
since the expensive comparisons of di�erent variables and constraints by classic problem
reductions are not necessary anymore. An overview of often useful presolving techniques is
provided in [ABG+20]. More scheduling-related presolving rules are considered in [BJS94,
BS15].

4.1.1 Presolve Reductions for ILP

Before introducing the problem-speci�c presolving reductions, we will brie�y present some
key presolving techniques implemented in many commercial solvers. We consider a general
integer program with binary variables in the form:

min{c⊤x | Ax ≤ b, x ∈ {0, 1}n} (4.1)

with c ∈ Qn, A ∈ Qm×n and b ∈ Qm and n,m ∈ N.

Redundant Rows

One constraint Ai,:x ≤ bi of (4.1) is called redundant if the integer feasible region stays
the same if the constraint is removed from Ax ≤ b. The decision problem of whether a
constraint is redundant is an NP-complete problem.

Example 4.1.1. Suppose the decision problem, whether a constraint is redundant, is in
the complexity class P. Then, the decision problem, whether our scheduling problem has
a solution with objective val < k, can be solved in polynomial time since we can add the
problem constraint objective ≤ k and check whether the objective-constraint is redundant.

43

In the case of an ILP, removing redundant constraints can weaken the LP-relaxation. In
the case of the presented job-shop scheduling problem, the constraints (3.18) are redundant
since these constraints do not cut o� any of the integral solutions of PB . Consequently, one
is interested in detecting redundant constraints of the LP-relaxation of a MIP. Removing
those constraints from the MIP min{c⊤x | Ax ≤ b, x ∈ {0, 1}n} will not lead to a weaker
LP-relaxation. The solution set of the LP-relaxation of the MIP is not changed, and
considering fewer constraints leads to speed-up since these constraints need not be veri�ed
or considered during the solution process. The decision problem of whether a constraint
Ai,:x ≤ bi is redundant for the LP-relaxation (of a MILP) can be solved in polynomial
time by solving the LP

bi ≥ max
{
Ai,:x | Aj,:x ≤ bj ∀ j ∈ {1, . . . ,m} \ {i}, x ∈ [0, 1]n

}
.

Within the review of modern presolving techniques in [ABG+20], the detection of re-
dundant rows is mentioned to be too expensive to be helpful in practice since, for each
constraint, a linear program must be solved. The authors present a more detailed descrip-
tions of possible extensions of redundancy tests. In addition, di�erent techniques exist
to generate redundant constraints for a MIP by disaggregation of constraints [Mar01] to
strengthen the LP-relaxation.

Example 4.1.2 (Aggregated and disaggregated precedence constraints). The aggregated
precedence constraint of task (j, k), (j, k + 1) ∈ O can be formulated by∑

t∈[T [Z

t · (xj,k+1,t − xj,k,t) ≥ dprj,k. (4.2)

The disaggregated form of this precedence constraint is given by

t−d
pr

j,k∑
q=0

xj,k,q −
t∑

q=0

xj,k+1,q ≥ 0, t ∈ [T [Z .

Combining the precedence constraint (3.10c) and (3.10b) with the integrality bounds (3.10g)
leads to a description of the aggregated precedence constraint (4.2).

A further way to detect redundant constraints is by comparing two rows of the linear
system.

Theorem 4.1.3. Given an ILP of the form (4.1). The inequality Ai,:x ≤ bi is a redundant
row of LP-relaxation of (4.1), if there exists a di�erent inequality Aj,:x ≤ bj, j ̸= i,
i, j ∈ [n[Z , satisfying Aj,: ≥ Ai,: and bj ≤ bi.

Proof. The variables x ≥ 0 are nonnegative. Since, Aj,: ≥ Ai,:, the relation Aj,:x ≥ Ai,:x
holds. Then,

Ai,:x ≤ Aj,:x ≤ bj ≤ bi
holds. Because of Aj,:x ≤ bj , the inequality Ai,:x ≤ bi is redundant.

There are also valid reductions by usage of the dual problem.

Dominating Columns

The preprocessing scheme dominated columns exploits relations between two speci�c vari-
ables (columns) and is extensively presented in [GKM+15]. This presolving approach anal-
yses the coe�cients of two distinct binary variables. It can be viewed as the redundancy
test of constraints of the dual system.

De�nition 4.1.4 (Dominating variable). We are given an ILP of the form (4.1). We say
that the binary variable xj dominates xk, with pairwise distinct j, k ∈ [n[Z , if

1. cj ≤ ck
2. A:,j ≤ A:,k

holds. The variable xk is the dominated variable, while the variable xj is the dominating
variable.

Under certain conditions, one can decide that certain variables (columns) are always
�xed to zero in optimal solutions. This is valid because the dominating variable is less
restrictive and cheaper. Therefore, we cite the following result from [GKM+15].

44

Theorem 4.1.5. We are given an ILP of the form (4.1) and the two distinct binary
variables xj and xk, j ̸= k, j, k ∈ [n[Z . Let x be a feasible solution of ILP (4.1). Further
let xj dominating xk. For 0 < α ∈ R, we de�ne x∗ by

x∗i =

x̂i + α i = j,

x̂i − α i = k,

x̂i else.

If 0 ≤ x∗i ≤ 1 holds for each i ∈ {1, . . . , n}, then the objective of x∗ is not worse than the
one of x̂.

The proof of this theorem is in [GKM+15] and is based on evaluating the left-hand
side of each constraint Ar,:x ≤ br. The construction leads to an (integer) feasible solution,
and because of the relation of the objective coe�cients, a constructed solution x∗ cannot
be worse than x̂. The important result is the following one, also published in [GKM+15].

Theorem 4.1.6. We are given an ILP of the form (4.1) with two distinct binary variables
xj and xk, while xj dominates xk. If x is an optimal solution with xk = 1, then there
exists an optimal solution with xj = 1 and xk = 0.

Again, the proof is published in [GKM+15] and is based on using Theorem 4.1.5 and
choosing the correct α.

Set Dominated Columns

Dominating columns only consider the relation of the two binary variables at the same
time, while the set-dominated columns approach extends this approach to the domination
of one column by a set of columns.

De�nition 4.1.7 (Column dominating set). We are given an ILP of the form (4.1) with
c ∈ Zn and A ∈ Qm×n, n,m ∈ N. The column k ∈ {1, . . . , n} is dominated by a subset
S ⊆ {1, . . . , n} \ {k}, if

1. Ak =
∑

j∈S Aj

2. and ck ≥
∑

j∈S cj

hold.

Now, we reproduce the results of [GKM+15] by transforming the theory of dominating
columns to dominating sets.

Theorem 4.1.8. We are given an ILP of the form

min
{
c⊤x | Ax = 1, x ∈ {0, 1}n

}
(4.3)

with c ∈ Zn and A ∈ {0, 1}m×n, n,m ∈ N. Let column k ∈ {1, . . . , n} be set-dominated by
the S ⊂ {1, . . . , n} \ {k}. Further, let α ∈ R and x̂ be a feasible solution for the ILP. We
de�ne x∗ with

x∗i =

x̂i + α i ∈ S,
x̂i − α i = k,

x̂i else.

If 0 ≤ x∗i ≤ 1 holds for each i ∈ {1, . . . , n} and x∗ is feasible, then the objective of x∗ is
not worse than the objective of x̂.

Proof. We are given the ILP 4.3. In addition, the column k ∈ {1, . . . , n} is dominated by
the set S ⊆ {1, . . . , n} \ {k}. Further, let α ∈ R and x̂ be the feasible solution of the ILP.
We de�ne x∗ by

x∗i =

x̂i + α i ∈ S,
x̂i − α i = k,

x̂i else.

45

If 0 ≤ x∗i ≤ 1 holds, then each row r ∈ {1, . . . ,m} satis�es:

Ar,:x
∗ =

n∑
i=1

Ar,ix
∗
i

=
∑

i∈[1,n+1[Z \S∪{k}

Ar,ix
∗
i +

∑
i∈S∪{k}

Ar,ix
∗
i

=
∑

i∈[1,n+1[Z \S∪{k}

Ar,ix
∗
i +

∑
i∈S

Ar,i(x̂i + α) +Ar,k(x̂k − α)

=
∑

i∈[1,n+1[Z \S∪{k}

Ar,ix̂i +
∑
i∈S

Ar,i(x̂i + α) +
(∑

i∈S

Ar,i

)
(x̂k − α)

=
∑

i∈[1,n+1[Z \S∪{k}

Ar,ix̂i +
∑
i∈S

Ar,ix̂i +Ar,kx̂k

= Ar,:x̂ = br.

Thus, the solution x∗ is also feasible. In addition, the transformation of the solution only
improves the objective value since

c⊤x̂ =
∑

i∈[1,n+1[Z

cix̂i

=
∑

i∈[1,n+1[Z \S∪{k}

cix̂i +
∑
i∈S

cix̂i + ckx̂k

≥
∑

i∈[1,n+1[Z \S∪{k}

cix
∗
i +

∑
i∈S

ci(x
∗
i + α) + ck(x

∗
k − α) = c⊤x∗.

holds. Thus, the solution x∗ is not worse than x̂.

The following result describes that at least one optimal solution of the optimization
problem is not a�ected at all.

Theorem 4.1.9. We are given an ILP of form

min
{
c⊤x | Ax = 1, x ∈ {0, 1}n

}
with c ∈ Zn and A ∈ Qm×n, n,m ∈ N. Let xk be dominated by the set S ⊆ {1, . . . , n}\{k}.
If there exists an optimal solution x∗ with x∗k = 1, then there exists also an optimal solution
with xk = 0 and xj = 1 for each j ∈ S.

The proof is analogous to the proof of Theorem 4.1.5 while using the theorem 4.1.8.
However, the computation of S ⊆ {1, . . . , n} is not clear. First of all, we propose to
compute the set S, dominating column k ∈ [n[Z , by solving the integer program:

min
{
c⊤x | Ax = Ak, xk = 0, x ∈ {0, 1}n

}
. (4.4)

There are three possible results of this optimization problem:

� We compute the optimal solution x∗ with c⊤x∗ ≤ ck. Then, at least one optimal
solution exists to the original optimization problem with xk = 0. For a minimal
k-dominating variable set S with

∑
i∈S Ai,: = Ak, either one xi = 1, with i ∈ S or

xk = 1.
� There exists one optimal solution x∗ with c⊤x∗ > ck. Then, the variable xk can-
not be �xed to zero. However, the variables xi for i ∈ S will not be nonnegative
simultaneously.

� There exists no solution. Then, the variable xk cannot be �xed to zero. The variable
xk also cannot be �xed to one, since (4.4) is not the original problem

min
{
c⊤x | Ax = 1, x ∈ {0, 1}n

}
.

It is impossible that the optimization problem is unbounded because the variables are
binary. Solving an integer linear program to decide whether one single variable can be
�xed to zero is expensive. Especially if the problem is as large as the problem that one
wants to solve originally.

Nevertheless, the amount of work for solving an ILP for each column, which can be as
hard as solving the original problem, is too large. Therefore, we want to solve smaller and
easier problems to presolve the columns.

46

Lemma 4.1.10. We are given an ILP of the form (4.3). If column k ∈ {1, . . . , n} is
set-dominated by S ⊆ {1, . . . , n} \ {k}, then Ar,i = 0 holds for each column i ∈ S and row
r ∈ {r ∈ [m+ 1[Z | Ar,k = 0}.

Proof. Assuming, there exists at least for one i ∈ S with Ar,i = 1 for one r ∈ {r ∈ [m+1[Z |
Ar,k = 0}. Then ∑

i∈S

Ar,i ≥ 1 > 0 = Ar,k.

Thus, S is not a k-dominating set. Therefore, only columns with Ar,i = 0 holds for each
i ∈ S and r ∈ {r ∈ [m+ 1[Z | Ar,k = 0} are necessary to build a k dominating set.

Lemma 4.1.10 helps to identify the relevant columns for computing the k dominating
set S. Thus, the column k only a�ects a subset R = {r ∈ [m+1[Z | Ar,k ̸= 0}. Then, only
the columns I = {i ∈ [n+ 1[Z | Ar,i = 0 ∀ r ∈ [m+ 1[Z \R} are of interest. Therefore, one
can reduce the number of columns within this presolving problem and only solve the IP

min
{
c⊤x | AR,Ix = Ak, xk = 0, x ∈ {0, 1}n

}
.

This approach can reduce the amount of work to solve the presolving ILP. Nevertheless,
one needs to solve many ILPs. To only solve the presolving problem of computing a k
dominating set S with good prospects, the following rules should be followed.

� Sort the columns i, j ∈ {1, . . . , n} in descending order cj ≥ ci to sift out expensive
variables in the beginning. Expensive columns i ∈ {1, . . . , n} will not participate in
k dominating sets if the own objective ci function value is already larger than ck.

� If the number of non-zeros
∑m

r=1 |Ar,j | of the column j is relatively small concerning
the maximum number of non-zeros of a column, the optimization problem (4.4) will
probably have no solution. The reason is the low number of combinations to re-
generate the column by multiple columns. The corresponding presolving problem
should be considered only at the end of the presolving stage or even not at all.

� If all columns nearly have the same objective value, this procedure will not be suc-
cessful. The reason is that two columns of a set S ⊂ {1, . . . , n} will already exceed
the objective ck <

∑
i∈S ci ≈ |S|ck. Then, the presolving stage could be skipped.

Remark 4.1.11. The integrality condition x ∈ {0, 1} within the computation of

min
{
c⊤x | AR,Ix = Ak, xk = 0, x ∈ {0, 1}n

}
is crucial. Consider the problem

x1+ x2+ x4 = 1

x1+ x2+ x3 = 1

x1+ x3+ x4 = 1.

The column of x1 is not dominated by {x2, x3, x4}, although

0.5 ·

1
1
0

+ 0.5 ·

0
1
1

+ 0.5 ·

1
0
1

 =

1
1
1

holds.

Since detecting a set dominated column requires integral solutions, e�cient combinatorial
algorithms exploiting the combinatorial substructure must be devised to use this presolving
rule e�ciently, or some special substructure of the coe�cient matrix needs to be detected
(totally unimodular) to solve the presolving ILP e�ciently. Otherwise, this presolving step
would be too expensive.

Probing

Probing is a well-known presolving technique [ABG+20] and is used to detect logical
implications between binary variables. One can iteratively set one binary variable xi,
i ∈ {1, . . . , n}, to 0 and 1 and explore the two resulting problems. Moreover, the probing
technique can also be applied again to the resulting problems. If the resulting problem for
xi = 1 is infeasible, the variable xi can be �xed to 0 globally. If the resulting problem
for xi = 0 is infeasible, then the variable can be �xed to xi to 1 globally. In addition,
one can derive logical implications from probing iteratively on two variables xi and xk,
i ̸= k, i, k ∈ [n[Z [m[Z as follows.

47

1. If xi = 0 and xk = 0 leads to an infeasibility, then the constraint xi+xk ≥ 1 is valid.

2. If xi = 1 and xk = 1 leads to an infeasibility, then the constraint xi+xk ≤ 1 is valid.

3. If xi = 1 and xk = 0 leads to an infeasibility, then the constraint xi ≤ xk is valid.

4. If xi = 0 and xk = 1 leads to an infeasibility, then the constraint xk ≤ xi is valid.

The order of the �xations within the probing of two variables is irrelevant, and the
derived con�ict and implication stay the same. However, the order in which the variables
are �xed in probing is important and o�ers much space for improvement. Especially when
the probing algorithm is aborted after a prede�ned number of evaluations. Thus, the
probing order becomes crucial since some variables are more interesting than others.

The probing algorithm can also generate a detailed con�ict graph to separate valid
inequalities if the solver can compute the reason for the infeasibility. In [Sav94], one can
�nd more information about probing possibilities within the presolving stage.

The expensive part of probing is the necessity of solving a large number of LPs. Limit-
ing the number of iterations when resolving the probing LP is possible, but the time spent
solving LP can still be large, and most implementations stop probing before this presolving
consumes too much time if the success in global �xations and detected implications is too
low. A state-of-the-art summary is in [ABG+20].

Probing reductions often lead to additional �xations and implications. However, the
entire probing process is time-consuming and combinatorial algorithms and conditions are
more favorable.

4.1.2 Presolving Techniques for Task Variables

The number of task variables is always a big disadvantage when solving time-indexed
models. Often, the number of task variables must be reduced to obtain models, that
are solvable in acceptable time. Some very often used presolving rules are mentioned in
[Bru02]. Most of these approaches are not applicable to job-shop scheduling with �exible
energy prices and time windows. A more applicable propagation rule is mentioned in
[BS15]. The authors eliminate variables that cannot be part of locally optimal solutions
by using the reduced costs to compare the lower bound of locally feasible solutions and
the incumbent solution. However, we need to exploit the problem structure to shrink the
problem size initially.

The introduction of the most common presolving techniques shows us that some of
the presolving rules require the solution of an LP or even a solution of an ILP. Now, we
introduce combinatorial counterparts of the mentioned classical presolving rules. These
rules are problem-speci�c presolving rules of the job-shop scheduling problem with �exible
energy prices and time windows. To that end, we encode combinatorial conditions and
algorithms to replace the probing and the dominating set computation.

This section is divided into two parts. In the beginning, we introduce the presolving
rules a�ecting the task variables. The second part discusses the presolving rules a�ecting
the break variables. Presolving rules a�ecting the standby variables are neglected since
most obvious reductions are already done by probing on them. All mentioned presolving
rules can also be applied as propagating rules within the branch-and-bound tree.

For each task (j, k) ∈ O the time window [aj,k, fj,k[Z is assumed to be the smallest
interval in [T [Z such that for each t ∈ [T [Z \[aj,k, fj,k[Z the corresponding task variable
xj,k,t is �xed to zero. Note that there is the possibility that xj,k,t = 0 is �xed for a
periodst ∈ [aj,k + 1, fj,k − 1[Z .

We start with trivial infeasibility conditions, which can be veri�ed at each branch-and-
bound node.

Remark 4.1.12. Our variable reductions are also applicable as propagation rules. If
variable reductions are detected in the branch-and-bound tree, then the reductions are only
valid within the speci�c branch. Also, if there are variable reductions at the root node,
then these reductions are also feasible for the speci�c branch, which equals the complete
branch-and-bound tree.

Infeasibility Due to Time Windows of Single Tasks

The task variables are binary variables that must satisfy the assignment constraints (3.10b)
and the precedence constraints of the job sequences (3.10c). The assignment constraints
(3.10b) describe that each task must be processed once. If one task cannot be processed,
then the corresponding branch-and-bound node is infeasible.

48

Theorem 4.1.13. Let (j, k) ∈ O be one task. The current branch-and-bound node is
infeasible if the condition

fj,k − aj,k ≤ 0 (4.5)

is satis�ed.

Proof. Consider (j, k) ∈ O, where the tasks time window satisfy the condition

fj,k − aj,k ≤ 0.

Then, [aj,k, fj,k[Z is empty and the task (j, k) cannot start processing. Thus, the assign-
ment constraint ∑

t∈[aj,k,fj,k[Z

xj,k,t =
∑
t∈∅

xj,k,t = 0 ̸= 1

is violated. Therefore, this case leads to an infeasible branch-and-bound node.

MILP-solvers will also detect this infeasibility by solving the corresponding LP-relaxation.
This combinatorial condition can be generalized to a subset of tasks processed by the same
machine.

Theorem 4.1.14. Let S ⊆ OM
|m be a subset of the tasks processed by machine m ∈ M .

The current branch-and-bound node is infeasible if the condition

max
(j,k)∈S

(fj,k − 1 + dprj,k)− min
(j,k)∈S

(aj,k − dsej,k) <
∑

(j,k)∈S

(dsej,k + dprj,k) (4.6)

is satis�ed.

Proof. We are given the subset S ⊆ OM
|m of tasks processed by machine m ∈ M . The

number of periods required to process and setup all tasks (j, k) ∈ S without any idling
time is ∑

(j,k)∈S

(dsej,k + dprj,k).

The earliest setup of tasks (j, k) ∈ S can start in period min(j,k)∈S(aj,k − dsej,k) and the
processing of all tasks (j, k) ∈ S must be completed in period max(j,k)∈S(fj,k − 1 + dprj,k).
The execution order of the tasks is not considered. Since

min
(j,k)∈S

(aj,k − dsej,k) +
∑

(j,k)∈S

dsej,k + dprj,k > max
(j,k)∈S

(fj,k − 1 + dprj,k)

holds, at least one task (j, k) ∈ OM
|m cannot complete its processing till the end of period

max(j,k)∈S(fj,k − 1 + dprj,k). Thus, the current branch-and-bound node is infeasible.

A brute force evaluation of all conditions of type (4.6) requires an exponential number
of comparisons. We can reduce the number of comparisons to only O(|OM

|m |
2) comparisons.

Theorem 4.1.15. Let m ∈ M be one machine. One can decide by O(|OM
|m |

2) operations

whether there exists a subset S ⊆ OM
|m satisfying all conditions of type (4.6)

Proof. First, we will describe an algorithm that needs O(|OM
|m |

2) operations to check the
infeasibility conditions of the interesting subsets S ⊆ OM

|m . In the second step, we assume
that the infeasibility condition (4.6) is satis�ed by one set S ⊆ OM

|m . Then, we show that
there also exists one set S′ ⊆ OM

|m , constructed by the algorithm, satisfying Condition (4.6).
Algorithm 1 describes a Greedy-like procedure to compute a subset S satisfying the

infeasibility condition 4.6. The algorithm selects one task and then greedily increases the
number of tasks so that the minimum starting period of the tasks does not change and the
maximum processing start plus the processing duration is as small as possible.

For each task (i, l) ∈ OM
|m , the algorithm creates an iteratively growing set S. Within

the while loop, the set S is extended by further tasks. To extend the set S, two computa-
tions are required. The computation of (j, k) requires O(|OM

|m |) operations. The if-clause
is also veri�ed in O(|OM

|m |) operations. Thus, the complete algorithm runs in O(|OM
|m |

2)
operations.

Now, we prove that the algorithm works correctly. Let S ⊆ OM
|m satisfy the infeasibility

condition (4.6). Denote
(i, l) = argmin

(i3,l3)∈S

ai3,l3 − d
se
i3,l3

49

Algorithm 1 InfeasibilityCheck

procedure InfeasibilityCheck

for (i, l) ∈ OM
|m do ▷ (i, l) is the initial element

S = {(i, l)}
tmin = min{aj,k − dsej,k | (j, k) ∈ S}
while True do

Q = {(i3, l3) ∈ OM
|m \ S | ai3,l3 − dsei3,l3 ≥ tmin}

if Q ̸= ∅ then
(i, l) = argmin{fi3,l3 + dpri3,l3 | (i3, l3) ∈ Q}
S = S ∪ {(i, l)}
if S satis�es (4.6) then

return infeasible
end if

else

break
end if

end while

end for

return: no infeasibility detected
end procedure

the initial task and S′ = {(i, l)}. Then, the proposed algorithm will add tasks (j, k) ∈
OM

|m \ S
′ to S′ until no further task satisfying the required condition can be added. Let

S′′ be the �rst set within our algorithm containing S. The set S′′ exists, since the tasks
in (j, k) ∈ S can be sorted in increasing order of fj,k + dprj,k. Then, the following equations
and inequalities are valid:

min
(j,k)∈S

aj,k − dsej,k = min
(j,k)∈S′′

aj,k − dsej,k, (4.7)

max
(j,k)∈S

fj,k + dprj,k = max
(j,k)∈S′′

fj,k + dprj,k, (4.8)∑
(j,k)∈S

dprj,k + dsej,k ≤
∑

(j,k)∈S′′

dprj,k + dsej,k. (4.9)

Condition (4.7) holds by choice of (i, l) and the way the algorithm extends the set S′.
Conditions (4.8) holds since we are considering the �rst iteration, where S ⊆ S′′ and we
only extend S′ by the element (j, k) ∈ OM

|m \ S
′ with the smallest value fi3,l3 + dpri3,l3 .

The condition (4.9) holds, since S ⊆ S′′ holds. Therefore, S′′ leads also to a satis�ed
infeasibility condition (4.6) and S′′ is created by Algorithm 1.

MILP solvers can also detect infeasibility by solving the corresponding linear program of
the current branch-and-bound node. But the idea of Algorithm 1 will be reused multiple
times within this thesis. We do not consider the analogous infeasibility check for job
sequences. This is reasoned by the fact that we can trace back the infeasibility of a job
sequence to the infeasibility condition of single tasks: after an adjustment of the processing
starts of each task (j, k) and the computation of the local time window [aj,k, fj,k[Z of the
job sequence j ∈ J , the allowed processing starts of each task (j, l) ∈ OJ

|j can be adjusted.
If the complete job sequence cannot be set up and processed within a time window, then
at least one task has an empty local time window. Otherwise, the adjustment of the local
time windows of the job sequence is not as tight as possible. Nevertheless, the propagation
of time windows by precedence constraints and detecting locally valid precedence relations
are important.

Implied Precedence Constraints and Linear Ordering

Initially, the problem formulation includes the precedence constraints between consecutive
tasks of the job sequences. This subsection discusses the identi�cation of valid precedence
constraints between tasks processed by the same machine to strengthen the problem for-
mulation. In [Bru02], more approaches to detect valid implied precedence constraints are
presented.
We are given two distinct tasks (j, k) and (i, l) ∈ OM

|m processed by machine m ∈M . Each

50

aj,k ai,l fj,k − 1

con�ict

(j, k)(i, l)

aj,k ai,l fj,k − 1

no con�ict

(j, k) (i, l)

Figure 4.1: Visualization of the �xation of the execution order. The �rst example shows that task (i, l)
will overlap with the setup of task (j, k) if the execution order (i, l) → (j, k) is �xed. The second example
shows a valid �xed execution order, where the relation (j, k) → (i, l) holds, which allows both tasks to
complete the processing.

task has its own time window [aj,k, fj,k[Z , respectively [ai,l, fi,l[Z . We will start with a
condition for identifying valid precedence constraints. We also associate the corresponding
precedence constraints with a precedence relation (j, k)→ (i, l) for (j, k), (i, l) ∈ OM

|m .

De�nition 4.1.16. Let (j, k), (i, l) ∈ OM
|m be two distinct tasks processed by machine

m ∈ M . The precedence relation (j, k) → (i, l) are locally valid for PB if the precedence
relation (i, l)→ (j, k) leads to an infeasibility.

This de�nition is meaningful since the described property can be derived from the
feasibility/ infeasibility by probing on indicator variables of the associated linear ordering
problem.

Lemma 4.1.17. Let (j, k), (i, l) ∈ OM
|m be two distinct tasks processed by machine m ∈M .

If the precedence relation (i, l)→ (j, k) leads to an infeasibility, and the precedence relation
(j, k)→ (i, l) leads to an infeasibility of the current node, then the current node is infeasible.

The following theorem characterizes a subset of the locally valid precedence constraints.

Theorem 4.1.18. Let (j, k), (i, l) ∈ OM
|m be two distinct tasks processed by machine m ∈

M . The precedence relation (j, k)→ (i, l) is locally valid for PB if the condition

ai,l < fj,k < ai,l + dpri,l + dsej,k (4.10)

holds.

Proof. Let (j, k), (i, l) ∈ OM
|m be two distinct tasks processed by machine m ∈M such that

the pair (j, k), (i, l) satis�es Condition (4.10).
Suppose SJ is a locally feasible solution with execution order (i, l) → (j, k). The earliest
start of (i, l) is ai,l and the latest possible start of (j, k) is fj,k − 1. Since fj,k < ai,l +
dpri,l + dsej,k holds, the task (j, k) cannot start processing after (i, l) and the execution order
(i, l)→ (j, k) is locally infeasible and there exists no feasible solution with execution order
(i, l)→ (j, k).

Condition (4.10) describes that task (j, k) must start before task (i, l). This condition
can be checked for each machinem ∈M by iterating over all distinct pairs (j, k), (i, l) ∈ OM

|m
of tasks that do not have a �xed execution order.

Figure 4.1 visualizes the validity and concept of detecting implied precedence con-
straints. In addition to the implied precedence constraints, we can derive precedence
constraints by using information from linear ordering.

Corollary 4.1.19. Let (j, k), (i, l), (i3, l3) ∈ OM
|m be three pairwise distinct tasks processed

by machine m ∈M . If the tasks (j, k), (i, l), (i3, l3) satisfy precedence relation (j, k)→ (i, l)
and (i, l)→ (i3, l3), then the precedence relation (j, k)→ (i3, l3) is locally valid for PB.

Proof. The underlying linear ordering problem (4.57) and (3.14) describes all valid ex-
ecution order of the pairwise distinct tasks (j, k), (i, l),(i3, l3) ∈ OM

|m . The tasks (j, k),

51

(i, l), (i3, l3) satisfy the precedence relation (j, k) → (i, l) and (i, l) → (i3, l3). Within the
corresponding linear ordering problem, the variables pi,lj,k = 1 and pi3,l3i,l = 1 are �xed.

The no-cycle inequality (3.14) �xes pj,ki3,l3
= 0. Thus, the precedence relation (j, k) →

(i3, l3) is locally valid for PB .

Also, one can use additional constraints of the linear ordering problem to derive valid
�xations of precedence relations. In [GJR85], Grötschel, Jünger, and Reinelt analyzed the
linear description of the integral solutions of the linear ordering problem. In addition to
the no-cycle inequalities, the authors present further combinatorial constraints, which also
can be used to �x the order of tasks.

However, even �xing the execution order of all tasks to the execution order of the op-
timal solution can still lead to fractional optimal solutions of its LP-relaxation. For more
details, see Section 4.2. Thus, the theory of linear ordering, betweenness-variables and
valid inequalities from disjunctive graphs are not the main focus.
Suppose a precedence relation exists between the two distinct tasks (j, k), (i, l) ∈ O pro-
cessed by machine m ∈ M . In that case, we can propagate the modi�cations of the time
window to the preceding and succeeding tasks.

Theorem 4.1.20. Let (j, k), (i, l) ∈ O two distinct tasks with (j, k)→ (i, l). The minimum
distance between the processing start of (j, k) and the processing start of (i, l) is described
by

∆
(i,l)

(j,k) :=

{
dprj,k, mj,k ̸= mi,l,

dprj,k + dsej,k, mj,k = mi,l.

Then, the following precedence constraint propagation rules are valid:

xj,k,t = 0 ∀ t ∈
{
fi,l − 1−∆

i,l)

(j,k) + 1, . . . , fj,k − 1
}
, (4.11)

xi,l,t = 0 ∀ t ∈
{
ai,l . . . , aj,k +∆

i,l)

(j,k) − 1
}

(4.12)

Proof. Let (j, k) ∈ O and (i, l) ∈ O two di�erent tasks with (j, k) → (i, l). The task (i, l)
is only allowed to start processing after the task (j, k) has �nished its processing. If both
tasks are assigned to the same machine, the task (i, l) must also complete its setup before it
can start its processing. The earliest period of starting the processing of task (j, k) is period
aj,k. Thus, the earliest period of starting processing task (i, l) is max(ai,l, aj,k + ∆

(i,l)

(j,k)).

If the processing of task (i, l) starts in or before aj,k + ∆
(i,l)

(j,k) − 1, then the processing of
task (j, k) must start processing before its release date, which is not valid.

Analogously, the task (i, l) must start processing at least in period fi,l − 1. The task
(j, k) needs to start before (i, l). Therefore, the processing of (j, k) must be completed
in period fi,l − 1 − ∆

(i,l)

(j,k) to give the task (i, l) the chance to complete its processing.

Any processing start of (j, k) after period fi,l − 1 − ∆
i,l)

(j,k) + 1 would lead to an invalid
processing start of (i, l). Therefore, the processing start variable of (j, k) can be �xed to
zero for t ∈ {fi,l − 1−∆

(i,l)

(j,k) + 1, . . . , fj,k − 1}.

Suppose the precedence relation (j, k)→ (i, l) is valid. If the corresponding precedence
constraints are integrated into the solution process, and the problem formulation, then
the �xation of the task variables is redundant. The task variables cannot be used within
fractional solutions. However, all other presolving rules are based on the time windows of
the tasks. Thus, we must compute the local start time windows as tight as possible by
doing redundant �xations.

Handling of Small Time Windows

Branchings and new (implied) precedence constraints can compress the time windows of
tasks and their predecessors and successors. Then the time window [aj,k, fj,k[Z is as small
as possible and describes the locally valid processing starts of task (j, k) ∈ O. Note that
there is the possibility that some period t ∈ [aj,k + 1, fj,k − 1[Z exists where xj,k,t = 0 is
�xed.

We start with some obvious relation: if the task (j, k) is �xed to start processing in a
speci�c period t, then the locally valid time window of task (j, k) equals {t} = [aj,k, fj,k[Z .
Thus, the machine is blocked by the setup and the processing of task (j, k) within [t −
dsej,k, t+ dprj,k[Z .

52

Theorem 4.1.21. Let (j, k) ∈ OM
|m one task processed by machine m ∈ M . If the tasks

(j, k) starts processing in period t ∈ [aj,k, fj,k[Z , then each task (i, l) ∈ OM
|m \{(j, k)} cannot

start processing in any of the respective periods q ∈ [t− dsej,k − dpri,l + 1, t+ dprj,k + dsei,l[Z .

Theorem 4.1.21 is valid since it is obviously implied by the constraints (3.10d). The
small time window condition describes the cases where the task (j, k) is nearly �xed. The
task can start its processing in at least two di�erent periods. However, the valid processing
starts are so close to each other that we can derive information about the machine state of
the associated machine for some intermediate periods. The visualization of this presolving
and propagation step is visualized in Figure 4.2.

aj,k fj,k − 1

�rst valid processing of (j, k)

last valid processing of (j, k)

always processing or setting up (j, k)

Figure 4.2: Illustration of the short time window propagation con�ict period. The machine m = mj,k

needs to process or set up the task (j, k) within the con�ict period, independent of the choice of the start
period of the task within the time window.

Theorem 4.1.22 (Small time windows). Let (j, k) ∈ O be one task. If (j, k) satis�es the
small time window condition

aj,k + dprj,k > fj,k − 1− dsej,k, (4.13)

then the machine m = mj,k needs to process or set up task (j, k) in each periods q ∈
[fj,k − 1− dsej,k, aj,k + dprj,k[Z .

Proof. Let (j, k) ∈ OM
|m a task processed by machine m ∈ M that satis�es the small time

window condition. If the task (j, k) starts processing in period t ∈ [aj,k, fj,k[Z , then the
machine is occupied within the periods {t − dsej,k, t + dprj,k − 1}. Then, we can consider
t = aj,k and t = fj,k − 1 and intersect the blocked periods on machine m. The blocked
periods can be computed by

{aj,k−dsej,k, aj,k+dprj,k−1}∩{fj,k−1−dsej,k, fj,k−1+dprj,k−1} = [fj,k−1−dsej,k, aj,k+dprj,k[Z .

Thus, regardless of the choice of t ∈ [aj,k, fj,k[Z , the machine m must handle the task
(j, k) while running in state setup or in state processing within the periods q ∈ [fj,k − 1−
dsej,k, aj,k + dprj,k[Z .

Tasks (j, k) ∈ O satisfying the small time window condition are nearly �xed. This
information can still lead to reductions. Thus, we extend the presolving schemes to nearly
�xed tasks.

Theorem 4.1.23. Let (j, k) ∈ O one task which satis�es Condition (4.13). Then, the task
(i, l) ∈ OM

|m \ {(j, k)} cannot start processing in the respective periods

q ∈ [fj,k − 1− dsej,k − dpri,l, aj,k + dprj,k + dsei,l[Z

and the propagation scheme

xi,l,q = 0 ∀ q ∈ [fj,k − 1− dsej,k − dpri,l, aj,k + dprj,k + dsei,l[Z (4.14)

is locally valid for PB.

Proof. Let (j, k) ∈ O be one task satisfying the small time window condition (4.13). We
consider the period t ∈ [fj,k − 1− dsej,k, aj,k + dprj,k[Z . Each feasible solution has to satisfy
the machine state constraint

∑
(i,l)∈OM

|m

t+dsei,l∑
q=t−d

pr

i,l
+1

xi,l,q + zstm,t +
∑

(t0,t1)∈Bm:
t∈{t0,...,t1}

zrd,rum,t0,t1
= 1

53

in period t. The period t satis�es fj,k − 1− dsej,k ≤ t ≤ aj,k + dprj,k − 1. Thus, the following
inequalities hold:

t− dprj,k ≤ aj,k − d
se
j,k ≤ t ≤ fj,k − 1 ≤ t+ dsej,k,

and the equation
t+dsej,k∑

q=t−d
pr

j,k
+1

xj,k,q =

fj,k−1∑
q=aj,k

xj,k,q = 1

holds. Therefore, for each t ∈ [aj,k + dprj,k, fj,k − d
se
j,k[Z , we can �x

zstm,t +
∑

(t0,t1)∈Bm:
t∈{t0,...,t1}

zrd,rum,t0,t1
= 0

t+dsei,l∑
q=t−d

pr

i,l
+1

xi,l,q = 0 ∀(i, l) ∈ OM
|m \ {(j, k)}.

Since the variables are nonnegative, the constraints lead to a �xation of the tasks. This
reduction is allowed for each t ∈ [fj,k − 1− dsej,k, aj,k + dprj,k[Z . Thus, the task variables for
tasks (i, l) ∈ OM

|m \ {(j, k)} cannot start processing within the periods t ∈ [fj,k − 1− dsej,k −
dpri,l, aj,k + dprj,k + dsei,l[Z and thus the corresponding variables can be �xed to zero.

Lemma 4.1.24. Let (j, k) ∈ O satisfy the small time window condition (4.13). Then, the
standby-variables zstm,t for t ∈ [fj,k − dsej,k, aj,k + dprj,k[Z can be �xed to zero.

Remark 4.1.25. Suppose the task (j, k) ∈ O starts processing in period t ∈ [T [Z . Then,
the local time window [aj,k, fj,k[Z results in {t1, t1+1}. Moreover, the propagation scheme
by Condition 4.13 is also applicable with the highest impact.

4.1.3 Reductions of the Break Variables

This section considers the reduction of the number of break variables. The number of breaks
used in the problem formulation can be estimated by nM · T 2

B . Integer feasible solutions
will only use a small part of all break variables to describe near-optimal solutions. One
can imagine that at most T many breaks could be used by machine m ∈ M . Thus, there
are T · (T − 1) many breaks not used in one speci�c integral solution, and most variables
are unnecessary for describing the optimal integer feasible solution. Furthermore, the large
number of breaks leads to multiple (near) optimal solutions, and, generally, the machine
state assignment is not unique. Therefore, the following part will discuss the reduction of
the number of breaks and, hopefully, the number of near-optimal solutions.

Limiting the Length of a Break

The �rst presolving rule aims on computing bounds to the length of breaks and deletes
the breaks exceeding those boundaries.

Within a feasible solution of the job-shop scheduling problem with �exible energy
prices, each task (j, k) ∈ O must be processed once within the time window [T [Z . Also,
the machines must be ramped up before the earliest assigned task starts its setup and must
be ramped down after the last task has �nished its processing. We divide the breaks into
four classes to obtain the strongest possible bound.

De�nition 4.1.26. Let (t0, t1) ∈ Bm be one break belonging to machine m ∈M .

� If t0 = −drdm holds, then the break is called an initial break.
� If t0 > −drdm and t1 < T + drum hold, then the break is called a middle break.
� If t0 ≥ min(j,k)∈OM

|m
(aj,k +d

pr

j,k) and t1 ≤ max (j, k) ∈ OM
|m(fj,k−dsej,k) hold, then the

middle break is called an inner break.
� If t1 = T + drum holds, then the break is called a �nal break.

The distinction between inner and middle breaks is necessary since an inner break
shrinks the time window of a task, while a middle break need not con�ict with some tasks.
Each break (t0, t1) ∈ Bm can be either an initial, a �nal or a middle break. An inner break
can be combined with a task processing before or after the break. The middle break also
allows the processing and setup of a task on one side of the break only. The other side
of the middle break is outside of each task's time window. Nevertheless, there is a global
bound for the length of each class, which was already discussed in the knapsack constraint
(3.18).

54

Theorem 4.1.27 (Maximal length of a break). Let (t0, t1) ∈ Bm one break belonging to
machine m ∈M . The break (t0, t1) can be eliminated if the length of the break exceeds the
maximal length condition

t1 − t0 ≤ T −
∑

(j,k)∈OM
|m

(dprj,k + dsej,k). (4.15)

Proof. Let m ∈M be one machine. Within the (expanded) time window [−drdm , T +drum [Z ,
each task (j, k) ∈ OM

|m needs to be set up and processed once. A feasible solution to the
job-shop scheduling problem with �exible energy prices needs at least two di�erent breaks
per machine: one initial break (t0, t1) ∈ Bm and one �nal break (t2, t3) ∈ Bm to cover
period t = 0 and period t = T with breaks. Thus, we derive the bound

t1 − t0 + t3 − t2 ≤ T + drdm + drum −
∑

(j,k)∈OM
|m

(dprj,k + dsej,k).

Regardless of whether (t0, t1) or (t2, t3) are �nal or initial breaks, the minimum length of
(t2, t3) is drdm + drum . Replacing the break with its bound led to

t1 − t0 ≤ T −
∑

(j,k)∈OM
|m

(dprj,k + dsej,k).

Of course, this bound is also valid for middle breaks, since then, we additionally need
to consider three breaks per machine and two breaks of length drdm + drum . The resulting
inequality is

t5 − t4 ≤ T −
(∑

(j,k)∈OM
|m

(dprj,k + dsej,k)
)
− (drdm + drum).

for middle breaks (t4, t5) ∈ Bm.

This presolving and propagation scheme is based on presolving for knapsack constraints
(3.18). However, we can initially compute the maximum length of the breaks and only
generate the useful breaks. This presolving scheme is not useful to be reused in propagation
since the length of processing and setup, as well as the time window, is constant.

Lemma 4.1.28. Let (t0, t1) be one break belonging to machine m ∈M . The break (t0, t1)
can be eliminated if the break satis�es the condition

t1 − t0 > T −
∑

(j,k)∈OM
|m

(dprj,k + dsej,k). (4.16)

Remark 4.1.29. The presolving scheme (4.15) is weak for machine m ∈M , if

η =

∑
(j,k)∈OM

|m
(dprj,k + dsej,k)

T

becomes small. The enlargement of the time window decreases the value η. Then, the
number of periods required by processing and setting up all tasks is comparatively small
with respect to the time window. Thus, many breaks (t0, t1) ∈ Bm satisfy the condition
(4.15) and thus, many breaks will not be eliminated.

Due to the existence of release and due dates, which are not considered in (4.15), the
bound on the length of initial and �nal breaks can be further improved.

To that end, we consider each machine independently and derive bounds by single-
machine scheduling with release and due dates. Therefore, we already presented a con-
dition to verify whether scheduling a subset of tasks is still possible within a �xed time
window. Condition 4.6 detects the infeasibility of a subset of tasks that cannot complete its
processing and setup within the provided time window. Now, it is to reverse the idea, and
we limit the length of initial and �nal breaks by computing the required number of periods
for setting up and processing the tasks while we maintain one side of the time window
constant. To be more speci�c, we compute the maximum length of �nal and initial breaks
by reducing the time windows either on the left or on the right side of the time window
such that Condition 4.6 would detect an infeasibility.

Theorem 4.1.30. Let (t0, t1) ∈ Bm be one break belonging to machine m ∈M . The break
(t0, t1) can be eliminated if the break satis�es the condition

t0 < max
S∈P(OM

|m
), S ̸=∅

(
min

(j,k)∈S
(aj,k − dsej,k) +

∑
(j,k)∈S

(dsej,k + dprj,k)
)
. (4.17)

55

Proof. Let S ∈ P(OM
|m) be one arbitrary and nonempty subset of tasks. The earliest start

of a setup of one of the tasks (j, k) ∈ S is in period min(j,k)∈S(aj,k − dsej,k). Because of
the release dates, no task (j, k) ∈ S can start the setup earlier. Let (t0, t1) ∈ Bm be a
�nal break. Each feasible integer solution of PB using a break (t0, t1) must complete the
processing and set up all tasks before period t0. The �nal break (t0, t1) starts too early if
the set S satis�es the modi�ed infeasibility condition 4.6:

min
(
t0, max

(j,k)∈S
(fj,k − 1 + dprj,k)

)
− min

(j,k)∈S
(aj,k − dsej,k) <

∑
(j,k)∈S

dsej,k + dprj,k.

If t0 ≥ max(j,k)∈S(fj,k − 1 + dprj,k) holds, then the infeasibility check for break (t0, t1) is
not of interest since the maximum time window of the tasks is not changed. Therefore,
we consider the case t0 < max(j,k)∈S(fj,k − 1+ dprj,k). Then, a �nal break can only start in
period t0 if t0 satis�es:

t0 − min
(j,k)∈S

(aj,k − dsej,k) ≥
∑

(j,k)∈S

dsej,k + dprj,k

for each S ⊆ OM
|m . Otherwise, the condition (4.6) is not satis�ed, and the current problem

or branch-and-bound node is infeasible. Since the condition holds for each S, the condition
must hold for the S with

t0 ≥ max
S∈P(OM

|m
)

(
min

(j,k)∈S
(aj,k − dsej,k) +

∑
(j,k)∈S

(dsej,k + dprj,k)
)
.

The computation of (4.17) requires evaluating an exponential number of expressions.
Therefore, we introduce for each (j, k) ∈ O the set

F (j, k) := {(i, l) ∈ OM
|mj,k

| aj,k − dsej,k ≤ ai,l − dsei,l}. (4.18)

Theorem 4.1.31. Let (t0, t1) ∈ Bm be a �nal break belonging to machine m ∈ M . The
break (t0, t1) can be eliminated if the break satis�es the condition

t0 < max
(j,k)∈OM

|m

min
(i,l)∈F (j,k)

(ai,l − dsei,l) +
∑

(i,l)∈F (j,k)

(dsei,l + dpri,l). (4.19)

Proof. This bound is valid since the following bound holds:

t0 ≥ max
S∈P(OM

|m
)
min

(i,l)∈S
(ai,l − dsei,l) +

∑
(i,l)∈S

(dsei,l + dpri,l)

≥ max
(j,k)∈OM

|m

min
(i,l)∈F (j,k)

(ai,l − dsei,l) +
∑

(i,l)∈F (j,k)

(dsei,l + dpri,l).

The bound is still valid since we only replace all possible subsets S ∈ P(OM
|m) by a subset

of subsets {F (j, k) | (j, k) ∈ OM
|m}. Therefore, the bound can only be weaker because we

do not consider all possible subsets S ∈ P(OM
|m).

This bound is computable with less e�ort. Moreover, we can prove that no information
is lost by using (4.19) instead of (4.17).

Theorem 4.1.32. If the break satis�es Condition (4.17), then the break also satis�es
Condition (4.19).

Proof. Denote

S∗ = arg max
S∈P(OM

|m
)
min

(i,l)∈S
(ai,l − dsei,l) +

∑
(i,l)∈S

(dsei,l + dpri,l)

one subset of tasks de�ning the lower bound to the �rst start of a �nal break. Then, there
exists one task (i3, l3) ∈ S∗ with

(i3, l3) = arg min
(i,l)∈S∗

(ai,l − dsei,l).

By usage of task (i3, l3), the set F (i3, l3) leads to S∗ ⊆ F (i3, l3) and∑
(i,l)∈S∗

(dsei,l + dpri,l) ≤
∑

(i,l)∈F (i3,l3)

(dsei,l + dpri,l).

56

. . .

aj,k ai2,l2ai3,l3

(j, k) (i2, l2) (i3, l3)

T

t0 t1 + 1

S = {(j, k), (j2, k2), (j3, k3)}

Figure 4.3: This �gure shows that using sub-schedules can give better results than the pure consideration
of scheduling all tasks captured in the earliest release date. By the existence of only one further task,
whose release date has disappeared on the left edge of the �gure, the calculated bound on the length of
a �nal break would become too weak.

The set S∗ and the set F (i3, l3) have the same earliest start of a setup. Moreover, the
length of processing and setup in F (i3, l3) can only be larger than in S∗. Thus, we have

max
S∈P(OM

|m
)
min

(i,l)∈S

(
(ai,l − dsei,l) +

∑
(i,l)∈S

(dsei,l + dpri,l)
)
≤

max
(i,l)∈F (j,k)

min
(i,l)∈F (i3,l3)

(
(ai,l − dsei,l) +

∑
(i,l)∈F (i3,l3)

(dsei,l + dpri,l)
)
.

The equality of both bounds follows by F (i3, l3) ∈ P(OM
|m).

Figure 4.3 visualizes Condition 4.19. Furthermore, a similar approach leads to upper
bounds for �nishing the initial ramp-up.

Theorem 4.1.33. Let m ∈M be one machine. Denote

D(j, k) := {(i, l) ∈ OM
|m | fj,k − 1 + dprj,k ≥ fi,l − 1 + dpri,l}

the set of tasks (i, l) ∈ OM
|m , which are allowed to start processing later than (j, k). Then

the machine needs to be ramped up at the latest in period t1, bounded by

t1 ≤ min
(j,k)∈OM

|m

max
(i,l)∈D(j,k)

(fi,l − 1 + dpri,l)−
∑

(i,l)∈D(j,k)

(dsei,l + dpri,l). (4.20)

The validity of Theorem 4.1.33 can be proven similarly to Theorem 4.1.31. We pre-
sented bounds to the maximum length of �nal and initial breaks. However, there is also
an approach to constrain the length of inner breaks.

Theorem 4.1.34. The length of an inner break (t0, t1) ∈ Bm on machine m ∈ M is
bounded by

t1 − t0 ≤ max
(i,l)∈OM

|m

(fi,l − 1 + dpri,l)− min
(i,l)∈OM

|m

(ai,l − dsei,l)−
∑

(i,l)∈OM
|m

(dsei,l + dpri,l). (4.21)

Proof. Let (t0, t1) ∈ Bm be an inner break. The inner break (t0, t1) satis�es

min
(i,l)∈OM

|m

(ai,l − dsei,l) < t0 and t1 < max
(i,l)∈OM

|m

(fi,l − 1 + dpri,l).

In each feasible integer solution of PB , Condition 4.6 is not satis�ed by the tasks processed
by machine m. Since the break (t0, t1) requires some space, as equal as the tasks (j, k) ∈
OM

|m . Therefore, the break (t0, t1) cannot be used in a feasible solution if the tasks in
combination with the inner break (t0, t1) satisfy 4.6:

max
(i,l)∈OM

|m

(fi,l − 1 + dpri,l)− min
(i,l)∈OM

|m

(ai,l − dsei,l) <
∑

(i,l)∈OM
|m

(dsei,l + dpri,l) + (t1 − t0).

Thus, we cannot detect a direct infeasibility if

t1 − t0 ≤ max
(i,l)∈OM

|m

(fi,l − 1 + dpri,l)− min
(i,l)∈OM

|m

(ai,l − dsei,l)−
∑

(i,l)∈OM
|m

(dsei,l + dpri,l)

holds.

As before, the bound can be strengthened by considering also subsets S ⊆ OM
|m .

57

Theorem 4.1.35. The break (t0, t1) ∈ Bm can be eliminated, if there exists a subset
S ⊆ OM

|m satisfying

t0 > min
(j,k)∈S

(aj,k − dsej,k) and t1 < max
(j,k)∈S

(fj,k + dprj,k)

and

t1 − t0 > max
(i,l)∈S

(fi,l + dpri,l)− min
(i,l)∈S

(ai,l − dsei,l)−
∑

(i,l)∈S

(dsei,l + dpri,l).

The validity of this bound follows directly from Theorem 4.1.34 and the fact that the
assignment constraints (3.10b) can be discarded for (j, k) ∈ OM

|m \ S. The problem results
in a relaxation of the complete problem, and the �xation by Theorem 4.1.34 is applicable.

The set S ⊆ OM
|m can be computed by Algorithm 2.

Algorithm 2 Fixation Check For Inner Breaks

procedure FixationCheckForInnerBreak

for (i, l) ∈ OM
|m do ▷ (i, l) is the initial element

S = {(i, l)}
while True do

tmin = min(j,k)∈S aj,k − dsej,k
(j, k) = argmin(i3,l3)∈OM

|m
\S: ai3,l3

−dsei3,l3
≥tmin

fi3,l3 + dpri3,l3
if argmin exists then

if t1 − t0 > max
(i,l)∈S

(fi,l + d
pr

i,l) − min
(i,l)∈S

(ai,l − d
se
i,l) −

∑
(i,l)∈S

(d
se
i,l + d

pr

i,l) then

�x break to zero
break

end if

else

break
end if

end while

end for

return: no �xation detected
end procedure

Theorem 4.1.36. Algorithm 2 works correctly and requires O(|OM
|m |

2) operations.

Note that the middle breaks, which cannot be classi�ed as inner breaks, are not men-
tioned except by rule 4.15. However, propagation rule 4.1.35 can be extended to also be
valid for middle breaks.

Theorem 4.1.37. The middle break (t0, t1) ∈ Bm belonging to machine m ∈ M can be
eliminated if the number of common periods of the break and the time window of the tasks,
denoted by

L = min(max
(i,l)∈OM

|m

(fi,l − 1 + dpri,l), t1)−max(min
(i,l)∈OM

|m

(ai,l − dsei,l), t0),

satis�es

L > max
(i,l)∈OM

|m

(fi,l − 1 + dpri,l)− min
(i,l)∈OM

|m

(ai,l − dsei,l)−
∑

(i,l)∈OM
|m

(dsei,l + dpri,l). (4.22)

Proof. Let (t0, t1) ∈ Bm be one middle break satisfying (4.22). The break (t0, t1) and the
processing interval [min(i,l)∈OM

|m
(ai,l − dsei,l),max(i,l)∈OM

|m
(fi,l − 1 + dpri,l)[Z have L periods

in common. If (t0, t1) is also an inner break, then L = t1 − t0 holds. Otherwise, there
exists an inner break (q0, q1) with

q0 = max
(

min
(i,l)∈OM

|m

(ai,l − dsei,l), t0
)

q1 = min
(

max
(i,l)∈OM

|m

(fi,l − 1 + dpri,l), t1
)

58

with q1 − q0 = L. Thus, (q0, q1) is an invalid inner break. The inner break is satisfying
4.1.34 and would be �xed to zero. Since [q0, q1[Z ⊆ [t0, t1[Z holds, the subset of tasks can
still not be processed by the machine if the break (t0, t1) is used. Thus, (t0, t1) can be
�xed to zero.

However, most middle breaks that are not inner breaks could be classi�ed as forbidden
or irrelevant.

Irrelevant and forbidden Breaks

This part will discuss the detection and elimination of irrelevant breaks. An irrelevant
break (t0, t1) ∈ Bm describes a sequence of ramping-down, o�ine periods and ramping-up
that will not be used in optimal solutions. Therefore, we need to de�ne a meaningful
integer feasible solution.

De�nition 4.1.38 (Meaningful integer feasible solution). We call the feasible integer so-
lution (SJ ,SM) ↔ (x, zst, zrd,ru) ∈ P ∩ Z|O|×nM ·T×

∑
m∈M |Bm| a meaningful integer

feasible solution, if the machine state assignment of SM is optimal for �xed SJ . Other-
wise, the solution is called a non-meaningful integer feasible solution.

A meaningful integer feasible solution (SJ ,SM) is characterized by the property of
optimal machine state assignment for a �xed schedule SJ .

Figure 4.4 shows a partial example of a non-meaningful integer feasible solution. The
energy prices are assumed to be nonnegative and constant. The energy demand of the
machine within the machine states is also assumed to be positive. The �rst approach is to

0

t1 + 1t0

. . .

min(j,k)∈OM
|m

(aj,k + dprj,k − 1)

0

t1 + 1t0

. . .

min(j,k)∈OM
|m

(aj,k + dprj,k − 1)

Figure 4.4: This �gure shows two possible solutions for breaks at the beginning of the time window.
While the �rst sub�gure uses two breaks to cover the periods −drdm to t1, the second solution only uses
one break. In the case of only positive energy prices, the second solution, which avoids the additional
ramping, will lead to a better objective value. If the energy prices are also negative, the extra ramping
can be used to buy and use energy for a negative consumption price, and the �rst solution with two
breaks can be the better one.

characterize forbidden breaks in case of nonnegative energy prices Pt, t ∈ [T [Z .

Theorem 4.1.39 (Forbidden breaks). Let (t0, t1) ∈ Bm be one break belonging to machine
m ∈M . If the break (t0, t1) satis�es the condition

−drdm < t0 < drum or T − drdm < t1 < T + drdm ,

then the break (t0, t1) can be eliminated.

A forbidden break prevents the machine from using an initial or a �nal break. Since
the constraints (3.10e) and (3.10f) enforce the usage of a �nal and an initial break, the
forbidden break cannot be used. Forbidden breaks can be detected in presolving. Their
number is not in�uenced by branching or propagation until breaks are �xed to one. Further,
we can identify breaks that cannot appear in optimal solutions. Those breaks should not
be generated initially.

Theorem 4.1.40 (Irrelevant breaks for nonnegative energy prices). Let (t0, t1) ∈ Bm be
one break belonging to machine m ∈M .

59

1. If the break satisfy
drum ≤ t0 ≤ min

(j,k)∈OM
|m

(aj,k − dsej,k) (4.23)

and the energy prices additionally satisfy Pt > 0 for all t ∈ [t1[Z , then the break can
be eliminated.

2. If the break satis�es

max
(j,k)∈OM

|m

(fj,k − 1 + dprj,k) ≤ t1 < T − drdm , (4.24)

and the energy prices additionally satisfy Pt > 0 for all t ∈ [T [Z \[t0[Z , then the
break can be eliminated.

Proof. Without loss of generality, we assume that the initial phase only consists of two
breaks. Further breaks and standby phases can also be considered in an iterative procedure.

Let (x, zst, zrd,ru) ∈ PB an integer feasible solution and (t2, t3) ∈ Bm be the �rst
break belonging to machine m ∈ M satisfying drum ≤ t2 ≤ min(j,k)∈OM

|m
(aj,k − dsej,k) and

zrd,rum,t2,t3
> 0.

Since the break (t2, t3) is not an initial break, there exists an initial break (t0, t1) ∈ Bm,
with zrd,rum,t0,t1

> 0, and some standby periods completing the initial phase before break
(t2, t3). Then, the following inequalities hold:

d̂m,t0,t1 +

t2−1∑
t=t1

Pt ·Dst
m + d̂m,t2,t3 =

t3−1∑
q=t3−drum

PtD
ru
m +

t0−1∑
q=t3

Pt ·Dst
m +

t0+drdm−1∑
q=t0

PtD
rd
m +

t1∑
q=t1−drum

PtD
ru
m

≥
t1∑

q=t1−drum

PtD
ru
m

= d̂m,t2,t1 .

Thus, the solution (x, zst, zrd,ru) can be improved by replacing the sequence (t0, t1),
standby from t1 to t2 − 1 and (t2, t3) by the break (t0, t3), when the energy prices are
nonnegative for t ∈ [t3[Z . Thus, an optimal solution always exists that does not use break
(t2, t3). Thus, there exists an integral feasible solution not using break (t2, t3), and we can
�x zrd,rum,t2,t3

= 0.

This presolving rule eliminates breaks, which can be part of integral feasible solutions.
Thus, we manipulate the set of feasible solutions. Since we take care that at least one
optimal feasible solution remains, the reduction scheme is valid.

Set Dominated Breaks

The detection of irrelevant breaks requires nonnegative energy prices in subintervals of the
considered time window. However, if there exists one period t ∈ [T [Z with Pt < 0, we
can still try to detect and eliminate the redundant breaks using a similar approach. In
the presence of negative energy prices, the redundancy of break variables is checked by
an additional optimization problem since it is not obvious if the negative energy price can
reward additional ramping.

Theorem 4.1.41. Let m ∈ M be one machine. If the break (t0, t1) ∈ Bm satis�es the
condition

d̂m,t0,t1 ≥ min
{ ∑

(q0,q1)∈Bm:
t0≤q0<q1≤t1

d̂m,q0,q1z
rd,ru
m,q0,q1 +

q1∑
q=q0

d̂stm,qz
st
m,q | (4.25)

∑
(q0,q1)∈Bm:
t∈{q0,...,q1}

zrd,rum,q0,q1 = 1− zstm,t t ∈ [t0, t1[Z , (4.26)

zrd,rum,t0,t1
= 0, (4.27)

zrd,rum,q0,q1 ∈ {0, 1} ∀(q0, q1) ∈ Bm ∩ [t0, t1[Z ×[t0, t1[Z , (4.28)

zstm,t ∈ {0, 1} ∀t ∈ [t0, t1[Z
}
, (4.29)

60

then the break (t0, t1) can be eliminated.

Proof. Let (zst, zrd,ru) be an optimal solution for Problem (4.25)�(4.29). The solution
describes an optimal assignment of breaks and standby to the periods t ∈ [t0, t1[Z , with-
out using the break (t0, t1) (and neglecting the processing of the task). If the solutions'
objective value satis�es

d̂m,t0,t1 ≥
∑

(q0,q1)∈Bm:
t0≤q0<q1≤t1

d̂m,q0,q1z
rd,ru
m,q0,q1 +

q1∑
q=q0

d̂stm,qz
st
m,q,

the break variable zrd,rum,t0,t1
can always be replaced by a combination of the standby in the

periods {t ∈ [t0, t1[Z | zstm,t > 0} and the breaks {(q0, q1) ∈ Bm : zrd,rum,q0,q1 > 0}. The
elimination of (t0, t1) does not cut o� the optimal solution since the combination has at
most the same objective value. Thus, there always exists one feasible solution, which has
an equally good or better objective value that does not use the break variable zrd,ruma,t0,t1

.
Thus, the break (t0, t1) is redundant and the associated break variable zrd,ruma,t0,t1

can be
�xed to zero.

The Problem (4.25)�(4.29) must be solved for each break. The constraint matrix is
totally unimodular, and one can obtain a feasible integer solution by the solution of its
LP-relaxation. Although we only need to solve the LP-relaxation for nearly every break
(t0, t1) ∈ Bm, the complete solution time for many LP-relaxations is expensive and a more
e�cient way to solve the presolving problem (4.25)�(4.29) need to be discussed.

Exploiting the Shortest Path Structure

The assignment problem (4.25)�(4.29) has an underlying structure. We exploit this struc-
ture to solve the presolving and propagation problem for each break (t0, t1) in a more
e�cient way.

Example 4.1.42. Within this example, we want to present the shortest path structure of
detecting an assignment of a time window to standby or breaks. Therefore, we only use
breaks of equal length since the ramping length does not a�ect the problem structure.
To cover the periods [t0, t4[Z with standby or breaks, the following constellations are pos-
sible:

start end

t0 t1 t2 t3 t4

Figure 4.5: Example of all possible choices to cover periods [t0, t1[Z by standby or breaks. The rectangles
describe the standby periods, and the triangles ramp-down and ramp-up blocks. A line describes o�ine
periods.

Each possible assignment of the periods [t0, t1[Z to breaks or standby is visualized by
one row in Figure 4.5.

The following Figure 4.6 uses only the machine states standby and o�ine. The ma-
chine states ramping-down and ramping-up are visualized by arcs from o�ine to standby,
respectively the end-node, or standby, respectively the start-node to o�ine. The network
looks as follows:

61

start endst,t0 st,t1 st,t2 st,t3 st,t4

o�,t0 o�,t1 o�,t2 o�,t3 o�,t4

Figure 4.6: This �gure shows the acyclic network representation, where no additional data must be stored
at each node. The number of nodes is decreased, but the number of arcs increases.

The formal de�nition of the network, presented in Figure 4.6, is as follows.

De�nition 4.1.43 (Network for presolving of one single break). Let m ∈ M be one
machine and (t0, t1) ∈ Bm one break. The network of the interval [t0, t1[Z is de�ned by
N t0,t1 = (D = (V,A), l) with

V = {(start), (end)} ∪ {(st, t) | ∀ t ∈ [t0, t1[Z }
∪ {(o�, t) | ∀ t ∈ [t0, t1[Z }

and

A = ∪
{(

(st, t), (st, t+ 1)
)
| t, t+ 1 ∈ [t0, t1[Z

}
∪
{(

(o�, t), (o�, t+ 1)
)
| t, t+ 1 ∈ [t0, t1[Z

}
∪
{(

(o�, t), (st, t+ drum)
)
| t, t+ drum ∈ [t0, t1[Z

}
∪
{(

(st, t), (o�, t+ drdm)
)
| t, t+ drdm ∈ [t0, t1[Z

}
∪
{(

(start), (o�, t0 + drdm)
)}

∪
{(

(o�, t1 − drum), (end)
)
,
(
(st, t1 − 1), end

)}
∪
{(

(start), (st, t0)
)
,
(
(start), (o�, t0 + drdm)

)}
and the arc lengths l ∈ RA

l(start),(st,t0) = Pt0 ·D
st
m

l((st,t1−1),(end) = 0

l(o�,t),(o�,t+1) = 0 ∀ t, t+ 1 ∈ [t0, t1[Z

l(st,t),(st,t+1) = Pt+1 ·Dst
m ∀ t, t+ 1 ∈ [t0, t1[Z

l(st,t),(o�,t+drdm) =

t+drdm−1∑
q=t

Pq ·Drd
m ∀ t, t+ drdm ∈ [t0, t1[Z

l(o�,t−drum),(st,t) =

t−1∑
q=t−drum

Pq ·Dru
m t, t+ drdm ∈ [t0, t1[Z

l(start,t+drdm) =

t0+drdm−1∑
q=t0

Pq ·Drd
m

l(o�,t1−1−drum),(end) =

t1−1∑
q=t1−1−drum

Pq ·Dru
m .

Proposition 4.1.44. Let (t0, t1) be one break belonging to machine m ∈M . Additionally,
let N t0,t1 = (D = (V,A), l) be a network of the form 4.1.43. Then, one can decide in O(|A|)
whether there exists one optimal solution of the scheduling problem satisfying zrd,rum,t0,t1

= 0.

Proof. Let m ∈ M be a machine and (t0, t1) ∈ Bm one break. The network N = (D, l)
describes all possible paths from (start) to (end).
Let P be a (start)-(end) path in D. Then, in each period t ∈ [t0, t1[Z , the machine is
assigned to one machine state standby, o�ine or on an arc, describing the ramping. The
arcs from o� to st and from st to o� were set correctly, such that the ramping durations
are considered. Each paths from (start) to (end) describes an assignment of all periods
t ∈ [t0, t1[Z to standby and breaks. For an optimal solution of (4.25)�(4.29), only those
assignments of periods to machine states are of interest if the assignment has the lowest
objective costs. If the break (t0, t1) corresponds to a (start)-(end) path that does not
describe one of the shortest paths in D, then the break will not be used in an optimal
solution, since there exists a (start)-(end) path, and thus an assignment of the periods to
the machine states s ∈ {o�, rd, ru, st}, such that the objective decreases by switching form
break (t0, t1) to the less expensive (start)-(end) path.

62

Suppose there are multiple optimal solutions with objective equal to d̂m,t0,t1 . Then,
we can detect one path, unequal to the path, corresponding to (t0, t1). One possibility is
the computation of one shortest path in N with at least one visit of a st-node in [t0, t1[Z .
This could be done by additionally tracking the number of visited st-nodes and by only
updating the shortest path at node (end) if there was a visit of a st node.

Since the network is acyclic, we can use topological sorting to derive the optimal
solution in O(|A|) = O(T). This presolving and propagation algorithm is only e�ective
before the root node. Since we do not consider local time windows of tasks, the approach
cannot detect further reductions within the branch-and-bound tree.

Theorem 4.1.45. Let m ∈M be one machine and (t1, t2), (t0, t3) ∈ Bm pairwise distinct
breaks satisfying

t0 ≤ t1 < t2 ≤ t3.
If the break (t1, t2) is part of the shortest (start)− (end) path in N t0,t3 = (D, l), then there
exists at least one optimal solution (x, zst, zrd,ru) ∈ PB satisfying zrd,rum,t0,t3

= 0.

Proof. Let m ∈ M be one machine and (t0, t3), (t1, t2) ∈ Bm pairwise distinct breaks
satisfying

t0 ≤ t1 < t2 ≤ t3.
Additionally let (t1, t2) be part of one shortest (start)− (end) path in N t0,t3 = (D, l). The
shortest path consists of a set of breaks Sbreak and a set of standby periods Sst. Suppose

d̂m,t0,t3 <
∑

(q0,q1)∈Sbreak

d̂m,q0,q1 +
∑
q∈Sst

Pt ·Dst
m.

Then, the shortest start) − (end) path would use (t0, t3) instead of the breaks (q0, q1) ∈
Sbreak and the standby periods q ∈ Sst. Thus, this is a contraction to the optimality of
the shortest (start)− (end)path, including (t1, t2). Thus, there exists one optimal solution
(x, zst, zrd,ru) ∈ PB satisfying zrd,rum,t0,t3

= 0.

Corollary 4.1.46. Let m ∈M be one machine and (t1, t2), (t3, t4), (t0, t5) ∈ Bm pairwise
distinct breaks satisfying

t0 ≤ t3 ≤ t1 < t2 ≤ t4 ≤ t5.
If the break (t1, t2) is used by one shortest (start) − (end) path in N t0,t3 = (D, l), then
there exists at least one optimal solution (x, zst, zrd,ru) ∈ PB satisfying zrd,rum,t3,t4

= 0.

The Corollary 4.1.46 shows that the presolving scheme need not be applied for each
break explicitly. Many reductions can be found when computing one single shortest path.

Remark 4.1.47. The presolving rule 4.1.41 does not guarantee unique optimal solutions
since shifting the schedule could lead to feasible solutions with the same objective value.
This presolving rule permits feasible solutions, which di�er only by substituting breaks with
a combination of breaks and standby. However, there could still be distinct optimal solutions
using di�erent breaks and the same processing starts.

Infeasibilities by Combinatorial Probing

The �xations of breaks are not discussed in Scheme (4.14), since these �xations are com-
bined with a more general approach, which generalizes the scheme (4.14) in case of breaks
and detects con�icts of subsets of tasks and the usage of one speci�c break on the same
machine. Therefore, we consider a break (t0, t1) ∈ Bm and we analyze the problem on a
single-machine after �xing the usage of (t0, t1). Possible approaches to detect infeasibili-
ties are proposed. To motivate this combinatorial probing scheme, let's have a look at the
following example.

Example 4.1.48. We are given three tasks OM
|m = {(1, 0), (2, 0), (3, 0)} on machine m.

The setup and processing durations of the tasks are 2 for each task. The time windows
of each task (j, k) ∈ {(1, 0), (2, 0), (3, 0)} is set to aj,k = 6 and fj,k = 34. The ramping
duration of machine m is drdm = 2 and drum = 4. One wants to know if break (t0, t1) = (6, 26)
can be used within an optimal integral solution. Fractionally, the break (6, 26) can be used
in combination while processing the tasks (1, 0), (2, 0) and (3, 0), since the condition

t1 − t0 +
∑

(j,k)∈OM
|m

(dprj,k + dsej,k) = 26− 6 + 12 ≤ 36− 4 = 32 (4.30)

63

4 8 12 20 24 28 36

(1, 0) (2, 0) (3, 0)

Break from 6 to 26

Figure 4.7: Illustration the tasks (1, 0), (2, 0), (3, 0) and the con�ict of using the break (6, 26) with the
release and due date am = 6 and fm = 36.

holds. Thus, the bound on the length of middle breaks would not detect a possible reduction.
However, the break (6, 26) should not be used even in a feasible solution. The break (6, 26)
cannot be moved, and the task (1, 0) cannot start earlier, but the processing of (1, 0) and
the break overlap. Thus, the processing of (1, 0) cannot start in period 6 while using break
(6, 26). Therefore, one should shift the task (1, 0) onto the right side of break (6, 26). Then,
the processing can start in period 28. However, there are only 10 periods left to complete
the processing of three tasks with a processing and setting-up duration of 12. Thus, the
�xed usage of break (6, 26) leads to infeasibility and the break cannot be used in feasible
solutions.

Now, we consider one single-machine m ∈ M and the tasks (j, k) ∈ OM
|m . The break

(t0, t1) cannot be used in combination with the local time windows aj,k and fj,k of each
task (j, k) ∈ OM

|m if the following integer program does not have any integral solutions:

minimize 0 (4.31a)

subject to ∑
t∈[l,r[Z

xj,k,t = 1 ∀(j, k) ∈ OM
|m (4.31b)

zrd,rum,q0,q1 = 1 (4.31c)

∑
(j,k)∈OM

|m

t+dsej,k∑
q=t−d

pr

j,k
+1

xj,k,q ≤ 1, t ∈ [T [Z (4.31d)

∑
(j,k)∈OM

|m

t+dsej,k∑
q=t−d

pr

j,k
+1

xj,k,q ≤ 0, t ∈ [q0, q1[Z (4.31e)

xj,k,t ∈ {0, 1}, (j, k) ∈ OM
|m , t ∈ [l, r[Z (4.31f)

zrd,rum,t0,t1
∈ {0, 1}, (t0, t1) ∈ Bm. (4.31g)

The problem (4.31a)�(4.31g) without constraint (4.31c) is only a relaxation of the formula-
tion (3.10a)�(3.10h). Thus, if (4.31a)�(4.31g) in combination with (4.31c) has no solution,
then also (3.10b)�(3.10h) in combination with (4.31c) has no solution.

Problem (4.31a)�(4.31g) can be solved by integer linear programming. However, it
is a single-machine scheduling problem with time windows. This problem is known to be
NP-hard [KV12], and solving such a hard problem to decide whether a variable is used in a
feasible integral solution is excessive. Therefore, this section deals with providing solution
strategies to solve the problem e�ciently using approximation algorithms.

The �xation of break (t0, t1) within the time window splits the set of tasks OM
|m into

two sets and the time window also into two sub time windows. Thus, this problem can be
considered to be a double knapsack problem or a multi dimensional knapsack problem.

Remark 4.1.49. The following problem describes a relaxation of (4.31a)�(4.31g).

Let m ∈ M be one machine and (t0, t1) ∈ Bm a break. We consider the subset of tasks
S ⊆ OM

|m . The multi dimensional knapsack problem can be built as follows.

� Compute am = min(j,k)∈S aj,k − dsej,k and fm = max(j,k)∈S fj,k − 1 + dprj,k.

� Fix the variable zrd,rum,t0,t1
= 1.

� Create two knapsacks A and B.

� The knapsack A with size bA = max(t0 − am, 0).

64

� The knapsack B with size bB = max(fm − t1, 0).
� Create the set U consisting of the items (j, k) ∈ S with size w(j,k) = dprji,k +d

se
j,k

for (j, k) ∈ S.
� The item values c(j,k) = 1 are chosen equally for each (j, k) ∈ S.
� The objective is to maximize the value of the chosen items.

The described problem is a multi dimensional knapsack problem with dimension
two. Solving this knapsack problem is equally hard as deciding whether several items
�t into two bins. Thus, we can already provide a polynomial time approximation algo-
rithm with an approximation factor of 3

2
by approximation algorithms for the bin-packing

problem. For more insights, see [KV12].
However, we want to devise algorithms that can compute near-optimal solutions.

Therefore, we need simpli�ed conditions to verify whether the break can be �xed to zero.

Theorem 4.1.50. Let (t0, t1) ∈ Bm be a break belonging to machine m ∈ M . The break
(t0, t1) can be eliminated if there exists a subset S ⊆ OM

|m such that the problem mentioned
in Remark 4.1.49 has an optimal solution with objective value smaller than |S|.

Proof. Let m ∈ M be one machine and (t0, t1) ∈ Bm a break belonging to machine m
considered in the combinatorial probing problem. Moreover, let S ⊆ OM

|m be an arbitrary
subset of tasks. Suppose the break (t0, t1) can still be used in a locally feasible solution of
the corresponding single-machine scheduling problem (4.31b)�(4.31g), although the prob-
lem mentioned in Remark 4.1.49 has no solution. Let x∗ be the local feasible solution of
this single-machine scheduling problem of the tasks. Then, the following sets are de�ned:

IA = {(j, k) ∈ S |
∑

t∈[T [Z

x∗j,k,t · t < t0},

IB = {(j, k) ∈ S |
∑

t∈[T [Z

x∗j,k,t · t ≥ t1}.

Since x∗ is part of a feasible solution of (4.31b)�(4.31g), IA∪̇IB = S and∑
(j,k)∈IA

dprji,k + dsej,k ≤ max(t0 − am, 0) = bA,

∑
(j,k)∈IB

dprji,k + dsej,k ≤ max(fm − t1, 0) = bB

hold. The sets IA and IB are feasible assignments of the items to the knapsacks A and B.
The corresponding objective value is |IA∪̇IB | = |S|. Thus, the considered solution of the
problem mentioned in Remark 4.1.49 is not optimal.

Note that the reverse direction does not hold, since multiple constraints and further
machines are not considered.

Remark 4.1.51. The multidimensional knapsack problem is only a relaxation of the con-
sidered single-machine scheduling problem. The �xation of a break (t0, t1) ∈ Bm can lead
to infeasibility, although the double knapsack problem provides a feasible integer solution
with objective value |OM

|m |.

To solve the multidimensional knapsack problem, we use Algorithm 3.

Theorem 4.1.52. Algorithm 3 computes an optimum solution of the problem described in

Remark 4.1.49, and its runtime is bounded by O(2|O
M
|m |

).

Proof. The runtime: we create two possible outcomes for each item and restart and evalu-
ate the recursive function with the remaining items. This is done to the depth of at most
n = |OM

|m |.
The algorithm is a recursion. In stage i, the two possibilities are checked.

1. If item i �ts in the left knapsack, then compute the best solution using the items
{i+ 1, . . . , n} and the current remaining capacities.

2. If item i �ts in the right knapsack, then compute the best solution using the items
{i+ 1, . . . , n} and the current remaining capacities.

65

Algorithm 3 recursive Double Knapsack Algorithm rDKA(n,bA,bB ,w,i)

Require: number of items n, knapsacks bA and bB and items (wi)i=1,...,n

if i == n then
return 0

end if

posF illA = 0
posF illB = 0
if b0 ≥ wi then

posF illA = ci+ rDKA(n, bA − wi, bB , i+ 1, c)
end if

if b1 ≥ wi then

posF illB = ci+ rDKA(n, bA, bB − wi, i+ 1, c)
end if

return max(posF illA, posF illB)

If the item i does not �t either in knapsack A or in knapsack B, then there is no need to
visit further nodes within this recursion branch.
The recursion enumerates all possibilities and only aborts the search within a branch if the
solution we seek cannot be in the current branch. Therefore, the optimal solution will be
detected, and the solution time of this algorithm is bounded by O(2|O

M
|m |

).

Algorithm 3 performs badly for large sets S ⊆ OM
|m . The solution of the double knap-

sack algorithm is also only a weak relaxation of the associated single-machine scheduling
problem. This relaxation currently does not consider the local time windows of tasks. The
time windows can permit processing a speci�c task after or before the break (t0, t1). The
next presolving steps are supposed to strengthen the relaxation by the double knapsack
problem by predetermining the relative position of each task to the break variable. There-
fore, we consider the knapsack A to describe the tasks processed before the break (t0, t1),
and the knapsack B describes the tasks processed after break (t0, t1).

Example 4.1.53. We consider an example similar to the example of Figure 4.7. We reuse
the same setting but the task (1, 0) has the time window [6, 21[Z . Moreover, we consider
the break (6, 24). Obviously, task (1, 0) cannot start processing before break (6, 24). Due to
the time window of task (j, k), the task (1, 0) cannot be processed after break (6, 24). Thus,
we can detect infeasibility by the knowledge of the assignment of the tasks if we consider
the time windows.

4 8 12 20 24 28 36

(1, 0) (2, 0) (3, 0)

break variable from 6 to 24

Figure 4.8: Illustration the tasks (1, 0), (2, 0), (3, 0) and the con�ict of using the break (6, 24) with the
release and due date am = 6 and fm = 21 of task (1, 0).

Theorem 4.1.54. Let (t0, t1) be one break belonging to machine m ∈M . If the machine
m is using the break (t0, t1), then the task (j, k) ∈ OM

|m can only be processed after period
t1 if

aj,k + dprj,k > t0

holds.

Proof. Let m ∈ M be one machine and (t0, t1) ∈ Bm one break. The task (j, k) ∈ OM
|m

satis�es the condition aj,k+dprj,k > t0. Suppose the break starts processing before t0. Then,
the processing of task (j, k) starts at least in period t0 − dprj,k. Since aj,k + dprj,k > t0 holds,
the processing of task (j, k) starts in aj,k − 1, which is not feasible. Thus, the task (j, k)
can be �xed to be start processing after break (t0, t1).

66

Analogously, the following result is valid for tasks that cannot be processed after the
break.

Theorem 4.1.55. Let (t0, t1) be one break belonging to machine m ∈M . If the machine
m is using the break (t0, t1), then the task (j, k) ∈ OM

|m can only be processed before period
t0, if

fj,k − dsej,k < t1

holds.

Since we can �x the position of the tasks in relation to the break, we can also �x the
assigned item of the multi dimensional knapsack problem to the corresponding knapsack.
Using this knowledge of possible item �xations to speci�c knapsacks leads to the following
theorem.

Theorem 4.1.56. Let (t0, t1) ∈ Bm one break belonging to machinem ∈M . Additionally,
let S ⊆ OM

|m be a subset of tasks. Denote L ⊆ S the subset of tasks that need to be processed
before t0 and R ⊆ S as the set of tasks that need to be processed after t1. Then, we get
new knapsack capacities:

� bA ← bA −
∑

(j,k)∈L w(j,k)

� bB ← bB −
∑

(j,k)∈R w(j,k)

and a new set of un�xed items U = S \ (L∪R). If the corresponding knapsack problem has
an optimal solution with objective value < |U |, then the break (t0, t1) can be eliminated.

Proof. Let (t0, t1) ∈ Bm be the break to be �xed. If U = S \ (L ∪ R) and L = R = ∅,
the validity of this theorem is proven. If L ̸= ∅, then each item in (j, k) ∈ L must be part
of knapsack A, and the corresponding task (j, k) cannot be processed after break (t0, t1).
Analogously, the position of the tasks in R to the break (t0, t1) are �xed. Therefore, the
remaining items in U must be considered within the computation. Those items can be
assigned to both knapsacks. If the knapsacks can contain all |U | items, then the objective
with consideration of S is |S|. Otherwise, one item in U cannot be assigned to A or B,
and thus, the objective of the multi dimensional knapsack problem would be smaller than
|U |. Thus, the multi dimensional knapsack problem has objective < |S|. Thus, (t0, t1) can
be eliminated.

The double knapsack problem can be solved for each break (t0, t1) ∈ Bm. It is prefer-
able to decide by a combinatorial condition whether the double knapsack problem has an
objective value of |S|. Therefore, a few simple cases do not require the use of the algorithm.

Theorem 4.1.57. Let m ∈ M be one machine and S ⊆ OM
|m a subset of tasks. Further,

let (t0, t1) ∈ Bm be a break belonging to machine m ∈M . Denote L ⊂ OM
|m the set of tasks

that need to be processed before t0 and R ⊂ OM
|m the set of tasks that need to be processed

after t1. We de�ne:

� bA ← bA −
∑

(j,k)∈L w(j,k)

� bB ← bB −
∑

(j,k)∈R w(j,k)

and U = S \ (L∪R). The break variable zrd,rum,t0,t1
cannot be used in a feasible local solution

if the condition ∑
(j,k)∈U

(dprj,k + dsej,k) > bA + bB (4.32)

holds.

Proof. The items of size
∑

(j,k)∈U (d
pr

j,k+d
se
j,k) cannot �t into two knapsacks of size bA+bB .

Thus, at least one item (j, k) ∈ S cannot be assigned to knapsack A and knapsack B. The
objective of the corresponding multi dimensional knapsack problem must be smaller than
|S|. Thus, the break (t0, t1) can be �xed to zero.

This condition describes that the usage of the break variable zrd,rum,t0,t1
prevents at least

one task from starting processing within the local time windows since at least one item,
e.g., one task, cannot be assigned to one side of the break. This condition is a more speci�c
version of Condition (4.13) for the complete set of tasks processed on machine m ∈M .

However, we prefer to run the algorithm and retrieve the result to �x the variable.
Moreover, we do not want to run the algorithm very often without any �xations, since the
run of one algorithm can be expensive. Often, the required optimization problem need not
be solved. We can compute its result by evaluating combinatorial conditions.

67

Theorem 4.1.58. Let (t0, t1) ∈ Bm be a break belonging to machine m ∈ M . Further,
let S ⊆ OM

|m be a nonempty subset of tasks. Denote L ⊆ S the set of tasks that need to be
processed before t0 and R ⊆ S the set of tasks that need to be processed after t1. The new
knapsack capacities are

� bA ← bA −
∑

(j,k)∈L w(j,k)

� bB ← bB −
∑

(j,k)∈R w(j,k)

and the new set of un�xed items is U = S \ (L ∪ R). The multi dimensional knapsack
problem has objective |S|, if the condition

bA + bB −
∑

(j,k)∈S

(dprj,k + dsej,k) ≥ max
(j,k)∈U

(dprj,k + dsej,k) (4.33)

is satis�ed.

Proof. Let m ∈ M be one machine and (t0, t1) ∈ Bm a break belonging to machine m.
The break (t0, t1) only can be used locally, if the condition∑

(j,k)∈U

(dprj,k + dsej,k) ≤ bA + bB

holds. Suppose the item (i, l) cannot be assigned to knapsack A and knapsack B. The
double knapsack algorithm �ts the items without gaps. Denote IA the items assigned to
knapsack A and IB the items assigned to knapsack B. Thus, the remaining capacity in
both knapsacks satis�es

b̂A = bA −
∑

(j,k)∈IA

(dprj,k + dsej,k) < dpri,l + dsei,l

and
b̂B = bB −

∑
(j,k)∈IB

(dprj,k + dsej,k) < dpri,l + dsei,l.

Because
∑

(j,k)∈U (d
pr

j,k + dsej,k) ≤ bA + bB holds, the reduced capacities satisfy b̂A + b̂B >

dpri,l + dsei,l. Thus b̂A >
d
pr

i,l
+dsei,l
2

or b̂B >
d
pr

i,l
+dsei,l
2

holds. To be able to assign the item (j, k)

to one of the knapsacks, we enlarge both knapsacks by
d
pr

i,l
+dsei,l
2

. Then, at least one of the
knapsacks i ∈ {A,B} has a reduced size of b̂i ≥ dpri,l + dsei,l. Thus, to be able to consider
each possible task, the global additional capacity is max(j,k)∈U (d

pr

j,k + dsej,k).
Thus, if the originally multi dimensional knapsack problem satis�es

bA + bB −
∑

(j,k)∈S

(dprj,k + dsej,k) ≥ max
(j,k)∈U

(dprj,k + dsej,k),

then the multi dimensional knapsack problem has objective |S|.

This condition follows from the 3
2
approximation algorithm of the bin packing approx-

imation. There is the possibility to apply the presolving and propagation rule (4.17) to
the tasks �xed to L respectively R. The tasks of the set U must be ignored.

This reduction scheme can be applied within the branch-and-bound tree. Initially, the
number of reductions by this presolving scheme is low since this presolving scheme requires
tight time windows for all tasks. To apply this presolving, the branch-and-bound algorithm
needs to shrink the time windows of the tasks.

4.2 The Branch-and-Bound Algorithm

Integer linear programs are commonly solved by enumerative methods, called branch-and-
bound and branch-and-cut, see for example [LD60, AKM05, WN14]. In this section, we
present the basic principles of branch-and-bound and touch on the traditional branching
techniques employed by commercial MILP solvers. After that, we discuss known branch-
ing rules for scheduling and their e�ect on the job-shop scheduling problem with �exible
energy prices and time windows. Then, we introduce our problem-speci�c branching rules.
Through analysis of a speci�c instance's LP relaxation, we demonstrate the necessity for
problem-speci�c branching rules. We are using constraint-based branching to enforce the
integrality of the workload of the machines, and we use constraint-based branching to
shrink the time windows of the tasks. At the same time, various variants of the branching
candidate selection rules are presented with a discussion of their advantages and disadvan-
tages.

68

4.2.1 Branch-and-Bound in General

A well-known method for solving integer programs is to use a branch-and-bound algorithm
([LW66, CCZ14]) in combination with linear programming to derive the bounds. Given an
integer program

min{c⊤x | Ax ≤ b, x ∈ Zn} (4.34)

with A ∈ Qm×n, c ∈ Qn and b ∈ Qm. The algorithms start by initializing the list of open
problems, called open branch-and-bound nodes, with the original problem. The idea
of the branch-and-bound algorithm is to recursively divide the problems into disjunctive
subproblems to improve the best-known lower bound towards the optimal objective value
if there exists one feasible solution until the list of open nodes is empty. The smallest lower
bound of the open nodes is called the dual bound. The best-known feasible solution's
objective is the primal bound. One node of the list of open nodes is selected and solved,
for example, by linear programming, to provide a lower bound to the optimal objective
value of the selected node.

If the solution values x∗ of the LP-relaxation of a branch-and-bound node of (4.34)
are integral, and the corresponding objective value improves the primal bound, the primal
bound objective value is updated. If the current problem is infeasible, further branching
cannot repair the infeasibility, and the node has no feasible solution. If the computed bound
exceeds the primal bound, this local subtree cannot contain a feasible integer solution,
improving the current primal bound. If the solution x∗ of (4.34) is fractional, a branching
creates two new problems, called child nodes. The child nodes are created by introducing
a branching decision, which can be expressed by two linear constraints dividing the
problem into these disjunctive subproblems. Next, the branch-and-bound tree, and thus
the list of open nodes, is expanded by adding two child nodes and the next node to solve
is chosen by a rule called node selection.

A well-known strategy to divide the problem into smaller subproblems is variable
branching. If the solution x∗ of (4.34) is fractional, a fractional variable xi /∈ Z, i ∈
{1, . . . , n}, exists. The space of feasible solutions is partitioned into multiple subsets. In
the classical branch-and-bound algorithm, the variable branching constraints: xi ≤ ⌊x∗i ⌋
and xi ≥ ⌈x∗i ⌉ are used to realize the branching.

The branch-and-bound algorithm terminates if the list of open nodes is empty or the
primal bound equals the dual bound. Some well-known variable branching rules, for ex-
ample, strong branching or pseudo-cost branching, are explained in [AKM05].

General Disjunctions and Branching on Constraints

A branch-and-bound algorithm is not limited to branch on variables. Moreover, general
disjunctions can be used in the branch, and bound algorithm [NCKL11, MJSS16, TBBK23]
to speed up the solution process. In the case of the usage of linear constraints, the branching
takes the form of:

child A:
∑
i∈J

aixi ≤ m

and

child B:
∑
i∈J

aixi ≥ m+ 1

with a ∈ Zn, m ∈ Z and ∅ ̸= J ⊆ {1, . . . , n}. For J = {j} and m = ⌊xj⌋, variable
branching can be realized. This way of dividing the solution space generalizes the classical
variable branching. The branching will change the fractional solution in both child nodes
if the condition

m <
∑
i∈J

aixi < m+ 1

holds. Otherwise, the fractional solution remains feasible for at least one subproblem, and
thus, the same branch could be created within the respective subproblem again, and �nally,
the branch-and-bound algorithm will not terminate.

In the case of set-packing problems, early steps in the �eld of constraint branching were
taken in the publications [RF81, Etc77]. In both publications, the authors remark on the
possibility of a bad performance of the variable branching, resulting from the unbalanced
strong impact on the child nodes.

The classical variable branching results in unbalanced strong branches [RF81][p.279].
One branch signi�cantly improves the solving process, while the other branch has (nearly)

69

no impact on the dual bound. In addition to the consideration of more general branching
conditions, the authors propose matrix property-preserving branching constraints.

As an example, we consider theRyan-Foster branching for A ∈ {0, 1}m×n. Consider
the two di�erent rows Ai,:x ≤ bi and Aj,:x ≤ bj of the system, with i, j ∈ {1, . . . ,m}. Then,

n∑
k=1

Ai,k ·Aj,kxk =
∑

k∈{1,...,m}:Ai,k>0 and Aj,k>0

xk

holds. If the LP relaxations' solution of the current node is fractional, then there exists
at least two distinct rows i, j ∈ {1, . . . ,m} with 0 < Ar,:x < 1 for r = i, j. Then, the
constraint

∑n
k=1Ai,k · Aj,kxi ≥ 1 and constraint

∑n
k=1Ai,k · Aj,kxi ≤ 0 realize a valid

branching. The branch
∑n

k=1Ai,k · Aj,kxi ≥ 1 branch forces the solution to cover the
constraints i and j with the same variable. The

∑n
k=1Ai,k · Aj,kxi ≤ 0 branch forces to

cover the constraints i, j by di�erent variables.
The experiments in [RF81] veri�ed their assumption that the resulting branches become

similarly strong by using this branching. In the literature and the associated experiments,
this branching was applied successfully, and the generation of more balanced branches was
observed multiple times.

Another well-known example of branching on constraints is the so-called SOS branch-

ing [BT69, FP17]. This problem-speci�c branching rule was developed for special ordered
set (SOS). Beale and Tomlin introduced the SOS branching in [BT69]. A certain kind of
inequality characterizes a special ordered set:

� SOS1 constraint: at most, one variable from the set can take a non-zero value.
� SOS2 constraint: at most, two variables out of the set are allowed to take a non-zero
value, and the two must be adjacent variables.

To explain the basic idea of SOS branching, we are using the SOS1 constraint
n∑

r=1

xr = 1, (4.35)

with binary variables x ∈ {0, 1}n. For k ∈ [n− 1[Z , let xk and xk+1 be a pair of variables
in constraint (4.35). Since only one variable of the set {x1, . . . , xn} can take a non-zero
value, the non-zero value can be found beyond xk or before xk+1.

The introduction of the branching-constraints

child A
k∑

r=1

xr = 1, (4.36)

and

child B
n∑

r=k+1

xr = 1, (4.37)

lead to two di�erent subproblems, if 0 <
∑n

r=k+1 xr < 1 holds. The selection of the
suitable index k remains, and the choice will di�er depending on the application. Di�erent
choices are considered in [BT69, FP17]
Van den Akker took up the idea of SOS branching. She successfully applied the idea
of those disjunctions in the context of time-indexed formulation in scheduling in [vdA94].
The branching rules that we have developed for the scheduling problem with �exible energy
prices and time windows also fall into the category of SOS branching.

4.2.2 Challenges in Fractional Solutions

The fractional solutions of the job-shop scheduling problem with �exible energy prices
and time windows need to be treated di�erently than the fractional solutions of classical
scheduling problems with objective makespan or weighted completion time. In the following
section, we discuss the use of an often-used branching rule for scheduling, namely the
�xation of precedences.

But before analyzing, we �rst de�ne the concept of workload in order to be able to talk
about the properties of fractional solutions

De�nition 4.2.1. For machine m ∈M and period t ∈ [T [Z , the activity or the workload
of m in t is de�ned by

wm,t :=
∑

(j,k)∈OM
|m

t+dsej,k∑
q=t−d

pr

j,k
+1

xj,k,q + zstm,t.

70

Precedence Constraints Branching

Branching and disjunctions are not limited to one single linear constraint per node. Ad-
ditionally, a new set of valid inequalities can describe the disjunction of the branching
decision at a branch-and-bound node. Nevertheless, it is crucial to note that the branch-
ing still represents a disjunction of the previous solution space. An instance of this is the
precedence constraints branching.

When scheduling tasks on machines, the main focus is typically determining one opti-
mal execution order of the tasks. The problem formulation of this ordering problem was
previously outlined in Section 3.2.4. This problem extension uses the ordering variables pi,lj,k

for all pairs of pairwise distinct tasks (j, k), (i, l) ∈ OM
|m . The extension requires O(T · |O|)

many constraints linking the ordering variables and the task variables. By using a classical
variable branching on the pi,lj,k variables, branching on the execution order of the variables
can be realized. However, O(T · |O|) many precedence constraints are required initially.

The amount of work required to manage the redundant inequalities is too large. After
each branching, at most T -many constraints of the linear ordering formulation and the
coupling un�xed precedence constraints become active while T -many constraints become
redundant at each node. Therefore, we are not interested in initially adding all those
constraints to the formulation.

A more memory-saving variant is the adaptive extension of the problem formulation
by precedence constraints as branching decisions at each branch-and-bound node. The
so-called disjunctive graph [Pin08, p.179] is a way of visualizing the �xed and un�xed
precedence relations.

De�nition 4.2.2. For a set of machines M and a set of tasks O, mapped to the machines
by M : O →M , a graph G = (V,C∪̇D) is called disjunctive graph if

1. V is the set of task O.

2. C :=
{(

(j, k), (j, k + 1)
)
| ∀ (j, k), (j, k + 1) ∈ OJ

|j , ∀ j ∈ J
}

is the set of all �xed

precedences of job-sequences .

3. D :=
{(

(j, k), (i, l)
)
| (j, k), (i, l) ∈ OM

|m , (j, k) ̸= (i, l) ∀ m ∈M
}
is the set of un�xed

precedences of tasks, being processed by the same machine.

Tasks (j, k), (j, l) ∈ O, which are not linked in the graph G, can be processed in parallel
on di�erent machines.

Pinedo presents the disjunctive graph in [Pin08] in combination with disjunctive pro-
gramming to �x precedence relations. In that context, the de�nitions of conjunction and
disjunction are important.

De�nition 4.2.3. A set C of constraints is called conjunctive if each constraint c ∈ C
must be satis�ed. A set D of constraints is called disjunctive if at least one constraint
d ∈ D must be satis�ed.

An example of a conjunction is the precedence order of the tasks (j, k), (j, k+1) ∈ OJ
|j .

An example of a disjunction is the information that either (j, k) precedes task (i, l) or (i, l)
precedes task (j, k, for two distinct tasks (j, k), (i, l) ∈ OM

|m .
Not all disjunctions d ∈ D are of interest to branch on. The local time windows

of each task are used to decide whether the precedence constraints between two tasks
(j, k), (i, l) ∈ OM

|m one machine m are valid and necessary. An indicator of whether the
time windows of the tasks (j, k), (i, l) allow the processing of the tasks in an arbitrary order
is the �exibility of the tasks, among others, mentioned in [Pin08].

De�nition 4.2.4 (Flexibility of two tasks by Pinedo [Pin08]). Let (j, k), (i, l) ∈ OM
|m two

di�erent tasks on machine m ∈M . The �exibility of the tasks (j, k) and (i, l) is de�ned by

flexj,k,i,l = sgn(σ(j,k)→(i,l)) + sgn(σ(i,l)→(j,k)) (4.38)

with

σ(j,k)→(i,l) = fi,l + dpri,l − 1− aj,k − dsej,k − dpri,l.

If the �exibility is positive, then the time windows of the tasks allow an arbitrary
ordering of the tasks (j, k) and (i, l). If the �exibility is zero, then there is an implicit
ordering of the tasks (j, k) and (i, l). Finally, if the �exibility is negative, the local time
windows do not allow the completion of both tasks within their local time windows, and
the current node is infeasible.

71

If there are two tasks (j, k), (i, l) ∈ OM
|m processed by machine m ∈ M satisfying

flexj,k,i,l > 0, then branching on the corresponding precedence constraints could be useful.
However, the branching is only meaningful if the current LP relaxation is not feasible in

both child nodes. Thus, the current LP relaxation must violate each precedence constraint,
interpreted as a conjunction. The following theorem describes a precedence constraint
branching scheme.

Proposition 4.2.5. Choosing the tasks (j, k), (i, l) ∈ OM
|m with flexj,k,i,l > 0 on m ∈ M

by the following optimization problem

max
t1,t2∈[T [Z

(
(

t1−d
pr

i,l
−dsej,k∑

q=0

xi,l,q −
t1∑

q=0

xj,k,q) · (
t2−d

pr

j,k
−dsei,l∑

q=0

xj,k,q −
t2∑

q=0

xi,l,q)
)
> 0

leads to a valid branching.

The branching is realized by creating two child nodes A and B of the current branch-
and-bound node and extending the problem formulation with the following constraints:

node A

t−d
pr

j,k
−dsei,l∑

q=0

xj,k,q −
t∑

q=0

xi,l,q ≥ 0 ∀ t ∈ [T [Z

node B

t−d
pr

i,l
−dsej,k∑

q=0

xi,l,q −
t∑

q=0

xj,k,q ≥ 0 ∀ t ∈ [T [Z .

This branching rule helps to �nd near-optimal solutions since the order of the tasks is
de�ned quickly. However, this branching rule is unsuitable for driving the dual bound in
the case of the job-shop scheduling problem with �exible energy prices and time windows.

Example 4.2.6. We consider the instance Dataorig_ver1_1. The instance is presented
in Section A.2.1. If we solve the LP-relaxation of this instance, the machine's pro�le on
machine m = 2 looks as follows: Figure 4.9 shows the fractional workload of machine m =

0 20 40 60 80
Timewindow

0.0

0.2

0.4

0.6

0.8

1.0

W
or

kl
oa

d

Task: 1,0 Task: 2,2 Task: 3,0 Task: 4,2

Figure 4.9: Solving the instance with the necessary precedence constraints on machine m = 2. The
x-axis describes the time window and the periods and the y-axis is the utilization of the machine.

2. One can guess that there is an order of the tasks processed on machine m = 2. However,
the optimal order is blue - green - orange - red. The �xation of the order does not �x the
problem of non-integral workload. The processing of the tasks is still overlapping as long
as the processing starts are not �xed, and additional branching is necessary. Figure 4.10

0 20 40 60 80
Timewindow

0.0

0.2

0.4

0.6

0.8

1.0

W
or

kl
oa

d

Task: 1,0 Task: 2,2 Task: 3,0 Task: 4,2

Figure 4.10: Solving the instance with a �xed optimal execution order. The x-axis describes the time
window and the periods and the y-axis is the utilization of the machine.

72

shows that the information about the optimal execution order is insu�cient to describe the
optimal integer feasible solution.

Extending the ILP formulation by additional precedence constraints sharpens the de-
scription of the optimal solution. The solution is still not integral. Thus, the complete
information about the precedence order does not lead to integral solutions in the case of
the job-shop scheduling problem with �exible energy prices in general. Thus, branching on
precedence constraints does not lead to optimal solutions, and more branching rules are
required.

Classical Variable Branching

Variable branching is a well-known branching technique. As mentioned before, variable
branching can become ine�cient, for example, in the case of set packing formulations,
since the resulting branches are unbalanced. The unbalanced branches can lead to large
branch-and-bound trees, and the exploration of a large number of branch-and-bound nodes
is time-consuming. Van den Akker con�rms those results in her thesis [vdA94]. However,
the consideration of energy prices can lead to the fact that strong branching and pseudo-
cost branching become e�cient. However, the initialization of strong and pseudo-cost
branching is time-consuming. However, variable branching can be e�cient if the task
variables are almost integral and only a few processing starts need to be �xed.

Analyzing the Workload

Branch-and-bound algorithms are used to divide the problem into smaller subproblems.
Within this divide and conquer approach, it is preferable if fewer subproblems must be
solved. The number of solved subproblems in�uences the total solution time. Of course,
this idea works well if we can compute near-optimal primal bounds early on. Another often-
used strategy is to generate branchings, where one branch directly leads to an infeasible
subproblem. Using this branching in the case of job-shop scheduling with �exible energy
prices and time windows will be ine�cient since we already try to detect infeasibilities in
the propagation step of our algorithm. Thus, we are not able to detect further infeasibilities
within our branching algorithm.

The example of a fractional solution is shown in Figure 4.11.

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=0

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=1

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=2

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=3

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=4

Figure 4.11: This �gure shows the workload of the root relaxation of instance la01_7_s_s. The workload
is partially fractional. The information on the workload is insu�cient to generate a workload of an integer
feasible solution algorithmically.

The purpose of the branch-and-bound algorithm is not just to �x the fractional aspect
of integral parts of LP relaxations. The algorithm is also designed to improve the dual
bound until it meets the primal bound. Even in a fractional solution, the setup and
processing of each task (j, k) ∈ O must be completed. Therefore, for each task (j, k), the
energy price for dsej,k+d

pr

j,k many periods is paid, even if this number of periods is composed
of many fractional periods. Furthermore, the machine undergoes a complete ramp-up and

73

a complete ramp-down once. Hence, the solution must pay the energy costs for the initial
and the �nal ramping. However, the objective value of the fractional solution does not
equal the objective of the optimal integer feasible solution.

The fractional workload and the spread processing starts of the tasks cause the gap
between the dual bound and the objective of the optimal solution.

� The fractional workload enables the machine to gradually increase its activity as
needed and decrease it during expensive periods. This cost-e�ective approach gener-
ates savings in the more costly periods. An integral solution needs to be either active
or inactive in those periods. Therefore, the machine has to pay for the complete
ramping, which may become more expensive than the savings within the expensive
periods. This is why fractional workload is a crucial challenge to address.

� If processing starts of the tasks are distributed and spread, the tasks can start pro-
cessing at more preferable times based on the precedence order of their job sequence.
This allows for more e�cient scheduling of each task. In combination with the frac-
tional workload, the tasks can start in each period, and this behavior is not penalized
by the objective since the machine need not ramp up completely to allow the pro-
cessing to start. However, editing the merged processing does not a�ect the dual
bound. One can imagine that the workload is still fractional, and a reordering of the
tasks can lead to a similar workload, and the branching decision, therefore, had no
e�ect.

If the energy prices are positive and ramping is more energy-consuming than processing
or setup, then the machine avoids running completely in active machine states. Since the
tasks must be processed, these setup and processing periods are widely distributed, such
that the total energy price for processing and setup, combined with the corresponding
ramping, is as cheap as possible. The machine state standby is used like slack. If the
machine is not processing or setting up, and the ramp-down is too expensive, then the
fractional usage of standby can be the best choice. The fractional solution tries only to
process and set up the tasks (fractionally) and avoids the full ramp-up of the machine.
Standby is avoided as much as possible if the corresponding price is positive. In addition,
the standby variables get integral values if the task variables are integral, see Theorem 2.6.9.

The priority of our branching is to arrange the active and inactive machine states in each
period. Thus, primarily a branching on the workload of a machine m ∈ M and a period
t ∈ [T [Z with 0 < wm,t < 1 prevents the machines from running fractionally in active
and inactive machine states simultaneously. Thus, the standby usage is partially increased
since fractional usage of ramping is forbidden. Also, processing starts and ramping in
preferred (total energy price e�cient) periods cannot be done simultaneously. Therefore,
the dual bound is strengthened by enforcing the integrality of the workload in both child
nodes. In the second step, if the machine's workload is (nearly) integral, the integrality of
the active machine states is attached. Therefore, the time windows of the tasks are shrunk
until the variables have integral values or no solution can be computed anymore.

Before introducing the branching rules, we state the following facts about feasible
integer solutions of the job-shop scheduling problem with �exible energy prices and time
windows.

Lemma 4.2.7. For each integral feasible solution of PB, the workload wm,t is in {0, 1}
for each m ∈M and t ∈ [T [Z .

This is derived directly by the formula of the workload and the property that a sum of
integral values is integral. Another fact that each feasible integer solution of PB satis�es
is the following one.

Lemma 4.2.8. Let (x, zrd,ru, zst) ∈ PB be a feasible integer solution. Then,∣∣∣{t ∈ [aj,k, fj,k[Z | xj,k,t > 0
}∣∣∣ = 1

holds for each (j, k) ∈ O.

Both characteristics are commonly not present in fractional solutions. Therefore, both
characteristics are enforced by our branching, which will be introduced in the next section,
to generate feasible integer solutions while improving the dual bound.

4.2.3 Workload Branching

The prioritized branching scheme aims at the integrality of the workload. Thus, this
branching rule prevents the machines from keeping a fractional workload. The underlying

74

idea is to �rst determine at what times the machine is on and at what times the machine
is in a break. Only in the second step does the machine process which task within the
online periods.

The idea of this branching rule is to choose one machine m ∈ M and one period
t ∈ [T [Z satisfying 0 < wm,t < 1. Then, the branching rule creates two branch-and-bound
nodes A and B with the following consequences.

1. At node A, the machine m is forced to be active in period t. Thus, the usage of
breaks in period t is forbidden, and the fractional solution has to change so that
the machine is 100% active in period t. Thus, at least the standby usage must be
increased in period t. Therefore, the objective value could increase since the induced
usage of standby increases the objective value. But there also can exist the case that
the fractional solution can be shifted in time, such that the branching condition is
satis�ed.

2. At child node B, the machine m is forced to be inactive in period t. Since the
workload wm,t is fractional in period t and the machine's activity is forced to zero, the
local fractional processing and setup have to disappear. If a task is being processed
or set up in period t, then the task must be rescheduled, which may result in a more
expensive outcome if the task must be processed in a less desirable period. Moreover,
some rescheduling on the complete machine could be necessary.

This simpli�ed representation of workload branching illustrates why this branching is con-
sidered to drive the dual bound. There are examples of objectives for which this idea of
branching will fail, and the improvement of the dual bound is low. In addition, large time
windows and nearly constant energy prices could also be di�cult to handle. By cleverly
shifting the fractional solution within the time window, one can avoid the e�ect of the
branching decisions. The localization of the workload in the time window on each machine
is only clearly de�ned after multiple branch calculations. The consequence can as well as
all other known branching rules run into troubles for speci�c instances.

The workload branching is implemented by imposing the following inequalities, one to
each child node:

∑
(j,k)∈OM

|m

t+dsej,k,∑
q=t−d

pr

j,k
+1

xj,k,q + zstm,t = 1 at node A (4.39)

∑
(j,k)∈OM

|m

t+dsej,k∑
q=t−d

pr

j,k
+1

xj,k,q + zstm,t = 0 at node B (4.40)

for a well-chosen m ∈M and t ∈ [T [Z .
Constraint (4.39) describes that the machine m cannot use any break in period t locally.
Constraint (4.40) describes that the machine must use breaks in period t. The inclusion of
the constraint (4.39) to the child node A and (4.40) to the child node B forces the machine
activity to be integral in period t on machine m. Nevertheless, choosing t ∈ [T [Z and
m ∈M wisely is important to drive the dual bound.

To choose the machine m ∈ M and the period t ∈ [T [Z , such that the impact of the
branching is high, the fractionality of the workload needs to be reduced as much as possible
in both child nodes.

De�nition 4.2.9. Let m ∈ M a machine and wm,t the workload of feasible solution
(x, zrd,ru, zst) ∈ PR

LP . Then, the set of all intervals of consecutive fractional activity on
machine m ∈M is de�ned as

Qm :=
{
(q0, q1) ∈ [T [Z ×[T [Z

∣∣∣wm,t − ⌊wm,t⌋ > 0 ∀ t ∈ [q0, q1 + 1[Z
}
.

Intervals of consecutive fractional activity on a machine are interesting because �xing
the activity to one within the interval forbids multiple breaks, which are used for many
periods. Moreover, the simultaneous �xation of these breaks will, in the best case, lead
to an integral workload within the whole interval. On the other hand, the enforcement of
using a break in period t within the interval also could lead to the case that only the best
break is �xed to one, and the complete fractional processing is shifted into other parts of
the fractional schedule. The e�ect will be more signi�cant if the interval is larger.

A good choice of m ∈M and (q0, q1) ∈ Qm is crucial if multiple intervals of consecutive
fractional machine activity exist. We devise the following rules to compute a promising
interval of consecutive fractional workload:

75

� Longest-interval:
(m̂, q0, q1) = argmax

m∈M, (t0,t1)∈Qm

t1 − t0.

This rule aims for the longest interval of fractional workload. This rule requires
the workload to be always fractional within the intervals. However, the amount
of fractionality is not considered, which could lead to bad branches because long
fractional intervals are particularly preferred to more fractional intervals.

� Most fractional interval:

(m̂, q0, q1) = argmax
m∈M, (t0,t1)∈Qm

t1∑
t=t0

min{wm,t, 1− wm,t}.

In contrast to the longest interval rule, this rule searches for the interval with the
largest sum of fractionality. The interval length is not considered directly.

� Uncertainty of the workloads integrality:

(m̂, q0, q1) = argmax
m∈M, (t0,t1)∈Qm

(t1 − t0) ·
(t1 − t0)∑t1

t=t0
min{wm,t, 1− wm,t}

.

This rule is motivated by the interpretation that a machine must always be active
within an interval if the workload is 1 for each period of the considered interval.
Also, if the machine is always inactive within an interval, then we are sure that the
machine must be inactive within the interval.
In each period t ∈ [t0, t1 + 1[Z , the coe�cient (t1−t0)∑t1

t=t0
min{wm,t,1−wm,t}

describes

whether the interval [t0, t1] is highly fractional or not. Intervals with more fraction-
ality are more favorable than intervals with less fractionality.

Even more complex strategies are possible. However, the computational e�ort is too high
and thus, this branching cannot be used to solve realistic instances. One implemented
example is a variant of constraint-based strong branching, which is realized by evaluating
all branches of the possible candidates and choosing the best candidate. Although this
approach has been implemented, it will not receive any further attention in the remainder
of this thesis.

The next step is the �xation of the machine's workload to either be active or inactive
in a period t ∈ [q0, q1+1[Z . Before presenting the derived rules for computing a promising
period t ∈ [q0, q1 + 1[Z , an example motivates the selection rule.

Example 4.2.10. This illustration is only intended as an example, and there are instances
where the solution behaves di�erently. The sole purpose of this example is to explain the
decision-making process for the implemented branching.

In this example, we consider a fractional solution, analyze possible branching periods
within intervals of fractional processing and discuss the resulting changes in the solution.
We assume in this example that the e�ect of the branching can be seen within the interval
[t0, t1[Z such that the results can be visualized. However, this need not be true for all
instances, and the optimal fractional solutions resulting in the child nodes can be completely
di�erent.

q0 qA qB qC q1
0

0.5

1

0

1

time periods

W
o
rk
lo
a
d

Figure 4.12: Example of a fractional workload.

This example will explore three potential branching periods, denoted as t' ∈ {qA, qB , qC}.

1. The �xation of the workload in period t' = qA is a branch well suited for generating
feasible solutions and depth-�rst search algorithms. The �xation of the workload to
be active con�rms the proposed solution and only changes the workload such that the
solution hopefully becomes more integral. However, the �xation of the workload to
zero in period qA is associated with a lot of computational e�ort. The machine needs
to reallocate the processing and setup of the a�ected tasks and the standby in period

76

qA into neighboring periods to recreate a feasible fractional solution. The �xation to
zero cannot prevent the workload from becoming fractional in period qB.

q0 qA qB qC q1
0

0.5

1

0

1

time periods

W
o
rk
lo
a
d

Figure 4.13: Approximation of
fractional solution after �xing
wm,qA

= 0.

q0 qA qB qC q1
0

0.5

1

0

1

time periods

W
o
rk
lo
a
d

Figure 4.14: Approximation of
fractional solution after �xing
wm,qA

= 1.

2. The �xation in period t' = qC creates a branch, which is suitable for generating
fractional solutions that do not lead to near-optimal integer solutions since the recre-
ation of a feasible fractional solution requires a large shifting of the fractional solution
within the time window or an amount of standby usage to �ll the gap between the
integral activity of the machine and the fractional usage. Moreover, the �xation to
zero has nearly no e�ect. The fractional processing and setup of tasks or standby will
be shifted to the left or, even worse, to the right. In addition, the fractional workload
need not change for the most part.

q0 qA qB qC q1
0

0.5

1

0

1

time periods

W
o
rk
lo
a
d

Figure 4.15: Approximation of
fractional solution after �xing
wm,qC

= 0.

q0 qA qB qC q1
0

0.5

1

0

1

time periods

W
o
rk
lo
a
d

Figure 4.16: Approximation of
fractional solution after �xing
wm,qC

= 1.

3. The �xation at period t' = qB is a compromise of a branching in period qA and
a branching in period qC to balance the workload. This approach ensures that the
standby time between t0 and qB is not overly costly. Deciding for �xation at zero is
also bene�cial because it can lead to near-optimal solutions, just like the one-�xation.
In short intervals, the �xation will be as e�ective as visualized. However, in more
realistic cases, the branch will result in branches like for t' = qC since the fractional
solution can shift parts.

q0 qA qB qC q1
0

0.5

1

0

1

time periods

W
o
rk
lo
a
d

Figure 4.17: Approximation of
fractional solution after �xing
wm,qB

= 0.

� q0 qA qB qC q1
0

0.5

1

0

1

time periods

W
o
rk
lo
a
d

Figure 4.18: Approximation of
fractional solution after �xing
wm,qB

= 1.

However, there are bad examples where the branching will fail. One example is visualized
in Figure 4.19.

q0 qA qB qC q1
0

0.5

1

0

1

time periods

W
o
rk
lo
a
d

Figure 4.19: Example of a fractional workload, where the branching will fail.

77

Each of our branchings will not be as strong as wished, except the branch in period
t' = qA. The branches t' ∈ {qB , qC} will not be good since both branches create, which can
lead to similar situations as visualized in Figure 4.19 in the case of the 0-branch. The case
of the 1 branch will always improve the dual bound, while the 0-branch has nearly no e�ect.
Thus, the fractional solution needs to be analyzed before deciding about a suitable period to
branch on.

Motivated by the examples of the fractional workload, the following rule is proposed
to achieve a branching in period qB :

t' =

⌊∑q1
t=q0

t · wm,t∑q1
t=q0

wm,t

⌋
. (4.41)

Note that the valuation of t' is similar to the proposed SOS1-branching scheme of Beale
and Tomlin [BT69]. However, we aggregate certain parts of constraints and compute the
mean value, while Beale and Tomlin only consider variables of the same constraint.

This rule computes a t' ∈ [t0, t1[Z ∈ Qm with 0 < wm,t' < 1. Moreover, this weighted
mean considers the position of the main focus of the fractional workload as well as the length
of the fractional workload. Thus, the generation of feasible solutions and the disallowing
of directions of expensive solutions is supported. The branching period will be near the
period qB , and the branching will mostly be e�ective.

Some estimators for the improvement of the dual bound after speci�c branchings were
considered. However, the estimators currently in use either do not provide much useful in-
formation or need a lot of computational power. That's why we prefer using combinatorial
conditions to decide on branching.

The idea of an estimator of the change of the fractional solution can be computed as
follows.

� If the machine m is �xed to be active in period t', then all breaks (t0, t1) ∈ Bm

with zrd,rum,t0,t1
> 0 and t' ∈ [t0, t1[Z are �xed to zero. Then, after resolving the child

node, at least the change of the fractional solution after the �xation to one results
in

∑
(t0,t1)∈Bm

(t1 − t0)zrd,rum,t0,t1
.

� If the machine m is �xed to be inactive in period t', then all tasks (j, k) ∈ OM
|m

cannot start processing or setup, such that the task is a�ecting period t'. Moreover,
there is no standby usage in period t' allowed.

Thus, the change of the solution in both child nodes can be estimated by

I(m, t) = min{
∑

(j,k)∈OM
|m

t+dsej,k∑
q=t−d

pr

j,k
−1

(dsej,k + dprj,k)xj,k,q + zstm,t),

∑
(q0,q1)∈Bm:t∈[q0,q1[Z

(q1 − q0)zrd,rum,q0,q1}.

Theorem 4.2.11. Let m ∈M be one machine and t ∈ [T [Z be a period. Then I(m, t) = 0
holds, if the workload wm,t is integral.

This selection rule did not prevail in our �rst experiments, and therefore, this selection
rule is only mentioned to document the thought processes in this research direction.

Thus, one can choose t' = argmax{I(m, t) | t ∈ [t0, t1, }[Z . Nevertheless, we want to
consider the length of the interval. Therefore, the third way of computing the branching
period can be done by

t' =

⌊∑t1
t=t0

t · I(m, t)∑q1
t=q0

I(m, t)

⌋
. (4.42)

The proposed branching is valid and creates a real disjunction.

Theorem 4.2.12. The branching (4.40) and (4.39) with the proposed selection rules is an
SOS branching.

Proof. Let m̂ ∈ M and t' ∈ [T [Z , such that wm̂,t' − ⌊wm̂,t'⌋ > 0. Thus, the workload on
machine m̂ in period t is fractional, while the constraint

∑
(j,k)∈OM

|m̂

t'+dsej,k∑
q=t'−d

pr

j,k
+1

xj,k,q + zstm̂,t' +
∑

(t0,t1)∈Bm̂:
t'∈{t0,...,t1}

zrd,rum,t0,t1
= 1

78

is satis�ed. Dividing the set S of the, in the equality, present variables, such that the set
S1 = {zrd,rum,t0,t1

: (t0, t1) ∈ Bm̂ and t' ∈ [t0, t1 + 1[Z } and S2 = {xj,k,t | (j, k) ∈ OM
|m and t ∈

[t'− dprj,k + 1, t'+ dsej,k[Z } ∪ {zstm̂,t'}. If we sum up all contained variables, the quantities S1

and S2 have a real positive value. Therefore, the decision to use S1 or S2 to cover m̂ in
period t' will be a branching.

By usage of this branching rule, the workload pro�le gets de�ned. The �xation of the
processing starts of the tasks within the speci�ed workload is part of a second branching
rule. However, the information about the processing starts is not mandatory to prune.
Moreover, this branching increases the local dual bound e�ciently at least in one child
node and in combination with a near-optimal solution, the branch-and-bound tree will still
be small.

The branching is only useful if some conditions are satis�ed.

Observation 1. Let m ∈ M and [q0, q1[Z ∈ Qm and t ∈ [q0, q1[Z . The branching on the
machine's activity in period t of machine m is successful, if the workload in the interval
[q0, q1[Z satis�es:

1. q1 − q0 > 0

2. ϵ < wm,t < 1− ϵ
with ϵ ∈ (0, 0.5].

In our implementation, we propose to use ϵ = 0.01 to allow branchings, which �x the
assumed workload direction.

In addition, the branching can be ine�ective, although the workload is not integral
yet. It is not necessary to perform workload branching until the workload of machine m is
integral in each period t ∈ [T [Z .

4.2.4 Branching on Assignment Constraints

Considering scheduling in integer programming, a well-known branching rule for the time-
indexed formulation is to branch on assignment constraints (3.10b), a variation of SOS
branching. One example of SOS branching for time-indexed variables is explained in
[vdA94]. This rule shrinks the time windows of the tasks with fractional processing starts
such that the processing starts either do not exist (infeasible node) or the processing starts
are integral. Therefore, we need to �nd tasks with fractional start variables.

De�nition 4.2.13. Let (x, zst, zrd,ru) ∈ PB
LP be a feasible solution and (j, k) ∈ O a task.

The parameters
l(j, k) = min{t ∈ [T [Z | xj,k,t > 0}

and
r(j, k) = max{t ∈ [T [Z | xj,k,t > 0}

describe the �rst and the last fractional processing start of task (j, k).

De�nition 4.2.14. A task (j, k) ∈ O with r(j, k)− l(j, k) > 1 is called a fractional task.
The task satis�es |{t ∈ [T [Z | xj,k,t > 0}| ≥ 2.

The assignment constraint branching rule searches for a fractional task (ĵ, k̂) ∈ O. The
fractionality of the task indicates the existence of at least two distinct periods t1, t2 ∈ [T [Z
with xĵ,k̂,t1 > 0 and xĵ,k̂,t2 > 0. Then, the set of allowed processing starts V = [aĵ,k̂, fĵ,k̂[Z

of task (ĵ, k̂) is divided into the disjunctive subsets V1 := [aĵ,k̂, t' + 1[Z and V2 := [t' +

1, fĵ,k̂[Z with a suitable choice t' ∈ [l(ĵ, k̂), r(ĵ, k̂)[Z . The branching is devised by creating
two child nodes A and B with the following branching constraints

t'∑
t=0

xj,k,t = 0 at node A and
T∑

t=t'+1

xj,k,t = 0 at node B. (4.43)

The choice of the fractional task and the branching period t' highly in�uence the per-
formance of the branch-and-bound algorithm. Also, slight di�erences within the choice of
the period t' can lead to completely di�erent behavior of the solution process. Addition-
ally, the enhancement of the dual bound and the e�ciency of resolving the relaxation are
closely linked to the choice of the fractional task.

Choosing the most promising task is crucial for successfully applying the branching
rule. The set of all fractional tasks is de�ned by

Ofrac := {(j, k) ∈ O | r(j, k)− l(j, k) ≥ 1}.

We consider the following aspects of fractional tasks while searching for them:

79

� The spread of the fractional processing. An integer feasible solutions satisfy

r(j, k) + 1− l(j, k) = 1 for each (j, k) ∈ O.

If r(j, k) + 1 − l(j, k) > 1 holds, then the processing of the task (j, k) is not �xed.
Thus, tasks (j, k) ∈ O, where r(j, k) + 1 − l(j, k) is large are more favorable than
tasks, where r(j, k)+1− l(j, k) is small since latter is nearly �xed to a certain period.

� The number of interruptions: if the fractional processing of task (j, k) happens simul-
taneously with many fractional usage of breaks and standby and further fractional
tasks, it seems to be more important to branch on this task to organize and tidy up
the fractional solution. Only afterward, the fractional tasks, which are fractionally
processed in a relatively isolated way, are considered to be branching candidates.
These solutions are also candidates for variable branching

While computing a promising branching candidate, the aspects of a promising fractional
task are considered. The period t' is computed afterward by a second rule.

� GUB-Dichotomy: To choose the task with the largest spread, select

(ĵ, k̂) = argmax
(j,k)∈O

r(j, k)− l(j, k).

This rule has been previously mentioned in [vdA94] and selects the fractional tasks
whose fractional variables are distributed most widely.

� Maximum propagation: choose the task (ĵ, k̂) ∈ O and possibly also the period
t' ∈ [l(j, k), r(j, k)[Z with the largest number of variable reductions in both child
nodes by propagation and cuto�s. This rule is computationally expensive since the
propagation algorithm needs to be used for each branching candidate. It is often the
case that the variable reductions only a�ect the concerned task and the surrounding
tasks in the associated job sequence. In this case, the approach resembles "choose
the task with the longest processing and set-up time," which is not our intention.

� Widely interrupted tasks (WI): choose the task

(ĵ, k̂) := argmax
(j,k)∈O

(
r(j, k)− l(j, k)

)
·

∑
(i,l∈OM

|mj,k

r(j,k)∑
t=l(j,k)

xi,l,t

 .

This branching rule combines the aspects of a meaningful branching rule in the case
of assignment constraint branching. This branching rule searches for tasks, violating
properties, which are identi�ed to be important for feasible integer solutions. The
branching will repair those properties, and hopefully, the search for near-optimal
solutions will be supported.

� Long and isolated tasks (LI): choose the task

(ĵ, k̂) := argmax
(j,k)∈O

(
r(j, k)− l(j, k)

)2

∑
(i,l)∈OM

|mj,k

∑r(j,k)

t=l(j,k) xi,l,t

 .

This branching rule selects tasks whose fractional processing is not interrupted very
often by further tasks. Thus, resolving the child nodes may be fast since, hopefully,
only one task needs to be rescheduled.

The rule of long and isolated tasks is applicable in the case where we expect to detect
many integral solutions since the solution is changed mainly for tasks with a nearly �xed
processing start. The rule of wide and interrupted tasks should be used in the beginning to
tidy up the fractional solution. However, this requires an internal analysis of the fractional
solutions with well-trained parameters and indicators to optimally control the solution
process.

Theorem 4.2.15. If Ofrac ̸= ∅ holds, then the task selection detects one fractional task,
and there exists at least one t' ∈ [l(j, k), r(j, k)[Z such that we can create a valid branching.

Proof. Let |Ofrac| > 0 and (j, k) ∈ Ofrac. There exists one t' ∈ [l(j, k), r(j, k)[Z with

t'∑
t=l(j,k)

xj,k,t > 0 and
r(j,k)∑
t=t'

xj,k,t > 0.

Thus, the task selection is well-de�ned and always returns a fractional task if one exists.

80

Theorem 3.2.7 indicates that at least one fractional task exists if the current LP-
relaxation of the branch-and-bound node is fractional. Consequently, the task's time
window will be split into two intervals, valid for the local child node. To complete the
branching rule, there is a need for a period t' ∈ [l(ĵ, k̂), r(ĵ, k̂)[Z .

Before the presentation of the computation of the period selection, multiple approaches
targeting di�erent e�ects on the fractional solution need to be discussed in the following
example.

Example 4.2.16. We are using the following fractional solution to visualize the di�erent
results of the assignment constraint branching.

l(j,k) qA qB qC r(j,k) + 1

0

0.5

1

0

1

Time periods

x
j,
k
,t

Figure 4.20: Fractional solution of task (j, k).

The task (ĵ, k̂) is fractionally processed in [l(ĵ, k̂), r(ĵ, k̂) + 1[Z .

� The branch t' = qC is classi�ed as an unbalanced branch. The dual bound of the
resulting child nodes increases only in one child node since this branching would
be similar to a variable branching. The branch is classi�ed to be unbalanced since
the larger interval V1 = [aĵ,k̂, qC [Z also contains the main part of the fractionality.
Thus, the fractional solution for V1 need only shift a small amount of fractionality
into V1. In contrast, the main branch for V2 = [qC + 1, fĵ,k̂[Z becomes extremely

violated, and a large part of the of the fractional processing of task (ĵ, k̂) has to be
rescheduled.

� In contrast, branching in a period t' = qA or in period t' = qB leads to the following
disjunctive time windows V 1 = [l(ĵ, k), t'[Z V2 = [t' + 1, r(ĵ, k̂) + 1[Z . The child
node using time window V2 has to reschedule the task (ĵ, k̂) since the main part
of the fractionality is formerly located in forbidden periods. The branch in period
qB is estimated to be similar to that in period qA. Moreover, the branch balances
the number of variable reductions and fractionality in both child nodes. Thus, we
consider the branching in period qB to be favorable.

The situation is easier if the fractional solution is similar to the one visualized in Fig-
ure 4.21.

l(j,k) qA qB qC r(j,k) + 1

0

0.5

1

0

1

Time periods

x
j,
k
,t

Figure 4.21: Fractional solution of task (j, k).

In that case, the period t' should be set so that period qB is used. Then, the number of
fractionality and domain reductions is balanced in both branches.

The following branching rules consider the mentioned aspects of a balanced assignment
constraint branching.

� Weighted mean (WM): choose

t' =
r(j,k)∑

t=l(j,k)

xĵ,k̂,tt

81

to split the interval concerning the distribution of the fractional values of task (ĵ, k̂).
By computing the weighted mean, one can exactly cluster points within the interval
[l(j, k), r(j, k)[Z , which may indicate the location of the local optimal integer feasible
solution. This technique was introduced in [vdA94].

� Propagation score: choose t' ∈ [l(j, k), r(j, k)[Z such that the resulting number of do-
main reductions by propagation is maximum. As mentioned, the number of domain
reductions is often very similar for multiple periods and, therefore, insigni�cant.

� Constraint violation (CV): choose

t' = max
t∈[l(ĵ,k̂),r(ĵ,k̂)[Z

min
{
(r(ĵ, k̂) + 1− t) ·

t∑
q=l(ĵ,k̂)

xĵ,k̂,q, (t− l(ĵ, k̂)) ·
r(ĵ,k̂)∑
q=t+1

xĵ,k̂,q

}
.

The computed period t' is computed by the product of the reduced interval's size,
which may not match the task's real-time window and the violation of the branching
constraint in the child node. The maximum of the minimum describes a branching
period, leading to a balanced branching and maybe balanced progress in both child
nodes.

Theorem 4.2.17. The branching (4.40) and (4.39) with the proposed selection rules and is
an SOS branching and thus a valid branching, if (ĵ, k̂) ∈ O satis�es |{xĵ,k̂,t|t ∈ [T [Z }| > 1

and t ∈ [l(ĵ, k̂), r(ĵ, k̂)[Z .

The branching rule by propagation is totally ignored in the following and also in our
experimental results. The branching candidate itself mainly in�uences the corresponding
branching score. The branching rule by constraint violation is motivated by an analysis
of the resulting subproblems since the violation of the time window of task (ĵ, k̂) and the
distribution of the fractionality are equally considered.

4.2.5 Branching Rule Selection

The workload branching is the prioritized branching rule since it is designed to be dual
bound driving by default. The branching on assignments constraint is only the second
choice since this branching only schedules the fractional task variables without considering
the workload and the corresponding energy costs. However, sometimes, the workload of
the machines is still fractional, and the assignment constraint branching should be the
preferred branching rule to improve the dual bound. This is the case if the workload does
not de�ne the objective value in particular. Moreover, the fractionality of the tasks leads
to a minimum gap between the optimal objective value and the fractional solution and
reordering the tasks closes the gap.

To only use the workload branching if it is promising, we decided to skip the workload
branching and directly use assignment constraint branching in some cases. If the workload
of all machines is nearly integral, then the workload branching is ine�ective, and assignment
constraint branching is more e�cient since the change of the fractional solutions becomes
small.

The following expression veri�es the near integrality condition:∑
m∈M

∑
t∈[T [Z

min{1− wm,t, wm,t} < 0.1 ·
∑
m∈M

∑
t∈[T [Z

wm,t.

In addition, the workload branching is ine�cient if the workload's fractionality is mainly
located on one machine.

We decide not to branch on machine state constraints if the following condition is
satis�ed: ∑

m∈M

∑
t∈[T [Z

min{wm,t, 1− wm,t} · β > max
m∈M

∑
t∈[T [Z

min{wm,t, 1− wm,t}.

The value β is chosen in [0.3, 0, 6] to describe that about half of the fractionality can be
located on the workload pro�le of one single machine.

4.3 Separation of Valid Inequalities

Within the branch-and-bound-and-cut algorithm, we consecutively solve the LP-relaxation
of the branch-and-bound nodes until the considered nodes can be pruned, are infeasible,

82

or the optimal integer feasible solution for the subproblem is detected. To strengthen the
description of the feasible solution, further valid but violated constraints are added to the
problem formulation to tighten the LP-relaxation. Well-known techniques to strengthen
the LP-relaxation at the current branch-and-bound are mentioned, for example, in [CCZ14].

We will present di�erent classes of cutting planes within the context of the job-shop
scheduling problem with �exible energy prices and time windows. This section starts with
the con�ict graph and clique cuts. After that, we extend known GUB cover constraints
for single-machine scheduling by break variables. Then, we derive valid inequalities from
the linear ordering problem.

4.3.1 Con�icts and Clique Cuts

Clique cuts and con�icts are well-known techniques in integer programming. The detection
of con�icts and the separation of clique cuts are implemented in many commercial solvers,
for example, Gurobi [ABG+20, p.28]. The concept of the con�ict graph, the implemen-
tation, and the algorithmic approaches are described in [ANS00]. A con�ict graph is a
mathematical structure describing subsets of binary variables of an ILP that cannot be
simultaneously equal to 1 in any feasible solution.

De�nition 4.3.1. We are given the integer linear program

min{c⊤x | Ax ≤ b, x ∈ {0, 1}n},

with c ∈ Zn, A ∈ Zm×n, b ∈ Zm. A con�ict graph G = (V,E) is an undirected graph G,

with V = {xj | j = 1, . . . , n} ∪ {xj | j = 1, . . . , n} and E ⊆
(
V
2

)
and for each {u,w} ∈ E

the inequality u+ w ≤ 1 is valid for Ax ≤ b, x ∈ {0, 1}.

The edges of the con�ict graph visualize the pairwise con�icts of variables and negations
of variables. The vertex xj = u ∈ V describes the setting of variables xj to 1. The vertex
xj = v ∈ V describes the setting of xj to 0. The logical relations and corresponding linear
constraints are presented in Table 4.1.

Table 4.1: Possible edges within the con�ict graph and their constraint representation.

edge con�ict cut

{xj , xi} xj + xi ≤ 1
{xj , xi} xj + xi ≥ 1
{xj , xi} (1− xj) + xi ≤ 1
{xj , xi} xj + (1− xi) ≤ 1

Many con�icts can be directly detected within the model if there are set-partitioning
or set-packing constraints [ABG+20, p.28]. More edges can be detected by probing within
the presolving stage. Here, many variables are consecutively �xed to zero and one. If the
problem becomes infeasible, one tries to describe the reason for the infeasibility using a
con�ict in the con�ict graph. Atamturk et al. describe a method to detect infeasibilities
in [ANS00, p.42]. A more complex topic is con�icts describing variable constellations that
are not possible in any optimal solutions. It is also a valid approach to describe clique cuts,
cutting o� non-optimal solutions. However, it is crucial that at least one optimal solution
remains feasible.

De�nition 4.3.2 (Clique and stable set). Let G = (V,E) be an undirected graph. A set
C ⊆ V is called clique, if for each pair u, v ∈ C the edge {u, v} exists in E.
A set S ⊆ V is called stable set, if for each pair u, v ∈ S the edge {u, v} does not exists
in E.

For a clique C ⊆ V , with C = I∪̇I, the corresponding clique cut is de�ned by∑
i∈I

xi +
∑
i∈I

(1− xi) ≤ 1.

The problem Ax ≤ b, x ∈ {0, 1}n may indicate the stable set problem as a subproblem.
Di�erent variables cannot be simultaneously equal to 1. Since the clique cut is a valid

83

constraint of the stable set polyhedron, the clique cut is a valid constraint of Ax ≤ b with
x ∈ {0, 1}.

The phrase �Add a con�ict to the con�ict graph� describes an extension of the con�ict
graph. In the case of the con�ict

∑
i∈I xi+

∑
i∈I(1−xi) ≤ 1, the con�ict graph is extended

as follows:

E ⇐ E ∪
{
{xi, xj}

∣∣∣i, j ∈ I, i ̸= j
}

∪
{
{xi, xj}

∣∣∣i, j ∈ I, i ̸= j
}

∪
{
{xi, xj}

∣∣∣i ∈ I, j ∈ I}.
The linear constraint

∑
i∈I xi +

∑
i∈I(1 − xi) ≤ 1 is referred to as a con�ict as di�erent

variables cannot be equal to one at the same time.
The size of the con�ict graph grows with the number of added con�icts. Moreover, the

size of the con�ict graph highly in�uences e�ciency of the detection of violated con�ict
cuts. The detection of the most violated clique cut, represented within the con�ict graph,
is NP-hard. This clique is detected by a maximum-weighted clique algorithm, for example,
the TClique-algorithm [BK97] by Borndörfer and Kormos. The TClique-algorithm is an
exact algorithm, which also can be used heuristically by not enumerating the whole branch-
and-bound tree [Ach09, p.110]. Thus, the search for violated cliques can be done by an
e�cient heuristic.

The con�ict graph of the job-shop scheduling problem with �exible energy prices and
time windows initially contains the constraints (3.10b), (3.10c) and (3.10d). More con�icts
can be detected by probing, which could be time-consuming because there are O(T 2 ·nM)
many binary variables. Therefore, the knowledge of valid con�icts speeds up the con�ict
graph generation. The following section contains conditions for valid con�icts of the job-
shop scheduling problem with �exible energy prices and time windows and the proof of
their validity.

Con�icts of Task Variables

Within this section, we mention valid con�icts only considering the task variables.

Theorem 4.3.3 (Con�ict by a �xed processing start). Let (j, k), (i, l) ∈ OM
|m be two distinct

tasks processed by machine m ∈M . For each period t ∈ [T [Z , the constraint

xj,k,t +

t+d
pr

j,k
+dsei,l−1∑

q=t−dse
j,k

−d
pr

i,l
+1

xi,l,q ≤ 1 (4.44)

is a valid constraint of PB.

Proof. To show that the constraint (4.44) is a valid constraint of the polyhedron PB , we
will show that the constraint is feasible for xj,k,t = 1 and also for xj,k,t = 0.

If xj,k,t is 1, then the machine is blocked from period t − dsej,k up to t + dprj,k − 1 by
processing and setting up task (j, k). The machinem = mj,k cannot simultaneously process
or set up two tasks. Therefore, the task (i, l) ∈ OM

|m \ {(j, k)} needs to start processing
either before task (j, k) or after task (j, k).

1. If the task (i, l) starts its processing before task (j, k), then the processing of (i, l)
and the setup of (j, k) need to be completed before period t. Thus, the task (i, l)
cannot start within the interval [t− dsej,k − dpri,l, t+ 1[Z .

2. If the task (i, l) starts processing after (j, k), then the processing of (j, k) and the
setup of (i, l) need to be completed after period t + dprj,k − 1. Thus, the task (i, l)
cannot start within the interval [t, t+ dprj,k − 1 + dsei,l + 1[Z .

Therefore, the task (i), l) cannot start processing in any period q ∈ [t−dsej,k−dpri,l, t+d
pr

j,k−
1 + dsei,l + 1[Z , if task (j, k) starts processing in period t and the inequality is valid for
xj,k,t = 1. I If xj,k,t = 0 , then the equation

xj,k,t +

t+d
pr

j,k
+dsei,l−1∑

q=t−dse
j,k

−d
pr

i,l
+1

xi,l,q = 0 +

t+d
pr

j,k
+dsei,l−1∑

q=t−dse
j,k

−d
pr

i,l
+1

xi,l,q ≤ 1

is valid since it is already described by constraint (3.10b). Thus, the constraint (4.44) is
valid for all integer feasible solutions of PB .

84

Knapsack Covers of Size Two

Another set of con�icts are covers of the knapsack constraint (3.18), (3.19), (3.20), (3.21),
(3.22) of size 2. We can detect the covers by iterating over two lists of breaks and comparing
the size of the breaks with the sizes of the knapsacks. To simplify the notation of the
knapsack constraints and the corresponding covers, we introduce parameters describing
the earliest release date minus the corresponding setup time and the latest due date of a
task by

aMm = min
(j,k)∈OM

|m

(aj,k − dsej,k)

and
fM
m = max

(j,k)∈OM
|m

(fj,k − 1 + dprj,k).

The �rst theorem considers the con�icts derived from the complete time window.

Theorem 4.3.4 (Covers with right-hand-side 1). Let m ∈ M be one machine. We are
given the knapsack constraint∑

(t0,t1)∈Bm

(t1 − t0) · zrd,rum,t0,t1
≤ T + drum + drdm −

∑
(j,k)∈OM

|m

(dprj,k + dsej,k).

Then for each distinct pair of breaks (t0, t1), (t2, t3) ∈ Bm satisfying

t1 − t0 + t3 − t2 > T + drum + drdm −
∑

(j,k)∈OM
|m

(dprj,k + dsej,k)

the linear constraint
zrd,rum,t0,t1

+ zrd,rum,t2,t3
≤ 1 (4.45)

is a valid constraint of PB.

The validity of the cover con�icts is derived from the validity of the knapsack-constraint
(3.18).

The derived cover describes a combination of breaks that cannot simultaneously be
part of a feasible integral solution since using multiple breaks from the cover will prevent
at least one task from completing its processing or setup.

A similar statement can be derived for the knapsack constraints of inner breaks (3.21).

Theorem 4.3.5 (Covers of inner breaks). Let m ∈M be one machine. The breaks (t0, t1)
and (t2, t3) ∈ Bm cannot be simultaneously utilized in any feasible integer solution when
the following condition is satis�ed:

t3 − t2 + t1 − t0 > fM
m −

(
aMm +

∑
(j,k)∈OM

|m

(dprj,k + dsej,k)
)
.

Then, the con�ict zrd,rum,t0,t1
+ zrd,rum,t1,t2

≤ 1 is a valid constraint of PB.

These con�icts are covers of the knapsack constraints (3.21) and thus valid. The covers
of inner breaks can easily be extended to also consider middle, initial and �nal breaks.

Theorem 4.3.6 (Con�ict of initial and middle breaks). Let m ∈ M be one machine.
Additionally, let (t0, t1), (t2, t3) ∈ Bm two distinct breaks. The breaks (t0, t1), (t2, t3) cannot
simultaneously assigned to have value 1 in any feasible solution of PB if

∣∣∣[t0, t1[Z ∩[aMm , fM
m [Z

∣∣∣+ ∣∣∣[t2, t3[Z ∩[aMm , fM
m [Z

∣∣∣ > fM
m −

(
aMm +

∑
(j,k)∈OM

|m

(dprj,k + dsej,k)
)

holds. Then, the con�ict
zrd,rum,t0,t1

+ zrd,rum,t2,t3
≤ 1

is a valid constraint of PB.

Proof. Let m ∈ M and (t0, t1), (t2, t3) ∈ Bm two distinct breaks with t0 < t2 and
0 < t2 < t3 < T . We consider the knapsack constraints (3.17) for l = aMm and r =
fM
m . The coe�cient of the break (t0, t1) within the knapsack constraint is πB

t0,t1 =

max
{
0,min{r, t1} − max{l, t0}

}
= |[t0, t1[Z ∩[aMm , fM

m [Z |. Each task must complete its

85

setup and processing within [l, r[Z . Therefore, we can simplify the right-hand-side to
fM
m − (aMm +

∑
(j,k)∈OM

|m
(dprj,k + dsej,k)). Thus, we can consider also the simpli�ed knapsack

constraint ∑
(t0,t1)∈Bm

πB
t0,t1z

rd,ru
m,t0,t1

≤ fM
m −

(
aMm +

∑
(j,k)∈OM

|m

(dprj,k + dsej,k)
)
,

which is still valid. The breaks (t0, t1) and (t2, t3) can be used simultaneously if they do not
prevent one task from completing its processing and setup. Thus, the required number of
periods by (t0, t1) and (t2, t3) within [aMm , f

M
m [Z must be smaller than the required space

for processing and setting up all the tasks. Suppose the breaks (t0, t1), (t2, t3) are used
simultaneously within a feasible integer solution, and the breaks satisfy∣∣[t0, t1[Z ∩[aMm , fM

m [Z
∣∣+ ∣∣[t2, t3[Z ∩[aMm , fM

m [Z
∣∣ > fM

m − (aMm +
∑

(j,k)∈OM
|m

(
dprj,k + dsej,k)

)
.

1. If [t0, t1[Z ∩[t2, t3[Z ̸= ∅, then both breaks cannot be used simultaneously because
the constraints (3.10d), (3.10e) and (3.10f) hold.

2. If [t0, t1[Z ∩[t2, t3[Z = ∅, then both breaks cannot be used since the combination of
the breaks requires too many periods and prevents at least one task in completing
its setup and processing.

Thus, the corresponding con�ict is valid.

It is valid to consider subsets of tasks instead of all tasks processed by machine m ∈M .
Then, the following condition holds.

Theorem 4.3.7 (Con�ict of initial and middle breaks). Let m ∈ M be one machine.
Additionally, let (t0, t1), (t2, t3) ∈ Bm two distinct breaks and S ⊆ OM

|m . The breaks
(t0, t1), (t2, t3) cannot simultaneously assigned to have value 1 in any feasible solution of
PB if

∣∣∣[t0, t1[Z ∩[min
(j,k)∈S

{aj,k − dsej,k}, max
(j,k)∈S

{fj,k + dprj,k}[Z
∣∣∣

+
∣∣∣[t2, t3[Z ∩[min

(j,k)∈S
{aj,k − dsej,k}, max

(j,k)∈S
{fj,k + dprj,k}[Z

∣∣∣
> fM

m −
(
aMm +

∑
(j,k)∈OM

|m

(dprj,k + dsej,k)
)
.

Then, the con�ict
zrd,rum,t0,t1

+ zrd,rum,t2,t3
≤ 1

is a valid constraint of PB.

Another valid class of con�icts is �con�icts between initial and �nal breaks on di�erent
machines�. The idea is to �x an initial break (t0, t1) ∈ Bm on machine m and to derive
the resulting earliest possible �nal ramp down on machine m2 ∈ M by propagating the
resulting processing starts of the tasks.

Con�icts Over Di�erent Machines

The following condition describes a condition to derive a con�ict between two breaks
(t0, t1) ∈ Bm, (t2, t3) ∈ Bm2 on machine m,m2 ∈ M that cannot be used simultaneously
in any feasible solution of PB . The condition describes that the breaks cannot be used
together when the break (t0, t1) delimits the processing start of a task (j, k) in such a
way that the propagated completion time of a successor of task (j, k) con�icts with break
(t2, t3).

Theorem 4.3.8. Let m,m2 ∈M two distinct machines and (t0, t1) ∈ Bm, (t2, t3) ∈ Bm2

two breaks satisfying t1 < t2.
Additionally let j ∈ J be a job visiting m by task (j, k) before visiting m2 by task (j, l).

The break (t0, t1) and the break (t2, t3) cannot be used simultaneously in any feasible integer
solution of PB if the conditions

t0 < aj,k, and t1 + dsej,k +

l∑
l3=k

dprj,l3 > t2, and fj,l3 ≤ t3

86

hold. Then, the con�ict

zrd,rum,t0,t1
+ zrd,rum2,t2,t3

≤ 1

is a valid constraint of PB.

Proof. We are given the distinct machines m,m2 ∈ M and the breaks (t0, t1) ∈ Bm and
(t2, t3) ∈ Bm2 satisfying t1 < t2. In addition, the job-sequence j ∈ J starts processing of
task (j, k) on machine m before the processing of task (j, l) on machine m2. Moreover, the
time windows of the tasks satisfy

t0 < aj,k + dprj,k < fj,l − dsej,l < t3.

These conditions restrict the task (j, k) to start processing after the break (t0, t1). Addition-
ally, the task (j, l) needs to start processing before break (t2, t3). Therefore, the complete
processing of the tasks (j, k), . . . , (j, l) needs to be completed within [t1 + dsej,k, t2[Z . The
tasks {(j, k), . . . , (j, l)} satisfy

t1 + dsej,k +

l∑
l3=k

dprj,l3 > t2.

Thus, the setup and the processing of the subset of the tasks {(j, k), . . . , (j, l)} cannot be
completed before period t2, since the processing of the task (j, k) starts as early as possible
but the task (j, l) cannot be �nished in time. Therefore, the breaks (t0, t1) and (t2, t3)
cannot be used within the same integer solution, as they prevent the complete processing
of the tasks. Thus, at most, one of the breaks is allowed to be used in a feasible solution,
and the con�ict cut

zrd,rum,t0,t1
+ zrd,rum2,t2,t3

≤ 1

is valid for PB .

This condition can be strengthened by also considering additional requirements, such
as the processing and setup of further tasks. These con�icts can be detected by extensive
probing, and we do not generate con�icts for pairs of breaks. Another possibility is to �x
the processing start of additional tasks and analyze the forbidden processing starts.

However, these con�icts become ine�ective for larger time windows. The schedule could
be shifted in time arbitrarily. Moreover, the detection of these con�icts is time-consuming.

Con�icts Arising From Optimality Criteria

Describing conditions that must hold in optimal solutions can strengthen the LP-relaxation.
This can be done by describing combinations of variables that will not be used simultane-
ously in optimal solutions. Thus, we now describe the more interesting criteria for con�icts.
These are the con�icts that could be used to cut o� branches early, e.g., prevent the gen-
eration of those branches. These con�icts are helpful when running into troubles caused
by multiple near-optimal solutions.

Within the presolving and propagation rules, we mentioned the presolving by domi-
nating sets, see Theorem 4.1.41. This rule describes that a break is redundant if we can
substitute the break with a cheaper combination of breaks and standby. In contrast, if the
break cannot be substituted by a cheaper sequence of breaks and standby, we can derive
a con�ict. Therefore, we use the mappings

bestcost : m× [Tm
B [Z ×[Tm

B [Z → R

to compute the best objective value by standby and breaks on machine m ∈M and

bestchoice : m× [Tm
B [Z ×[Tm

B [Z → P(Bm ∪ [T [Z)

describing the corresponding subset of breaks and standby periods.

Theorem 4.3.9 (Con�icts by minimum distance of breaks). Let m ∈M be one machine.
The breaks (t0, t1) ∈ Bm and (t2, t3) ∈ Bm, with t1 < t2, will not be part of any optimal
feasible integer solution simultaneously, if t2 − t1 < min(j,k)∈OM

|m
(dsej,k + dprj,k) and

d̂m,t0,t1 + d̂m,t2,t3 + bestcost(m, t1, t2) ≥ d̂m,t0,t3

holds.

87

Proof. Letm ∈M a machine and (t0, t1), (t2, t3) ∈ Bm two breaks on machinem satisfying
t1 < t2. Moreover, the breaks satisfy

t2 − t1 < min
(j,k)∈OM

|m

(dsej,k + dprj,k).

The periods t ∈ [t1, t2[Z cannot be used for setup or processing in a locally feasible integer
solution. Thus, the periods t ∈ [t1, t2[Z can only be covered by breaks or standby. Com-
paring the partial objective costs of (t0, t3) with the partial objective costs of a solution
using the breaks (t0, t1), (t2, t3) leads to

d̂m,t0,t1 + d̂m,t2,t3+bestcost(m, t1, t2) =

d̂m,t0,t3+bestcost(m, t1, t2) +

t1−1∑
q=t1−drum

Dru
mPq +

t2+drdm∑
q=t2

Drd
mPq

≥d̂m,t0,t3 .

Thus, the solution (t0, t1), (t2, t3) in combination with the best choice between t1 and t2 is
not the optimal choice locally since the same schedule and a machine pro�le using break
(t0, t3) describes a better objective value.

Suppose, there exists an integer feasible solution which uses

(t0, t1), bestchoice(m, t2, t3), (t2, t3).

Then, the solution can be improved by replacing (t0, t1), bestchoice(m, t1, t2), (t2, t3) by
(t0, t3). Thus, under the given circumstances, the use of (t0, t1) and (t2, t3) cannot lead
to an optimal feasible integer solution respectively, there exists another optimal feasible
integer solution that does not use (t0, t1) and (t2, t3) simultaneously.

The graphical interpretation of this theorem is as shown in Figure 4.22.

t0 t3t1 t2

Figure 4.22: This �gure shows three breaks: (t0, t1),(t2, t3) and (t0, t3). In addition, no task is allowed
to start processing in any of the periods [t1, t2[Z . Then, concerning the mentioned constraints to the
objective, the black break (t0, t3) is always the better choice for any integral solution than the usage of
(t0, t1),(t2, t3) and some assignment of the periods t ∈ [t1, t2[Z to break or standby.

These con�icts can be extended to con�icts of standby periods between a break and
the processing start of a task. However, most of these complicated con�icts could in
principle be found by extensive probing. However, this requires problem-speci�c probing
implementation, which �xes the two breaks consecutively to 1.

4.3.2 Generalized Upper Bounds

Jorge P. Sousa and Laurence Wolsey proposed di�erent valid generalized upper bounds
(GUB) inequalities in [SW92] for time-indexed formulations of the single-machine schedul-
ing problem.

De�nition 4.3.10 (Generalized upper bound constraint). Let

P = conv({x ∈ Rn | Ax ≤ b, x ∈ {0, 1}n})

with A ∈ Qm×n, b ∈ Qm and c ∈ Qn and n,m ∈ N. For J ⊆ {1, . . . , n} and U ∈ Q, The
constraint

∑
j∈J xj ≤ U , is called a generalized upper bound constraint for P if it

describes a valid constraint for P .

Wolsey applies the technique of GUB constraints on special knapsack problems in
[Wol90], called GUB knapsacks. Those are knapsack problems with additional GUB con-
straints. The author mentions that the derived GUB cover constraints can strengthen the
classical cover constraints. Wolsey and Sousa apply these techniques to the single-machine
scheduling problem.

88

Among other things, van den Akker [vdA94] also analyzed GUB constraints in the
case of single-machine scheduling. While Sousa and Wolsey [SW92] described valid GUB
covers, van den Akker analyzed the properties of a class of GUB covers and proved that
some are facet-de�ning.

Van den Akker et al. [AHS00] as well as Sousa and Wolsey [SW92] proposed classes of
valid inequalities of a time-indexed formulation of the single-machine scheduling problem.
Considering the single-machine scheduling problem, we are given n ∈ N jobs with process-
ing durations pi ∈ N that must be processed within a time window [T [Z . Note that van
den Akker uses the notation [a, b] = {a+ 1, . . . , b}. However, we present the results using
our notation [a, b[Z = {a, . . . , b− 1}.

We will brie�y reproduce the results of van den Akker and Wolsey and Sousa. Then, we
will present a lifting scheme to adapt the inequalities to the job-shop scheduling problem
setting with �exible energy prices and time windows.

Results in the Case of Single-Machine Scheduling

Van den Akker [vdA94], and also Sousa and Wolsey [SW92] consider the single-machine
scheduling problem. A time-indexed formulation can describe the feasible solutions to the
single-machine scheduling problem.

For simpli�cation, we present the description of the single-machine scheduling problem
and the valid inequalities and variables directly using our notation of the job-shop schedul-
ing problem. Therefore, each job j ∈ [n[Z of the single-machine scheduling is associated
with a task (j, k) = (j, 0) and the corresponding processing time pj is equal to dprj,k. The
problem formulation is as follows:

min c⊤x

s.t :
∑

t∈[T−d
pr

j,k
+1[Z

xj,k,t = 1 ∀ (j, k) ∈ OM
|m (4.46)

∑
(j,k)∈OM

|m

t∑
q=t−d

pr

j,k
+1

xj,k,q ≤ 1 ∀ t ∈ [T [Z (4.47)

xj,k,t = 0 ∀ (j, k) ∈ OM
|m , t ∈ [T − dprj,k + 1, T [Z (4.48)

xj,k,t ∈ {0, 1} ∀ (j, k) ∈ OM
|m , t ∈ [T [Z (4.49)

Thereby, the set

P ∗
S = conv

({
x ∈ {0, 1}[T [Z ×{1,...,n} | x satis�es (4.46) and (4.49)

})
describes the polytope of the feasible solutions. Sousa and Wolsey aggregated the con-
straints 4.47 and analyzed the resulting problem formulation, consisting of |OM

|m | set pack-
ing constraints and one knapsack constraints:

U =
{
x ∈ {0, 1}|O

M
|m |×[T [Z |

∑
(j,k)∈OM

|m

T−d
pr

j,k
+1∑

t=1

aj,k,t · xj,k,t ≤ b

∑
t∈[T−d

pr

j,k
[Z

xj,k,t ≤ 1 ∀ i ∈ {1, . . . , n}

xj,k,t = 0 ∀ (j, k) ∈ OM
|m , t ∈ [T − dprj,k + 1, T [Z

xj,k,t ∈ {0, 1} ∀ (j, k) ∈ OM
|m , t ∈ [T [Z

}
.

The polytopes P ∗
S and U contain the same integral points, but U is described by a knapsack

constraint, and P ∗
S is described by set packing constraints. Instead of deriving cover-

cuts, see [KNT98], from this knapsack constraint, the additional information of the GUB-
constraint is used in order to derive stronger inequalities.

De�nition 4.3.11. The set C ⊆ OM
|m × [T [Z is called a GUB cover for U , if the elements

of C are pairwise distinct and
∑

(j,k,t)∈C aj,k,t > b.

With the set C, we associate the set V (C) = {j, k) | (j, k, t) ∈ C} and the set of periods

Q(j,k) = {t | aj,k,s ≥ aj,k,t, where (aj,k,t) ∈ C}

89

and
Q′

(j,k) = {s ∈ [T [Z | aj,k,s ≥ ai,l,t ∀(i, l, t) ∈ C}

for (i, l) ∈ OM
|m\ ∈ V (C).

Proposition 4.3.12 ([SW92]). If C is a GUB cover for U , then∑
(j,k)∈V (C)

∑
q∈Q(j,k)

xj,k,q +
∑

(j,k)∈OM
|m

\V (C)

∑
q∈Q′

(j,k)

xj,k,q ≤ |C| − 1

is a valid inequality for U .

To obtain valid inequalities with right-hand-side 1, Sousa and Wolsey [SW92] propose
to aggregate over ∆ consecutive time periods {t, t+ 1, . . . , t+∆− 1}. Then, the resulting
knapsack constraint can be described by the coe�cients

aj,k,s = min{dprj,k,∆, (t+∆− s)+, (s+ dprj,k − t)
+}.

Let C be a GUB cover of size 2, then the sets Qj,k and Q′
j,k result in

Qj,k = [t− dprj,k − aj,k,t, t+∆− aj,k,pr[Z ∀(j, k) ∈ V (C)

Q′
j,k = [t− dprj,k − a, t+∆− a[Z ∀(j, k) /∈ V (C),

where a = max{aj,k,t | (j, k) ∈ V (C)}.
Sousa and Wolsey provide the following classi�cation of valid inequalities with right-

hand side 1.

Theorem 4.3.13 ([SW92, Proposition 2]). Consider a job (j, k), a period t, and ∆ ∈
{2, . . . , p} where p = maxj ̸=l{dprj,k}. Then∑

s∈Q(j,k)

xj,k,s +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
s∈Q′

(i,l)

xi,l,s ≤ 1

is a valid inequality of P ∗
S , where Q(j,k) = [t−dprj,k+1, t+∆−1[Z , Q′

(j,k) = [t−dprj,k+∆, t[Z
for j ̸= l such that dprj,k ≥ ∆ and Q′

(j,k) = ∅ otherwise.

Van den Akker [vdAvHS99] complements and extends the results of Sousa and Wolsey
[SW92] as follows. Among others, van den Akker derived the following results.

De�nition 4.3.14. We are given the optimization problem min{c⊤x | Ax ≤ b, x ∈ {0, 1}n}
with c ∈ Qn, A ∈ Qm×n and b ∈ Qm, m,n ∈ N. A constraint x(V) =

∑
q∈V xq ≤ 1

with V ⊆ {1, . . . , n} is called maximal if there is no valid constraint x(W) ≤ 1 with
V ⊂W ⊆ {1, . . . , n}.

De�nition 4.3.15. Let Q = conv({x ∈ {0, 1}n | Ax ≤ b, x ∈ {0, 1}n}) be a polytope. A
valid and maximal constraint x(V) ≤ 1 for Q with V ⊂ [n[Z is called facet-de�ning for Q,
if

dim({x ∈ Q | x(V) = 1}) = dim(Q)− 1

holds.

Proposition 4.3.16 ([vdA94, Theorem 3.3]). Any facet de�ning inequality x(V) ≤ 1 for
P ∗
S with V = V(j,k) ∪ (

⋃
(i,l)∈OM

|m
\{(j,k)} V(i,l)) has the following structure:

V(j,k) = [l − dprj,k, u[Z and

V(i,l) = [u− dpri,l, l[Z for all (i, l) ∈ OM
|m \ {(j, k)}

with l, u ∈ [T [Z and l < u.

Proposition 4.3.17. A valid inequality x(V) ≤ 1 is facet-de�ning for P ∗
S if and only if

the inequality is maximal.

Corollary 4.3.18 ([vdA94, Theorem 3.4]). A valid inequality x(V) ≤ 1 with the structure
described in Proposition 4.3.16 that is maximal is facet-de�ning for P ∗

S .

Van den Akker derived su�cient conditions for the maximality of a constraint x(V) ≤ 1
in [vdA94].

90

Proposition 4.3.19 ([vdA94, Theorem 3.5]). Let (j, k) ∈ OM
|m and l, u ∈ [T [Z with l < u

and V = V(j,k) ∪ (
⋃

(i,l)∈OM
|m

\{(j,k)} V(i,l)). An inequality x(V) ≤ 1 is maximal, if it has the

structure described in Proposition 4.3.16 and V(i,l) ̸= ∅ for at least one (i, l) ∈ OM
|m \{(j, k)}.

The mentioned GUB cover constraints and the analysis of GUB cover constraints were
only considered for pre-schedules. A pre-schedule is a scheduling of the tasks, which need
not schedule each task.

Van den Akker also extends in [vdA94] the theory of GUB cover constraints in the case
of single-machine scheduling to conditions whether the derived constraint is also facet-
de�ning for the single-machine scheduling, where each task must be processed. However,
we do not present nor recreate those parts within this thesis since our problem setting also
includes more complex substructures. The following sections will add problem structures
to the GUB cover constraints. We will start with the additional consideration of setup
times. To that end, we provide a linear transformation of the processing and setup times
of the tasks to show that setup times can be considered by the GUB cover cuts. Finally,
we show that the constraints are facet-de�ning inequalities under special circumstances
of a subproblem of the job-shop scheduling problem with �exible energy prices and time
windows. We focus on the job-shop scheduling problem with �exible energy prices and
time windows, restricted to a single machine m ∈ M . This single-machine problem is a
subproblem of the considered job-shop scheduling problem with �exible energy prices and
time windows. To that end, the derived valid inequalities of this single-machine scheduling
subproblem are valid inequalities of the job-shop scheduling problem with �exible energy
prices and time windows.

GUB Covers for Single-Machine Scheduling with Setup Times

To consider setup times, we analyze a subproblem of the job-shop scheduling problem with
�exible energy prices and time windows, namely the subproblem of scheduling the tasks
on a single machine m ∈M with �exible energy prices and time windows.

We start with the single-machine scheduling subproblem and extend this problem by
considering setup times. Each task can be processed within the time window, but the setup
must be completed directly before processing. The following polytope P ∗

setup describes all
feasible pre-schedules:

P ∗
setup = conv

({
x ∈ {0, 1}O

M
|m×[T [Z

∣∣∣
T−d

pr

j,k
+1∑

t=dse
j,k

xj,k,t ≤ 1 ∀ (j, k) ∈ OM
|m

∑
(j,k)∈OM

|m

t+dsej,k∑
s=t−d

pr

j,k
+1

xj,k,t ≤ 1 ∀ t ∈ [T [Z

xj,k,t = 0 ∀ (j, k) ∈ OM
|m , t ∈ [T − d,j,kT [Z

})
.

We introduce a new processing duration

d̂prj,k = dsej,k + dprj,k,

for each task (j, k) ∈ OM
|m by combining the original processing and setup durations. The

instance and the corresponding problem formulation need to be reformulated using the
new processing times. We introduce new variables x̂j,k,t for each (j, k) ∈ OM

|m and t ∈ [T [Z

which are equal to one, if task (j, k) starts processing (with processing duration d̂prj,k) in
period t and zero otherwise. Therefore, we get a single-machine scheduling problem with
time window T and |OM

|m | tasks with processing times d̂prj,k and the theory of van den Akker,
and of Sousa and Wolsey can be applied.

Given an instance of the single machine job-shop scheduling problem and a solution
for the x̂-variables, the corresponding solution for the x can be retrieved by the linear
transformation xj,k,t = x̂j,k,t−dse

j,k
for t ∈ [dsej,k, T [Z and xj,k,t = 0 for t ∈ [dsej,k[Z . Thus,

91

we can also consider the polytope

P̂setup∗ = conv
({
x̂ ∈ {0, 1}O

M
|m×[T [Z

∣∣∣
T−d̂

pr

j,k
+1∑

t=0

x̂j,k,t ≤ 1 ∀ (j, k) ∈ OM
|m

∑
(j,k)∈OM

|m

t∑
s=t−d̂

pr

j,k
+1

x̂j,k,t ≤ 1 ∀ t ∈ [T [Z

xj,k,t = 0 ∀ (j, k) ∈ OM
|m , t ∈ [T − d̂,j,kT [Z

})
.

The inequality ∑
t∈V(j,k)

x̂j,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

x̂i,l,t ≤ 1 (4.50)

with l, u ∈ [T [Z , l < u, and

V(j,k) = [l − d̂prj,k + 1, u+ 1[Z and

V(i,l) = [u− d̂pri,l + 1, l + 1[Z ∀ (i, l) ∈ OM
|m

is valid for P̂ ∗
setup, since P̂

∗
setup is described by a time-indexed formulation of a single-

machine scheduling problem. Applying the linear (re-)transformation on the x̂-variables
lead to the constraint∑

t∈V(j,k)

xj,k,t+dse
i,l

+
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t+dse
i,l
≤ 1 (4.51)

Inequality (4.51) is valid since it is derived from a valid inequality of the single-machine
scheduling problem by a linear transformation. The index shift in constraint (4.52) can be
directly considered within the sets Vj,k.

Now we reproduce results from [vdA94] with the additional consideration of setup
times.

Corollary 4.3.20. Let (j, k) ∈ OM
|m be one task on machine m. In addition let l, u ∈ [T [Z .

Then, for

V(j,k) = [l − dprj,k + 1, u+ dsej,k + 1[Z

and V(i,l) = [u− d̂pri,l + 1, l + dsei,l + 1[Z ∀ (i, l) ∈ OM
|m

the constraint ∑
t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t ≤ 1 (4.52)

is valid for P ∗
setup.

Theorem 4.3.21. If the inequality (4.52) is maximal, then the inequality is facet-de�ning
for P ∗

setup.

Proof. As mentioned before, for (j, k) ∈ OM
|m , the constraint∑

t∈V(j,k)

x̂j,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

x̂i,l,t ≤ 1

is facet-de�ning for P̂ ∗
setup with

V(j,k) = [l − d̂prj,k + 1, u+ 1[Z

and V(i,l) = [u− d̂pri,l + 1, l + 1[Z ∀ (i, l) ∈ OM
|m

if the constraint is maximal. The mapping

ϕ : P ∗
setup → P̂ ∗

setup, xj,k,t 7→

{
x̂j,k,t−dse

j,k
if t− dsej,k ≥ 0

x̂j,k,T−dse
j,k

+t else

is an isomorphism. Since dim(P ∗
setup) = dim(P̂ ∗

setup), the property of the constraints is also
mapped from P̂ ∗

setup to the polytope P ∗
setup. Thus, the constraint (4.52) is facet-de�ning

for P ∗
setup, if Constraint (4.50) is maximal.

92

Extending the single-machine scheduling problem by setup times requires a linear trans-
formation.

Corollary 4.3.22. Let (j, k) ∈ OM
|m be a task and l, u ∈ [T [Z two distinct periods. The

set V = V(j,k) ∪ (
⋃

(i,l)∈OM
|m

\{(j,k)} V(i,l)) satis�es

V(j,k) = [l − d̂prj,k + 1, u+ 1[Z

and V(i,l) = [u− d̂pri,l + 1, l + 1[Z ∀ (i, l) ∈ OM
|m .

Then, the inequality (4.52) is maximal, if V(i,l) ̸= ∅ holds for one task (i, l) ∈ OM
|m \{(j, k)}.

GUB Cover Constraints Considering Breaks

Now, we consider the single-machine scheduling problem setup times and breaks, formu-
lated by the following polytope

P ∗
break = conv

({
x ∈ {0, 1}O

M
|m×[T [Z , zrd,rum,t0,t1

∈ {0, 1} ∀(t0, t1) ∈ Bm

T−d
pr+1
j,k∑

t=dse
j,k

xj,k,t ≤ 1 ∀(j, k) ∈ OM
|m

∑
(t0,t1)∈Bm:t∈[t0,t1[Z

zrd,rum,t0,t1
+

∑
(j,k)∈OM

|m

t+dsej,k∑
s=t−d

pr

j,k
+1

xj,k,t ≤ 1 ∀ t ∈ [T [Z

xj,k,t = 0 ∀ (j, k) ∈ OM
|m , t ∈ [T − d̂,j,kT [Z

})
.

Remark 4.3.23. The feasible solutions of P ∗
setup, extended by 0 for each break (t0, t1) ∈

Bm, are feasible solutions of P
∗
break. Thus, Constraint (4.52) is also a valid constraint of

P ∗
break for each l, u ∈ [T [Z and (j, k) ∈ OM

|m .

Clearly, the constraints (4.52) describe facets of

F =
{
(x, zrd,ru) ∈ P ∗

break | zrd,rum,t0,t1
= 0 ∀ (t0, t1) ∈ Bm

}
,

if the constraint is facet-de�ning for P ∗
setup.

Now, the idea is to lift each break variable zrd,rum,t0,t1
, for (t0, t1) ∈ Bm, into the constraints

(4.52). Lifting increases the dimension of a valid inequality by adding variables. Iteratively,
the variables are added to the constraints. The corresponding coe�cient is chosen as large
as possible while maintaining the validity of the new inequality.

We are using the Theorem 4.3.24 to describe the lifting procedure.

Theorem 4.3.24 ([WN14], p.261 Proposition 1.1). For S = conv{χ(M) |M ⊆ {1, . . . , n}})
we de�ne Sδ := S ∩ {x ∈ S : x1 = δ} for δ ∈ {0, 1}. Suppose

n∑
j=2

πjuj ≤ π0

is valid for S0. If S1 = ∅, then x1 ≤ 0 is valid for S. If S1 ̸= ∅, then

α1x1 +

n∑
j=2

πjuj ≤ π0

is valid for S for any α1 ≤ π0 −max{
∑n

j=2 πjxj | x ∈ S1}.
Moreover, if

α1 = π0 −max
{ n∑

j=2

πjxj | x ∈ S
}
and

n∑
j=2

πjxj ≤ π0

gives a face of dimension k of S0, then α1 +
∑n

j=2 πjxj ≤ π0 gives a face of dimension at
least k + 1 of S.
If

∑n
j=2 πjxj ≤ π0 is a facet of S0, then

α1 +

n∑
j=2

πjxj ≤ π0

is a facet of S for α1 = π0 −max{
∑n

j=2 πjxj | x ∈ S}.

93

Now, we will use Theorem 4.3.24 to add the break variables to constraint (4.52) with
their maximal coe�cients.

Theorem 4.3.25. Let l, u ∈ [T [Z two periods and (j, k) ∈ OM
|m a task processed by machine

m ∈M . The break (t0, t1) ∈ Bm can be lifted into constraints (4.52) with coe�cient 1, i�
the condition

t0 ≤ l < u ≤ t1
holds.

Proof. The constraint ∑
t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t ≤ 1

is valid for P ∗
break

0 = {(x, zrd,ru) ∈ P ∗
break | zrd,rum,t0,t1

= 0 ∀ (t0, t1) ∈ Bm}. Now, we are
able to lift the break (t0, t1) into the constraint (4.52) with coe�cient

αm,t0,t1 = 1−max
{ ∑

t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t :

(x, zrd,ru) ∈ P ∗
break, zrd,rum,t0,t1

= 1
}
.

Let (t0, t1) ∈ Bm satisfy t0 ≤ l < u ≤ t1. The processing of task (j, k) cannot start in
period l − dprj,k, since l − d

pr

j,k + 1 + dprj,k ≥ t0 would lead to a con�ict of the processing of
task (j, k) and the break (t0, t1). Analogously, the task cannot start in any of the periods
t ∈ [l−dprj,k+1, u+dsej,k+1[Z . The same argumentation is valid for task (i, l) ∈ OM

|m \{(i, l)}
and processing starts in [u− dpri,l + 1, l + dsei,l + 1[Z . Thus, for each (x, zrd,ru) ∈ P ∗

break

xi,l,t = 0 ∀ t ∈ [u− dpri,l + 1, l + dsei,l + 1[Z

and xj,k,t = 0 ∀ t ∈ [l − dprj,k + 1, u+ dsej,k + 1[Z

holds.
Therefore, the maximal value of

∑
t∈V(j,k)

xj,k,t+
∑

(i,l)∈OM
|m

\{(j,k)}
∑

t∈V(i,l)
xi,l,t equals

0, if t0 ≤ l < u ≤ t1 holds. Thus, the maximum coe�cient αm,t0,t1 of break (t0, t1) is 1. To
show that this scheme lifts all breaks to its maximal coe�cient, we need that this scheme
does not miss a break.

Suppose the break (t0, t1) ∈ Bm satis�es t0 ≤ l ≤ t1 < u. Then, the optimal solution
to the maximization problem

max
{ ∑

t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t : (x, z
rd,ru) ∈ P ∗

break, zrd,rum,t0,t1
= 1

}
= 0

since the task (j, k) can start processing in period u− 1 + dsej,k ∈ V(j,k).
In the case of l < t0 ≤ u ≤ t1, the task (j, k) can start processing in period l ∈ V(j,k).

The case l < t0 ≤ t1 < u allows the same argumentation. Thus, the case t0 ≤ l < u ≤ t1
is the only case where the maximal coe�cient is 1.

Therefore, the break (t0, t1) can be lifted into Constraint (4.52) with maximum coe�-
cient 1, if and only if t0 ≤ l ≤ u ≤ t1 holds and with coe�cient 0 otherwise.

The next theorem shows that all breaks can be lifted into the constraint iteratively
with coe�cient 1 if they satisfy a certain condition. Moreover, the theorem states that
the lifting scheme is sequence-independent. This property is not present for general lifting
schemes because various sequences of lifting the variables into the constraints can result in
di�erent valid constraints for the given polytope. In the case of the considered constraint
class, the lifting sequence can be chosen arbitrarily if the lifting function is superadditive
[GNS00]. However, we can show that each break that can be lifted with coe�cient 1 into
the constraint con�icts with all the other breaks with coe�cient 1, and thus, the lifting
function can neglect breaks.

Proposition 4.3.26. Let m ∈ M , (j, k) ∈ OM
|m and l, u ∈ [T [Z . Let S ⊆ Bm a subset of

breaks satisfying
t2 ≤ l < u ≤ t3 ∀ (t2, t3) ∈ S.

Then, the constraint∑
t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t +
∑

(t2,t3)∈S

zrd,rum,t2,t3
≤ 1.

is valid for P ∗
break and the lifting order is sequence-independent.

94

Proof. Let (j, k) ∈ OM
|m and l, u ∈ [T [Z . Additionally, let S ⊆ Bm a subset of breaks

satisfying
t2 ≤ l < u ≤ t3 ∀ (t2, t3) ∈ S.

Then, each break (t2, t3) ∈ S can be lifted into constraint (4.52).
Let S0 ⊂ S and (t0, t1) ∈ S \S0. Then, the maximal coe�cient of break (t0, t1) can be

computed by

αm,t0,t1 = max
{
1− (

∑
t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t +
∑

(t2,t3)∈S0

zrd,rum,t2,t3
)
∣∣∣

(x, zrd,ru) ∈ P ∗
break, z

rd,ru
m,t0,t1

= 1
}
.

If t0 ≤ l < u ≤ t1 holds, then the constraint∑
(t2,t3)∈S0

zrd,rum,t2,t3
≤ 1− zrd,rum,t0,t1

is valid for P ∗
break since each break, which is part of S0 ∪ {(t0, t1)}, covers interval [l, u[Z .

However, only one break is allowed to cover this interval within a feasible solution. Thus,
the sum

∑
(t2,t3)∈S0

zrd,rum,t2,t3
can be neglected within the optimization problem since it is

�xed to 0. Thus, the simpli�ed objective of the coe�cient optimization problem is

1−
(∑

t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t
)

and the coe�cient of (t0, t1) can be computed by solving the lifting-problem for constraint
(4.52). Thus, the lifting-coe�cient of break (t0, t1) is independent from S0. Therefore,
the subset of already lifted breaks does not a�ect the coe�cient of break (t0, t1), and the
lifting procedure is sequence-independent. The feasibility of the constraint∑

t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t +
∑

(t2,t3)∈S

zrd,rum,t2,t3
≤ 1.

is derived from the validity of the lifting scheme.

Proposition 4.3.27. Let (j, k) ∈ OM
|m and l, u ∈ [T [Z . If the constraint∑

t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t ≤ 1

is a maximal constraint of P ∗
setup, then the constraint∑

t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t +
∑

(t0,t1)∈Bm:t0≤l≤u≤t1

zrd,rum,t0,t1
≤ 1 (4.53)

is facet-de�ning for P ∗
break.

GUB Cover Constraints Considering Standby Variables

To additionally consider the standby variables when describing GUB cover constraints of
single-machine scheduling with setup times, breaks and standby, we need to analyze the
following problem description:

P ∗
all = conv

({
x ∈ {0, 1}O

M
|m×[T [Z , zrd,rum,t0,t1

∈ {0, 1} ∀(t0, t1) ∈ Bm, z
st ∈ {0, 1}[T [Z

T−d
pr+1
j,k∑

t=dse
j,k

xj,k,t ≤ 1 ∀(j, k) ∈ OM
|m ,

∑
(t0,t1)∈Bm:t∈[t0,t1[Z

zrd,rum,t0,t1
+

∑
(j,k)∈OM

|m

t+dsej,k∑
s=t−d

pr

j,k
+1

xj,k,t + zstm,t ≤ 1 ∀t ∈ [T [Z ,

xj,k,t = 0 ∀ (j, k) ∈ OM
|m , t ∈ [T − d̂,j,kT [Z

})
.

95

Proposition 4.3.28. Let l, u ∈ [T [Z and (j, k) ∈ OM
|m . Then, the inequality∑

t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t +
∑

(t0,t1)∈Bm:t0≤l≤u≤t1

zrd,rum,t0,t1
≤ 1

is a valid constraint for P ∗
all.

The validity of Proposition 4.3.28 follows from the fact that P ∗
break describes the feasible

solutions of P ∗
all, if z

st
m,t = 0 is �xed for all each m ∈ M and t ∈ [T [Z . Let l, u, t ∈ [T [Z

with l + 1 < u. Now we consider the lifting expression for standby variable zstm,t:

αm,t = max
{
1.0−

(∑
t∈V(j,k)

xj,k,t+

∑
(i,l)∈OM

|m
\{(j,k)}

∑
t∈V(i,l)

xi,l,t +
∑

(t0,t1)∈Bm:t0≤l≤u≤t1

zrd,rum,t0,t1

)∣∣∣
zstm,t = 1

(x, zrd,ru, zst) ∈ P ∗
all

}
.

If t < l or t ≥ u hold, then the objective value of this optimization problem is 0 since the
standby �xation does not a�ect the maximum left-hand side of the constraint.

If l ≤ t ≤ u− 1 holds, then the value of
∑

(t0,t1)∈Bm:t0≤l≤u≤t1
zrd,rum,t0,t1

= 0, since∑
(t0,t1)∈Bm:t0≤l≤u≤t1

zrd,rum,t0,t1
≤

∑
(t0,t1)∈Bm:t∈[t0,t1[Z

zrd,rum,t0,t1
= 0

must hold. The maximum value is bounded by∑
t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t ≤ 1

since (4.52) is a valid constraint of P ∗
all. The optimization problem attains its maximum

value of 0 because there is always a period q ∈ Vj,k such that
∑

t∈V(j,k)
xj,k,t = 1 and

zstm,t = 1. Thus, the standby variables can be lifted into the constraints (4.53) and (4.52)
with coe�cient 0, if l < u− 1. In the case of t = l and l + 1 = u, the derived GUB cover
is the already existing constraint.

∑
(t0,t1)∈Bm:t∈[t0,t1[Z

zrd,rum,t0,t1
+

∑
(j,k)∈OM

|m

t+dsej,k∑
s=t−d

pr

j,k
+1

xj,k,t + zstm,t ≤ 1.

Proposition 4.3.29. Let m ∈M and l, u ∈ [T [Z with l < u− 1. Then, the constraint∑
t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t +
∑

(t0,t1)∈Bm:t0≤l≤u≤t1

zrd,rum,t0,t1
≤ 1

is facet-de�ning for P ∗
all if the constraint∑
t∈V(j,k)

xj,k,t +
∑

(i,l)∈OM
|m

\{(j,k)}

∑
t∈V(i,l)

xi,l,t ≤ 1

is a maximal constraint for P ∗
setup.

The facet-de�ning property is always coupled to the maximality of the GUB cover
constraint for P ∗

setup.

Proposition 4.3.30. If the (4.52) is maximal for P setup, then the lifted constraint (4.53)
is maximal for P all for l < u.

Proposition 4.3.31 (Theorem 3.5 [vdA94]). Let m ∈M be one machine. The constraint
(4.52) is maximal for l, u ∈ [T [Z with [l, u[Z ̸= [T [Z and (j, k) ∈ OM

|m , if Vj ̸= ∅ for one
(i, l) ∈ OM

|m \ {(j, k)}.

Since P ∗
all describes a relaxation of a subproblem of the job-shop scheduling problem

with �exible energy prices and time windows, the validity of the derived constraints is also
given for PB . Nevertheless, even the maximality condition is not guaranteed in the case of
PB since we also need to consider time windows and precedence constraints. Thus, future
work will require further attempts to derive conditions to maximality in combination with
time windows and precedence constraints.

96

GUB Covers With Right-Hand-Side ≥ 2

The presented GUB cover constraints are constraints with right-hand-side 1. Sousa and
Wolsey also present valid inequalities with right-hand-side |I| for a subset I ⊆ OM

|m in the
case of single-machine scheduling. The setup times of the tasks can be considered equal to
what we did for the cover cuts with right-hand-side 1.

Proposition 4.3.32 ([SW92],Proposition 5). Let m ∈ M and I ⊂ OM
|m a non-empty

subset of tasks. Let

∆ =
∑

(j,k)∈I

ˆdprj,k + δ

with δ ∈ [max(j,k)∈I{dprj,k + dsej,k} − 1,max(j,k)∈OM
|m
{dprj,k + dsej,k − 1} + 1[Z . Additionally,

there is the second set of tasks Iδ = {(i, l) ∈ OM
|m | dpri,l + dsei,l ≥ δ + 1} \ I. Then the

inequality ∑
(j,k)∈I

t+∆−d
pr

j,k
+dsej,k∑

q=t

xj,k,q +
∑

(i,l)∈Iδ

t+∆−δ−1+dsei,l∑
q=t+δ+1−d

pr

i,l

xi,l,q ≤ |I| (4.54)

is valid for P setup.

The validity of this proposition can be veri�ed by the usage of the combined setup and
processing times d̂prj,k for each task (j, k) ∈ OM

|m in case of the single-machine scheduling and
the validity of the GUB cover constraints in [SW92, Proposition 5]. The constraint (4.54)
is also a valid constraint of P ∗

all. To additionally consider breaks within this constraint, a
lifting scheme is necessary.

Theorem 4.3.33. Consider the machine m ∈ M . For I ⊂ OM
|m and t ∈ [T [Z , and

δ ∈ [max(j,k)∈I{dprj,k + dsej,k} − 1,max(j,k)∈OM
|m
{dprj,k + dsej,k − 1} + 1[Z we are given the

constraint ∑
(j,k)∈I

t+∆−d
pr

j,k
+dsej,k∑

q=t

xj,k,q +
∑

(i,l)∈Iδ

t+∆−δ−1+dsei,l∑
q=t+δ+1−d

pr

i,l

xi,l,q ≤ |I|.

The break variable zrd,rum,t0,t1
of break (t0, t1) ∈ Bm can be lifted into this constraints, if

|[t0, t1[Z ∩[t+ 1, t+∆− δ − 1[Z | ≥ δ + 1

holds.

Proof. For m ∈ M , we are given the non-empty subset of tasks I ⊂ OM
|m and t ∈ [T [Z .

Then, with δ ∈ {max(j,k)∈I{dprj,k+d
se
j,k}−1, . . . ,max(j,k)∈OM

|m
{dprj,k+d

se
j,k−1}} we are given

the constraint:

∑
(j,k)∈I

t+∆−d
pr

j,k
+dsej,k∑

q=t

xj,k,q +
∑

(i,l)∈Iδ

t+∆−δ−1+dsei,l∑
q=t+δ+1−d

pr

i,l

xi,l,q ≤ |I|. (4.55)

This constraint describes the fact that within the interval of length ∆+ δ periods, only a
limited number of tasks from the set I and from Iδ can be processed. If the break claims
more than δ + 1 periods of the interval [t+ 1, t+∆− δ − 1[Z , then the break prevents at
least one task (j, k) ∈ I from starting processing within the considered interval.

To determine the lifting coe�cient, we use the lifting theorem 4.3.24. The constraint
(4.54) is valid, if we �x the break variables zrd,rum,t0,t1

to zero.
The maximum coe�cient of break (t0, t1) can be computed by αm,t0,t1 = |I| − ξ with

ξ = max{
∑

(j,k)∈I

t+∆−d
pr

j,k
+dsej,k∑

q=t

xj,k,q +
∑

(i,l)∈Iδ

t+∆−δ−1+dsei,l∑
q=t+δ+1−d

pr

i,l

xi,l,q |

x ∈ P ∗
break, z

rd,ru
m,t0,t1

= 1}.

The break (t0, t1) can be lifted into the constraints with positive coe�cients if the �xation
of zrd,rum,t0,t1

:= 1 prevents at least one task (j, k) ∈ I from starting processing in [t+dsej,k, t+
∆− δ + 1[Z . Therefore, we treat the break (t0, t1) as a task, starting processing in period
t0 with a processing duration t1 − t0. Therefore, this break would be part of Iδ since the
notional processing duration satis�es t1−t0 ≥ δ+1. If a task of Iδ starts processing within
the considered interval, then one task (j, k) in I cannot start processing. Therefore, the
parameter αm,t0,t1 satis�es αm,t0,t1 = 1 holds.

97

Algorithm 4 Greedy Algorithm For Set I

Require: Machine m, set of operations OM
|m , fractional processing starts x̂j,k,t

1: Choose I ⊂ OM
|m , ∥I∥ = 2

2: repeat
3: Ibest = ∅
4: val = 0
5: for (j, k) ∈ OM

|m \ I do
6: if val < f(I ∪ {(j, k)})− f(Ibest) then
7: val = f(I ∪ {(j, k)})− f(I)
8: Ibest = I ∪ {(j, k)}
9: end if

10: end for

11: I = Ibest
12: until Ibest = ∅
13: return Ibest

The class of possible constraints of type (4.54) is exponential-sized. To e�ciently
compute violated constraints, we use a greedy heuristic to detect violated constraints. The
objective function f : P(OM

|m)→ R considered in the greedy algorithm is de�ned as

f(I) = max{
∑

(j,k)∈I

t+∆−d
pr

j,k
+dsej,k∑

q=t

xj,k,q +
∑

(i,l)∈Iδ

t+∆−δ−1+dsei,l∑
q=t+δ+1−d

pr

i,l

xi,l,q − |I|

| t ∈ [T [Z , δ,∆, I
δas above}.

For each m ∈ M , the Greedy algorithm tries to compute a set I ⊆ OM
|m , such that the

corresponding constraint (4.54) is violated for at least one t ∈ [T [Z . The Greedy algorithm
iteratively extends a set I until no element (j, k) ∈ OM

|m \ I exists, which increases the
objective value. One evaluation of f(I) for an arbitrary I ⊂ OM

|m requires at most O(|OM
|m | ·

T) operations. The evaluation of the objective of the maximization problem is necessary
once for each δ using e�cient incremental summation algorithms. Thus, the evaluation for
each t ∈ [T [Z leads to a total number of O(T 2 · |OM

|m |) operations.
Moreover, Sousa and Wolsey proposed a lifting scheme to increase the value of the

coe�cients of the task variables. The lifting scheme in [SW92] is described in the following
theorem. Within our implementation, we are using the following lifting scheme. The lifting
scheme is similar to [SW92], but the processing times are considered to equal the setup
and the processing durations.

Theorem 4.3.34 (Lifting scheme). Let m ∈M one machine. The tasks (jc, kc), (jr, kr) ∈
OM

|m are index in such that dsejc,kc
+dprjc,kc

≤ dsejr,kr
dprjr,kr

if c < r holds. Then, the coe�cient
of xi,l,s can be lifted to α, if

s ∈
[
t+

l∑
c=l−c+2

dsejc,kc
+ dprjc,kc

+ δ + 1− dsei,l − dpri,l, t+
l∑

c=l−c+2

dsejc,kc
+ dprjc,kc

− 1
]
̸= ∅

for (i, l) ∈ OM
|m and s ∈ [T [Z .

Sousa and Wolsey provide the proof in case of the transformed processing times. The
validity when considering setup times follows directly by considering the combined pro-
cessing duration d̂prj,k for each (j, k) ∈ OM

|m .

4.3.3 Valid Constraints From Linear Ordering

This section considers the linear ordering subproblem of scheduling formulations. As de-
scribed in Section 3.2.4, the linear ordering formulation coupled with the time-indexed
variables needs many coupling precedence constraints. Moreover, ordering tasks on a sin-
gle machine is not a dual-bound driving aspect of the solution process. Therefore, only
violated constraints should be considered when solving the LP-relaxations.

We present valid inequalities derived from the linear ordering problem formulation that
could improve the problem description. The idea is to take two distinct tasks (j, k), (i, l) ∈

98

OM
|m and to combine the associated constraints

t−d
pr

j,k
−dsei,l∑

q=0

xj,k,q −
t∑

q=0

xi,l,q ≥ (pi,lj,k − 1) ∀ t ∈ [T [Z (4.56)

and

pi,lj,k + pj,ki,l ≥ 1 (4.57)

pi,lj,k + pj,ki,l ≤ 1 (4.58)

to eliminate the pi,lj,k variables. Reordering the constraints leads to the following description
for pi,lj,k:

1 +

t−d
pr

j,k
−dsei,l∑

q=0

xj,k,q −
t∑

q=0

xi,l,q ≥ pi,lj,k ∀ t ∈ [T [Z

Let (j, k), (i, l) ∈ OM
|m , (j, k) ̸= (i, l), two distinct tasks one machine m ∈M .

Substituting the expression in (4.56) with periods t, t2 ∈ [T [Z , in (4.57) leads to the
following expression:

t−d
pr

j,k
−dsei,l∑

q=0

xj,k,q −
t∑

q=0

xi,l,q +

t2−d
pr

i,l
−dsej,k∑

q=0

xi,l,q −
t2∑

q=0

xj,k,q ≥ −1 .

Scaling the inequality by −1 and rearranging the sums leads to

t2∑
q=0

xj,k,q −
t−d

pr

j,k
−dsei,l∑

q=0

xj,k,q +

t∑
q=0

xi,l,q −
t2−d

pr

i,l
−dsej,k∑

q=0

xi,l,q ≤ 1 .

Since the problem formulation already includes the constraints∑
t∈[T [Z

xj,k,t = 1

and
∑

t∈[T [Z

xi,l,t = 1

we only create new constraints if t2 > t−dprj,k−d
se
i,l and t > t2−dpri,l−d

se
j,k hold simultaneously.

Then, the constraints, derived from the linear ordering subproblem, can be formulated
for (j, k), (i, l) ∈ OM

|m , m ∈M and particular choices t, t2 ∈ [T [Z by

t2∑
q=t−d

pr

j,k
−dse

i,l
+1

xj,k,q +

t∑
q=t2−d

pr

i,l
−dse

j,k
+1

xi,l,q ≤ 1. (4.59)

In the case of t2 = t− dprj,k − d
se
i,l + 1 ∈ [T [Z , we get the constraints

xj,k,t2 +

t2+d
pr

j,k
+dsei,l−1∑

q=t2−d
pr

i,l
−dse

j,k
+1

xi,l,q ≤ 1. (4.60)

These constraints describe the arising con�icts of a processing start of task (j, k) in period
t2 and the allowed processing starts of task (i, l).

Proposition 4.3.35. Let m ∈ M and (j, k), (i, l) ∈ OM
|m , (j, k) ̸= (i, l). For the periods

t, t2 ∈ [T [Z , the constraints

t2∑
q=t−d

pr

j,k
−dse

i,l
+1

xj,k,q +

t∑
q=t2−d

pr

i,l
−dse

j,k
+1

xi,l,q ≤ 1.

is valid for PB.

In general, Constraint (4.59) can be extended by further tasks and breaks, for example,
breaks covering all used processing starts.

Some experiments indicate that the constraints (4.59) are not su�ciently e�ective in
driving the dual bound in a signi�cant manner. This is additionally supported by the
fact that the optimal execution order does not lead to integer solutions in general, see
Section 4.2.6. We only put the constraints (4.60) into the con�ict graph.

99

Proposition 4.3.36. Let m ∈ M and (j, k), (i, l) ∈ OM
|m , (j, k) ̸= (i, l). The con�icts

(3.10b) and (4.60) are su�cient to represent the inequalities (4.59) in the con�ict graph.

By usage of constraint (3.10b) and constraints (4.60), the con�ict described by (4.59)
can be formulated.

4.4 Column Generation

A well-known approach in integer linear programming is to treat a subset of variables
implicitly if the number of variables is too large [BJN+98]. This approach, called column
generation, solves the linear programming relaxation at the branch-and-bound nodes by
generating the columns only at the moment when they need to enter the LP. As mentioned,
the sets of breaks Bm, for each m ∈ M , become large but do not grow exponentially.
Nevertheless, in a near-optimal integer feasible solution, the number of used breaks would
not exceed the number of tasks by much since one will not use two consecutive breaks
between two processings in case of meaningful energy prices. Thus, a large subset of all
breaks will not used in near-optimal integer feasible solutions, and the generation and
usage within the model would be unnecessary.

This section is organized as follows: �rst, the pricing problem structure for break
variables is introduced. Next, a straightforward pricing algorithm is introduced. The pre-
sentation of an e�cient pricing algorithm is followed by the analysis of the trivial algorithm.
In the case of this algorithm, the consideration of the propagation and presolving rules will
be discussed. In addition, the consideration of di�erent cutting planes is described.

As for every m ∈ M , Bm is large, and many breaks are not applicable. Thus, we
use a branch-and-price approach [BJN+98] to solve our model. A huge number of break
variables is redundant. Additionally, many variables cannot participate in any feasible in-
teger solution because using the break variable con�icts with the required task processing
on the same machine. To overcome the problem of generating and including redundant
variables, we generate these variables only if they can be useful and if they can improve
the LP solution. We present a condition to recognize the useful break variables from the
not-applicable ones. To generate a break variable with negative reduced costs that can
improve the LP solution, we present a node-weighted shortest-problem, which can be ex-
tended to a hop-constraint node-weighted shortest-path problem.

Starting with a restricted master problem (RMP) using only a subset B̂m ⊆ Bm of all
break variables for each machine m ∈M . Then, we iteratively (re-)solve the RMP and add
missing variables zrd,rum,t0,t1

with (t0, t1) ∈ Bm \ B̂m with negative reduced costs when solving
the LP-relaxation of (3.10a)�(3.10i). We choose B̂m := {(−drdm , drum), (T −drdm , T +drum)} for
the initial set of break variables, as this guarantees the feasibility of the restricted model
if there exists any feasible solution for the given instance. Those breaks correspond to the
break variables implying the earliest ramp-up and the latest ramp-down. In the case of the
root LP, if no feasible solution exists, including the initial branching variables, then there
cannot be any feasible solution. For an LP at a node within the branch-and-bound tree,
branching decisions may result in infeasible LPs, which can be resolved using Farkas pricing.

The pricing problem for the break variables zrd,rum,t0,t1
, (t0, t1) ∈ Bm, can be formulated

and solved as a node-weighted shortest-path problem in the time-expanded machine state
network for each machine m ∈ M individually. Thereby, the underlying graph is acyclic.
For each tuple (s, t), s ∈ {o�, ru, rd} and t ∈ Tm

B , we introduce a node (s, t). Additionally,
there is a an arc between the nodes (s1, t1), (s2, t2) if and only if one can switch from state
s1 to s2 in exactly t2 − t1 periods. We also add arti�cial start- and end-nodes connected
to the ramp-down and ramp-up-nodes as illustrated in Figure 4.23 (with an additional
row to describe the period of the columns). We denote the graph of a given instance as
Gm = (V,A) with V = {(s, t) | s ∈ S and t ∈ TB}. The set of arcs A is described above.

Visiting the node (s, t) describes that the machine must be in state s within a certain
period of time: either one period, if s = o� holds, or the number of ramping periods of
the speci�c ramping state. This means that the dual variables of the relevant inequalities
of the periods and the associated energy prices and energy consumption must be summed
up.

Combining the dual variables πm,t of constraints (3.10e), (3.10f) and (3.10d) to node

100

−drdm −drdm+1 0 T−1 T TB−1 TB

start

rd rd rd rd rd

ru ru ru ru ru

o� o� o� o� o�

end

Figure 4.23: Time-expanded machine state network used in pricing problem.

weights ℓ as follows

ℓstart = ℓend = 0,

ℓ(o�,t) = −πm,t ∀ t ∈ TB

and

ℓ(s,t) =

t+dsm−1∑
q=t

(CqD
s
m − πm,q) for s ∈ {ru, rd},

leads to the following statement about a path from start to end in this graph. To recap,
the energy costs Ct for t ∈ TB \ [T] are zero. Any path

start− (rd, t0)− (o�, t1)− · · · − (o�, tn−1)− (ru, tn)− end

from start to an end -node describes a break variable, representing a feasible ramp-down,
n− 1 times of o�ine periods and a ramping up.
The proposed break variable on machine m ∈M denotes the following states:

� the ramping-down starts in period t0 and ends in period t1 − 1
� the machine is in state o� from period t1 to period tn−1

� the machine starts a ramping-up in period tn
� the machine can be in a setup, processing, standby-state, or using another break
variable in period tn + drum .

By this argumentation, any path from start to any end node describes a possible break
variable describing a reasonable ramping on the machine.

4.4.1 Solving the Pricing Problem With a Shortest Path Al-
gorithm

The theory of shortest-path problems and their variations o�er a large set of possible
algorithms. We only need to devise an acyclic shortest path algorithm, described by
Algorithm 5: The runtime of the proposed Algorithm 5 is O(|V |+ |Tm

B | · |A|) = O(|Tm
B |2)

since each node is watched exactly one time and each and the distance update of each
node is done at most Bp

m times. One crucial aspect in Algorithm 5 is the existence of the

101

Algorithm 5 Acyclic shortest path with node weights

procedure ShortestPath(m,D = (V,A))
distv =∞ ∀ v ∈ V \ {start} ,
set precv = −1 ∀ v ∈ V \ {start} and diststart,0 = 0
create topological {v1, . . . , v|V |} order of all vertices
for (s1, t1) = v ∈ {v1, . . . , v|V |} do

for ((s1, t1), (s2, t2)) ∈ δ+(v) do
if dist(s1,t1) + ℓ(s,t) < dist(s2,t2) then

dist(s2,t2) = dist(s1,t1) + ℓ(s2,t2)
prec(s2,t2) = (s1, t1)

end if

end for

end for

Reconstruct the shortest path p
return p, distend

end procedure

topological order of the vertices. This order is given by

v1 = start

v2 = (rd,−drdm)

v3 = (rd,−drdm + 1)

...

v|V |−1 = (ru, T)

v|V | = end.

This leads to a topological order because the predecessors of each node have smaller keys,
and the process starts with the node with the smallest key.
Algorithm 5 computes a break with the smallest reduced costs. Since the presented graph
Gm is acyclic, the algorithm always converges with a single break corresponding to a path.

4.4.2 A Hop-Constrained Shortest Path Problem

In Section 4.1, di�erent techniques to detect redundant and non-usable breaks are pre-
sented. Considering these techniques within the pricing subproblem is a valid approach.
However, the eliminated variables can be generated again within the pricing algorithm, al-
though the propagation algorithm eliminates them. To overcome this problem, the pricing
algorithm needs to get the information on whether variables are eliminated. A globally
valid bound to the length of any break (t0, t1) ∈ Bm on machine m ∈M is given by

t1 − t0 ≤ T −
∑

(j,k)∈O|m

dprj,k + dsej,k.

This expression describes that the maximal length of a break variable cannot exceed the
remaining number of periods on machine m ∈ M if all tasks are processed directly one
after another. The validity of this bound was analyzed in 4.15. Within this subsection, we
want to present an algorithm considering these bounds. To consider the restriction on the
length of the breaks, we need to devise a hop constraint shortest path algorithm, which
computes a shortest path with a limited number of arcs. The transformation of the bound
on periods BP into a bound on hops BH on machine m can be done by

BP
m − drum − d|rdm + 2 + 1 + 1 = BH

m .

The bound considers one hop for ramping up and one hop for ramping down, one hop from
the start node, and one hop to the end node.

The presented hop constraint shortest path algorithm is an acyclic shortest path algo-
rithm within a hop expand network. The complexity of this algorithm is O(|Tm

B |3).
The Algorithm 6 computes the reduced costs of the breaks with the smallest reduced

costs, ending in period t1 with length l for all t1 ∈ [T [Z and l ∈ BH
m . The presolving condi-

tions for breaks are presented in Section 4.1. Algorithm 6 computes a list of possible breaks

102

Algorithm 6 Hop constrained acyclic shortest path with node weights

procedure ShortestPath (m,D = (V,A))
distv,l =∞ ∀ v ∈ V \ {start}, l ∈ TB ,
set precv,l = −1 ∀ v ∈ V \ {start}, l ∈ TB and diststart,0 = 0
create topological {v1, . . . , v|V |} order of all vertices v ∈ V
for (s1, t1) = v ∈ {v1, . . . , v|V |} do

for l, l + 1 ∈ [BH
m] do

for ((s1, t1), (s2, t2)) ∈ δ+(v) do
if dist(s1,t1),l + ℓ(s,t) < dist(s2,t2),l+1 then

dist(s2,t2),l+1 = dist(s1,t1),l + ℓ(s2,t2)
prec(s2,t2,l+1) = (s1, t1, l)

end if

end for

end for

end for

Compute minimum with a check of usefulness
▷ Evaluation of presolving conditions while computing the minimum

Rebuild the shortest path p
return p, distend

end procedure

with negative reduced costs. A second iteration through the list can identify breaks that
could be eliminated by applying the presolving conditions outlined in Section 4.1. How-
ever, many rules are too time-consuming, especially the bin-packing presolving technique
4.31g. Therefore, we present rules to simplify this presolving condition.

A break (t0, t1) is locally invalid, if there exists one task (j, k) ∈ OM
|m on machine

m ∈M , such that

min(fj,k − dsej,k + 1, t1)−max(aj,k + dprj,k − 1, t0) > fj,k − aj,k − (dprj,k + dsej,k).

This condition was already discussed in Section 4.1 in Theorem 4.13.
A similar condition can be derived for two distinct tasks (j, k), (i, l) ∈ OM

|m on machine
m ∈ M , which are coupled by a precedence constraint (j, k) → (i, l). This case leads to
the following intervals:

Iright = [aj,k + dprj,k + dsei,l + dpri,l − 1, . . . , fi,l − dsei,l + 1],

Ileft = [aj,k + dprj,k − 1, . . . , fi,l − dsei,l − dsej,k + dprj,k + 1].

If both intervals Ileft, Iright are covered by the break at hand, then we can conclude that
this break cannot be used in a locally feasible integer solution. This can be veri�ed as
follows. Let Iright ⊆ [t0, t1[Z with (t0, t1) ∈ Bm. Suppose a feasible integer solution uses
the break (t0, t1). Then, the tasks (j, k) and (i, l) cannot be processed directly one after
the other since t0 < aj1,k1 + dprj1,k1

+ dsej2,k2
+ dprj2,k2

− 1, and fi,l − dsei,l + 1 ≤ t1. Suppose
the break (t0, t1) can be placed between the tasks. Then, the processing and setup can be
�nished between aj1,k1 and t0. But the setup of task (j2, k2) cannot start in time to start
processing before period fj2,k2 , since t1+d

>
j2,k2

fj2,k2 +1 hold. Thus, the processing of both
tasks cannot be completed in each possible constellation. The check, whether a presolving
condition is satis�ed or not, is summarized by check of usefulness. The rejection of break
variables because of not passing the check of usefulness still leads to a description of all
feasible integer solutions since we only discard variables that never participate in a feasible
solution in the branch-and-bound subtree. The validity of this discarding procedure is
proven in Section 4.1.

The hop-constrained node-weighted shortest path problem can improve the LP relax-
ation since the description of all integer feasible solutions becomes tighter by reducing the
set of all possible break Bm to the subset of all useful break variables.

4.4.3 Fast Enumeration of All Break Variables

The pricing algorithm 6 has a runtime of O(|Tm
B |3). Therefore, a substructure of the breaks

is analyzed, and the substructure is exploited to speed-up the computation of the reduced
costs.

103

Remark 4.4.1. Let m ∈ M be one machine and (t0, t1), (t0, t1 + 1) ∈ Bm two distinct
breaks. Then, the objective coe�cient of (t0, t1 + 1) can be computed from the objective
coe�cient of (t0, t1) by the formula

d̂m,t0,t1+1 = d̂m,t0,t1 − Ct1−drum
Dru

m + Ct1D
ru
m .

The reduced costs of a break (t0, t0 + l) ∈ Bm can be computed by

redt0,l =

t+drdm−1∑
q=t

(
CqD

rd
m − πm,q

)
−

t+l−drum−1∑
q=t+drdm

πm,q +

t0+l−1∑
q=t+l−drum

(CqD
ru
m − πm,q) .

A path in the considered network using the arc (start, t0) can only vary the number of
o�ine periods.

The underlying network is an acyclic digraph, and the structure of the break variables
is always the same. This implies that initially, on machine m ∈ M , there are drdm periods
dedicated to ramping down, followed by an almost arbitrary number of o�ine periods, and
�nally, drum periods for ramping up. If we keep the start t0 of the break, we can only vary
the number of o�ine periods. The period t1 of the end of the ramping-up results by the
number of o�ine periods and the start of the break variable.

Using the idea of Observation 4.4.1 leads to the following update formula for the reduced
costs:

redt0,l+1 = redt0,l −
(
Ct0+lD

ru
m − πm,t+l−drum

)
− πm,t+l+1 + (CqD

ru
m − πm,t+l+1)

= redt0,l − Ct0+lD
ru
m + (CqD

ru
m − πm,t+l+1) . (4.61)

The update formula (4.61) describes that the reduced costs of a break with length l,
ending in period t1−1, can be computed from the reduced costs of the break variable with
length l − 1, ending in period t − 1, by changing the costs to be the costs of an o�ine
period and adding the costs of a ramp-up period. This computation has to be done for
ever t ∈ TB and every l ∈ TB with t ≥ l ≥ drdm + drdm .

The update formula requires initial computation of the O(|Tm
B |) many reduced costs

for the breaks each break (t0, t0 + drdm + drum) ∈ Bm. Afterward, the update formulation
can be used to compute the remaining breaks. Thus, the algorithm equals a brute-force
enumeration of all breaks. However, the update formula leads to a speed-up compared to
the Algorithm 6. The e�cient enumeration algorithm requires |Tm

B | · |Tm
B | many operations

to compute the initial set of reduced costs. Then, the |Tm
B | many initial reduced costs are

extended within 2 · |Tm
B | steps. Thus, the e�cient brute force enumeration algorithm

requires O(|Tm
B |2) many operations.

Variants of Iterating Over the Machines

Solving the restricted master problem requires several LP iterations of solving the master
problem and the subproblems iteratively until no more variables with negative reduced
costs are found. Instead of iterating over the machines by taking the machine subproblem
in the order as the machines are stored in the list M , we propose sorting the subproblems
in order of the sum of the negative reduced costs. This leads to the following statement:
the subproblem with a high probability of returning a break variable with negative reduced
costs is solved before the subproblem with a low probability. Other rules are to solve the
machines in a given order and sort the subproblems according to the number of priced
variables.

GUB Cover Constraints and Pricing

Separated GUB cover constraints (4.53) can be considered within the pricing problem.
There could exist a GUB cover constraint for each task (j, k) ∈ OM

|m and l, u ∈ Tm
B .

Denote βm,(j,k),l,u the dual coe�cient of constraint (4.53) for (j, k) ∈ OM
|m and l, u ∈

Tm
B . Then, the reduced costs of the break variable zrd,rum,t0,t1

are determined by

t+drdm−1∑
q=t

(
CqD

rd
m − πm,q

)
−

t+l−drum−1∑
q=t+drdm

πm,q +

t0+l−1∑
q=t+l−drum

(CqD
ru
m − πm,q)

+
∑

(j,k)∈OM
|m

∑
l,u∈[T [Z : t0≤l≤u≤t1

βm,(j,k),l,u.

104

The dual coe�cients of (4.53) need only be considered within the computation of the
reduced costs of break (t0, t1) ∈ Bm, if t0 ≤< u ≤ t1 holds. The term∑

(j,k)∈OM
|m

∑
l,u∈[T [Z : t0≤l≤u≤t1

βm,(j,k),l,u

depends on the start and the length of the break variable. The sum of the dual coe�cients
must be computed for each possible break afterward. The dual coe�cients cannot be
considered in our time-expanded network representation, since these reduced costs of a
certain constraint (4.53) is only relevant for a certain number of paths (breaks) within the
time-expanded network.

The enumerative approach can consider this reduced cost. Within the reduced cost
update step within the algorithm, the starting period t0 and the length of the break are
known. Thus, all constraints are known, where the break (t0, t0 + l) participates. Also,
if the break (t0, t1) participates in the GUB cover constraint of task (j, k) ∈ OM

|m and
l, u ∈ Tm

B , then also the break (t0, t1 + 1) participates in the same GUB cover constraint.
Thus, the enumerative approach can also extend the reduced costs iteratively with the dual
coe�cients of the GUB cover constraints. The detailed consideration of these constraints
within a branch-and-price approach leads to many challenges when it comes to the e�cient
handling of cutting planes and the management of separated inequalities. The implemen-
tation of the necessary data structures would be complex. Therefore, we are satis�ed at
this point with the indication of the possibility of implementation.

4.5 Primal algorithms and Heuristics

When solving MILPs by branch-and-bound, heuristics are crucial. Initial primal solutions
improve the solving process in many ways. Solutions derived by heuristics are used to prune
branches of the branch-and-bound tree where no improving feasible solutions are located.
Therefore, near-optimal solutions are preferred in the early stages of the branch-and-bound
process.

Further techniques, for example, cutting planes and propagation schemes, bene�t from
near-optimal primal bounds. These techniques could use the bound to derive valid con-
straints, consider the objective value, or �x variables that cannot obtain other values than
in the optimal solution. An example is the reduced costs �xing technique presented in
[BS15].

This section introduces the implemented heuristics for generating feasible primal solu-
tions for the job-shop scheduling problem with �exible energy prices and time windows.

4.5.1 Heuristics in MILP-Solvers

Commercial MILP solvers are mostly used as black-box solvers. Di�erent combinatorial
algorithms are implemented within these solvers: algorithms to detect disconnected sub-
problems and special problem structures and inequalities. Nevertheless, black-box solvers
need to be able to solve problems of realistic sizes. In addition, expensive heuristics,
exploiting speci�c problem structures, are typically not implemented or used very often.
Therefore, commercial solvers must provide heuristics applicable to many problems, and
we have to add the problem-speci�c algorithms ourselves.

This section describes the implemented heuristics. Most of the considered heuristics
are variants of classical scheduling heuristics.

4.5.2 List Scheduling

List scheduling algorithms are Greedy-algorithms and are mentioned, for example, in the
books [Pin08, WS11]. A list scheduling algorithm schedules the tasks in a prede�ned exe-
cution order onto the machines as early as possible. The de�nition of the execution order
of the tasks can vary, but in the end, the tasks need to be within an ordered list. The
di�erent ordering rules lead to di�erent approximation ratios for minimizing the makespan.
Since we consider a job-shop scheduling problem, each task must be processed by a prede-
�ned machine. The remaining �exibility is given in the period of the processing starts. In
contrast to examples where the list scheduling heuristic provides an approximation ratio,
we must consider precedence constraints and time windows.

The Algorithm 7 is a forward list scheduling algorithm that also considers the prece-
dence constraints of the job sequences, the machine assignment and the time windows of

105

the tasks. This algorithm is called �forward list scheduling� since the scheduling process
starts at the beginning of the time window and ends at the end of the time window and
goes forward in the processing times in time. The list scheduling algorithm starts with an

Algorithm 7 List scheduling for JSS

procedure List Scheduling heuristic(Instance I, Lists (Lm)m∈M)
F = {}
tm = drum ∀ m ∈M
while F ̸= O do

computes a set of processable tasks R.
if R = ∅ then

return infeasible
end if

for (j, k) ∈ R do

if (k = 0) then
SJ(j, k) = max{tm + dsej,k, aj,k}

else

SJ(j, k) = max{tm + dprj,k, aj,k,SJ(j, k − 1) + dprj,k−1}
end if

tm = SJ(j, k) + dprj,k
R← R \ {(j, k}

end for

end while

return compute the corresponding SM and return (SJ ,SM)
end procedure

empty set F , containing all tasks, which are already processed. Also, initially, the next
valid processing start of each machine is set to equal the ramping duration. Until the set
of �nished tasks equals the set of all operations O, the list scheduling tries to schedule the
tasks on the assigned machines. To that end, the set R of processable tasks is computed.
The set R contains all tasks (j, k), whose predecessors have all already been processed or
which have no predecessors. Then, each task in the set of processable tasks is scheduled
as early as possible, but after each of its successors. The mapping SJ describes the corre-
sponding processing starts of the tasks. The algorithm cannot compute a feasible solution
if the set R is empty. The corresponding machine states are computed afterward. The
respective algorithm is mentioned in Section 2.6.9.

The complex part of this algorithm is the computation of the set of processable tasks.
The computation of R requires to consider the execution order, the precedence constraints,
and the time windows. Note that only one task per job sequence can be processable per
iteration.
Since the energy prices of the job-shop scheduling problem are time-dependent, the optimal
schedule can be located within the start, middle, and end or spread within the complete
time window. Thus, the list scheduling heuristic, scheduling the tasks as early as possible,
could provide rather expensive feasible solutions. To work around the problem of scheduling
the tasks as early as possible, we provide a backward list scheduling, which can also detect
feasible solutions by scheduling the tasks as late as possible. The backward list scheduling
heuristics is similar to the list scheduling heuristic. The di�erence is that the tasks are
processed in reverse order, and the assignment of the processing starts at the end of the time
window. List scheduling algorithms bene�t from di�erent sets of processable tasks. The
sorting of the tasks on the machines mainly in�uences the processable tasks. Therefore,
di�erent sorting comparators may compute di�erent solutions at the same branch-and-
bound node. We use the following ordering of the tasks:

� Earliest release date �rst: Schedule those tasks �rst which are ready �rst. The tasks
(j, k), (i, l) ∈ OM

|m on machine m ∈M are ordered by

aj,k < ai,l ⇒ (j, k) ≺ERF (i, l).

� Earliest last processing starts �rst: Prioritize those tasks �rst that need to be com-
pleted earliest. The tasks (j, k), (i, l) ∈ OM

|m on machine m ∈M are ordered by

fj,k < fi,l ⇒ (j, k) ≺EDF (i, l).

106

Algorithm 8 Backward list scheduling for JSS

procedure Backward List Scheduling heuristic(Instance I, Lists
(Lm)m∈M)

F = {}
tm = T − drdm ∀ m ∈M
while F ̸= O do

computes a set of processable tasks R.
if R = ∅ then

return infeasible
end if

for (j, k) ∈ R do

if (k = Oj − 1) then
SJ(j, k) = min{tm − dprj,k, fj,k − 1}

else

SJ(j, k) = min{tm − dprj,k, fj,k − 1,SJ(j, k + 1)− dprj,k}
end if

tm = SJ(j, k)− dsej,k
R← R \ {(j, k}

end for

end while

return compute the corresponding SM and return (SJ ,SM)
end procedure

� Proposed precedence order of LP-relaxation: try to generate an execution order of
the tasks from the fractional solution. The tasks (j, k), (i, l) ∈ OM

|m on machine
m ∈M are ordered by

argmin{t ∈ [T [Z |
t∑

q=0

xj,k,q > 0.5} < argmin{t ∈ [T [Z |
t∑

q=0

xi,l,q > 0.5}

⇒ (j, k) ≺LP (i, l).

The list scheduling is e�ective if the computation of set R is fast. Since the presented
orderings are computable with little e�ort, we use all of the presented orderings to compute
di�erent solutions.

4.5.3 Biased Random-Key Genetic Algorithm

Genetic algorithms [GR11, SOMGSOM14, CGT96] and deep-learning approaches [KFH22]
have become more and more successful in computing primal solutions to scheduling prob-
lems. Since, in the case of the job-shop scheduling problem with �exible energy prices and
time windows, the list scheduling heuristics su�er from the �xed execution order of the
tasks and possible wrong processing starts, further algorithmic approaches are needed. The
idea is to evaluate multiple execution orders and processing starts and take the best one.
This idea can be realized by a genetic algorithm. A genetic algorithm is a metaheuristic.
These heuristics describe guided search processes exploring the solution space by sampling
a subset of primal solutions and keeping the best one.

Within biological evolution, �tter individuals are more likely to pass their genes to
further generations than more un�t individuals. The genetic algorithms re�ect biological
evolution. An individual's �tness is represented by the inverse of the objective value and
possible additional penalty terms. Thus, the optimum solution would reproduce its genes
as much as possible. An individual is called a chromosome within the context of genetic
algorithms. A chromosome can be represented by a binary string, which is similar to the
encoding of DNA. Another way of representing a chromosome is the usage of a real-valued
vector d ∈ Rn. The set of chromosomes is called a population. The chromosomes of a
population are mixed and merged over a �xed number of iterations, called generations.
Two chromosomes, called parents, are mixed and merged such that a new chromosome
originates. The set of parents is chosen by building up pairs of parents according to the
size of the current population. Also, for the selection of the parents, there are multiple
rules to follow, for example, the tournament selection, where each parent is the �ttest one
out of k randomly chosen individuals.

107

In each generation, the chromosomes of �tter individuals are passed to the next gener-
ation. As in the biological counterpart, the chromosomes are passed to the next generation
after the functions mutation and crossover are passed.

The function crossover combines two chromosomes and creates a new one. The crossover
allows a large degree of freedom. Possible functions are the following ones.

De�nition 4.5.1. Given two chromosomes A = (a1, . . . , an) ∈ Rn and B = (b1, . . . , bn) ∈
Rn with n ∈ N. The following rules are crossover functions.

� Single-point crossover: A×B = (a1, . . . , aj−1, bj , bj+1, . . . bn) with a randomly chosen
j ∈ {1, . . . , n}.

� Two-point crossover: A × B = (a1, . . . , aj−1, bj , . . . , bk−1, ak, ak+1, . . . , an). with
j < k and j, k ∈ {1, . . . , n}.

� Uniform crossover: A×B = (a1, b2, a3, . . . , an−1, bn).
� Interpolation crossover: A×B =

∑n
i=1 λai + (1− λ)bi with λ ∈ [0, 1].

The generation of new chromosomes by crossover can lead to the problem that special
traits of individuals cannot be reached if they are not present within the initial population.
The mutation step allows the generating of new traits within the algorithm. Within a
binary-valued chromosome, the mutation leads to the �ip of the trait. One can use bitwise
�ips in applications where the chromosomes are real-valued.

We are using the implementation of a genetic algorithm of Rodrigo F. Toso and Mauri-
cio C.F. Resende [TR15]. The implementation includes a �xed chromosome encoding,
introducing new chromosomes called mutants instead of the mutation operator. The au-
thors introduce the parameters pe, pm and p0 with pe + pm + p0 = n, where n is the
number of individuals. The �ttest pe elite individuals will also be part of the next gen-
eration. There are pm new mutant individuals part of the population, meaning that pm
mutant individuals will leave the population, and parents will generate p0 o�spring individ-
uals. Introducing mutants and elitism changes the classical genetic algorithm and allows
exploring more than the initial combinations of solutions.

In the case of the job-shop scheduling problem with �exible energy prices and time
windows, we use the following encoding of the chromosomes.

� The time period encoding: let C = (c1, . . . , c|O|) be a chromosome and f : O →
{1, . . . , |O|} a bijective mapping of the tasks to the indices of the chromosome. Then
the chromosome C represents the solution as follows:

xj,k,t = 1 for t = ⌊aj,kcf(j,k) + (1− cf(j,k))fj,k⌋ ∀ (j, k) ∈ O.

The chromosome thus directly describes the processing starts of each task, which
also could be invalid. This approach computes a processing start for each task
(j, k) ∈ O. There is no consideration of the workload constraints of the machine
and the precedence constraints. Therefore, two reasons for infeasibility need to be
weighed against each other within the penalty function.

� The time window encoding. Let C = (c1, . . . , c|O|) be a chromosome and f : O →
{1, . . . , |O|} a bijective mapping of the tasks to the indices of the chromosome. Then,
the time window of each task (j, k) ∈ O is adjusted as follows:

ˆaj,k = ⌊aj,kcf(j,k) + (1− cf(j,k))fj,k⌋ ∀ (j, k) ∈ O.

Using those adapted time windows [ˆstartsinglejk, fj,k[Z , a list scheduling heuristic
using the earliest release date rule tries to compute a feasible schedule. The number
of tasks not scheduled within the time window is considered within the penalty
function. Thus, the chromosome always satis�es the constraints (3.10c) and (3.10d).
After that, a list scheduling heuristic is used to compute a feasible solution. The list
scheduling heuristic ensures the precedence constraints and the machines' workload
constraints. Therefore, this approach seems more e�cient in decoding the chromo-
somes into feasible solutions. This approach can be seen as a neighborhood search,
where one searches for a solution, satisfying the workload and the precedence con-
straints near the proposed processing starts.

If the chromosomes are decoded into processing starts of the tasks, the objective value of
the corresponding solution with ramping and standby can be computed by the shortest
path algorithm. Moreover, if the solution of the tasks leads to an invalid schedule, we need
to add a penalty term to declare this chromosome un�t.

108

Let x describe the solution of the list scheduling heuristic with possible non-scheduled
tasks. Then, the penalty term of the objective is chosen by

Penalty =
∑

(j,k)∈O

(1−
∑

t∈[aj,k,fj,k[Z

xj,k,t) · max
t∈[aj,k,fj,k[Z

(ĉj,k,t)

+
∑
m∈M

(
∑

t∈[T [Z :Pt>0

Dst
m · Pt + d̂m,−drdm,drum

+ d̂m,T−drdm,T+drum
).

The chromosome encoding and evaluation have to consider di�erent infeasibilities. There
may be some tasks that are not assigned to a processing start within the list scheduling. To
penalize this chromosome, each missing processing start is penalized as much as possible
by the term ∑

(j,k)∈O

(1−
∑

t∈[aj,k,fj,k[Z

xj,k,t) · max
t∈[aj,k,fj,k[Z

(ĉj,k,t).

Since some tasks are not processed, the machine can exploit the fact and use more favorable
periods for ramping. Thus, the missing machine state assignments and the corresponding
objective costs are penalized by the term∑

t∈[T [Z

Dst
m · |Pt|+ |d̂m,−drdm,drum

|+ |d̂m,T−drdm,T+drum
|).

This penalty term is only added to the objective value of the computed solution if a task is
not scheduled. Otherwise, the solution is feasible, and the objective describes the �tness of
the chromosome. To also handle negative energy prices, the absolute value is considered.
Within the implementation of the algorithm and the penalty term, the objective 'always
zero' was not considered. The penalty function is not considered to penalize the reason
for the infeasibility. Moreover, we decided to penalize the chromosome by the costs of
non-scheduled tasks because the combination of the time windows led to this infeasibility.

An additional variant is to consider chromosomes having an entry for each triple (j, k, t)
with (j, k) ∈ O and t ∈ [T [Z . Then, in the case of real-world applications, the size of the
population will be too large to evaluate the objective of each individual since one needs
|O × [T [Z | many chromosomes within the implementation of [TR15].

4.5.4 Dynamic Programming

Dynamic programming is a well-known algorithmic technique mostly designed to solve op-
timization problems. Like divide and conquer, the dynamic programming approach solves
a problem by dividing it into smaller subproblems. The di�erence between the algorithms
is that divide and conquer creates disjoint subproblems, while the dynamic programming
approach creates subproblems, which could have sub-subproblems in common with further
subproblems. The advantage of this approach is that the information on the solution of the
sub-subproblem can be computed and saved. Then, the information is present for further
computations.

Dynamic programming applies to problems with the optimal substructure and over-
lapping subproblems. This property is often called Bellman property [Bel57]. A problem
has the optimal substructure if an optimal primal solution can be built from the solutions
of its subproblems.

The di�erence between dynamic programming and enumerating the (exponentially)
many potential solutions is that dynamic programming stores the subproblem solutions
and need not compute them again. Moreover, the solution of the subproblem is used to
compute the solution of the larger problem.

There are di�erent ways to implement a dynamic program:

1. The top-down way: one starts with the original problem and recurses down to sub-
problems. If the solution of the subproblem is known, then the solution is used to
compute the solution of the larger problem. If the subproblem is not solved yet, the
subproblem is solved, and the result is stored for future use.

2. The bottom-up approach: The algorithm starts by solving the subproblems. It uses
the solutions of the subproblems to build solutions of subproblems of a higher level
until the original problem is solved.

The solution process creates a solution for the global problem by using the information
of the solution of a subproblem in a recursive way. The main characteristics of a dynamic
programming approach are described as the following three characteristics:

109

1. Stages: A dynamic program is structured into multiple stages. The stages are solved
sequentially, and each stage is an optimization problem itself.

2. States: The states re�ect the information required to assess the current decision's
consequences upon future actions fully. The state conveys enough information to
make future decisions without regard to how the problem reached the current state.
The choice of the states is a decision in algorithm design, and a good choice is
crucial since the number of concerned subproblems can become huge and thus also
the number of di�erent state variables.

3. Recursive optimization: The usage of a recursive optimization procedure, which
builds to a solution of the complete problem by �rst solving the problems of the
single stages and sequentially collecting the information from one stage at a time
and solving an additional one-stage problem until the overall optimum has been
found.

To describe the dynamic programming approach formally, we introduce the return of
a stage n by fn(dn, sn). The parameter d ∈ Dn(sn) describes a permissible decision out of
the set of all valid decisions in state sn. The index n describes the remaining stages out
of the �nite maximum number of stages N ∈ N. The transition function returns the next
state such that, given sn, the state of the process with n stages to go, the subsequent state
of the process with (n− 1) stages to go is given by

sn−1 = t(dn, sn).

Job-Shop Scheduling by Dynamic Programming

We provide a dynamic programming approach to the job-shop scheduling problem with
�exible energy prices and time windows. Therefore, we assume a �xed execution order of
the tasks to reduce the number of solutions and sub-solutions by the dynamic program.
Since the execution order of the tasks is not �xed in general, we have to derive a total
order of the tasks by ourselves. Note that the derived total order mainly in�uences the
outcome and the resulting objective value.

De�nition 4.5.2 (Total order). The relation ≺TO describes a total order of all pairs of
distinct tasks (j, k), (i, l) ∈ O, if the digraph DTO = (V TO, ATO) with

V TO :={(j, k)|(j, k) ∈ O}

ATO :={((j, k), (i, l) | (j, k), (i, l) ∈ O, (j, k) ̸= (i, l), (j, k) ≺TO (i, l)}

is an acyclic digraph, whose underlying undirected graph G = (V TO, ETO) is connected.

The usage of a total order shrinks the number of possible solutions and possibly prevents
us from �nding the optimal solution caused by a misleading execution order.

The de�nition of a total order ≺TO on the set of tasks O lead to a chain of tasks
(j0, k0) ≺TO · · · ≺TO→ (jn−1, kn−1), where (ji, ki) ≺TO (jc, kc) for all i < c holds. Now,
we declare each of the classical dynamic programming parameters by the usage of our
job-shop scheduling notation. We assume, that |O| = n holds

� The parameter si is a i+ 1-dimensional vector describing the starting periods of all
tasks (jc, kc), 0 ≤ c ≤ i.

� The parameter Dj(si) ⊆ [aji,ki , fji,ki [Z is a subset of the valid processing starts of
task (jj , kj). The set Dj(si) does not equal the set of possible processing starts of
task (jj , kj) since some processing starts are possibly no longer allowed after some
iterations of the dynamic program.

� The parameter di describes the processing start of task (ji, ki) , 0 ≤ i < n− 1.
� The parameter costi describes the generated costs by starting the processing of the
tasks (jc, kc) 0 ≤ c ≤ i within the periods in si. The additional machine costs
between the tasks and the initial phase of the machine are also considered.

� The parameter Rd(i
m describes the last occupied period of machinem after scheduling

task (ji, ki) in period di.
� The mapping I : O → N ∪ {0,−1} returns the index of the predecessor of a task, if
any exists. Otherwise, the function returns the value −1.

� The mapping M(i) returns the associated machine of task (ji, ki) for 0 ≤ i ≤ n− 1.
� The parameter

besti :M × [T [iZ ×[T [Z → R
describes the local optimal costs for starting the processing of task (ji, ki) in Period
d(i). The computation of an initial ramping costs is included in the computation of
besti, if the task (jc, kc) is the �rst one on machine M(i).

110

� The parameter best_final(M(i), si)) describes the best objective costs for realizing
the �nal ramp-down if the tasks are �xed to start processing in the period si.

�

Using these parameters and auxiliary functions, we get the following procedure:

fi(di, si) :=

 min
di−1∈D(si−1)

(
fi−1(di−1, si−1) + besti(M(i), di−1, di)

)
+ ĉji,ki,d(i) i ≥ 1

besti(M(i), 0, di) + ĉji,ki,d(i) sonst

The function fi(di, si) is the recursive function. The function describes that the best
objective when scheduling task (ji, ki) can be computed from the best objective when
scheduling task (ji−1, ki−1). The assignment of a task (ji, ki) to a period di in the stages
n− i. The states of stage i are described by d(i), denoting processing starts of task (ji, ki).

To reduce the number of subproblems within the computation of

min

{
f(dn, sn) +

∑
m∈M

best_final(m, sn)

∣∣∣∣∣dn ∈ D(sn−1)

}
.

We can de�ne a so-called dominance criterion.

Theorem 4.5.3 (Dominance criterion). Let L be a total ordered list of all tasks O and l
and q two states of the same stage i, with objectives costq and costl. The state l need not
to be observed within the algorithm if

Rq
m ≤ Rl

m ∀ m ∈M

costl ≥ costq + best(m,Rq
m, on, R

l
m, on) with m = mj,k and (j, k) = (ji, ki).

Proof. Let q and l be to states of the same stage i with

Rq
m ≤ Rl

m ∀ m ∈M

costl ≥ costq + best(m,Rq
m, on, R

l
m, on) with m = mj,k and (j, k) = (ji, ki).

The solution provided by state q needs fewer periods on each machine to process the same
subset of tasks. Therefore, each possible con�guration that is feasible for state l is also
feasible for state q. Moreover, by adding standby and breaks, the parameters Rq

m and Rl
m

can be aligned for each m ∈ M and the alignment of the used periods on the machines
results in a higher objective of state l. Thus, aligning state q to state l leads to a cheaper
solution for processing the same tasks. Thus, the state l can be discarded since we can
recreate the same solution more cheaply.

Speed-up Techniques

The presented algorithms create O(T |O|) many (sub)solutions, neglecting the discarding of
subproblems. Di�erent techniques are necessary to reduce the number of possible solutions
and, thus, the number of necessary computations. Some approaches are brie�y discussed
in the following part.

In the context of the job-shop scheduling problem with �exible energy prices and time
windows, the time windows of the tasks can be discretized more coarsely. Instead of using
the allowed processing starts t ∈ [aj,k, fj,k[Z for each task (j, k) ∈ O, we could use the
coarsely time window {t | t = aj,k + l · ∆ | t ∈ [aj,k, fj,k[Z } and ∆ ∈ N. The optimal
solution could also be missed since we shrink the number of possible solutions.

A second speed-up technique uses an upper bound and an approximation for the ob-
jective value to decide whether a good or improving solution can still be found. Consider
the state l of stage q. Then, the resulting objective of state l can be approximated by

costl + approx(l)

where approx(l) provides a lower bound to the optimal objective value of scheduling the
remaining l tasks and ramping the machine down. A possible lower bound can be:

approx(l) =
∑
m∈M

min{d̂m,t0,t1 | (t0, t1) ∈ Bm, t1 = T + drum }+

|O|∑
v=l

min{ĉj,k,t | t ∈ [aj,k, fj,k[Z , (j, k) = I(v)}.

The value approx(l) can be computed initially. The upper bound could be the objective
of the incumbent primal solution or the current fractional solution plus 10 %.

111

4.5.5 Local Search Algorithms

The idea of local search is intuitive: the algorithm starts with a feasible solution, and it is
assumed that further solutions will be found by making small changes to this solution. If
there is an improving solution, this process will be reiterated with a new incumbent primal
solution until no more improvements are found. The idea of local search has been already
successfully applied in the �eld of scheduling, see, for example, [DT93, NS05, Yin04].

To describe a local search algorithm formally, some notions are required. The set of
feasible primal solutions is denoted by S. The objective function f : S → R maps the
solutions to their objective values. The mapping N : S → 2S , x 7→ N(x) de�nes the neigh-
borhoods of the solutions x ∈ S. The solution x ∈ S is called a local minimum concerning
the neighborhood N(x) if f(x) ≤ f(y) for all neighbors y ∈ N(x). The algorithm tries to
iteratively improve the current solution by exploring the neighborhood to �nd improving
solutions.

The quality of the solution of a local search algorithm depends on the initial solution
and the neighborhood. A large neighborhood o�ers improving solutions with a higher
possibility than small neighborhoods. However, exploring a large neighborhood may be
more time-consuming than exploring a small neighborhood.

There are so-called threshold algorithms, where a neighbor is also accepted as the new
incumbent if the objective gain (or loss) is below a certain threshold.

In our case, the neighborhood function and the solutions can be represented in di�erent
ways. We are given a schedule SJ : O → [T [Z . For (j, k) ∈ O, the mapping js(j, k)
describes the successor of (j, k), if it exists, in the schedule on the machine mj,k. The
parameter jp(j, k) describes the direct predecessor of task (j, k) if it exists within the
schedule S on the machine mj,k. Two tasks (j, k), (i, l) ∈ OM

|m are adjacent, if there is no
task (i3, l3) ∈ OM

|m , with Sj,k < Si3,l3 < Si,l or Si,l < Si3,l3 < Sj,k. The execution order

ΩS :=
{(

(j, k), (i, l)
)
∈ O ×O | (j, k) and (i, l) are adjacent

}
is de�ned as the set of pairs of adjacent tasks. The neighborhoods are de�ned on the
execution order ΩS of a schedule S.

A simple de�nition of the neighborhood of S can be de�ned by

NΩ(S) =
{
T ∈ S

∣∣∣|ΩS ∩ ΩT | ≤ 6
}
.

The value is 6 since there are three changes from deleting the old order of two tasks and
three changes to introduce the new order of the two tasks on the machine. All other
pairs are still valid. This neighborhood considers the execution order of the tasks on the
machines, and we call two schedules neighbors if the execution order of schedule SJ can be
transformed into the execution order of schedule T by interchanging the execution order
of at most one pair of tasks.

Another version of a neighborhood of SJ can be done by encoding the schedule S by
the corresponding solution of the time-indexed solution and set.

Nx(S) = {T ∈ S |
∑

(j,k)∈O

∥
∑

t∈[T [Z

xSj,k,t − xTj,k,t∥ ≤ 2}.

This neighborhood is allowed to change the processing start of one single task. There
is a more complex neighborhood, which is discussed within the overview article [VAL94]
by R.J.M. Vaessens and E.H.L. Aarts, J.K. Lenstra. In the following, we only consider
our implemented functions. The neighborhood NΩ is explored by choosing a neighboring
orientation. This orientation describes the execution order of the tasks and the neighboring
orientation di�ers in only two positions from the currently best orientation. Then, we
compute a schedule using the orientation of the tasks, for example, by list scheduling or
a dynamic program. The schedule, which is computed, is only one solution that can be
generated from the �xed processing order. The computed schedule need not be the best
one.

Then, neighborhood NΩ only contains the computable solutions of the neighborhood.
The complete enumeration of the neighborhood would be too large.

Thus, we consider only representatives for the solutions to an orientation. The cost
function computes the objective value of a solution f : S → R, and we take the risk that
we have chosen a representative with a (too) large objective. The local search algorithm
with threshold is described below. One can consider restarting the complete Algorithm 9
when �nding a new solution.

112

Algorithm 9 General threshold accepting local search

procedure General local search(Instance I, initial solution S)
repeat

Derive local information about variable bounds and start time windows.
for representative S′ ∈ N(S) do

if f(S′)− f(S) < threshold then
S ← S′

end if

end for

until maximum number of iterations is reached
end procedure

The variable bounds' local information must be computed initially to consider the
tasks' local time windows. This is because the local time windows of the tasks allow the
computation of di�erent solutions at each branch-and-bound node by list scheduling. This
is necessary since list scheduling needs local information about the time windows to change
the processing starts of the tasks.

Also, if the dynamic program is used as a heuristic, only a subset of the processing
starts is allowed. Thus, the dynamic program will also pro�t from the computation of the
tighter time window.

However, then the solution can only become a locally optimal solution.

Local Search by Dynamic Programming

Local search algorithms are useful tools in integer programming. However, the exploration
of the neighborhood's solutions may be ine�cient. The resulting subproblems are often also
MILPs and only slightly easier to solve. Suppose we are given a primal solution encoded
by processing starts for each task. We can check whether the solution could be improved
by shifting the processing start of a subset of tasks to the left or the right. Consider
the task (j, k) ∈ O. Then, all tasks (i, l) ∈ O \ {(j, k)} are assumed to be �xed to their
period of the incumbent solution. The best position of (j, k) in relation to the �xed task
(i, l) ∈ O \ {(j, k)} is computed by dynamic programming. Therefore, for a given primal
solution SJ , the idea is to allow an shift δ ∈ [T [Z , such that we search for an improving
solution in [solj,k − δ, solj,k + δ[Z for each (j, k) ∈ O.

The dynamic program is e�cient since only one task needs to be considered within the
computation. All further tasks are �xed. Thus, because of the domination criteria, one
need not compute the objective of the schedules from scratch. Thus, this approach is more
e�cient.

Algorithm 10 describes the local search algorithm with dynamic programming in pseudo-
code.

Algorithm 10 General threshold accepting local search

procedure LS by DP(solution SJ , neighborhood size δ)
for (j, k) ∈ O do

set [aj,k, fj,k[Z = [Sj,k − δ, Sj,k + δ[Z
set [ai,l, fi,l[Z = [Si,l, Si,l + 1[Z for each (i, l) ∈ O \ {(j, k)}.
Compute the best solution by DP using the derived time windows
if new incumbent then

Update incumbent solution
end if

end for

end procedure

The neighborhood search algorithm by dynamic programming is e�cient since only one
task is adjustable. The computation complexity of this neighborhood search algorithm is
O(T), and the algorithm can be extended to multiple tasks. However, this approach can
only succeed if the incumbent is not locally optimal for the �xed execution order.

113

4.5.6 Diving Heuristics

Diving heuristics can be seen as methods that extend a sub-solution by iteratively diving
into one single direction of the branch-and-bound tree. The diving heuristic is summa-
rized as the depth-�rst search walks through the branch-and-bound tree. In contrast, a
prede�ned variable �xing rule generates the branch-and-bound tree until a feasible primal
solution can be computed or the resulting problem is infeasible. After each �xation, the
resulting relaxation will be solved again.

There are many diving heuristics. One can imagine that each possible branching rule
can be applied as a depth-�rst search heuristic algorithm. However, these heuristics do
not consider and recognize the problem-speci�c aspects. The analysis of the problem's
complexity has shown that the computation of the processing starts is a hard problem. In
contrast, the computation of the corresponding machine states is possible in polynomial
time. Thus, the diving heuristic must focus on scheduling the tasks. We devised and
implemented a diving heuristic, which �xes the task variables to generate a near-optimal
solution. Our diving algorithm aims to �x the task variables and solve the relaxation
after each �xation. The Algorithm 11 shows the pseudocode of our implemented diving
heuristic: The algorithm iteratively �xes the task variable, with the largest fractional value

Algorithm 11 Iterative rounding on task variables

procedure Iterative rounding(fractional solution x)
repeat

compute (j∗, k∗, t∗) = argmax{xj,k,t | (j, k) ∈ O, t ∈ [T [Z , xj,k,t /∈
{0, 1}}.

�x xj∗,k∗,t∗ = 1
resolve resulting relaxation P
if relaxation is infeasible then

return

else

set x = x′

end if

until x is integral
compute SJ and the corresponding best SM . return (SJ ,SM).

end procedure

until the resulting problem is infeasible or a primal solution is computed.

Algorithm 12 Iterative rounding on task variables

procedure Iterative rounding(fractional solution x)
repeat

compute (j, k) = argmin{r(i, l)− l(i, l) | (i, l) ∈ O, r(i, l)− l(i, l) > 0}
compute t = ⌊

∑
q∈[aj,k,fj,k[Z

xj,k,q · t⌋
�x xj,k,t = 1
resolve resulting relaxation P
if relaxation is infeasible then

return

else

set x = x′

end if

until x is integral
compute SJ and the corresponding best SM . return (SJ ,SM).

end procedure

The second variant �xes the task (j, k), for which the processing start is nearly �xed.
Both diving heuristics focus on scheduling the tasks. The best corresponding objective
value is computed automatically.

There was a need to implement these diving algorithms since classical diving heuristics
do not distinguish task and break variables. Thus, classical diving heuristics could create
dives by �xing standby or break variables. Those algorithms would be misleading since

114

the integral solution is de�ned by the processing starts of the tasks, see Section 3.2.7. Our
implementation knows this property and only considers the task variables in diving.

Summarizing Comment

The implementation contains di�erent list scheduling heuristics, which take the fractional
solution and try to construct an integer solution from the information of the LP-relaxation.
Multiple approaches were presented to explore neighborhoods of incumbent solutions to
improve the solutions. These approaches are useful to provide a primal solution without
solving an ILP. The biased random key genetic algorithm is a metaheuristic that describes
a guided search process within the space of all schedules. A more expensive algorithm is
the dynamic programming approach requiring a total order of the tasks. But then, an
optimal solution regarding the �xed execution order can be computed. In combination
with the presented diving heuristics, multiple aspects are considered within the solution
process: deriving solutions from the execution order of the tasks and computing solutions
by iterative rounding based on the current fractional values. The variety of implemented
heuristics o�ers a large potential to compute near-optimal solutions fast. Combined with
the implemented MILP heuristic, the solution process can compute near-optimal solutions
early.

115

116

Chapter 5

Implementation and

Computational Experiments

This section introduces the details of the implemented algorithms and the di�erent e�ects
of our algorithms on solving statistics.

5.1 Implementation

The algorithms, presented in Section 4.1, 4.2, 4.3, 4.4 and 4.5 are implemented in C++
using the interfaces of SCIP 8.0.3 [BBC+22]. The LP-solver of Scip is Gurobi [GO22].
The algorithms use the implemented functions of Scip and further straightforward imple-
mentations without unconventional or parallel approaches and techniques. The devised
algorithms are presented by their pseudocode within this thesis. Within the heuristics,
the framework of Resende [GR11] is used to implement a genetic algorithm. However, the
algorithm is realized without unconventional implementations.

The problem formulation is generated using the problem data interface of Scip. The
problem formulation includes the knapsack constraints (3.19), (3.20), (3.20) and (4.2). The
precedence constraints (3.10c) are implemented using constraint handler. The constraint
handler separates violated precedence constraints and detects locally valid precedence re-
lations. The presolving and propagation rules are implemented using the propagator inter-
face of Scip. All mentioned presolving and propagation rules are implemented as described
within this thesis. The interfaces for branching rules are used to implement the assignment
constraint branching (4.43) and the branching on machine activity (4.40) and (4.39). The
con�icts (4.44) are added to the con�ict graph during presolving. The GUB cover con-
straints (4.53) and (4.55) are separated using the separator interface of Scip. The possible
inequalities are e�ciently enumerated and the violated ones are added to the cut pool of
Scip. The column generation approach is realized by using the pricer interface of Scip.
The e�cient enumeration scheme 4.4.1 of the break variables is implemented. Each of
the mentioned heuristics in 4.5 is implemented using the heuristic interface of Scip. The
frequency and the priority of the heuristics is documented in Appendix A.1.

5.2 Parameter Choices

The default Scip parameters are changed so that the default heuristics are deactivated ex-
cept for the simplerounding heuristic. Experiments have shown that those heuristics are
not as e�cient as this heuristic. The propagation of vbounds and probing is forbidden
since those techniques either do not increase the e�ciency of the solving process or are too
time-consuming. Within the presolving stage, the default presolving settings are used, and
Scip decides automatically when the presolving is aborted. When separating known valid
inequalities, most pre-implemented separators are deactivated since they are too time-
consuming and less e�cient. In that end, the frequency of calling the clique-separator
and the implied bound separator is set to 1 since these separators strongly in�uence
the solving process. However, separating valid inequalities is only triggered at nodes with
maxbounddist=0. The branching algorithm and the corresponding branching rules are
the implemented branching rules. The preferred branching rule is workload branching. We
compute the fractional interval by the highest fractional workload criteria (W). A weighted

117

mean of the fractional workload classically determines the branching period. The second
branching rule is the branching on assignment constraint. By default, the task to branch
on is selected by computing the product of activity and fractional spread. A weighted mean
determines the period. There will be no need to implement a third branching rule. The
precedence constraints (4.2) are used to implement the precedence relation of the tasks
within the model. Moreover, they are used to check the validity of computed solutions. To
strengthen the LP-relaxation, the classical precedence constraints (3.10c) are implemented
to be lazy-constraints. Therefore, the huge number of constraints does not a�ect the
solving process in the �rst place. Moreover, the detection and the separation of valid prece-
dence constraints (3.10c) is triggered at each node as much as necessary. Moreover, the
search for valid precedence constraints is triggered if no initial precedence constraints are
violated. The separation of the GUB covers constraints is also triggered at each node with
maxbounddist=0, and only a subset of the computed violated constraints is �ltered and
added by Scip to the problem. The implemented heuristics are not called at each node
within the branch-and-bound tree. The frequency of calling our diving heuristics is set
to freq = 4. However, the heuristic must be called if the local optimality gap is small
(e.g., 1e− 2) and the branch and multiple branches are already pruned. The computation
of the number of pruned branches is determined by the number of leaves divided by

the number of nodes < 0.8. The node selection of the branch-and-bound algorithm is
set to best �rst search to strengthen the dual bound and not to discover non-optimal
branches in the �rst place. The settings of the column generation algorithm require to be
completely di�erent since most propagation and presolving rules, as well as cutting planes
are not valid anymore since they need to be considered within the pricing algorithm. Thus,
in the case of column generation, all cutting planes by Scip as well as the presolving by
Scip are disabled. In addition, the dual reductions are forbidden. In the experimental
results, the attached default settings Appendix A.1 are always used, and it is mentioned
in the captions whether a setting has been changed, for example, the branching rule.

5.3 Generation of Test Instances

The test instances are based on the benchmarks of Lawrence [Law84]. The job sequences
and the task-to-machine assignment are copied. The instances of Lawrence only include
processing times. Let p ∈ N be the processing duration of task (j, k) of an instance of
Lawrence. Lawrence's processing times are divided into setup and processing times in a
ratio of 1 to 2. Since large time windows impact the solution times, we divide the resulting
processing times by 10 and rounding up the resulting value. Then, the setup and the
processing duration are computed by

dsej,k =
1

30
p and dprj,k =

2

30
p.

The ramping durations are set to equal the mean of the processing and setup durations
on the corresponding machine. The energy demand of the di�erent machine states is
randomized as follows:

Dru
m = rand(1, 20) (5.1)

Drd
m = rand(1, 20) (5.2)

Do�
m = 0 (5.3)

Dpr
m = rand(5, 20) (5.4)

Dse
m = rand(2,

Dpr
m

2
+ 1) (5.5)

Dst
m = rand(1,max(Dpr

m , 2)). (5.6)

The operator rand(x, y) returns a random integer in the set {x, . . . , y}. The numbers are
uniformly distributed.

The objectives of the instances are di�erent realistic objectives of di�erent periods
derived from the website of Bundesnetzagentur [Bun21]. The objectives are labeled as
follows:

� The shortcut _0_ denotes the disturbed and scaled sin curve, computed by Ct =
⌊sin(π · t/T) + 1) · 10⌋, for all t ∈ [T].

� The shortcut _1_ denotes constant energy prices and results in the objective of
minimizing the consumed energy.

118

� The shortcut _7_ denotes the real energy price from March 1st to May 31st within
the year 2021.

� The shortcut _8_ denotes the energy price of Germany from October 1st to October
13th, 2021.

Remark 5.3.1. The objectives were simply numbered. There are other objectives with
the missing indices, but these objectives are only for test purposes and are of no further
relevance. The index of the target function has no further meaning and is only used for
di�erentiation.

0 100 200 300
Time period

20

40

60
En

er
gy

 p
ric

e

Objective _0_

0 100 200 300
Time period

0.950

0.975

1.000

1.025

1.050

En
er

gy
 p

ric
e

Objective _1_

0 100 200 300
Time period

0

100

200

300

400

En
er

gy
 p

ric
e

Objective _7_

0 100 200 300
Time period

0

25

50

75

100

En
er

gy
 p

ric
e

Objective _8_

Figure 5.1: Visualization of the di�erent energy costs

The time window T is set to
∑

(j,k)∈O(d
pr

j,k+d
se
j,k)·

1

nM
·γ and γ is chosen in {1.5, 1.75, 2, 2.25}

for the shortcut s,m,l,h. Moreover, the instances are generated so that the energy demand
is scaled by a second factor γ2 ∈ {0.5, 1, 1.5, random}. If γ2 equals random, then the energy
demand is multiplied by a random number in [1, 2]. The instance laXX of Lawrence is
transformed into the instance

laXX_objective_energyDemandScale_T imewindowScale.

The instances are built to consider di�erent time window lengths for the same instance.
Thus, the complexity of the problem is increased by the time window size. The di�erent
lengths of the ramping durations lead to less use of breaks. The increase in the objective
function also leads to a higher di�erence between the costs of breaks and standby costs.
Thus, higher energy demand for breaks leads to less use of breaks within integral solutions.
The chosen constants are arbitrarily chosen without any reference.

Note that each mentioned technique is implemented in C++. Thus, no explicit overview
of the implemented techniques is provided.

5.4 Experimental Results

Within this section, we discuss the experimental results of the implemented algorithms.
We present di�erent results, visualized by �gures, and comment and discuss the arising
questions. In the beginning, the problem sizes of the break-based and the stated-based
formulation are considered. Additionally, the quality of the break-based formulation is dis-
cussed. Then, the statistics of Gurobi solving our break-based formulation are analyzed.
After that, the di�erent components of the implemented branch-and-bound algorithm are
analyzed to determine whether they are crucial to solving the problems e�ciently. At the
end of this chapter, there is a comparison of Gurobi's performance and the performance
of our implementation to show that the implemented algorithms lead to a considerable
solution algorithm, which is comparable to the solution time of parallel programmed com-
mercial solvers.

119

5.4.1 Comparison of the State-Based and the Break-Based
Formulation

The problem formulation (3.1a)�(3.1k) and the partial break-based model (3.10a)�(3.10h)
use di�erent variable sets and also di�erent constraint sets. Thus, the problem sizes may
di�er. The Table 5.1 shows the number of variables and constraints of the break-based
formulation (3.10a)�(3.10h) and the state-based formulation (3.1a)�(3.1k).

Table 5.1: Average number of variables and constraints of di�erent formulations.

instance break based model state based model

variables constraints variables constraints
laXX_s_s 15079 7380 8282 8379
laXX_s_m 24358 9039 9546 9722
laXX_s_l 33847 10271 10874 11133
laXX_s_h 47296 12441 12138 12476
laXX_m_s 12111 6715 8282 11788
laXX_m_m 21390 8374 9546 13684
laXX_m_l 32474 10117 10874 15676
laXX_m_h 44328 11776 12138 17572
laXX_l_s 9372 3807 8519 9002
laXX_l_m 18645 7802 9782 17113
laXX_l_l 29713 9543 11108 19600
laXX_l_h 41557 11201 12372 21968
laXX_r_s 12166 5966 8636 10481
laXX_r_m 21400 8283 9846 13507
laXX_r_l 32131 9885 11231 15996
laXX_r_h 44418 11679 12414 17298

Table 5.1 shows the averaged model size of our break-based model and the state-based
formulation for the di�erent settings. The average value is computed for each problem
size. The table shows that the break-based model signi�cantly uses more variables. The
number of variables of the state-based formulation linearly depends on the time window,
while the break-based model has a quadratic dependency. The number of constraints of
both formulations increases with the linear dependency of the time window size. This table
clearly shows the number of constraints growing faster than the number of variables in the
case of the state-based formulation. In the case of the break-based model, the number
of constraints is growing at the same rate. Thus, the break-based model requires more
variables and fewer constraints than the state-based model initially.

We presented various presolving rules, which reduce the number of break variables.
The resulting problem sizes are presented in Table 5.2. We use the mapping R to describe
the expression

R(solver, instance) =
remaining variables after presolving by solver

Number of initial variables

Table 5.2: Average number of variables and constraints of di�erent presolved formulations.

instance break-based model state-based formulation

#Variables R(Gurobi,:) R(Scip+,:) # Variables R(Gurobi,:)
laXX_s_s 15079 0.818 0.407 8282 0.789
laXX_s_m 24358 0.818 0.437 9546 0.866
laXX_s_l 35442 0.845 0.464 10874 0.929
laXX_s_h 47296 0.884 0.484 12138 0.975
laXX_m_s 12111 0.73 0.309 8282 0.706
laXX_m_m 21390 0.716 0.261 9546 0.793
laXX_m_l 32474 0.727 0.264 10874 0.865
laXX_m_h 44328 0.773 0.285 12138 0.918
laXX_l_s 9372 0.449 0.345 8519 0.391
laXX_l_m 18645 0.635 0.231 9782 0.713
laXX_l_l 29713 0.642 0.196 11108 0.792
laXX_l_h 41557 0.67 0.184 12372 0.851
laXX_r_s 12166 0.697 0.355 8636 0.608
laXX_r_m 21400 0.739 0.308 9846 0.761
laXX_r_l 32131 0.736 0.3 11231 0.817
laXX_r_h 44418 0.777 0.328 12414 0.891

means 27618 0.729 0.322 10349 0.792

Table 5.2 shows the problem sizes after our and Gurobi's presolving. The number
of initial variables and the relative number of remaining variables after Gurobi's default

120

reduced reduced and presolved initial initial presolved

0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f v
ar

ia
bl

es

Figure 5.2: Comparison of the number of variables of the break-based model in a box plot. The orange
line shows the median, the blue box describes the �rst and third quartiles, and the black lines denote the
outliers. The considered formulations are the formulation, which is initially reduced by our presolving, the
initially reduced formulation, presolved by Gurobi, the Dantzig�Wolfe reformulation with all variables
and the initial break-based model presolved by Gurobi.

presolving and the relative number of remaining variables after our presolving. Analo-
gously, the initial number of variables and the relative number of remaining variables of
the state-based formulation are presented. A presolving algorithm is stated to be more
e�cient if the relative number of remaining variables is small. One can see that initially,
the break-based formulation has more variables (factor 2− 3) than the state-based formu-
lation. The default presolving e�ciency of Gurobi can reduce the number of variables
by 25.5%. In contrast, the presented variable reduction in Section 4.1 allows a problem
size reduction of 67.8%. After usage of our presolving, the break-based formulation has a
similar size as the state-based formulation presolved by Gurobi. Thus, the disadvantage
of the problem size can be compensated. We do not discuss the impact of presolving rules
for constraints since the formulation (3.10a)�(3.10h) only includes necessary constraints,
except the precedence constraints, which are considered lazy cuts. Thus, the number of
constraints cannot be reduced signi�cantly anymore. Another research question is whether
presolving by Gurobi can further reduce the problem we have already presolved. If this
is not the case, then we could describe all signi�cant reductions with combinatorial con-
ditions. Figure 5.2 visualizes the e�ect of the aggressive presolving by Gurobi on our
presolved formulation. Figure 5.2 shows the distribution of the number of variables of
di�erent stages of the presolving process. There is the number of initial variables (initial),
the number of variables after our presolving (reduced), the number of variables after our
presolved formulation is presolved again by Gurobi (reduced and presolved), and last but
not least, the number of variables if Gurobi presolves the initial model. One can see
that our presolving can be strengthened by Gurobi's additional presolving. However, the
impact is not signi�cant. In addition, one can see that our presolving outperforms the
default presolving of Gurobi. Most times, Gurobi is able to detect by presolving whether
the problem is infeasible or not. Then, the presolving is able to reduce the complete set
of variables. Figure 5.2 shows that these are, among others, the cases where Gurobi can
reduce the number of variables of the presolved formulation. Since our presolving is not
considered to detect the infeasibility of the instance, the number of variables will also not
be reduced until no variables exist anymore. Since our presolving is able to eliminate 66%
of the variables, it is interesting which rules are successful. The e�ect of the di�erent
presolving rules at the di�erent problem sizes is shown in Table 5.3.

121

Table 5.3: Reduction of the break-variables by the di�erent presolving rules.

instance #breaks length non-usable unnecessary bin packing objective

laXX_X_s_s 24092 12880 1200 1052 4 1748
laXX_X_s_m 32496 12880 1912 1688 4 1748
laXX_X_s_l 42672 12880 2656 2360 4 1748
laXX_X_s_h 53664 12880 3364 3000 4 1748
laXX_X_m_s 24092 15500 2252 768 16 3404
laXX_X_m_m 32496 15500 4076 1404 16 3736
laXX_X_m_l 42672 15500 5980 2080 16 3736
laXX_X_m_h 53664 15500 7792 2724 16 3736
laXX_X_l_s 22879 17035 2261 505 44 3097
laXX_X_l_m 30857 17035 4885 1117 44 4797
laXX_X_l_l 40510 17035 7640 1758 44 4977
laXX_X_l_h 50944 17035 10272 2369 44 4977
laXX_X_r_s 24092 15381 1944 769 25 2807
laXX_X_r_m 32496 15461 3564 1388 22 3408
laXX_X_r_l 42672 15742 5821 2023 27 3817
laXX_X_r_h 53664 15373 7339 2641 24 3496

Table 5.3 shows the number of variable reductions broken down according to the pre-
solving rules. All presolving rules are only applied if the break length does not exceed
the trivial bound of the knapsack constraint (3.18). Then, each variable has to pass each
presolving rule to get the e�ciency of the presolving unrelated from their order. This
evaluation shows that non-usable breaks are a large part of the redundant variables. Non-
usable breaks can be detected by probing. Fixation of the break to one leads directly to an
infeasible problem. The elimination of unnecessary breaks, which require positive energy
prices, only reduces the small subset of variables. However, these variables will never used
in optimal solutions. The bin-packing and the small time window reduction perform badly
as a presolving rule due to the fact that these rules are only high-performing if the time
windows are small. Thus, those rules are considered to be propagation methods within the
branch-and-bound tree. Since the branch-and-bound tree will also include assignment con-
straint branchings (4.43), some time windows will be reduced, and thus, these propagation
methods will detect reductions. Moreover, the reductions by bin-packing and objective
are not easily reproducible by commercial solvers. Since we can presolve the model before
solving it with Gurobi, we only use the presolved formulation, except something else is
mentioned.

Quality of our problem formulation

We compute a primal solution, if the instance has at least one feasible solution, by a list
scheduling heuristic. Since the list scheduling heuristic does not always detect one solution,
the order of the tasks is permuted until one feasible solution is found. This solution is used
to describe the value LS (list scheduling). Then, the LP-relaxation is solved to de�ne the
value of LPrelax. After that, we compute the root relaxation and the optimal solution of
the instance, if there is one. The root relaxation and the LP relaxation di�er in the fact that
additional inequalities may be separated in the case of root relaxation. Table 5.4 shows the
average gaps if the average is computed for �xed problem sizes, while Table 5.5 shows the
average gaps if the average is computed for a �xed objective. Within further discussions of
the quality and the performance of our branch-and-bound algorithm, the expression gap

will be used multiple times. The gap describes the relative distance between the incumbent
and the currently best-known dual bound. Using this expression, multiple gaps can be used
to analyze the problem formulation. We observe the initial lower and upper bound gap
(gapUB := |LP−Firstsol|

FirstSol
), the root gap (gapLP := |LPrelax−Firstsol|

FirstSol
), the gap between the

best and the �rst primal solution (gapFirstsol :=
|Best−Firstsol|

Best
) and the gap between the

root relaxation and the best known primal solution (gapopt := |Best−LPrelax|
LPrelax

).
Table 5.4 shows the averaged gaps of the di�erent instances. The table shows that for

each instance size, the initial gap and the root gap are similar. The considered cutting
planes cannot strengthen the LP relaxation signi�cantly. Obviously, some important classes
of inequalities describing the facets of the polytope PB are missing. However, an optimum
solution and the root relaxation have an average gap of 0.022.

Table 5.4 shows that the initial root gap becomes wider when the time window increases;
for example, the initial root gap of laXX_s_s is smaller than the gap of laXX_s_l. As the
time window increases, the initial root gap also increases. In addition, the gap between two
instances with a similar time window setting decreases if the size of the breaks is increased.
Thus, considering a �xed time window, the instance with larger ramping durations will
have a smaller root gap. A similar tendency of the root gaps can be observed in all columns

122

Table 5.4: Quality of LP-relaxation, �rst and optimal solution.

instance gapLP gapUB gapFirstsol gapopt

laXX_s_s 0.166 0.164 0.146 0.015
laXX_s_m 0.222 0.220 0.196 0.019
laXX_s_l 0.275 0.272 0.248 0.018
laXX_s_h 0.391 0.388 0.357 0.021
laXX_m_s 0.087 0.084 0.065 0.018
laXX_m_m 0.186 0.183 0.153 0.025
laXX_m_l 0.246 0.243 0.210 0.026
laXX_m_h 0.329 0.326 0.288 0.027
laXX_l_s 0.048 0.046 0.032 0.014
laXX_l_m 0.099 0.097 0.073 0.021
laXX_l_l 0.182 0.180 0.149 0.026
laXX_l_h 0.232 0.230 0.194 0.028
laXX_r_s 0.066 0.064 0.048 0.015
laXX_r_m 0.165 0.161 0.130 0.026
laXX_r_l 0.261 0.258 0.220 0.025
laXX_r_h 0.309 0.305 0.270 0.028

average 0.204 0.201 0.174 0.0221

of the table. However, the change in the gaps with regard to the initial and optimal solution
is weaker than the change in the initial root gap. The averaged root gap and the averaged
optimum gap di�er by a factor of 10. Thus, our �rst heuristic solutions are far away from
an optimum solution. Therefore, algorithms need to search for near-optimal solutions with
a close neighborhood of the LP-relaxation, or best-known dual bound.

This behavior of the gaps is veri�ed concerning the randomized ramping durations
within the last four rows. Primarily, the large gaps are associated with objective 8. This
is stated by Table 5.5, which shows the gaps when the average is computed concerning the
objectives.

Table 5.5: Gaps of the instances broken down by objective functions.

instance gapLP gapUB gapFirstsol gapopt

laXX_0_X_X 0.127 0.125 0.087 0.0349
laXX_1_X_X 0.058 0.059 0.058 0.0011
laXX_7_X_X 0.103 0.102 0.085 0.0165
laXX_8_X_X 0.564 0.557 0.499 0.0388

average 0.213 0.211 0.182 0.0228

Table 5.5 shows that objective 8 leads to large initial and root gaps, while objective 1
leads to small gaps. The small gaps in the case of objective 1 can be explained since the
optimization has to decide about the number of standby periods. In case of low energy
consumption in the case of machine state standby, the resulting objective value will be
near optimal. An expensive primal solution uses a lot of standby, while a near-optimal
solution uses as little energy as possible. If the energy consumption for standby is low,
then the resulting objective values are similar.

However, the initial gaps are large, and the gap between optimal solution and LP re-
laxation is up to 4%. Thus, the assumption is veri�ed that our algorithm needs to drive
the dual bound to detect the primal solution as early as possible. The root relaxation
(rootrelax) does not provide a signi�cantly stronger bound than the LP relaxation, and the
additional consideration of valid inequalities does not drive the dual bound. The devised
heuristic can explain the relatively large gaps of objective 8. The list scheduling heuristic
does not consider the objective, and we take the �rst primal solution. However, the objec-
tive 8 shows that the objective highly in�uences the scheduling and its performance, and
thus, the heuristic e�ciency, which works perfectly �ne for one objective, can dramatically
fail in the case of a completely di�erent objective. Moreover, the objective 8 still shows
the property that the optimal solution can be detected within a close neighborhood of the
LP relaxation.

In summary, the analysis shows that our algorithm should not stray too far from the
best dual bound to compute the optimal solution. However, some diving into branches to
detect near-optimal solutions for pruning is tolerable.

123

0 500 1000 1500 2000 2500 3000 3500
Solution time

0

20

40

60

80
Pe

rc
en

ta
ge

 o
f s

ol
ve

d
in

st
an

ce
s

Solution time of selected branching rule settings

Gurobi 28 threads break based plus presolved
Gurobi 8 threads
Gurobi 1 thread
Gurobi 28 threads state based
Gurobi 28 threads break based plus non presolved

Figure 5.3: Performance of Gurobi using di�erent solver settings and ILP formulations. The solution
time is given in seconds.

5.4.2 Analyzing Gurobi's Performance

Figure 5.3 shows the number of instances Gurobi is able to solve within a chosen time
limit of 3600 seconds. The perfect result would be if 100% of all instances are solved within
0 seconds. The worst result would be 0% solved instances within 3600 seconds. Figure 5.3
includes �ve curves. One curve describes the number of solved instances until a speci�c
time for a given setting or formulation. There is a curve to describe the performance of
Gurobi solving the formulation (3.1a)�(3.1k) with 28 threads, one curve to visualize the
performance of Gurobi solving the instances using formulation (3.10a)�(3.10h) with 28
threads and three curves to describe the performance of Gurobi solving the formulation
(3.10a)�(3.10h), which has passed through the implemented presolving, with 1, 8 and 28
threads. A solver setting A solving more instances within a shorter time than a di�erent
solver setting B is denoted to have a better performance than a solver setting B. Figure 5.3
shows that the number of solved instances correlates with the number of used threads in the
case of solving the presolved formulation. The number of solved instances can be doubled
if we apply the implemented presolving before passing the problem to Gurobi. Note
that Gurobi is always allowed to apply its presolving. This demonstrates the signi�cant
impact of the implemented presolving approach on the resulting solving e�ciency of the
resulting problem formulation. Gurobi solving the state-based formulation is as e�cient
as Gurobi using the break-based formulation, which is not presolved by our presented
rules. From now on, we call this modeling the non-presolved break-based formulation.
This fact impressively shows that the usage of the implemented presolving speeds-up the
resulting solution process. Comparing the solution statistics for multi-threaded solving of
the presolved break-based formulation, the speed-up is recognizable. If we use a value of
3600 seconds, if an instance is not solved within the time limit, the average solution time of
Gurobi with 28 threads on presolved models is 1049 seconds. Without the implemented
presolving, Gurobi has an average solution time of 2808 seconds. This leads to a averaged
speed-up of 2.67. Figure 5.4 visualizes the solution times of two solution approaches for
each instance. This �gure impressively visualizes that the devised presolved break-based
formulation outperforms the state-based formulation. The �gure also hints that the total
speed-up could be larger than 2.67 since many instances are not solved to optimality and
weaken the speed-up factor by their value of 3600 seconds. No instance is solved faster
using the non-presolved break-based formulation than by using the presolved break-based
formulation. Moreover, one can see that if the solution process using the presolved break-
based formulation needs a certain amount of time, the solution approach usage of the
non-presolved break-based formulation takes even longer.

The number of solved instances over time by usage of the presolved break-based for-
mulation using 8 or 28 threads is similar. The di�erence between the parallelized solution
processes using 28 or 8 threads is less signi�cant but present. The averaged solution times
are 1049 and 1331 seconds. Thus, the averaged speed-up by 28 threads is 1.27. Thus, the
solution process using 8 threads and the presolved break-based formulation also outper-
forms the solution process using 28 threads and the state-based formulation.

Figure 5.5 shows the required solution times of Gurobi using 8 threads and Gurobi

using 28 threads solving the presolved break-based formulation. Figure 5.5 shows the

124

Instances (sorted by solution time of Gurobi 28 threads break based + non presolved)

0

500

1000

1500

2000

2500

3000

3500

So
lu

tio
n

tim
e

(in
 se

co
nd

s)

Comparison of solution times
Gurobi 28 threads break based + non presolved
Gurobi 28 threads break based + presolved

Figure 5.4: Results of Gurobi, using 28 threads and non presolved, are sorted from small to large solution
time. In addition, the solution times of Gurobi using 28 thread and the break-based formulation using
the presolved formulation are also plotted using the same order of the instances. Visualization of the
solution time (in seconds) of solving the instance with Gurobi and 28 threads and the break-based
formulation. This �gure shows that all the presolved formulations can be solved faster than the non-
presolved formulation.

Instances (sorted by solution time of Gurobi 8 threads)

0

500

1000

1500

2000

2500

3000

3500

So
lut

ion
 ti

m
e (

in
se

co
nd

s)

Comparison of solution times
Gurobi 8 threads
Gurobi 28 threads break based + presolved

Figure 5.5: Results of Gurobi using eight threads, are sorted from small to large solution time. In addi-
tion, the solution times of Gurobi using 28 thread and the break-based formulation using the presolved
formulation are also plotted using the same order of the instances.

125

Instances

4.0

4.5

5.0

5.5
lo

g1
0(

nu
m

be
r o

f n
od

es
)

Number of nodes of different Gurobi settings
Gurobi 8 threads
Gurobi 28 threads break based + presolved solved
Gurobi 28 threads break based + presolved not solved

Figure 5.6: This �gure displays the number of nodes visited by Gurobi using eight threads solving the
presolved break-based model. In addition, the corresponding number of visited nodes by Gurobi using
28 threads are displayed marked as solved or not solved. Only the instances are considered, which cannot
be solved within the time limit.

required solution times of Gurobi using 8 threads and Gurobi using 28 threads solving
the presolved break-based formulation.

The curves show that a larger number of threads and leads to the possibility of exploring
more nodes per second. First of all, Gurobi using 8 threads can solve certain instances
faster than Gurobi using 28 threads. This can happen when Gurobi internally weights
the branching behavior or the calls of the heuristics di�erently if more threads are available.
However, the possibility of solving more nodes per second substantiates the performance
relation of both solver settings.

Now, we want to analyze whether the possibility of using 28 threads results in large
branch-and-bound trees. In Figure 5.6, the instances where Gurobi failed to compute
the optimal solution with 8 threads are considered, and the number of visited nodes is
displayed. In addition, the number of visited nodes of Gurobi using 28 threads is shown
in combination within a marker, whether more branch-and-bound nodes were necessary to
solve the problem to optimality or not. Figure 5.6 shows that Gurobi using 28 threads
mainly visits more nodes than Gurobi using 8 threads if Gurobi using eight threads is not
able to solve the instance to optimality. Gurobi using 28 threads uses not more than

√
10

times more nodes than Gurobi using 8 threads, if optimality is not proven by Gurobi

using 8 threads. If we also consider Gurobi solving the presolved break-based formulation
single-threaded, the required number of nodes looks similar.

However, the results of Gurobi solving the state-based model and Gurobi solving
the break-based model using 28 threads show that the state-based formulation solves more
instances within a shorter period. Figure 5.7 shows that there is no rule describing whether
Gurobi solves instances faster by using the state-based formulation or the break-based
formulation. There are instances solved faster with one of the formulations and slower
or even not at all solved by the other possibility. Since the instances are sorted by their
solution time of one solver setting, the plot seems very chaotic.

Figure 5.8 shows that the state-based formulation can solve a small subset of instances
faster. These instances have the objective of minimizing energy consumption in common.
Otherwise, the break-based formulation is faster. The objective _1_ leads to a di�erent
behavior since this objective allows multiple optimal solutions di�ering by processing starts.

In summary, the implemented presolving leads to a signi�cant speed-up of the solution
process of Gurobi solving the break-based formulation. The formulation outperforms the
existing state-based formulation. However, the number of required branch-and-bound is
too large to be considered to solve larger instances.

5.4.3 Analysis of the Implemented Algorithms

This thesis includes algorithmic approaches improving the solution process by presolving
and propagation, branching, valid constraints and column generation from Section 4.1 to
Section 4.4. This subsection considers the impact of these techniques on the solution pro-
cess. Figure 5.9 shows the percentage of solved instances until a certain time limit (3600
seconds). Figure 5.9 displays seven di�erent curves, representing the solution process im-

126

Instances (sorted by solution time of Gurobi 28 threads break based + non presolved)

0

500

1000

1500

2000

2500

3000

3500

So
lu

tio
n

tim
e

(in
 se

co
nd

s)

Comparison of solution times

Gurobi 28 threads break based + non presolved
Gurobi 28 threads state based

Figure 5.7: Comparison of Gurobi solving the state-based formulation and Gurobi solving the break-
based formulation. The Results of Gurobi using 28 threads and the break-based formulation, are sorted
from small to large solution time. In addition, the solution times of Gurobi using 28 thread and the
state-based formulation using the formulation are also plotted using the same order of the instances.

_0
_

_1
_

_7
_

_8
_0

10

20

30

40

50

60

70

No
. o

f f
as

te
r s

ol
ve

d
in

st
an

ce
s

Breakdown based on the instance size
Gurobi 28 threads break based + presolved
Gurobi 28 threads state based

la
01

la
02

la
03

la
04

la
05

0

10

20

30

40

50

60

70

No
. o

f f
as

te
r s

ol
ve

d
in

st
an

ce
s

Breakdown based on the instance size
Gurobi 28 threads break based + presolved
Gurobi 28 threads state based

r_
s

r_
m r_

l
r_

h
s_

s
s_

m s_
l

s_
h

m
_s

m
_m m

_l
m

_h l_s l_m l_l l_h

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

No
. o

f f
as

te
r s

ol
ve

d
in

st
an

ce
s

Breakdown based on the instance size
Gurobi 28 threads break based + presolved
Gurobi 28 threads state based

Comparison, whether Gurobi 28 threads break based + presolved is faster
 than Gurobi 28 threads state based

Figure 5.8: Statistics showing whether the state-based or the presolved break-based formulation leads
faster to the optimum solution.

127

0 500 1000 1500 2000 2500 3000 3500
Solution time

0

20

40

60

80
Pe

rc
en

ta
ge

 o
f s

ol
ve

d
in

st
an

ce
s

Solution time of selected branching rule settings

SCIP+ default
SCIP+ branching plus relpscost
SCIP+ most fractional dichotomy branching
SCIP+ switch from state to LI
default SCIP

Figure 5.9: Solution times of Scip+ with using branching rule combinations. The solution time is given
in seconds. In addition, the best run of Scip in default settings is visualized.

plemented in Scip using di�erent combinations of branching rules. One curve, belonging
to default Scip, is outperformed by each further displayed run. Additionally, one can see
that most infeasible branching is not a meaningful choice. The usage of workload branch-
ing (4.40), (4.39) has a signi�cant impact on the solution time. The branch-and-bound
algorithms that use the workload branching are able to solve at least 60% of all instances
within the chosen time limit. Di�erent selections of the branching rule, which is in charge
of producing the integrality of the task variables, vary the solution times. Using the most
infeasible branching rule instead of an assignment constraint branching 4.43 is the worst
approach of our implementations. This is reasoned to the fact that most infeasible branch-
ing does not reuse information from the underlying scheduling problem to perform the
branching. The usage of the assignment branching by the dichotomy approach, mentioned
by van den Akker, also leads to a slight change in performance. This is reasoned by the
fact that the dichotomy is not the most important substructure of fractional solutions.
The consideration of problem-speci�c substructures as the workload is more important to
decide about useful branching candidates.

One surprising result is that the performance of the reliable pseudo-cost branching in
combination with workload branching performs well. The reason is that reliable pseudo-
cost branching works well in cases where the time window for processing the tasks is
nearly �xed by comparing the objective coe�cients. The workload branching adjusts the
time windows in a way that only the integrality of the tasks must be created. Thus, this
branching is a considerable selection.

One disappointing result is the solution times of the hybrid workload branching and
assignment constraint branching rule. This rule is considered to automatically detect
whether to perform a workload branching or to perform an assignment constraint branch.
However, this branching fails to be as successful as best-devised branching. Thus, there
is some space for improvement. However, the solution times are still outperforming the
default settings of Scip. Note that Scip is not explicitly trained to solve the considered
schedule problem.

The detailed analysis of some selected branching statistics shows that a �xed default
strategy is possible. However, there are upwards and downwards outliers.

Next, we consider the best runs using Scip+ with the devised branching rules. We
present results visualizing that small changes in the choice of the branching candidate
selection in�uence the result of the implementation: Figure 5.11 shows that small changes
within the branching period selection of the workload branching can increase or decrease
the solution time. But the curve stays nearly equal. Thus, we do not expect signi�cant
changes from the implemented rules if the optimal parameter choices are known. These
results show that there is space for improvement of the branch-and-bound algorithm. There
is a lack of a control system that leads to better problem-adapted branching rules.

In addition, we also see changes within the assignment constraint branching lead to
only small changes within the solution times. Figure 5.12 shows that switches to di�erent
assignment constraint branching can decrease or increase the solution time. The resulting
curve of the sorted solution time looks similar. This �gure also shows that the analysis for
further strategies in the case of assignment constraint branching was necessary and has led
to better results.

128

Instances

0

500

1000

1500

2000

2500

3000

3500

So
lu

tio
n

tim
e

Comparison of solution times
SCIPplus most fractional LI branching
SCIPplus state branching max interval

Figure 5.10: Detailed visualization of the solution times by Scip+ using di�erent settings. The solution
time is given in seconds.

Instances (sorted by solution time of SCIP+ most fractional + LI branching)

0

500

1000

1500

2000

2500

3000

3500

So
lu

tio
n

tim
e

(in
 se

co
nd

s)

Comparison of solution times
SCIP+ most fractional + LI branching
SCIP+ uncertainty + LI branching

Figure 5.11: Detailed visualization of the solution times by Scip+ using di�erent settings. The solution
time is given in seconds.

Instances (sorted by solution time of SCIP+ most fractional + LI branching)

0

500

1000

1500

2000

2500

3000

3500

So
lu

tio
n

tim
e

(in
 se

co
nd

s)

Comparison of solution times
SCIP+ most fractional + LI branching
most fractional + dichotomy branching

Figure 5.12: Detailed visualization of the time-consuming runs of Scip+. The solution time is given in
seconds.

129

0 500 1000 1500 2000 2500 3000 3500
Solution time

0

20

40

60

80
Pe

rc
en

ta
ge

 o
f s

ol
ve

d
in

st
an

ce
s

Solution time of selected branching rule settings

SCIP+ setpacking cons
SCIP+ knapsack prec cons
SCIP+ default

Figure 5.13: Solving time of instances, which are solved by Scip+ with di�erent handling of the prece-
dence constraints. The solution time is given in seconds. The curve 'setppc' describes the solution times
of the instances when the problem formulation with the precedence constraints is created as setpacking-
constraints.

Figure 5.13 visualizes the di�erent variants of considering precedence constraints. Fig-
ure 5.13 includes three curves: one curve visualizing the number of solved instances over
time when using the aggregated precedence constraints (aggregated), one curve display-
ing the number of solved instances when using a description using set packing constraints
(setppc), and one curve displaying the number of solved instances when using a self-
implemented separator for precedence constraints (separator). The curve separator uses
the aggregated constraints to check the feasibility of solutions, and the separator separates
disaggregated precedence constraints.

Figure 5.13 shows that Scip using the set packing constraints as precedence constraints
describes the best approach. Further, the solution approach only using the aggregated
precedence constraints performs not well. The run with the precedence constraints (4.2)
additionally includes a higher frequency of separating knapsack constraints and additional
computation of Gomory cuts and cuts from aggregation. However, the solution process
cannot reproduce the information present in the disaggregated precedence constraint for-
mulations. We implemented a constraint handler for precedence constraints since most
of the precedence constraints are not necessary within the solution process. However,
we could not reproduce the same strength of presolving and con�ict generation as the
constraint handler of set packing constraints. Thus, the runs with simple set packing con-
straints seem to be more e�cient than the run with real precedence constraints. However,
both runs are acceptable and solve over 80% of all problem instances. This run is stated
here as �separated� and includes the aggregated precedence constraints to check the feasibil-
ity of primal solutions and methods to separate disaggregated precedence constraints and
detect valid precedence constraints. The di�erence between the run �separated� and the
run �setppc" can be justi�ed by the additional time required for searching for valid further
precedence constraints. The search for valid precedence constraints requires about 2

3
of the

total consumed time of the precedence constraint handler. Considering this waste of time
and the separation of additional precedence constraints reason for the small shift within
the curves. However, the run �separated� initially uses fewer constraints and additionally
needs to spend time within the computation of further valid precedence constraints. Thus,
the shift between the run �separated� and �setppc� can be justi�ed.

Figure 5.14 shows that solution approaches using the disaggregated precedence con-
straints either by set packing constraints or by the implemented separator solve a similar
number of problems per instance type (la01, la02, la03, la04, la05). Figure 5.14 clearly
shows that Scip using the default settings and set packing constraints results in similar
statistics as Scip+ using the aggregated precedence constraints. The default settings of
Scip do not separate set packing constraints within the branch-and-bound tree. Thus, the
precedence constraints are not separated for each branch-and-bound node in depth larger
than one. Therefore, the pure existence of precedence constraints and the corresponding
information in presolving is not su�cient to improve the solution process. It is crucial to
separate these constraints.

Figure 5.15 shows selected solver settings and the number of solved problems of the dif-
ferent underlying scheduling problems. One can see that the Scip implementations equally

130

la01 la02 la03 la04 la05
0

10

20

30

40

50

60

70

No
. s

ol
ve

d
in

st
an

ce
s

Solved instances of setppc

la01 la02 la03 la04 la05
0

10

20

30

40

No
. s

ol
ve

d
in

st
an

ce
s

Solved instances of aggregated

la01 la02 la03 la04 la05
0

10

20

30

40

50

60

70

No
. s

ol
ve

d
in

st
an

ce
s

Solved instances of separator

la01 la02 la03 la04 la05
0

10

20

30

40

50

60

70

No
. s

ol
ve

d
in

st
an

ce
s

Solved instances of setppc

Figure 5.14: Visualization of the di�erent solver settings and their performance on all instances for time
windows and ramping durations.

_0
_

_1
_

_7
_

_8
_0

20

40

60

80

No
. o

f s
ol

ve
d

in
st

an
ce

s

Solved instances of solver setppc

_0
_

_1
_

_7
_

_8
_0

10

20

30

No
. o

f s
ol

ve
d

in
st

an
ce

s

Solved instances of solver aggregated

_0
_

_1
_

_7
_

_8
_0

20

40

60

No
. o

f s
ol

ve
d

in
st

an
ce

s

Solved instances of solver separator
_0

_

_1
_

_7
_

_8
_0

20

40

60

80

No
. o

f s
ol

ve
d

in
st

an
ce

s

Solved instances of solver setppc

Figure 5.15: Visualization of the di�erent solver settings and their performance on all instances for
di�erent objective functions.

struggle with each type of scheduling problem. The noise within the data is based by dif-
�culties in detecting the optimal solution or driving the dual bound for special instances.
Figure 5.15 visualizes the number of solved instances broken done by the type of objective.
One can see that there is no implication that some objective should be solved by one spe-
ci�c type of precedence constraint setting. In contrast, the problem size clearly shows that
the usage of disaggregated precedence constraints, which are separated within the branch-
and-bound tree as set packing constraints or by a separator, is preferable. This is displayed
in Figure 5.16. In summary, the usage of aggregated precedence constraints performs badly
if the disaggregated precedence constraints are not separated additionally. Then, there is
no di�erence in whether new precedence constraints are detected within the branch bound
or not. Moreover, the initial generation of information from the disaggregated precedence
constraints is a crucial part of the solution process.

Now, di�erent components of the implementation are disabled such that the perfor-
mance loss is displayed. Figure 5.17 shows that slight changes within the algorithm directly
lead to loss of performance. Figure 5.17 shows a curve �Scip+ default� which describes the
best-performing branch-and-bound algorithm next to Gurobi using 28 threads. Instead of
solving the instances by using of the reference implementation, the breaks can be generated
by column generation. Column generation requires that many further valid inequalities
are not valid since the consideration of cutting planes in column generation is complicated
and hard to implement (but possible). The missing valid inequalities from GUB cover cuts
and clique cuts cause the corresponding loss of performance.

The most obvious loss of performance was reached by disabling the state-constraint
branching. A factor of 2 gives the relation between the number of solved instances. Since
the state-constraint branching is designed to be dual-bound driving, while the assignment
constraint branching is designed to create primal solutions, the branch-and-bound tree

131

r_
s

r_
m r_

l

r_
h

s_
s

s_
m s_

l

s_
h

m
_s

m
_m m

_l

m
_h l_s l_m l_l l_h

0

5

10

15

20

No
. o

f s
ol

ve
d

in
st

an
ce

s

No. of solved instances of solver setppc

r_
s

r_
m r_

l

r_
h

s_
s

s_
m s_

l

s_
h

m
_s

m
_m m

_l

m
_h l_s l_m l_l l_h

0

2

4

6

8

No
. o

f s
ol

ve
d

in
st

an
ce

s

No. of solved instances of solver aggregated

r_
s

r_
m r_

l

r_
h

s_
s

s_
m s_

l

s_
h

m
_s

m
_m m

_l

m
_h l_s l_m l_l l_h

0

5

10

15

20

No
. o

f s
ol

ve
d

in
st

an
ce

s

No. of solved instances of solver separator

r_
s

r_
m r_

l

r_
h

s_
s

s_
m s_

l

s_
h

m
_s

m
_m m

_l

m
_h l_s l_m l_l l_h

0

5

10

15

20
No

. o
f s

ol
ve

d
in

st
an

ce
s

No. of solved instances of solver setppc

Figure 5.16: Visualization of the precedence settings number of instances which are not solved.

0 500 1000 1500 2000 2500 3000 3500
Solution time

0

20

40

60

80

Pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Solution times of different settings

SCIP+ max probing rounds
Gurobi 28 threads break based plus presolved
SCIP+ default
SCIP+ branching plus relpscost
SCIP+ nodeselection hybridestim
SCIP+ state branching max interval
SCIP+ most fractional dichotomy branching
SCIP+ switch from state to LI
SCIP+: no implemented cuts
SCIP improved settings
Gurobi 28 threads state based
Gurobi 28 threads break based plus non presolved
default SCIP

Figure 5.17: Visualization of the e�ect of the di�erent algorithms and parts of the solver. The solution
time is given in seconds.

132

TB
E

TO
B LB DL TO S TS

Di
vE LS

Di
vM RM TM GA

0

2

4

6

8

10

12

%
 G

ap
 to

 o
pt

im
al

 so
lu

tio
n

Different heuristics (heurval-opt)/opt

Figure 5.18: The average gap of the implemented heuristics. The �gure shows list scheduling heuris-
tics using backward scheduling by due dates (TBE), backward list scheduling by information from the
fractional solution (TOB), neighborhood exploration by dynamic programming, dynamic programming
(DL), forward list scheduling using the information from the fractional solution (TO), shifting the current
best solution in time (S), list scheduling by using LIFO-rule from the release dates, diving on variables
matching the expected value (DivE), classical LIFO list scheduling (LS), diving using the maximum �x-
ation (DivM), rounding of the variable with the largest (fractional) value (RM), and a genetic algorithm
(GA).

is misleading. Thus, many instances are not solved to optimality. The disabling of the
implemented heuristics also leads to a loss in performance. This is reasoned by the fact
that the devised heuristics are designed to be applied early and compute near-optimal
solutions. If these heuristics are missing, the MILP-heuristics of Scip need to compute
primal solutions. However, only ALNS and rounding heuristics compute solutions. Thus,
more branch-and-bound nodes need to be created until the optimum solution is detected.

Changing the branching rule to create schedules can also increase and decrease the
performance of the solution algorithm. Also, the disabling of the propagation algorithm
leads to a loss of performance. Obviously, the disabling leads to larger problems that need
to be solved at each branch-and-bound node. However, the number of reductions is not
large enough to signi�cantly increase or decrease the number of solved problems.

In summary, the algorithm is able to solve about 70% of the provided test instances
within one hour.

The Implemented Heuristics

Our implemented heuristics have a di�erent performance and usage. Most of the im-
plemented heuristics are considered to compute initial solutions. Further heuristics are
devised to explore the neighborhood of the current best solution.

Figure 5.18 shows that all of our implemented algorithms provide an optimum gap of
0% to 12%. The lines denote the outliers of the objectives computed by the heuristics. The
orange line describes the average value, and the blue box denotes the 75% of all computed
solutions. This �gure shows that our diving heuristics provide near-optimum solutions,
while the large neighborhood solutions su�er from computing many bad solutions. The
list scheduling heuristics provide a large range of solutions since these heuristics can be
applied multiple times within the branch-and-bound node. Figure 5.19 shows that most of
the initial solutions are computed by our diving heuristics. Di�erent heuristics of Scip are
also able to compute initial solutions. Furthermore, in combination with 5.18, our initial
solution has a gap of less than 2%. Then, the other heuristics very often cannot compute
better primal solutions since we are already at a near-optimal solution. Figure 5.20 is
created by tracking the algorithms computing the optimal solutions and shows that most
of the optimal solutions are computed by evaluating the LP relaxation at branch-and-bound
nodes. While most of the initial solutions are computed by our problem-speci�c heuristics,

133

DL DP

Di
vE

Di
vM LB LS TB

E TM TO TO
B TS

re
la

xa
tio

n

vb
ou

nd
s

cli
qu

e

lo
ck

s

fe
as

pu
m

p

al
ns

ro
un

di
ng

Heuristics

0

20

40

60

80

100

Nu
m

be
r o

f c
om

pu
te

d
in

iti
al

 so
lu

tio
ns

Figure 5.19: The average number of computed initial solutions by the di�erent used heuristics. The �gure
shows the large neighborhood approach by dynamic programming approach (DL), dynamic programming
(DP), diving using the distance to the expected value (DivE), diving using the maximum value (DivM),
backward (LB) and forward large neighborhood by list scheduling (LS), list scheduling heuristics using
backward scheduling by due dates (TBE), backward list scheduling by information from the fractional
solution (TOB), and di�erent heuristics implemented in Scip .

DL DP

Di
vE

Di
vM LB LS TB

E TM TO TO
B TS

re
la

xa
tio

n

ro
un

di
ng rin

s

al
ns

gi
ns

cr
os

so
ve

r S

fe
as

pu
m

p

Heuristics

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f c
om

pu
te

d
op

tim
al

 so
lu

tio
ns

Figure 5.20: The average number of computed optimal solutions by the di�erent used heuristics. The
�gure shows the large neighborhood approach by dynamic programming approach (DL), dynamic pro-
gramming (DP), diving using the distance to the expected value (DivE), diving using the maximum
value (DivM), backward (LB) and forward large neighborhood by list scheduling (LS), list scheduling
heuristics using backward scheduling by due dates (TBE), backward list scheduling by information from
the fractional solution (TOB), and di�erent heuristics implemented in Scip .

134

the optimum solution can be computed by LP-relaxations. Further optimum solutions are
computed by our large neighborhood approach using dynamic programming and diving
heuristics. In addition, classical Scip heuristics compute some optimum solutions. In
addition, the list scheduling heuristics are too often not able to compute the optimum
solution. However, the heuristics are able to compute multiple primal solutions. They
help to prune the branch and bound tree initially and thus speed up the �nding of the
optimal solution. But these visualizations allow for the criticism that the implemented
heuristics rarely �nd an optimal solution. This reveals potential for further improvements
to the algorithm

Comparison of Di�erent Separation Strategies

The consideration of di�erent separation algorithms and di�erent settings is only minor
since our proposed cutting planes are not a major part of the solution process. Although
we analyzed the cutting planes, the number of separated inequalities is small. This fact is
visualized in Figure 5.21.

0 500 1000 1500 2000 2500 3000 3500
Time to solve the instance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

So
lv

ed

Runtime of selected cutting plane settings
SCIP+: no implemented cuts
Switch from state to LI

Figure 5.21: Visualization of the impact of the cutting planes. This �gure shows a curve, visualizing the
solution time using our cutting planes (Switch from state to LI) and a curve using the same algorithms,
but the separation of our implemented cutting planes is deactivated (no implemented cuts). The solution
time is given in seconds.

Comparisons of Gurobi And the Preferred Scip + Run

Within this section, we compare Gurobi with 28 threads with the implemented single-
threaded implementation of Scip+, which uses Gurobi as an LP-solver. Both solvers solve
a similar number of instances. The Figure 5.22 shows that the solved instances di�er. If
one instance is solved by Gurobi, there exists the possibility that Scip+ cannot solve the
instance within 3600 seconds. In addition, there also exists instances where Scip+ can
solve instances that Gurobi cannot solve. The two curves do not resemble one another.
However, some instances are solved by both solvers nearly instantly.

135

Instances (sorted by solution time of SCIP+ most fractional + LI branching)

0

500

1000

1500

2000

2500

3000

3500

So
lut

ion
 ti

m
e

(in
 se

co
nd

s)

Comparison of solution times

SCIP+ most fractional + LI branching
Gurobi 28 threads break based + presolved

Figure 5.22: Detailed visualization of the time consuming runs of Scip+. In addition, the solution times
of Gurobi are visible.

The average solution time of Gurobi with 28 threads is 1077 seconds. The average
solution time of Scip+ is 1084 seconds. Note that the time limit is used while computing
the average solution time. When considering only the instances solved by both solvers, the
average solution time is 654 seconds for Gurobi and Scip+ 641 seconds. Therefore, the
solution time of the solvers is similar. Note that Gurobi is allowed to use 28 threads and
uses the presolved break-based formulation while Scip+ is single-threaded. In contrast,
Scip uses problem-adapted solution strategies while Gurobi is used as a black-box MILP
solver.

Since Gurobi using 28 threads and Scip+ provide a similar performance when con-
sidering the solution times, further comparisons are therefore needed.

The solver Gurobi can solve some instances at the root node, while Scip+ requires
some nodes to compute the optimum solution. Thus, the distribution of the required
number of nodes to prove optimality is discussed. The distribution of the required number
of nodes to solve the instances is visualized in Figure 5.23.

100 101 102 103 104 105 106

No. of branch and bound nodes

0

10

20

30

40

50

No
. o

f i
ns

ta
nc

es

SCIP+ default
Gurobi 28 threads break based plus presolved

Figure 5.23: Visualization of the required number of nodes of Gurobi using 28 threads with Scip+. If a
solver does not �nd the optimum solution, the number of visited nodes is displayed.

Figure 5.23 shows that the distribution of the required number of nodes to solve the
problem is spread from 1 to 105 for Gurobi using up to 28 threads and from 1 to 5 · 103
for Scip+. A similar result can be seen when considering Gurobi using up to 8 threads
and Scip+. Thus, the problem-speci�c branching reduces the required number of nodes
signi�cantly. The number of nodes ofGurobi with 8 andGurobi with 28 threads seems to
be equal. However, the number of solved instances is smaller in the case of Gurobi with
28 threads. One can suspect that the Gurobi always requires more branch-and-bound
nodes than Scip+ since the blue bars are shifted to the right of the orange bars of Scip+.

Figure 5.23 shows that the number of solved instances at the root node is larger in
the case of Gurobi. Thus, we need to watch the solution times of those instances, which
can be solved at the root node by Gurobi. Figure 5.24 shows the solution times for the
instances, which Gurobi solves in the root node. In the case of Gurobi and the case of
Scip+, most instances are solved in the range 100 to 1000 seconds. Some instances are not
solved by Scip+. These instances use the energy demand objective (_1_), and the optimal

136

0 500 1000 1500 2000 2500 3000 3500
Solution time

0

10

20

30

40

No
. o

f i
ns

ta
nc

es

SCIP+ default
Gurobi 28 threads break based plus presolved

Figure 5.24: Solution times of instances of Gurobi using 28 threads and the presolved break-based
formulation and Scip+.

objective value equals root-relaxation. Using heuristics and cutting planes helps Gurobi
to �nd the optimal solution at the root node, while the settings of Scip+ are chosen in
the way that these heuristics are only applied at speci�c depths of the branch-and-bound
tree. Thus, Gurobi uses fewer nodes in the case of the considered instances. Neglecting
those solved instances, the required solution times of Gurobi and Scip are similar.

_0
_

_1
_

_7
_

_8
_0

10

20

30

40

50

60

70

No
. o

f f
as

te
r s

ol
ve

d
in

st
an

ce
s

Breakdown based on the instance size
Gurobi 28 threads break based + presolved
Gurobi 28 threads state based

la
01

la
02

la
03

la
04

la
05

0

10

20

30

40

50

60

70

No
. o

f f
as

te
r s

ol
ve

d
in

st
an

ce
s

Breakdown based on the instance size
Gurobi 28 threads break based + presolved
Gurobi 28 threads state based

r_
s

r_
m r_

l
r_

h
s_

s
s_

m s_
l

s_
h

m
_s

m
_m m

_l
m

_h l_s l_m l_l l_h
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

No
. o

f f
as

te
r s

ol
ve

d
in

st
an

ce
s

Breakdown based on the instance size
Gurobi 28 threads break based + presolved
Gurobi 28 threads state based

Comparison, whether Gurobi 28 threads break based + presolved is faster
 than Gurobi 28 threads state based

Figure 5.25: Visualization of the di�erent solution times of Gurobi 28 and Scip+, if their solution time
di�ers in at least 1000 seconds, or one solver does not solve the problem within 3600 seconds.

Figure 5.25 illustrates how the objective in�uences the outcome, whether the imple-
mented branching algorithm will be more or less successful than the commercial branch-
and-bound algorithm provided by Gurobi
While objective 0,1 no rule can be derived, the
implementation should be used for objective 7 and the commercial branch-and-bound al-
gorithm for objective 8. The di�culty of objective 8 is that the dual bound does not grow
as fast as in the case of objectives 0,1 and 7 since there are negative energy prices. Thus,
the �xation of the machine state is not as successful in that case as it would be with strict
positive energy prices.

Analysis of a Problematic Instance

Gurobi can solve the instance la02_8_r_h with 28 threads, and it can run single-threaded
in at most 1600 seconds. In contrast, Scip+ cannot solve the instance within 3600 sec-
onds. Attempting to use reliability pseudo cost branching instead of assignment constraint
branching in the Scip+ implementation to schedule the tasks after �xing the workload was
unsuccessful, but the instances can be solved by using classical variable branching rules.
However, skipping the workload branching in the case when we forecast an unsuccessful
branching and using reliability pseudo cost branching is one e�cient way to work around
it.

The instances not solved by Scip share a common property: the machine pro�le is

137

0 20 40 60 80 100 120
Timewindow

0

1
Ac

tiv
ty

 m
=0

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=1

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=2

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=3

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=4

Figure 5.26: Workloads of the root relaxation of la01_0_s_s.

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=0

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=1

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=2

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=3

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=4

Figure 5.27: Workload of relaxation of la01_0_s_s after 15 branchings.

nearly integral but not completely. Thus, the workload branching can detect a branch-
ing candidate. However, the development of the dual bound after branching by workload
branching Therefore, we provide a second run only using reliability branching and a third
run only using assignment constraint branching if we detect the structure of a nearly inte-
gral workload. These instances show that switching from state-constraint and assignment-
constraint branching can become crucial. However, one could also use reliability branching
to solve the instances successfully.

The obvious question at this point is: what is the di�erence of fractional solutions
of objective 8 and 0?

To answer this question, two root relaxations of the instances la_02_8_r_s and
la01_0_s_s are provided. The Figures 5.26, 5.27, 5.28, and 5.29 show the fractional
solution at the root node and a fractional solution within the branch-and-bound tree, at a
node of depth of 10 of the instance la01_0_s_s and in depth of 15 in the case of instance
la_02_8_r_s. Each of the �gures consists of 5 sub-�gures. Each sub�gure, indexed by
0 to 4 are associated to machine m ∈ {0, . . . , 4}. The x-axis denotes the discretized time
window, and each subplot shows the machines' workload per period. The instances are
presented in A.2.2 and A.2.3.

The instance la01_0_s_s is solved quickly by Scip+, while the instance la02_8_r_s
requires more than 3600 seconds to be solved by Scip+. One can see that the workload

138

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=0

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=1

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=2

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=3

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=4

Figure 5.28: Workloads of the root relaxation of la02_8_r_s.

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=0

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=1

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=2

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=3

0 20 40 60 80 100 120
Timewindow

0

1

Ac
tiv

ty
 m

=4

Figure 5.29: Workloads of the root relaxation of la02_8_r_s after 10 branchings.

139

of la01_0_s_s is more fractional than the workload la02_8_r_s in the root node. The
instance la01_0_s_s forces the devised branch-and-bound algorithm to enforce the inte-
grality of the workload on each machine. This enforcement changes the workload pro�le in
a signi�cant way. Thus, the objective and the dual bound are increased while performing
these branchings.

In contrast, the root relaxation of instance la02_8_r_s has multiple machines with
nearly integral workload. The tasks that are assigned to a machine with an almost integer
workload are also processed within a de�ned range. Extending the range is expensive.
The parameters of the machines show that the instance la02_8_r_s has energy-e�cient
machines and machines with high energy demand. This contrast of the machines within
the same instance can lead to the case that the machine with the energy-e�cient energy
demands is used to absorb most of the changes due to branching rules. Another point of
the fractional solution is, in the case of la02_8_r_s is mostly located on one machine, the
machine with the energy e�cient demands.

It is, therefore, necessary to decide which branching rule to use based on the fractional
solution, on the parameters of the instance, and on the properties of the fractional solution.
A simple selection rule considering a prioritization of the branching rules is not su�cient.
A selection rule has been implemented, but it is not strong enough to outperform the
prioritization rule. Even more detailed analyses are important so that the correct branching
rule is selected before the resulting branching.

5.4.4 Analysis of the Column Generation Approach

Using the column generation algorithm to solve the LP relaxation at each branch and the
bound node is not helpful within the considered problem sizes. However, we provide an
analysis of the number of generated variables. The number of variables after presolving
is small enough to solve the resulting LP-relaxations e�ciently and the advantage of the
column generation algorithm is not present.

_0
_

_1
_

_7
_

_8
_0

10

20

30

40

50

60

70

No
. o

f f
as

te
r s

ol
ve

d
in

st
an

ce
s

Breakdown based on the instance size
SCIP+ default
SCIP+ column Gen.

la
01

la
02

la
03

la
04

la
05

0

10

20

30

40

50

60

70

No
. o

f f
as

te
r s

ol
ve

d
in

st
an

ce
s

Breakdown based on the instance size
SCIP+ default
SCIP+ column Gen.

r_
s

r_
m r_

l
r_

h
s_

s
s_

m s_
l

s_
h

m
_s

m
_m m

_l
m

_h l_s l_m l_l l_h

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

No
. o

f f
as

te
r s

ol
ve

d
in

st
an

ce
s

Breakdown based on the instance size
SCIP+ default
SCIP+ column Gen.

Comparison, whether SCIP+ default is faster
 than SCIP+ column Gen.

Figure 5.30: The visualization illustrates how many instances were solved more rapidly by both Scip+ us-
ing the column generation method and Scip+ employing the Most-Fractional and LI Branching approach.
The height of the bars represents the number of instances successfully addressed by each respective solv-
ing strategy.

Figure 5.30 shows that the branch-and-bound and cut approach outperforms the branch
and price approach. This is reasoned by the fact that the implemented presolving, in
combination with the MILP-based presolving of Scip can reduce the problem to a similar
size, which also can be achieved by column generation. Thus, the advantage of solving
smaller problems at the branch and price nodes is gone. Moreover, the branch and price
approach is not allowed to separate the same cutting planes as the branch-and-bound
process since these would change the pricing problem. Thus, the dual bound increases
faster in the case of the branch-and-bound process. Therefore, most of the problems are
solved more e�ciently by the branch-and-bound approach. However, some instances are
solved faster by the column generation approach than by the branch-and-bound approach.
Mostly, these are instances with objective _1_. These instances su�er from the fact that
the optimal primal solution is very close to the root solution. If multiple breaks cannot be

140

_0
_

_1
_

_7
_

_8
_0

10

20

30

40

50

60

70

No
. o

f f
as

te
r s

ol
ve

d
in

st
an

ce
s

Breakdown based on the instance size
Gurobi 8 threads
SCIP+ column Gen.

la
01

la
02

la
03

la
04

la
05

0

10

20

30

40

50

60

70

No
. o

f f
as

te
r s

ol
ve

d
in

st
an

ce
s

Breakdown based on the instance size
Gurobi 8 threads
SCIP+ column Gen.

r_
s

r_
m r_

l
r_

h
s_

s
s_

m s_
l

s_
h

m
_s

m
_m m

_l
m

_h l_s l_m l_l l_h

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

No
. o

f f
as

te
r s

ol
ve

d
in

st
an

ce
s

Breakdown based on the instance size
Gurobi 8 threads
SCIP+ column Gen.

Comparison, whether Gurobi 8 threads is faster
 than SCIP+ column Gen.

Figure 5.31: Visualization of the number of instances by Gurobi using eight threads and by the column
generation approach. The plots in the �rst row show the number of instances that are solved faster by
the column generation approach. The second row shows the number of instances that are solved faster
by Gurobi using 8 threads. If the solution time of some instances di�ers in less than 100 seconds, the
solution time is considered to be similar.

used in optimal solutions, the heuristics still can try to use them. However, we are con�dent
that the approach will better unfold its strengths on larger instances by better utilizing
the advantages of its structure and methodology. Thus, the heuristics are guided to �nd
the optimal primal solution because the necessary variables are present and additional,
non-necessary variables are often absent. Therefore, some instances can be solved faster
than by the devised branch-and-bound approach.

The branch and price approach works as well as Gurobi using the already presolved
formulation and up to 8 threads. Figure 5.31 shows that the column generation approach
is able to solve some instances faster than Gurobi using up to 8 threads and faster
than Scip+. Some instances, which require the computation of further cutting planes
to strengthen the dual bound, are solved faster by Gurobi than by the column generation
approach, for example, the instances with size _l_s. There, the breaks are large, and the
time window is small. For those instances, the time window is as the schedule is nearly
�xed, and the remaining problem is a scheduling problem. Initially, the number of breaks
is small, and the column generation approach has no advantage.

The curves displayed in Figure 5.32 are generated by computing the relative solution
time

relative Solution time(X,Y, I) =
Tsol,X,I − Tsol,Y,I

min(Tsol,X,I, Tsol,Y,I)

where Tsol,X,I denotes the solution time of solver X for instance I. If the curve gives a
negative value, then the solution time of the comparator is negative. If the curve has a
value near zero, then both solver settings lead to a similar solution time for the speci�c
instance. If the solution time is positive, then the solution time of the implementation is
larger than the solution time of the comparator.

Figure 5.32 shows that the column generation approach is outperformed by Gurobi

solving the presolved break-based formulation with up to 28 threads. One can additionally
see that the column generation approach has a similar performance as Gurobi using up to
8 threads. Often, the column generation approach outperforms Gurobi by using up to 28
threads and solving the non-presolved formulation. Thus, the column generation approach
will be strong in the cases when the presolving is not able to delete large sets of variables.
Then, the advantage of column generation will appear, and the branch-and-bound nodes
can be solved faster than in the case of the complete problem formulation.

141

0 50 100 150 200 250 300
Instances (sorted by relative solution time)

100

80

60

40

20

0

Re
la

tiv
e

so
lu

tio
n

tim
e

SCIP+ column Gen. vs
 Gurobi 28 threads break based + non presolved

zero
mean
#Instances/2

0 50 100 150 200 250 300
Instances (sorted by relative solution time)

5

0

5

10

15

20

25

30

Re
la

tiv
e

so
lu

tio
n

tim
e

SCIP+ column Gen. vs
 Gurobi 28 threads break based + presolved

zero
mean
#Instances/2

0 50 100 150 200 250 300
Instances (sorted by relative solution time)

20

10

0

10

20

Re
la

tiv
e

so
lu

tio
n

tim
e

SCIP+ column Gen. vs
 Gurobi 8 threads

zero
mean
#Instances/2

Figure 5.32: Visualization of the number of faster-solved instances by the column generation approach
in comparison to di�erent Gurobi settings. The blue line shows the curve of the relative solution time of
the two selected solvers. The green line shows the mean value of the relative solution time. The orange
line shows the x-axis and the x denotes the half of the number of instances. If two solvers perform
always equally well, then the relative solution time is equal to the zero line. The plot in the �rst column
shows the column generation approach in comparison to Gurobi using 28 threads and the non-presolved
break-based formulation. The column in the middle shows the column generation approach and Gurobi

using up to 28 threads and the presolved break-based formulation. The last column shows the column
generation approach and Gurobiusing 8 threads to solve the presolved formulation.

Table 5.6: Comparison between the break-based formulation without presolving and the column gener-
ation approach, considering the number of variables. This involves examining both the total number of
variables in the initial formulation and the percentage of variables remaining after presolving or when
utilizing the column generation method after �nishing the complete solution process (with a time limit
of 3600s).

instance initial presolved (%) Col. Gen (%) Col. gen initial (%) priced (%)

laXX_s_s 15079 81.8 36.4 25.7 10.8
laXX_s_m 24358 81.8 33.6 19.5 14.2
laXX_s_l 35442 84.5 30.8 16.0 14.8
laXX_s_h 47296 88.4 27.8 13.8 14.0
laXX_m_s 12111 73.0 35.6 29.1 6.49
laXX_m_m 21390 71.6 28.1 20.5 7.6
laXX_m_l 32474 72.7 25.3 16.3 9.02
laXX_m_h 44328 77.3 22.9 13.9 8.99
laXX_l_s 9372 44.9 39.0 34.4 4.67
laXX_l_m 18645 63.5 26.5 21.9 4.58
laXX_l_l 29713 64.2 22.2 16.8 5.35
laXX_l_h 41557 67.0 19.8 14.1 5.67
laXX_r_s 12166 69.7 36.8 28.4 8.35
laXX_r_m 21400 73.9 29.7 20.4 9.34
laXX_r_l 32131 73.6 25.0 16.2 8.78
laXX_r_h 44418 77.7 22.9 13.8 9.14

Table 5.6 shows the averaged number of variables per instance size (initial variables)
and the number of variables after only MILP-solver presolving (presolved). Additionally,
the average number variables are used within the column generation approach (CC max
vars). These variables are divided into sets of initial variables (initial vars) and priced
variables (priced breaks). Table 5.6 shows that the column generation approach can lead
to signi�cantly smaller problems. The number of priced variables is always smaller than
15% of the total number of the original formulation, and the number of initial variables
dominates the number of variables. However, there are also instances where the number
of priced variables exceeds the number of initial variables. These are the instances with a
large number of break variables.

The branch-and-bound algorithm outperforms the branch-and-price algorithm. The
strong presolving algorithm is the reason for this. Table 5.7 shows the number of variables
after applying the presolving (initial variables) and the percentage of variables after MILP-
presolving (presolved).

To show that a presolving algorithm is a crucial tool, Table 5.7 shows the number of
variables after �nishing the column generation approach (CC max vars), the percentage
of initial variables after presolving (remaining vars), the percentage of remaining variables
after MILP presolving (presolved), the percentage of priced variables and the allocation

142

key of initial variables (initial vars) and priced variables (priced breaks).

Table 5.7: Comparison between the break-based formulation with our presolving and the column gener-
ation approach, considering the number of variables. This involves examining both the total number of
variables in the initial formulation and the percentage of variables remaining after presolving or when
utilizing the column generation method.

instance initial presolved (%) Col. Gen (%) Col. gen initial (%) priced (%)

laXX_s_s 6524 94.1 84.2 59.3 24.9
laXX_s_m 11503 92.5 71.2 41.2 30.0
laXX_s_l 17766 92.6 61.4 31.8 29.5
laXX_s_h 24714 92.6 53.3 26.4 26.9
laXX_m_s 3834 97.7 112.0 91.8 20.5
laXX_m_m 5781 96.5 104.0 75.9 28.1
laXX_m_l 9012 95.1 91.3 58.8 32.5
laXX_m_h 13349 94.5 76.1 46.2 29.9
laXX_l_s 3327 97.1 110.0 96.8 13.2
laXX_l_m 4414 97.6 112.0 92.6 19.4
laXX_l_l 5998 96.9 110.0 83.4 26.5
laXX_l_h 7948 96.4 104.0 73.8 29.7
laXX_r_s 4517 95.6 99.0 76.5 22.5
laXX_r_m 6974 94.5 91.1 62.5 28.7
laXX_r_l 10220 94.4 78.5 50.9 27.6
laXX_r_h 15511 93.8 65.7 39.5 26.2

Table 5.7 shows that the presolved formulation often uses fewer or a similar number
of variables than the column generation approach. The number of variables of the column
generation approach can be larger since we do not apply each presolving rule within the
pricing algorithm. The presolving rule 4.1.41 is not applied in column generation since this
rule is too time-consuming. However, if the optimal primal solution is computed within
the early stages of the solution process, many of these variables are not created because
their reduced costs are too expensive. Since the branch-and-bound algorithm considers a
problem with a similar number of variables and can generate stronger valid inequalities, it
is �nally faster.

5.4.5 Summary and Con�rmation of Performance

This section summarizes the main results of this work and shows that the approaches are
purposeful. Firstly, we give an overview of multiple runs to compare the implementation
and one of the currently fastest MILP solvers (Gurobi). Figure 5.33 shows the perfor-

0 500 1000 1500 2000 2500 3000 3500
Solution time

0

20

40

60

80

Pe
rc

en
ta

ge
 o

f s
ol

ve
d

in
st

an
ce

s

Solution times of different settings

SCIP+ max probing rounds
Gurobi 28 threads break based plus presolved
SCIP+ default
SCIP+ branching plus relpscost
SCIP+ nodeselection hybridestim
SCIP+ state branching max interval
SCIP+ most fractional dichotomy branching
SCIP+ switch from state to LI
SCIP+: no implemented cuts
SCIP improved settings
Gurobi 28 threads state based
Gurobi 28 threads break based plus non presolved
default SCIP

Figure 5.33: This �gure shows the number of solved instances over the bounded time window. The �gure
includes the number of solved instances by the default Scip implementation (default Scip), Gurobi

using up to 8 threads (grb eight threads), Gurobi using up to 8 threads to solve the initial model (grb
eight threads: initial model), Gurobi using up to 28 threads (grb 28 threads), Gurobi using up to 8
threads to solve the straight forward formulation (grb eight threads: straightforward model), and our
implementation.

mance of the di�erent solvers, models and implementations. An implementation A is better
as a di�erent implementation B if the resulting performance curves gradient, correspond-
ing to implementation A, is steeper than the curve, corresponding to B. The best and
also an unrealistic case is that all instances are solved after 0 percent of the time window.
Then, the implementation can solve more instances within a shorter time window. This

143

0 50 100 150 200 250 300
Instances

70

60

50

40

30

20

10

0

Re
la

tiv
e

so
lu

tio
n

tim
e

SCIP+ default vs
 default SCIP

zero
mean
#Instances/2

0 50 100 150 200 250 300
Instances

50

40

30

20

10

0

Re
la

tiv
e

so
lu

tio
n

tim
e

SCIP+ default vs
 Gurobi max threads

zero
mean
#Instances/2

0 50 100 150 200 250 300
Instances

20

15

10

5

0

5

10

15

20

Re
la

tiv
e

so
lu

tio
n

tim
e

SCIP+ default vs
 Gurobi max threads + presolved

zero
mean
#Instances/2

Figure 5.34: Performance comparisons of Scip+ in comparison to Scip in default settings using the
presolved break-based formulation, and to Gurobi using 28 thread and the non-presolved break-based
formulation, and to Gurobi using 28 threads and the presolved break-based formulation.

�gure shows impressively that Gurobi, using up to 28 threads solving the presolved break-
based formulation, outperforms all other implementations. However, one can see that the
state-based formulation can only solve 40% of the generated instances. Analogously, the
complete initial model solved by Gurobi also only achieves 40% within the chosen time
window. If we initially reduce the number of breaks, the performance of Gurobi using
up to 8 or 28 threads is as good as an average performance score of the implementation
Scip+. One can see that most of the implementations solve about 70% of all instances.
This result is similar to Gurobi using 28 threads and the presolved formulation. If we
disable the central parts of the solution algorithm, the performance decreases drastically.
The following Figure 5.34 visualizes whether the implementation and formulation are out-
performing another solver or implementation. If the curve gives a negative value, then
the solution time of the comparator is negative. If the curve has a value near zero, then
both solver settings lead to a similar solution time for the speci�c instance. If the solution
time is positive, then the solution time of the implementation is larger than the solution
time of the comparator. Figure 5.34 shows three pictures. In each of these pictures, the
solution time of the implementation is compared to one other solver, either Gurobi using
28 threads and the presolved formulation, Gurobi using 28 threads and the non-presolved
formulation, and Scip using its default settings. One can see in each of these pictures that
the devised branch-and-bound algorithm is as good as Gurobi using 28 threads on the
presolved formulation. The di�erence of the relative solution time becomes more signi�-
cant if we compare Scip+ and Scip. The improvement of the performance becomes more
signi�cant if we consider the state-based formulation and the non-presolved formulation
solved by Gurobi using 28 threads. Figure 5.35 shows the performance improvement of
the implemented branch-and-bound algorithm in comparison to the state-based formula-
tion and the commercial solver, using (parallel) variable branching. There is almost no
instance that is solved faster by Gurobi with up to 28 threads and the state-based formu-
lation than by the branch-and-bound algorithm. In addition, if Gurobi with 28 threads
solves the non-presolved formulation, then the branch-and-bound algorithm outperforms
Gurobi. Note that the usage of the presolved formulation led to a similar performance of
Gurobi using 28 threads and the implementation of Scip+.

Implementing branch-and-bound algorithms has led to a signi�cant improvement in
performance. The provided algorithm is able to solve a similar number of instances within
the same time limit using fewer threads. It is important to mention that the implemen-
tation in Scip leads to solution times that are comparable to Gurobi with 28 threads on
the evaluated test instances. The implementation is exclusively single-threaded, within
Gurobi is high-grade parallel. The usage of parallel programming in Scip and or the
implementation of the branching rules in commercial solvers would lead again to a more
signi�cant increase in performance.

We started with a formulation that is not able to consider negative energy prices and
also requires a lot of time to solve the major part of our created test instances. We de-
veloped a new problem formulation and discovered presolving rules leading to a compact

144

0 50 100 150 200 250 300
Instances

50

40

30

20

10

0

Re
la

tiv
e

so
lu

tio
n

tim
e

SCIP+ default vs
 Gurobi max threads

zero
mean
#Instances/2

0 50 100 150 200 250 300
Instances

100

80

60

40

20

0

Re
la

tiv
e

so
lu

tio
n

tim
e

SCIP+ default vs
 Gurobi max threads + state-based

zero
mean
#Instances/2

Figure 5.35: Performance comparisons of Scip+ in comparison to Gurobi using 28 threads and the non-
presolved break-based formulation, and to Gurobi using 28 threads solving the state-based formulation.

model, such that 80% of each of our test instances is solved within 3600 seconds. The solu-
tion process requires a lot of branch-and-bound nodes, which leads us to the implemented
branching rules, which reduce the required number of nodes for successfully solving most
of the instances. The consideration of further inequalities and column generation pro-
vides further possibilities of how the problems can be solved. Since near-optimal solutions
are often good enough to be used in reality, di�erent heuristic approaches are presented.
Thus, this thesis provides multiple approaches to solve the job-shop scheduling problem
with �exible energy prices and time windows to optimality or only heuristically, and the
solution times are as fast as the solution times of one of the fastest commercial MILP
solvers, which is tuned to solve the problem highly parallel, while our code is only able to
run single threaded.

145

146

Chapter 6

Conclusions

This dissertation considers the job-shop scheduling problem with �exible energy prices
and time windows. We focused on devising, implementing, and documenting a branch-
and-bound approach to solve this complex combinatorial optimization problem e�ciently.

To address the problem-speci�c challenges, we proposed a partial Dantzig�Wolfe re-
formulation to explicitly describe ramping and o�ine periods. Introducing the variables
allows the consideration of non-linear energy demands and accurately mirrors the actual
manufacturing conditions. This formulation was called the break-based formulation. Ini-
tially, all instances were equally hard to solve, regardless of whether we used the state-based
or fraction-based formulation, with only marginal di�erences in the average solution time.
However, we proved that the break-based formulation provides a more precise description
of the integral feasible solutions to the job-shop scheduling problem with �exible energy
prices and time windows than the state-based formulation.

We have implemented a column generation algorithm for the break variables, which
allows us to keep the number of break variables small. An additional way to solve the
problem could be the implementation of a variable pricer for groups of processing starts of
tasks from the same job and to build another problem formulation with di�erent advantages
and disadvantages.

Throughout our research, we explored the challenges arising when solving the formu-
lated integer program by commercial solvers since the time-indexed formulation su�ers from
unbalanced branches. Therefore, we devised and implemented di�erent constraint-based
branching rules. These branchings are applied to overcome the problems of unbalanced
branches, which often occur in set-packing problems. The di�erent branching rules were
embedded in a branching algorithm, where a logic decides which branching rule is the
most suitable one. The experimental results show that our logic, which chooses the most
suitable branching rule, can still be improved by further constrained branching rules and
rules to switch on classical variable branching. The fractionality of the workload and the
spreading of task processing within the time window are two issues that our branching
rules address. We identi�ed that the computation of the optimal execution order is only
a secondary concern. The objective costs are primarily determined by the workload, and
therefore, our branching mainly tries to apply the workload branching rule. However, we
have also observed that for nearly integral workloads, our branching approach is no longer
the best decision. At this stage, further research must explore whether we should prioritize
workload branching or time window arrangement on machines based on the fractional so-
lution. We have taken initial steps, but the experimental results have revealed signi�cant
potential for improvement. Furthermore, it has been demonstrated that classical variable
branching presents itself as a conceivable alternative when the machine pro�le is nearly
integral. These aspects of branching and branching rule selection should also be further
investigated.

Our problem-speci�c presolving rules are capable of e�ciently and signi�cantly reduc-
ing the size of the problem formulation. This reduction of the problem size leads to a
speedup when only solving the model with black-box solvers. This thesis examines vari-
ous subproblems within the job-shop scheduling problem with �exible energy prices and
time windows and provides combinatorial conditions or algorithms for solving these prob-
lems: for example, the double knapsack substructure and the presolving by set dominated
columns. It turns out that some rules are only applicable as presolving rules. Although
the task variables represent a large part of the problem variables, we completely disregard
them in our presolving rules. This explains why additional presolving rules for the task

147

variables must be implemented to reduce the problem size further and improve the lower
bound on the best objective value. In the current algorithm, the task variables are only
reduced through reduced-cost propagation and branching. However, it should be possible,
based on the objective, to recognize that certain variable con�gurations are not feasible in
optimal solutions. We provide valid constraints for the polytope of the break-based formu-
lation. There are clique-cuts, GUB cover constraints and constraints from linear ordering.
In this thesis, GUB cover constraints were considered. In the scheduling literature, there
is a detailed examination of GUB cover constraints with a right-hand side of 1 and 2 in
the case of single machine scheduling. However, we only provide a lifting scheme for the
break variables in the case of right-hand-side 1. In the other case, a lifting rule for breaks
can also be derived. We also derived valid constraints from the linear ordering problem.
These inequalities, derived from the subproblem of the linear ordering problems for tasks
on the same machine, consider only the most essential inequalities of the linear ordering
problems. Through a Benders decomposition, which uses the linear ordering problem with
additional inequalities as a subproblem, we might be able to separate even stronger in-
equalities. Again, taking the step of lifting break variables into the separated inequalities
would be highly bene�cial. Another point would be the improvement of the model. We
have already attempted to enhance the basic model through knapsack inequalities. It has
been found that there are knapsack inequalities that link the ramping of the machines
through a job chain. Deriving additional types of such inequalities could lead to an im-
proved formulation. Most of our approaches aim to strengthen the dual bound. To compute
primal solutions, we implemented a diverse set of heuristics suitable for various problem
stages. We incorporated list-scheduling heuristics and list-scheduling-based neighborhood
searches, which initially explore the solution space to �nd an initial primal solution. Diving
heuristics have been implemented, attempting infrequently in the branch-and-bound tree
to �nd an improving primal solution in the depths of the unexplored branch-and-bound
tree by �xing only the task variables. Additionally, we developed a dynamic program for
improving the current solution through a local search. In addition, we incorporated a
genetic algorithm into the implementation, which can initially provide a good primal solu-
tion. By combining di�erent primal algorithms with a branching rule focused on the dual
bound, presolving and propagation rules, and cutting planes, a solid solver has been de-
veloped for the job-shop scheduling problem with �exible energy prices and time windows
that can solve multiple instances faster than commercial (untrained but highly parallel)
solvers. In order to apply the implemented techniques in realistic cases, a heuristic ap-
plication of our knowledge of the branch-and-bound algorithm is required. A depth-�rst
search, using assignment-constraint branching to explore a path in depth, can quickly and
e�ciently �nd near-optimal solutions if we can estimate well which path in the branch-
and-bound tree leads us in the right direction. Some of those heuristic approaches would
speed up our solution approach since we would be able to compute near-optimal solutions
initially. Additionally, such approaches would also be of economic interest, as they could
e�ciently compute suitable solutions for large instances in a relatively short time, while
the computation of the optimal solution requires too much time. Furthermore, an attempt
should be made to implement the well-known shifting bottleneck heuristic for the job-shop
scheduling problem with energy prices by devising an approximate objective function and
neglecting breaks and standby. This could lead to the early computation of additional
good solutions for the problem. Considering further problem variants, such as allowing
the violation of precedence relationships with additional penalty costs or incorporating
stochastic elements into the objective function, such as the actual energy consumption of
machines or an uncertain energy price, could be other use cases that are of interest.

In conclusion, our study on the job-shop scheduling problem with �exible energy prices
and time windows has led to the development of a competitive branch-and-bound algorithm
and branch-and-price algorithm. This work has demonstrated that considering energy
prices while solving the scheduling problem to optimality is possible in a realistic period
of time in the case of small instances. By employing a time-indexed model, this approach
can be easily extended to accommodate various complex conditions, including resource
constraints, requirements for simultaneous machine ramp-ups and ramp-downs, or energy
consumption spikes. Thus, a tool now exists through which optimization can be conducted,
or at the very least, a practical solution can be computed in an acceptable time.

148

Appendix A

Appendix

A.1 Settings of Our Implementation

Table A.1: Important setting changes of our implementation.

Setting Value Setting Value

limits/gap 1e-06 presolving/maxrestarts 0
presolving/donotmultaggr TRUE presolving/donotaggr TRUE
separating/maxlocalbounddist 1 separating/maxstallroundsroot -1
separating/poolfreq 1 constraints/knapsack/sepafreq 1
constraints/setppc/sepafreq 1 presolving/domcol/numminpairs 1048576
presolving/dualagg/maxrounds -1 nodeselection/bfs/stdpriority max
heuristics/adaptivediving/freq -1 heuristics/con�ictdiving/freq -1
heuristics/distributiondiving/freq -1 heuristics/farkasdiving/freq -1
heuristics/fracdiving/freq -1 heuristics/guideddiving/freq -1
heuristics/linesearchdiving/freq -1 heuristics/lpface/freq -1
heuristics/alns/freq 10 heuristics/nlpdiving/freq -1
heuristics/objpscostdiving/freq -1 heuristics/pscostdiving/freq -1
heuristics/rootsoldiving/freq -1 heuristics/veclendiving/freq -1
propagating/dual�x/freq 1 separating/clique/freq 1
separating/clique/maxbounddist 1 separating/aggregation/freq -1
separating/gomory/freq -1 separating/impliedbounds/freq 1
separating/zerohalf/freq 1 separating/zerohalf/maxbounddist 0
separating/zerohalf/maxslack 1 separating/zerohalf/maxslackroot 1
separating/zerohalf/badscore 0 MIP/addCliquesCon�ict 1
MIP/addPrecedenceAsClique 1 MIP/aggregatePrec 1
MIP/ownPrec 1 branching/mscg_ub/rule_Time W
branching/mscg_status/priority max branching/mscg_status/maxdepth 100
propagating/mscg_prob/obj 1 propagating/mscg_prob/len 1
propagating/mscg_prob/binpack 1 propagating/mscg_prob/overlap 1
propagating/mscg_prob/unn 1 propagating/mscg_prob/breaks 1
heuristics/DivM/lpsolvefreq 1 separating/wolsey_rhs2/freq 1
heuristics/DivM/maxdiveavgquot 10 separating/VDAkker1_rhs1/freq 1
heuristics/DL/neighbourhood 2 heuristics/DL/freq 10
heuristics/TS/freq -1 heuristics/heurFirstIn/pe 0.1
heuristics/heurFirstIn/pm 0.3 heuristics/heurFirstIn/size_pop 2
heuristics/RM/freq -1 heuristics/LB/freq 5
heuristics/DivE/freq 1 heuristics/DivE/freqofs 0
heuristics/DivE/maxdepth 10 heuristics/DivE/maxdiveubquot 1e-05
heuristics/DivE/maxdiveavgquot 100 heuristics/DivE/lpsolvefreq 1
heuristics/DivM/freq 1 heuristics/DivM/freqofs 1
heuristics/DivM/maxdepth 10 heuristics/DivM/maxdiveubquot 1e-05

149

A.2 Instances

A.2.1 Dataorig_ver_1 with T = 72

Table A.2: Job Shop Scheduling Data

Job Operation Machine Setup Time Processing Time

0 0 0 3 4
0 1 1 3 4
0 2 3 1 6
0 3 4 1 6
0 4 1 4 4
1 0 2 3 4
1 1 1 3 4
1 2 4 1 5
1 3 3 1 5
1 4 0 3 4
2 0 0 4 5
2 1 1 4 5
2 2 2 4 8
2 3 4 3 4
3 0 2 2 5
3 1 1 2 5
3 2 3 1 4
3 3 4 1 4
4 0 0 2 3
4 1 1 2 3
4 2 2 2 3

Table A.3: Machine Information

Parameter m = 0 m = 1 m = 2 m = 3 m = 4

Ramping up duration 3 3 3 2 1
Ramping down duration 2 2 2 1 1

Do�
m 0 0 0 0 0

Dru
m 18 10 5 4 2

Dst
m 8 8 8 3 3

Dse
m 20 20 20 6 6

Dpr
m 7 1 0.5 0.5 0.5

Drd
m 5 5 5 2 2

Table A.4: Time windows of the Jobs

Job id start time due date

0 0 72
1 8 72
2 16 72
3 24 72
4 48 72

150

A.2.2 la01_7_s_s with T = 108

Table A.5: Operation Section Data

Job Operation Machine Setup Time Processing Time

0 0 1 1 2
0 1 0 2 4
0 2 4 4 8
0 3 3 2 4
0 4 2 2 4
1 0 0 1 2
1 1 3 2 4
1 2 4 1 2
1 3 2 1 2
1 4 1 3 6
2 0 3 2 4
2 1 4 4 8
2 2 1 2 4
2 3 2 2 4
2 4 0 1 2
3 0 1 3 6
3 1 0 2 4
3 2 4 3 6
3 3 2 3 6
3 4 3 3 6
4 0 0 3 6
4 1 3 2 4
4 2 2 3 6
4 3 1 1 2
4 4 4 2 4
5 0 1 2 4
5 1 2 2 4
5 2 4 3 6
5 3 0 4 8
5 4 3 3 6
6 0 3 3 6
6 1 4 3 6
6 2 1 3 6
6 3 2 3 6
6 4 0 4 8
7 0 2 2 4
7 1 0 2 4
7 2 1 2 4
7 3 3 1 2
7 4 4 3 6
8 0 3 1 2
8 1 1 2 4
8 2 4 1 2
8 3 0 2 4
8 4 2 4 8
9 0 4 3 6
9 1 3 3 6
9 2 2 2 4
9 3 1 3 6
9 4 0 4 8

151

Table A.6: Machine Information

Parameter m = 0 m = 1 m = 2 m = 3 m = 4

Ramping up duration 4 4 4 4 4
Ramping down duration 2 2 2 2 2

Do�
m 0 0 0 0 0

Dru
m 4 1 5 1 6

Dst
m 3 4 1 1 4

Dse
m 7 4 6 7 4

Dpr
m 2 1 1 1 3

Drd
m 7 4 4 4 5

Table A.7: Time windows of the Jobs

Job id start time due date

0 9 108
1 9 108
2 9 108
3 9 108
4 9 108
5 9 108
6 9 108
7 9 108
8 9 108
9 9 108

152

A.2.3 la02_8_r_s with T = 99

Table A.8: Operation Section Data

Job Operation Machine Setup Time Processing Time

0 0 0 1 2
0 1 3 3 6
0 2 1 2 4
0 3 4 3 6
0 4 2 1 2
1 0 4 1 2
1 1 2 2 4
1 2 0 1 2
1 3 1 1 2
1 4 3 3 6
2 0 1 3 6
2 1 2 1 2
2 2 4 1 2
2 3 0 2 4
2 4 3 4 8
3 0 2 3 6
3 1 1 3 6
3 2 4 4 8
3 3 0 2 4
3 4 3 3 6
4 0 4 1 2
4 1 0 2 4
4 2 3 2 4
4 3 2 1 2
4 4 1 2 4
5 0 1 3 6
5 1 0 4 8
5 2 4 2 4
5 3 3 1 2
5 4 2 3 6
6 0 4 1 2
6 1 1 1 2
6 2 3 1 2
6 3 0 3 6
6 4 2 2 4
7 0 1 3 6
7 1 0 4 8
7 2 2 4 8
7 3 3 2 4
7 4 4 3 6
8 0 4 1 2
8 1 0 3 6
8 2 2 2 4
8 3 1 2 4
8 4 3 2 4
9 0 4 3 6
9 1 2 1 2
9 2 1 2 4
9 3 3 3 6
9 4 0 3 6

153

Table A.9: Machine Information

Parameter m = 0 m = 1 m = 2 m = 3 m = 4

Ramping up duration 12 4 14 2 11
Ramping down duration 9 6 8 1 2

Do�
m 0 0 0 0 0

Dru
m 2 2 6 1 28

Dst
m 3 6 5 5 5

Dse
m 7 10 15 10 21

Dpr
m 3 3 3 3 3

Drd
m 20 8 14 14 35

Table A.10: Time windows of the Jobs

Job id start time due date

0 0 99
1 0 99
2 0 99
3 0 99
4 0 99
5 0 99
6 0 99
7 0 99
8 0 99
9 0 99

154

Details of the Experimental Results

instance vars cons nodes time relative root relative primal gap

la01_0_l_h dual = 217100.0 opt = 219400.0 gap = 0.01
State-Based 12259 22357 10155 3600.03 0.02842 0.003683 0.01739
Break based 38275 12042 2001 3600.12 0.01026 0.004932 0.01481
SCIP+ 10231 860 2925 3600.17 0.008532 0.004203 0.008165
SCIP+: col. gen. 9355 995 2629 1396.19 0.001706 0.0 0.0
Presolved break based 14749 12091 42679 773.54 0.01 0.0 0.0
la01_0_l_l dual = 242000.0 opt = 244300.0 gap = 0.0095
State-Based 10282 19171 15132 3600.04 0.04303 0.0004912 0.01928
Break based 25105 10164 22733 3600.31 0.009647 0.0 0.002799
SCIP+ 7430 770 3146 1308.53 0.008557 0.0 0.0
SCIP+: col. gen. 8177 905 1731 977.68 0.001292 0.0 0.0
Presolved break based 8862 10210 6481 421.98 0.009 0.0 0.0
la01_0_l_m dual = 266200.0 opt = 267000.0 gap = 0.0031
State-Based 8302 15931 27309 3600.06 0.04156 0.003355 0.01847
Break based 16042 8292 4074 1018.24 0.003206 0.0 0.0
SCIP+ 4952 680 103 36.08 0.002666 0.0 0.0
SCIP+: col. gen. 5328 815 409 95.82 0.0006223 0.0 0.0
Presolved break based 6243 8343 969 85.89 0.0031 0.0 0.0
la01_0_l_s dual = 277200.0 opt = 277700.0 gap = 0.0018
State-Based 6318 12636 39086 3600.12 0.02236 0.0 0.004961
Break based 8829 6425 4164 109.72 0.001809 0.0 0.0
SCIP+ 3723 590 522 70.31 0.001795 0.0 0.0
SCIP+: col. gen. 4081 725 1162 100.9 0.0007086 0.0 0.0
Presolved break based 3822 6454 1100 30.37 0.0017 0.0 9.4e-05
la01_0_m_h dual = 131300.0 opt = 132200.0 gap = 0.0072
State-Based 12859 18967 13385 3600.03 0.02291 0.004159 0.01412
Break based 44761 12674 6377 1683.32 0.00683 0.0 0.0
SCIP+ 17380 890 852 564.06 0.005792 0.0 0.0
SCIP+: col. gen. 10742 965 1495 889.79 0.001497 0.0 0.0
Presolved break based 23171 12717 4159 263.9 0.007 0.0 0.0
la01_0_m_l dual = 146700.0 opt = 147300.0 gap = 0.0041
State-Based 10882 16303 12234 2873.79 0.02902 0.0 0.0
Break based 30226 10788 799 1232.96 0.004267 0.0 0.0
SCIP+ 11435 800 208 209.54 0.00366 0.0 0.0
SCIP+: col. gen. 10322 875 711 556.6 0.0008354 0.0 0.0
Presolved break based 14465 10837 761 202.15 0.0042 0.0 0.0

1
5
5

instance vars cons nodes time relative root relative primal gap
la01_0_m_m dual = 163600.0 opt = 164800.0 gap = 0.0074
State-Based 8899 13567 14674 3600.05 0.04267 0.0 0.02454
Break based 20086 8922 10756 3583.2 0.007461 0.0 0.0
SCIP+ 7131 710 740 377.94 0.00688 0.0 0.0
SCIP+: col. gen. 6855 785 819 444.63 0.0004147 0.0 0.0
Presolved break based 8975 8965 9966 435.36 0.0075 0.0 0.0
la01_0_m_s dual = 173500.0 opt = 174900.0 gap = 0.0081
State-Based 6919 10867 27090 3600.05 0.03912 0.001601 0.01471
Break based 11694 7042 53474 3600.67 0.008072 0.0 0.002959
SCIP+ 4345 620 12599 3223.92 0.004663 0.0 0.0
SCIP+: col. gen. 5022 695 12760 2494.52 0.0002011 0.0 0.0
Presolved break based 5308 7085 59986 613.81 0.0081 0.0 0.0
la01_0_r_h dual = 107100.0 opt = 107800.0 gap = 0.0069
State-Based 12625 19943 19743 3600.03 0.0195 0.0 0.003975
Break based 43032 12409 13609 2320.99 0.007342 0.0 0.0
SCIP+ 19272 881 2421 1392.0 0.0 0.0 0.0
SCIP+: col. gen. 11038 974 2029 975.55 0.001493 0.0 0.0
Presolved break based 22251 12456 4156 500.6 0.0072 0.0 0.0
la01_0_r_l dual = 125700.0 opt = 127400.0 gap = 0.013
State-Based 10602 17039 9129 3600.05 0.06804 0.001924 0.0283
Break based 29187 10481 1826 3600.15 0.01279 0.0 0.009688
SCIP+ 10270 791 4313 3600.12 0.01091 0.0 0.006318
SCIP+: col. gen. 11514 884 7481 3600.04 0.0003124 0.0 0.002866
Presolved break based 12275 10520 81818 3600.26 0.013 0.0 0.002
la01_0_r_m dual = 187800.0 opt = 188900.0 gap = 0.006
State-Based 8646 13826 29689 3614.51 0.03723 0.0 0.004573
Break based 19544 8643 22151 2190.34 0.005954 0.0 0.0
SCIP+ 7022 704 2873 695.12 0.005047 0.0 0.0
SCIP+: col. gen. 6746 791 3358 535.6 0.001138 0.0 0.0
Presolved break based 9181 8684 7369 292.62 0.0058 0.0 0.0
la01_0_r_s dual = 112800.0 opt = 113100.0 gap = 0.003
State-Based 7057 9053 58037 3614.37 0.04715 0.0 0.002463
Break based 14032 7095 11407 886.87 0.003193 0.0 0.0
SCIP+ 8652 640 4517 1212.56 0.002558 0.0 0.0
SCIP+: col. gen. 6559 675 2280 474.65 0.0004512 0.0 0.0
Presolved break based 9881 7136 6146 284.21 0.0031 0.0 0.0
la01_0_s_h dual = 53010.0 opt = 53920.0 gap = 0.017
State-Based 13561 14562 22160 3600.09 0.03036 0.001261 0.02194
Break based 52818 13409 1645 3600.56 0.01693 0.001669 0.0163
SCIP+ 19717 925 3738 3600.35 0.01463 0.0001298 0.007902
SCIP+: col. gen. 15204 930 8123 3600.04 0.002262 0.00102 0.008213
Presolved break based 24503 13457 115282 2281.8 0.018 0.0 0.0

1
5
6

instance vars cons nodes time relative root relative primal gap
la01_0_s_l dual = 59760.0 opt = 60490.0 gap = 0.012
State-Based 11579 12482 25511 3600.02 0.02481 0.005637 0.01929
Break based 39357 11519 10171 3600.22 0.01205 0.0 0.00773
SCIP+ 14717 835 4729 3253.97 0.009868 0.0 0.0
SCIP+: col. gen. 14270 840 6229 3511.01 0.00127 0.0 0.0
Presolved break based 18643 11562 52481 1236.74 0.012 0.0 0.0
la01_0_s_m dual = 67160.0 opt = 67950.0 gap = 0.012
State-Based 9599 10412 29294 3600.09 0.0397 0.000986 0.01383
Break based 25484 9648 2140 3600.19 0.01165 0.007373 0.01775
SCIP+ 9774 745 7705 3600.1 0.01145 0.0003532 0.005152
SCIP+: col. gen. 11137 750 8408 3600.03 0.001828 0.0003532 0.004343
Presolved break based 11231 9695 17617 639.68 0.012 0.0 0.0
la01_0_s_s dual = 72640.0 opt = 73190.0 gap = 0.0075
State-Based 7619 8342 41121 3600.1 0.03173 0.0 0.006449
Break based 15692 7767 3374 970.63 0.007545 0.0 0.0
SCIP+ 5590 655 324 98.32 0.00589 0.0 0.0
SCIP+: col. gen. 5750 660 526 151.5 0.001034 0.0 0.0
Presolved break based 6423 7820 10125 224.43 0.0073 0.0 0.0
la01_1_l_h dual = 6381.0 opt = 6381.0 gap = 0.0
State-Based 12261 22342 3336 2832.72 0.0 0.0 0.0
Break based 38042 12042 1 2476.35 0.0 0.0 0.0
SCIP+ 8816 860 193 2003.46 0.0 0.0 0.0
SCIP+: col. gen. 8150 995 92 164.42 0.0 0.0 0.0
Presolved break based 14778 12090 1 863.73 0.0 0.0 0.0
la01_1_l_l dual = 6381.0 opt = 6381.0 gap = 0.0
State-Based 10281 19102 3512 1055.38 0.0 0.0 0.0
Break based 24862 10164 1 2303.89 0.0 0.0 0.0
SCIP+ 6222 770 48 476.01 0.0 0.0 0.0
SCIP+: col. gen. 7858 905 1309 2552.23 0.0 0.0 0.0
Presolved break based 7541 10210 173 690.49 0.0 0.0 0.0
la01_1_l_m dual = 6381.0 opt = 6381.0 gap = -0.0
State-Based 8301 15862 3974 1648.88 0.0 0.0 0.0
Break based 15799 8292 1 436.74 0.0 0.0 0.0
SCIP+ 4990 680 144 397.48 0.0 0.0 0.0
SCIP+: col. gen. 5830 815 972 836.38 0.0 0.0 0.0
Presolved break based 5090 8331 1 270.62 0.0 0.0 0.0
la01_1_l_s dual = 6381.0 opt = 6381.0 gap = -0.0
State-Based 6320 12621 1 122.82 0.0 0.0 0.0
Break based 8385 6403 1 169.82 0.0 0.0 0.0
SCIP+ 3819 590 81 142.51 0.0 0.0 0.0
SCIP+: col. gen. 4279 725 607 414.94 0.0 0.0 0.0
Presolved break based 3820 6446 1 22.54 0.0 0.0 0.0

1
5
7

instance vars cons nodes time relative root relative primal gap
la01_1_m_h dual = 4067.0 opt = 4067.0 gap = -0.0
State-Based 12859 18957 3713 2559.12 0.0 0.0 0.0
Break based 44590 12674 1 3600.13 0.0 0.2009 0.2009
SCIP+ 18340 890 532 3600.17 0.0 0.001967 0.001967
SCIP+: col. gen. 9728 965 334 843.31 0.0 0.0 0.0
Presolved break based 25993 12722 1 78.17 0.0 0.0 0.0
la01_1_m_l dual = 4067.0 opt = 4067.0 gap = 0.0
State-Based 10879 16257 2460 1375.81 0.0 0.0 0.0
Break based 30043 10788 1 3600.1 0.0 0.04623 0.04623
SCIP+ 10551 800 228 742.99 0.0 0.0 0.0
SCIP+: col. gen. 7804 875 217 305.78 0.0 0.0 0.0
Presolved break based 14289 10838 1 252.34 0.0 0.0 0.0
la01_1_m_m dual = 4067.0 opt = 4067.0 gap = 0.0
State-Based 8899 13557 2270 644.45 0.0 0.0 0.0
Break based 19906 8922 1 3600.11 0.0 0.001229 0.001229
SCIP+ 6127 710 38 171.97 0.0 0.0 0.0
SCIP+: col. gen. 5988 785 123 125.87 0.0 0.0 0.0
Presolved break based 7928 8970 1 324.84 0.0 0.0 0.0
la01_1_m_s dual = 4067.0 opt = 4067.0 gap = -0.0
State-Based 6919 10857 1 136.26 0.0 0.0 0.0
Break based 11391 7033 1 810.35 0.0 0.0 0.0
SCIP+ 4210 620 196 408.29 0.0 0.0 0.0
SCIP+: col. gen. 4626 695 34 42.41 0.0 0.0 0.0
Presolved break based 4373 7075 1 24.61 0.0 0.0 0.0
la01_1_r_h dual = 3863.0 opt = 3863.0 gap = -0.0
State-Based 13128 16060 1725 1653.3 0.0 0.0 0.0
Break based 49975 12920 1 3600.19 0.0 0.0005177 0.0005177
SCIP+ 28550 911 50 3600.35 0.0 0.007507 0.007507
SCIP+: col. gen. 11243 944 396 1423.09 0.0 0.0 0.0
Presolved break based 33830 12955 1 519.71 0.0 0.0 0.0
la01_1_r_l dual = 4668.0 opt = 4668.0 gap = -0.0
State-Based 11033 14727 2146 1372.1 0.0 0.0 0.0
Break based 35080 10902 193 3600.14 0.0 0.002785 0.002785
SCIP+ 10420 813 1700 1886.59 0.0 0.0 0.0
SCIP+: col. gen. 7767 862 252 381.1 0.0 0.0 0.0
Presolved break based 13126 10941 1 346.88 0.0 0.0 0.0
la01_1_r_m dual = 3674.0 opt = 3674.0 gap = -0.0
State-Based 8667 13334 1675 665.4 0.0 0.0 0.0
Break based 19663 8622 1 2217.37 0.0 0.0 0.0
SCIP+ 7355 709 28 133.06 0.0 0.0 0.0
SCIP+: col. gen. 5917 786 183 199.7 0.0 0.0 0.0
Presolved break based 9987 8667 1 363.26 0.0 0.0 0.0

1
5
8

instance vars cons nodes time relative root relative primal gap
la01_1_r_s dual = 3400.0 opt = 3400.0 gap = -0.0
State-Based 7388 9407 2857 853.36 0.0 0.0 0.0
Break based 14080 7549 1 1487.75 0.0 0.0 0.0
SCIP+ 5703 641 41 99.0 0.0 0.0 0.0
SCIP+: col. gen. 5192 674 420 324.79 0.0 0.0 0.0
Presolved break based 6482 7590 1 261.24 0.0 0.0 0.0
la01_1_s_h dual = 1759.0 opt = 1759.0 gap = -0.0
State-Based 13557 14548 1456 1330.99 0.0 0.0 0.0
Break based 52717 13409 1 3601.2 0.0 0.0216 0.0216
SCIP+ 37993 925 5 3600.27 1e-12 0.0216 0.0216
SCIP+: col. gen. 11517 930 384 1073.25 0.0 0.0 0.0
Presolved break based 45314 13457 1 179.84 0.0 0.0 0.0
la01_1_s_l dual = 1759.0 opt = 1759.0 gap = 0.0
State-Based 11577 12478 305 473.98 0.0 0.0 0.0
Break based 39256 11519 59 3602.04 0.0 0.2871 0.2871
SCIP+ 26302 835 137 2717.09 0.0 0.0 0.0
SCIP+: col. gen. 10164 840 623 1180.29 0.0 0.0 0.0
Presolved break based 32519 11567 1 544.02 0.0 0.0 0.0
la01_1_s_m dual = 1759.0 opt = 1759.0 gap = 0.0
State-Based 9597 10408 4123 2535.52 0.0 0.0 0.0
Break based 25371 9648 1 2531.72 0.0 0.0 0.0
SCIP+ 16231 745 623 1164.9 0.0 0.0 0.0
SCIP+: col. gen. 6482 750 84 92.93 0.0 0.0 0.0
Presolved break based 19406 9695 1 357.27 0.0 0.0 0.0
la01_1_s_s dual = 1759.0 opt = 1759.0 gap = 0.0
State-Based 7617 8338 1201 327.89 0.0 0.0 0.0
Break based 15579 7767 1 1636.56 0.0 0.0 0.0
SCIP+ 7780 655 127 188.38 0.0 0.0 0.0
SCIP+: col. gen. 5508 660 228 256.96 0.0 0.0 0.0
Presolved break based 10247 7817 1 275.18 0.0 0.0 0.0
la01_7_l_h dual = 299500.0 opt = 301300.0 gap = 0.0059
State-Based 12259 22357 6843 3600.04 0.02301 0.001806 0.01347
Break based 38275 12042 6571 3600.57 0.005843 0.0004215 0.005333
SCIP+ 11153 860 4153 3186.95 0.00456 0.0 0.0
SCIP+: col. gen. 10790 995 1805 1217.78 0.0001395 0.0 0.0
Presolved break based 15333 12086 208301 3600.25 0.0058 0.0 0.0011
la01_7_l_l dual = 312300.0 opt = 314100.0 gap = 0.0057
State-Based 10279 19117 11186 3600.04 0.02318 0.003394 0.01862
Break based 25105 10164 2030 3600.39 0.005609 0.003394 0.008705
SCIP+ 8015 770 2011 955.18 0.004644 0.0 0.0
SCIP+: col. gen. 8331 905 9409 3600.02 0.0002126 2.229e-05 0.00109
Presolved break based 9477 10205 160234 3226.7 0.0056 0.0 0.0

1
5
9

instance vars cons nodes time relative root relative primal gap
la01_7_l_m dual = 317100.0 opt = 318100.0 gap = 0.0032
State-Based 8300 15895 29808 3600.18 0.01083 0.0 0.003748
Break based 16042 8292 13858 2196.92 0.003304 0.0 0.0
SCIP+ 5313 680 231 112.67 0.003017 0.0 0.0
SCIP+: col. gen. 5565 815 564 153.0 0.0002073 0.0 0.0
Presolved break based 6574 8337 17054 433.97 0.0032 0.0 0.0
la01_7_l_s dual = 317100.0 opt = 318100.0 gap = 0.0032
State-Based 6318 12636 53255 3600.07 0.007618 0.0 0.000925
Break based 8742 6417 10852 530.28 0.003251 0.0 0.0
SCIP+ 3794 590 203 55.18 0.002985 0.0 0.0
SCIP+: col. gen. 4171 725 411 77.42 0.0002879 0.0 0.0
Presolved break based 4163 6456 7079 185.15 0.0032 0.0 0.0
la01_7_m_h dual = 191100.0 opt = 192800.0 gap = 0.009
State-Based 12859 18967 5540 3600.04 0.02622 0.01023 0.03389
Break based 44761 12674 2649 3600.21 0.008966 0.008028 0.01704
SCIP+ 18542 890 3935 3600.19 0.006658 0.000726 0.004441
SCIP+: col. gen. 13551 965 5388 3600.02 0.0002249 0.000726 0.003513
Presolved break based 24520 12722 132091 2523.93 0.0089 0.0 0.0
la01_7_m_l dual = 199600.0 opt = 200400.0 gap = 0.0042
State-Based 10882 16303 10388 3600.03 0.01971 0.00668 0.02074
Break based 30226 10788 2894 3600.63 0.004403 0.0237 0.02809
SCIP+ 11909 800 2170 1089.54 0.003066 0.0 0.0
SCIP+: col. gen. 9458 875 8520 3600.03 0.0004197 6.984e-05 0.001167
Presolved break based 14868 10840 60649 1349.49 0.0045 0.0 0.0
la01_7_m_m dual = 202300.0 opt = 203800.0 gap = 0.0072
State-Based 8899 13567 24537 3600.05 0.01468 0.0 0.008323
Break based 20089 8922 6862 3600.58 0.007377 0.004858 0.01163
SCIP+ 7139 710 1887 937.88 0.006029 0.0 0.0
SCIP+: col. gen. 7155 785 3990 1511.66 0.0001151 0.0 0.0
Presolved break based 8890 8972 217244 3164.14 0.0074 0.0 8.8e-05
la01_7_m_s dual = 202300.0 opt = 203800.0 gap = 0.0072
State-Based 6919 10867 36867 3600.1 0.01348 0.001345 0.006531
Break based 11697 7042 32884 3600.72 0.007079 0.0003239 0.003016
SCIP+ 4442 620 1362 474.85 0.005555 0.0 0.0
SCIP+: col. gen. 5026 695 7289 1662.48 0.0001344 0.0 0.0
Presolved break based 5348 7083 88795 1097.42 0.0071 0.0 9.8e-06
la01_7_r_h dual = 191800.0 opt = 193000.0 gap = 0.0063
State-Based 12765 18697 25842 3600.05 0.02143 0.0002176 0.006995
Break based 45455 12556 2724 3600.22 0.006484 0.0002176 0.006112
SCIP+ 21347 891 1638 1100.25 0.005402 0.0 0.0
SCIP+: col. gen. 13933 964 6936 2963.05 0.0003365 0.0 0.0
Presolved break based 26529 12597 63330 931.83 0.0066 0.0 0.0

1
6
0

instance vars cons nodes time relative root relative primal gap
la01_7_r_l dual = 235000.0 opt = 236400.0 gap = 0.0058
State-Based 10328 18161 29265 3603.74 0.01278 6.346e-05 0.005675
Break based 26460 10207 13184 3600.53 0.005792 6.346e-05 0.00389
SCIP+ 14702 777 430 232.95 0.004998 0.0 0.0
SCIP+: col. gen. 9004 898 768 212.5 0.001155 0.0 0.0
Presolved break based 17038 10258 93874 1281.44 0.0056 0.0 0.0
la01_7_r_m dual = 160600.0 opt = 161600.0 gap = 0.0064
State-Based 9112 11836 23850 3600.05 0.01068 0.001411 0.005167
Break based 22670 9116 10422 3600.24 0.006123 0.001751 0.005558
SCIP+ 7094 728 1362 496.27 0.005659 0.0 0.0
SCIP+: col. gen. 7740 767 8645 2078.76 0.0001086 0.0 0.0
Presolved break based 8126 9165 96543 1247.37 0.0061 0.0 4.9e-05
la01_7_r_s dual = 257900.0 opt = 258800.0 gap = 0.0034
State-Based 6640 11716 31925 1243.67 0.006909 0.0 6.956e-05
Break based 10486 6756 22938 1003.72 0.003418 0.0 0.0
SCIP+ 4203 606 1772 272.06 0.003344 0.0 0.0
SCIP+: col. gen. 4560 709 1756 236.82 0.0005788 0.0 0.0
Presolved break based 5338 6788 17151 163.13 0.0033 0.0 0.0
la01_7_s_h dual = 83190.0 opt = 83970.0 gap = 0.0093
State-Based 13559 14552 6289 3600.16 0.02371 0.005657 0.02045
Break based 52818 13409 366 3600.71 0.009295 0.07136 0.08092
SCIP+ 40208 925 476 3600.22 0.007798 0.006347 0.012
SCIP+: col. gen. 18367 930 3467 3600.02 0.0002269 0.0002501 0.004986
Presolved break based 46858 13456 56507 3600.39 0.0092 0.0 0.005
la01_7_s_l dual = 87490.0 opt = 88130.0 gap = 0.0072
State-Based 11579 12482 3303 3600.01 0.02132 0.003529 0.02272
Break based 39357 11519 205 3600.21 0.007248 0.006071 0.01311
SCIP+ 28564 835 743 3600.13 0.005061 0.001294 0.003238
SCIP+: col. gen. 14510 840 5113 3600.02 0.0009828 0.002281 0.004711
Presolved break based 34069 11565 28720 3600.04 0.007 0.0034 0.0076
la01_7_s_m dual = 88530.0 opt = 88910.0 gap = 0.0043
State-Based 9599 10412 25279 3600.03 0.008958 0.002306 0.005506
Break based 25484 9648 365 3600.24 0.004338 0.002519 0.006584
SCIP+ 18402 745 4154 1899.35 0.004447 0.0 0.0
SCIP+: col. gen. 10631 750 5688 3600.02 0.0001301 0.0 0.0007887
Presolved break based 21121 9694 22181 1000.8 0.0047 0.0 0.0
la01_7_s_s dual = 88510.0 opt = 88910.0 gap = 0.0045
State-Based 7619 8342 29245 3600.05 0.008707 0.0 0.001149
Break based 15692 7767 6821 3600.15 0.004581 0.001451 0.004864
SCIP+ 10053 655 2839 830.04 0.004359 0.0 0.0
SCIP+: col. gen. 6707 660 2068 798.67 0.000126 0.0 0.0
Presolved break based 12128 7817 25997 408.85 0.0045 0.0 0.0

1
6
1

instance vars cons nodes time relative root relative primal gap
la01_8_l_h dual = 627200.0 opt = 631400.0 gap = 0.0066
State-Based 12216 22358 19486 3600.05 0.03222 0.001403 0.02245
Break based 38238 12042 3285 2258.34 0.006628 0.0 0.0
SCIP+ 8107 860 422 168.46 0.003011 0.0 0.0
SCIP+: col. gen. 7732 995 323 96.63 0.0002757 0.0 0.0
Presolved break based 10944 12085 6184 80.3 0.0068 0.0 0.0
la01_8_l_l dual = 627600.0 opt = 631400.0 gap = 0.006
State-Based 10236 19118 28980 3600.24 0.03267 0.001403 0.02224
Break based 25019 10164 2900 1756.72 0.005936 0.0 0.0
SCIP+ 6482 770 259 107.68 0.003155 0.0 0.0
SCIP+: col. gen. 6558 905 359 121.92 0.0002763 0.0 0.0
Presolved break based 6926 10211 467 75.04 0.0041 0.0 0.0
la01_8_l_m dual = 629900.0 opt = 631400.0 gap = 0.0023
State-Based 8256 15878 26342 1784.46 0.02749 0.0 0.0
Break based 15825 8292 107 805.39 0.002233 0.0 6.336e-05
SCIP+ 5009 680 97 31.2 0.00283 0.0 0.0
SCIP+: col. gen. 5446 815 370 82.21 0.000639 0.0 0.0
Presolved break based 5348 8342 176 46.34 0.0022 0.0 0.0
la01_8_l_s dual = 634300.0 opt = 637700.0 gap = 0.0053
State-Based 6275 12637 48907 2684.9 0.02264 0.0 0.0
Break based 8630 6425 2430 661.81 0.005366 0.0 0.0
SCIP+ 3755 590 1465 235.64 0.006243 0.0 0.0
SCIP+: col. gen. 4227 725 3606 597.9 0.0009119 0.0 0.0
Presolved break based 3958 6452 911 37.79 0.0054 0.0 0.0
la01_8_m_h dual = 368700.0 opt = 378900.0 gap = 0.027
State-Based 12816 18968 14464 3600.04 0.0483 0.0 0.02922
Break based 44578 12673 361 3600.74 0.02681 0.01608 0.04252
SCIP+ 10548 890 8053 2952.67 0.0204 0.0 0.0
SCIP+: col. gen. 9629 965 7498 2832.8 0.000678 0.0 0.0
Presolved break based 13957 12722 30366 517.39 0.026 0.0 0.0
la01_8_m_l dual = 370200.0 opt = 378900.0 gap = 0.023
State-Based 10836 16268 18865 3600.1 0.04899 0.003555 0.0371
Break based 30087 10788 2829 3601.09 0.02297 0.0 0.02075
SCIP+ 8172 800 5232 1840.39 0.01964 0.0 0.0
SCIP+: col. gen. 8162 875 7614 2493.54 0.0006794 0.0 0.0
Presolved break based 8944 10836 24090 673.26 0.023 0.0 0.0
la01_8_m_m dual = 370200.0 opt = 378900.0 gap = 0.023
State-Based 8856 13568 29611 3600.27 0.04647 0.0 0.01076
Break based 19782 8922 7125 3600.41 0.02277 0.0 0.01235
SCIP+ 6136 710 4483 1575.38 0.01987 0.0 0.0
SCIP+: col. gen. 6847 785 8019 2274.95 0.000941 0.0 0.0
Presolved break based 6708 8973 27130 447.45 0.022 0.0 0.0

1
6
2

instance vars cons nodes time relative root relative primal gap
la01_8_m_s dual = 371200.0 opt = 378900.0 gap = 0.02
State-Based 6876 10868 66159 3450.84 0.03631 0.0 0.0
Break based 11327 7042 39830 3600.7 0.02015 0.0 0.004348
SCIP+ 4328 620 3058 880.08 0.01953 0.0 0.0
SCIP+: col. gen. 4785 695 6061 1369.92 0.001026 0.0 0.0
Presolved break based 4832 7083 26339 336.05 0.019 0.0 0.0
la01_8_r_h dual = 339400.0 opt = 347500.0 gap = 0.023
State-Based 12795 18778 24868 3600.05 0.04344 0.0007913 0.01845
Break based 45092 12644 6017 3601.19 0.02327 0.0 0.01026
SCIP+ 9927 891 8856 2457.45 0.01651 0.0 0.0
SCIP+: col. gen. 9938 964 2611 1084.87 0.001053 0.0 0.0
Presolved break based 13241 12687 16560 285.27 0.022 0.0 0.0
la01_8_r_l dual = 300400.0 opt = 316900.0 gap = 0.052
State-Based 10560 16432 29221 3600.49 0.06556 0.001272 0.01548
Break based 29661 10447 605 3600.44 0.0519 0.0055 0.05297
SCIP+ 7819 795 6910 3600.11 0.03301 0.0 0.005105
SCIP+: col. gen. 8229 880 5402 2082.06 0.0008821 0.0 0.0
Presolved break based 8150 10491 49570 1090.65 0.042 0.0 0.0
la01_8_r_m dual = 342900.0 opt = 348400.0 gap = 0.016
State-Based 8542 13653 29371 3600.17 0.04947 0.003155 0.0145
Break based 19263 8537 6874 2429.85 0.01587 0.0 0.0
SCIP+ 5970 705 4242 1377.43 0.01439 0.0 0.0
SCIP+: col. gen. 6539 790 1888 605.31 0.000804 0.0 0.0
Presolved break based 6582 8577 9949 200.65 0.015 0.0 0.0
la01_8_r_s dual = 293400.0 opt = 294900.0 gap = 0.0051
State-Based 6772 10715 19881 1659.3 0.03648 0.0 7.118e-05
Break based 11312 6915 537 577.11 0.004999 0.0 0.0
SCIP+ 4232 620 2004 341.52 0.004708 0.0 0.0
SCIP+: col. gen. 4614 695 2381 346.56 0.001104 0.0 0.0
Presolved break based 4596 6948 651 48.63 0.0049 0.0 0.0
la01_8_s_h dual = 148200.0 opt = 151700.0 gap = 0.023
State-Based 13516 14553 29541 3600.09 0.03697 0.002155 0.01203
Break based 52630 13409 365 3601.07 0.02347 0.006438 0.02835
SCIP+ 16049 925 2885 1811.83 0.018 0.0 0.0
SCIP+: col. gen. 12628 930 7397 3475.6 0.0007165 0.0 0.0
Presolved break based 18211 13459 130339 3313.48 0.023 0.0 0.0
la01_8_s_l dual = 148200.0 opt = 151700.0 gap = 0.023
State-Based 11536 12483 30140 3600.28 0.0366 0.001021 0.01401
Break based 39090 11519 2921 3600.98 0.02324 0.01669 0.03862
SCIP+ 12395 835 2557 1416.49 0.01769 0.0 0.0
SCIP+: col. gen. 10779 840 7990 3600.02 0.0007666 0.0 0.002843
Presolved break based 14504 11565 159938 2404.92 0.024 0.0 0.0

1
6
3

instance vars cons nodes time relative root relative primal gap
la01_8_s_m dual = 148700.0 opt = 151700.0 gap = 0.02
State-Based 9556 10413 34503 1960.21 0.03608 0.0 0.0
Break based 24863 9648 726 3600.5 0.01989 0.0 0.0187
SCIP+ 8800 745 1790 1049.19 0.0179 0.0 0.0
SCIP+: col. gen. 8262 750 6102 2351.77 0.0007303 0.0 0.0
Presolved break based 9287 9701 95901 2041.23 0.02 0.0 0.0
la01_8_s_s dual = 149200.0 opt = 151700.0 gap = 0.017
State-Based 7576 8343 10964 661.32 0.02983 0.0 0.0
Break based 14792 7767 20878 3600.24 0.01704 0.0 0.00564
SCIP+ 5945 655 349 162.77 0.01543 0.0 0.0
SCIP+: col. gen. 5593 660 921 333.32 0.001404 0.0 0.0
Presolved break based 6351 7812 17357 289.33 0.017 0.0 0.0
la02_0_l_h dual = 244400.0 opt = 249100.0 gap = 0.019
State-Based 10878 20027 9365 3600.04 0.04719 0.001016 0.02767
Break based 28331 10798 91 3600.39 0.01877 0.01312 0.0296
SCIP+ 6282 790 3082 3600.12 0.01365 0.00939 0.01493
SCIP+: col. gen. 10070 925 4643 3162.07 0.0007846 0.0 0.0
Presolved break based 6723 10840 51992 1270.38 0.018 0.0 0.0
la02_0_l_l dual = 271200.0 opt = 275100.0 gap = 0.014
State-Based 9115 17110 11505 3600.05 0.05798 0.004187 0.03643
Break based 19934 9145 344 3600.48 0.01417 0.01668 0.02976
SCIP+ 5312 710 7921 3600.08 0.01319 0.0002799 0.0078
SCIP+: col. gen. 7458 845 7543 3433.07 0.001067 0.0 0.0
Presolved break based 5323 9190 123897 1692.42 0.014 0.0 0.0
la02_0_l_m dual = 286300.0 opt = 287800.0 gap = 0.0054
State-Based 7244 14032 27266 3600.04 0.04652 0.0003057 0.02162
Break based 12386 7360 59069 2395.81 0.005196 0.0 0.0
SCIP+ 4275 625 3611 477.63 0.004738 0.0 0.0
SCIP+: col. gen. 4963 760 1305 194.53 0.0007647 0.0 0.0
Presolved break based 4295 7417 29394 296.57 0.0051 0.0 0.0
la02_0_l_s dual = 298200.0 opt = 299800.0 gap = 0.0055
State-Based 5534 11253 46724 3600.09 0.02227 0.0 0.00658
Break based 6712 5689 31724 1656.81 0.005484 0.0 0.0
SCIP+ 3279 543 517 104.98 0.005466 0.0 0.0
SCIP+: col. gen. 3673 680 1067 213.83 0.0006291 0.0 0.0
Presolved break based 3318 5725 13375 115.57 0.0054 0.0 0.0
la02_0_m_h dual = 145400.0 opt = 148600.0 gap = 0.022
State-Based 11473 17000 13775 3600.04 0.03614 0.002254 0.02267
Break based 36213 11425 343 3600.13 0.02174 0.02469 0.04639
SCIP+ 8751 820 3615 3600.13 0.01757 0.004731 0.008908
SCIP+: col. gen. 12254 895 4201 3600.02 0.001014 0.0 0.005862
Presolved break based 12480 11472 73894 1125.4 0.021 0.0 0.0

1
6
4

instance vars cons nodes time relative root relative primal gap
la02_0_m_l dual = 162800.0 opt = 165500.0 gap = 0.017
State-Based 9716 14636 15468 3600.04 0.04807 0.00775 0.03154
Break based 24507 9766 549 3600.18 0.01672 0.003866 0.01982
SCIP+ 6621 740 6140 3600.08 0.01632 0.0004893 0.003002
SCIP+: col. gen. 9792 815 5618 3600.02 0.0007362 0.0004893 0.006427
Presolved break based 7442 9816 164322 2719.88 0.017 0.0 3.6e-05
la02_0_m_m dual = 175400.0 opt = 177000.0 gap = 0.009
State-Based 7842 12049 20618 3600.05 0.04783 0.0002543 0.02027
Break based 15948 7990 16277 3600.16 0.009234 0.001141 0.005933
SCIP+ 4646 655 19238 3600.05 0.008333 0.0 0.0004153
SCIP+: col. gen. 5935 730 4622 1496.24 0.0006291 0.0 0.0
Presolved break based 5257 8042 37737 406.1 0.0092 0.0 4.5e-05
la02_0_m_s dual = 182800.0 opt = 184300.0 gap = 0.0081
State-Based 6089 9688 44473 3600.06 0.02836 0.001688 0.006099
Break based 9327 6317 50281 3600.8 0.008083 2.713e-05 0.00366
SCIP+ 3676 575 7091 1434.58 0.007551 0.0 0.0
SCIP+: col. gen. 4197 650 8964 2032.56 0.0001958 0.0 0.0
Presolved break based 3693 6364 83452 512.7 0.0083 0.0 0.0
la02_0_r_h dual = 181300.0 opt = 185000.0 gap = 0.02
State-Based 11232 16151 30350 3600.15 0.03724 0.001178 0.01039
Break based 34192 11119 2117 3600.17 0.02017 0.006826 0.02525
SCIP+ 15369 824 3811 3600.14 0.02023 0.005891 0.0199
SCIP+: col. gen. 14424 891 8887 3600.02 0.001239 0.001113 0.01463
Presolved break based 17562 11169 32985 1200.7 0.02 0.0 0.0
la02_0_r_l dual = 159500.0 opt = 161200.0 gap = 0.01
State-Based 9793 14575 19016 3600.02 0.0364 0.005038 0.01794
Break based 25219 9846 114 3600.65 0.01031 0.01642 0.02532
SCIP+ 6650 740 4414 3600.1 0.007397 0.0 0.002376
SCIP+: col. gen. 9277 815 5943 2886.8 0.0003592 0.0 0.0
Presolved break based 7706 9895 127467 2828.8 0.01 0.0 0.0
la02_0_r_m dual = 141700.0 opt = 144000.0 gap = 0.016
State-Based 7563 11913 26913 3600.03 0.0567 0.003446 0.02187
Break based 15571 7653 21721 3600.17 0.01554 0.001389 0.007464
SCIP+ 4942 653 877 196.6 0.01333 0.0 0.0
SCIP+: col. gen. 7469 732 6399 2141.25 0.0005101 0.0 0.0
Presolved break based 6369 7706 33281 675.31 0.011 0.0 0.0
la02_0_r_s dual = 149300.0 opt = 150300.0 gap = 0.0064
State-Based 6014 8934 72472 2576.27 0.02114 0.0 0.0
Break based 10010 6182 17692 1649.32 0.006464 0.0 0.0
SCIP+ 4735 581 3975 1037.98 0.005046 0.0 0.0
SCIP+: col. gen. 4840 644 2102 531.43 0.000411 0.0 0.0
Presolved break based 5102 6222 17787 190.91 0.0063 0.0 0.0

1
6
5

instance vars cons nodes time relative root relative primal gap
la02_0_s_h dual = 58640.0 opt = 59930.0 gap = 0.022
State-Based 12173 13077 20593 3600.06 0.03661 0.0 0.01977
Break based 43464 12160 3281 3600.17 0.02161 0.0 0.01818
SCIP+ 15933 855 3516 3600.17 0.01801 0.004455 0.02229
SCIP+: col. gen. 14964 860 4755 3600.02 0.0009692 0.009444 0.02382
Presolved break based 20094 12208 114292 3600.27 0.021 0.0 0.0059
la02_0_s_l dual = 66370.0 opt = 67600.0 gap = 0.018
State-Based 10416 11252 25884 3600.04 0.03931 0.003003 0.02567
Break based 30487 10489 1794 3600.56 0.01823 0.003373 0.01959
SCIP+ 11895 775 3642 3600.12 0.01597 0.006597 0.02218
SCIP+: col. gen. 13453 780 4680 3600.02 0.0005613 0.006642 0.01947
Presolved break based 13139 10535 136187 3487.34 0.018 0.0 0.0
la02_0_s_m dual = 72300.0 opt = 73280.0 gap = 0.013
State-Based 8542 9281 29279 3600.03 0.04309 0.001351 0.01846
Break based 20750 8725 2908 3600.17 0.01346 0.01661 0.02893
SCIP+ 7559 690 3134 1442.46 0.01092 0.0 0.0
SCIP+: col. gen. 9728 695 5216 3162.76 0.0004464 0.0 0.0
Presolved break based 8628 8774 85479 1262.23 0.013 0.0 5.5e-05
la02_0_s_s dual = 76710.0 opt = 77210.0 gap = 0.0064
State-Based 6785 7456 45839 3600.1 0.02858 0.001023 0.006014
Break based 12941 7048 55637 3612.36 0.006376 0.0 0.001531
SCIP+ 4697 610 2239 458.88 0.005482 0.0 0.0
SCIP+: col. gen. 5183 615 5103 932.09 0.0001128 0.0 0.0
Presolved break based 5151 7099 66913 594.57 0.0061 0.0 0.0
la02_1_l_h dual = 6006.0 opt = 6006.0 gap = -0.0
State-Based 10875 19973 1380 1414.79 0.0 0.0 0.0
Break based 28087 10798 1 3172.15 0.0 0.0 0.0
SCIP+ 9085 790 184 701.76 0.0 0.0 0.0
SCIP+: col. gen. 8021 925 351 595.49 0.0 0.0 0.0
Presolved break based 10366 10845 1 345.21 0.0 0.0 0.0
la02_1_l_l dual = 6006.0 opt = 6006.0 gap = 0.0
State-Based 9114 17092 1 153.16 0.0 0.0 0.0
Break based 19690 9145 1 2016.37 0.0 0.0 0.0
SCIP+ 6789 710 167 437.65 0.0 0.0 0.0
SCIP+: col. gen. 6561 845 380 436.31 0.0 0.0 0.0
Presolved break based 7849 9186 1 129.89 0.0 0.0 0.0
la02_1_l_m dual = 6006.0 opt = 6006.0 gap = 0.0
State-Based 7244 14032 757 486.93 0.0 0.0 0.0
Break based 12148 7360 1 953.7 0.0 0.0 0.0
SCIP+ 4630 625 196 360.0 0.0 0.0 0.0
SCIP+: col. gen. 4977 760 530 537.81 0.0 0.0 0.0
Presolved break based 5554 7401 1 36.02 0.0 0.0 0.0

1
6
6

instance vars cons nodes time relative root relative primal gap
la02_1_l_s dual = 6006.0 opt = 6006.0 gap = -0.0
State-Based 5531 11199 5977 1135.03 0.0 0.0 0.0
Break based 6402 5671 428 3600.32 0.0 0.0 0.0
SCIP+ 3350 543 3884 3369.99 0.0 0.0 0.0
SCIP+: col. gen. 4223 680 1893 1909.92 0.0 0.0 0.0
Presolved break based 3638 5721 331 136.82 0.0 0.0 0.0
la02_1_m_h dual = 3759.0 opt = 3759.0 gap = -0.0
State-Based 11473 17000 2288 1939.99 0.0 0.0 0.0
Break based 36037 11425 1 3600.35 0.0 0.002394 0.002394
SCIP+ 14877 820 1242 1554.5 0.0 0.0 0.0
SCIP+: col. gen. 8431 895 316 285.37 0.0 0.0 0.0
Presolved break based 21197 11478 115 1045.6 0.0 0.0 0.0
la02_1_m_l dual = 3759.0 opt = 3759.0 gap = -0.0
State-Based 9713 14600 1 162.16 0.0 0.0 0.0
Break based 24321 9766 1 2089.33 0.0 0.0 0.0
SCIP+ 10179 740 187 433.57 0.0 0.0 0.0
SCIP+: col. gen. 6828 815 530 481.22 0.0 0.0 0.0
Presolved break based 12561 9815 1 591.23 0.0 0.0 0.0
la02_1_m_m dual = 3759.0 opt = 3759.0 gap = 0.0
State-Based 7842 12049 2336 449.66 0.0 0.0 0.0
Break based 15762 7990 1 1200.14 0.0 0.0 0.0
SCIP+ 6592 655 76 176.13 0.0 0.0 0.0
SCIP+: col. gen. 5502 730 303 350.28 0.0 0.0 0.0
Presolved break based 8100 8034 1 50.89 0.0 0.0 0.0
la02_1_m_s dual = 3759.0 opt = 3759.0 gap = 0.0
State-Based 6086 9652 848 239.15 0.0 0.0 0.0
Break based 9035 6307 3774 1596.45 0.0 0.0 0.0
SCIP+ 4440 575 46 66.01 0.0 0.0 0.0
SCIP+: col. gen. 4584 650 434 602.47 0.0 0.0 0.0
Presolved break based 5177 6354 256 454.28 0.0 0.0 0.0
la02_1_r_h dual = 3362.0 opt = 3362.0 gap = 0.0
State-Based 11503 16399 1 195.76 0.0 0.0 0.0
Break based 36502 11436 1 3600.2 0.0 0.02499 0.02499
SCIP+ 13818 824 1567 1913.23 0.0 0.0 0.0
SCIP+: col. gen. 7899 891 175 226.17 0.0 0.0 0.0
Presolved break based 19175 11489 1 257.04 0.0 0.0 0.0
la02_1_r_l dual = 3581.0 opt = 3581.0 gap = -0.0
State-Based 10048 12740 1526 759.41 0.0 0.0 0.0
Break based 27537 10107 1 2287.72 0.0 0.0 0.0
SCIP+ 16325 759 163 902.99 0.0 0.0 0.0
SCIP+: col. gen. 9611 796 595 1175.23 0.0 0.0 0.0
Presolved break based 18809 10158 1 224.62 0.0 0.0 0.0

1
6
7

instance vars cons nodes time relative root relative primal gap
la02_1_r_m dual = 3788.0 opt = 3788.0 gap = 0.0
State-Based 7326 12628 1301 308.68 0.0 0.0 0.0
Break based 14090 7370 1 788.51 0.0 0.0 0.0
SCIP+ 6938 641 93 278.73 0.0 0.0 0.0
SCIP+: col. gen. 5575 744 762 769.84 0.0 0.0 0.0
Presolved break based 8856 7409 1 31.02 0.0 0.0 0.0
la02_1_r_s dual = 4229.0 opt = 4229.0 gap = -0.0
State-Based 6202 8482 15101 3196.24 0.0 0.0 0.0
Break based 10427 6344 115 3600.16 0.0 0.0004729 0.0004729
SCIP+ 5812 591 404 604.55 0.0 0.0 0.0
SCIP+: col. gen. 4749 634 380 384.31 0.0 0.0 0.0
Presolved break based 7676 6391 439 1103.6 0.0 0.0 0.0
la02_1_s_h dual = 1662.0 opt = 1662.0 gap = 0.0
State-Based 12173 13077 119 463.12 0.0 0.0 0.0
Break based 43358 12160 115 3600.62 0.0 0.0006017 0.0006017
SCIP+ 29230 855 402 2656.05 0.0 0.0 0.0
SCIP+: col. gen. 9794 860 205 489.08 0.0 0.0 0.0
Presolved break based 35736 12213 1 542.84 0.0 0.0 0.0
la02_1_s_l dual = 1662.0 opt = 1662.0 gap = 0.0
State-Based 10413 11237 4060 2128.61 0.0 0.0 0.0
Break based 30371 10489 1 2858.79 0.0 0.0 0.0
SCIP+ 20150 775 535 1899.06 0.0 0.0 0.0
SCIP+: col. gen. 8773 780 231 680.0 0.0 0.0 0.0
Presolved break based 23511 10542 1 505.87 0.0 0.0 0.0
la02_1_s_m dual = 1662.0 opt = 1662.0 gap = 0.0
State-Based 8542 9281 2804 254.48 0.0 0.0 0.0
Break based 20634 8725 1 3293.32 0.0 0.0 0.0
SCIP+ 12445 690 67 193.79 0.0 0.0 0.0
SCIP+: col. gen. 6779 695 364 488.95 0.0 0.0 0.0
Presolved break based 14756 8776 1 101.96 0.0 0.0 0.0
la02_1_s_s dual = 1662.0 opt = 1662.0 gap = 0.0
State-Based 6782 7441 1 106.45 0.0 0.0 0.0
Break based 12770 7045 1 934.83 0.0 0.0 0.0
SCIP+ 6765 610 51 113.3 0.0 0.0 0.0
SCIP+: col. gen. 4881 615 179 171.66 0.0 0.0 0.0
Presolved break based 8551 7098 1 117.55 0.0 0.0 0.0
la02_7_l_h dual = 334100.0 opt = 335800.0 gap = 0.005
State-Based 10877 20009 10739 3600.06 0.02387 0.005066 0.02131
Break based 28331 10798 987 3600.17 0.004947 0.006117 0.01044
SCIP+ 7161 790 7301 3600.09 0.00426 0.0 0.0001658
SCIP+: col. gen. 8478 925 9254 3600.02 0.0001024 0.0 0.0008736
Presolved break based 8007 10841 79712 1210.9 0.0048 0.0 0.0

1
6
8

instance vars cons nodes time relative root relative primal gap
la02_7_l_l dual = 339500.0 opt = 342500.0 gap = 0.0088
State-Based 9114 17092 27036 3600.04 0.02271 0.003924 0.0154
Break based 19931 9145 18819 3600.7 0.008693 0.001524 0.004763
SCIP+ 5434 710 538 246.55 0.006526 0.0 0.0
SCIP+: col. gen. 6109 845 1606 355.2 0.0 0.0 0.0
Presolved break based 6150 9189 78663 954.73 0.0086 0.0 0.0
la02_7_l_m dual = 341900.0 opt = 344000.0 gap = 0.006
State-Based 7244 14032 29791 3600.02 0.01203 4.361e-05 0.007786
Break based 12386 7360 54977 3604.63 0.006029 0.0 0.001255
SCIP+ 4322 625 3521 803.02 0.004848 0.0 0.0
SCIP+: col. gen. 4762 760 11438 2061.69 0.0003743 0.0 0.0
Presolved break based 4400 7408 94875 932.83 0.0059 0.0 8.7e-05
la02_7_l_s dual = 343800.0 opt = 346200.0 gap = 0.0069
State-Based 5536 11289 68825 3600.04 0.01156 0.0 0.00178
Break based 6678 5685 49505 2303.46 0.006998 0.0 8.947e-05
SCIP+ 3302 543 6944 1583.23 0.005902 0.0 0.0
SCIP+: col. gen. 3812 680 4403 1020.84 0.001167 0.0 0.0
Presolved break based 3340 5722 25816 274.65 0.007 0.0 0.0
la02_7_m_h dual = 209900.0 opt = 211600.0 gap = 0.0082
State-Based 11475 17003 10863 3600.07 0.02593 0.003657 0.02486
Break based 36213 11425 1077 3600.6 0.00806 0.004021 0.01123
SCIP+ 12060 820 2010 2409.88 0.0057 0.0 0.0
SCIP+: col. gen. 11332 895 4726 2999.19 0.0001585 0.0 0.0
Presolved break based 16952 11472 28189 749.53 0.008 0.0 0.0
la02_7_m_l dual = 212600.0 opt = 213900.0 gap = 0.006
State-Based 9718 14639 25319 3600.03 0.01533 0.00397 0.01137
Break based 24507 9766 8380 3600.56 0.006194 0.0002244 0.005466
SCIP+ 7995 740 5809 1977.05 0.004901 0.0 0.0
SCIP+: col. gen. 8085 815 2166 1163.02 0.0 0.0 0.0
Presolved break based 9864 9818 12170 423.4 0.0056 0.0 0.0
la02_7_m_m dual = 212800.0 opt = 213900.0 gap = 0.005
State-Based 7844 12052 28981 3600.17 0.009617 0.0 0.002099
Break based 15948 7990 19804 3600.9 0.004918 0.0 0.000435
SCIP+ 5363 655 866 266.54 0.003856 0.0 0.0
SCIP+: col. gen. 5519 730 1292 544.95 0.0005266 0.0 0.0
Presolved break based 6263 8033 11202 295.43 0.0049 0.0 0.0
la02_7_m_s dual = 213400.0 opt = 214800.0 gap = 0.0063
State-Based 6090 9680 63052 3600.08 0.009022 0.0004703 0.00368
Break based 9327 6317 26990 2091.12 0.006381 0.0 0.0
SCIP+ 3712 575 4900 1147.07 0.006321 0.0 0.0
SCIP+: col. gen. 4214 650 7075 1950.02 0.0008492 0.0 0.0
Presolved break based 4101 6363 16540 248.3 0.0064 0.0 0.0

1
6
9

instance vars cons nodes time relative root relative primal gap
la02_7_r_h dual = 214900.0 opt = 216900.0 gap = 0.0092
State-Based 11462 15111 3668 3600.09 0.02604 0.0113 0.03357
Break based 38156 11366 276 3600.67 0.009304 0.01209 0.02061
SCIP+ 15718 834 560 776.22 0.005991 0.0 0.0
SCIP+: col. gen. 11172 881 2174 1506.9 0.000254 0.0 0.0
Presolved break based 20417 11422 44677 2472.17 0.0086 0.0 0.0
la02_7_r_l dual = 255800.0 opt = 257900.0 gap = 0.0082
State-Based 9100 15904 27010 3600.07 0.02021 0.002621 0.01335
Break based 21596 9113 2859 3600.27 0.008166 0.001353 0.008863
SCIP+ 9686 722 7878 2194.97 0.007731 0.0 0.0
SCIP+: col. gen. 8279 834 11814 2967.0 0.0 0.0 0.0
Presolved break based 11552 9160 160563 1487.05 0.0081 0.0 8.1e-05
la02_7_r_m dual = 235100.0 opt = 236500.0 gap = 0.0058
State-Based 7591 12283 28719 1876.98 0.01226 0.0 0.0
Break based 15574 7674 15001 3600.33 0.005774 0.0 0.001911
SCIP+ 4534 649 3405 1072.3 0.004568 0.0 0.0
SCIP+: col. gen. 5243 738 16501 3600.01 0.0002355 0.0 0.001445
Presolved break based 6330 7714 27231 324.37 0.0058 0.0 0.0
la02_7_r_s dual = 200600.0 opt = 202200.0 gap = 0.0078
State-Based 5578 9958 29872 3600.11 0.01111 0.001523 0.007368
Break based 8206 5747 33556 3600.45 0.007666 0.0008458 0.00384
SCIP+ 3449 563 8057 2573.8 0.006953 0.0 0.0
SCIP+: col. gen. 4803 662 10846 3600.01 0.0002521 0.001523 0.003799
Presolved break based 5321 5777 30261 446.26 0.0077 0.0 9.4e-05
la02_7_s_h dual = 89910.0 opt = 91590.0 gap = 0.018
State-Based 12175 13078 12735 3600.1 0.03478 0.01991 0.04429
Break based 43464 12160 969 3600.81 0.01832 0.1196 0.1389
SCIP+ 31279 855 80 3600.18 0.01301 0.01545 0.024
SCIP+: col. gen. 16476 860 3613 3600.02 0.0 0.008691 0.01811
Presolved break based 37119 12213 56268 3603.16 0.017 0.0027 0.013
la02_7_s_l dual = 91580.0 opt = 92440.0 gap = 0.0093
State-Based 10415 11238 26852 3600.06 0.01513 0.001136 0.008533
Break based 30487 10489 89 3600.69 0.009288 0.001785 0.009957
SCIP+ 22437 775 7296 3333.91 0.008302 0.0 0.0
SCIP+: col. gen. 14862 780 6763 3600.02 0.0001033 0.003862 0.006879
Presolved break based 25339 10543 23960 1781.96 0.0088 0.0 0.0
la02_7_s_m dual = 91760.0 opt = 92540.0 gap = 0.0085
State-Based 8544 9282 29632 3600.12 0.0127 0.0008104 0.008131
Break based 20750 8725 498 3600.32 0.00843 0.007899 0.01474
SCIP+ 14235 690 9374 3600.08 0.007277 0.0 0.003276
SCIP+: col. gen. 11089 695 7654 3600.01 0.0001697 0.0 0.001261
Presolved break based 16567 8778 14139 1033.49 0.008 0.0 0.0

1
7
0

instance vars cons nodes time relative root relative primal gap
la02_7_s_s dual = 91950.0 opt = 92850.0 gap = 0.0097
State-Based 6784 7442 52243 3616.54 0.01448 0.0005708 0.006118
Break based 12941 7048 6745 3600.51 0.00971 0.003457 0.01101
SCIP+ 7787 610 11307 3600.04 0.009142 0.000797 0.004449
SCIP+: col. gen. 7272 615 10303 3600.02 0.0004436 0.00028 0.003661
Presolved break based 9608 7099 23942 664.23 0.0096 0.0 0.0
la02_8_l_h dual = 573100.0 opt = 580800.0 gap = 0.013
State-Based 10832 19974 16708 3600.06 0.03875 0.006887 0.02868
Break based 28224 10798 3764 3600.7 0.01339 0.006599 0.01686
SCIP+ 6777 790 6878 3600.1 0.01278 0.0008901 0.005317
SCIP+: col. gen. 7569 925 2958 1425.1 0.001698 0.0 0.0
Presolved break based 7180 10834 23058 650.6 0.013 0.0 0.0
la02_8_l_l dual = 572800.0 opt = 580800.0 gap = 0.014
State-Based 9071 17093 25194 3600.06 0.03813 0.0 0.01286
Break based 19769 9145 12897 3600.64 0.01388 0.001672 0.006954
SCIP+ 5392 710 7088 3600.06 0.01283 0.008212 0.01285
SCIP+: col. gen. 6172 845 2801 1181.59 0.001693 0.0 0.0
Presolved break based 5835 9190 39843 596.18 0.013 0.0 0.0
la02_8_l_m dual = 577900.0 opt = 589500.0 gap = 0.02
State-Based 7201 14033 35739 3600.09 0.0301 0.0 0.0129
Break based 12096 7360 14812 3600.31 0.0197 0.001778 0.01024
SCIP+ 4276 625 9369 3600.04 0.01921 0.0003037 0.003805
SCIP+: col. gen. 5315 760 8646 3600.02 0.00313 0.0003037 0.008585
Presolved break based 4409 7408 38720 549.01 0.02 0.0 0.0
la02_8_l_s dual = 592900.0 opt = 605400.0 gap = 0.021
State-Based 5493 11290 34675 3600.06 0.03395 0.0 0.007839
Break based 6558 5689 21536 3600.2 0.02057 0.000114 0.001851
SCIP+ 3268 541 4631 1701.37 0.02023 0.000114 0.0
SCIP+: col. gen. 4520 680 9287 3600.01 0.003909 0.000114 0.004885
Presolved break based 3321 5724 17836 335.99 0.021 0.00011 0.0
la02_8_m_h dual = 336000.0 opt = 341200.0 gap = 0.015
State-Based 11432 17004 13495 3600.06 0.04553 0.0001935 0.03287
Break based 36090 11425 3362 3600.14 0.01511 0.0008617 0.01297
SCIP+ 9834 820 4998 3600.13 0.01216 0.01059 0.0156
SCIP+: col. gen. 9311 895 5621 3188.56 0.0009104 0.0 0.0
Presolved break based 13278 11475 63165 836.15 0.014 0.0 0.0
la02_8_m_l dual = 336400.0 opt = 341200.0 gap = 0.014
State-Based 9672 14604 25667 3600.03 0.04498 0.0 0.006001
Break based 24288 9766 757 3600.35 0.01406 0.00345 0.01511
SCIP+ 7343 740 7938 3600.13 0.01173 0.0 0.002115
SCIP+: col. gen. 7358 815 5704 2675.48 0.0009521 0.0 0.0
Presolved break based 8532 9822 79154 1112.68 0.013 0.0 0.0

1
7
1

instance vars cons nodes time relative root relative primal gap
la02_8_m_m dual = 336900.0 opt = 341200.0 gap = 0.013
State-Based 7801 12053 53231 2474.24 0.03568 0.0 0.0
Break based 15538 7990 29462 3319.06 0.01246 0.0 0.0
SCIP+ 5287 655 4406 1483.23 0.01192 0.0 0.0
SCIP+: col. gen. 5906 730 5137 1981.33 0.001095 0.0 0.0
Presolved break based 6022 8045 32025 363.75 0.012 0.0 0.0
la02_8_m_s dual = 340000.0 opt = 344400.0 gap = 0.013
State-Based 6049 9705 68631 3600.07 0.03224 0.0 0.002664
Break based 9009 6317 13861 3600.31 0.01256 0.0 0.003646
SCIP+ 3726 575 11910 3302.99 0.0151 0.0 0.0
SCIP+: col. gen. 4437 650 10322 3600.01 0.001556 0.0 0.004103
Presolved break based 4134 6360 16199 266.08 0.013 0.0 0.0
la02_8_r_h dual = 288400.0 opt = 292700.0 gap = 0.015
State-Based 11336 16180 39463 3600.13 0.02942 0.0 0.004375
Break based 34650 11310 6875 3600.25 0.01447 0.0 0.003036
SCIP+ 12422 824 12461 3600.14 0.0135 0.0 0.01245
SCIP+: col. gen. 10578 891 13687 3600.01 0.0007297 0.0 0.006177
Presolved break based 12970 11359 19136 283.64 0.013 0.0 0.0
la02_8_r_l dual = 194700.0 opt = 195600.0 gap = 0.0045
State-Based 9483 14035 5750 761.04 0.02219 0.0 0.0
Break based 24213 9536 304 1574.3 0.004389 0.0 0.0
SCIP+ 9660 742 91 58.33 0.004916 0.0 0.0
SCIP+: col. gen. 6566 813 137 65.49 0.0009036 0.0 0.0
Presolved break based 11343 9595 641 99.85 0.005 0.0 0.0
la02_8_r_m dual = 305700.0 opt = 310000.0 gap = 0.014
State-Based 8030 11119 13346 639.41 0.04999 0.0 0.0
Break based 17408 8199 6455 2473.42 0.01375 0.0 0.0
SCIP+ 6260 665 2368 768.52 0.01293 0.0 0.0
SCIP+: col. gen. 6642 720 11288 3600.01 0.00187 0.0 0.005126
Presolved break based 6380 8248 3171 115.79 0.011 0.0 0.0
la02_8_r_s dual = 345200.0 opt = 351200.0 gap = 0.017
State-Based 5858 9555 80654 3600.13 0.0284 0.001751 0.00479
Break based 8636 6106 20915 2705.98 0.01697 0.0 0.0
SCIP+ 4435 574 12413 3103.92 0.01577 0.0 0.0
SCIP+: col. gen. 4833 654 12944 3600.01 0.003704 0.001313 0.007817
Presolved break based 5355 6141 43536 525.29 0.017 0.0 0.0
la02_8_s_h dual = 136900.0 opt = 140200.0 gap = 0.024
State-Based 12130 13078 27305 3600.04 0.03971 0.01714 0.04199
Break based 43200 12160 154 3600.25 0.02354 0.02241 0.04694
SCIP+ 15507 855 4957 2803.46 0.01864 0.0 0.0
SCIP+: col. gen. 11541 860 8134 3600.02 0.0002435 0.004301 0.009823
Presolved break based 17620 12212 52059 1434.07 0.021 0.0 0.0

1
7
2

instance vars cons nodes time relative root relative primal gap
la02_8_s_l dual = 137200.0 opt = 140200.0 gap = 0.021
State-Based 10370 11238 30173 3600.09 0.03931 0.006056 0.02887
Break based 30085 10489 5331 3600.4 0.02174 0.02773 0.04832
SCIP+ 12030 775 4027 2116.33 0.01788 0.0 0.0
SCIP+: col. gen. 9959 780 7540 3600.02 0.0002382 0.0002996 0.006113
Presolved break based 12053 10541 49419 1619.22 0.019 0.0 0.0
la02_8_s_m dual = 137500.0 opt = 140900.0 gap = 0.024
State-Based 8499 9282 54859 3600.11 0.04043 0.0 0.003389
Break based 19908 8725 4474 3600.32 0.02449 0.0 0.01978
SCIP+ 8199 690 3832 2224.08 0.02177 0.0 0.0
SCIP+: col. gen. 7411 695 6555 2986.37 0.0003454 0.0 0.0
Presolved break based 8641 8779 50471 845.27 0.022 0.0 0.0
la02_8_s_s dual = 138300.0 opt = 140900.0 gap = 0.019
State-Based 6740 7447 11385 657.27 0.03787 0.0 0.0
Break based 12149 7048 21134 3159.27 0.01895 0.0 0.0
SCIP+ 5366 610 1269 593.46 0.01802 0.0 0.0
SCIP+: col. gen. 5802 615 7022 3302.0 0.000442 0.0 0.0
Presolved break based 5907 7101 12675 308.55 0.018 0.0 0.0
la03_0_l_h dual = 248800.0 opt = 252100.0 gap = 0.013
State-Based 9833 18185 16419 3600.04 0.04133 0.000718 0.01877
Break based 23936 9856 4844 3603.8 0.01314 0.00881 0.02131
SCIP+ 6854 735 5864 3600.09 0.008594 0.0005276 0.002005
SCIP+: col. gen. 8411 870 5768 1718.0 0.0007523 0.0001428 0.0
Presolved break based 7857 9885 24900 639.58 0.013 0.0 0.0
la03_0_l_l dual = 269500.0 opt = 272800.0 gap = 0.012
State-Based 8186 15539 25272 3600.04 0.04785 0.003431 0.03206
Break based 16727 8287 1093 3600.38 0.01199 0.01259 0.02196
SCIP+ 5064 660 4550 1020.75 0.007992 0.0 0.0
SCIP+: col. gen. 6376 795 8782 2218.99 0.0009134 0.0 0.0
Presolved break based 6032 8320 38216 642.83 0.011 0.0 0.0
la03_0_l_m dual = 283600.0 opt = 284600.0 gap = 0.0034
State-Based 6421 12569 30087 3600.07 0.03205 0.001529 0.007078
Break based 10329 6611 20658 1474.7 0.003272 0.0 0.0
SCIP+ 3873 580 1337 198.83 0.002533 0.0 0.0
SCIP+: col. gen. 4776 715 11237 1093.25 0.0003556 0.0 0.0
Presolved break based 4243 6643 20565 193.95 0.0034 0.0 6.6e-05
la03_0_l_s dual = ∞ opt = -∞ gap = 0.0
State-Based 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SCIP+ 3159 685 0.0 0.03 0.0 0.0 0.0
SCIP+: col. gen. 3296 640 1 0.23 0.0 0.0 0.0
Presolved break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1
7
3

instance vars cons nodes time relative root relative primal gap
la03_0_m_h dual = 151700.0 opt = 154500.0 gap = 0.018
State-Based 10425 15501 21900 3600.06 0.0337 0.002537 0.01904
Break based 28970 10465 236 3600.78 0.01831 0.02066 0.03777
SCIP+ 9827 765 2880 3600.12 0.01473 0.001527 0.008498
SCIP+: col. gen. 11362 840 10560 3600.02 0.001192 0.001877 0.007784
Presolved break based 11379 10499 201872 3600.18 0.019 0.0 0.0015
la03_0_m_l dual = 166100.0 opt = 168400.0 gap = 0.014
State-Based 8777 13275 17364 3600.05 0.03999 0.001604 0.01535
Break based 20882 8917 14797 3600.33 0.01333 0.00427 0.01409
SCIP+ 7272 690 4702 3600.07 0.01081 0.003789 0.009277
SCIP+: col. gen. 8594 765 9630 3600.02 0.0009805 0.0 0.002151
Presolved break based 8331 8949 201871 3600.09 0.013 0.0 0.0021
la03_0_m_m dual = 176500.0 opt = 177600.0 gap = 0.0063
State-Based 7015 10851 30100 3600.15 0.03071 0.0 0.005115
Break based 13466 7237 30673 3128.57 0.006361 0.0 0.0
SCIP+ 5096 610 9763 3600.04 0.003963 0.004808 0.005639
SCIP+: col. gen. 5375 685 3236 520.26 0.000895 0.0 0.0
Presolved break based 5933 7274 75262 598.59 0.006 0.0 0.0
la03_0_m_s dual = 181900.0 opt = 183300.0 gap = 0.0078
State-Based 5380 8616 78452 3600.1 0.01813 0.0009491 0.003884
Break based 7820 5668 22406 1806.53 0.007631 0.0 0.0
SCIP+ 3358 535 2990 661.18 0.005565 0.0 0.0
SCIP+: col. gen. 3899 610 3274 575.12 0.0 0.0 0.0
Presolved break based 4114 5691 14309 189.16 0.0076 0.0 0.0
la03_0_r_h dual = 90670.0 opt = 91530.0 gap = 0.0094
State-Based 10536 15083 14745 3600.06 0.02604 0.0008849 0.007955
Break based 30174 10592 248 3600.62 0.009439 0.15 0.1607
SCIP+ 11921 769 4035 3600.12 0.009363 0.0 0.004592
SCIP+: col. gen. 9278 836 1420 686.26 0.0003037 0.0 0.0
Presolved break based 13903 10626 19493 670.21 0.01 0.0 0.0
la03_0_r_l dual = 139700.0 opt = 141500.0 gap = 0.013
State-Based 8677 11971 30028 3607.85 0.03314 0.001795 0.009053
Break based 22755 8753 593 3600.25 0.01321 0.01091 0.02186
SCIP+ 10647 701 5042 3600.09 0.01137 0.002282 0.01042
SCIP+: col. gen. 10004 754 13646 3600.03 0.001391 0.00106 0.009213
Presolved break based 11985 8783 50142 1087.88 0.014 0.0 0.0
la03_0_r_m dual = 162400.0 opt = 162700.0 gap = 0.0018
State-Based 6768 10860 10432 638.56 0.01486 0.0 5.532e-05
Break based 12772 6952 5357 782.74 0.002042 0.0 0.0
SCIP+ 4011 604 681 101.72 0.001324 0.0 0.0
SCIP+: col. gen. 4459 691 1281 102.71 0.0006312 0.0001291 0.0
Presolved break based 4128 6991 6365 54.2 0.002 0.0 4.3e-05

1
7
4

instance vars cons nodes time relative root relative primal gap
la03_0_r_s dual = 170100.0 opt = 170800.0 gap = 0.0041
State-Based 5211 8528 71022 2806.16 0.01582 0.0 0.0
Break based 7706 5349 869 764.95 0.004229 0.0 0.0
SCIP+ 3151 534 673 152.48 0.004661 0.0 0.0
SCIP+: col. gen. 3652 613 1605 326.8 0.0005803 0.0 0.0
Presolved break based 3499 5378 1783 54.13 0.0048 0.0 8.8e-05
la03_0_s_h dual = 61350.0 opt = 62050.0 gap = 0.011
State-Based 11115 11944 27248 3600.03 0.01831 0.004062 0.01303
Break based 37920 11198 4776 3600.48 0.01119 0.00353 0.01272
SCIP+ 15602 800 2556 3600.14 0.01135 0.0 0.006961
SCIP+: col. gen. 13160 805 7057 3600.02 0.0002667 0.0 0.006112
Presolved break based 19504 11230 38586 830.57 0.011 0.0 4.8e-05
la03_0_s_l dual = 67670.0 opt = 68450.0 gap = 0.011
State-Based 9470 10240 38095 3600.13 0.02507 0.0001169 0.00905
Break based 26409 9649 4090 3600.37 0.01131 0.008108 0.01716
SCIP+ 11384 725 7141 3600.1 0.008428 0.0005405 0.008993
SCIP+: col. gen. 11582 730 9729 3600.01 0.002972 0.005479 0.01046
Presolved break based 12912 9682 45530 1014.09 0.012 0.0 8.8e-05
la03_0_s_m dual = 73250.0 opt = 73860.0 gap = 0.0083
State-Based 7703 8374 50583 3600.06 0.02899 0.001164 0.006615
Break based 17876 7972 32249 3600.69 0.008248 0.000704 0.003939
SCIP+ 7480 645 2714 850.46 0.005282 0.0 0.0
SCIP+: col. gen. 7647 650 9383 1993.05 0.0006111 0.0 0.0
Presolved break based 8620 8006 149205 1298.04 0.0077 0.0 6.8e-05
la03_0_s_s dual = 75790.0 opt = 76400.0 gap = 0.0079
State-Based 6055 6659 52402 2468.04 0.01954 0.0 2.618e-05
Break based 11248 6408 30453 3600.38 0.007924 0.001309 0.005217
SCIP+ 4959 570 600 170.05 0.006368 0.0 0.0
SCIP+: col. gen. 5223 575 2340 521.24 0.001153 0.0 0.0
Presolved break based 5687 6435 54153 548.3 0.008 0.0 9.2e-05
la03_1_l_h dual = 6995.0 opt = 6995.0 gap = -0.0
State-Based 9831 18149 1711 1568.01 0.0 0.0 0.0
Break based 23697 9856 1 2227.63 0.0 0.0 0.0
SCIP+ 6002 735 697 1098.9 0.0 0.0 0.0
SCIP+: col. gen. 6796 870 159 238.62 0.0 0.0 0.0
Presolved break based 5980 9883 115 437.88 0.0 0.0 0.0
la03_1_l_l dual = 6995.0 opt = 6995.0 gap = -0.0
State-Based 8181 15449 3531 1303.11 0.0 0.0 0.0
Break based 16488 8287 90 3600.22 0.0 0.002573 0.002573
SCIP+ 5027 660 21 130.61 0.0 0.0 0.0
SCIP+: col. gen. 5803 795 202 245.96 0.0 0.0 0.0
Presolved break based 5017 8320 1 90.32 0.0 0.0 0.0

1
7
5

instance vars cons nodes time relative root relative primal gap
la03_1_l_m dual = 6995.0 opt = 6995.0 gap = -0.0
State-Based 6421 12569 950 194.27 0.0 0.0 0.0
Break based 10049 6607 1909 2364.25 0.0 0.0 0.0
SCIP+ 3987 580 42 172.6 0.0 0.0 0.0
SCIP+: col. gen. 4571 715 99 172.32 0.0 0.0 0.0
Presolved break based 3974 6636 1 48.14 0.0 0.0 0.0
la03_1_l_s dual = ∞ opt = -∞ gap = 0.0
State-Based 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SCIP+ 3159 685 0.0 0.08 0.0 0.0 0.0
SCIP+: col. gen. 3222 640 1 0.21 0.0 0.0 0.0
Presolved break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
la03_1_m_h dual = 4351.0 opt = 4351.0 gap = -0.0
State-Based 10425 15501 3753 1275.91 0.0 0.0 0.0
Break based 28791 10465 1 3600.18 0.0 0.04964 0.04964
SCIP+ 9182 765 111 910.32 0.0 0.0 0.0
SCIP+: col. gen. 7500 840 160 359.53 0.0 0.0 0.0
Presolved break based 12052 10503 12 1406.63 0.0 0.0 0.0
la03_1_m_l dual = 4351.0 opt = 4351.0 gap = 0.0
State-Based 8775 13251 3413 1509.57 0.0 0.0 0.0
Break based 20703 8917 1 3603.78 0.0 0.01931 0.01931
SCIP+ 5870 690 46 200.71 0.0 0.0 0.0
SCIP+: col. gen. 6271 765 263 383.64 0.0 0.0 0.0
Presolved break based 7707 8954 1 363.7 0.0 0.0 0.0
la03_1_m_m dual = 4351.0 opt = 4351.0 gap = -0.0
State-Based 7015 10851 4752 1142.83 0.0 0.0 0.0
Break based 13287 7237 1 1351.45 0.0 0.0 0.0
SCIP+ 4377 610 31 82.53 0.0 0.0 0.0
SCIP+: col. gen. 4838 685 70 84.76 0.0 0.0 0.0
Presolved break based 4696 7266 174 388.47 0.0 0.0 0.0
la03_1_m_s dual = 4351.0 opt = 4351.0 gap = -0.0
State-Based 5380 8616 1560 287.41 0.0 0.0 0.0
Break based 7511 5653 1 707.76 0.0 0.0 0.0
SCIP+ 3400 535 149 203.07 0.0 0.0 0.0
SCIP+: col. gen. 3970 610 81 132.05 0.0 0.0 0.0
Presolved break based 3383 5683 1 34.3 0.0 0.0 0.0
la03_1_r_h dual = 5509.0 opt = 5509.0 gap = -0.0
State-Based 10880 13655 3925 1848.81 0.0 0.0 0.0
Break based 35192 10963 1 3600.49 0.0 0.001634 0.001634
SCIP+ 11931 784 154 787.09 0.0 0.0 0.0
SCIP+: col. gen. 7233 821 155 299.76 0.0 0.0 0.0
Presolved break based 14653 10993 115 735.99 0.0 0.0 0.0

1
7
6

instance vars cons nodes time relative root relative primal gap
la03_1_r_l dual = 3901.0 opt = 3901.0 gap = -0.0
State-Based 8203 12378 3121 1187.45 0.0 0.0 0.0
Break based 20741 8384 1 3608.54 0.0 0.0123 0.0123
SCIP+ 7311 692 86 391.46 0.0 0.0 0.0
SCIP+: col. gen. 5715 763 65 147.73 0.0 0.0 0.0
Presolved break based 8515 8417 1 360.76 0.0 0.0 0.0
la03_1_r_m dual = 5368.0 opt = 5368.0 gap = -0.0
State-Based 6590 11238 39 159.24 0.0 0.0 0.0
Break based 12435 6747 1 2111.28 0.0 0.0 0.0
SCIP+ 6746 597 83 183.38 0.0 0.0 0.0
SCIP+: col. gen. 5915 698 920 386.26 0.0 0.0 0.0
Presolved break based 7606 6782 1 238.66 0.0 0.0 0.0
la03_1_r_s dual = 3844.0 opt = 3858.0 gap = 0.0036
State-Based 5322 7872 26681 3476.09 0.003629 0.0 0.0
Break based 8593 5547 3751 2256.81 0.003629 0.0 0.0
SCIP+ 2830 500 43 103.11 0.003628 0.0 0.0
SCIP+: col. gen. 4159 604 165 186.63 0.0 0.0 0.0
Presolved break based 3344 5576 2379 201.41 0.0036 0.0 0.0
la03_1_s_h dual = 1826.0 opt = 1826.0 gap = 0.0
State-Based 11117 11950 4375 1519.06 0.0 0.0 0.0
Break based 37822 11198 136 3600.18 0.0 0.1763 0.1763
SCIP+ 27314 800 34 1279.58 0.0 0.0 0.0
SCIP+: col. gen. 11084 805 685 2053.84 0.0 0.0 0.0
Presolved break based 33403 11236 1 824.75 0.0 0.0 0.0
la03_1_s_l dual = 1826.0 opt = 1826.0 gap = -0.0
State-Based 9467 10225 1637 331.49 0.0 0.0 0.0
Break based 26300 9649 58 3609.93 0.0 0.0575 0.0575
SCIP+ 18959 725 49 486.65 0.0 0.0 0.0
SCIP+: col. gen. 7459 730 175 512.93 0.0 0.0 0.0
Presolved break based 22340 9688 404 2479.28 0.0 0.0 0.0
la03_1_s_m dual = 1826.0 opt = 1826.0 gap = -0.0
State-Based 7707 8385 4079 654.26 0.0 0.0 0.0
Break based 17767 7972 115 3601.8 0.0 0.04545 0.04545
SCIP+ 11287 645 77 228.41 0.0 0.0 0.0
SCIP+: col. gen. 5807 650 82 122.52 0.0 0.0 0.0
Presolved break based 14135 8008 1 311.59 0.0 0.0 0.0
la03_1_s_s dual = 1826.0 opt = 1826.0 gap = 0.0
State-Based 6057 6660 1695 153.0 0.0 0.0 0.0
Break based 10927 6397 115 2489.12 0.0 0.0 0.0
SCIP+ 5384 570 24 70.69 0.0 0.0 0.0
SCIP+: col. gen. 4450 575 66 92.81 0.0 0.0 0.0
Presolved break based 7721 6432 1 107.0 0.0 0.0 0.0

1
7
7

instance vars cons nodes time relative root relative primal gap
la03_7_l_h dual = 286100.0 opt = 289900.0 gap = 0.013
State-Based 9829 18148 17340 3600.05 0.03379 0.0002863 0.0235
Break based 23999 9857 1298 3600.45 0.01286 0.006683 0.01814
SCIP+ 8144 735 16861 3600.11 0.01112 0.0001276 0.004261
SCIP+: col. gen. 8910 870 18436 3600.01 0.000231 0.0 0.001422
Presolved break based 9604 9885 92569 3600.11 0.012 0.00029 0.0053
la03_7_l_l dual = 288000.0 opt = 289900.0 gap = 0.0067
State-Based 8182 15502 29618 3610.74 0.01112 0.001283 0.007052
Break based 16775 8288 23818 3600.59 0.006503 0.0 0.003024
SCIP+ 6090 660 189 141.6 0.005242 0.0 0.0
SCIP+: col. gen. 5907 795 850 276.16 0.0004332 0.0 0.0
Presolved break based 6980 8319 216793 2174.18 0.0059 0.0 0.0
la03_7_l_m dual = 288600.0 opt = 290100.0 gap = 0.0052
State-Based 6419 12568 29531 3600.09 0.01006 0.000686 0.005316
Break based 10333 6611 52308 3600.42 0.005245 0.0 0.0003586
SCIP+ 4143 580 217 68.54 0.004335 0.0 0.0
SCIP+: col. gen. 4506 715 2012 334.91 0.0004779 0.0 0.0
Presolved break based 4958 6644 69578 592.17 0.0052 0.0 0.0
la03_7_l_s dual = ∞ opt = -∞ gap = 0.0
State-Based 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SCIP+ 3159 685 0.0 0.04 0.0 0.0 0.0
SCIP+: col. gen. 3222 640 1 0.2 0.0 0.0 0.0
Presolved break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
la03_7_m_h dual = 179300.0 opt = 181800.0 gap = 0.014
State-Based 10423 15500 12963 3600.03 0.03278 0.002871 0.02675
Break based 28970 10465 3106 3600.55 0.01367 0.03695 0.05037
SCIP+ 11293 765 10727 3600.18 0.01056 0.0 0.00413
SCIP+: col. gen. 11279 840 7742 3600.02 0.000414 0.000187 0.004916
Presolved break based 13556 10501 146379 3600.21 0.014 0.00023 0.0053
la03_7_m_l dual = 179700.0 opt = 181800.0 gap = 0.012
State-Based 8774 13262 29064 3601.95 0.01611 0.002398 0.01239
Break based 20882 8917 2874 3600.4 0.01183 0.00209 0.01295
SCIP+ 7677 690 10320 2708.18 0.008834 0.0 0.0
SCIP+: col. gen. 8703 765 10522 3600.01 0.0003054 0.0 0.001727
Presolved break based 9217 8953 93285 3600.27 0.012 0.0 0.0049
la03_7_m_m dual = 180100.0 opt = 181800.0 gap = 0.0094
State-Based 7013 10850 29061 3601.59 0.01559 0.00022 0.009106
Break based 13466 7237 32025 3601.52 0.00925 0.001155 0.006553
SCIP+ 5290 610 16056 3600.05 0.007983 0.0 0.0005059
SCIP+: col. gen. 6192 685 8671 2281.99 0.0006144 0.0 0.0
Presolved break based 6008 7272 223574 3600.22 0.0092 0.0 0.0014

1
7
8

instance vars cons nodes time relative root relative primal gap
la03_7_m_s dual = 181600.0 opt = 182700.0 gap = 0.0063
State-Based 5378 8615 94425 3600.05 0.01008 0.0 0.001644
Break based 7820 5668 12551 575.65 0.006142 0.0 0.0
SCIP+ 3484 535 4286 829.48 0.005888 0.0 0.0
SCIP+: col. gen. 4036 610 4894 998.16 0.0008633 0.0 0.0
Presolved break based 4074 5688 7025 86.79 0.006 0.0 0.0
la03_7_r_h dual = 228200.0 opt = 229900.0 gap = 0.0075
State-Based 10181 16385 29131 3600.28 0.01985 0.002853 0.01205
Break based 27336 10232 7272 3600.52 0.007464 0.000274 0.005008
SCIP+ 11711 754 647 275.87 0.006556 0.0 0.0
SCIP+: col. gen. 8969 851 2883 623.32 0.0001665 0.0 0.0
Presolved break based 14032 10255 100079 1429.26 0.0074 0.0 0.0
la03_7_r_l dual = 252000.0 opt = 253900.0 gap = 0.0076
State-Based 8466 13651 34494 3600.1 0.00939 0.0 0.004923
Break based 20137 8558 26987 3600.19 0.007472 0.001197 0.005406
SCIP+ 9570 682 7630 1068.97 0.007426 0.0 0.0
SCIP+: col. gen. 7751 773 10214 1779.93 0.0001673 0.0 0.0
Presolved break based 10973 8590 534535 3396.45 0.0074 0.0 0.0
la03_7_r_m dual = 182600.0 opt = 184000.0 gap = 0.0077
State-Based 7451 8736 94936 3600.09 0.01237 0.0 0.002315
Break based 17007 7701 8024 3600.27 0.007534 0.001717 0.005415
SCIP+ 7361 639 1629 475.82 0.006811 0.0 0.0
SCIP+: col. gen. 6656 657 1913 380.34 0.0006216 0.0 0.0
Presolved break based 8426 7736 18110 322.87 0.0073 0.0 0.0
la03_7_r_s dual = 193800.0 opt = 195400.0 gap = 0.0084
State-Based 5135 8462 41628 3172.4 0.01262 0.0 0.0
Break based 7643 5255 14100 3341.16 0.008495 0.0 0.0
SCIP+ 3499 532 1633 463.54 0.007511 0.0 0.0
SCIP+: col. gen. 4312 613 4028 1149.1 0.0005962 0.0 0.0
Presolved break based 4173 5276 25903 267.99 0.0087 0.0 0.0
la03_7_s_h dual = 74800.0 opt = 76110.0 gap = 0.017
State-Based 11115 11949 26207 3600.01 0.02519 0.006477 0.0227
Break based 37920 11198 199 3600.86 0.01718 0.03525 0.05309
SCIP+ 20877 800 2703 3600.14 0.01344 0.0006832 0.006468
SCIP+: col. gen. 15118 805 6654 3600.02 0.0004266 0.0005912 0.007338
Presolved break based 25202 11230 64605 3600.21 0.017 0.0045 0.015
la03_7_s_l dual = 75320.0 opt = 76130.0 gap = 0.011
State-Based 9465 10224 29829 3600.06 0.0131 0.008183 0.01642
Break based 26409 9649 143 3600.57 0.01072 0.007999 0.01837
SCIP+ 14576 725 3819 2052.36 0.0112 0.0 0.0
SCIP+: col. gen. 10783 730 4107 1975.47 0.0 0.0 0.0
Presolved break based 16365 9684 110596 3600.18 0.011 0.0 0.0012

1
7
9

instance vars cons nodes time relative root relative primal gap
la03_7_s_m dual = 75330.0 opt = 76130.0 gap = 0.011
State-Based 7705 8384 35337 3600.08 0.01302 0.00176 0.008623
Break based 17876 7972 3482 3600.08 0.01056 0.01135 0.02156
SCIP+ 9487 645 1278 693.57 0.01088 0.0 0.0
SCIP+: col. gen. 7934 650 4242 1622.39 0.0 0.0 0.0
Presolved break based 10752 8007 169872 2343.72 0.011 0.0 1.3e-05
la03_7_s_s dual = 75610.0 opt = 76130.0 gap = 0.0069
State-Based 6055 6659 67328 2275.34 0.00974 0.0 0.0
Break based 11248 6408 11001 1842.36 0.00687 0.0 0.0
SCIP+ 5602 570 672 266.89 0.007544 0.0 0.0
SCIP+: col. gen. 5107 575 1266 368.14 0.0 0.0 0.0
Presolved break based 6505 6434 10432 176.53 0.0072 0.0 0.0
la03_8_l_h dual = 451500.0 opt = 470000.0 gap = 0.039
State-Based 9784 18148 26408 3600.02 0.06782 0.0 0.04489
Break based 23779 9856 3019 3600.57 0.03943 0.0 0.03715
SCIP+ 6207 735 11514 3600.32 0.03481 0.0 0.005849
SCIP+: col. gen. 8528 870 6355 2947.01 0.001898 0.0 0.0
Presolved break based 6517 9889 13986 530.2 0.034 0.0 0.0
la03_8_l_l dual = 453800.0 opt = 470000.0 gap = 0.035
State-Based 8139 15538 29787 3603.07 0.0548 0.0006595 0.03515
Break based 16495 8287 5751 3600.2 0.03448 0.0 0.0146
SCIP+ 5071 660 5113 1458.53 0.03036 0.0 0.0
SCIP+: col. gen. 6814 795 1852 1025.37 0.002341 0.0 0.0
Presolved break based 5278 8327 7482 438.23 0.031 0.0 0.0
la03_8_l_m dual = 454900.0 opt = 470000.0 gap = 0.032
State-Based 6374 12568 19980 1205.12 0.05248 0.0 0.0
Break based 10036 6610 14713 3600.15 0.03215 0.0006595 0.01246
SCIP+ 3920 580 9683 2379.36 0.02988 0.0 0.0
SCIP+: col. gen. 4682 715 2667 845.18 0.00206 0.0 0.0
Presolved break based 4071 6642 8890 326.37 0.029 0.0 0.0
la03_8_l_s dual = ∞ opt = -∞ gap = 0.0
State-Based 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SCIP+ 3159 685 0.0 0.03 0.0 0.0 0.0
SCIP+: col. gen. 3259 640 1 0.2 0.0 0.0 0.0
Presolved break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
la03_8_m_h dual = 262300.0 opt = 268900.0 gap = 0.024
State-Based 10378 15500 25879 3600.02 0.0488 0.0001302 0.007988
Break based 28765 10465 160 3600.64 0.02456 0.04236 0.06579
SCIP+ 7745 765 585 277.91 0.01033 0.0 0.0
SCIP+: col. gen. 8544 840 1871 876.24 0.004276 0.0 0.0
Presolved break based 8400 10502 3484 404.36 0.022 0.0 0.0

1
8
0

instance vars cons nodes time relative root relative primal gap
la03_8_m_l dual = 264500.0 opt = 268900.0 gap = 0.016
State-Based 8733 13310 15094 1396.82 0.04224 0.0 0.0
Break based 20587 8917 2282 3312.47 0.01633 0.0 0.0
SCIP+ 5972 690 352 169.24 0.008191 0.0 0.0
SCIP+: col. gen. 6838 765 1230 626.01 0.003678 0.0 0.0
Presolved break based 6521 8960 2565 383.61 0.017 0.0 0.0
la03_8_m_m dual = 265500.0 opt = 268900.0 gap = 0.012
State-Based 6968 10850 17573 934.45 0.04101 0.0 0.0
Break based 13030 7237 5325 3106.4 0.01252 0.0 0.0
SCIP+ 4516 610 215 109.88 0.006509 0.0 0.0
SCIP+: col. gen. 5228 685 994 355.84 0.004145 0.0 0.0
Presolved break based 4913 7279 7565 263.0 0.014 0.0 0.0
la03_8_m_s dual = 268800.0 opt = 269900.0 gap = 0.0041
State-Based 5333 8615 3598 172.96 0.02147 0.0 0.0
Break based 7551 5668 251 620.0 0.004132 0.0 0.0
SCIP+ 3397 534 431 105.77 0.006944 0.0 0.0
SCIP+: col. gen. 3824 610 1218 216.96 0.00286 0.0 0.0
Presolved break based 3524 5688 225 40.32 0.0043 0.0 0.0
la03_8_r_h dual = 205400.0 opt = 215300.0 gap = 0.046
State-Based 10112 15110 27392 3600.02 0.07892 0.0 0.008829
Break based 28968 10187 407 3601.5 0.04611 0.0005063 0.04361
SCIP+ 8777 765 313 205.48 0.01698 0.0 0.0
SCIP+: col. gen. 7455 840 487 265.44 0.02462 0.0 0.0
Presolved break based 9670 10222 14651 686.73 0.042 0.0 0.0
la03_8_r_l dual = 325900.0 opt = 328400.0 gap = 0.0075
State-Based 8643 13027 20088 1024.95 0.03498 0.0 0.0
Break based 20874 8791 4445 1425.34 0.007519 0.0 0.0
SCIP+ 7133 690 2124 342.75 0.0086 0.0 0.0
SCIP+: col. gen. 6447 765 1600 303.31 0.001684 0.0 0.0
Presolved break based 7596 8825 1722 62.93 0.0075 0.0 0.0
la03_8_r_m dual = 228200.0 opt = 231700.0 gap = 0.015
State-Based 7056 10639 22833 1321.2 0.04338 0.0 0.0
Break based 13686 7447 50665 3600.72 0.01518 0.0 0.006569
SCIP+ 5219 611 9186 3600.11 0.01451 0.0007294 0.005284
SCIP+: col. gen. 5572 684 15661 3600.01 0.0007525 0.0 0.001971
Presolved break based 5248 7479 52387 507.85 0.014 0.0 0.0
la03_8_r_s dual = ∞ opt = -∞ gap = 0.0
State-Based 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SCIP+ 5731 662 0.0 0.09 0.0 0.0 0.0
SCIP+: col. gen. 3362 617 1 0.28 0.0 0.0 0.0
Presolved break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1
8
1

instance vars cons nodes time relative root relative primal gap
la03_8_s_h dual = 99720.0 opt = 102200.0 gap = 0.025
State-Based 11072 11950 37245 3600.07 0.02655 0.0 0.005736
Break based 37500 11197 2445 3600.63 0.02452 0.0002739 0.02315
SCIP+ 16785 800 4428 2688.79 0.02052 0.0 0.0
SCIP+: col. gen. 11149 805 6012 3476.19 0.003535 0.0 0.0
Presolved break based 17722 11232 55725 795.16 0.023 0.0 0.0
la03_8_s_l dual = 100100.0 opt = 102200.0 gap = 0.021
State-Based 9422 10225 58655 2948.39 0.02437 0.0 0.0
Break based 25871 9649 15625 3600.22 0.02091 0.0 0.005409
SCIP+ 12002 725 3376 1206.92 0.0 0.0 0.0
SCIP+: col. gen. 9066 730 4364 1978.28 0.003525 0.0 0.0
Presolved break based 11857 9685 23741 494.09 0.02 0.0 0.0
la03_8_s_m dual = 100100.0 opt = 102200.0 gap = 0.021
State-Based 7662 8385 34733 1051.41 0.02517 0.0 0.0
Break based 16994 7972 15409 3600.28 0.02054 0.0 0.004175
SCIP+ 8109 645 3982 1011.96 0.01901 0.0 0.0
SCIP+: col. gen. 7308 650 5336 2346.1 0.003555 0.0 0.0
Presolved break based 8734 8008 6492 351.61 0.019 0.0 0.0
la03_8_s_s dual = 100300.0 opt = 102200.0 gap = 0.019
State-Based 6012 6660 14275 434.63 0.02245 0.0 0.0
Break based 10563 6408 17898 1708.03 0.01877 0.0 0.0
SCIP+ 5029 570 8885 2518.1 0.01796 0.0 0.0
SCIP+: col. gen. 5118 575 3818 1264.37 0.004007 0.0 0.0
Presolved break based 5951 6435 10891 270.54 0.018 0.0 0.0
la04_0_m_h dual = 132900.0 opt = 135100.0 gap = 0.016
State-Based 11266 16770 25307 3600.03 0.02885 0.0009624 0.01968
Break based 35902 11219 573 3600.26 0.01632 0.0 0.01536
SCIP+ 15921 810 2704 3600.14 0.01196 0.0009624 0.005182
SCIP+: col. gen. 12709 885 3188 2047.67 0.001777 0.0 0.0
Presolved break based 21128 11255 199463 3600.23 0.016 0.0 0.0047
la04_0_m_l dual = 149300.0 opt = 151700.0 gap = 0.016
State-Based 9501 14310 18468 3600.04 0.03539 0.000389 0.01878
Break based 24256 9557 104 3600.52 0.01532 0.01189 0.02615
SCIP+ 10666 730 2571 3600.1 0.01225 0.0005407 0.006253
SCIP+: col. gen. 11581 805 5566 3600.02 0.0003808 0.0 0.003622
Presolved break based 13170 9591 112856 2504.28 0.016 0.0 0.0
la04_0_m_m dual = 162800.0 opt = 164600.0 gap = 0.011
State-Based 7634 11796 29498 3600.22 0.04428 0.006952 0.03172
Break based 15700 7784 13736 3600.4 0.01039 0.0 0.005291
SCIP+ 6136 645 6451 3600.08 0.009001 0.0 0.002475
SCIP+: col. gen. 7567 720 2169 946.22 0.0006545 0.0 0.0
Presolved break based 8107 7823 88925 1283.12 0.011 0.0 0.0

1
8
2

instance vars cons nodes time relative root relative primal gap
la04_0_m_s dual = 172500.0 opt = 174300.0 gap = 0.01
State-Based 5878 9400 29416 3603.0 0.02789 0.001073 0.01454
Break based 9197 6118 15938 3600.25 0.01037 0.0006941 0.005186
SCIP+ 3627 565 1380 424.92 0.009242 0.0 0.0
SCIP+: col. gen. 4608 640 3606 1134.75 0.0003662 0.0 0.0
Presolved break based 4526 6144 114496 1185.37 0.011 0.0 1.7e-05
la04_0_r_h dual = 131700.0 opt = 133300.0 gap = 0.012
State-Based 11137 17214 17553 3600.04 0.03241 0.0005553 0.01914
Break based 35401 11106 3234 3600.42 0.01153 0.005388 0.01595
SCIP+ 10742 804 962 492.37 0.007423 0.0 0.0
SCIP+: col. gen. 9166 891 859 414.83 0.001675 0.0 0.0
Presolved break based 14873 11133 19953 394.93 0.011 0.0 0.0
la04_0_r_l dual = 137800.0 opt = 140000.0 gap = 0.016
State-Based 9025 13786 29428 3600.16 0.04006 0.0 0.008261
Break based 24175 9155 795 3600.15 0.0154 4.286e-05 0.01443
SCIP+ 10799 728 9634 3600.09 0.0131 0.0 0.007795
SCIP+: col. gen. 11143 807 17931 3600.02 0.0008536 0.0 0.002466
Presolved break based 12504 9191 13628 689.4 0.016 0.0 0.0
la04_0_r_m dual = 158300.0 opt = 159900.0 gap = 0.01
State-Based 7610 11176 20862 3600.02 0.04172 0.0005502 0.01621
Break based 16548 7781 6549 3600.1 0.01001 0.001363 0.01007
SCIP+ 9474 650 15734 3600.13 0.007896 0.0002188 0.005033
SCIP+: col. gen. 9940 716 13714 3600.01 0.001017 8.754e-05 0.003814
Presolved break based 10877 7818 78860 1786.46 0.0089 0.0 0.0
la04_0_r_s dual = 201100.0 opt = 201400.0 gap = 0.0014
State-Based 5968 8262 5507 210.56 0.005665 0.0 0.0
Break based 10810 6213 1915 413.54 0.001522 0.0 0.0
SCIP+ 4187 578 894 148.38 0.001559 0.0 0.0
SCIP+: col. gen. 4487 627 1045 121.74 0.000411 0.0 0.0
Presolved break based 4728 6229 1087 36.37 0.0013 0.0 0.0
la04_0_s_h dual = 55760.0 opt = 56570.0 gap = 0.014
State-Based 11962 12869 29254 3600.1 0.02613 0.002634 0.01505
Break based 43227 11954 2982 3600.38 0.01424 0.002104 0.01561
SCIP+ 23558 845 3235 3600.22 0.01222 0.002104 0.0145
SCIP+: col. gen. 16081 850 7488 3600.02 0.002522 0.0008486 0.006417
Presolved break based 28133 11991 217579 3457.1 0.014 0.0 5.3e-05
la04_0_s_l dual = 62630.0 opt = 63000.0 gap = 0.0059
State-Based 10199 11014 29291 3600.03 0.01738 0.0 0.006936
Break based 30263 10283 4716 2793.64 0.005969 0.0 0.0
SCIP+ 17290 765 714 901.53 0.004799 0.0 0.0
SCIP+: col. gen. 12023 770 2082 1577.84 0.0005197 0.0 0.0
Presolved break based 19115 10317 1234 426.76 0.0057 0.0 0.0

1
8
3

instance vars cons nodes time relative root relative primal gap
la04_0_s_m dual = 68570.0 opt = 69120.0 gap = 0.008
State-Based 8329 9059 36093 3600.13 0.0256 0.0 0.002902
Break based 20497 8519 10456 3329.69 0.00793 0.0 0.0
SCIP+ 11085 680 1035 576.37 0.006983 0.0 0.0
SCIP+: col. gen. 10320 685 6334 2498.33 0.001757 0.0 0.0
Presolved break based 12722 8555 8092 384.38 0.0088 0.0 0.0
la04_0_s_s dual = 74190.0 opt = 74620.0 gap = 0.0058
State-Based 6573 7239 30473 3600.03 0.02228 0.0 0.005579
Break based 12795 6847 22184 2577.68 0.005805 0.0 0.0
SCIP+ 6081 600 329 103.25 0.004853 0.0 0.0
SCIP+: col. gen. 6421 605 1214 371.14 0.0002634 0.0 0.0
Presolved break based 7226 6880 89627 865.37 0.0057 0.0 0.0
la04_1_l_h dual = 6299.0 opt = 6317.0 gap = 0.0028
State-Based 10661 19620 3609 3600.07 0.002849 0.0009498 0.00381
Break based 27949 10595 1 3600.22 0.002849 0.008548 0.01143
SCIP+ 6451 780 290 3600.12 0.002849 0.005699 0.008573
SCIP+: col. gen. 8682 915 1134 3600.01 0.0 0.003799 0.006668
Presolved break based 6414 10623 38265 3600.3 0.0028 0.00047 0.0033
la04_1_l_l dual = 6299.0 opt = 6317.0 gap = 0.0028
State-Based 8901 16740 5155 3600.02 0.002849 0.003324 0.006191
Break based 19533 8939 1 3600.33 0.002849 0.005699 0.008573
SCIP+ 5411 700 687 3600.07 0.002849 0.005699 0.008525
SCIP+: col. gen. 6939 835 1433 3600.01 0.0 0.002375 0.005239
Presolved break based 5398 8967 117849 3600.08 0.0028 0.00047 0.0033
la04_1_l_m dual = 6299.0 opt = 6317.0 gap = 0.0028
State-Based 7031 13680 7284 3600.03 0.002849 0.0009498 0.00381
Break based 11971 7154 1230 3600.44 0.002849 0.0019 0.004763
SCIP+ 4306 615 2193 3600.09 0.002849 0.0004749 0.002213
SCIP+: col. gen. 5467 750 3271 3600.02 0.0 0.0 0.002858
Presolved break based 4284 7178 82063 3600.22 0.0028 0.0 0.0029
la04_1_l_s dual = 6299.0 opt = 6335.0 gap = 0.0057
State-Based 5329 10858 10886 3600.01 0.005683 0.0009471 0.006668
Break based 6195 5459 8724 3426.64 0.005683 0.0 0.0
SCIP+ 3219 535 1964 1121.67 0.005683 0.0 0.0
SCIP+: col. gen. 4174 670 7738 3600.01 0.0 0.0 0.001754
Presolved break based 3258 5498 13463 925.53 0.0057 0.0 0.0
la04_1_m_h dual = 3872.0 opt = 3890.0 gap = 0.0046
State-Based 11261 16710 5968 3600.04 0.004627 0.001542 0.006198
Break based 35798 11219 163 3600.11 0.004627 0.01722 0.02195
SCIP+ 11802 810 246 3600.15 0.004627 0.01337 0.01808
SCIP+: col. gen. 9959 885 1864 3600.02 0.0 0.0 0.004649
Presolved break based 17165 11258 15527 3600.18 0.0046 0.0015 0.0062

1
8
4

instance vars cons nodes time relative root relative primal gap
la04_1_m_l dual = 3872.0 opt = 3890.0 gap = 0.0046
State-Based 9501 14310 5051 3600.04 0.004627 0.0 0.004649
Break based 24126 9557 1 3605.01 0.004627 0.0383 0.04313
SCIP+ 7330 730 477 3600.09 0.004627 0.00437 0.009039
SCIP+: col. gen. 8255 805 1281 3600.02 0.0 0.00617 0.01085
Presolved break based 9518 9592 57357 3600.33 0.0046 0.0015 0.0062
la04_1_m_m dual = 3872.0 opt = 3890.0 gap = 0.0046
State-Based 7631 11760 8355 3600.01 0.004627 0.0007712 0.005424
Break based 15553 7784 199 3602.05 0.004627 0.0005141 0.005165
SCIP+ 4748 645 1619 3600.08 0.004627 0.0002571 0.003599
SCIP+: col. gen. 6684 720 3881 3600.01 0.0 0.0 0.004649
Presolved break based 5448 7815 102537 3600.18 0.0046 0.00026 0.0049
la04_1_m_s dual = 3872.0 opt = 3890.0 gap = 0.0046
State-Based 5875 9364 9061 3600.05 0.004627 0.001285 0.00594
Break based 8821 6102 3029 3600.19 0.004627 0.00437 0.009039
SCIP+ 3656 565 2653 1509.32 0.004627 0.0 0.0
SCIP+: col. gen. 4655 640 8385 3600.03 0.0 0.0 0.001325
Presolved break based 3650 6134 90400 3600.07 0.0046 0.00077 0.0054
la04_1_r_h dual = 3740.0 opt = 3756.0 gap = 0.0043
State-Based 11059 17125 3759 3600.04 0.00426 0.002929 0.007219
Break based 32924 10998 1 3600.26 0.00426 0.03887 0.04332
SCIP+ 17220 803 232 3600.13 0.00426 0.0002662 0.004545
SCIP+: col. gen. 11179 892 1063 3600.02 0.0 0.004792 0.009091
Presolved break based 19109 11028 4831 3600.12 0.0043 0.0056 0.0099
la04_1_r_l dual = 4476.0 opt = 4483.0 gap = 0.0016
State-Based 9173 14822 6324 3600.03 0.001561 0.0008923 0.002458
Break based 23276 9229 115 3601.27 0.001561 0.005354 0.006926
SCIP+ 5599 720 729 3600.11 0.001561 0.008253 0.009786
SCIP+: col. gen. 8015 815 3819 3600.01 0.0 0.0 0.001564
Presolved break based 6312 9258 48061 3600.15 0.0016 0.0 0.0016
la04_1_r_m dual = 2894.0 opt = 2903.0 gap = 0.0031
State-Based 8215 9422 16269 3600.02 0.0031 0.002067 0.005183
Break based 19559 8380 1 3600.08 0.0031 0.01343 0.01659
SCIP+ 8373 675 573 3600.07 0.0031 0.003789 0.00681
SCIP+: col. gen. 8405 690 1425 3600.04 0.0 0.004823 0.007947
Presolved break based 9381 8419 118756 3600.11 0.0031 0.0014 0.0045
la04_1_r_s dual = 3525.0 opt = 3561.0 gap = 0.01
State-Based 5507 9088 9862 3600.04 0.01011 0.00337 0.01333
Break based 8570 5591 277 3600.26 0.01011 0.00337 0.01362
SCIP+ 5101 561 955 1676.01 0.01011 0.0 0.0
SCIP+: col. gen. 5932 645 3099 3600.01 0.0 0.0008425 0.004626
Presolved break based 5995 5629 132524 3600.23 0.01 0.0 0.0025

1
8
5

instance vars cons nodes time relative root relative primal gap
la04_1_s_h dual = 1695.0 opt = 1702.0 gap = 0.0041
State-Based 11961 12855 4875 3600.08 0.004113 0.009401 0.01357
Break based 43132 11954 1 3610.18 0.004113 0.1016 0.1062
SCIP+ 25084 845 12 3600.16 0.004113 0.0188 0.02301
SCIP+: col. gen. 12066 850 971 3600.02 0.0 0.007638 0.0118
Presolved break based 30833 11994 5723 3600.09 0.0041 0.0035 0.0077
la04_1_s_l dual = 1695.0 opt = 1702.0 gap = 0.0041
State-Based 10201 11015 5993 3600.06 0.004113 0.0005875 0.00472
Break based 30158 10283 12 3602.66 0.004113 0.04289 0.0472
SCIP+ 16532 765 625 3600.11 0.004113 0.0047 0.00885
SCIP+: col. gen. 10140 770 1022 3600.02 0.0 0.008813 0.01298
Presolved break based 19356 10323 25539 3600.07 0.0041 0.00059 0.0047
la04_1_s_m dual = 1695.0 opt = 1702.0 gap = 0.0041
State-Based 8331 9060 10235 3600.02 0.004113 0.001175 0.00531
Break based 20404 8519 171 3600.87 0.004113 0.00235 0.00649
SCIP+ 9654 680 1395 3600.07 0.004113 0.0 0.00413
SCIP+: col. gen. 7859 685 1060 3600.03 0.0 0.0047 0.00885
Presolved break based 11538 8558 77106 3600.28 0.0041 0.00059 0.0047
la04_1_s_s dual = 1695.0 opt = 1702.0 gap = 0.0041
State-Based 6571 7220 9733 3600.06 0.004113 0.0005875 0.00472
Break based 12546 6840 200 3600.33 0.004113 0.003525 0.00767
SCIP+ 4962 600 3010 3600.06 0.004113 0.0 0.001803
SCIP+: col. gen. 6430 605 2716 3600.01 0.0 0.0 0.00413
Presolved break based 5920 6878 110778 3600.78 0.0041 0.00059 0.0047
la04_7_l_h dual = 251100.0 opt = 253000.0 gap = 0.0076
State-Based 10663 19656 7255 3600.03 0.03281 0.003233 0.0298
Break based 28184 10595 100 3602.21 0.007521 0.02695 0.03396
SCIP+ 7136 780 1010 720.19 0.006718 0.0 0.0
SCIP+: col. gen. 8275 915 1052 1011.26 0.0 0.0 0.0
Presolved break based 9079 10621 120319 3469.82 0.0076 0.0 0.0
la04_7_l_l dual = 254200.0 opt = 256500.0 gap = 0.009
State-Based 8901 16740 16897 3600.02 0.02469 0.002581 0.01923
Break based 19768 8939 17260 3600.31 0.009053 0.001832 0.006845
SCIP+ 5339 700 5781 2661.36 0.008068 0.0 0.0
SCIP+: col. gen. 7377 835 7602 3600.01 0.0001643 0.0005146 0.004204
Presolved break based 6073 8971 127979 3600.14 0.0087 0.0 0.003
la04_7_l_m dual = 254300.0 opt = 256500.0 gap = 0.0086
State-Based 7031 13680 29854 3600.14 0.01697 0.001587 0.01313
Break based 12203 7154 33355 3600.48 0.008826 0.001228 0.005021
SCIP+ 4258 615 1713 663.68 0.007329 0.0 0.0
SCIP+: col. gen. 5539 750 10315 3600.01 0.000162 0.0 0.00123
Presolved break based 4246 7182 361631 3600.2 0.0084 0.0 0.0022

1
8
6

instance vars cons nodes time relative root relative primal gap
la04_7_l_s dual = 256600.0 opt = 258200.0 gap = 0.0062
State-Based 5331 10894 68013 3208.97 0.01323 0.0 0.0
Break based 6470 5470 11822 1265.18 0.006272 0.0 0.0
SCIP+ 3209 535 3856 969.02 0.005935 0.0 0.0
SCIP+: col. gen. 3813 670 4311 922.33 0.0004228 0.0 0.0
Presolved break based 3256 5501 12930 268.17 0.0063 0.0 0.0
la04_7_m_h dual = 156800.0 opt = 159900.0 gap = 0.019
State-Based 11261 16710 5730 3600.05 0.03715 0.01354 0.04505
Break based 35963 11219 356 3608.78 0.01899 0.005511 0.02472
SCIP+ 16734 810 3820 3600.15 0.01445 0.0007819 0.004537
SCIP+: col. gen. 12381 885 4136 3600.02 0.0 0.0002565 0.004907
Presolved break based 22201 11254 49377 3600.2 0.019 0.0019 0.016
la04_7_m_l dual = 159000.0 opt = 161600.0 gap = 0.016
State-Based 9501 14310 18886 3600.03 0.02752 0.00156 0.02081
Break based 24301 9557 3679 3600.27 0.01603 0.02966 0.04566
SCIP+ 10339 730 560 694.03 0.01429 0.0 0.0
SCIP+: col. gen. 9960 805 4364 3600.01 0.0 0.005577 0.01286
Presolved break based 13171 9596 54577 3605.35 0.016 0.0 0.0081
la04_7_m_m dual = 159200.0 opt = 161600.0 gap = 0.015
State-Based 7631 11760 29105 3607.56 0.02451 0.0051 0.02526
Break based 15728 7784 5381 3600.3 0.01441 0.004512 0.01751
SCIP+ 5735 645 790 587.57 0.01247 0.0 0.0
SCIP+: col. gen. 6941 720 6545 3547.12 0.0003155 0.0 0.0
Presolved break based 7799 7822 117552 3600.13 0.014 0.0 0.003
la04_7_m_s dual = 160000.0 opt = 162600.0 gap = 0.016
State-Based 5876 9376 29329 3600.44 0.02551 0.001193 0.0177
Break based 9197 6118 21964 3600.53 0.0162 0.0007134 0.009341
SCIP+ 3623 565 7090 2337.11 0.0142 0.0 0.0
SCIP+: col. gen. 4683 640 9571 3600.01 0.0002455 0.0 0.002241
Presolved break based 4226 6146 134336 2431.24 0.016 0.0 0.0
la04_7_r_h dual = 149300.0 opt = 151100.0 gap = 0.012
State-Based 11297 16481 11792 3600.04 0.02541 0.01577 0.03692
Break based 34159 11275 1 3608.43 0.01175 0.0239 0.03607
SCIP+ 25180 812 1030 3600.25 0.01098 0.003045 0.009018
SCIP+: col. gen. 14803 883 3868 3600.01 0.0 0.0 0.004301
Presolved break based 29339 11314 32418 3600.26 0.012 0.0 0.005
la04_7_r_l dual = 137200.0 opt = 138000.0 gap = 0.0059
State-Based 9127 14011 23339 3600.13 0.01536 0.001522 0.005134
Break based 24401 9124 3141 3600.54 0.005983 0.001848 0.006683
SCIP+ 8749 729 99 156.65 0.003947 0.0 0.0
SCIP+: col. gen. 6672 806 257 183.87 0.0003712 0.0 0.0
Presolved break based 10562 9153 6943 566.96 0.0049 0.0 0.0

1
8
7

instance vars cons nodes time relative root relative primal gap
la04_7_r_m dual = 205100.0 opt = 206100.0 gap = 0.005
State-Based 7463 12311 26086 3600.05 0.01018 0.0 0.005257
Break based 15058 7586 5834 3600.4 0.005116 0.006282 0.01007
SCIP+ 8080 635 970 401.63 0.004017 0.0 0.0
SCIP+: col. gen. 6151 730 3549 1076.15 0.0001964 0.0 0.0
Presolved break based 9745 7619 22484 543.26 0.0048 0.0 0.0
la04_7_r_s dual = 165600.0 opt = 168000.0 gap = 0.014
State-Based 5343 10356 40908 3600.07 0.0219 0.0 0.004833
Break based 7001 5418 11011 2563.2 0.01401 0.0 0.0
SCIP+ 3230 543 205 145.13 0.01234 0.0 0.0
SCIP+: col. gen. 3801 662 336 144.5 0.000358 0.0 0.0
Presolved break based 3229 5438 15433 412.2 0.013 0.0 0.0
la04_7_s_h dual = 65230.0 opt = 66300.0 gap = 0.016
State-Based 11952 12837 11999 3600.03 0.03408 0.002338 0.0279
Break based 43227 11954 815 3600.78 0.01615 0.03226 0.04881
SCIP+ 26442 845 1074 3600.31 0.01155 0.0007541 0.009993
SCIP+: col. gen. 16761 850 4244 3600.02 0.0 0.001961 0.008472
Presolved break based 31008 11987 56151 3600.37 0.016 0.0044 0.015
la04_7_s_l dual = 65780.0 opt = 66630.0 gap = 0.013
State-Based 10193 11002 29505 3600.14 0.01783 0.009124 0.024
Break based 30263 10283 33 3602.23 0.01276 0.2031 0.2182
SCIP+ 18736 765 5332 3600.13 0.01208 0.0005253 0.005525
SCIP+: col. gen. 13216 770 3932 3600.02 0.0 0.01868 0.02673
Presolved break based 20794 10319 56246 3600.27 0.013 0.00065 0.0069
la04_7_s_m dual = 65820.0 opt = 66630.0 gap = 0.012
State-Based 8322 9042 29610 3600.05 0.01675 0.004007 0.01676
Break based 20509 8519 1996 3601.12 0.01224 0.02035 0.03167
SCIP+ 11791 680 2638 1293.07 0.01167 0.0 0.0
SCIP+: col. gen. 10926 685 6012 3600.01 0.0001232 0.001096 0.007778
Presolved break based 13487 8557 101170 3600.2 0.012 0.0 0.003
la04_7_s_s dual = 65950.0 opt = 66630.0 gap = 0.01
State-Based 6562 7202 35101 3600.06 0.01442 0.0007204 0.006612
Break based 12795 6847 8096 3600.35 0.01021 0.01417 0.02228
SCIP+ 6646 600 834 407.43 0.009039 0.0 0.0
SCIP+: col. gen. 6320 605 2443 1280.33 0.0001363 0.0 0.0
Presolved break based 7946 6879 82712 991.17 0.01 0.0 0.0
la04_8_l_h dual = 597200.0 opt = 615800.0 gap = 0.03
State-Based 10617 19657 28894 3600.03 0.05203 0.001554 0.03183
Break based 28077 10595 2260 3600.5 0.0303 0.001863 0.03006
SCIP+ 9007 780 10002 3600.11 0.02755 0.0 0.009092
SCIP+: col. gen. 8632 915 7782 3600.02 0.0006208 0.0 0.009245
Presolved break based 10279 10624 67309 1024.39 0.03 0.0 0.0

1
8
8

instance vars cons nodes time relative root relative primal gap
la04_8_l_l dual = 598000.0 opt = 615800.0 gap = 0.029
State-Based 8854 16723 29406 3600.06 0.05048 0.0 0.02744
Break based 19600 8939 6238 3600.52 0.02901 0.0 0.02489
SCIP+ 6573 700 9969 3600.07 0.02706 2.111e-05 0.003083
SCIP+: col. gen. 6770 835 9079 3600.02 0.0005593 0.0 0.003526
Presolved break based 7724 8975 282274 3145.89 0.029 0.0 5.4e-05
la04_8_l_m dual = 602600.0 opt = 615900.0 gap = 0.022
State-Based 6984 13663 30042 3600.02 0.03815 0.0 0.02107
Break based 11919 7154 22504 3600.07 0.02171 0.0 0.00514
SCIP+ 4401 615 4134 1082.92 0.01989 0.0 0.0
SCIP+: col. gen. 5198 750 3566 1157.1 0.001487 0.0 0.0
Presolved break based 5417 7194 113271 816.31 0.021 0.0 0.0
la04_8_l_s dual = 618100.0 opt = 640500.0 gap = 0.035
State-Based 5286 10913 95049 3600.07 0.04892 0.0 0.005731
Break based 6337 5472 16890 3600.23 0.03503 0.002965 0.02582
SCIP+ 3166 535 10712 3600.06 0.03459 0.0009321 0.005818
SCIP+: col. gen. 4110 670 11546 3600.01 0.002565 0.0001077 0.01354
Presolved break based 3576 5501 64351 516.66 0.035 0.0 0.0
la04_8_m_h dual = 352600.0 opt = 363600.0 gap = 0.03
State-Based 11209 16672 23056 3600.02 0.05641 0.02062 0.06303
Break based 35841 11219 745 3600.36 0.03027 0.03262 0.06031
SCIP+ 12021 810 5428 3600.13 0.02228 0.0 0.01185
SCIP+: col. gen. 10637 885 5187 3600.02 0.002647 0.0001017 0.01544
Presolved break based 15726 11253 77113 2861.83 0.029 0.0 0.0
la04_8_m_l dual = 355200.0 opt = 363800.0 gap = 0.024
State-Based 9449 14272 29805 3600.12 0.05618 0.009061 0.03876
Break based 24085 9557 1454 3600.09 0.02358 0.008503 0.02893
SCIP+ 8705 730 4658 3600.1 0.0229 0.01268 0.01862
SCIP+: col. gen. 9258 805 6678 3600.01 0.002734 0.005737 0.02092
Presolved break based 10094 9595 25077 831.51 0.026 0.0 0.0
la04_8_m_m dual = 356200.0 opt = 364200.0 gap = 0.022
State-Based 7579 11722 37228 3600.07 0.04959 0.0 0.008958
Break based 15289 7784 16396 3049.57 0.02208 0.0 0.0
SCIP+ 5923 645 9155 3404.13 0.02189 0.0 0.0
SCIP+: col. gen. 6531 720 7412 3103.97 0.002887 0.0 0.0
Presolved break based 7108 7821 18630 355.5 0.023 0.0 0.0
la04_8_m_s dual = 358800.0 opt = 364200.0 gap = 0.015
State-Based 5826 9357 4839 536.73 0.03894 0.0 0.0
Break based 8891 6118 1761 3065.95 0.01498 0.0 0.0
SCIP+ 3721 565 447 210.17 0.01475 0.0 0.0
SCIP+: col. gen. 4242 640 1069 422.29 0.004092 0.0 0.0
Presolved break based 4632 6141 5011 229.16 0.016 0.0 0.0

1
8
9

instance vars cons nodes time relative root relative primal gap
la04_8_r_h dual = 463000.0 opt = 479300.0 gap = 0.034
State-Based 11247 16126 29283 3600.16 0.04232 0.005209 0.03635
Break based 36774 11216 1260 3602.16 0.03401 0.009995 0.0433
SCIP+ 13755 814 4853 3600.14 0.032 0.004997 0.03027
SCIP+: col. gen. 11002 881 8218 3600.03 0.001175 0.00562 0.02478
Presolved break based 16933 11246 201277 3250.77 0.035 0.0 0.0
la04_8_r_l dual = 193700.0 opt = 194500.0 gap = 0.004
State-Based 9599 13164 4613 696.41 0.02476 0.0 0.0
Break based 26130 9627 264 2565.3 0.003882 0.0 0.0
SCIP+ 11310 740 52 111.88 0.003428 0.0 0.0
SCIP+: col. gen. 6617 795 57 36.4 0.0006572 0.0 0.0
Presolved break based 12419 9664 444 203.0 0.0047 0.0 0.0
la04_8_r_m dual = 433500.0 opt = 442600.0 gap = 0.021
State-Based 7011 12635 30277 3605.54 0.0609 0.001511 0.01352
Break based 13169 7166 13021 2817.74 0.02055 0.0 0.0
SCIP+ 5974 625 4039 956.85 0.02123 0.0 0.0
SCIP+: col. gen. 5512 740 10734 2286.92 0.0006226 0.0 0.0
Presolved break based 7364 7204 37402 346.47 0.021 0.0 5.9e-05
la04_8_r_s dual = 447600.0 opt = 458500.0 gap = 0.024
State-Based 5884 8449 69648 3600.06 0.02922 0.0 0.003063
Break based 9887 6086 19616 3600.26 0.02359 0.007698 0.01605
SCIP+ 4220 577 5753 3600.05 0.02568 0.009403 0.01571
SCIP+: col. gen. 5856 628 6459 3600.02 0.002248 0.0 0.01201
Presolved break based 5196 6108 7155 179.81 0.026 0.0 0.0
la04_8_s_h dual = 140600.0 opt = 144000.0 gap = 0.023
State-Based 11909 12838 29868 3600.12 0.02637 0.001799 0.01491
Break based 42964 11954 476 3600.51 0.02352 0.004667 0.02501
SCIP+ 16956 845 6749 2541.84 0.0 0.0 0.0
SCIP+: col. gen. 13512 850 4994 3237.13 0.00202 0.0 0.0
Presolved break based 18824 11987 33670 1102.98 0.023 0.0 0.0
la04_8_s_l dual = 141500.0 opt = 144000.0 gap = 0.017
State-Based 10150 11003 32878 3600.14 0.0258 0.0 0.009748
Break based 29861 10283 127 3601.67 0.01731 0.01511 0.03143
SCIP+ 13083 765 5960 1981.21 0.01687 0.0 0.0
SCIP+: col. gen. 10816 770 5378 2399.23 0.001796 0.0 0.0
Presolved break based 13005 10318 11010 621.11 0.017 0.0 0.0
la04_8_s_m dual = 141900.0 opt = 144200.0 gap = 0.016
State-Based 8279 9043 90338 3600.09 0.02257 0.001227 0.006776
Break based 19571 8519 7300 3521.2 0.01618 0.0 0.0
SCIP+ 9015 680 6082 1487.38 0.01578 0.0 0.0
SCIP+: col. gen. 7559 685 1696 777.32 0.002192 0.0 0.0
Presolved break based 9332 8557 3620 296.22 0.017 0.0 0.0

1
9
0

instance vars cons nodes time relative root relative primal gap
la04_8_s_s dual = 142000.0 opt = 144200.0 gap = 0.016
State-Based 6520 7208 9548 375.49 0.01868 0.0 0.0
Break based 12026 6847 1725 1449.07 0.01571 0.0 0.0
SCIP+ 5757 600 4580 1041.1 0.01468 0.0 0.0
SCIP+: col. gen. 5120 605 897 317.49 0.003236 0.0 0.0
Presolved break based 6355 6878 6204 125.61 0.015 0.0 0.0
la05_0_l_h dual = 227000.0 opt = 228300.0 gap = 0.0058
State-Based 9133 16942 16695 3600.02 0.03199 0.0 0.01099
Break based 20958 9245 9629 3600.21 0.006055 0.0 0.001764
SCIP+ 6161 700 11435 2590.82 0.005476 0.0 0.0
SCIP+: col. gen. 8404 835 15558 3600.01 0.0004857 0.0 0.001063
Presolved break based 7254 9281 3823 228.44 0.006 0.0 0.0
la05_0_l_l dual = 242400.0 opt = 243700.0 gap = 0.0051
State-Based 7593 14422 16859 3600.04 0.03358 7.388e-05 0.01486
Break based 14581 7775 11372 3600.35 0.00522 0.0 0.001826
SCIP+ 4713 630 191 94.63 0.004448 0.0 0.0
SCIP+: col. gen. 5947 765 574 205.89 0.0002447 0.0 0.0
Presolved break based 5132 7809 2500 108.4 0.0051 0.0 4.1e-05
la05_0_l_m dual = 254900.0 opt = 256600.0 gap = 0.0066
State-Based 5955 11751 29375 3600.17 0.02995 0.0002299 0.01055
Break based 8967 6209 32669 3600.85 0.006466 0.0004638 0.003067
SCIP+ 3659 555 2423 559.96 0.006108 0.0 0.0
SCIP+: col. gen. 4511 690 10843 957.91 0.0 0.0 0.0
Presolved break based 3719 6230 74696 673.1 0.0065 0.0 0.0
la05_0_l_s dual = ∞ opt = -∞ gap = 0.0
State-Based 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SCIP+ 3184 665 0.0 0.04 0.0 0.0 0.0
SCIP+: col. gen. 2865 620 1 0.29 0.0 0.0 0.0
Presolved break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
la05_0_m_h dual = 140000.0 opt = 141300.0 gap = 0.0094
State-Based 9733 14512 27504 3600.02 0.0289 0.0001061 0.008851
Break based 25810 9866 1963 3600.23 0.009201 0.0004387 0.008675
SCIP+ 12506 730 6931 3600.1 0.00736 0.0 0.002914
SCIP+: col. gen. 11416 805 9604 3240.63 0.0003961 0.0 0.0
Presolved break based 14768 9900 7434 553.3 0.0091 0.0 0.0
la05_0_m_l dual = 150900.0 opt = 152000.0 gap = 0.0072
State-Based 8193 12412 26389 3600.04 0.03255 0.002934 0.01177
Break based 18602 8405 5842 3600.45 0.007522 0.0 0.005397
SCIP+ 8814 660 1324 1031.63 0.005776 0.0 0.0
SCIP+: col. gen. 8288 735 1718 928.92 0.0001623 0.0 0.0
Presolved break based 10481 8442 7978 622.99 0.0071 0.0 0.0

1
9
1

instance vars cons nodes time relative root relative primal gap
la05_0_m_m dual = 161100.0 opt = 162500.0 gap = 0.0085
State-Based 6545 10164 19131 3600.02 0.03873 0.004555 0.0306
Break based 12185 6842 9424 3600.43 0.00849 0.002493 0.009708
SCIP+ 5245 585 1640 574.65 0.007817 0.0 0.0
SCIP+: col. gen. 6451 660 4615 1318.78 0.0 0.0 0.0
Presolved break based 6758 6870 246817 3600.55 0.0085 0.0 0.00094
la05_0_m_s dual = 162700.0 opt = 163700.0 gap = 0.0061
State-Based 5039 8098 29982 3600.28 0.01751 0.0 0.004073
Break based 6938 5371 20732 3600.22 0.006096 0.0009347 0.003626
SCIP+ 3471 515 6820 1561.75 0.00574 0.0 0.0
SCIP+: col. gen. 3995 590 2641 353.02 0.0001278 0.0 0.0
Presolved break based 3912 5392 42468 461.98 0.0062 0.0 0.0
la05_0_r_h dual = 159800.0 opt = 161700.0 gap = 0.012
State-Based 9318 14104 29857 3603.82 0.05162 0.000167 0.01066
Break based 25870 9307 4130 3600.31 0.01143 0.003136 0.01291
SCIP+ 12260 728 8151 2697.3 0.01035 0.0 0.0
SCIP+: col. gen. 12393 807 13226 3600.03 0.001534 0.0 0.002705
Presolved break based 14281 9344 82568 1431.68 0.011 0.0 0.0
la05_0_r_l dual = 120400.0 opt = 121900.0 gap = 0.012
State-Based 7902 12205 29611 3600.17 0.0416 0.0004267 0.009497
Break based 18091 8061 220 3600.4 0.01221 0.03693 0.0488
SCIP+ 10292 656 118 277.84 0.008328 0.0 0.0
SCIP+: col. gen. 9152 739 3220 1410.66 0.0002048 0.0 0.0
Presolved break based 11436 8095 11811 576.88 0.0098 0.0 0.0
la05_0_r_m dual = 110000.0 opt = 111300.0 gap = 0.012
State-Based 6792 9191 11636 3600.03 0.04234 0.0 0.02648
Break based 13825 7076 3730 3600.08 0.01203 0.0008622 0.008844
SCIP+ 6641 600 1804 547.13 0.01071 0.0 0.0
SCIP+: col. gen. 6105 645 1344 465.79 0.00128 0.0 0.0
Presolved break based 7756 7110 92371 1543.65 0.012 0.0 0.0
la05_0_r_s dual = 192100.0 opt = 193400.0 gap = 0.0067
State-Based 5087 7987 65150 3600.06 0.01749 0.0 0.0005018
Break based 7084 5394 34117 2018.26 0.006487 0.0 0.0
SCIP+ 3239 519 1385 261.51 0.005981 0.0 0.0
SCIP+: col. gen. 3671 588 251 38.65 0.0001023 0.0 0.0
Presolved break based 3523 5415 14439 106.62 0.0063 0.0 0.0
la05_0_s_h dual = 57140.0 opt = 57810.0 gap = 0.012
State-Based 10423 11207 29652 3600.21 0.02574 0.006261 0.02001
Break based 32087 10583 115 3601.09 0.01163 0.01401 0.02448
SCIP+ 28811 765 1297 1682.91 0.01096 0.0 0.0
SCIP+: col. gen. 16358 770 7131 3600.02 0.0007318 0.000467 0.009493
Presolved break based 31294 10620 79235 2443.09 0.012 0.0 0.0

1
9
2

instance vars cons nodes time relative root relative primal gap
la05_0_s_l dual = 62320.0 opt = 63120.0 gap = 0.013
State-Based 8883 9597 29653 3603.58 0.03599 0.007922 0.03044
Break based 23917 9140 1012 3600.71 0.01263 0.01332 0.02431
SCIP+ 21089 695 2603 3600.1 0.01176 0.0 0.003105
SCIP+: col. gen. 14308 700 7464 3600.02 0.0002489 0.001632 0.004986
Presolved break based 23317 9177 88128 3411.19 0.013 0.0 0.0
la05_0_s_m dual = 67350.0 opt = 68150.0 gap = 0.012
State-Based 7233 7872 18568 3600.03 0.03821 0.001511 0.02361
Break based 16222 7565 1076 3600.36 0.0118 0.01398 0.02449
SCIP+ 13738 620 808 1357.22 0.01019 0.0 0.0
SCIP+: col. gen. 9332 625 3364 1910.67 0.0002413 0.0 0.0
Presolved break based 15665 7602 58814 1796.0 0.012 0.0 0.0
la05_0_s_s dual = 68100.0 opt = 68550.0 gap = 0.0066
State-Based 5707 6276 29840 3600.2 0.02108 0.003282 0.01419
Break based 10238 6106 16495 3603.53 0.006628 0.00229 0.006917
SCIP+ 7894 550 1415 820.29 0.00615 0.0 0.0
SCIP+: col. gen. 5629 555 1060 305.49 0.0001244 0.0 0.0
Presolved break based 9422 6133 76837 847.82 0.0066 0.0 0.0
la05_1_l_h dual = 5101.0 opt = 5101.0 gap = 0.0
State-Based 9133 16942 1449 821.69 0.0 0.0 0.0
Break based 20732 9245 1 2589.55 0.0 0.0 0.0
SCIP+ 6795 700 26 290.63 0.0 0.0 0.0
SCIP+: col. gen. 6211 835 174 142.68 0.0 0.0 0.0
Presolved break based 7801 9276 1 348.94 0.0 0.0 0.0
la05_1_l_l dual = 5101.0 opt = 5101.0 gap = 0.0
State-Based 7593 14422 3150 491.46 0.0 0.0 0.0
Break based 14355 7775 1 2000.35 0.0 0.0 0.0
SCIP+ 4982 630 22 124.77 0.0 0.0 0.0
SCIP+: col. gen. 5369 765 211 207.88 0.0 0.0 0.0
Presolved break based 5915 7805 1 176.09 0.0 0.0 0.0
la05_1_l_m dual = 5101.0 opt = 5101.0 gap = 0.0
State-Based 5954 11733 1901 280.73 0.0 0.0 0.0
Break based 8627 6197 1 1013.55 0.0 0.0 0.0
SCIP+ 3732 555 93 100.92 0.0 0.0 0.0
SCIP+: col. gen. 4060 690 147 54.55 0.0 0.0 0.0
Presolved break based 4092 6228 1854 235.17 0.0 0.0 0.0
la05_1_l_s dual = ∞ opt = -∞ gap = 0.0
State-Based 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SCIP+ 3184 665 0.0 0.07 0.0 0.0 0.0
SCIP+: col. gen. 2839 620 1 0.27 0.0 0.0 0.0
Presolved break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1
9
3

instance vars cons nodes time relative root relative primal gap
la05_1_m_h dual = 3124.0 opt = 3124.0 gap = 0.0
State-Based 9731 14511 37 264.4 0.0 0.0 0.0
Break based 25638 9866 1 3600.21 0.0 0.0144 0.0144
SCIP+ 10286 730 36 561.74 0.0 0.0 0.0
SCIP+: col. gen. 7131 805 252 273.31 0.0 0.0 0.0
Presolved break based 12316 9899 1 352.04 0.0 0.0 0.0
la05_1_m_l dual = 3124.0 opt = 3124.0 gap = 0.0
State-Based 8191 12411 1 150.73 0.0 0.0 0.0
Break based 18430 8405 1 3600.23 0.0 0.001921 0.001921
SCIP+ 7040 660 28 258.76 0.0 0.0 0.0
SCIP+: col. gen. 6593 735 1560 1084.0 0.0 0.0 0.0
Presolved break based 8524 8441 1 220.22 0.0 0.0 0.0
la05_1_m_m dual = 3124.0 opt = 3124.0 gap = -0.0
State-Based 6543 10163 854 165.02 0.0 0.0 0.0
Break based 11785 6830 1 1632.34 0.0 0.0 0.0
SCIP+ 4955 585 20 80.2 0.0 0.0 0.0
SCIP+: col. gen. 4444 660 31 14.49 0.0 0.0 0.0
Presolved break based 5666 6860 1 117.86 0.0 0.0 0.0
la05_1_m_s dual = 3124.0 opt = 3124.0 gap = 0.0
State-Based 5037 8097 1564 125.1 0.0 0.0 0.0
Break based 6626 5351 1 687.22 0.0 0.0 0.0
SCIP+ 3210 515 41 56.55 0.0 0.0 0.0
SCIP+: col. gen. 3498 590 23 13.92 0.0 0.0 0.0
Presolved break based 3844 5382 1 55.49 0.0 0.0 0.0
la05_1_r_h dual = 3381.0 opt = 3381.0 gap = 0.0
State-Based 9626 14514 1313 472.58 0.0 0.0 0.0
Break based 25311 9749 1 2135.69 0.0 0.0 0.0
SCIP+ 11234 728 59 534.61 0.0 0.0 0.0
SCIP+: col. gen. 6933 807 154 135.32 0.0 0.0 0.0
Presolved break based 13941 9777 1 398.57 0.0 0.0 0.0
la05_1_r_l dual = 2443.0 opt = 2443.0 gap = -0.0
State-Based 8200 11351 1 64.18 0.0 0.0 0.0
Break based 20183 8351 1 2769.69 0.0 0.0 0.0
SCIP+ 11369 670 146 364.17 0.0 0.0 0.0
SCIP+: col. gen. 6668 725 332 246.86 0.0 0.0 0.0
Presolved break based 12864 8383 106 647.13 0.0 0.0 0.0
la05_1_r_m dual = 3230.0 opt = 3230.0 gap = 0.0
State-Based 6541 9290 1060 278.6 0.0 0.0 0.0
Break based 13123 6801 172 3398.76 0.0 0.0 0.0
SCIP+ 6241 596 62 128.69 0.0 0.0 0.0
SCIP+: col. gen. 5247 651 453 215.68 0.0 0.0 0.0
Presolved break based 6659 6828 1 193.3 0.0 0.0 0.0

1
9
4

instance vars cons nodes time relative root relative primal gap
la05_1_r_s dual = 3517.0 opt = 3517.0 gap = -0.0
State-Based 5234 7022 5518 316.31 0.0 0.0 0.0
Break based 8276 5420 1 520.99 0.0 0.0 0.0
SCIP+ 4177 537 25 44.5 0.0 0.0 0.0
SCIP+: col. gen. 3632 572 54 17.98 0.0 0.0 0.0
Presolved break based 4629 5450 106 127.62 0.0 0.0 0.0
la05_1_s_h dual = 1304.0 opt = 1304.0 gap = 0.0
State-Based 10429 11215 141 226.19 0.0 0.0 0.0
Break based 31985 10583 1 3173.98 0.0 0.0 0.0
SCIP+ 20786 765 40 742.95 0.0 0.0 0.0
SCIP+: col. gen. 8172 770 172 378.94 0.0 0.0 0.0
Presolved break based 23387 10620 1 531.29 0.0 0.0 0.0
la05_1_s_l dual = 1304.0 opt = 1304.0 gap = 0.0
State-Based 8889 9605 1313 399.34 0.0 0.0 0.0
Break based 23815 9140 1 3158.94 0.0 0.0 0.0
SCIP+ 13975 695 484 982.49 0.0 0.0 0.0
SCIP+: col. gen. 6549 700 174 139.5 0.0 0.0 0.0
Presolved break based 16239 9177 1 324.56 0.0 0.0 0.0
la05_1_s_m dual = 1304.0 opt = 1304.0 gap = 0.0
State-Based 7239 7880 362 197.76 0.0 0.0 0.0
Break based 16120 7565 1 775.59 0.0 0.0 0.0
SCIP+ 8660 620 24 126.83 0.0 0.0 0.0
SCIP+: col. gen. 5224 625 90 48.16 0.0 0.0 0.0
Presolved break based 10027 7602 1 333.39 0.0 0.0 0.0
la05_1_s_s dual = 1304.0 opt = 1304.0 gap = 0.0
State-Based 5713 6284 1 39.06 0.0 0.0 0.0
Break based 9950 6092 1 175.43 0.0 0.0 0.0
SCIP+ 5298 550 23 46.62 0.0 0.0 0.0
SCIP+: col. gen. 4122 555 101 40.83 0.0 0.0 0.0
Presolved break based 6151 6129 1 76.62 0.0 0.0 0.0
la05_7_l_h dual = 335900.0 opt = 336400.0 gap = 0.0016
State-Based 9129 16940 11148 795.94 0.007961 0.0 0.0
Break based 20958 9245 897 674.01 0.001552 0.0 0.0
SCIP+ 8925 700 23 37.48 0.0004214 0.0 0.0
SCIP+: col. gen. 6716 835 474 56.98 0.0001651 0.0 0.0
Presolved break based 10860 9282 434 47.93 0.00059 0.0 9.5e-05
la05_7_l_l dual = 336200.0 opt = 336400.0 gap = 0.00067
State-Based 7589 14420 8327 327.45 0.00282 0.0 0.0
Break based 14581 7775 77 300.02 0.0006559 0.0 0.0
SCIP+ 6119 630 23 13.66 0.0004038 0.0 0.0
SCIP+: col. gen. 5218 765 198 22.45 0.0001748 0.0 0.0
Presolved break based 7828 7814 1 23.32 0.0 0.0 4.2e-05

1
9
5

instance vars cons nodes time relative root relative primal gap
la05_7_l_m dual = 336900.0 opt = 337500.0 gap = 0.0019
State-Based 5950 11731 8006 264.45 0.003469 0.0 0.0
Break based 8967 6209 671 181.79 0.001846 0.0 0.0
SCIP+ 3970 555 53 17.51 0.001756 0.0 0.0
SCIP+: col. gen. 4193 690 269 24.09 0.0004172 0.0 0.0
Presolved break based 5068 6229 972 26.59 0.0017 0.0 0.0
la05_7_l_s dual = ∞ opt = -∞ gap = 0.0
State-Based 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SCIP+ 3184 665 0.0 0.04 0.0 0.0 0.0
SCIP+: col. gen. 2865 620 1 0.27 0.0 0.0 0.0
Presolved break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
la05_7_m_h dual = 215300.0 opt = 216000.0 gap = 0.0034
State-Based 9729 14510 26630 2011.94 0.008752 0.0 0.0
Break based 25810 9866 27786 3011.39 0.003539 0.0 0.0
SCIP+ 15060 730 943 334.3 0.002922 0.0 0.0
SCIP+: col. gen. 8239 805 868 199.1 0.0005258 0.0 0.0
Presolved break based 17436 9899 22372 312.09 0.0035 0.0 0.0
la05_7_m_l dual = 215400.0 opt = 216000.0 gap = 0.003
State-Based 8189 12410 21618 1028.81 0.007063 0.0 0.0
Break based 18602 8405 9414 1436.0 0.002885 0.0 0.0
SCIP+ 10296 660 330 103.26 0.002774 0.0 0.0
SCIP+: col. gen. 6656 735 514 127.9 0.0004714 0.0 0.0
Presolved break based 12498 8442 7903 158.69 0.003 0.0 0.0
la05_7_m_m dual = 215600.0 opt = 216600.0 gap = 0.0047
State-Based 6541 10162 83048 3600.1 0.009272 0.0 0.0004011
Break based 12185 6842 56456 3600.95 0.004867 0.001163 0.002932
SCIP+ 6374 585 4632 676.94 0.004165 0.0 0.0
SCIP+: col. gen. 5622 660 1004 139.35 0.000317 0.0 0.0
Presolved break based 7964 6867 47958 271.0 0.0048 0.0 0.0
la05_7_m_s dual = 216300.0 opt = 217700.0 gap = 0.0066
State-Based 5035 8096 149233 3600.05 0.008478 0.0 0.001375
Break based 6938 5371 82094 3600.51 0.006683 0.000101 0.002135
SCIP+ 3737 514 4952 714.74 0.006041 0.0 0.0
SCIP+: col. gen. 4116 590 6452 538.1 0.0005485 0.0 0.0
Presolved break based 4847 5384 123265 501.09 0.0067 0.0 0.0
la05_7_r_h dual = 201700.0 opt = 202600.0 gap = 0.0045
State-Based 9376 14502 23678 3600.05 0.01449 0.0005231 0.004658
Break based 24867 9444 14945 3600.14 0.004575 0.0 0.00176
SCIP+ 13355 726 3145 1214.59 0.004269 0.0 0.0
SCIP+: col. gen. 8922 809 2472 742.55 0.0 0.0 0.0
Presolved break based 15448 9479 72745 762.06 0.0039 0.0 0.0

1
9
6

instance vars cons nodes time relative root relative primal gap
la05_7_r_l dual = 234000.0 opt = 234700.0 gap = 0.0029
State-Based 7902 12992 46294 1472.4 0.005144 0.0 0.0
Break based 17349 8085 3749 1184.37 0.002689 0.0 0.0
SCIP+ 9167 650 53 55.02 0.001583 0.0 0.0
SCIP+: col. gen. 5854 745 113 31.89 0.0001542 0.0 0.0
Presolved break based 10890 8119 3397 122.18 0.0021 0.0 0.0
la05_7_r_m dual = 206600.0 opt = 207600.0 gap = 0.0049
State-Based 6599 9349 29312 745.06 0.006409 0.0 0.0
Break based 13189 6892 29591 1598.57 0.004778 0.0 0.0
SCIP+ 7699 595 770 164.07 0.003807 0.0 0.0
SCIP+: col. gen. 6126 651 1305 209.58 0.0001789 0.0 0.0
Presolved break based 9155 6923 17379 274.81 0.0039 0.0 0.0
la05_7_r_s dual = ∞ opt = -∞ gap = 0.0
State-Based 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SCIP+ 4705 641 0.0 0.2 0.0 0.0 0.0
SCIP+: col. gen. 3067 596 1 0.34 0.0 0.0 0.0
Presolved break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
la05_7_s_h dual = 98010.0 opt = 98760.0 gap = 0.0076
State-Based 10422 11206 52575 3600.14 0.01121 0.001215 0.003889
Break based 32087 10583 5007 3600.15 0.007596 0.001458 0.008145
SCIP+ 23805 765 609 532.25 0.006813 0.0 0.0
SCIP+: col. gen. 12381 770 2434 910.73 0.000314 0.0 0.0
Presolved break based 25739 10620 122100 2867.07 0.0077 0.0 5.1e-05
la05_7_s_l dual = 98190.0 opt = 98880.0 gap = 0.007
State-Based 8881 9591 68140 2805.47 0.008078 0.0 0.0
Break based 23917 9140 28742 3600.18 0.006955 0.0001416 0.003409
SCIP+ 17362 695 303 249.89 0.006161 0.0 0.0
SCIP+: col. gen. 9238 700 1104 314.54 0.0002654 0.0 0.0
Presolved break based 18999 9178 74242 905.62 0.0065 0.0 0.0
la05_7_s_m dual = 98270.0 opt = 98880.0 gap = 0.0062
State-Based 7231 7866 30864 767.64 0.007465 0.0 0.0
Break based 16222 7565 38229 3089.61 0.006167 0.0 0.0
SCIP+ 11578 620 190 90.45 0.006076 0.0 0.0
SCIP+: col. gen. 7105 625 862 222.77 0.000268 0.0 0.0
Presolved break based 12969 7603 40003 585.72 0.0057 0.0 0.0
la05_7_s_s dual = 98520.0 opt = 98880.0 gap = 0.0036
State-Based 5705 6270 8993 229.82 0.005501 0.0 0.0
Break based 10238 6106 8630 478.14 0.003585 0.0 0.0
SCIP+ 7152 550 582 128.73 0.003518 0.0 0.0
SCIP+: col. gen. 5082 555 303 49.99 0.0 0.0 0.0
Presolved break based 8141 6132 8170 64.42 0.0035 0.0 0.0

1
9
7

instance vars cons nodes time relative root relative primal gap
la05_8_l_h dual = 471200.0 opt = 481700.0 gap = 0.022
State-Based 9082 16921 33007 3600.08 0.03959 0.0 0.01712
Break based 20787 9245 14550 3306.11 0.02175 0.0 0.0
SCIP+ 6229 700 27 36.99 0.01312 0.0 0.0
SCIP+: col. gen. 6596 835 256 103.85 0.0008765 0.0 0.0
Presolved break based 6721 9278 4576 127.6 0.017 0.0 0.0
la05_8_l_l dual = 473900.0 opt = 481700.0 gap = 0.016
State-Based 7542 14401 46192 3600.09 0.03153 0.0 0.006881
Break based 14307 7775 2238 1417.64 0.0162 0.0 0.0
SCIP+ 4992 630 188 50.2 0.01267 0.0 0.0
SCIP+: col. gen. 5504 765 311 100.97 0.001657 0.0 0.0
Presolved break based 5337 7808 5088 109.3 0.011 0.0 0.0
la05_8_l_m dual = 477500.0 opt = 484300.0 gap = 0.014
State-Based 5907 11784 27630 1061.64 0.02876 0.0 0.0
Break based 8747 6209 8824 928.61 0.01409 0.0 0.0
SCIP+ 3792 554 496 71.54 0.01349 0.0 0.0
SCIP+: col. gen. 4245 690 1650 178.27 0.002634 0.0 0.0
Presolved break based 3971 6238 3604 115.35 0.016 0.0 0.0
la05_8_l_s dual = ∞ opt = -∞ gap = 0.0
State-Based 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SCIP+ 3184 665 0.0 0.05 0.0 0.0 0.0
SCIP+: col. gen. 2865 620 1 0.26 0.0 0.0 0.0
Presolved break based 0.0 0.0 0.0 0.0 0.0 0.0 0.0
la05_8_m_h dual = 276400.0 opt = 280200.0 gap = 0.014
State-Based 9682 14497 11156 996.59 0.02573 0.0 0.0
Break based 25604 9866 21228 2478.96 0.01354 0.0 0.0
SCIP+ 9195 730 368 209.84 0.009721 0.0 0.0
SCIP+: col. gen. 7016 805 155 53.9 0.0007193 0.0 0.0
Presolved break based 10042 9901 10722 140.69 0.013 0.0 0.0
la05_8_m_l dual = 276500.0 opt = 280200.0 gap = 0.013
State-Based 8142 12397 18617 962.54 0.02534 0.0 0.0
Break based 18213 8405 11316 1651.97 0.01339 0.0 0.0
SCIP+ 6852 660 185 88.04 0.008848 0.0 0.0
SCIP+: col. gen. 5830 735 60 33.62 0.0009079 0.0 0.0
Presolved break based 7566 8441 7781 80.92 0.013 0.0 0.0
la05_8_m_m dual = 276600.0 opt = 280200.0 gap = 0.013
State-Based 6494 10149 3575 273.54 0.02335 0.0 0.0
Break based 11793 6842 6081 745.8 0.01284 0.0 0.0
SCIP+ 4648 585 119 53.06 0.008371 0.0 0.0
SCIP+: col. gen. 4741 660 166 47.43 0.00106 0.0 0.0
Presolved break based 5403 6866 3845 53.42 0.013 0.0 0.0

1
9
8

instance vars cons nodes time relative root relative primal gap
la05_8_m_s dual = 277000.0 opt = 280200.0 gap = 0.012
State-Based 4989 8095 3291 224.98 0.01781 0.0 0.0
Break based 6719 5371 1831 500.69 0.01143 0.0 0.0
SCIP+ 3341 514 89 30.19 0.007052 0.0 0.0
SCIP+: col. gen. 3731 590 95 22.03 0.001416 0.0 0.0
Presolved break based 3560 5391 1647 48.24 0.012 0.0 0.0
la05_8_r_h dual = 159800.0 opt = 162900.0 gap = 0.019
State-Based 9620 13790 3579 619.4 0.05965 0.0 0.0
Break based 26483 9772 2901 2052.98 0.01895 0.0 0.0
SCIP+ 7471 735 529 113.56 0.008615 0.0 0.0
SCIP+: col. gen. 6281 800 938 107.47 0.0007311 0.0 0.0
Presolved break based 7975 9801 1086 140.97 0.015 0.0 0.0
la05_8_r_l dual = 314600.0 opt = 322300.0 gap = 0.024
State-Based 7747 13287 24732 2030.71 0.05464 0.0 0.0
Break based 16214 7972 2174 1878.36 0.02385 0.0 0.0
SCIP+ 6119 645 31 30.21 0.02564 0.0 0.0
SCIP+: col. gen. 6159 750 165 72.8 0.0009848 0.0 0.0
Presolved break based 6834 8009 2106 72.18 0.019 0.0 0.0
la05_8_r_m dual = 193300.0 opt = 197200.0 gap = 0.02
State-Based 6341 9444 57627 858.07 0.04648 0.0 0.0
Break based 12206 6626 22203 1581.43 0.01955 0.0 0.0
SCIP+ 6417 590 14012 1616.95 0.03744 0.0 0.0
SCIP+: col. gen. 5153 655 2653 281.8 0.002438 0.0 0.0
Presolved break based 6977 6657 36144 159.2 0.019 0.0 0.0
la05_8_r_s dual = 330500.0 opt = 333900.0 gap = 0.01
State-Based 4769 7385 2445 86.53 0.01308 0.0 0.0
Break based 6908 4880 645 321.7 0.01008 0.0 0.0
SCIP+ 3901 518 16 22.95 0.009933 0.0 0.0
SCIP+: col. gen. 3358 587 10 4.22 0.0006582 0.0 0.0
Presolved break based 4206 4897 623 23.8 0.01 0.0 0.0
la05_8_s_h dual = 112300.0 opt = 112600.0 gap = 0.0026
State-Based 10383 11214 591 92.98 0.007428 0.0 0.0
Break based 31702 10583 131 1454.21 0.003033 0.0 0.0
SCIP+ 11639 765 51 47.46 0.002296 0.0 0.0
SCIP+: col. gen. 6951 770 27 14.63 0.0009835 0.0 0.0
Presolved break based 11354 10618 14 52.37 0.001 0.0 0.0
la05_8_s_l dual = 113100.0 opt = 114100.0 gap = 0.0083
State-Based 8842 9599 6354 409.91 0.01183 0.0 0.0
Break based 23282 9140 7128 1270.45 0.008344 0.0 0.0
SCIP+ 8604 695 208 68.94 0.004872 0.0 0.0
SCIP+: col. gen. 6093 700 397 52.13 0.001378 0.0 0.0
Presolved break based 8586 9176 1173 54.88 0.005 0.0 0.0

1
9
9

instance vars cons nodes time relative root relative primal gap
la05_8_s_m dual = 113200.0 opt = 114100.0 gap = 0.0075
State-Based 7192 7874 2596 301.63 0.01246 0.0 0.0
Break based 15376 7565 3160 855.16 0.007388 0.0 0.0
SCIP+ 6191 620 353 81.92 0.005306 0.0 0.0
SCIP+: col. gen. 5315 625 340 54.49 0.001392 0.0 0.0
Presolved break based 6472 7602 1593 54.9 0.0051 0.0 0.0
la05_8_s_s dual = 113400.0 opt = 114100.0 gap = 0.0057
State-Based 5666 6278 2359 215.25 0.01179 0.0 0.0
Break based 9618 6106 1834 518.31 0.005723 0.0 0.0
SCIP+ 4152 550 242 46.17 0.005973 0.0 0.0
SCIP+: col. gen. 4163 555 606 62.18 0.002141 0.0 0.0
Presolved break based 4474 6131 960 39.21 0.0055 0.0 0.0

2
0
0

Bibliography

[AB06] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2006.

[ABG+20] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg,
and Dieter Weninger. Presolve reductions in mixed integer programming.
INFORMS Journal on Computing, 32(2):473�506, 2020.

[ABZ88] Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck
procedure for job shop scheduling. Management Science, 34(3):391�401,
1988.

[AC91] David Applegate and William Cook. A computational study of the job-
shop scheduling problem. INFORMS Journal on Computing, 3:149�156,
05 1991.

[Ach09] Tobias Achterberg. Constraint Integer Programming. PhD thesis, TU
Berlin, 2009.

[AHS00] J. Marjien Akker, Cor Hurkens, and Martin Savelsbergh. Time-indexed
formulations for machine scheduling problems: Column generation. IN-
FORMS Journal on Computing, 12:111�124, 05 2000.

[AKM05] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching
rules revisited. Operations Research Letters, 33(1):42�54, 2005.

[ANCK08] Ali Allahverdi, C.T. Ng, T.C.E. Cheng, and Mikhail Y. Kovalyov. A
survey of scheduling problems with setup times or costs. European Journal
of Operational Research, 187(3):985�1032, 2008.

[ANS00] Alper Atamturk, George Nemhauser, and Martin Savelsbergh. Con�ict
graphs in solving integer programming problems. European Journal of
Operational Research, 121:40�55, 02 2000.

[ARPV90] T.S. Abdul-Razaq, C.N. Potts, and L.N. Van Wassenhove. A survey
of algorithms for the single machine total weighted tardiness scheduling
problem. Discrete Applied Mathematics, 26(2):235�253, 1990.

[Art13] Christian Artigues. A note on time-indexed formulations for the resource-
constrained project scheduling problem. Operations Research Letters, 45,
06 2013.

[Art17] Christian Artigues. On the strength of time-indexed formulations for
the resource-constrained project scheduling problem. Operations Research
Letters, 45(2):154�159, 2017.

[Bal75] Egon Balas. Facets of the knapsack polytope. Mathematical Programming,
8(1):146�164, 1975.

[Bal79] Egon Balas. Disjunctive programming. In P.L. Hammer, E.L. Johnson,
and B.H. Korte, editors, Discrete Optimization II, volume 5 of Annals of
Discrete Mathematics, pages 3�51. Elsevier, 1979.

[Bal85] Egon Balas. On the facial structure of scheduling polyhedra, pages 179�
218. Springer Berlin Heidelberg, 1985.

[BAPT12] Agostino G. Bruzzone, Davide Anghinol�, Massimo Paolucci, and Flavio
Tonelli. Energy-aware scheduling for improving manufacturing process
sustainability: A mathematical model for �exible �ow shops. Cirp Annals-
manufacturing Technology, 61:459�462, 2012.

[BBC+22] Ksenia Bestuzheva, Mathieu Besancon, Wei-Kun Chen, Antonia Chmiela,
Tim Donkiewicz, Jasper van Doornmalen, Leon Ei�er, Oliver Gaul, Ger-
ald Gamrath, Ambros Gleixner, Leona Gottwald, Christoph Graczyk,

201

Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst,
Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter,
Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel Rehfeldt, Ste�an
Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro Sofranac,
Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Wellner, Di-
eter Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0.
Technical report, Zuse Institute Berlin, 2022.

[BDK13] Andreas Bley, Fabio D'Andreagiovanni, and Daniel Karch. Wdm �ber
replacement scheduling. In Proceedings of INOC 2013, volume 41, pages
189 � 196, 2013.

[BDP96] Jacek Blazewicz, Wolfgang Domschke, and Erwin Pesch. The job-shop
scheduling problem: Conventional and new solution techniques. European
Journal of Operational Research, 93(1):1�33, 1996.

[Bel57] Richard Bellman. Dynamic Programming. Princeton University Press,
Princeton, NJ, USA, 1 edition, 1957.

[BJN+98] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P.
Savelsbergh, and Pamela H. Vance. Branch-and-price: Column generation
for solving huge integer programs. Operations Research, 46(3):316�329,
1998.

[BJS94] Peter Brucker, Bernd Jurisch, and Bernd Sievers. A branch and bound
algorithm for the job-shop scheduling problem. Discrete Applied Mathe-
matics, 49(1):107�127, 1994. Special Volume Viewpoints on Optimization.

[BK97] Ralf Borndörfer and Zoltan Kormos. An algorithm for maximum cliques.
Unpublished working paper, Konrad-Zuse-Zentrum für Informationstech-
nik Berlin, 1997.

[BL20] Andreas Bley and Andreas Linÿ. Job shop scheduling with �exible en-
ergy prices and time windows. In Operations Research Proceedings 2019,
Operations Research Proceedings, pages 207�213. Springer, 06 2020.

[BL23] Andreas Bley and Andreas Linÿ. Propagation and branching strategies
for job shop scheduling minimizing the weighted energy consumption. In
Operations Research Proceedings 2022, Operations Research Proceedings,
pages 573�580. Springer, 08 2023.

[BLPN06] Philippe Baptiste, Philippe Laborie, Claude Le Pape, and Wim Nuijten.
Constraint-based scheduling and planning. In Handbook of Constraint
Programming, volume 2 of Foundations of Arti�cial Intelligence, pages
761�799. Elsevier, 2006.

[BLSV98] Egon Balas, Giuseppe Lancia, Paolo Sera�ni, and Alkis Vazacopoulos. Job
shop scheduling with deadlines. Journal of Combinatorial Optimization,
1:329�353, 12 1998.

[BMAB16] Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio Buttazzo.
Energy-aware scheduling for real-time systems: A survey. ACM Transac-
tions on Embedded Computing Systems (TECS), 15(1):1�34, 2016.

[Bow59] Edward H. Bowman. The schedule-sequencing problem. Operations Re-
search, 7(5):621�624, 1959.

[Bru02] Peter Brucker. Scheduling and constraint propagation. Discrete Applied
Mathematics, 123(1):227�256, 2002.

[BS15] Lotte Berghman and Frits C.R. Spieksma. Valid inequalities for a time-
indexed formulation. Operations Research Letters, 43(3):268�272, 05 2015.

[B�M+18] Ond°ej Benedikt, P°emysl �·cha, István Módos, Marek Vlk, and Zden¥k
Hanzálek. Energy-Aware Production Scheduling with Power-Saving
Modes, pages 72�81. Springer International Publishing, 2018.

[BSSW06] Ralf Borndörfer, Uwe Schelten, Thomas Schlechte, and Ste�en Weider. A
Column Generation Approach to Airline Crew Scheduling, pages 343�348.
01 2006.

[BSV08] Egon Balas, Neil Simonetti, and Alkis Vazacopoulos. Job shop scheduling
with setup times, deadlines and precedence constraints. J. Scheduling,
11:253�262, 08 2008.

202

[BT69] E. Beale and John Tomlin. Special facilities in a general mathematical
programming system for nonconvex problems using ordered sets of vari-
ables. Operational Research, 69:447�454, 01 1969.

[Bun21] Bundesnetzagentur | SMARD.de. Smard - systematische marktanalyse
für die elektrizitäts- und gaswirtschaft, 05 2021. 12:35.

[BVS+11] Katharina Bunse, Matthias Vodicka, Paul Schönsleben, Marc Brülhart,
and Frank O. Ernst. Integrating energy e�ciency performance in produc-
tion management � gap analysis between industrial needs and scienti�c
literature. Journal of Cleaner Production, 19(6):667�679, 2011.

[BZ78] Egon Balas and Eitan Zemel. Facets of the knapsack polytope from mini-
mal covers. SIAM Journal on Applied Mathematics, 34(1):119�148, 1978.

[CCZ14] Michele Conforti, Gerard Cornuejols, and Giacomo Zambelli. Integer Pro-
gramming. Springer Publishing Company, Incorporated, 2014.

[CGT96] Runwei Cheng, Mitsuo Gen, and Yasuhiro Tsujimura. A tutorial survey of
job-shop scheduling problems using genetic algorithms�i. representation.
Computers & Industrial Engineering, 30(4):983�997, 1996.

[CGW00] T. C. Edwin Cheng, Jatinder N. D. Gupta, and Guoqing Wang. A re-
view of �ow-shop scheduling research with setup time. Production and
Operations Management, 9(3):262�282, 2000.

[CL95] Yves Caseau and François Laburthe. Improving branch and bound for
jobshop scheduling with constraint propagation. In Combinatorics and
Computer Science, 1995.

[COR+11] Alberto Caprara, Marcus Oswald, Gerhard Reinelt, Robert Schwarz, and
Emiliano Traversi. Optimal linear arrangements using betweenness vari-
ables. Mathematical Programming Computation, 3(3):261, 2011.

[CPW98] Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. A Review of Machine
Scheduling: Complexity, Algorithms and Approximability, pages 1493�
1641. Springer US, Boston, MA, 1998.

[CRd06] Pablo E. Coll, Celso C. Ribeiro, and Cid C. de Souza. Multiprocessor
scheduling under precedence constraints: Polyhedral results. Discrete
Applied Mathematics, 154(5):770�801, 2006. IV ALIO/EURO Workshop
on Applied Combinatorial Optimization.

[CS96] Yves Crama and Frits C. R. Spieksma. Scheduling jobs of equal length:
complexity, facets and computational results.Mathematical Programming,
72(3):207�227, 1996.

[DL05] Jacques Desrosiers and Marco E. Lübbecke. A Primer in Column Gen-
eration, pages 1�32. Springer US, Boston, MA, 2005.

[DT93] Mauro Dell' Amico and Marco Trubian. Applying tabu search to the job-
shop scheduling problem. Annals of Operations Research, 41(3):231�252,
1993.

[DTG+13] Min Dai, Dunbing Tang, Adriana Giret, Miguel A. Salido, and W.D.
Li. Energy-e�cient scheduling for a �exible �ow shop using an improved
genetic-simulated annealing algorithm. Robotics and Computer-Integrated
Manufacturing, 29(5):418 � 429, 2013.

[DW60] George B. Dantzig and Philip Wolfe. Decomposition principle for linear
programs. Operations Research, 8(1):101�111, 02 1960.

[DW90] Martin. E. Dyer and Laurence. A. Wolsey. Formulating the single ma-
chine sequencing problem with release dates as a mixed integer program.
Discrete Applied Mathematics, 26(2�3):255�270, 02 1990.

[DW19] Xuefeng Ding and Jiang Wu. Study on energy consumption optimization
scheduling for internet of things. IEEE Access, 7:70574�70583, 2019.

[Etc77] Javier Etcheberry. The set-covering problem: A new implicit enumeration
algorithm. Operations Research, 25(5):760�772, 1977.

[FP17] Tobias Fischer and Marc Pfetsch. Branch-and-cut for linear programs with
overlapping SOS1 constraints. Mathematical Programming Computation,
10, 06 2017.

203

[Fra23] Fraunhofer-Institut für Solare Energiesysteme ISE. https://www.
energy-charts.info/charts/, 07 2023. 10:45.

[GDDT16] Christian Gahm, Florian Denz, Martin Dirr, and Axel Tuma. Energy-
e�cient scheduling in manufacturing companies: A review and research
framework. European Journal of Operational Research, 248(3):744�757,
2016.

[GHSW20] Kaizhou Gao, Yun Huang, Ali Sadollah, and Ling Wang. A review of
energy-e�cient scheduling in intelligent production systems. Complex &
Intelligent Systems, 6(2):237�249, 2020.

[GJ79] Michael R. Garey and David. S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness (Series of Books in the
Mathematical Sciences). W. H. Freeman, �rst edition edition, 1979.

[GJR84] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. A cutting plane
algorithm for the linear ordering problem. Operations Research, 32:1195�
1220, 12 1984.

[GJR85] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. Facets of the
linear ordering polytope. Mathematical Programming, 33:43�60, 09 1985.

[GJS76] Michael R. Garey, David. S. Johnson, and Ravi Sethi. Complexity of
�owshop and jobshop scheduling. Mathematics of Operations Research,
1(2):117�129, 1976.

[GKM+15] Gerald Gamrath, Thorsten Koch, Alexander Martin, Matthias Mil-
tenberger, and Dieter Weninger. Progress in presolving for mixed integer
programming. Mathematical Programming Computation, 7, 06 2015.

[GL10] Gerald Gamrath and Marco E. Lübbecke. Experiments with a Generic
Dantzig-Wolfe Decomposition for Integer Programs. In Paola Festa, edi-
tor, Experimental Algorithms, pages 239�252. Springer Berlin Heidelberg,
2010.

[GNM16] Robert S. Gar�nkel, George L. Nemhauser, and Mathematics. Integer
Programming. Dover Publications, Inc., USA, 2016.

[GNS00] Zonghao Gu, George L. Nemhauser, and Martin W. P. Savelsbergh. Se-
quence independent lifting in mixed integer programming. Journal of
Combinatorial Optimization, 4(1):109�129, 2000.

[GO22] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual, 2022.

[GR11] José Gonçalves and Mauricio Resende. A biased random-key genetic al-
gorithm for job-shop scheduling. AT&T Labs Research Technical Report,
46, 01 2011.

[Har21] Kai Hardenbicker. Job-Shop-Scheduling mit variablen Energiepreisen und
Vorrangbeziehungen. Masterarbeit, Universität Kassel, 2021.

[HDD98] Willy Herroelen, Bert De Reyck, and Erik Demeulemeester. Resource-
constrained project scheduling: A survey of recent developments. Com-
puters and Operations Research, 25(4):279�302, 1998.

[HG14] Oliver Herr and Asvin Goel. Comparison of two integer programming
formulations for a single machine family scheduling problem to minimize
total tardiness. Procedia CIRP, 19:174�179, 2014.

[HSRH22] Hegen Hegen, Shuangyuan Shi, Danni Ren, and Jinjin Hu. A survey
of job shop scheduling problem: The types and models. Computers &
Operations Research, 142:105731, 2022.

[Jac57] James R. Jackson. Simulation research on job-shop production. Naval
Research Logistics Quarterly, 4(4):287�295, 12 1957.

[JM99] Anant Singh Jain and Sheik Meeran. Deterministic job-shop schedul-
ing: Past, present and future. European Journal of Operational Research,
113(2):390 � 434, 1999.

[Joh53] Selmer Martin Johnson. Optimal Two- and Three-Stage Production Sched-
ules with Setup Time Included. RAND Corporation, Santa Monica, CA,
1953.

[JSV98] Brigitte Jaumard, Frédéric Semet, and Tsevi Vovor. A generalized linear
programming model for nurse scheduling. European Journal of Opera-
tional Research, 107(1):1�18, 1998.

204

https://www.energy-charts.info/charts/
https://www.energy-charts.info/charts/

[KB16] Wen-Yang Ku and J. Christopher Beck. Mixed integer programming mod-
els for job shop scheduling: A computational analysis. Computers & Op-
erations Research, 73:165�173, 2016.

[KFH22] James Kotary, Ferdinando Fioretto, and Pascal Van Hentenryck. Fast
approximations for job shop scheduling: A lagrangian dual deep learning
method. Proceedings of the AAAI Conference on Arti�cial Intelligence,
36(7):7239�7246, 06 2022.

[KNT98] Diego Klabjan, George Nemhauser, and Craig Tovey. The complexity
of cover inequality separation. Operations Research Letters, 23:35�40, 08
1998.

[Kou94] Christos Koulamas. The total tardiness problem: Review and extensions.
Operations Research, 42(6):1025�1041, 1994.

[KOW20] Bernard Knueven, James Ostrowski, and Jean-Paul Watson. On mixed-
integer programming formulations for the unit commitment problem. IN-
FORMS Journal on Computing, 32(4):857�876, 2020.

[KV12] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory
and Algorithms. Springer Publishing Company, Incorporated, 5th edition,
2012.

[Law84] Stephen Lawrence. Resource constrained project scheduling: An ex-
perimental investigation of heuristic scheduling techniques (supplement).
Technical report, Graduate School of Industrial Administration, Carnegie-
Mellon University, 1984.

[LD60] Alisa H. Land and Alison G. Doig. An automatic method of solving
discrete programming problems. Econometrica, 28(3):497�520, 1960.

[LD05] Marco E. Lübbecke and Jacques Desrosiers. Selected topics in column
generation. Operations Research, 53(6):1007�1023, 11 2005.

[LDL+14] Ying Liu, Haibo Dong, Niels Lohse, Sanja Petrovic, and Nabil Gindy. An
investigation into minimising total energy consumption and total weighted
tardiness in job shops. Journal of Cleaner Production, 65:87�96, 2014.

[LK78] Jan Karel Lenstra and Alexander H. G. Rinnooy Kan. Complexity of
scheduling under precedence constraints. Operations Research, 26:22�35,
1978.

[LLK77] B. J. Lageweg, Jan Karel Lenstra, and Alexander H. G. Rinnooy Kan.
Job-shop scheduling by implicit enumeration. Management Science,
24(4):441�450, 1977.

[LP97] Young Hoon Lee and Michael Pinedo. Scheduling jobs on parallel ma-
chines with sequence-dependent setup times. European Journal of Oper-
ational Research, 100(3):464�474, 1997.

[LR79] Jan Karel Lenstra and Alexander H.G. Rinnooy Kan. Computational
complexity of discrete optimization problems. In Discrete Optimization
I, volume 4 of Annals of Discrete Mathematics, pages 121�140. Elsevier,
1979.

[LW66] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A survey.
Operations Research, 14(4):699�719, 1966.

[LW18] Marco E. Lübbecke and Jonas T. Witt. The strength of dantzig-wolfe
reformulations for the stable set and related problems. Discret. Optim.,
30:168�187, 2018.

[Man60] Alan S. Manne. On the Job-Shop Scheduling Problem. Operations Re-
search, 8(2):219�223, 04 1960.

[Mar01] Alexander Martin. General Mixed Integer Programming: Computational
Issues for Branch-and-Cut Algorithms, pages 1�25. Springer Berlin Hei-
delberg, 2001.

[MDG19] Oussama Masmoudi, Xavier Delorme, and Paolo Gianessi. Job-shop
scheduling problem with energy consideration. International Journal of
Production Economics, 216:12�22, 2019.

[MDL23] Mouad Morabit, Guy Desaulniers, and Andrea Lodi. Machine-
learning�based arc selection for constrained shortest path problems in
column generation. INFORMS Journal on Optimization, 5(2):191�210,
2023.

205

[MJSS16] David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Edward C.
Sewell. Branch-and-bound algorithms: A survey of recent advances in
searching, branching, and pruning. Discrete Optimization, 19:79�102,
2016.

[MR23] Stephen J. Maher and Elina Rönnberg. Integer programming column
generation: accelerating branch-and-price using a novel pricing scheme
for �nding high-quality solutions in set covering, packing, and partitioning
problems. Mathematical Programming Computation, 2023.

[MSS04] Rolf H. Möhring, Martin Skutella, and Frederik Stork. Scheduling with
and/or precedence constraints. SIAM Journal on Computing, 33(2):393�
415, 2004.

[MSTP15] Gökan May, Bojan Stahl, Marco Taisch, and Vittal Prabhu. Multi-
objective genetic algorithm for energy-e�cient job shop scheduling. In-
ternational Journal of Production Research, 53(23):7071�7089, 2015.

[NCKL11] Giacomo Nannicini, Gérard Cornuéjols, Miroslav Karamanov, and Leo
Liberti. Branching on split disjunctions. 08 2011.

[NM10] Kristian Nolde and Manfred Morari. Electric load tracking scheduling of
a steel plant. Computers & Chemical Engineering, 34:1899�1903, 11 2010.

[NS05] Eugeniusz Nowicki and Czesªaw Smutnicki. An advanced tabu search
algorithm for the job shop problem. Journal of Scheduling, 8:145�159, 04
2005.

[PH22] Myoung-Ju Park and Andy Ham. Energy-aware �exible job shop schedul-
ing under time-of-use pricing. International Journal of Production Eco-
nomics, 248:108507, 2022.

[Pin08] Michael Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice
Hall international series in industrial and systems engineering. Springer,
2008.

[PR21] Michal Penn and Tal Raviv. Complexity and algorithms for min cost
and max pro�t scheduling under time-of-use electricity tari�s. Journal of
Scheduling, 24:1�20, 02 2021.

[PVW85] Chris N. Potts and Luk N. Van Wassenhove. A branch and bound al-
gorithm for the total weighted tardiness problem. Operations Research,
33(2):363�377, 1985.

[QS94] Maurice Queyranne and Andreas S. Schulz. Polyhedral approaches to
machine scheduling. Technical report, 1994.

[QW91] Maurice Queyranne and Yaoguang Wang. Single-machine scheduling
polyhedra with precedence constraints. Mathematics of Operations Re-
search, 16(1):1�20, 1991.

[RF81] David Ryan and Brian Foster. An integer programming approach to
scheduling. Computer Scheduling of Public Transport, 1:269�, 01 1981.

[RM21] Paolo Renna and Sergio Materi. A literature review of energy e�ciency
and sustainability in manufacturing systems. Applied Sciences, 11(16),
2021.

[Sad19] Ruslan Sadykov. Modern Branch-Cut-and-Price. Habilitation à diriger
des recherches, Université de Bordeaux, 12 2019.

[Sav94] Martin W. P. Savelsbergh. Preprocessing and probing techniques for
mixed integer programming problems. INFORMS Journal on Comput-
ing, 6:445�454, 1994.

[Sch86] Alexander Schrijver. Theory of Linear and Integer programming. Wiley-
Interscience, 1986.

[SCH+16] Maximilian Selmair, Thorsten Claus, Frank Herrmann, Andreas Bley, and
Marco Trost. Job shop scheduling with �exible energy prices. 06 2016.

[Smi56] Wayne E. Smith. Various optimizers for single-stage production. Naval
Research Logistics Quarterly, 3(1-2):59�66, 03 1956.

[SOMGSOM14] Fadi Shrouf, Joaquin Ordieres-Meré, Alvaro García-Sánchez, and Miguel
Ortega-Mier. Optimizing the production scheduling of a single machine to
minimize total energy consumption costs. Journal of Cleaner Production,
67:197�207, 2014.

206

[SS95] Yuri N. Sotskov and Natalia V. Shakhlevich. NP-hardness of shop-
scheduling problems with three jobs. Discrete Applied Mathematics,
59(3):237�266, 1995.

[SVDVZ96] Marco Schutten, Steef Van De Velde, and W.H.M. Zijm. Single-machine
scheduling with release dates, due dates and family setup times. Manage-
ment Science, 42:1165�1174, 11 1996.

[SW92] Jorge P. Sousa and Laurence A. Wolsey. A time indexed formulation of
non-preemptive single machine scheduling problems. Mathematical Pro-
gramming, 54(1):353�367, 1992.

[Tal82] F. Brian Talbot. Resource-constrained project scheduling with time-
resource tradeo�s: The nonpreemptive case. Management Science,
28(10):1197�1210, 1982.

[TBBK23] Mark Turner, Timo Berthold, Mathieu Besançon, and Thorsten Koch.
Branching via cutting plane selection: Improving hybrid branching, 2023.

[TCH17] Marco Trost, Thorsten Claus, and Frank Herrmann. Master production
scheduling and the relevance of included social criteria. ACC Journal
1803-9782, 2017:146, 11 2017.

[TCTB13] Andrea Trianni, Enrico Cagno, Patrik Thollander, and Sandra Backlund.
Barriers to industrial energy e�ciency in foundries: a european compar-
ison. Journal of Cleaner Production, 40:161�176, 2013. Special Volume:
Sustainable consumption and production for Asia: Sustainability through
green design and practice.

[TR15] Rodrigo F. Toso and Mauricio G. C. Resende. A C++ application pro-
gramming interface for biased random-key genetic algorithms. Optimiza-
tion Methods and Software, 30:81 � 93, 2015.

[TRM+13] Patrik Thollander, Patrik Rohdin, Bahram Moshfegh, Magnus Karlsson,
Mats Söderström, and Louise Trygg. Energy in swedish industry 2020
� current status, policy instruments, and policy implications. Journal of
Cleaner Production, 51:109�117, 2013.

[TV15] Veerle Timmermans and Tjark Vredeveld. Scheduling with State-
Dependent Machine Speed, pages 196�208. Springer International Pub-
lishing, Cham, 2015.

[UM10] Yasin Unlu and Scott J. Mason. Evaluation of mixed integer programming
formulations for non-preemptive parallel machine scheduling problems.
Computers & Industrial Engineering, 58(4):785�800, 2010.

[VAL94] R.J.M. Vaessens, E.H.L. Aarts, and Jan Karel Lenstra. Job shop schedul-
ing by local search. Memorandum COSOR. Technische Universiteit Eind-
hoven, 1994.

[Van05] François Vanderbeck. Implementing Mixed Integer Column Generation,
pages 331�358. Springer US, Boston, MA, 2005.

[vdA94] J. Marjien van den Akker. LP-based solution methods for single machine
scheduling problems. PhD thesis, Eindhoven University of Technology,
1994.

[vdAvHS99] J. Marjien van den Akker, C. P. M. van Hoesel, and M. W. P. Savels-
bergh. A polyhedral approach to single-machine scheduling problems.
Mathematical Programming, 85(3):541�572, 1999.

[Wag59] Harvey M. Wagner. An integer linear-programming model for machine
scheduling. Naval Research Logistics Quarterly, 6(2):131�140, 06 1959.

[WN14] Laurence.A. Wolsey and George.L. Nemhauser. Integer and Combinato-
rial Optimization. Wiley Series in Discrete Mathematics and Optimiza-
tion. Wiley, 2014.

[Wol90] Laurence A. Wolsey. Valid inequalities for 0�1 knapsacks and mips
with generalised upper bound constraints. Discrete Applied Mathemat-
ics, 29(2):251�261, 1990.

[Wol97] Laurence A. Wolsey. MIP modelling of changeovers in production plan-
ning and scheduling problems. European Journal of Operational Research,
99(1):154�165, 1997.

207

[Wol98] Laurence A. Wolsey. Integer programming / Laurence A. Wolsey. Wiley-
Interscience series in discrete mathematics and optimization. J. Wiley,
New York, 1998 - 1998.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011.

[WX06] Lan Wang and Yang Xiao. A survey of energy-e�cient scheduling mech-
anisms in sensor networks. MONET, 11:723�740, 10 2006.

[XSRH22] Hegen Xiong, Shuangyuan Shi, Danni Ren, and Jinjin Hu. A survey
of job shop scheduling problem: The types and models. Computers &
Operations Research, 142:105731, 2022.

[Yan99] Wen-Hwa Yang. Survey of scheduling research involving setup times.
International Journal of Systems Science, 30(2):143�155, 1999.

[Yin04] Ai-Hua Yin. A heuristic algorithm for the job shop scheduling problem.
In Hai Jin, Guang R. Gao, Zhiwei Xu, and Hao Chen, editors, Network
and Parallel Computing, pages 118�128. Springer, 2004.

[ZDZ+19] Jian Zhang, Guofu Ding, Yisheng Zou, Shengfeng Qin, and Jianlin Fu.
Review of job shop scheduling research and its new perspectives under
industry 4.0. Journal of Intelligent Manufacturing, 30(4):1809�1830, 2019.

208

	Introduction
	Focus of This Thesis
	Overview of the Thesis Structure
	Main Contributions

	Problem Description and Notation
	Formal Notation and Problem Setting
	Summary of the Problem Parameters
	Relevance of This Problem
	Remarks on the Electricity Market
	Related Literature
	Complexity Analysis

	Integer Linear Programming Formulations
	A State-Based Model
	Additional Modeling Variants

	A Partial Dantzig–Wolfe Reformulation
	Dantzig–Wolfe Reformulation in General
	Application to Job-Shop Scheduling With Energy Prices and Time Windows
	Special Properties of the Polytopes
	Model Extensions

	Problem-Specific Solution Strategies
	Problem Reductions
	Presolve Reductions for ILP
	Presolving Techniques for Task Variables
	Reductions of the Break Variables

	The Branch-and-Bound Algorithm
	Branch-and-Bound in General
	Challenges in Fractional Solutions
	Workload Branching
	Branching on Assignment Constraints
	Branching Rule Selection

	Separation of Valid Inequalities
	Conflicts and Clique Cuts
	Generalized Upper Bounds
	Valid Constraints From Linear Ordering

	Column Generation
	Solving the Pricing Problem With a Shortest Path Algorithm
	A Hop-Constrained Shortest Path Problem
	Fast Enumeration of All Break Variables

	Primal algorithms and Heuristics
	Heuristics in MILP-Solvers
	List Scheduling
	Biased Random-Key Genetic Algorithm
	Dynamic Programming
	Local Search Algorithms
	Diving Heuristics

	Implementation and Computational Experiments
	Implementation
	Parameter Choices
	Generation of Test Instances
	Experimental Results
	Comparison of the State-Based and the Break-Based Formulation
	Analyzing Gurobi's Performance
	Analysis of the Implemented Algorithms
	Analysis of the Column Generation Approach
	Summary and Confirmation of Performance

	Conclusions
	Appendix
	Settings of Our Implementation
	Instances
	Dataorig_ver_1 with T= 72
	la01_7_s_s with T= 108
	la02_8_r_s with T= 99

	Bibliography

