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Abstract
Cobalamin (Vitamin  B12) is a cofactor for many enzymes, including those in bacteria, archaea, algae, and mammals. In 
humans, cobalamin deficiency can lead to pernicious anaemia as well as gastrointestinal and neurological disorders. In 
contrast to marine ecosystems, there is a great paucity of information on the role of soils and terrestrial plants in the supply 
of cobalt and cobalamin to microorganisms and animals. The content of cobalt cations in most soils is usually sufficient to 
maintain growth, and the density of cobalamin-producing soil prokaryotes is high in comparison to water bodies. The cobalt 
content of most soils is usually sufficient in comparison with water, and the density of cobalamin-producing soil prokaryotes 
is high. Therefore, terrestrial plants are an important cobalt source for cobalamin-producing rumen and gut prokaryotes. 
The major source of cobalamin for most other animals is the meat of ruminants as well as other animal-derived products, 
bacteria in insects, and coprophagy, e.g., by rodents. In addition, faecal deposits, and fertilizers as well as soil bacteria add 
to the cobalamin supply. However, those archaea and bacteria that do not produce cobalamin obtain this coenzyme or its 
analogues from the environment. Therefore, presence or absence of cobalamin-producing species in soil affects the whole 
soil microbiome. However, our knowledge concerning microbial producers and consumers of cobalamin in soils is still 
limited, despite some recent advances. The main reasons are a low cobalamin content in soils and challenging methods of 
determination. In this regard, advanced analytical knowledge and technical equipment are required, which are usually unavail-
able in soil laboratories. This review provides relevant methodological information on sample homogenization, extraction, 
concentration, and purification as well as analysis of cobalamin.
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Introduction

Cobalamin (vitamin  B12) is a cofactor for many enzymes, 
having a critical function in some microorganisms and all 
animals (Roth et al. 1993). In humans, cobalamin deficiency 
can result in, e.g., pernicious anaemia, gastrointestinal, and 
neurological disorders (Rowley and Kendall 2019). Pure 
vegetarian and in particular vegan diets may cause cobala-
min deficiency, due to lack of its intake (Donaldson 2000; 

Watanabe et al. 2014). In addition, the elderly and persons 
with gastrointestinal diseases are among the risk groups, as 
they have limited production of specific transporting pro-
teins, which mediate the intestinal absorption of cobalamin 
and its delivery to the tissues (Rowley and Kendall 2019).

Cobalamin belongs to a group of similar water-soluble 
coordination complexes of cobalt cations (usually  Co3+ and 
 Co2+), which occupies the centre of a heterocyclic corrin 
ring (Fig. 1). These complexes are similar to the tetrapy-
rrole chlorin ring of chlorophyl (photosynthesis) and the 
porphyrin ring of haem (oxygen transport). In bacteria, all 
tetrapyrrole compounds derive from δ-amino-levulinate and 
exhibit complex inter-relationships in numerous species (Yin 
and Bauer 2013). The cobalamin corrin complex is further 
bound to a benzimidazole lower ligand and an upper group, 
which can be represented by a 5'-deoxyadenosyl-methyl and 
hydroxy group in nature or by a cyano group in manufac-
turing processes (Roth et al. 1993; Fang et al. 2017). The 
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different upper ligands do not affect cobalamin functioning. 
In contrast, the replacement of the lower ligand dimethyl-
benzimidazole (DMB) by other ligands results in cobalamin 
analogues, called cobamides or corrinoids (Hallberg et al. 
2022). These analogues are inactive in animals but serve 
as coenzymes in different microorganisms. The de novo 
biosynthesis of cobalamin alternatively occurs in aerobic 
or anaerobic pathways, solely carried out by bacteria and 
archaea. Some prokaryotes can also synthesize cobalamin 
by absorbing and remodelling other corrinoids via a salvage 
pathway (Fang et al. 2017).

In marine ecosystems intensive research has been car-
ried out over the last decades to investigate the symbiosis 
of algae and bacteria (Bunbury et al. 2022; Helliwell et al. 
2016), e.g., for elucidating the cobalamin content of fish 
(Watanabe et al. 2013; Watanabe and Bito 2018). In contrast, 
there is a great paucity of information on the role of soils 
and terrestrial plants in the supply of cobalt and cobalamin 
to microorganisms and animals. This is astonishing, con-
sidering (1) that the Co content of most soils is often suf-
ficient (Srivastava et al. 2022), particularly in comparison 
with water, (2) that the density of cobalamin-producing soil 
prokaryotes is high (Hallberg et al. 2022), and (3) that ter-
restrial plants are an important source of Co for cobalamin-
producing rumen and gut prokaryotes (Morton 1986; Pat-
erson et al. 1991).

It is certainly possible to supply cobalamin as a phar-
maceutical dietary supplement to humans in many coun-
tries, but the majority still rely on cobalamin uptake from 
their food. Main cobalamin sources for most carnivores and 
omnivores (including humans) are meat and other animal-
derived products, e.g., eggs, milk, and other dairy prod-
ucts (Combs and McClung 2022). The richest sources are 

liver and kidney. Consequently, it is still important to have 
information on the dietary cobalamin supply to avoid defi-
ciency due to a low meat or vegan diet (Donaldson 2000; 
Watanabe et al. 2014), sometimes called “hidden hunger” 
on a global scale (Titcomb and Tanumihardjo 2019). The 
central objective of the current review is to highlight the 
importance of Co compounds and microorganisms in soil for 
cobalamin turnover in terrestrial ecosystems. The diversity 
of cobalamin compounds and its analogues leads to con-
siderable analytical challenges, highlighting the importance 
of strengthening cooperation between food chemistry, soil 
biochemistry, and soil microbiology.

Cobalt and cobalamin in soil

Co is a ferromagnetic transition metal with the atomic num-
ber 27 and a high density of 8.9 g  cm−3. The only stable iso-
tope is 59Co and a variety of radioisotopes exist, 60Co being 
the most important, which is used as a tracer and source of 
high-energy γ-rays. In the biochemical context, the salts of 
 Co2+ and  Co3+ are much more relevant than oxides, although 
the oxidation grades of Co can range from  Co3− to  Co5+. The 
Co content of environments has been considerably increased 
over the last decades, due to the growing industrial demand 
(Kosiorek and Wyszkowski 2019; Srivastava et al. 2022), 
accompanied by emissions from coal and oil burning (Bis-
was et al. 2013; Srivastava et al. 2022). Co is primarily used 
in rechargeable lithium-ion accumulators and in magnetic, 
wear-resistant, and high-strength alloys. Traditionally, Co 
aluminate gives a distinctive deep blue colour to many prod-
ucts, e.g., paints, glasses, and ceramics.

The Co content of soils is often low but, especially in 
loamy soils, it is usually high enough to supply sufficient 

Fig. 1  General form of cobala-
min analogues according to 
Heal et al. (2017); shown are a 
schematic of the conserved cor-
rin ring with various upper (β) 
and DMB as lower (α) ligand 
for cobalamin and adenine as 
examples for pseudocobalamin
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quantities of Co cations to arable crops and grassland veg-
etation (Linhares et al. 2019; Srivastava et al. 2022). Con-
sequently, Co has not been regularly measured in investiga-
tions on trace metal effects on soil microorganisms (Chander 
et al. 2001). For this reason, a great paucity of informa-
tion exists on Co in soils (Srivastava et al. 2022), despite 
their importance as a primary source of Co cations for most 
cobalamin-producing bacteria and archaea.

Soils with Co contents < 5 µg  g−1 usually provide a grass-
land vegetation with Co concentrations < 0.1 µg  g−1 DW, 
which might be the reason for Co insufficiency in the gastro-
intestinal microbiome of herbivores (Linhares et al. 2019). 
Soils low in Co contents are mainly developed from acidic 
igneous rocks (Table 1), e.g., granite and rhyolite, from sedi-
mentary rocks, e.g., sandstone, or from metamorphic rocks, 
e.g., quartzite and gneiss (McGrath and Fleming 2007; Sriv-
astava et al. 2022; Tyler 2004). Peat soils are also inherently 
low in cobalt (Stepanova et al. 2015). The same is true for 
organic forest floor layers, with a median of 1.1 µg  g−1 soil 
in Norway (Nygård et al. 2012), due to the low Co uptake 
of trees. In addition, coniferous trees cause podsolization, 
which transfers Co by leaching from the A horizon to the 
iron-rich B horizon. Many sandy and acidic soils, already 
inherently low in cobalt, are further depleted by podsoliza-
tion (McGrath and Fleming 2007).

Many soils have high Co contents but low availability to 
pasture plants (McGrath and Fleming 2007). High soil pH 
in combination with high contents of carbonate (McGrath 
and Fleming 2007; Srivastava et al. 2022) and Mn oxides 
(Li et al. 2004; McGrath and Fleming 2007) lower the soil 
Co availability to plants (Collins and Kinsela 2011). Dif-
ferent soil fractions, namely the soluble and exchangeable, 
the organically bound, the oxide bound pools, etc., dynami-
cally regulate soil Co availability (Srivastava et al. 2022). 
 Co2+ dominates in soils and exhibits a higher solubility and 
stability in soil as well as a higher bioavailability to micro-
organisms and plants than  Co3+, which is formed by surface 
oxidation of  Co2+ on oxy-hydroxide minerals (Medyńska-
Juraszek et al. 2020; Srivastava et al. 2022; Wendling et al. 
2009). The background Co content of soils can increase into 
toxic ranges of > 40 µg  g−1 soil by dust deposition (Lison 
2015), especially in mining areas (Narendrula et al. 2012), 
by sewage sludge application (Zupančič and Skobe 2014), by 
rock phosphate addition (Saaltink et al. 2014), and by using 
Co containing pesticides (Defarge et al. 2018). However, no 
published data exist for Co monitoring schemes to validate 
the effects of these numerous anthropogenic sources.

The information on soil Co contents is usually limited 
(Srivastava et al. 2022), especially in comparison with other 
trace metals. This is even more true for cobalamin, although 

Table 1  Cobalt content of 
different soils around the world, 
considering parent material 
and soil class according to the 
FAO-WRB system (IUSS-WRB 
2022)

Country Parent material Soil class Mean Range Reference
(µg Co  g−1 soil)

Brazil Ferralsol 29.9 Cembranel et al. (2017)
Belgium Sand 0.3 – 10 De Temmerman et al. (2003)
Belgium Loam 5 – 16 De Temmerman et al. (2003)
Canada Forest floor 4 2 – 6 Narundrula et al. (2012)
China Igneous 10.4 Zhang et al. (2002)
China Sandstone 11.9 Zhang et al. (2002)
China Shale 15.9 Zhang et al. (2002)
China Limestone 12.1 Zhang et al. (2002)
China Glacial deposit 7.6 Zhang et al. (2002)
Congo 25 17 – 33 Narundrula et al. (2012)
Egypt Fluvisol 13 – 23 Zohny (2002
Germany Sand Podzol 0.8 – 6.0 Cappuyns and Mallaerts (2014)
Ireland Basic igneous 12.8 6.3 – 17.0 McGrath and Fleming (2007)
Ireland Mica schist 12.6 10.4 – 14.2 McGrath and Fleming (2007)
Ireland Shale 8.2 1.6 – 18.4 McGrath and Fleming (2007)
Ireland Limestone 6.0 1.8 – 17.5 McGrath and Fleming (2007)
Ireland Sandstone 3.6 0.5 – 13.8 McGrath and Fleming (2007)
Ireland Blown sand 2.4 0.2 – 4.4 McGrath and Fleming (2007)
Ireland Gneiss 2.1 0.3 – 17.5 McGrath and Fleming (2007)
Ireland Granite 0.4 0.2 – 1.0 McGrath and Fleming (2007)
Norway Forst floor (> 70% OM) Podzol 1.4 0.1 – 14.4 Nygård et al. (2012)
Russia Peat 1.3 0.4 – 3.1 Stepanova et al. (2015)
Sweden Quartzite Podzol 1.6 0.5 – 2.3 Tyler (2004)
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the majority of cobalamin-producing bacterial and archaeal 
species live in soil. In one field experiment on a silt loam, 
Mozafar (1994) measured a mean cobalamin content of 
9.5 ng  g−1 soil in 4 treatments, ranging from 5 to 14 ng  g−1 
soil. In 40 soil samples from different environments, Lu 
et al. (2020) found an average of 1.6 ng cobalamin  g−1 soil, 
ranging from 0.08 to 9.3 ng  g−1 soil. Approximately 10% of 
total cobalamin have been found to be water leachable (Lu 
et al. 2020), i.e., bound to soil organic matter. In contrast, 
alumina, kaolinite, and sand caused only a low retardation 
factor, which is the ratio of groundwater velocity to solute 
velocity, in column studies with addition of free cobalamin 
(Hashsham and Freedman 2003). Overall, there is a serious 
lack in knowledge on soil cobalamin.

Cobalt and cobalamin in plants

Plant Co concentrations vary from virtually zero if grown in 
Co deficient soils, and up to 10.2 mg Co  g−1 DW in native 
plant species, grown on Cu and Co mining dumps in the 
Katanga Province, Congo (Li et al. 2004). Despite a long 
research history, plant uptake of Co from soils is far from 
being resolved (Arif et al. 2016; Banerjee and Bhattacharya 
2021). Several soil characteristics are important for the Co 
concentration in plants, for example pH, clay minerals, soil 
organic matter, rhizosphere microbiome, especially myc-
orrhiza, and redox conditions, e.g., in the presence of Mn 
or Fe oxides (Collins and Kinsela 2011; Srivastava et al. 
2022; Wendling et al. 2009). Antagonistic relationships exist 
between Co and Mn (Li et al. 2004), Co and Fe (Gad et al. 
2013), Co and Zn (Huwait et al. 2015) as well as Co and 
Ni (He et al. 2015). Co is primarily accumulated in plant 
roots, before being translocated and distributed to other plant 
parts (Bakkaus et al. 2005; Ilunga Kabeya et al. 2018; Young 
1979). Plants might control their Co uptake by roots to a cer-
tain degree, but the specific accumulation and translocation 
mechanisms as well as transporter systems of cobalt inside 
plants are still largely unknown (Banerjee and Bhattacharya 
2021).

Co regulates various developmental and metabolic 
aspects of plants, namely stress management and enzyme 
activation as well as  N2 fixation in legumes (Banerjee and 
Bhattacharya 2021; Hu et al. 2021). Co helps for example 
to regulate coleoptile elongation, leaf expansion, and bud 
development (Banerjee and Bhattacharya 2021; Kandil 
2007). Co seems also to activate various enzymes and co-
enzymes in the synthesis of photosynthetic pigments, amino 
acids, and alkaloids (Banerjee and Bhattacharya 2021; Basu 
2011; Minz et al. 2018). Consequently, application of Co 
fertilizers up to 50 µg  g−1 soil significantly improved yield 
parameters of crops (Jaleel et al. 2009; Gad et al. 2013). 
However, Co has still not been classified as an essential 

nutrient element (Banerjee and Bhattacharya 2021; Iram 
et al. 2017; Lwalaba et al. 2020).

In contrast to animals, plants do not require cobalamin, 
because their biochemical reactions, such as methionine 
synthesis, use cobalamin-independent enzymes. However, 
plants can take up cobalamin from concentrated nutri-
ent solutions (Bito et al. 2013; Mozafar and Oertli 1992; 
Oh et al. 2021). Under hydroponic greenhouse conditions, 
cobalamin uptake by soybean (Glycine max (L.) Merr.) roots 
and xylem transfer to leaves was a linear function over an 
extremely high range from 10 to 3200 nmol  mL−1 in the 
nutrient solution (Mozafar and Oertli 1992). Their results 
were confirmed by Bito et al. (2013), who observed that let-
tuce (Lactuca sativa L.) leaves, grown in hydroponic culture 
with various concentrations of cyanocobalamin, increased 
its concentration from non-detectable to 165 ± 75 ng  g−1 
fresh weight. Cobalamin was not only found in the vegeta-
tive parts of horticultural crops, but also in generative parts 
such as soybean and barley seeds (Mozafar 1994). However, 
it remains unclear to what extent plants can take up cobala-
min from the soil, because its usual concentration is by sev-
eral orders of magnitude lower (Mozafar 1994). In addition, 
the ligand is most likely bound to microbial proteins, which 
might constrain its uptake. Yet, there are indications that 
some cobalamin is transferred from soil to plants (Mozafar 
1994). However, it remains unknown whether cobalamin is 
accumulated in its free form or due to a microbial invasion 
into the plants.

Keshavarz and Moghadam (2017) detected that prim-
ing of common been seeds with cobalamin provided sig-
nificant protection against salinity stress in comparison with 
non-treated plants. They suggested that cobalamin might 
stimulate the antioxidant system of plants and increase 
their resistance to salinity. This result indicates that cobala-
min apparently might have further unknown physiological 
functions in plant cells. The transfer of cobalamin into the 
plant cells, e.g., by a membrane shifting transport in micro-
vesicles as observed for bacterial extracellular enzymes, is 
still unknow (Kikuchi et al. 2022). It has been reported that 
edible plants, grown on fermented poultry manure organic 
fertilizer products, were enriched with cobalamin (Katsura 
et al. 2021). Consequently, crops grown on fields amended 
with organic fertilizers might contain higher cobalamin con-
centrations than those supplied with inorganic fertilizers.

Cobalt and Cobalamin in algae

Mean Co concentrations of marine water vary between 10 
and 30 pg Co  mL−1 water in different areas of the Atlantic 
and Pacific Ocean (Robertson et al. 1970), whereas coastal 
regions often contained slightly higher concentrations. Co 
assimilation by phytoplankton and marine organisms cannot 
explain the observed variations, although micro-algae have 
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a strong ability to accumulate Co in their cells (Coleman 
et al. 1971). A typical Co concentration of marine algae was 
100 ng  g−1 dry weight (Robertson et al. 1970). Cobalt is a 
limiting micronutrient for algae not only in saline marine 
water but also in freshwater (Bertrand et al. 2015; Bundy 
et al. 2020; Noble et al. 2017). Photosynthetic algae often 
provide many heterotrophic bacteria with Co and assimilates 
in their phycosphere, a region closely connected to the algae 
cell surface, which seems to be analogous to the rhizosphere 
(Bunbury et al. 2022; Kimbrel et al. 2019; Seymour et al. 
2017).

In contrast to plants, cobalamin is needed by over 50% 
of all micro-algae species as an external source for growth 
(Croft et al. 2005). However, low Co concentrations in water 
limit cobalamin formation, leading to co-limitation of algae 
living in symbiosis with prokaryotes (Watanabe and Bito 
2018). Examples for this symbiosis are the unicellular green 
micro-algae Lobomonas rostrata (Helliwell et al. 2018) or 
Chlamydomonas reinhardtii (Bunbury et al. 2022), which 
are often used as model organisms in laboratory studies to 
investigate algae-prokaryote interactions. High concentra-
tions of cobalamin, its analogues, or both groups of cor-
rinoids were found in marine red macro-algae Porphyra sp. 
and in sweet-water green micro-algae Chlorella sp. (Watan-
abe and Bito 2018), but particularly in cyanobacterial (blue-
green algae) Spirulina sp. (Watanabe et al. 1999). Conse-
quently, feeding on these algae is the basis for the potentially 
high cobalamin content of fish and shellfish (Watanabe and 
Bito 2018).

Micro-algae species that do not obligatory require cobala-
min for growth possess alternative, cobalamin-independent 
enzymes (Helliwell et al. 2018). However, even in these 
organisms, cobalamin accumulates in their cells and is used 
as a cofactor of cobalamin-dependent methionine synthase 
(Watanabe and Bito 2018).

Cobalt and cobalamin in animal rumen, gut, 
and faeces

High Co concentrations in air, water, and soil are toxic for 
animals, especially mammals and humans (Lison 2015). 
Less is known on the Co requirements or Co toxicity of 
invertebrates (Bouguerra et al. 2019; Gál et al. 2008; He 
et al. 2015). As bacteria of the insect digestive system can be 
expected as a source of cobalamin and particularly cobala-
min analogues (Okamoto et al. 2021; Schmidt et al. 2019), 
the leftovers of insects and other soil invertebrates are natu-
ral fertilizers that would require more consideration.

Small amounts of Co-feed intake by animals support the 
formation of cobalt proteins that bind Co cations directly 
(Kobayashi and Shimizu 1999). However, most animals 
(except for herbivores) have not only to ingest further Co 
salts but also cobalamin, as their metabolism is unable to 

form this vitamin. This is a special problem for mammals 
because cobalamin-producing bacteria and archaea live 
solely in the colon of most species. In contrast, cobalamin 
is absorbed earlier in the ileum, the last part of the small 
intestine, due to a cobalamin-binding protein as an intrinsic 
factor (IF) produced in the stomach (Alpers and Russell-
Jones 2013). In ruminants, the microbiological synthesis 
of cobalamin occurs in the forestomaches, whereupon the 
cobalamin-containing mass proceeds to the ileum, where 
the protein-carriers are digested, and the ligand absorbed 
(Wei et al. 2021). However, herbivore ruminants require a 
sufficient Co supply by the pasture vegetation for cobalamin 
production (Smith 1990; Waterman et al. 2017) to avoid fatal 
Co deficiency (Klessa et al. 1989).

In particular, the colon but also the caecum of mammals 
contains a large microbiome able to produce cobalamin 
(Danchin and Braham 2017), so that faeces contain con-
siderable cobalamin concentrations (Hallberg et al. 2022). 
For this reason, coprophagy is an important behaviour to 
supply cobalamin (Rosenberg and Zilber-Rosenberg 2016). 
Especially rodents and lagomorphs, such as rabbit pups, 
exhibit extensive coprophagy, called caecotrophy, based on 
special faecal pellets formed during the night in the caecum 
(Combes et al. 2014). Coprophagy is also performed to a 
certain extent by piglets, foals, and dogs (Danchin and Bra-
ham 2017). Coprophagy of non-human primates in the zoo 
has been often thought to be an abnormal behaviour (Jacob-
son et al. 2016), although it is normal in the wild (Sakamaki 
2010). Parasite propagation (Walsh et al. 2013) is an impor-
tant reason for the coprophobic behaviour of humans, who 
can receive sufficient cobalamin by consuming meat and 
other animal-derived products (Combs and McClung 2022; 
Danchin and Braham 2017).

As faeces of some animals contains reasonably high con-
centrations of cobalamin (Mozafar 1994), faecal fertilizers, 
such as cow dung (Mozafar 1994) or poultry manure (Kat-
sura et al. 2021) as well as sewage sludge (Hoover et al. 
1951) supply cobalamin to the soil, which can be partly 
taken up by crops (Mozafar 1994). Aerosols created above 
faecal contaminated land surfaces might contribute to the 
cobalamin supply of animals and humans to an unknown 
extent (Grzyb and Pawlak 2021; Islam et al. 2019). However, 
soil eating did not improve the cobalamin status of humans 
in a rural area with strong anaemia prevalence (Karaoglu 
et al. 2010), although often recommended as a cobalamin 
source on the internet.

Production of cobalamin by soil and rhizosphere 
bacteria

Soil bacteria are usually used in biotechnology to pro-
duce cobalamin as a dietary supplement (Fang et al. 2017; 
Stahmann 2019). Important bacterial species for this 
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purpose are Pseudomonas denitrificans (Gram-negative, 
γ-Proteobacteria), Proprionibacterium shermanii, also 
known as P. freudenreichii (Gram-positive, Actinobacte-
ria, Swiss cheese production), and Sinorhizobium meliloti 
(Gram-negative, α-Proteobacteria, symbiotic  N2 fixation), 
also known as Rhizobium meliloti or Ensifer meliloti (Bala-
banova et al. 2021; Bunbury et al. 2022; Fang et al. 2017). 
In contrast to these soil bacteria, the abundant marine cyano-
bacterium Synechococcus synthesizes only pseudo-cobala-
min (Helliwell et al. 2016).

Soils harbour a large microbial biomass (Khan et al. 
2016; Wardle 1998) and a highly diverse microbial com-
munity (Bastida et al. 2021; Hartmann et al. 2015). Most 
soil biogeochemical processes are mediated by microorgan-
isms (Nannipieri et al. 2003) and the sustainability of soils 
relies on microbial communities that mediate the nutrient 
supply to the vegetation (Bier et al. 2015; Geisseler et al. 
2010). Consequently, knowledge on factors, such as cobala-
min, that control microbial diversity, activity, and physiol-
ogy may help to understand their biogeochemical functions 
(Lu et al. 2020), especially in the rhizosphere (Wallner et al. 
2022; Yasuda et al. 2022). The importance of cobalamin-
producing soil bacteria and archaea suggests that soils 
play an important role in governing cobalamin supply to 
the many microorganisms that do not produce but need this 
coenzyme. However, the knowledge on microbial producers 
and consumers of cobalamin in soils is still limited, despite 
recent advances (Hallberg et al. 2022; Lu et al. 2020).

Cobalamin is predominantly produced in soils by micro-
organisms belonging to the bacterial phyla Proteobacteria 
and Actinobacteria, as stated above, but also to the phyla 
Firmicutes (Gram-positive) and Nitrospirae (Gram-nega-
tive) as well as to the archaeal phylum Thaumarchaeota (Lu 
et al. 2020). Production and remodelling of cobalamin and 

other corrinoids are key functions of soil prokaryotes that 
shape soil microbial communities and control soil biogeo-
chemistry (Hallberg et al. 2022; Lu et al. 2020). However, 
less than 10% of bacterial and archaeal species possess the 
genetic potential for cobalamin synthesis, as demonstrated 
by metagenomic analysis (Lu et al. 2020). Consequently, 
cobalamin must be shared in microbial communities because 
most organisms that use cobalamin lack the ability of its de 
novo synthesis. One possibility is the transfer of cobalamin 
via an ATP-binding cassette transport system (Fang et al. 
2017), but other largely unknown exchange mechanisms 
might exist.

Cobalamin in fungi

Fungi and plants were deemed devoid of cobalamin. 
Orłowska et al. (2021) demonstrated that all non-Dikarya 
fungal lineages utilize cobalamin, which is supported by the 
genomic presence of enzymes, which modify and depend 
on cobalamin similar to those found in animal homologs. 
Cobalamin usage was probably lost in Mucoromycotina at 
the base of Dikarya evolution. Only Glomeromycotina (part 
of Glomeromycota) and Blastocladiomycota (formerly part 
of Chytridiomycota) have a complete genomic presence of 
cobalamin-dependent pathways. However, the source of 
cobalamin in these non-Dikarya fungi is still unknown; it is 
most likely of bacterial origin, e.g., endo-hyphal bacteria. 
All components required for the cobalamin de novo synthe-
sis were found in the symbiosis between the arbuscular myc-
orrhizal fungi (AMF) Gigaspora margarita (Glomeromyco-
tina) and the β-Proteobacterium Candidatus Glomeribacter 
gigasporarum (Ghignone et al. 2012; Venice et al. 2020).

More information exists on the cobalamin concentration 
of fungal sporocarps in comparison to plants, see Table 2 

Table 2  Cobalamin content 
in sporocarps or mycelium in 
edible mushrooms

CV = coefficient of variation between replicate measurements; ND = not determined; NA = not applicable

Species Cobalamin CV (± %) Reference
(µg  kg−1 DW)

Agaricus bisporus  7.0 20 Mattila et al. (2001)
Agaricus blazei 9,060.0 4 Rózsa et al. (2019)
Boletus spp.  0.5 96 Watanabe et al. (2012)
Macroleptota procera  0.9 44 Watanabe et al. (2012)
Morchella conica 0.0 NA Watanabe et al. (2012)
Pleurotus ostreatus  6.0 ND Mattila et al. (2001)
Pleurotus ostreatus  0.1 100 Watanabe et al. (2012)
Cantharellus cibarius  14.6 31 Watanabe et al. (2012)
Craterellus cornucpioides  21.9 41 Watanabe et al. (2012)
Lentinula edodes  8.0 ND Mattila et al. (2001)
Lentinula edodes mycelium 37,300.0 2 Turlo et al. (2008)
Lentinula edodes, donko-type  56.1 70 Bito et al. (2014)
Lentinula edodes, koushin-type  42.3 57 Bito et al. (2014)
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and references (Mattila et  al. 2001; Rózsa et  al. 2019; 
Turło et al. 2008). Thus, Rózsa et al. (2019) measured up 
to 9060 µg cobalamin  g−1 DW under optimal cultivation 
conditions. However, in most cases, the cobalamin concen-
tration of commercially available mushrooms varied around 
10 µg  g−1 dry weight (Mattila et al. 2001; Watanabe et al. 
2012), depending on the cultivation conditions and sporo-
carp part (Koyyalamudi et al. 2009). Especially secondary 
decomposer fungi, such as Agaricus bisporus or A. blazei, 
which are cultivated on horse or chicken manure compost 
(Mattila et al. 2001; Watanabe et al. 2012), contain high 
cobalamin concentrations. Also, primary decomposer culti-
vated on bed logs, such as the shiitake mushroom Lentulina 
edodes, contains considerable cobalamin concentrations 
(Bito et al. 2014). In contrast, wood decomposing and ecto-
mycorrhizal fungi sampled in the forest exhibit often rela-
tively low cobalamin concentrations (Watanabe et al. 2012).

In contrast to sporocarps of edible mushrooms, nothing 
is known on the cobalt and cobalamin content of fungal 
hyphae, although fungi generally dominate the soil micro-
bial biomass (Joergensen and Wichern 2008; Khan et al. 
2016). In addition, AMF and ectomycorrhizal fungi control 
Co uptake and transfer to their host vegetation, and the same 
might be true for cobalamin.

Methods for cobalamin determination

A limited knowledge about the cobalamin content in soils is 
associated with challenging methods of determination. The 
methodological approaches can be divided into four steps 

(Fig. 2): (1) sample homogenization, (2) extraction, (3) 
concentration and purification, and (4) cobalamin analysis 
(Nakos 2016).

Sample homogenization

Organic tissue such as plant residues (Bito et  al. 2013; 
Mozafar 1994), insect material (Schmidt et al. 2019), and 
fungal sporocarps (Bito et al. 2014; Koyyalamudi et al. 
2009) were often freeze-dried or shock frozen with liquid 
 N2, followed by a vigorous homogenization, e.g., using Ultra 
Turrax dispersers. However, in some studies, fresh samples 
were employed for plant material (Mozafar and Oertli 1992; 
Katsura et al. 2021) and fungal sporocarps (Watanabe et al. 
2012), which were crushed, mixed, and extracted. Mozafar 
(1994) obtained cobalamin from air-dried and sieved soil 
(< 1 mm). Lu et al. (2020) measured cobalamin in soils 
collected from the Canadian MetaMicro-Biome Library 
(Neufeldt et al. 2011), the Charitable Research Reserve (Lu 
et al. 2017), and the Craibstone pH plots (Kemp et al. 1992). 
However, Lu et al. (2017) did not give information on the 
storage conditions and the sample pre-treatment.

Extraction of organic tissues

Sample dry weight for cobalamin extraction varied between 
2 g for plant tissue (Bito et al. 2013) and insect samples 
(Schmidt et al. 2019), 5 g for fungal sporocarps (Bito et al. 
2014; Koyyalamudi et al. 2009; Watanabe et al. 2012), and 
10 g for fermented poultry manure (Katsura et al. 2021). 
Extraction was usually conducted in a sodium acetate buffer 

Fig. 2  General flow chart (not drawn to scale) for cobalamin deter-
mination according to Nakos (2016): I. Homogenization techniques 
for a) plant materials and b) soil. II. Extraction followed by III. Puri-
fication and concentration. IV. Analysis of cobalamin, where different 

combinations of each might be applied: a) bacterial growth rate; Ib) 
TLC = thin layer chromatography, IIb) HPLC = high performance liq-
uid chromatography; c) BSA = bovine serum albumin, IF = intrinsic 
factor
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with a concentration of 5 mM (Katsura et al. 2021), 50 mM 
(Schmidt et al. 2019) or 57 mM (Bito et al. 2014; Watanabe 
et al. 2012) at pH 4.0 (Schmidt et al. 2019), pH 4.5 (Katsura 
et al. 2021, or pH 4.8 (Bito et al. 2013). The extractants 
often contained low concentrations of KCN (Bito et al. 2013, 
2014; Mozafar and Oertli 1992; Watanabe et al. 2014) or 
NaCN (Koyyalamudi et al. 2009; Nakos 2016) to substitute 
the various upper ligands of cobalamin by cyano-cobalamin. 
In one case, cobalamin was extracted from fungal mycelium 
with 80% aqueous isopropanol containing 1%  Na2S2O5 (w/v) 
at pH 5.5 (Turło et al. 2008). Under these conditions aquo-
cobalamin is converted into a reasonably more stable sulfito-
cobalamin, while adenosyl, methyl and cyano-forms would 
remain unchanged, at least without a decisive illumination 
of the sample (Pratt 1972).

The extraction was often carried out at 100 °C (Bito et al. 
2013, 2014; Schmidt et al. 2019; Watanabe et al. 2012), 
sometimes followed by an autoclaving step to release pro-
tein-bound cobalamin (Bito et al. 2013, 2014; Mozafar and 
Oertli 1992; Watanabe et al. 2012). For this reason, 1 g of 
pepsin and 0.25 g of Taka-diastase were added in one study 
(Schmidt et al. 2019). The extraction was sometimes carried 
out under  N2 stream and in the dark or strong light protection 
(Schmidt et al. 2019).

Extraction of soil

In an early attempt (Mozafar and Oertli 1992; Mozafar 
1994), 1 g soil was extracted with 50 mL of a buffer, con-
taining 400 mM acetate and 3 mM KCN, for 10 min at room 
temperature, followed by autoclaving for 30 min.

Recently, Lu et al. (2020) analyzed several soil samples 
following the cobalamin extraction procedure of Heal et al. 
(2017). They described their method in the supplementary 
material but did not explicitly mention soil samples. Most 
likely, Lu et al. (2020) used the organic solvent extraction 
protocol for environmental samples (Heal et  al. 2017). 
This was based on approaches of Rabinowitz and Kimball 
(2007) and Kido Soule et al. (2015), paired with physical 
bead beating under strict light protection. In brief, Nylon 
membrane filters (0.2 µm) were placed into tubes containing 
100 and 400 μm beads of equal volume, before 1 mL of a 
cold (–20 °C) acidic acetonitrile / methanol / water mixture 
(40 / 40 / 20 with 0.1% formic acid) was added according 
to Rabinowitz and Kimball (2007). Then, the samples were 
bead beaten for 40 s three times during a 20 min period and 
kept at –20 °C when possible. After centrifugation at 5000 g 
and supernatant removal, the filter was rinsed once with the 
40 / 40 / 20 solvent and twice with methanol, followed by 
centrifuging after each step. The combined supernatants and 
rinses were dried under  N2 or vacuum with less than 40 °C 
heat.

Purification and concentration

Cobalamin containing extracts were often purified and con-
centrated with Sep-Pak Plus C18 cartridges (Waters) (Bito 
et al. 2013, 2014; Katsura et al. 2021), which consist of a 
silica-bonded hydrocarbon chains with a high affinity for 
most hydrophobic analytes present in aqueous solutions. In 
one case, Turło et al. (2008) passed the samples through an 
activated aluminium oxide column, washed with sulfuric 
acid solution of approximately pH 4. For high-performance 
liquid chromatography (HPLC) and ultra-HPLC analysis 
(Bito et al. 2013; 2014; Katsura et al. 2021; Schmidt et al. 
2019), the cobalamin containing filtrates were passed 
through an EASI-EXTRACT-Immunoaffinity Vitamin  B12 
Column (P80, R-Biopharm) and subsequently purified with 
different solvents. This column contains a gel suspension 
with monoclonal antibodies specific for cyano-cobalamin.

Analysis of cobalamin

Bunbury et al. (2022) quantified cobalamin by measuring 
the growth response of Salmonella typhimurium (AR3612) 
at an optical density at 600 nm (Raux et al. 1996). This opti-
cal density was compared with a standard curve of cultures 
grown on standardized cobalamin concentrations. A simi-
lar method was applied by Katsura et al. (2021), just using 
the growth response of cobalamin-dependent Lactobacillus 
leichmannii ATCC 7830. However, this method is not suit-
able, as L. leichmanii can use pseudo-vitamin  B12 as well 
(Watanabe et al. 1998, 1999).

A protein-binding assay can be used for the accurate 
determination of cobalamin (Lau et al. 1965; Mozafar and 
Oertli 1992; Mozafar 1994; Watanabe et al. 1998), particu-
larly for the correct differentiation from its inactive ana-
logues (Fedosov et al. 2023). Several automated platforms 
exist for measuring B12 by a competitive binding assay 
involving the cobalamin-specific protein intrinsic factor and 
provide high-throughput technology for massive measure-
ments (Ispir et al. 2015), which are widely applicable in 
medical laboratories.

Bito et al. (2013) and Katsura et al. (2021) performed bio-
autography of cobalamin compounds according to Tanioka 
et al. (2008). Bioautography is a technique to isolate active 
organic molecules on a thin-layer chromatogram (TLC), 
followed by a biological detection system (Dewanjee et al. 
2015). After concentration and purification, 2 µL of the 
extracts was spotted on a silica gel TLC plate, which was 
developed with a mixture of 2-propanol /  NH4OH (28%) / 
water (7 / 1 / 2 v/v) in the dark at 25 °C (Bito et al. 2013). 
After the TLC sheet was dried, the agar-containing basal 
medium and precultured cobalamin-dependent Escherichia 
coli 215 were overlaid and then incubated at 37 °C for 12 h, 
followed by spraying with a methanol solution.
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Reversed phase HPLC or ultra HPLC are commonly com-
bined with UV detection, using a large variety of methods. 
These HPLC systems make it possible to quantify the dif-
ferent forms of cobalamin and pseudo-cobalamin, especially 
in combination with a triple quadrupole mass spectrometer 
(MS) (Heal et al. 2017). Sometimes an HPLC–MS/MS sys-
tem was applied, coupled to a positive electrospray ioniza-
tion (ESI) detection system (Bito et al. 2013, 2014; Koyy-
alamudi et al. 2009).

Conclusions

Cobalt, as well as soil bacteria and archaea, are of vital 
importance for the cobalamin turnover in terrestrial ecosys-
tems, especially in soils of those agricultural land use sys-
tems that receive faecal organic fertilizers. The importance 
of soil bacteria and archaea for cobalamin production sug-
gests that soils play an important role in governing cobala-
min supply to many organisms that need this vitamin. The 
recent advances should encourage more scientists to accept 
the analytical challenge of measuring cobalt and cobalamin 
in soil and their interaction with arable but especially hor-
ticultural crops.
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