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Abstract
PFAS (perfluoroalkyl substances) are widespread in the environment and are found in almost every medium. Besides per-
sistent PFAS, their transforming precursors gained attention since they may be a reservoir for persistent PFAS in soil. Only 
little information is available about the behavior of these precursors and the simultaneous leaching of their transformation 
products. However, this information is urgently needed to improve estimates of contamination levels. For this purpose, two 
precursors and their non-degradable metabolites were simulated using the MACRO model, with parameter values optimized 
using the evolutionary algorithm caRamel. A constant first-order transformation rate did not adequately represent the leach-
ing of transformation products, but a variable transformation rate that decreased at the date of an equilibrium soil moisture 
provided a good representation of the precursor transformation and leaching of transformation products. The results are new 
evidence that variable environmental parameters such as soil moisture may affect the transformation rate of precursors. The 
simulation study is a step towards describing the behavior of PFAS precursors through physically-based models.
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1  Introduction

Perfluoroalkyl substances (PFAS) are anthropogenic pollut-
ants, which are ubiquitous in the environment. The number 
of known PFAS is still uncertain but currently estimated to 
comprise 10,776 compounds [1]. The strong C-F-bond can 
lead to a persistent behavior [2], which is why the subgroup 
perfluoroalkyl acids (PFAA) is well-known. The tendency to 
persistence is the reason for the PFAS alias “forever chemi-
cals.” Besides persistence, bioaccumulation potential, toxic-
ity, carcinogenic and teratogenic effects are associated with 
some PFAS such as PFOA [3], which is why they should not 
be introduced into the environment. However, there are not 
only stable but also degradable PFAS, known as precursors. 
They can transform into persistent PFAA, making them at 
least as dangerous as their degradation products.

Polyfluoroalkyl phosphate diesters (diPAP) are precur-
sors of the group of polyfluoroalkyl phosphate esters (PAP) 
and are known to biotransform into several intermediates 
[4]. The persistent final transformation products of diPAP, 
perfluorocarboxylic acids (PFCA) [4], are part of the PFAA 
group. diPAP are primarily used for their surfactant proper-
ties in the paper industry [5] and have been found in indoor 
air and dust [6], human sera [7], and agricultural soils [8]. 
Once present in soil, diPAP can pose a long-term problem 
due to their predicted low solubility [9] and high sorption 
potential, causing them to remain in the upper soil layers 
[10]. There, they transform into more mobile PFCA and 
other transformation products, which can be taken up by 
plants [11], leach through the vadose zone into the ground-
water [12], or remain in the soil [13].

To test hypotheses and assess the environmental fate of 
chemicals in soil and groundwater, a variety of leaching 
models have been developed, including MACRO [14] and 
HYDRUS [15]. The selection of a suitable model depends 
on factors such as availability (open source or purchase), 
model type (physically driven, conceptual, empiric), tem-
poral resolution and spatial resolution, and implemented 
processes. MACRO, for example, is used in pesticide 
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registration procedures [16] but is also used to simulate 
the leaching of other substances such as pharmaceuticals 
[17], nutrients [18], and veterinary antibiotics [19]. Simula-
tion studies have also effectively described the behavior of 
PFAA in soils [20–22] using different approaches, including 
air–water-interface [21, 22], non-extractable residues [20], 
and different models [23].

Depending on the number of parameters and the com-
plexity of the model, the calibration process of such mod-
els can be a challenge. Often, several parameter sets lead 
to comparably good results (equifinality [24]), or the used 
optimization algorithm is stuck in a local optimum [25]. For 
the determination of optima, algorithms are used which are 
aimed at minimizing or maximizing an objective function 
by automatic parameter variations. Especially in substance 
fate modeling, it can be necessary to optimize several objec-
tives simultaneously, which does not simplify the problem 
solution process (multiobjective optimization). Optimization 
algorithms are categorized into local and global optimiza-
tion [26]. Furthermore, global optimization algorithms can 
be divided into the categories evolutionary and determin-
istic [27]. Some optimization algorithms are implemented 
into R packages such as hydroPSO [28] and caRamel [29].  
To the best of our knowledge, no previous simulation study 
has addressed the simultaneous transformation of precur-
sors and leaching of their transformation products in soil. 
Therefore, this study describes the processes of leaching 
and transformation of 6:2 diPAP and 8:2 diPAP and their 
transformation products in a prior soil column study [10] 
using the physically based model MACRO. Both precursors 
were found in soil from an agricultural contaminated site in 
Germany among other PFAS [10]. Simulation results are 
not only used to disentangle underlying processes but may 
also help to estimate risks coming from contaminated soils.

2 � Materials and Methods

2.1 � Soil Column Study

The two-year soil column study, on which the simulations are 
based, was conducted between 2019 and 2021 (742 days). 
Detailed information about the experimental setup is avail-
able in [10]. Soil properties (Table S3), water input protocol 
(Table S4), masses in percolation water (Table S6-S8), and 
masses in soil at the end of study (Table S9-S11) can be 
found in the supplementary information (SI).

Different contamination strategies were realized within 
six variants. Here, three out of six variants are focused: (1) 
6:2 diPAP, (2) 8:2 diPAP, and (3) PFCA. In this simulation 
study, only five out of ten applied PFAA of variant (3) are 
included, those which are transformation products (PFCA′) 
of 6:2 and 8:2 diPAP. diPAP was mixed into sandy loam, 

and PFAA were applied to the soil surface of sandy loam, 
which were both used as upper soil and dried at room tem-
perature. diPAP was mixed into the soil three months before 
the study began and stored under dry and dark conditions. 
The lower half of the column was filled with a different 
sandy loam soil, which was PFAS-free and pre-wetted before 
adding the upper soil. The height of the soil was 50 cm, 
and the diameter of the columns 4.6 cm. The water input 
to the soil columns (35 ml/week) was done on three to five 
days a week, which ensured a uniform moisture level, but 
never full saturation, considering the soil as a whole. The 
consequential percolation was analyzed biweekly. The soil 
was analyzed before the study and in four different depths 
at the end. 6.1 mol-% diPAP and 1.0 mol-% PFCA′ were 
still adsorbed to soil particles at the end of the 6:2 diPAP 
study. 41.9 mol-% PFCA′ was found in the percolation water, 
and 51.0 mol-% was not recovered. In the 8:2 diPAP study, 
44.7 mol-% untransformed 8:2 diPAP and 1.4 mol-% PFCA′ 
were found in soil, 22.3 mol-% was found in the percolate, 
and 31.6 mol-% was not recovered. All mass balances were 
calculated, implying a transformation maximum of 200% 
regarding the initial mass of diPAP, since one mol diPAP  
can be transformed into 2 mol PFCA′ [4]. The formation 
fraction ff of each PFCA was calculated by

with the PFCA′ mass mPFCA′ (µg) divided by the complete 
transformed mass of the respective precursor mdiPAP′ (6:2 
diPAP′: 497.5 µg, 8:2 diPAP′: 274.4 µg). During the trans-
formation process, approximately 70% of transformed 
diPAP masses were transformed into metabolites (Table 1).

2.2 � MACRO

MACRO is a numerical model that simulates one-
dimensional water flow and solute transport [14]. It is 

(1)ff =
mPFCA�

mdiPAP�

,

Table 1   Observations of PFCA transformation products (PFCA′) in 
soil column systems at the end of diPAP studies. The formation frac-
tion ff is calculated using the recovered transformed mass of 497.5 µg 
(6:2 diPAP′) and 274.4 µg (8:2 diPAP′)

6:2 diPAP 8:2 diPAP

PFCA′ Mass
µg

ff
–

Mass
µg

ff
–

PFBA′ 25.1 0.05 2.9 0.01
PFPeA′ 206.9 0.42 6.2 0.02
PFHxA′ 111.7 0.22 8.6 0.03
PFHpA′ 1.2  < 0.01 28.5 0.10
PFOA′ – – 170.4 0.62
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commonly used for pesticide registration procedures [30] 
but has also been applied in a previous study on PFAS [20]. 
In this study, the command line version of MACRO 5.2 was 
used, managed via GNU R, and the results were analyzed 
using the macroutils package (1.15.0), as recommended by 
the MACRO developers [31]. The following descriptions of 
model features solely cover those which were found as the 
most relevant ones for the present modeling study. Further 
information can be taken from the technical description [14].

The model calculates evapotranspiration using either 
the Penman–Monteith equation and meteorological data or 
potential evapotranspiration and temperature. The model is 
divided into two domains, micropores and macropores, each 
with dual permeability. Water flow is determined using the 
Richards’ equation for micropores and a gravity-driven equa-
tion for macropores. The solute flow is described by a con-
vection–dispersion equation for micropores and a convection 
equation for macropores. The most relevant processes of the 
convection–dispersion equation for our simulation study are 
mass exchange between micro- and macropores, sorption, 
biodegradation, and solute leaching at the lower boundary. 
The adsorbed concentration of the solute in instantaneous 
equilibrium s is calculated using the Freundlich isotherm

which incorporates the sorption coefficient KD (l/kg), the 
concentration of the solute in the liquid phase c, and the 
Freundlich exponent n. Both parameters can be varied for 
different soil horizons.

Anionic substances can be transported more rapidly through 
soil by using anion exclusion, as defined by the equation:

where �mi(m) represents the fraction of water in the micropo-
res available for transport, �mi is the total water content in the 
micropores, and �ae is the fraction of water in the micropores 
that is excluded from the calculation of mobile water [32].

The solute degradation is calculated by a first-order equa-
tion, which can be specified within four different domains: 
micro- or macropores of the liquid or solid phase. The deg-
radation rates of the four domains µd are calculated by

where �ref,D represents different reference rate coefficients 
in different domains, which can be influenced by two fac-
tors: FW dependent on the water content and Ft dependent 
on the temperature. In our simulations, both factors were 
set to 1, indicating no influence on the transformation rate. 

Not-recovered masses associated with non-extractable 
residues (NER) account for masses that cannot be recov-
ered by the extraction method. Within the model, a work-
around was established by using the first-order equations 

(2)s = KD ∙ cn,

(3)θmi(m) = θmi − θae,

(4)μD = μref ,D ∙ Fw ∙ Ft,

for degradation. Previous studies with PFAA [20] and 
pharmaceuticals [19] have shown that this approach is 
suitable for some use cases. The process was modeled 
using the degradation sink term U (mass/(m3·days))  
given by

with the solute concentration in the solid phase of 
micropores smi (mass/mass), the soil bulk density 
ϒ (mass/m3), and the degradation rate in the solid phase 
of micropores �(s),mi (1/days). Only sorption sites of 
micropores (1 − f ) , where f is the fraction of macropores’ 
sorption sites, were used.

The conversion factor for determining the mass of trans-
formed substances is the formation fraction ff, which repre-
sents the relative fraction of a specific metabolite in relation 
to the entire transformed substance.

2.3 � Model Parameterization

In the MACRO model, a lysimeter setup with free flow 
at the bottom outlet and variable water input at the top 
(Table S4) was used as the boundary condition. The model 
was parametrized using a combination of (1) measured val-
ues, (2) literature values, (3) calculations in MACRO, (4) 
default MACRO values, and (5) calculations outside the 
model, as listed in Table S14 to S17 (SI). The soil proper-
ties, including sand, clay and silt fractions, pH value, and 
OC content were obtained from measured values (Table S3, 
SI) with interpolation to reach 100%. The remaining soil 
properties were either calculated using the MACRO internal 
pedotransfer function (“footprint”) or default values were 
used. The soil was divided into two different soil horizons 
with a total of one hundred numerical layers, each having 
a height of 0.5 cm.

The water input for the simulations was achieved through 
precipitation following the watering protocol of the column 
experiment. For the PFCA variant, the first water input was 
done simultaneously with PFCA mass input. In the diPAP 
variants, the substance masses were mixed into the soil 
before filling the columns. To incorporate mass input into 
the model, initial concentrations of the substance in the soil 
water were set, which depended on the substance parameters 
(adsorption) and required iterative approximation before 
each model run.

About 40% (440  mm/year) of the applied water 
(1,100 mm/year) was missing from the water balance and 
was related to evaporation. No seasonality was observed in 
the water balance. To account for the missing water, half of 
the evaporation was assumed at the top of the soil columns 
and half was related to the bottom of the soil columns since 
both were not waterproof.

(5)U = (1 − f) ∙ smi ∙ Υ ∙ μ(s),mi,
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The initial soil water content of both soil layers was each 
used for calibrating the water flow, while substance-related 
parameters were used to optimize the leaching and transfor-
mation of PFAS. Anion exclusion was used as a parameter 
since PFCA and diPAP are anionic in soil within the given 
pH range. Short-chain PFCA, in particular, have almost no 
retention in soil and could be affected by faster transport due 
to anion exclusion. The estimation of the distribution coef-
ficient KD was performed using the following equation [33]:

where fOC represents the organic carbon content and fS+C  
represents the mineral content, KOC is the normalized sorp-
tion coefficient for organic carbon, and KMIN is the normal-
ized sorption coefficient for mineral content (clay and silt). 
The equation was specified as applicable for PFSA and PFCA 
with a fluorinated carbon chain length ranging from 3 to 11 
[33]. The sorption coefficients were obtained from the litera-
ture [33], and calculated values with an uncertainty of + 25% 
were taken as initial upper bounds. The lower bounds were 
set to zero. In the simulation study, kinetic sorption was 
neglected based on results of Gassmann et al. [20].

In the PFCA variant of the soil column study, all trans-
formation products were fully recovered except for PFOA 
(standard deviations were considered). Therefore, the for-
mation of NER was only simulated for PFOA. In the diPAP 
variants, missing amounts in the molar balance were also 
observed. Only the diPAP amount that could be linked to 
observed metabolites (PFCA′) or was still adsorbed to soil 
particles at the end of study was taken as substance input, as 
it was not possible to distinguish between NER, intermediate 
transformation products that were not identified and sub-
stance loss due to experimental issues such as sorption on 
materials. The transformation of diPAP was modeled using 
the liquid substance phase only. KD, Freundlich n, anion 
exclusion �ae , formation of NER � ref,s,mi (applicable only 
for PFOA), and the transformation rate in the liquid phase 
� ref,l,mi were varied within a parameter range (Table 2). The 

(6)KD = KOC ∙ fOC + KMIN ∙ fS+C,

Freundlich n was varied within the range of 0.7 to 1, values 
above 1 were not considered due to the approach used, which 
stated that sorption decreases with concentration, in accord-
ance with the results of Gellrich [34]. The lower value of 
0.7 was chosen based on the results of Gassmann et al. [20].

2.4 � Evaluation of Model Performance, Optimization 
Algorithm, and Modeling Strategy

2.4.1 � Goodness‑of‑fit Values

The Kling-Gupta-Efficiency (KGE) [35] was used as the 
objective function to evaluate the goodness-of-fit for the 
substance simulations in the percolate m compared to the 
52 observations o. The KGE is given by

using the Pearson correlation coefficient of simulated val-
ues rx, the standard deviation sx, the average of simulated 
values mx , and the average of observed values ox.

The root-mean-square-error (RMSE) is given by

and was used as an objective function to evaluate the 
goodness-of-fit between modeled substance masses mt and 
observed substance masses ot in the different soil layers 
(4 observations) and in the percolate (52 observations) at 
each time step t. The RMSE has the advantage to enhance the 
influence of high absolute errors, which was more crucial 
than relative errors. Both KGE and RMSE were calculated 
using the hydroGOF (0.4–0) package in GNU R.

KGE (mass in percolate) and RMSE (mass in soil) were 
used in the PFCA simulation study, and RMSE (mass in per-
colate, mass in soil) was used in the diPAP simulation.

2.4.2 � Optimization, Uncertainty Ranges, and Best Compromises

The optimization was performed using the global evolu-
tionary algorithm caRamel [29], which was implemented 
in the GNU R environment in “caRamel” version 1.3. The 
algorithm creates a basic population with sets of parameter 
values within defined boundaries. Through various pro-
cesses, such as mutation, a new generation is created from 
individual update processes. This algorithm optimizes two 
objective functions at the same time, which corresponds 

(7)KGEx = 1 −

√(
rx − 1

)2
+ (� − 1)2+(� − 1)2

(8)� =
sx(m)

sx(o)
, � =

mx

ox
,

(9)RMSE =

√√√√1

n

n∑
t=1

(mt − ot)
2
,

Table 2   Boundaries of parameters included in PFAS optimization

KD distribution coefficient, �
ae

 anion exclusion, � ref,s,mi NER forma-
tion in the solid phase of the micropores, � ref,l,mi transformation rate 
in the liquid phase of the micropores

KD Freundlich n �
ae

� ref,s,mi � ref,l,mi

PFAS l/kg – % 1/day 1/day
PFBA 0–0.17 0.7–1.0 0–15 – –
PFPeA 0–0.39 0.7–1.0 0–15 – –
PFHxA 0–0.95 0.7–1.0 0–15 – –
PFHpA 0–2.14 0.7–1.0 0–15 – –
PFOA 0–4.93 0.7–1.0 0–15 0–0.01 –
6:2 diPAP 1–100 0.7–1.0 0–15 – 0–1
8:2 diPAP 1–100 0.7–1.0 0–15 – 0–1
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to the substance mass in leaching water and the substance 
mass in soil in this study. The result of this multiobjective 
optimization is a pareto front with equally good parameter 
sets (trade-offs), which gives an uncertainty boundary of 
the predictive model.

To choose the behavioral models for uncertainty 
assessment from all simulations, we used thresholds for 
both objectives instead of using all parameter sets of the 
pareto front. This practice allows to include parameter 
sets with acceptable trade-offs (Fig. 1), while neglecting 
extreme trade-offs at the borders of the pareto front. In 
the PFCA-study, the thresholds were set to (KGEthres,min, 
RMSEthres,max) = (0.8, 3.1  µg/soil layer). The RMSE 
threshold was developed by taking 0.5  Ma-% of the 
initially applied mass as a maximum deviation. In the 
diPAP studies, thresholds were set to (RMSEthres,min, 
RMSEthres,max) = (0, 5.8  µg/soil layer) using the same 
approach for the maximum RMSE in soil. RMSE of diPAP 
in percolate was set to zero as a hard criterion, because 
diPAP above the limit of quantification (LOQ) was not 
detected in either the lowest soil layer or the percolate.

The best compromise using the example PFCA is given by

and represents the point on the pareto front closest [29] 
to the optimal solution Aopt = (KGEopt, RMSEopt) or 

(10)

min(d(Ai; Aopt)) =

�������

⎛⎜⎜⎝

KGEi−1

dmax,KGE
RMSEi−0

dmax,RMSE

⎞⎟⎟⎠

�������
=

��
KGEi − 1

0.2

�2

+

�
RMSEi

3.1

�2

,

Aopt = (RMSEopt, RMSEopt), respectively, with the maximum 
distance dmax used for scaling.

2.4.3 � Modeling Strategy

The water flow calibration was the first step for all simula-
tion studies (Fig. 2), which involved determining the ini-
tial soil water contents of the lower and the upper soil as 
parameters. A total of 1000 random parameter sets, each 
with varying initial soil moisture of lower and upper soil, 
were evaluated based on their RMSE and KGE values. The 
best parameter set was chosen and fixed for subsequent sub-
stance optimizations. Water flow was separated from the 
substance optimization to allow for comparable results of 
optimized substance parameters. In the second step, PFCA 
masses in soil and percolate were optimized simultaneously 
using 15,000 simulations.

In the third step, two modeling approaches for diPAP 
transformation and metabolite leaching were investigated. 
In strategy 1, a constant biotransformation rate in the liq-
uid phase of the micropores ( � mi,l = � ref,mi,l) was assumed. 
After optimizing diPAP transformation (7,500 simulations), 
three simulations were performed using parameters at their 
maximum/minimum values as well as the best compromise, 
which were obtained separately from the PFCA optimiza-
tion. These parameters were then used to simulate metabo-
lites. In strategy 2, the biotransformation rate of diPAP ( � 
mi,l = � ref,mi,l) was manually altered at a specific date to test 
the hypothesis that it decreased from high to low after a 

Fig. 1   Exemplary representa-
tion of the parameter selection 
from the Pareto front using 
thresholds
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certain time, which could be attributed to various factors 
such as soil water content or oxygen levels [36] whereby at a 
high soil water content there is less space for air-filled pores. 
The subsequent metabolite simulation was performed with 
parameters from the best compromise of the PFCA-study. 
These results were then used to calibrate the transformation 
rates of the precursors again. Automatic calibration could 
not be used, because the MACRO command line version 
does not support time-dependent parameter changes. There-
fore, the transformation rate changes were done manually 
using the graphical interface of MACRO.

3 � Results and Discussion

3.1 � PFCA Leaching

The water flow calibration in the PFCA study resulted in 
satisfactory objective function values (RMSE: 4.7 ml/col-
umn, KGE: 0.89 (-)). Especially the first percolation values 
were well reproduced, reducing modeling errors in short-
chain PFCA leaching, because their leaching occurred in a 
tight time frame. Substance leaching was optimized to obtain 
good fits with KGE > 0.8 (-) and RMSE < 3.1 µg/soil layer, 
resulting in parameter ranges and a best compromise param-
eter set (Table 3). The KD value increased with increasing 
carbon chain length, consistent with previous studies [33, 
37, 38]. Our optimized KD values are much lower than the 
initially used values, which were calculated according to 
Fabregat-Palau et al. [33]. This could be due to the high 

mass of PFAA used (10 PFAA á 623 µg), which could 
enhance their mobility compared to soil columns studies 
with less mass input [39]. This may be particularly relevant 
in real contamination cases where other co-contaminants are 
present, as shown in Zhang et al. for hydrocarbon surfactants 
[40]. The NER formation rate of PFOA ranged from 0.0015 
to 0.0044 1/day which is comparable to the results obtained 
by Gassmann et al. [20], who modeled PFOA leaching in an 
undisturbed lysimeter using MACRO.

The modeled values of mass output and mass retention fit 
well with the observed values (Fig. 3), with PFOA showing 
the largest deviations, which are still within an acceptable 
range. In some cases, the observed values of masses were 
higher than the initially applied masses of 623 µg according 
to analytic results, which could be due to uncertainties. In 
these cases, perfects fits by modeled values are impossible, 
which weakens the shown deviation between observed and 
modeled values, as is the case with PFPeA.

3.2 � diPAP Transformation and Related PFCA Leaching

3.2.1 � Re‑analysis of Soil Column Experiment

An additional analysis of the soil column experiment data 
was conducted to derive a hypothesis on diPAP transfor-
mation leading to simulation strategy 2. A comparison of 
the discharge dynamics of PFCA and PFCA′ (PFCA as a 
metabolite of diPAP) showed similar leaching behavior 
(Fig. 4), despite the fact that PFCA′ was formed by diPAP 
transformation first. An analysis of the spiked soil prior 
the experiment showed negligible amounts of transfor-
mation products in the 6:2 diPAP study (1.1 µg PFPeA, 
1.3 µg PFHxA) as well as in the 8:2 diPAP study (1.6 µg 
PFOA), which cannot account for the amounts found in 
the percolate. These results also indicate that bacteria 
had already adjusted to the conditions, and a lag time of 
biotransformation [41] was not visible in the results of 
substance leaching, as the leaching curves were similar 

Fig. 2   Model strategy. The optimization of PFAS in soil and percolate 
is done simultaneously. The optimization of n:2 diPAP follows two dif-
ferent strategies: biotransformation rate µmi,l is constant  (strategy 1), 
biotransformation rate decreases at a specific date (strategy 2)

Table 3   Parameter values of best compromises after optimization 
(parameter range of behavioral models) of five PFCA using 15,000 
simulation runs. PFBA (n = 5402), PFPeA (n = 9231), PFHxA 
(n = 9186), PFHpA (n = 8423), and PFOA (n = 1258) with n = number 
of behavioral models

KD distribution coefficient, �
ae

 anion exclusion, � ref,s,mi NER forma-
tion in the solid phase of the micropores

KD
(l/kg)

Freundlich n
(-)

�
ae

(%)
� ref,s,mi
(10−3/days)

PFBA 0.01 (0.00–0.05) 0.8 (0.7–1.0) 10.7 (6.9–13.9) –
PFPeA 0.05 (0.00–0.06) 1.0 (0.8–1.0) 15.0 (8.6–15.0) –
PFHxA 0.08 (0.00–0.10) 1.0 (0.7–1.0) 15.0 (1.9–15.0) –
PFHpA 0.14 (0.02–0.21) 1.0 (0.7–1.0) 15.0 (0.0–15.0) –
PFOA 0.50 (0.42–0.63) 0.9 (0.7–1.0) 0.0 (0.0–11.0) 2.7 (1.5–4.4)
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to those from the PFAA study with no biotransforma-
tion. In contrast to PFCA leaching, a consistent but small 
amount of PFCA′ was found in the percolate until the end 
of both diPAP studies, indicating ongoing transformation 
and desorption. The deviation between the curves after 
the decline could be the result of ongoing production 
and leaching of transformation products. This behavior 
led to the hypothesis that the majority of the measured 
PFCA′ was formed before the water content reached an 
almost constant level. This assumption was supported by 
the leaching curves of PFPeA and PFOA (Fig. 4), as well 
as other PFCA metabolites (Figure S1, SI) and could be 
related to the soil moisture content or oxygen availability 
in soil, as these are parameters that could have changed 
after start of the study. Other studies have shown that high 
soil moisture “near full saturation” can have a suppressive 
effect on biotransformation by limiting the oxygen avail-
able to microorganisms [42].

There is evidence that the transformation of diPAP 
depends on the surrounding conditions. In experiments 
where 6:2 and 8:2 diPAP were mixed into soil and then filled 
into columns [10] and lysimeters [43], the results varied 
greatly between the column study with controlled conditions 
and the lysimeter study with near-natural conditions. The 
half-lives (DT50) of both diPAP were higher under near-
natural conditions than under controlled conditions in the 
column study, where the temperature was around 20 °C and 
the water input was constant at a weekly level. The soil water 
content is known to have an influence on diPAP degradation 

by providing OH-radicals for the hydrolysis of phosphate 
ester bonds to fluorotelomer alcohol (FTOH) [44]. Addi-
tionally, oxygen has been shown to enhance the transforma-
tion of diPAP intermediates. For example, a comparison of 
aerobic and anaerobic conditions of 8:2 FTOH showed that 
the transformation rate was ten times faster under aerobic 
conditions than under anaerobic conditions in a batch test 
with activated sludge [45].

3.2.2 � Strategy 1: Constant Biotransformation Rate

Initially, modeling the behavior of diPAP was performed 
using a uniform transformation rate. The best compro-
mises had RMSE values of 3.6 µg/soil layer (6:2 diPAP) 
and 34.2 µg/soil layer (8:2 diPAP). The deviations of 8:2 
diPAP were far above the chosen threshold of 5.8 µg/soil 
layer and could not be improved through parameter adjust-
ments. Therefore, thresholds and parameter boundaries 
were only determined for 6:2 diPAP. For 8:2 diPAP, simula-
tions were selected, all of which had a dmax value of 5.7 (-) 
(Table 4). Other PFAS tend to have a decrease in solubility 
and, therefore, a decrease in sorptivity with an increase in 
chain length within a group of similar compounds [46]. It is 
noteworthy that the KD values of best compromises of 8:2 
diPAP are lower than for 6:2 diPAP, which is the opposite 
trend expected for PFAS. However, it should be noted that 
there is a large range of KD values.

There are different possible combinations of substance 
parameters with equally good results of soil substance content. 

Fig. 3   Comparison of observed 
values and upper and lower 
modeled values of uncertainty 
ranges PFCA. Comparison of 
maximal and minimal masses 
(µg) in percolate (left) and 
maximal and minimal absolute 
differences (µg) of masses in 
soil (right). Initial mass of each 
PFCA was 623 µg

Fig. 4   Comparison of observed 
PFCA masses in the percolate 
(µg/2 weeks) applied as pure 
substance and their respective 
transformation products of n:2 
diPAP. Left: PFPeA and PFPeA′ 
(transformation product of 
6:2 diPAP). Right: PFOA and 
PFOA′ (transformation product 
of 8:2 diPAP)
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In each case, the degradation curve showed similar character-
istics. Therefore, we considered it sufficient to use one param-
eter set for the basic simulation, which provides the input val-
ues for the transformation product (PFCA′) simulation.

However, the leaching dynamics of the transforma-
tion products found in the percolate were not adequately 

represented, as exemplified by PFPeA′ and PFOA′ and their 
best parameter sets (Fig. 5, Strategy 1). The leaching dynam-
ics of the other PFCA′ are shown in Fig. S7-S9 (SI). The 
peaks were underestimated, suggesting that too little diPAP 
mass was transformed before the first percolation. The fall-
ing limb after the sharp peak of the substances mass in the 
leachate was overestimated, which may be attributed to a 
too high continuous first order transformation. Furthermore, 
using the most mobile parameters of the PFCA showed no 
considerable improvement for both metabolites.

3.2.3 � Strategy 2: Variable Biotransformation Rate

It was investigated to what extent the dynamics of metabo-
lites, which could not be represented by a uniform transfor-
mation rate of the precursor, could be modeled using two 
different transformation rates. For this purpose, a fast trans-
formation rate was applied until the beginning of July 2019, 
followed by a lower rate. The dates chosen correspond to 

Table 4   Parameter values of best compromise (behavioral models) of 
6:2 diPAP and the best compromise (dmax ≤ 5.7) of 8:2 diPAP using 
7500 simulation runs. 6:2 diPAP (n = 6205) and 8:2 diPAP (n = 2391) 
with n = number of behavioral models

KD distribution coefficient, �
ae

 anion exclusion, �ref,l,mi transformation 
rate in the liquid phase of the micropores

KD
(l/kg)

Freundlich n
(-)

�
ae

(%)
� ref,l,mi
(10−3/days)

6:2 diPAP 39.24
(16.43–44.42)

1.00
(0.82–1.00)

0.7
(0–8.4)

579.3
(456.9–1000)

8:2 diPAP 30.42
(26.35–31.69)

1.00
(0.95–1.00)

6.7
(3.8–12.4)

89.6
(81.2–114.4)

Fig. 5   Leaching of PFPeA′ (6:2 diPAP) and PFOA′ (8:2 diPAP) in 
µg/2  weeks using modeling strategy 1 (uniform biotransformation) 
and strategy 2 (fast biotransformation followed by slow biotransfor-
mation). Comparison of modeled and observed values (µg/2 weeks). 
Substance parameters correspond to best compromises of PFCA-
study (see Table  3). Biotransformation rates liquid phase of 6:2 
diPAP: 0.5791/days (strategy 1, RMSE: 6.7  µg/2  weeks), 2 and 0.6 

1/days (strategy 2, run 1, RMSE: 5.2 µg/2 weeks), and 6 and 0.45 1/
days (strategy 2, run 2, RMSE: 3.8  µg/2  weeks). Biotransformation 
rates liquid phase of 8:2 diPAP: 0.109 1/days (strategy 1, RMSE: 
4.1  µg/2  weeks), 2 and 0.05 1/days (strategy 2, run 1, RMSE: 
2.9  µg/2  weeks), and 3 and 0.05 1/days (strategy 2, run 2, RMSE: 
2.6 µg/2 weeks)
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the days after which a soil water equilibrium between input 
and output was observed, based on modeling results around 
the date of July 3, 2019. A variation of these dates had an 
impact on the leaching curves of the transformation prod-
ucts (Fig. 6), particularly on the peak, which was higher 
when the transformation rate was longer at a higher level. 
Even a two-day extension had already a noticeable effect 
on the peak, resulting in an increase of 4 µg/2 weeks. This 
demonstrates the high sensitivity of transformation rate 
change dates on the modeled leaching curves.

Overall, the first transformation rate influenced the 
peak of metabolite output and the second transformation 
rate influenced the slow metabolite tailing after the peak. 
A comparison of metabolite outputs of both strategies is 
shown in Fig. 5 (Strategy 2) for PFPeA′ and PFOA′ and for 
the other PFCA in Figures S7 to S9 (SI). However, in some 
cases, the peaks were overestimated. These deviations could 
have occurred due to uncertainties such as (1) the use of a 
mean value from three structurally identical soil columns 
for each diPAP study, (2) sample analytics, (3) substance 
parameters, and (4) the date of transformation rate change. 
Nevertheless, it was shown that the time periods of specific 
transformation rates can be chosen differently and still pro-
duce similar results. Furthermore, other parameter combi-
nations for the diPAP are possible, but they would require 
different calibrated transformation rates to be able to rep-
resent the transformation products to the same extent. For 
this reason, no generality of the substance parameters and 
transformation rates is intended to be conveyed here. How-
ever, the study provided evidence that the transformation 

rates of the diPAP can be greatly affected by certain exter-
nal influences.

Possible influences on the high amounts of PFCA′ in 
the first weeks of the study could be related to favorable 
conditions for transformation, with water and oxygen avail-
able for hydrolysis and microbial transformation. After 
some weeks, the oxygen transfer into the soil could have 
decreased, and the transformation into PFCA′ could have 
slowed down due to the water content approaching the satu-
ration limit. The relationship between soil moisture, oxygen, 
and transformation rate has been established for substances 
such as pesticides [47, 48], petroleum hydrocarbon [49], 
and chlorophenol [42]. However, the minimal and optimal 
water content  [42, 48, 49] and the effect of additional fac-
tors such as microorganisms, salinity, bioavailability, pH, 
and nutrients can vary among different substances [49]. It 
is worth noting that the approach used in MACRO (Eq. 4) to 
calculate the transformation rate based on soil water content 
was not considered in this study. Similar to other leaching 
models [50], this approach [51] assumes that the optimal 
transformation occurs at high water content and does not 
consider any decrease in the transformation rate at high  
water contents.

Further investigations are needed to improve the pre-
dictions of real contamination cases by examining the 
transformation of diPAP under different conditions. If the 
transformation rate indeed decreases with increasing soil 
moisture, then high transformation rates would be expected 
to occur mainly in the upper vadose zone, where precursors 
are already found in agricultural areas [8].

Fig. 6   Leaching of PFPeA′ (6:2 diPAP) using modeling strategy 2 
(fast biotransformation followed by slow biotransformation) and the 
influence of varying the transformation rate change date. Comparison 

of modeled and observed values (µg/2 weeks). Substance parameters 
correspond to best compromises of PFCA-study (see Table  3). Bio-
transformation rates liquid phase: 6 and 0.45 1/days (strategy 2, run 2)
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4 � Conclusions

Given their ubiquitous occurrence in the environment, 
PFAS have been the subject of numerous simulation stud-
ies aimed at describing their behavior in the environment. 
This study focuses particularly on the precursors of the non-
degradable compounds, which were successfully simulated 
using MACRO. Evidence suggests that the transformation 
of diPAP into persistent PFAS is affected by non-stationary 
parameters, with soil moisture being a possible candidate. 
The use of a drastic decrease in the biotransformation rate 
after almost reaching an equilibrium water flow resulted in 
a good model performance. Whether soil water content or 
another parameter, such as oxygen level, is the influencing 
factor needs to be evaluated by performing studies that focus 
on the effects of environmental parameters on biotransfor-
mation of diPAP.
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