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1. Introduction

Many results in algebraic geometry and commutative algebra considerably simplify in generic coor-
dinates. While from a theoretical point of view one may simply exploit that a random transformation 
(almost) always achieves a generic position, the situation is less simple from a computational point of 
view. Random transformations are computationally bad, as they destroy all sparsity typically present 
in generators of polynomial ideals. Furthermore, for many generic positions – like for example the 
popular GIN position in which one obtains the generic initial ideal (see Sect. 2.1 for a definition) – 
effective tests are either not known or prohibitively expensive.

Quasi-stable position represents an interesting alternative. It shares most of the properties of the 
GIN position, but can be effectively verified (Hashemi et al., 2012). It entails a Noether normalisa-
tion (Seiler, 2009b) and in a quasi-stable position one easily obtains a system of parameters (Seiler, 
2012). Furthermore, in a series of articles, we developed a deterministic approach to obtain a quasi-
stable position for arbitrary ideals (Hausdorf and Seiler, 2002; Seiler, 2009b; Hashemi et al., 2018). In 
this approach, one performs a finite sequence of very sparse transformations until quasi-stability is 
achieved. The efficiency depends crucially on the number of transformations required.

In each step, one typically has a choice between several possible transformations. The correct-
ness and the termination of the whole procedure is independent of this choice. But the number of 
transformations required to achieve quasi-stable position can depend strongly on it. Previous compu-
tational experiments have indicated that simple human heuristics are not very successful in making 
consistently good choices here. Therefore we propose in this article to apply methods from machine 
learning for selecting the applied transformations.

Our problem is similar to other proposed applications of machine learning in the context of com-
putational commutative algebra. England and collaborators have studied in a larger number of articles 
the use of various classification methods for choosing the variable ordering for a cylindrical algebraic 
decomposition, see e.g. (Huang et al., 2014; England and Florescu, 2019; Florescu and England, 2019; 
Huang et al., 2019; Florescu and England, 2020; Pickering et al., 2024) and noted that these were 
better than known human heuristics. The problem of learning a selection strategy in Buchberger’s 
algorithm applied to binomial ideals was studied in (Peifer et al., 2020; Peifer, 2021) using reinforce-
ment learning with a 1D convolutional neural network. In all these works, the authors are concerned 
with choices within an algorithm which do not affect its correctness or termination, but which pos-
sess a significant effect on its efficiency. Somewhat related is also the idea of Simpson et al. (2016)
to employ machine learning for choosing the most efficient algorithm for computing resultants. By 
contrast, Jamshidi and Petrović (2023) presented a machine learning approach for computing Gröbner 
bases directly.

Our interaction between machine learning and symbolic computing is somewhere in between. On 
the one hand, we use machine learning to directly solve a geometric problem, namely putting an 
ideal into a distinguished position. Applying an essentially stochastic tool like machine learning does 
not compromise mathematical correctness here, as the problem studied by us possesses infinitely 
many solutions and we are guaranteed to find a correct one. On the other hand, our approach to this 
geometric problem essentially boils down to making a choice within an algorithm the correctness of 
which is independent of this choice. As in most of the above cited works, the task of the machine 
learning is here only to increase the efficiency of a symbolic computation. As so far nobody has been 
able to design good heuristics for choosing the next transformation, we now train different machine 
learning models and check how well they can solve this problem.

This article is structured into two parts. In the next section, we discuss the mathematical foun-
dations: quasi-stability and Pommaret bases. We recall the necessary notions and their relevant 
properties. On the algorithmic side, we recall the deterministic approach from (Hashemi et al., 2018) 
and provide two completion algorithms for monomial Janet and Pommaret bases, respectively. The 
following section is concerned with applying machine learning in this context. We describe the struc-
ture of our feature vectors and how we quantitatively compare different choices. After a discussion of 
the training process, we present our results. Finally, some conclusions are given.
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2. Quasi-stability and pommaret bases

We will work throughout in a polynomial ring S = k[x1, . . . , xn] = k[X ] over a field k of char-
acteristic zero.1 We consider exclusively homogeneous polynomials and ideal. A term is a power 
product xμ1

1 · · · xμn
n = xμ with an exponent vector μ = (μ1, . . . , μn) ∈ Nn

0. We write max xμ = j, if 
μ j is the last non-vanishing entry of μ. We will always take the degree reverse lexicographic order
with x1 � · · · � xn . The leading term of a polynomial f ∈ S is written lt f . If F ⊂ S is a finite set of 
polynomials, we denote by ltF = {lt f | f ∈F} their leading terms. The set F is a Gröbner basis for an 
ideal I , if F ⊂ I and ltI = 〈lt g | g ∈ I〉 = 〈ltF〉. We refer e.g. to (Cox et al., 2015) for more details 
on Gröbner bases.

2.1. Quasi-stable ideals and quasi-stable position

Quasi-stable ideals represent a special class of monomial ideals that appear in many different 
places and which are known under many different names e.g. ideals of nested type (Bermejo and 
Gimenez, 2006), ideals of Borel type (Herzog et al., 2003) or weakly stable ideals (Caviglia and Sbarra, 
2005).

Definition 2.1. A monomial ideal J �S is quasi-stable, if for any term t ∈J and any index 1 ≤ i < j =
max t there exists an exponent s > 0 such that xs

i t/x j ∈J . A polynomial ideal I �S is in quasi-stable 
position, if its leading ideal ltI is quasi-stable.

It suffices to verify the condition in Definition 2.1 for the finitely many minimal generators of J , 
so that quasi-stability can easily be checked effectively. If t is a minimal generator and for the index 
1 ≤ i < j = max t no term of the form xs

i t/x j lies in J , then we call the pair (t, xi) an obstruction to 
quasi-stability. There are many equivalent characterisations of quasi-stable ideals (see (Hashemi et al., 
2018) for a more detailed discussion, references and some further characterisations).

Proposition 2.2. Let J �S be a D-dimensional monomial ideal. Then the following statements are equivalent:

(i) J is quasi-stable.
(ii) Every associated prime ideal of J is of the form 〈x1, . . . , x j〉 for some index 1 ≤ j ≤ n − D.

(iii) The variable xn is not a zero divisor on S/J sat and the variables xn− j for 1 ≤ j < D are not zero divisors 
on S/〈J , xn, . . . , xn− j+1〉 .

(iv) There is an ascending chain J : x∞
n ⊆ J : x∞

n−1 ⊆ · · · ⊆ J : x∞
n−D+1 and for each index 1 ≤ j ≤ n − D

there exists a term x� j

j ∈J .

(v) We have J sat =J : x∞
n and for 1 ≤ j < D

〈J , xn, . . . , xn− j+1〉sat = 〈J , xn, . . . , xn− j+1〉 : x∞
n− j . (2.1)

(vi) For all 1 ≤ j < n we have

J : x∞
n− j = J : 〈x1, . . . , xn− j〉∞ . (2.2)

The various characterisations show that quasi-stable ideals possess many special properties which 
are closely related to the chosen coordinate system, in particular to the ordering of the variables 
x1 � · · · � xn . Seiler (2009b, 2010) furthermore showed that one can provide for quasi-stable ideals an 
explicit free resolution.

1 Some minor adaptions are necessary for fields of positive characteristic. In particular, if the field is too small, a field exten-
sion is needed. See (Hashemi et al., 2018) for a more detailed discussion of this situation.
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Remark 2.3. For a polynomial ideal I � S , quasi-stable position is stronger than Noether position. By 
Proposition 2.2(iv), the canonical map k[xn−d+1, . . . , xn] → S/I defines a Noether normalisation (see 
also (Seiler, 2010)). Bermejo and Gimenez (2006) proved that an ideal is in quasi-stable position, if 
and only if the ideal and all primary components of its leading ideal are simultaneously in Noether 
position. Hashemi et al. (2018) provided a combinatorial characterisation of Noether position analo-
gous to Definition 2.1 by simply ignoring certain obstructions.

Remark 2.4. For a D-dimensional polynomial ideal I � S , a maximal system of parameters consists 
of c = n − D ideal members f1, . . . , fc ∈ I such that the ideal Ĩ ⊆ I generated by them is also D-
dimensional. Such systems of parameters are relevant for many computational tasks in commutative 
algebra; e.g. when computing primary decompositions, their determination represents a serious bot-
tleneck (Decker et al., 1999). Seiler (2012) showed that in quasi-stable position those elements of a 
Pommaret basis of I which have a pure variable power as leading term form a maximal system of 
parameters making its determination trivial.

Quasi-stable position is a generic notion (see e.g. (Seiler, 2010) for a proof): applying the linear 
coordinate transformation x �→ Ax with a non-singular random matrix A ∈ kn×n to an ideal I yields 
a transformed ideal IA = A ·I which is almost always in quasi-stable position. More precisely, the set 
of all matrices A such that IA is in quasi-stable position contains a Zariski open subset of kn×n .

Galligo (1974) in characteristic zero and Bayer and Stillman (1987b) in positive characteristic 
proved for any ideal I � S the existence of a generic initial ideal ginI , i.e. they showed that there 
exists a Zariski open subset U ⊆ GL(n, k) such that for all A, B ∈ U we have ltIA = ltIB = ginI . We 
say that I is in GIN position, if ltI = ginI . This position is very popular among theorists, as in it many 
invariants of I can already be read off from ltI . Computationally, it is very expensive to rigorously 
verify that an ideal is in GIN position; Hashemi et al. (2018) describe an approach based on Gröbner 
systems.

GIN position entails quasi-stable position, but the converse is not true. Hashemi et al. (2012)
showed that most properties of ginI also hold for ltI provided I is in quasi-stable position. We 
recall here some of most important results.

Theorem 2.5. Let I � S be an ideal in quasi-stable position. Then the ideals I and ltI share the following 
invariants:

(i) satiety satI = sat ltI ,
(ii) projective dimension pdI = pd ltI (or equivalent depthI = depth ltI),

(iii) Castelnuovo–Mumford regularity regI = reg ltI .

Furthermore, S/I is Cohen–Macaulay, if and only if the same is true for S/ ltI .

2.2. Pommaret bases

Involutive bases are a special type of Gröbner bases with additional combinatorial properties and 
depend not only on a term order but also on an involutive division, a refinement of the divisibility re-
lation of terms. They were introduced by Gerdt and Blinkov (1998a) inspired by the Janet–Riquier 
theory of partial differential equations. The basic idea of an involutive division L is to associate 
with any generator h in a finite set H ⊂ S a subset XL,H(h) ⊆ X of multiplicative variables. In lin-
ear combinations (or normal form computations), the generator h may then only be multiplied with 
polynomials in the subring k[XL,H(h)] ⊆ S . Loosely speaking, H is an involutive basis, if even with 
this restriction it still generates the whole ideal 〈H〉 . In contrast to ordinary Gröbner bases, involutive 
bases are non-trivial even for monomial ideals. For an extensive introduction to the theory, algo-
rithmics and history of involutive bases, we refer to (Seiler, 2009a, 2010). We omit here the rather 
technical definition of an involutive division L and provide only one for L-involutive bases.
4
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Definition 2.6. Let L be an involutive division. The L-involutive span of a finite set H ⊂ S of polyno-
mials is the k-linear space 〈H〉L = ∑

h∈Hk[XL,H(h)] · h ⊆ 〈H〉 . The set H is an L-involutive basis of 
the ideal I = 〈H〉 , if (i) all elements of H have different leading terms, (ii) 〈H〉L = 〈H〉 and (iii) the 
above sum is direct.

Obviously, H is an L-involutive basis of I , if and only if ltH is an L-involutive basis of ltI . Hence 
any involutive basis is also a – generally non-reduced – Gröbner basis. A key requirement is that 
any involutive basis induces a direct sum decomposition of the ideal generated by it. It implies for 
example that involutive standard representations of ideal members are unique. For a more detailed 
discussion see (Seiler, 2010) and (Hashemi et al., 2022) and references therein.

Example 2.7. Let H be a set of terms. Then the Janet division is defined as follows. Assume xμ ∈ H. 
We have x1 ∈ X J ,H(xμ), if and only if μ1 = max

{
ν1 | xν ∈H

}
. For deciding whether any of the other 

variables are multiplicative, we consider certain subsets of H defined by initial segments of exponent 
vectors. Given such a segment (μ1, . . . , μ j), we write H(μ1,...,μ j) = {

xν ∈ H | ν1 = μ1, . . . , ν j = μ j
}

. 
Now x j+1 ∈X J ,H(xμ), if and only if μ j+1 = max

{
ν j+1 | xν ∈H(μ1,...,μ j)

}
.

Definition 2.8. Let H ⊂ S be a finite set of polynomials and I = 〈H〉 . The volume function of I is 
the numerical function vI : N0 →N0 given by vI(q) = dimk Iq where Iq denotes the homogeneous 
component of degree q. Given an involutive division L for which H is involutively autoreduced, we 
analogously define a volume function of the L-involutive span of H by setting v〈H〉L (q) = dimk(〈H〉L)q .

The induced direct sum decomposition makes it trivial to compute the volume function (and thus 
also the more commonly used Hilbert function) using an involutive basis.

Lemma 2.9. Let the finite set H⊂ S be involutively autoreduced for the involutive division L. If we denote by 
qh the degree and by kh the number of multiplicative variables of a generator h ∈H, then we have2

v〈H〉L (q) =
∑
h∈H

[
q ≥ qh

](q − qh + kh − 1

kh − 1

)
. (2.3)

If q̄ = maxh∈H qh, then v〈H〉L is a polynomial for all q ≥ q̄, the volume polynomial V 〈H〉L of the involutive 
span. An explicit expression for it is obtained by simply dropping the Kronecker–Iversion symbol in (2.3).

In this article, mainly Pommaret bases are relevant. Here, the rule to determine the multiplicative 
variables is particularly simple, as it depends only on the polynomial h and not on the whole set H: 
if max lt h = j, then XP (h) = {x j, . . . , xn}. Thus the degree reverse lexicographic order is the optimal 
choice for obtaining large Pommaret spans.

While for many involutive divisions L (e.g. the Janet division), any ideal I � S possesses a finite 
L-involutive basis, this is not true for the Pommaret division P . The following result follows from 
(Seiler, 2009b, Prop. 4.4) and relates the existence of finite Pommaret bases to quasi-stability.

Theorem 2.10. A monomial ideal J � S has a finite Pommaret basis, if and only if it is quasi-stable. A poly-
nomial ideal I � S has a finite Pommaret basis, if and only if it is in quasi-stable position.

Thus the possible non-existence of a finite Pommaret basis is only a matter of the coordinate 
system used: after a generic linear transformation every ideal is in quasi-stable position. Seiler (2009b, 
Prop. 3.19, Thm. 9.2, Prop. 10.1) showed that Pommaret bases provide us with the following effective
version of Theorem 2.5.

2 Here, we use for notational simplicity the Kronecker-Iverson symbol [C] which is 1, if the logical statement C is true, and 
0 otherwise.
5
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Theorem 2.11. Let H be a finite Pommaret basis of the polynomial ideal I � S . Let q be the maximal degree 
deg h and n − d + 1 the maximal value of max h for an element h ∈H. Then:

(i) Isat = I : x∞
n and satI = max

{
deg h | h ∈H∧ max lt h = n

}
,

(ii) depthI = d,
(iii) regI = q.

With these results, the effective computation of such key invariants like satI , depthI or regI
becomes trivial – provided we can efficiently determine a coordinate transformation to quasi-stable 
position. Despite the fact that quasi-stability is a generic property, many ideals appearing in appli-
cations are not in quasi-stable position. Zero-dimensional ideals are the only exception, as they are 
always in quasi-stable position.

Example 2.12. A celebrated result by Bayer and Stillman (1987a) asserts that generically the maximal 
degree of a Gröbner basis with respect to the degree reverse lexicographic order is the Castelnuovo–
Mumford regularity of the ideal. However, there is no way to effectively verify whether a given ideal 
is in the required generic position whereas this is trivial for quasi-stability. The difference is nicely 
demonstrated by the following ideal from (Seiler, 2009b, Ex. 9.9):

I = 〈x8
1 − x6

2x3x4, x7
2 − x1x6

3, x7
1x2 − x7

3x4〉 � k[x1, x2, x3, x4] . (2.4)

In the given coordinates, the three generators define already the reduced Gröbner basis for the degree 
reverse lexicographic order. Thus one might expect that regI = 8. However, if we swap two of the 
coordinates and consider I as an ideal in k[x1, x3, x2, x4], we obtain a completely different Gröbner 
basis for the corresponding degree reverse lexicographic order:{

x7
2 − x1x6

3, x7
1x2 − x7

3x4, x8
1 − x6

2x3x4, x6
1x8

2 − x13
3 x4,

x5
1x15

2 − x19
3 x4, x4

1x22
2 − x25

3 x4, x3
1x29

2 − x31
3 x4,

x2
1x36

2 − x37
3 x4, x1x43

2 − x43
3 x4, x50

2 − x49
3 x4

}
. (2.5)

It seems to indicate that regI = 50. However, none of the used coordinates are generic in the sense 
of Bayer and Stillman (1987a). In the original coordinates, the ideal I is in quasi-stable position. A 
Pommaret basis is obtained by adding to the Gröbner basis the six polynomials xk

1(x7
2 − x1x6

3) for 
1 ≤ k ≤ 6. According to Theorem 2.11, we thus have regI = 13 and we can conclude that the result 
by Bayer and Stillman (1987a) does not even provide either a lower or an upper bound. Without a 
method to verify the genericity of the used coordinates, it is rather useless for concrete computations.

Although the definitions of the Janet and the Pommaret division, respectively, look very different, 
the two divisions are actually closely related (see (Gerdt, 2000) for a detailed discussion). One con-
sequence of this is the following observation that is an immediate corollary to statements in (Seiler, 
2009b, Sect. 2).

Proposition 2.13. Assume that the polynomial ideal I �S is in quasi-stable position. Then any minimal Janet 
basis of I is also a Pommaret basis.

2.3. Related algorithms

As extensively discussed in (Seiler, 2010) and references therein, there exists a direct algorithm – 
developed by Gerdt and Blinkov (1998a,b) – for computing involutive bases and many optimisations 
have been proposed for it (see e.g. (Gerdt, 2005) and references therein). Several implementations of 
various variants of the basic algorithm exist, but they are not as mature as current implementations 
of Gröbner bases. In our experiments, we therefore computed first reduced Gröbner bases and then 
6
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completed only the leading terms to an involutive basis of the leading ideal. As one can see from 
results like Theorem 2.5, this is sufficient for most purposes.

As a consequence of this strategy, we discuss here only monomial completion algorithms. The basic 
idea of any involutive completion algorithm is to consider what happens if a generator is multiplied 
with one of its non-multiplicative variables. If the obtained term does not lie in the involutive span, it 
is added to the basis. Under modest assumptions, one can show correctness and termination of such 
algorithms; in fact, one can even show that if the input is a minimal generating set, then the output 
will be a minimal involutive basis (Seiler, 2010).

Algorithm 1: JanetCompletion.
Data: Minimal generating set F for the monomial ideal J �S
Result: Minimal Janet basis of J

1 begin

2 H ←−
{[

f , ∅, X J ,F ( f )
] | f ∈ F

}
// the second component contains the already treated non-multiplicative 

variables
3 Sort H w.r.t. degree from the smallest to the largest one
4 repeat
5 f lag ←− true

6 if ∃ h ∈ H : {x1, . . . , xn} \ (
h[2] ∪ h[3]) �= ∅ then

7 xi ←− first element of {x1, . . . , xn} \ (h[2] ∪ h[3])
8 h[2] ←− h[2] ∪ {xi}; f lag ←− false

9 if xi · h[1] has no Janet divisor in {h[1] | h ∈ H
}

then

10 H ←−H ∪
{[

xi · h[1], ∅, h[3] ∩ {x1, . . . , xi−1}]}
11 For the elements g ∈ H such that g[1] and xi · h[1] have the same exponents in the variables 

x1, . . . , xi , update the multiplicative variables among the variables xi, . . . , xn (the variable xi must be 
checked only for xi · h[1]).

12 Sort H w.r.t. degree from the smallest to largest one

13 until f lag

14 return
{

h[1] | h ∈ H
}

Algorithm 1 allows us to compute efficiently (minimal) Janet bases, although it does not explicitly 
use more sophisticated data structures like Janet trees (Gerdt et al., 2001). The key optimisations 
in this algorithm are that we keep track of the already considered non-multiplicative variables and 
that we do not compute the multiplicative variables from scratch after each change in the basis, but 
only perform some necessary adaptions. Experiments with 2000 random ideals show that such simple 
measures suffice to provide a rather efficient algorithm: compared with a naive completion algorithm, 
the runtimes were on average 10 times faster.

We do not provide a detailed proof of the correctness of Algorithm 1. It follows rather immediately 
from the definition of the Janet division that adding in Line 10 the new generator xi · h[1] affects the 
assignment of multiplicative variables only for the generators considered in Line 11. The properties 
of an involutive division, in particular the so-called filter axiom, ensure that the addition of a further 
generator can only lead to smaller sets of multiplicative variables. One might worry that some earlier 
considered non-multiplicative prolongation could then lose its Janet divisor. But it is shown in (Seiler, 
2010, Sect. 4.4) that this does not affect the correctness of the algorithm.

If the given monomial ideal is quasi-stable, then we can resort to a simpler algorithm. As the 
Pommaret division is global, i.e. the multiplicative variables associated to a term are independent of 
the remaining terms in the considered set, it is not necessary to manage multiplicative variables or to 
keep track of already considered non-multiplicative variables and we arrive at Algorithm 2 (in Line 4, 
any term order ≺ may be used). Correctness and termination is extensively discussed in (Seiler, 2010).

Hashemi et al. (2018) developed a deterministic approach to achieve quasi-stable (and related) 
position for arbitrary ideals based on elementary moves. These very sparse transformations generate 
the Borel group of lower triangular, non-singular matrices. Each elementary move is characterised by 
7
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Algorithm 2: PommaretCompletion.
Data: Finite generating set F of quasi-stable ideal J �S
Result: Pommaret basis H of J

1 begin
2 H ←−F ; S ←− {

xih | h ∈ H, i < max h
}

3 while S �= ∅ do
4 s ←− min≺ S; S ←− S \ {s}
5 if s has no Pommaret divisor in H then
6 H ←−H ∪ {s}; S ←− S ∪ {

xi s | i < max s
}

7 return H

a pair of indices (i, j) with 1 ≤ i < j ≤ n and the move μ(i, j) maps x j �→ xi + x j and leaves all other 
variables unchanged. Thus in S we have a total of 1

2 n(n − 1) different elementary moves.
Assume that the ideal I is not in quasi-stable position. Hence its leading ideal ltI has at least one 

obstruction (xμ, i) to quasi-stability. Hashemi et al. (2018) showed that if max xμ = j, then the trans-
formation x j �→ xi + ax j will remove this obstruction for almost any choice of a ∈ k. We will always 
choose a = 1, i.e. apply the elementary move μ(i, j) . In “unlucky” situations, cancellations may allow 
the obstruction to persist. However, after finitely many iterations of μ(i, j) , it will always disappear.

These considerations lead to Algorithm 3 (in (Hashemi et al., 2018), it was given for the case of 
strongly stable position, but the adaption is trivial). For proving its termination and for its formula-
tion, one needs the following ordering. Let F be an autoreduced finite set of polynomials and write 
L(F) = (t1, . . . , t�) for the tuple of leading terms of F sorted such that t1 ≺revlex · · · ≺revlex t� for the 
purely reverse lexicographic order (not the degree reverse lexicographic order!). Given two such sets 
F and F̃ with L(F) = (t1, . . . , t�) and L(F̃) = (t̃1, . . . , ̃t�̃), we define

F ≺L F̃ ⇐⇒
{

∃ j ≤ min (�, �̃) : (∀i < j : ti = t̃i
) ∧ t j≺revlex t̃ j or(∀ j ≤ min (�, �̃) : t j = t̃ j

) ∧ � < �̃ .
(2.6)

Algorithm 3: QSPos – Quasi-Stable Position.
Data: Reduced Gröbner basis G of homogeneous ideal I �S
Result: Linear change of coordinates � such that lt�(I) is quasi-stable

1 begin
2 � ←− id; F ←− G
3 while obstruction to quasi-stability of 〈ltF〉 exists do
4 choose elementary move ψ related to obstruction; � ←− ψ ◦ �

5 F̃ ←− ReducedGröbnerBasis
(
ψ(F)

)
6 while F �L F̃ do
7 � ←− ψ ◦ �

8 F̃ ←− ReducedGröbnerBasis
(
ψ(F̃)

)
9 F ←− F̃

10 return �

The strategy behind Algorithm 3 is quite simple. As long as obstructions exist, we apply a related 
elementary move. Generically, this move will eliminate at least one obstruction; in rare cases we may 
have to iterate the move. In (Hashemi et al., 2018), it is shown that a given ideal I possesses modulo 
linear coordinate transformations only finitely many leading ideals and that after an elementary move 
related to an obstruction a polynomial set can never descend with respect to the ordering ≺L . This 
ensures the correctness and termination of the algorithm.

Like many algorithms in commutative algebra, Algorithm 3 is not completely specified: in Line 4, it 
is not said how the next elementary move should be chosen. In general, there are several possibilities 
here. Although the choice does not affect the correctness and the termination of the algorithm, it has 
8
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Fig. 1. Performance of random choices. Left: comparison of minimal and maximal number of transformations needed to reach 
quasi-stable position. Right: Comparison of average number of transformations required by random strategy (green) with demo-
cratic strategy (blue). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

an effect on the efficiency. A coarse measure for the efficiency is the number of elementary moves 
required until quasi-stable position is reached.

So far, only very elementary strategies were used for choosing a move based on the obstructions 
to quasi-stability. A Maple implementation of the algorithm from (Hashemi et al., 2012) just looks for 
the first obstruction it detects and then uses the move suggested by it (thus the choice depends on the 
way how the search for obstructions is implemented). In other (unpublished) works, we experimented 
with strategies like taking an obstruction of minimal degree or an obstruction related to a generator 
with a minimal number of multiplicative variables. However, for any of these strategies, one can easily 
design examples where they work badly.

We now propose a slightly more sophisticated strategy, the “democratic” strategy, which considers 
all obstructions instead of just one. We note for each existing obstruction of quasi-stability for which 
elementary move it “votes”, i.e. to which move it corresponds; the move which gets the most votes is 
taken. For estimating the influence of good or bad choices, we compared it in a preparatory experi-
ment with a random strategy: in each iteration of the outer while loop of Algorithm 3, we randomly 
pick an elementary move.

We applied both strategies to 1,000 ideals (these were a sample of 10% of a large test set of random 
ideals described in Section 3.3 below). The random strategy was applied to each ideal 10 times. The 
outcome of the experiment is shown in the two plots in Fig. 1. The plot on the left shows for each 
ideal the minimal and the maximal number of transformations needed to reach a quasi-stable position 
using random choices. Obviously, the numbers differ significantly: the maximum is almost 10 times 
as large as the minimum in the worst cases and even in the best cases the numbers differ by a factor 
of five. The plot on the right compares the average number of transformations in a random strategy 
with the number required by the democratic strategy. The latter one needed typically between one 
and three elementary moves and thus was much more efficient. These observations clearly indicate 
that it is worthwhile thinking about good ways to perform the choice in Algorithm 3.

Remark 2.14. It seems natural to consider only elementary moves which are related to obstructions, 
i.e. which obtain in the democratic strategy at least one vote. All human strategies we know work 
this way. However, in the systematic analysis of a large set of random ideals (see Section 3.3 below), 
we found cases where the optimal choice is not related to any obstruction. However, such cases are 
fairly rare: we observed this phenomenon only for about 6% of the considered ideals.

It follows from Remarks 2.3 and 2.4 that all problems mentioned in the title can be simultane-
ously solved by achieving quasi-stable position (for a system of parameters one needs in addition the 
Pommaret basis). Therefore, we will consider in the sequel only this problem. If the goal is a Noether 
position, then this may lead to unnecessary transformations, as it is weaker than quasi-stable position. 
Hashemi et al. (2019) constructed a special involutive division, called D-Noether division, such that a 
finite Noether basis exists, if and only if the ideal is in Noether position. In principle, one could adapt 
9
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the approach presented here to this division and thus obtain slightly more efficient computations. As 
bringing an ideal into a quasi-stable position has so many further benefits, we refrain from detailing 
such an adaption.

3. Machine learning quasi-stable position

We will now show how methods from supervised machine learning can successfully be applied 
to selecting the “right” elementary move in Line 4 of Algorithm 3. We will apply a greedy approach: 
the models are trained to estimate which elementary move will lead to the largest Pommaret span. 
Following ideas used by England and collaborators for machine learning good variable orders for cylin-
drical algebraic decompositions (see the references in the Introduction), we will consider the choice of 
moves as a multi class classification problem: each class corresponds to one possible elementary move 
so that we have 1

2 n(n − 1) different classes.
In our study, we will compare the following five well established and much used classification 

models:
• k Nearest Neighbours (kNN)
• Support Vector Machine (SVM)
• Decision Tree (DT)
• Multilayer Perceptron (MLP)
• Logistic Regression (LR)

Details about them can be found in most textbooks on machine learning; see e.g. (Aggarwal, 2015) or 
(Bishop, 2006). We emphasise that with the exception of the multilayer perceptron, none of them is 
based on a neural network. This means that training is comparatively cheap and less data are needed. 
In particular the latter point is of some relevance, as we will discuss below.

All our computations were done in Python using the Scikit-learn library (Pedregosa et al., 2011). 
For polynomial computations, the Python based computer algebra system SageMath

3 was used. This 
concerns in particular the determination of Gröbner bases. For the extension to Janet or Pommaret 
bases, we implemented the monomial algorithms presented in Section 2.3 in SageMath.

3.1. Feature selection

For most machine learning models, the data must be mapped into a feature space of fixed dimen-
sion. This fact excludes the typical computer algebra approach of using a generating set as input: 
as the number of generators and the number of terms in each generator vary widely from ideal to 
ideal, generating sets cannot be interpreted as elements of a feature space. We could also observe in 
experiments that typical algebraic invariants like dimension, depth or regularity are not relevant for 
deciding which elementary move to choose. Therefore, we omit them in our feature vectors.

Our feature vectors contain mainly what we call statistical data about the given generating set. 
This includes e.g. information about degrees (total or in individual variables) or the distribution of 
the variables over all terms or over the leading terms. In addition, we incorporate a transformation 
part which encodes for each elementary moves how many obstructions to quasi-stability vote for it. 
This makes the length of the feature vector independent of the size of the generating set, but it still 
depends on the number n of variables in the underlying polynomial ring S so that we must fix n. All 
experiments reported in this work have been done for n = 4. For smaller values of n, it is not so hard 
to construct by hand good coordinates. For larger values of n, the computational costs rapidly increase 
(both for preparing the training data, but also for the learning, as the number of our features grows 
exponentially with n). Hence n = 4 is a good choice for first experiments with different machine 
learning models, although n = 5 or n = 6 definitely appear manageable.

Table 1 lists 3 · 2n + 6n + 8 statistical features for a polynomial ring with n variables. The second 
column describes the number of features each row defines. For instance, in the fourth row we have 
three values for each variable which gives a total of 3n features. For explaining the third column, we 

3 https://www.sagemath .org/.
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Table 1
Used statistical features.

Description # Formula

Number of generators 1 k
total number of terms 1

∑
i T i

Min/max/average total degree of generators 3 mini
∑n

j=1 d j
i,t , maxi

∑n
j=1 d j

i,t and avi
∑n

j=1 d j
i,t

Min/max/average degree in single variable of 
generators

3n mini d j
i,t , maxi d j

i,t and avi d j
i,t for j ∈ {1, . . . , n}

Min/max/average degree in single variable of 
leading terms

3n mini D j
i , maxi D j

i and avi D j
i for j ∈ {1, . . . , n}

Min/max/average number of terms in generators 3 mini T i , maxi T i and avi T i

Number of generators containing certain variables 2n − 1
∑

i sgn
(∑

t

∏
x j∈X̄ sgn (d j

i,t )
)

for ∅ �= X̄ ⊆ X
Number of terms containing certain variables 2n − 1

∑
i,t

∏
x j∈X̄ sgn (d j

i,t ) for ∅ �= X̄ ⊆ X
Number of leading terms containing certain 
variables

2n − 1
∑

i

∏
x j∈X̄ sgn (D j

i ) for ∅ �= X̄ ⊆ X

Sum of total degrees of generators 1
∑

i deg ( f i)

Number of pure variable powers among terms 1
∑

i T i − ∑
i,t, j sgn

(|d j
i,t − deg ( f t

i )|)
Number of pure variable powers among leading 
terms

1 k − ∑
i,t, j sgn

(|D j
i,t − deg f i |

)

need the following notations. Let F = { f1, . . . , fk} ⊂ S be the considered finite generating set of an 
ideal I . We can write each polynomial as

f i =
Ti∑

t=1

ci,t x
d1

i,t
1 · · · x

dn
i,t

n , i ∈ {1, . . . ,k} . (3.1)

Here Ti is the number of terms of f i . We also write f t
i for the term t in f i . For the leading term, we 

use capital letters:

lt f i = Ci,t x
D1

i,t
1 · · · x

Dn
i,t

n . (3.2)

In some rows, we used the sign function to count the number of nonzero exponents and denoted by 
av the arithmetic mean of some values.

As one can see, this statistical part of the feature vector provides information about how the 
variables are distributed over all the terms, over the different generators and over the leading terms, 
as such information are crucial for estimating how different possible transformations may affect the 
size of the Pommaret span (and the sparsity) of the transformed set.

In addition, we have a smaller transformation part in the feature vector consisting of 1
2 n(n − 1) en-

tries: we store for each elementary move how many obstructions vote for it (the democratic strategy 
is based exclusively on these values). The total number of features is thus 3 · 2n + 1

2 (n2 + 11n) + 8
which leads for n = 4 to 86 features.

England and Florescu (2019) used 11 similar statistical features in their work on learning good 
variables orderings for cylindrical algebraic decomposition. Later, they proposed in (Florescu and Eng-
land, 2019) a brute force approach to automatically generate new features which provided them with 
almost 2, 000 features (for n = 3 variables) out of which they extracted with a statistical variance 
analysis 78 relevant and independent ones. We believe that we understand our problem sufficiently 
well to select the relevant features by hand and refrained from such an automatised approach. The 
results presented below seem to indicate that this belief is justified.

3.2. Scoring

Given a finite polynomial set F ⊂ S generating an ideal I � S , our final goal is to put I into 
quasi-stable position and to obtain a Pommaret basis H of I . We first compute a reduced Gröbner 
basis G out of F so that ltG is the minimal generating set of ltI . For determining the transformation 
11
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part of the feature vector, we need the obstructions to quasi-stability of ltG . If no obstructions exist, 
I is already in quasi-stable position and we can determine a Pommaret basis (of its leading ideal) 
with Algorithm 2.

If obstructions exist, then we need a more quantitative measure for assessing how far away from 
quasi-stable position we are. Taking lt G as input for Algorithm 1, we determine a minimal Janet basis 
H of ltI and read off from it the volume polynomial VI via Lemma 2.9. With the same lemma, we 
can also compute the volume polynomial V 〈H〉P of the Pommaret span of H. In quasi-stable position, 
these two polynomials are identical, as then the Janet basis is simultaneously a Pommaret basis by 
Proposition 2.13 and thus 〈H〉P = ltI . Otherwise, we have for all sufficiently large degrees q that 
V 〈H〉P (q) < VI(q).

The formula in Lemma 2.9 expresses the volume polynomials as a sum of binomial coefficients. 
But it is of course trivial to expand these explicitly into the standard form of a univariate polynomial

V (q) = vn−1qn−1 + vn−2qn−2 + · · · + v1q + v0 (3.3)

and it also follows immediately from Lemma 2.9 that the maximal degree of any volume polynomial 
is n − 1. We associate with each volume polynomial written in the form (3.3), its coefficient vector 
v = (vn−1, . . . , v1, v0) ∈Qn . Given two volume polynomials, we can compare their coefficient vectors 
using a lexicographic ordering. The volume polynomial with the larger vector will have the stronger 
asymptotic growth, i.e. from some degree on it will always produce larger values. For example, if we 
are not in quasi-stable position, then v〈H〉P ≺lex vI .

Based on this observation, we can compare the effect of different elementary moves. Let μ(i, j) and 
μ(k,�) be two moves. Applying each of them to the generating set F , we obtain two new polynomial 
sets F(i, j) and F(k,�) , respectively. Out of them, we compute first reduced Gröbner bases G(i, j) and 
G(k,�) and then complete their leading terms to Janet bases H(i, j) and H(k,�) . If now v〈H(i, j)〉P ≺lex
v〈H(k,�)〉P , then we consider the elementary move μ(k,�) as the better choice in Algorithm 3.

Obviously, it is very costly to analyse all possible elementary moves in this way, in particular for a 
larger number n of variables. One may say that we try to bypass this expensive computation by using 
machine learning. The task of the different models is to predict the best move purely on the basis of 
the above described features – without actually applying any transformation and without computing 
any Gröbner basis.

3.3. Producing training data

A fundamental problem in the application of tools from machine learning to commutative algebra 
is the lack of a sufficiently large repository of polynomial ideals. We are aware of only two publicly 
available collections: the home page of Jan Verschelde4 with well over 1oo ideals and the old POSSO 
test suite5 with a bit more than 30 ideals. The former one is geared towards the numerical solution 
of polynomial systems; the latter one comprises examples which are considered as hard for Gröbner 
bases computations. Thus none of them corresponds exactly to the application we have in mind: 
computations in algebraic geometry. If one eliminates all ideals in these collections which are not 
in four variables, have floating point coefficients or are already in quasi-stable position, then there 
remain only five ideals: cohn2, cohn3 (Verschelde), bronstein2, gerdt3, gerdt6 (POSSO). The training of a 
typical machine learning model will require at least a few thousand examples. Hence we must resort 
to random ideals. It is well known that the properties of polynomial ideals appearing in applications 
often differ from those of random ideals, but we are not aware of any alternative.

Instead of relying on some built-in functions of SageMath, we wrote our own random generator 
for homogeneous ideals to have full control over all relevant parameters like degrees, number of 
generators or number of terms. It uses a Poisson distribution for choosing these parameters. Hence 
like in many applications, most generators have rather small degrees and a low number of terms, but 
some generators may have fairly high degrees or a larger number of terms.

4 https://homepages .math .uic .edu /~jan/.
5 https://www-sop .inria .fr /saga /POL /BASE /3 .posso/.
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Fig. 2. Some statistics of the 10,000 generated random ideals and their generating sets.

An important goal was that most generated ideals are not in quasi-stable position, as only these are 
useful for our purposes. Furthermore, the dimension of the ideals is important. Any zero-dimensional 
ideal is automatically in quasi-stable position and for ideals of dimension n − 1, i.e. hypersurfaces, 
it is usually easy to find by hand good coordinates. Thus we chose the parameters of the Poisson 
distributions in such a way that many ideals of intermediate dimensions are produced.

With this random generator, we produced 10, 000 ideals in a polynomial ring with 4 variables over 
the rational numbers. About 95% of them, 9, 509 to be precise, were not in quasi-stable position and 
we only used these ideals for our experiments. The histograms in Fig. 2 show some key properties of 
the generated polynomial sets and their ideals. The first histogram of the number of generators shows 
the typical shape of a Poisson distribution with most of the sets containing two to four generators. 
The second and the fourth histogram depicts the average degree and the average number of terms 
in a generator. The third histogram plots the dimensions of the generated ideals. It shows that most 
ideals have their dimension in the desired intermediate range.

Remark 3.1. We used the occasion of having so many ideals available to do some statistics on their 
properties and on their bases. More precisely, we were interested in comparing the number of gen-
erators and the maximal degree of a generator in the original generating set, in the reduced Gröbner 
basis and in the Janet basis as an empirical way to assess the practical complexity of the latter two 
types of bases.
13
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Fig. 3. Sizes (left) and maximal degrees (right) of the original generating sets, the reduced Gröbner bases and the Janet bases of 
the random ideals.

The left diagram in Fig. 3 concerns the sizes of the different types of generating sets. Each curve 
contains one point for each of the 10,000 random ideals and each curve is separately sorted by size. It 
thus makes no sense to compare individual points, as they will typically belong to different ideals. One 
clearly sees that for the vast majority of ideals the size of the Gröbner and Janet bases, respectively, 
grow only moderately; only for a very small fraction of the ideals large bases with more than one 
hundred elements occur. As Janet bases are non-reduced Gröbner bases, they contain of course more 
generators, but on average they seem to be larger by a relatively modest factor.

The right diagram in Fig. 3 shows the maximal degree of a generator; we omitted here a curve 
for the reduced Gröbner bases, as it is indistinguishable from the one for the Janet bases. As already 
mentioned, Bayer and Stillman (1987a) proved that generically the maximal degree of a Gröbner basis 
with respect to the degree reverse lexicographic order is the Castelnuovo–Mumford regularity of the 
ideal. But as we demonstrated in Example 2.12, this degree is neither a lower nor an upper bound of 
the regularity. In (Albert et al., 2015), it is shown that the degree of a Janet basis is always at least the 
Castelnuovo–Mumford regularity and thus represents an upper bound. The diagram confirms a well-
known empirical fact: although the Castelnuovo–Mumford regularity may grow double exponentially 
with the number n of variables and the degree d of the generating set, this rarely occurs in practise. 
In other words, our random ideals exhibit here again the same behaviour as ideals appearing in 
applications.

Hashemi et al. (2021, Ex. 7.7) exhibited a family of ideals in an arbitrary number of variables such 
that the difference between the degree of the Janet basis and the Castelnuovo–Mumford regularity 
can become arbitrarily large (based on an example in three variables from (Albert et al., 2015)). The 
benchmarks presented in (Albert et al., 2015) indicate, however, that in practise large differences 
are rare. Our 10,000 random ideals confirm this observation: 5,863 have a Janet basis with exactly 
the same degree as the Gröbner basis, 4,081 Janet bases have a degree which is one higher and 56 
a degree which is two higher; larger differences do not occur. Thus, although the Janet bases are 
typically considerable larger, the additional generators do not increase noticably the maximal degree.

To each of the not quasi-stable ideals, we applied each of the six possible elementary moves and 
determined which move yields the largest Pommaret span in the sense that the coefficient vector of 
the volume polynomial is maximal for the lexicographic ordering. We sorted the elementary moves 
as (2, 1), (3, 1), (3, 2), (4, 1), (4, 2) and (4, 3) and labelled the corresponding classes as 0, 1, . . . , 5. 
Fig. 4 shows how the ideals distribute over the six different classes. Obviously, the distribution is very 
unbalanced: almost half of the ideals belong to class 3, whereas the classes 0 and 2 are very rare. 
As a consequence, we used for the determination of the hyperparameters of the different models 
a stratified cross-validation. It is an interesting question whether this unevenness is an artefact of 
working with random ideals or whether it can also be observed in ideals from applications.

The prevalence of class 3 is not surprising, but a simple combinatorial fact. The total number of 
terms of degree q in n variables is given by 

(n+q−1
q

)
; the number of terms xμ with max xμ = k ≤ n

among these is 
(k+q−2

q−1

)
. Thus terms with max xμ = 4 (and only one multiplicative variable) are the 
14
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Fig. 4. Distribution of classes in data set.

Table 2
Hyperparameters determined by a grid search with 5-fold stratified 
cross-validation.

Model Hyperparameter Value

k-NN
k 24
Weights Uniform
Algorithm KDtree

SVM
Regularisation param. C 0.1
Kernel Linear

DT
Criterion Gini impurity
Maximum depth 5

MLP

Hidden layer size 100
Activation function Logistic sigmoid
Optimizer Stochastic gradient descent
Regularisation param. α 1.0

LR

Class Multinomial
Max. iterations 1.000
Penalty L2

most frequent ones. For n = 4 half of the terms of degree 3 have only one multiplicative variable; at 
degree 6 this is the case for two thirds of the terms and at degree 9 even three quarters. The move 
(4, 1) replaces every term xμ1

1 xμ2
2 xμ3

3 xμ4
4 with μ4 > 0 by the term xμ1+μ4

1 xμ2
2 xμ3

3 having at least two 
multiplicative variables (plus some other terms). Thus it possesses a very high chance of having a 
significant impact on the volume function of the Pommaret span.

3.4. Experimental results

We tuned the hyperparameters of the different machine learning models by a grid search with a 
5-fold stratified cross-validation. We first put 1,902 ideals aside as holdout set. Then we partitioned 
the remaining ideals into five sets of equal size taking care that the distribution of the ideals over the 
different classes remains the same in all sets. Then always four sets were used for training and one 
set for validating. The best values obtained for the various hyperparameters of the different models 
in a grid search are shown in Table 2.

As the different models depend on different numbers of hyperparameters and also the possible 
ranges of values for the various hyperparameters can be very different (sometimes a finite number 
of discrete values, sometimes a real interval), it makes no sense to directly compare the computation 
times for the determination of the hyperparameters. We only mention that the multilayer perceptron 
required by far the longest time and that the decision trees were the fastest model in this respect.
15
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Table 3
Comparison of the results for the different models and strategies.

Model k-NN SVM DT MLP LR Demo. Rand.

Test accuracy 0.75 0.89 0.78 0.81 0.85 0.42 0.17
M. av. precision 0.74 0.86 0.68 0.63 0.88 0.42 0.17
S. av. precision 0.74 0.89 0.75 0.77 0.88 0.60 0.17
M. av. recall 0.55 0.84 0.55 0.58 0.85 0.37 0.16
S. av. recall 0.75 0.89 0.78 0.81 0.88 0.42 0.17
Train. time (sec.) 7.87 11.19 0.37 31.92 11.18 517.12 0.24

For assessing the quality of the models defined by the obtained hyperparameters, we computed 
for each model a confusion matrix based on the holdout set. All confusion matrices can be found in 
Appendix A. Table 3 reports for each model the accuracy, the precision and the recall. The classwise 
precision and recall can be found in the borders of our confusion matrices; the numbers in Table 3
are the macro and the sample weighted averages of the classwise ones.

The accuracy is a standard tool for assessing the quality of classification methods, but it can be 
misleading in unbalanced data sets as ours. In our experiments, however, it turned out that other tools 
like precision and recall lead essentially to the same results. But as they are computed classwise, they 
provide deeper insight into the performance of the different models.

We observed accuracies between 75% (k-NN) and 89% (SVM). For comparison: England and Flo-
rescu (2019) reported for their use of machine learning in the context of cylindrical algebraic de-
composition accuracies around 60% for all tested models. This seems to indicate that our problem is 
very well suited for the use of machine learning. However, one should take into account that because 
of the imbalance within our data set, always answering class 3 yields already an accuracy of almost 
50%.

It is interesting to note that for the recall, one can observe for some models considerable dif-
ferences between the macro average and the weighted average. In the former one, all classes are 
considered as equally important and the multilayer perceptron and decision trees had considerable 
problems in detecting the rare classes 0 and 2, whereas the other models showed at much more ho-
mogeneous behaviour (which in the case of k-nearest neighbours means homogeneously not so great 
results). Thus the “winners” are the support vector machine and logistic regression with a very similar 
performance.

In the last two columns of Table 3, we contrast the observed values with a human strategy – the 
democratic strategy mentioned above – and a simple random approach. For the random approach, we 
used a uniform random generator, as in real application situations the unbalanced distribution of the 
classes shown for our data in Fig. 4 is not known. Somewhat surprisingly, we observed for random 
choices nevertheless an accuracy of 17% which is exactly the value one would expect for a uniform 
distribution. Not surprising is the fact that this is by far the lowest value in the table. The democratic 
strategy as one of the most natural human strategies achieved only an accuracy of 42% which is even 
worse than always saying class 3 and far inferior to any used machine learning model. Thus this 
human strategy cannot be considered as very successful.

The last row in Table 3 provides for each model and the two other strategies the training time. 
For the machine learning models, this means the time needed to train the model after the hyper-
parameters have been tuned. For the two other strategies, we give the time to handle all ideals in 
the our data set. Trivially, the random strategy is the fastest. As the democratic strategy requires the 
determination of all obstructions, it is by far the slowest. Among the machine learning models, the 
decision tree is the fastest model to train and the multilayer perceptron the slowest model; the other 
three models are at roughly the same level.

A comparison based on measures like accuracy, precision, recall or specificity is “binary”: if the 
model does not predict the optimal move, its answer is considered as false. However, it might be that 
the move selected by the model has almost the same effect on the Pommaret span as the optimal 
one. We therefore computed for each model for each ideal where it did not predict the optimal move 
a “volume ratio”, i.e. the ratio V pred(q̄)/V opt(q̄) where V pred denotes the volume polynomial of the 
Pommaret span after the predicted move, V opt the volume polynomial of the Pommaret span after 
16
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Fig. 5. Volume ratios for two models: decision tree (left) and support vector machine (right).

the optimal move and the degree q̄ was chosen as ten times the degree of the Janet basis of the 
original ideal, i.e. so high that it approximates well the asymptotic behaviour. As one can clearly see 
in Fig. 5, in many cases the predicted move was actually not much worse than the optimal move 
with a volume ratio above 90%. For the support vector machine the volume ratio was really bad for 
less than 50 ideals out of almost 2,000. By comparison, the decision tree classified about 200 ideals 
really badly, i.e. more than four times as many. Without defining a precise criterion, we consider a 
classification as “really bad”, if the volume ratio is below 80%, as in both diagrams one observes at 
roughly this value a steep drop.

3.5. Complete determination of quasi-stable position

So far, we have only been concerned with one intermediate step of Algorithm 3, the choice of the 
next elementary move in Line 4. In principle, it is straightforward to embed machine learning into 
the algorithm: in Line 4, the choice of the next move is done by a trained model. Note, however, 
the following difference: in Algorithm 3, the next move is chosen among all moves related to an 
obstruction, whereas our machine learning models always consider all possible elementary moves. 
As discussed in Remark 2.14, in a small number of cases the optimal move is not related to an 
obstruction and hence it appears useful to allow also such moves. On the other hand, the termination 
proof in (Hashemi et al., 2018) does not take such moves into account.

In our experiments, it turned out that these moves may indeed lead to termination problems. We 
encountered surprisingly often situations where only a very small number of elementary moves was 
related to an obstruction, but the selected machine learning model proposed another move. Unfortu-
nately, this move did not change the leading ideal and thus the algorithm ran into an infinite loop. We 
therefore designed Algorithm 4 which is modified in two respects. (i) If only one elementary move 
is related to an obstruction, it always applies this move without asking the machine learning model. 
This reflects that in such a situation one can expect that after this move a quasi-stable position will be 
reached and thus the question of choosing a move does not arise. (ii) If the machine learning model 
proposes a move which is not related to an obstruction, then the algorithm uses this move only ten-
tatively. This means that it checks afterwards whether the move has led to a new set of leading terms 
which is larger than the old one with respect to the ordering ≺L introduced in (2.6). Only if this is 
the case, it continues with the transformed set. Otherwise, it rejects the move and instead uses the 
democratic strategy to choose the next move. This modification makes the algorithm consistent with 
the termination proof in (Hashemi et al., 2018) – which is based on producing a sequence of leading 
ideals which is strictly increasing with respect to the ordering ≺L – and thus ensures termination of 
the adapted algorithm.

We applied Algorithm 4 to the 9,509 test ideals not in quasi-stable position and counted for each 
how many elementary moves were necessary to reach a quasi-stable position. In this experiment, we 
used the support vector machine as a machine learning model, as it has almost the same accuracy 
as the multilayer perceptron, but requires less computation time. Fig. 6 shows a histogram depicting 
17
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Algorithm 4: QSPosML – Quasi-Stable Position with ML.
Data: Reduced Gröbner basis G of homogeneous ideal I �S
Result: Linear change of coordinates � such that lt�(I) is quasi-stable

1 begin
2 � ←− id; F ←− G
3 M ←− {

elem. moves related to obstr. to quasi-stability of 〈ltF〉}
4 while M �= ∅ do
5 if |M| = 1 then
6 ψ ←− M[1];
7 else
8 let ML model choose elementary move ψ
9 F̃ ←− ReducedGröbnerBasis

(
ψ(F)

)
10 if (ψ /∈ M) ∧ (F �L F̃) then
11 ψ ←− move in M with most votes

12 F̃ ←− ReducedGröbnerBasis
(
ψ(F)

)
13 � ←− ψ ◦ �

14 while F �L F̃ do
15 � ←− ψ ◦ �

16 F̃ ←− ReducedGröbnerBasis
(
ψ(F̃)

)
17 F ←− F̃
18 M ←− {

elem. moves related to obstr. to quasi-stability of 〈ltF〉}
19 return �

Fig. 6. Number of transformations required to achieve a quasi-stable position.

how many ideals needed how many transformations to reach a quasi-stable position. 90% of the ideals 
require at most four transformations with 55% needing two or three; more than eight transformations 
were never necessary. This indicates that most of our test ideals are not far away from a quasi-stable 
position. We also monitored the effect of the modifications introduced in the design of Algorithm 4. 
About two thirds of the ideals reached a situation where only one elementary move was related 
to an obstruction; one may conjecture that this typically happens for the last transformation. Given 
the observation from Remark 2.14 that moves not related to obstructions are rarely optimal, it is 
surprising that it happened also for about two thirds of the ideals that the support vector machine 
proposed in at least one iteration such a move. But on average only about every fourth such move 
could be accepted.

4. Conclusions

Our preliminary experiments already indicate that the problem of obtaining a quasi-stable position 
is well suited for the use of machine learning models and definitely better than the coarse human 
heuristics used so far. This is not very surprising, as the latter ones are based only on a rather su-
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perficial analysis of the leading terms, whereas our feature vector takes the complete support of all 
generators into account.

Of course, the results presented here still have to be confirmed by further experiments with poly-
nomials in a larger number of variables, say n = 5 and n = 6. Such experiments will also provide some 
information on how our approach scales with n. It is clear that both the preparation of the training 
data (more precisely the scoring of the data which involves several Gröbner bases) and the determi-
nation of the hyperparameters will become significantly more expensive with an increasing number 
of variables and features, but we believe that at least n = 5 and n = 6 should still be managable and 
we are working on it. Once the models are trained, the costs of applying them should be neglectable 
compared to the costs of computing a Gröbner basis.

In this context, it is also of interest to study how much training data is really necessary. The 
number of 10,000 random ideals was basically chosen ad hoc. It could well be that 1,000 or 2,000 
ideals might have also produced satisfactory models with considerable less computational costs. One 
should also expect that different algorithms require different amounts of training data, an important 
aspect (in particular for higher values of n) which can serve as a further criterion for selecting a 
specific approach.

In fact, we believe that in particular the multilayer perceptron might profit from a larger data set. 
In a preliminary experiment, we used all almost 10,000 ideals for the training and assessed the ac-
curacy via the results on the test sets in the cross-validation. With this larger set, we observed for it 
a considerably higher accuracy, whereas for the other models the accuracies were more or less the 
same. Also the problems with recognising the rare classes disappeared. This seems to imply that the 
multilayer perceptron is not only the most expensive model concerning the tuning of the hyperpa-
rameters, but also needs the largest training data set. If one is willing to spend all the necessary time 
for the training, one obtains then, however, a very good prediction tool.

The performance of both Algorithm 4 and the machine learning models is not yet completely 
satisfactory. In particular, the large number of instances where the machine learning model proposes 
a move which is not related to an obstruction to quasi-stability is surprising and requires further 
study. As currently only about one fourth of these moves can be accepted, they lead to a considerable 
waste of computation time.

We have not yet analysed how good our choice of the used features is. Only support vector ma-
chines offer here a simple possibility by looking at the support vectors defining the hyperplanes 
separating the different classes. While one can observe in this model differences in the relative im-
portance of the various features, it turned out that at least for this model all features are relevant and 
used for the classification. Thus, it seems that our choice of features was not so bad, but we plan to 
confirm this in the future with a more rigorous statistical analysis of all used models similar to what 
was done by Pickering et al. (2024). Hopefully, such an analysis will also provide some insight into 
the inner working of the models, i.e. offer some explanations how they reach their decisions. This in 
turn may allow us to come up with better human heuristics applicable for an arbitrary number of 
variables.

Recall from the discussion in the Introduction that a key aspect in determining a quasi-stable 
position is to preserve as much sparsity as possible during the transformations, as otherwise all sub-
sequent computations are getting rather expensive. Currently, this additional goal is neglected in our 
scoring, which is solely based on the size of the Pommaret span. As we can see in Fig. 5, some-
times two different moves provide Pommaret spans of almost the same size. In such a situation, the 
move producing the slightly smaller span might preserve more sparsity and thus might be preferable 
from the point of view of the full process of determining a quasi-stable position. We plan to include 
sparsity considerations into the scoring and to perform a multi-objective optimisation in the training 
phase. In fact, our features have already been selected in such a way that they should provide the 
necessary information for estimating also the sparsity of the transformed ideal.

In this context, it is also of interest to extend the set of allowed transformations by considering 
besides elementary moves also permutations. Our assignment of multiplicative variables depends on 
the numbering of the variables and hence can be influenced by simply permuting the variables. Ob-
viously, permutations are optimal in preserving sparsity. However, in other respects they are more 
difficult to handle. An elementary move can never decrease the Pommaret span and by simply ap-
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plying sufficiently many elementary moves one is guaranteed to reach a quasi-stable position. By 
contrast, a badly chosen permutation can considerably reduce the size of the Pommaret span and 
with permutations even cycles are possible where after several transformations one has exactly the 
same leading terms as before.
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Appendix A. Confusion matrices for the different models and strategies

Fig. A.7 displays bordered confusion matrices for all used machine learning models and Fig. A.8
for the two discussed human strategies (democratic and random). The right border of the matrices 
contains the precision for each class and the bottom row the recall for each class; in the lower right 
corner the accuracy is given.

In a comparison of the different machine learning models, it is in particular striking that the 
multilayer perceptron and the decision tree never correctly identified class 0 and only very rarely 
class 2. As these classes occur with the lowest frequency in our data set, this is not so visible in the 
accuracy or in sample weighted averages of precision and recall. Over all models one can observe that 
class 1 seems to be hard to detect and that it is often confused with class 3.

The confusion matrices for the democratic and the random strategy are reported only for com-
pleteness. The random strategy shows exactly the expected behaviour. The democratic strategy profits 
for the recall for the prevalence of class 3, but generally both precision and recall are rather modest 
over all classes.
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Fig. A.8. Bordered confusion matrices for the discussed human strategies.
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