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Abstract
Recently, a stability theory has been developed to study the linear stability of modified
Patankar–Runge–Kutta (MPRK) schemes. This stability theory provides sufficient
conditions for a fixed point of an MPRK scheme to be stable as well as for the conver-
gence of an MPRK scheme towards the steady state of the corresponding initial value
problem, whereas the main assumption is that the initial value is sufficiently close to
the steady state. Initially, numerical experiments in several publications indicated that
these linear stability properties are not only local but even global, as is the case for
general linear methods. Recently, however, it was discovered that the linear stability
of the MPDeC(8) scheme is indeed only local in nature. Our conjecture is that this is a
result of negative Runge–Kutta (RK) parameters ofMPDeC(8) and that linear stability
is indeed global if the RK parameters are nonnegative. To support this conjecture, we
examine the family of MPRK22(α) methods with negative RK parameters and show
that even among these methods there are methods for which the stability properties
are only local. However, this local linear stability is not observed for MPRK22(α)
schemes with nonnegative Runge–Kutta parameters. In particular, it is shown that
MPRK22(α) schemes with 0 < α < 0.5 or −0.5 < α < 0 are only stable if the time
step size is sufficiently small. But schemes with α ≤ −0.5 are stable and converge
towards the steady state of the initial value problems for all time step sizes, at least
for the test problem under consideration. Furthermore, it is shown that for some of the
latter systems, the initial values must actually be close enough to the steady state to
guarantee this result.
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1 Introduction

Modified Patankar–Runge–Kutta (MPRK) schemes are numerical time integration
schemes that are conservative and unconditionally positivity-preserving when applied
to a positive and conservative production-destruction system (PDS)

y′
i =

N∑

j=1
j �=i

(
pi j (t, y) − di j (t, y)

)
, i = 1, . . . , N , (1)

where y = (y1, . . . , yN )T and pi j (t, y), di j (t, y) ≥ 0 for all y > 0, t ≥ 0. A PDS is
called positive when positive initial values imply positive solutions for all times and
is called conservative when 1T y′ = 0 or equivalently 1T y is constant for all times.
Here, 1 = (1, . . . , 1)T ∈ R

N denotes the vector with all elements equal to one.
For general linear methods unconditional positivity is restricted to first-order

schemes, see [1–3]. Since MPRK schemes do not belong to the class of general lin-
ear methods, they can be unconditionally positivity-preserving and of higher order
at the same time. So far, second and third-order MPRK schemes for the integration
of autonomous PDS have been constructed in [4–6], based on the classical Runge–
Kutta (RK) formulation. The same was done in [7, 8], based on the SSP formulation
of RK schemes. In [9] arbitrary high-order MPRK schemes on the basis of deferred
correction schemes have been introduced. MPRK schemes for time-dependent PDS
have been investigated in [10]. For other approaches to obtain unconditional positivity,
we refer to [2, 11–16]. We also want to mention the novel framework [17] on order
conditions for Runge–Kutta-like schemes to which MPRK methods belong. Besides
a general theory for deriving order conditions, for the first time, sufficient and neces-
sary conditions for fourth-order MPRK schemes were presented and reduced therein.
Additionally, the authors proved that the convergence order of an MPRKmethod does
not depend on the signs of the RK parameters.

In addition to the order of a numerical scheme, its stability is of course crucial for
its usefulness in practical applications. In the following, we will be concerned with the
linear stability of MPRK schemes, i.e., the stability behavior of MPRK schemes when
applied to a positive and conservative linear system. Based on A = (ai j ) ∈ R

N×N , a
positive and conservative linear system has the form

y′ = Ay, A − diag(A) ≥ 0, 1TA = 0, (2)

whereA−diag(A) ≥ 0 is necessary and sufficient for positivity, see [18], and 1TA = 0
must hold to ensure conservativity. Here, the notation diag(A) ∈ R

N×N is used to
denote the diagonal matrix with diagonal elements equal to those of A. Furthermore,
the conservation property 1TA = 0 together with positivity implies diag(A) ≤ 0. If
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we define B = A − diag(A), system (2) can be rewritten in production-destruction
form as

y′ = By − (− diag(A)y), B ≥ 0, 1TA = 0. (3)

Since B = (bi j ) ≥ 0 and y ≥ 0 by assumption the system’s production terms are
pi j (y) = bi j y j = ai j y j ≥ 0 for i �= j and the corresponding destruction terms di j
are contained within − diag(A)y ≥ 0. For N = 2 all positive and conservative linear
systems (3) can be represented as

y′ =
(−a b

a −b

)
y, a, b ≥ 0. (4)

The central notion for linear stability of general linear methods is A-stability. A
general linearmethod is said to beA-stable,whenever its numerical solution of y′ = λy
for an arbitrary time step size�t > 0 tends to zero for all λ ∈ C

− = {z ∈ C | Re(z) <

0}. The choice λ ∈ C
− comes from the fact, that A-stability ensures that the numerical

solution of a linear system y′ = Ay tends to 0, whenever all eigenvalues ofA belong to
C

−. For anA-stable linearmethod applied to y′ = Aywith a spectrum σ(A) ⊆ C
−, the

unique steady state solution y∗ = 0 is an asymptotically stable fixed point for arbitrary
time step sizes. However, the crucial difference between A-stability and asymptotic
stability is that the former is a global property, i.e., independent of the initial value,
while the latter is a local property since asymptotic stability requires that the initial
value be sufficiently close to the fixed point.

Due to its importance for general linear methods, we would also like to investigate
the A-stability of MPRK schemes. Unfortunately, several obstacles stand in the way.
First, MPRK schemes cannot be applied to the scalar linear test equation, particu-
larly not with λ ∈ C

−, as it is unclear how the complex term λy can be split into
production and destruction terms. To get around this, we can apply MPRK schemes
directly to positive and conservative linear systems. But, the conservation property is
in contradiction with the asymptotic stability of y∗ = 0, i.e., there is no conservative
linear system whose solution tend to 0 for t → ∞ for initial values y0 > 0, since 1T y
must be constant for all times. Moreover, a conservative linear system can possess
several independent linear invariants, i.e., there exist K linear independent vectors
ni with nTi A = 0 and hence, nTi y remains constant for all times. To avoid the issue
with asymptotic stability, we can weaken the requirement and demand only stability
instead, while at the same time, we can require that the numerical approximations tend
to the unique steady state solution y∗ of

y′ = Ay, y(0) = y0, (5)

which always satisfies nTi y
∗ = nTi y

0. In summary, we are looking forMPRK schemes
for which a stable steady state y∗ of a positive and conservative linear system y′ = Ay,
becomes a stable fixed point of the MPRK scheme for all time step sizes �t , and in
addition, the iterates yn tend to y∗ for all initial values y0 that satisfy nTi y

0 = nTi y
∗.

The fact that an MPRK scheme yn+1 = g(yn) is not a general linear method makes
it complicated to findMPRK schemeswith the desired properties, since the application
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of an MPRK scheme to a linear system results in a nonlinear iteration of the form

yn+1 = R(�tA, yn)yn,

whereas the stability function R of a general linear method is independent of the
iterate yn . In addition, the conservation property implies the existence of infinitely
many non-hyperbolic fixed points y∗ �= 0 of the map g, i.e., the Jacobian Dg(y∗) has
eigenvalues with an absolute value equal to one. Hence, a linear stability theory for
MPRK schemes must be a stability theory for non-hyperbolic fixed points of nonlinear
iterations. One such approach to study stability is based on the center manifold theory
of dynamical systems and was introduced in [19, 20]. Assuming that the initial value
y0 is sufficiently close to the fixed point y∗, the theory provides sufficient conditions
for the stability of y∗, as well as for the convergence of the iterates to the steady state
of the corresponding initial value problem. Thus, this stability theory would almost
suffice to find the desired schemes if the theory did not make local statements only,
with respect to the initial value. However, to the authors’ knowledge, this is the only
approach to studying the stability of MPRK schemes so far.

The stability theory of [19, 20] was used to investigate the linear stability of
MPRK22 schemes and it was proven therein that MPRK22(α) schemes with α ≥ 0.5
are linearly stable and that their iterates tend to the correct fixed point y∗, whenever the
initial value y0 is sufficiently close to y∗. The stability theory was used in [21] to find
SSP-MPRK schemes with the same properties. Stability analysis of the third-order
MPRK schemes from [6] and the MPDeC schemes of [9] was carried out in [22]. We
also want to note, that the stability theory of [19, 20] is not only applicable to MPRK
schemes and was also used in [23] to analyze the linear stability of BBKS [10, 12, 13]
and GeCo schemes [14]. Furthermore, it was used in [24] to investigate the stability
of an MPRK scheme in the context of a nonlinear PDS.

Even though the stability results of [19, 20] are only valid in a sufficiently small
neighborhood of the fixed point, the numerical results in [19–21] suggested that the
local stability might actually be a global one, just like it is the case for A-stable general
linear methods.

However, in [22, 25], it was discovered that theMPDeC(8) method with equidistant
nodes is indeed only locally stable. To check the conjecture that this is due to the
negative RKparameters of theMPDeC(8) scheme, the family ofMPRK22(α) schemes
with negative RK parameters, i.e., α < 0.5, was investigated in [26]. The numerical
experiments presented therein show that MPRK22(−0.5) is another MPRK scheme,
which is only locally stable.

The aim of this paper is to summarize and extend the results of [26] and to justify
the conjecture that this local linear stability behavior, which is unknown from general
linearmethods, only occurs forMPRKschemes if theButcher tableau of the underlying
RK scheme contains negative values.

2 Linear stability of MPRK22(˛) schemes

This section summarizes some of the results of [26].
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The idea of MPRK schemes is to modify explicit RK schemes by introducing
additional weighting factors that ensure unconditional positivity and conservation.
Destruction terms aremultiplied byweightswith respect to the equation they appear in.
Production terms aremultiplied by the sameweights as their corresponding destruction
counter parts. If all parameters of the underlying RK schemes are nonnegative, there is
no difference between production or destruction terms on the continuous and discrete
levels. But if production or destruction terms aremultiplied by a negativeRKparameter
they switch their roles from the continuous to the discrete level, which has to be dealt
with appropriately within the implementation of the scheme.

TheMPRK22(α) schemes were introduced in [5] and are based on general second-
order explicit RK schemes, i.e., a21 = α �= 0, b2 = 1

2α , b1 = 1 − b2. In [5]
only nonnegative RK parameters were considered, which is the case, if α ≥ 1

2 . For
0 < α < 1

2 the parameter b1 becomes negative and for α < 0 the parameters a21 and
b1 are negative. Consequently, we need to distinguish these three different cases, for
varying values of α.

In a form which is suitable for positive as well as negative RK parameters, the
MPRK22(α) schemes for the solution of (1) can be reformulated as

y(1)
i = yni , (6a)

y(2)
i = yni + a21�t

N∑

j=1

(
pi j (y(1))

y(2)
γ ( j,i,a21)

y(1)
γ ( j,i,a21)

− di j (y(1))
y(2)
γ (i, j,a21)

y(1)
γ (i, j,a21)

)
, (6b)

yn+1
i = yni + �t

2∑

k=1

bk

N∑

j=1

(
pi j (y(k))

yn+1
γ ( j,i,bk )

σγ ( j,i,bk )
− di j (y(k))

yn+1
γ (i, j,bk )

σγ (i, j,bk )

)
, (6c)

for i = 1, . . . , N , with

σi = σi (yn, y(2)) = (yni )1−1/a21(y(2)
i )1/a21, i = 1, . . . , N

and the index function

γ (i, j, θ) = i for θ ≥ 0 und γ (i, j, θ) = j for θ < 0. (7)

The purpose of the index function is to decide, whether a term is a production or
destruction term and to choose the weighting factors accordingly. We also note that
the index function (7) was introduced in [9] for the definition of MPDeC schemes.

It was proven in [5] that MPRK22(α) schemes with α ≥ 1
2 are unconditionally

positive and conservative second-order schemes. The same is true for 0 < α < 1
2 and

α < 0, which was proven in [26] by a straight-forward modification of the proof given
in [5]. For a general framework concerning the order conditions of MPRK schemes,
we refer to [17].

To examine the linear stability of MPRK22(α) schemes in terms of the stabil-
ity theory [19, 20], we consider their application to positive and conservative linear
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PDS (3).
diag(v/u) = diag(v) diag(u)−1,

where diag(v) = diag(v1, . . . , vn) ∈ R
N×N denotes the diagonal matrix with the

elements of the vector v = (v1, . . . , vn)
T ∈ R

N on the diagonal. As mentioned
above, we need to distinguish between the following three cases.

2.1 Case˛ ≥ 0.5

This case was already considered in [19, 20], and we present the results for the sake
of completeness.

As α = a21 > 0 implies that all RK parameters are nonnegative, the application of
an MPRK22(α) scheme (6) to (3) yields

y(2) = yn + a21�t
(
B diag(y(2)/yn)yn + diag(y(2)/yn) diag(A)yn

)
,

yn+1 = yn + �t
(
B diag(yn+1/σ )(b1yn + b2y(2))

+ diag(yn+1/σ ) diag(A)(b1yn + b2y(2))
)
,

In comparison to the underlying RK scheme, a diagonal matrix with Patankar-
weights was introduced on the left of diag(A) in the destruction parts and on the right
of B in the production parts. This is done in the other cases as well.

The dependence of yn+1 on yn can be expressed by an implicit function g, i.e.,
yn+1 = g(yn). Each steady state y∗ of (3) is also a fixed point of g and

Dg(y∗) = (
I − �tA

)−1( 1
2α �tA

(
I − (

I − α�tA
)−1) + I

)

has the eigenvalues R(�tλ), where λ is an eigenvalue of A and the stability function
is

R(z) =
1
2α z

(
1 − 1

1−αz

)
+ 1

1 − z
= −z2 − 2αz + 2

2(1 − αz)(1 − z)
.

As a result, |R(z)| < 1 for all z ∈ C
−, which implies stability of fixed points and

convergence towards the steady state of the underlying initial value problem. Hence,
theMPRK22(α) schemes with α ≥ 0.5 fulfill all desired properties, apart from the fact
that stability could only be proven in a sufficiently small neighborhood of the fixed
point. Furthermore, we want to emphasize that in this case, apart from �t , stability
depends only on λ like in the continuous case.

2.2 Case 0 < ˛ < 0.5

A similar analysis as for α ≥ 0.5 can be conducted for the situation that 0 < α < 0.5.
This was done in [26] and the results will be summarized here. In this case, we have
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b1 < 0 and a21, b2 > 0. Consequently, the scheme (6) applied to (3) reads

y(2) = yn + a21�t
(
B diag(y(2)/yn)yn + diag(y(2)/yn) diag(A)yn

)
, (8a)

yn+1 = yn + �t
(
b1 diag(yn+1/σ )Byn + b2B diag(yn+1/σ )y(2) + (8b)

b1 diag(A) diag(yn+1/σ )yn + b2 diag(yn+1/σ ) diag(A)y(2)).

Next, we summarize the results of [26] and present details in Appendix A.1.
The stability behavior is more complicated than for α ≥ 0.5 as the JacobianDg(y∗)

in general also depends on AT and the steady state y∗ itself
However, if we restrict ourselves to the specific system (4), then

Dg(y∗) = −(−I + �t
(−1 + 1

α

)
A

)−1(I + �t
(
2 − 5

2α + 1
α2

)
A

− �t
( 3
2α − 1

α2

)
A

(−I + α�tA
)−1)

and

R(z) = −1 + (
2 − 5

2α + 1
α2

)
z − ( 3

2α − 1
α2

) z
(−1+αz)

−1 + (−1 + 1
α

)
z

.

A technical computation shows that for every α there exists a z∗ < 0, given by

z∗ = −2α2 + 3α − 2 − √
4α4 + 12α3 − 11α2 − 4α + 4

6α2 − 7α + 2
,

such that |R(z)| > 1 for all z < z∗. Hence, the MPRK22(α) schemes are only
conditionally stable for 0 < α < 0.5.

The above analysis results in the following theorem.

Theorem 1 Let the unique steady state y∗ of the initial value problem (5) with system
matrix (4) be positive. Then the iterates of the MPRK22(α) scheme with 0 < α < 0.5
locally converge towards y∗, if �t < − z∗

a+b .

As mentioned before, details can be found in [26] and Appendix A.1.

2.3 Case˛ < 0

In this case, we have a21, b2 < 0 and b1 > 0. Hence, terms multiplied by a21 or b2
change their role from the continuous to the discrete level. As a result, MPRK22(α)
schemes (6) applied to (3) become

y(2) = yn + a21�t
(
diag(y(2)/yn)Byn + diag(A) diag(y(2)/yn)yn

)
, (9a)

yn+1 = yn + �t
(
b1B diag(yn+1/σ )yn + b2 diag(yn+1/σ )By(2) (9b)

+b1 diag(yn+1/σ ) diag(A)yn + b2 diag(A) diag(yn+1/σ )y(2)).
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Again, we summarize the results of [26] and present details in Appendix A.2.
As for 0 < α < 0.5 the Jacobian Dg(y∗) in general depends on AT and the steady

state y∗ itself. But for the purpose of this paper, it is sufficient to restrict ourselves
to system (4), in which case it can be seen that the dependence on AT and y∗ within
(A10) disappears due to the property (A3), and we have

Dg(y∗) = −(−I + �t
(
1 − 1

α

)
A

)−1(I + �t
( 3
2α − 1

α2

)
A

− �t
(− 1

2α + 1
α2

)
A

(−I − α�tA
)−1(I + 2α�tA

))

as well as

R(z) = −1 + ( 3
2α − 1

α2

)
z − (− 1

2α + 1
α2

)
z 1

(−1−αz)

(
1 + 2αz

)

−1 + (
1 − 1

α

)
z

.

The nonzero eigenvalue of A in (4) is λ = −(a + b) < 0. Hence, we only need
to consider z ∈ R with z < 0. For every α < 0 the function R is monotonically
increasing on (−∞, 0) with

lim
z→−∞ R(z) = − α + 2

2α(α − 1)

and consequently

− α + 2

2α(α − 1)
< R(z) < 1 for z < 0 and α < 0.

If we restrict α additionally to α ≤ −0.5, then |R(z)| < 1 for z < 0 and it follows
that MPRK22(α) schemes with α ≤ −0.5 are unconditionally stable, i.e., the stability
is independent of �t . Moreover, convergence to the steady state of the corresponding
initial value problem is guaranteed as well, whenever the initial value is sufficiently
close to the fixed point. The situation is different for −0.5 < α < 0, for which the
schemes are only conditionally stable. For−0.5 < α < 0 stability requires z∗ < z < 0
with

z∗ = 2α2 − α + 2 + √
4α4 + 4α3 − 3α2 − 12α + 4

2α2 − 3α − 2
.

As mentioned before, see [26] or Appendix A.2 for details.
Now,we know thatMPRK22(α) schemeswithα ≤ −0.5 are unconditionally stable

and converge to the steady state of the corresponding initial value problem, at least
when applied to the linear system (4) and the initial value is not too far away from
the steady state. As mentioned above, the numerical results in [19–21] suggested that
this local behavior might actually be the global behavior. But it was observed in [26]
and [22, 25] that MPRK22(−0.5) and MPDeC(8) with equidistant nodes are indeed
only locally stable. Such a linear stability behavior is unknown from general linear
methods.
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The conjecture that this can only occur in the presence of negative RK parameters
is supported in Section 3, where we also show that there are further values of α with
α < −0.5 for which the same stability behavior can be observed. Moreover, the
experiments with α ≥ 0.5, corresponding to non-negative RK parameters, do not
show a case for which the stability properties are local.

The above analysis results in the following theorem.

Theorem 2 Let the unique steady state y∗ of the initial value problem (5) with system
matrix (4) be positive.

1. The iterates of the MPRK22(α) scheme with −0.5 < α < 0 locally converge
towards y∗, if �t < − z∗

a+b .
2. The iterates of the MPRK22(α) scheme with α ≤ −0.5 locally converge towards

y∗ for all �t > 0.

As mentioned before, details can be found in [26] and Appendix A.2.

3 Numerical results

In this section, we demonstrate numerically that for some MPRK22(α) schemes with
α < 0, the linear stability and convergence to the correct steady state is indeed only
given locally, i.e., the initial value must be sufficiently close to the fixed point. To show
this, it is already sufficient to consider the linear system

y′ =
(−a a

a −a

)
y, a > 0 (10a)

with initial value

y0 = 1

2

(
1
1

)
+ δ

(
1

−1

)
, 0 ≤ δ <

1

2
, (10b)

where the restriction on δ is necessary to ensure positive initial data. The solution of
this initial value problem is

y(t) = 1

2

(
1
1

)
+ δe−2at

(
1

−1

)

and its steady state is

y∗ = lim
t→∞ y(t) = 1

2

(
1
1

)

independent of δ.
The following computations were performedwithMATLAB2023b. TheMATLAB

code is available from https://github.com/SKopecz/locstabMPRK22.git.
First, we consider system (10a) with a = 20 for which the system is nonstiff.

In Fig. 1, we see numerical solutions computed by MPRK22(−0.5) for two slightly
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Fig. 1 Numerical solutions of the initial value problem (10a) and a = 20 computed with MPRK22(−0.5)
and �t = 1 for δ = 0.23 and δ = 0.24

different values of δ. The rather large time step size�t = 1, which is of course unsuit-
able for accuracy, was chosen to demonstrate the stability behavior of the scheme. As
described in Section 2.3 the MPRK22(−0.5) scheme is stable and the iterates tend to
the steady state of the corresponding initial value problem for all time step sizes, as
long as the initial value is close enough to the steady state. This behavior is depicted in
Fig. 1a. Now, in Fig. 1b, the value of δ, i.e., the distance to the steady state, is slightly
increased and as a result, the numerical approximations tend to a spurious steady
state. As discussed above, we would like to have a linear stability behavior similar
to A-stability, i.e., the stability should not depend on the initial values. But here it is
demonstrated that MPRK schemes exist for which stability crucially depends on the
initial value.

To gain a better insight into the dependence of the stability on δ, we compute the
steady states for N = 200 equidistantly spaced samples of δ between 0 and 0.5. In each
case, the steady state is computed by performingM = 104 steps of theMPRK22(−0.5)
scheme to obtain yM . To check if the correct or a spurious steady state is approached,
we compute the distance

d(α, δ) = ‖y∗ − yM‖∞.

We expect d(α, δ) 
 1 if the scheme is stable and tends to the steady state of the
corresponding initial value problem and d(α, δ) � 0 if a spurious steady state is
reached. Figure2a shows a plot of d(−0.5, δ) for 0 ≤ δ < 0.5. We see that the
stability behavior changes abruptly from stable to unstable for some δ between 0.23
and 0.24 as suggested by Fig. 1. If we increase the stiffness of the system by choosing
a = 200 the critical value of δ, for which the change from stable to unstable behavior
occurs, decreases, as can be observed from Fig.2b. In this case, the stability behavior
changes from stable to unstable for δ ≈ 0.06.

Next, we want to answer the question if α = −0.5 is the only value of α for which
the linear stability ofMPRK22(α) crucially depends on the initial value. To answer this
question, we again compute the distance d(α, δ), but this time, we vary both δ and α.
We use an equidistant grid with 160 samples of δ and 241 samples of α for 0 < δ < 0.5
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Fig. 2 Plots of d(−0.5, δ) = ‖y∗ − yM‖∞ with 200 samples of δ. The steady state of (10a) is y∗ =
(0.5, 0.5)T and yM is computed by M = 104 steps of MPRK22(−0.5) with �t = 1

and 0 < |α| ≤ 2. Again, we use a = 200 in (10a), �t = 1 and M = 104 steps to
compute the steady state. The result of this computation can be seen in Fig. 3a, and we
note that the MPRK22(α) scheme is not defined for α = 0, which is not indicated in
the plot. Based on Fig. 3a, we can make the following statements. First, the expected
unstable behavior for 0 < |α| < 0.5, which was discussed in Sections 2.2 and 2.3,
is clearly visible. Second, for α ≥ 0.5, we observe stable behavior independent of
δ. Therefore, local stability could actually be global stability for α ≥ 0.5. Third, for
α ≤ −0.5 there exists an α∗ < −0.5 such that stability of MPRK22(α) is indeed only
local stability, and for α < α∗ no unstable behavior can be observed. To see this more
clearly, Fig. 3b shows a zoom of Fig. 3a with higher resolution for −0.6 ≤ α ≤ −0.5.
As we can see, α = −0.5 is not the only value of α for which the stability depends on
the initial value. The same is true for all α between α∗ ≈ −0.56 and −0.5.

Fig. 3 Plots of d(α, δ) = ‖y∗ −yM‖∞ with 160 samples of α and 241 samples δ. The steady state of (10a)
is y∗ = 0.5(1, 1)T and yM is computed by M = 104 steps of MPRK22(α) with �t = 1
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4 Summary and outlook

We have discussed the linear stability behavior of MPRK22(α) schemes for all α �= 0
based on the local stability theory of [19, 20]. Moreover, we have confirmed that
negative RK parameters in MPRK schemes can lead to linear stability actually being a
local property. In particular, we have shown that there are MPRK22(α) schemes with
α < −0.5 that are linearly stable but converge to a spurious fixed point instead of the
steady state of the corresponding linear system if the initial value is not sufficiently
close to the steady state. Such a linear stability behavior is unknown fromgeneral linear
methods.We further note that we cannot recommend to useMPRK22(α) schemeswith
α < 0.5 since apart from the time step size restrictions for 0 < α < 0.5, the stability
of these numerical methods shows an artificial dependence on AT and y∗ that is not
present in the continuous case. In addition, the convergence towards the steady state
of the corresponding initial value problem cannot be guaranteed in the case of general
linear systems by means of the stability theory from [19, 20], see [22].

Nevertheless, for MPRK22(α) schemes relevant in practice, i.e., α ≈ 1, the param-
eters of the underlying RK scheme are nonnegative and no restrictions on the initial
value could be found numerically. Therefore, for these methods, it still seems that the
local linear stability is actually a global linear stability.

Since we would like to have MPRK schemes with properties similar to A-stable
general linear methods, it is therefore essential that the convergence to the steady state
of the corresponding initial value problem is given for all initial values which satisfy
nTi y

0 = nTi y
∗, where the vectors ni define the independent linear invariants of the

system matrix. For this reason, there is a great need for a theory that makes statements
not only about local stability but also about global stability.

Appendix A

Below, we show the computations of [26] that have been omitted in Sections 2.2 and
2.3. In both cases, the MPRK22 scheme can be written as

	(yn, y(2)) = 0, 
(yn, y(2), yn+1) = 0, (A1)

which is particularly helpful to compute the Jacobian Dg(y∗) through implicit differ-
entiation. To keep the notation short, we denote byDx j f(x1, . . . , xk) the Jacobian of a
function f with respect to x j . Furthermore, we define D∗

u	 as Du	(y∗, y∗) and D∗
u


as Du
(y∗, y∗, y∗). With this notation, we have

Dg(y∗) = −(D∗
w
)−1(D∗

u
 − D∗
v
(D∗

v	)−1D∗
u	

)
, (A2)

if 	,
 ∈ C2 and the inverse matrices (D∗
w
)−1 and (D∗

v	)−1 exist, see [22].
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We also note that the steady states of the linear system (4) subject to positive initial
values are y∗ = s(b, a)T for some s > 0 and consequently the identity

diag(y∗)AT diag(y∗)−1 = s

(
b 0
0 a

)(−a a
b −b

) (
s−1

(
b−1 0
0 a−1

))

=
(−bab−1 baa−1

abb−1 −aba−1

)
= A. (A3)

holds true.

A.1 Case 0 < ˛ < 0.5

The MPRK22(α) scheme (8) can be written in the form (A1) with

	(u, v) = u + a21�t
(
B diag(v/u)u + diag(v/u) diag(A)u

) − v, (A4a)


(u, v,w) = u + �t
(
b1 diag(w/σ )Bu + b2B diag(w/σ )v+ (A4b)

b1 diag(A) diag(w/σ )u + b2 diag(w/σ ) diag(A)v
) − w.

To actually compute the Jacobians appearing in (A2), we rewrite (A4) and obtain

	(u, v) = (−I + α�A)v + u, (A5a)


i (u, v,w) = −wi + ui + �t

(
1
2α

N∑

j=1
j �=i

ai jw jv
1−1/α
j u−1+1/α

j

− (
1 − 1

2α

) N∑

j=1
j �=i

a ji uiw jv
−1/α
j u−1+1/α

j − 1
2α

N∑

j=1
j �=i

a jiwiv
1−1/α
i u−1+1/α

i

+ (
1 − 1

2α

) N∑

j=1
j �=i

ai j u jwiv
−1/α
i u−1+1/α

i

)
.

(A5b)

Differentiation of (A5a) shows

Du	(u, v) = I, Dv	(u, v) = −I + α�tA.
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and differentiation of (A5b) yields

(Du
(u, v,w))i i = 1 +�t

(
− (

1 − 1
2α

) N∑
j=1
j �=i

a jiw jv
−1/α
j u−1+1/α

j

− (−1 + 1
α

) 1
2α

N∑
j=1
j �=i

a jiwiv
1−1/α
i u−2+1/α

i

+ (−1 + 1
α

) (
1 − 1

2α

) N∑
j=1
j �=i

ai j u jwiv
−1/α
i u−2+1/α

i

)

and

(Du
(u, v,w))iq = �t
( (−1 + 1

α

) 1
2αaiqwqv

1−1/α
q u−2+1/α

q

− (−1 + 1
α

) (
1 − 1

2α

)
aqi uiwqv

−1/α
q u−2+1/α

q

+ (
1 − 1

2α

)
aiqwiv

−1/α
i u−1+1/α

i

)

for i �= q. In addition, we obtain

(Dv
(u, v,w))i i = �t

(
− (

1 − 1
α

) 1
2α

N∑

j=1
j �=i

a jiwiv
−1/α
i u−1+1/α

i

− 1
α

(
1 − 1

2α

) N∑

j=1
j �=i

ai j u jwiv
−1−1/α
i u−1+1/α

i

)

and

(Dv
(u, v,w))iq = �t
( (
1 − 1

α

) 1
2αaiqwqv

−1/α
q u−1+1/α

q

+ 1
α

(
1 − 1

2α

)
aqi uiwqv

−1−1/α
q u−1+1/α

q
)
,

for i �= q. Finally, we see

(Dw
(u, v,w))i i = −1 + �t

(
− 1

2α

N∑

j=1
j �=i

a jiv
1−1/α
i u−1+1/α

i

+ (
1 − 1

2α

) N∑

j=1
j �=i

ai j u jv
−1/α
i u−1+1/α

i

)
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and

(Dw
(u, v,w))iq = �t
( 1
2αaiqv

1−1/α
q u−1+1/α

q − (
1 − 1

2α

)
aqi uiv

−1/α
q u−1+1/α

q
)

for i �= q. Since yn = y∗ implies y(2) = y∗ and yn+1 = y∗, we substitute u = v =
w = y∗ and obtain the Jacobians

D∗
u	 = I (A6a)

D∗
v	 = −I + α�tA, (A6b)

D∗
u
 = I + �t

( (
1 − 1

α
+ 1

2α2

)
A −

(
−1 + 3

2α − 1
2α2

)
diag(y∗)AT (diag(y∗))−1),

(A6c)

D∗
v
 = �t

( (
1
2α − 1

2α2

)
A +

(
1
α

− 1
2α2

)
diag(y∗)AT (diag(y∗))−1), (A6d)

D∗
w
 = −I + �t

( 1
2αA − (

1 − 1
2α

)
diag(y∗)AT (diag(y∗))−1), (A6e)

which shows thatDg(y∗) as given in (A2) in general depends onAT and y∗. However,
hereafter, we only consider the linear system (4) and substituting (A3) into (A6), we
obtain

D∗
u	 = I, D∗

v	 = −I + α�tA

and

D∗
u
 = I+�t

(
2− 5

2α + 1
α2

)
A,D∗

v
 = �t
( 3
2α − 1

α2

)
A,D∗

w
 = −I+�t
(−1+ 1

α

)
A.

Hence, it follows that

Dg(y∗) = −( − I + �t
( − 1 + 1

α

)
A

)−1[I + �t
(
2 − 5

2α + 1
α2

)
A

− �t
( 3
2α − 1

α2

)
A

( − I + α�tA
)−1I

]
,

(A7)

if (D∗
w
)−1 and (D∗

v	)−1 exist. To verify the existence of the inverse Jacobians, we
note that the system under consideration has eigenvalues λ1 = 0 and λ2 = −(a+b) <

0. Hence, if λ ≤ 0 is an eigenvalue of A, then −1 + α�tλ ≤ −1 is an eigenvalue
of D∗

v	, which shows that D∗
v	 is invertible. Similarly, the eigenvalues of D∗

w
 are
−1 − �t(1 − 1

α
)λ ≤ −1, since 1 − 1

α
< 0 for 0 < α < 0.5. Thus, D∗

w
 is invertible
as well.

The eigenvalues of (A7) are R(�tλ) with λ being an eigenvalue of A and R repre-
senting the stability function

R(z) = −1 + (
2 − 5

2α + 1
α2

)
z − ( 3

2α − 1
α2

) z
(−1+αz)

−1 + (−1 + 1
α

)
z

= (4α2 − 5α + 2)z2 + (2α2 − 4α + 2)z − 2α

2α(α − 1)z2 + 2(α2 − α + 1)z − 2α
.
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The derivative of R with respect to z is

R′(z) = 2α2 − 2zα(2 − 3α + 2α2) + z2(2 + 5α2 − 3α3 + 2α4)

4α2(α − 1)2(z + α
α−1 )

2(z − 1
α
)2

.

Due to 0 < α < 0.5 and z < 0 every factor of the denominator of R′ is nonzero and
consequently the denominator of R′ is positive. In addition, we have 2−3α+2α2 > 0
and 2 + 5α2 − 3α3 + 2α4 > 0 for 0 < α < 0.5, which shows that the nominator is
positive as well for every z < 0. Hence, R is monotonically increasing on the domain
of interest. Furthermore, we have R(0) = 1 and limz→−∞ R(z) = 4α2−5α+2

2α(α−1) and thus
4α2−5α+2
2α(α−1) < R(z) < 1. Finally, since 4α2−5α+2

2α(α−1) < −1, we can conclude that for every
0 < α < 0.5 there exists a z∗ < 0 for which |R(z)| > 1 for all z < z∗. Hence, the
MPRK22(α) schemes are only conditionally stable for 0 < α < 0.5. To find z∗, we
need to solve R(z) = −1, which yields

z∗ = −2α2 + 3α − 2 − √
4α4 + 12α3 − 11α2 − 4α + 4

6α2 − 7α + 2
.

A.2 Case˛ < 0

The MPRK22(α) scheme (9) can be written in the form (A1) with

	(u, v) = u + a21�t
(
diag(v/u)Bu + diag(A) diag(v/u)u

) − v, (A8a)


(u, v,w) = u + �t
(
b1B diag(w/σ )u + b2 diag(w/σ )Bv (A8b)

+ b1 diag(w/σ ) diag(A)u + b2 diag(A) diag(w/σ )v
) − w.

To actually compute the Jacobians appearing in (A2), we rewrite (A8) elementwise
yielding

	i (u, v) = −vi + ui − α�t

( N∑

j=1
j �=i

a ji uiv j u
−1
j −

N∑

j=1
j �=i

ai j u jvi u
−1
i

)
, (A9a)


i (u, v,w) = −wi + ui + �t

((
1 − 1

2α

) N∑

j=1
j �=i

ai jw jv
−1/α
j u1/αj (A9b)

− 1
2α

N∑

j=1
j �=i

a jiviw jv
−1/α
j u−1+1/α

j − (
1 − 1

2α

) N∑

j=1
j �=i

a jiwiv
−1/α
i u1/αi

+ 1
2α

N∑

j=1
j �=i

ai jv jwiv
−1/α
i u−1+1/α

i

)
.
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By differentiation of (A9a), we obtain the Jacobians

(Du	(u, v))iq =

⎧
⎪⎪⎨

⎪⎪⎩

1 − α�t

(
∑N

j=1
j �=i

a jiv j u
−1
j + ∑N

j=1
j �=i

ai j u jvi u
−2
i

)
, i = q,

−α�t
(
−aqi uivqu−2

q − aiqvi u
−1
i

)
, i �= q,

and

(Dv	(u, v))iq =
⎧
⎨

⎩
−1 + α�t

∑N
j=1
j �=i

ai j u j u
−1
i , i = q,

−α�taqi ui u−1
q , i �= q.

By differentiation of (A9b) one can write

(Du
(u, v,w))i i = + �t

(
− 1

α
(1 − 1

2α )

N∑

j=1
j �=i

a jiwiv
−1/α
i u−1+1/α

i

+ (−1 + 1
α

) 1
2α

N∑

j=1
j �=i

ai jv jwiv
−1/α
i u−2+1/α

i

)

and

(Du
(u, v,w))iq = �t
(
1
α

(
1 − 1

2α

)
aiqwqv

−1/α
q u−1+1/α

q

− (−1 + 1
α

) 1
2αaqiviwqv

−1/α
q u−2+1/α

q

)

for i �= q. Furthermore, we see

(Dv
(u, v,w))i i = �t

(
− 1

2α

N∑

j=1
j �=i

a jiw jv
−1/α
j u−1+1/α

j

+ 1
α

(
1 − 1

2α

) N∑

j=1
j �=i

a jiwiv
−1−1/α
i u1/αi

− 1
α

1
2α

N∑

j=1
j �=i

ai jv jwiv
−1−1/α
i u−1+1/α

i

)
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and

(Dv
(u, v,w))iq = �t
(
− 1

α

(
1 − 1

2α

)
aiqwqv

−1−1/α
q u1/αq

+ 1
α

1
2αaqiviwqv

−1−1/α
q u−1+1/α

q

+ 1
2αaiqwiv

−1/α
i u−1+1/α

i

)

for i �= q. Finally,

(Dw
(u, v,w))i i = −1 + �t

(
− (

1 − 1
2α

) N∑

j=1
j �=i

a jiv
−1/α
i u1/αi

+ 1
2α

N∑

j=1
j �=i

ai jv jv
−1/α
i u−1+1/α

i

)

and

(Dw
(u, v,w))iq = �t
((
1 − 1

2α

)
aiqv

−1/α
q u1/αq

− 1
2αaqiviv

−1/α
q u−1+1/α

q

)

hold for i �= q. Since yn = y∗ implies y(2) = y∗ and yn+1 = y∗, we substitute
u = v = w = y∗ and obtain the Jacobians

D∗
u	 = I + α�t(A + diag(y∗)AT diag(y∗)−1), (A10a)

D∗
v	 = −I − α�t diag(y∗)AT diag(y∗)−1, (A10b)

D∗
u
 = I + �t

(( 1
α

− 1
2α2

)
A −

(
− 1

2α + 1
2α2

)
diag(y∗)AT diag(y∗)−1), (A10c)

D∗
v
 = �t

((− 1
2α + 1

2α2

)
A + 1

2α2 diag(y
∗)AT diag(y∗)−1), (A10d)

D∗
w
 = −I + �t

((
1 − 1

2α

)
A − 1

2α diag(y∗)AT diag(y∗)−1), (A10e)

which shows thatDg(y∗) as given in (A2) in general depends onAT and y∗. However,
hereafter, we only consider the linear system (4) and substituting (A3) into (A10), we
obtain

D∗
u	 = I + 2α�tA, D∗

v	 = −I − α�tA
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and

D∗
u
 = I + �t

( 3
2α − 1

α2

)
A,

D∗
v
 = �t

(− 1
2α + 1

α2

)
A,

D∗
w
 = −I + �t

(
1 − 1

α

)
A.

Inserting this into (A2) finally yields

Dg(y∗) = −(−I + �t
(
1 − 1

α

)
A

)−1(I + �t
( 3
2α − 1

α2

)
A

− �t
(− 1

2α + 1
α2

)
A

(−I − α�tA
)−1(I + 2α�tA

))
,

(A11)

under the assumption that (D∗
w
)−1 and (D∗

v	)−1 exist. To verify this, we note that
the system under consideration has eigenvalues λ1 = 0 and λ2 = −(a + b) < 0.
Hence, if λ ≤ 0 is an eigenvalue of A, then −1 − α�tλ ≤ −1 is an eigenvalue
of D∗

v	, which shows that D∗
v	 is invertible. Similarly, the eigenvalues of D∗

w
 are
−1 + �t(1 − 1

α
)λ ≤ −1. Thus, D∗

w
 is invertible as well. The eigenvalues of (A11)
are R(�tλ) with λ being an eigenvalue of A and R representing the stability function

R(z) = −1 + ( 3
2α − 1

α2

)
z − (− 1

2α + 1
α2

)
z 1

(−1−αz)

(
1 + 2αz

)

−1 + (
1 − 1

α

)
z

.

We can rewrite R as

R(z) = −(α + 2)z2 − (2α2 + 2)z − 2α

(2α2 − 2α)z2 + (−2α2 + 2α − 2)z − 2α

and compute its derivative

R′(z) = 2α4z2 − α3z2 + 4α3z + 3α2z2 − 2α2z − 3αz2 + 2α2 + 4αz + 2z2

2(αz + 1)2(αz − α − z)2
.

For z < 0 and α < 0 every term in the nominator is positive and the denominator
is positive as well. Hence, R′(z) > 0 for all z < 0 and α < 0, which implies that R is
monotonically increasing on (−∞, 0). Furthermore, we find R(0) = 1 and

lim
z→−∞ R(z) = − α + 2

2α(α − 1)
.

Together with the monotonicity of R this results in

− α + 2

2α(α − 1)
< R(z) < 1 for z < 0 and α < 0.
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Since

−1 ≤ − α + 2

2α(α − 1)
⇐⇒ α ≤ −1

2
,

we can conclude
|R(z)| < 1 for z < 0 and α ≤ −0.5.

According to the stability theory of [19, 20] it follows that MPRK22(α) schemes
with α ≤ −0.5 are unconditionally stable and converge to the steady state of the
corresponding initial value problem independent of the time step size �t , if the initial
value is close enough to the fixed point. On the other hand, for −0.5 < α < 0 there
must exist z < 0 with |R(z)| > 1. Hence, MPRK22(α) schemes with −0.5 < α < 0
are only conditionally stable. Solving R(z∗) = −1 for z∗ shows

z∗ = 2α2 − α + 2 + √
4α4 + 4α3 − 3α2 − 12α + 4

2α2 − 3α − 2
.

Hence, stability for −0.5 < α < 0 requires z∗ < z < 0.
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