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Abstract
In this study, we delve into the crucial influence of and enhancement by chiral environments on the
discriminatory capabilities of resonance energy transfer. Firstly, we scrutinize the impact of a
macroscopic chiral medium enveloping the interacting molecules; secondly, we probe the effect of a
chiral mediating molecule in close proximity to the system. Importantly, our findings demonstrate
that chiral environments not only modulate pre-existing discriminatory effects but also introduce
novel mechanisms for discrimination. Central to our research is the application of an innovative
model for chiral local-field corrections, which unveils a remarkable distance-dependent inversion
of the discrimination dynamics. Our study extends beyond the confines of any specific molecular
system, offering a comprehensive discussion of these diverse effects, thereby providing insights
with broader implications. Finally, we present a comparative analysis across all studied systems,
illustrating our insights by employing 3-methyl-cyclopentanone as an example molecule.

1. Introduction

Resonance energy transfer (RET) involving chiral molecules can in principle be used to discriminate between
differently handed acceptors [1–3]. In this process, the energy of an initially excited donor particle is
transferred via the electromagnetic field to a ground-state acceptor particle [4, 5]. Considering a chiral donor
molecule with known handedness, one can predict that the energy transfer rate occurring between
same-handed molecular pairs is larger than the one between opposite-handed ones and hence use this
difference to distinguish the chiral acceptor [1].

In free space, the relative difference between the rates of these two scenarios, i.e. the degree of
discrimination, is quite small and proportional to the product of the molecular rotatory strengths [6]. It has
been shown that immersing the considered system inside a dielectric medium can modify and enhance the
discriminatory effect of RET [1]. Such a situation provides an early example in the emerging sub-field of
chiral polaritonics [7–9].

Here, we consider the impact of a chiral environment on the degree of discrimination via RET. Chiral
matter has been well-established to interact fundamentally differently with the electromagnetic field when
compared to nonchiral counterparts, leading to intriguing implications for light-matter interactions [10, 11].
We find two different effects: the chiral environment modifies the degree of discrimination that is originally
found in free space and, assuming the handedness of the chiral environment is known, the environment itself
can actively discriminate the acceptors. The latter constitutes a new discriminatory effect that survives even
when considering nonchiral donor molecules and is entirely due to the chiral properties of the environment
itself. It is important to point out that RET is not the only elementary coupling process between optically
active particles of matter that exhibits discrimination. The van-der-Waals dispersion energy shift between a
pair of chiral molecules is also discriminatory, and has been calculated within the frameworks of microscopic
and macroscopic quantum electrodynamic (QED) [12–14].
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Figure 1. Schemes of the three different scenarios considered in this paper. (a) For comparison, and as a simple introductory
example, we first consider the discrimination via RET in free space where the handedness of the donor is known, e.g. to be
left-handed and the acceptor can have either handedness. (b) Secondly, we study the discrimination with an additional chiral
medium surrounding the system where we include local-field corrections and assume that the medium is known to be
same-handed as the donor. (c) Lastly, we consider the discrimination in the presence of a single chiral mediator molecule with
known handedness as an approximation in the limit of a dilute gas surrounding the system.

While the initial attention of chiral discrimination focussed on interactions between optically active
systems, for example in dispersion forces and absorption/emission processes, recent work has explored
sensing and separation techniques involving three-wave mixing in the microwave region, enantio-specific
population transfer in few-level systems, photo-electron circular dichroism, and high-harmonic generation,
most commonly treated solely within the electric dipole approximation [15–19]. Environmental effects are
also expected to play a significant role in these newer processes, especially if the medium is chiral or if a chiral
molecule is in close proximity to the photoactive centre. Processes that rely on the optical activity of the
molecule may be expected to behave qualitatively similar to the cases discussed in this work while the
environmental impact on solely electrical processes are expected to be fundamentally different.

We start by discussing the discrimination of the acceptor molecule via RET in free space as an
introductory case as well as for comparison. We then consider the donor–acceptor pair first immersed inside
a chiral medium with known handedness. In the limit of a very dilute gas the surrounding medium is rather
modelled by its individual constituents [20–27]. We therefore consider lastly the discrimination in the
presence of a single additional chiral molecule [28], called mediator. The three scenarios discussed in this
paper are schematically shown in figure 1.

To be able to consider a chiral medium which the molecules are immersed in, we have derived the
local-field corrections (LFC) to account for local-field and screening effects inside chiral media based on the
Onsager real cavity model [29]. The results show a surprising effect on the discrimination where the LFCs
lead to an inversion of the discrimination as a function of the intermolecular distance. We account for the
chiral mediator as part of the environment within the framework of macroscopic QED [30–32], by extending
the known method for electric particles [33] to optically active molecules [14, 34].

We present the results analytically for the limits of small and large intermolecular distance, as well as
discuss general results in the form of plots for the total distance regime. As a summary, we illustrate the
degree of discrimination for all discussed cases for 3-methyl-cyclopentanone chosen as the example chiral
molecules.
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2. Discriminatory RET rate

The presented results are obtained from purely analytic calculations within the framework of macroscopic
QED. The process of RET is described via perturbation theory, leading to Fermi’s golden rule in second order
for the calculation of the RET rate. The resulting rate expression can ultimately be separated into
discriminatory and nondiscriminatory rate contributions in each of the three considered scenarios, see
figure 1.

We consider the interaction of chiral molecules with each other via the electromagnetic field. Because we
assume each molecule to be optically active, we account for the coupling of the magnetic dipole to the
magnetic field, B̂ , as well as the usual interaction of the electric dipole to the electric field, Ê , as expressed in
the interaction Hamiltonian [35]

Ĥint =−
∑

α=D,A

[
d̂
(α)
· Ê(rα)+ m̂(α) · B̂(rα)

]
, (1)

where rD/A is the donor’s/acceptor’s position, d̂
D/A

is the donor’s/acceptor’s electric dipole moment operator

and m̂D/A is its magnetic counterpart. In this order of multipole expansion, the electric quadrupole usually
needs to be considered as well. However, in this work we are interested in the rates between molecules with
arbritrary orientation, leading to isotropic averaging. In this situation the contribution to the rate due to the
interference of electric dipole and quadrupole moments is known to vanish [2].

The process rate Γ of RET, where the excitation is transferred from the donor to the acceptor, can then be
derived via Fermi’s golden rule, such that

Γ =
2π

h̄2
ρ
(
ωf

)
|Mfi|2 , (2)

where ρ(ωf) is the spectral overlap between the donor’s emission and the acceptor’s absorption spectrum at
the energy of the final state h̄ωf [36–38], andMfi is here the second order transition matrix element, whose
computation relies on the initial and final states of the system as well as the interaction Hamiltonian,

Mfi =
∑
j

⟨f |Ĥint|j⟩⟨j|Ĥint|i⟩
Ei − Ej

∣∣∣∣∣
Ei=Ef

, (3)

where we sum over all intermediate states |j⟩, while |i⟩, |f⟩ label the initial and final state respectively and En is
the energy of the respective state |n⟩. The initial and final states are given by product matter–field states,
|i⟩= |1⟩D|0⟩A|{0}⟩F and |f⟩= |0⟩D|1⟩A|{0}⟩F, where |0/1⟩A/D labels the ground/excited state of the
acceptor/donor and |{0}⟩F denotes the ground state of the electromagnetic field. The intermediate states |j⟩
are of two types and correspond either to both molecules in the ground state or both in the excited state, with
one virtual photon (polariton) present in each case. Explicitly,

|j⟩ ∈
{
|0⟩D|0⟩A|1e/m (r,ω)⟩F , |1⟩D|1⟩A|1e/m (r,ω)⟩F

∣∣∀ω > 0 ,∀r ∈ R3
}
, (4)

where |1e/m(r,ω)⟩F is an electric/magnetic body-field excitation with energy h̄ω at position r.
It was shown that within the framework of macroscopic QED this leads to the RET rate [1]

Γ =
∑

λ1,λ2,λ3,λ4

Γλ1λ2λ3λ4 , (5)

Γλ1λ2λ3λ4 =
2πρµ2

0

9h̄2

(
dAλ1
· dA∗λ2

)(
dD∗λ3
· dDλ4

)
Tr
[
Gλ1λ4 ·G∗T

λ2λ3

]
, (6)

where we have assumed that the relative orientation of the molecules is isotropic, such that
d1⊗ d2 = (d1 · d2)I/3, and we adopted a dual formulation with λi ∈ {e,m} that is useful when considering
the duality symmetry of electric and magnetic fields in the absence of free charges [33]. The dual transition
dipoles are given by

dAe = ⟨1|d̂|0⟩A , dDe = ⟨0|d̂|1⟩D , (7)

dAm =
⟨1|m̂|0⟩A

c
, dDm =

⟨0|m̂|1⟩D
c

, (8)

3
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where the transition dipoles of the donor correspond to a downward transition and the ones of the acceptor
to an upward one. The dual Green’s tensor is given by

Gλλ ′ =


iω
c G(rA,rD,ω)

iω
c , for λλ ′ = ee

−→
∇A×G(rA,rD,ω)×

←−
∇D, for λλ ′ =mm

iω
c G(rA,rD,ω)×

←−
∇D, for λλ ′ = em

−→
∇A×G(rA,rD,ω)

iω
c , for λλ ′ =me

(9)

where h̄ω = h̄ωD = h̄ωA is the transition energy and the arrow on the nabla-operator indicates in which
direction the derivative acts. The Green’s tensorG can reflect the influence of the surrounding macroscopic
environment by solving the Helmholtz equation for the respective environment and its boundary conditions.

The isotropic RET rate (5) features the scalar product of the different transition dipoles involved in the
migration of energy. The scalar product between electric and magnetic transition dipole moments is related
to the so-called optical rotatory strength R of the respective chiral molecule,

R= Im
[
c⟨0|d̂e|1⟩ · ⟨1|d̂m|0⟩

]
, (10)

and its sign depends on the molecule’s handedness. In our notational convention, where dDλ denotes a
downward transition, while dAλ represents an upward transition, the respective rotatory strengths are given by

RD = Im
[
cdDe · d

D∗
m

]
, RA = Im

[
cdA∗e · d

A
m

]
. (11)

The total RET rate Γ then features a contribution whose overall sign is sensitive to the acceptor’s handedness
and one that is insensitive. We refer to the former as the discriminatory rate contribution Γdisc, the latter as
the non-discriminatory one Γnd, and the rates ΓL and ΓR involving left- and right-handed acceptors,
respectively, differ by 2Γdisc. This leads to the definition of the degree of discrimination δ as

δ =
ΓL−ΓR

ΓL +ΓR
=

Γdisc

Γnd
. (12)

By definition δ can range from negative unity to unity, where for positive values left-handed acceptors are
preferred by the energy transfer ΓL > ΓR, and vice versa for negative ones. Unity values, δ =±1 then
correspond to perfect discrimination, where no energy transfer occurs to one of the enantiomers. For
simplicity, and without loss of generality we assume henceforth that the donor is known to be left-handed.
The analogous results for opposite-handed donors can then be obtained by swapping the respective left- and
right-handed labels.

In accordance with the Curie symmetry principle, we find that the discriminatory rate contribution
depends on the product of the chiral property of the acceptor and another chiral object, and thus only on
their relative handedness. In free space, this additional chiral object is the donor molecule. The chiral
property of the molecules appearing in the rate is the rotatory strength of the acceptor RA and the donor RD,
defined by equation (11), i.e. Γdisc ∝ RARD. Introducing additional chiral objects with a predetermined
handedness into the system then results in supplementary discriminatory rate contributions, which depend
on the chirality of these objects.

3. Accounting for the effect of a chiral environment

We want to analyse the influence on the discriminatory effect of RET by additional chiral objects in the
environment. Here, we briefly introduce the two environments considered, a surrounding chiral medium
and a single chiral mediator molecule, and how they can be treated within the framework of macroscopic
QED via their appropriate Green’s tensor.

3.1. Green’s tensor for chiral mediumwith LFC
In a chiral medium magnetic and electric fields are coupled to each other via the macroscopic constitutive
relations:

D̂= εε0Ê+ P̂N− i
χ

c
Ĥ− i

χ

c
M̂N , (13)

B̂= µµ0Ĥ+µµ0M̂N + i
χ

c
Ê , (14)

where χ is the chiral parameter of the medium. In such a medium left- and right-handed circularly polarised
(L- and R-HCP) light propagate with different wave numbers k−/+ = (nr∓χ)ω/c, where−/+ and

4
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upper/lower signs refer to L- and R-HCP, respectively. As a consequence, the chiral bulk Green’s tensorGc
λλ ′

has a more complex structure than the magnetodielectric bulk one when expressed in a basis of wave vector
functions, namely [39]

Gc =GL (k−)+GR (k+) , (15)

GL (k−) =
3iµc

8πncω

∑
σ,m⩽1

k2−L
(1)
σm1 (r,k−)⊗ Lσm1 (0,k−) , (16)

GR (k+) =
3iµc

8πncω

∑
σ,m⩽1

k2+R
(1)
σm1 (r,k+)⊗Rσm1 (0,k+) , (17)

where σ ∈ {g,u} denote even or odd wave vector functions,GL/R describe the propagation of L/R-HCP
excitations, Lσmn/Rσmn are the spherical wave vector functions for L/R-HCP waves and we chose the source
point to sit at the origin without loss of generality to simplify the expression.

The spherical wave vector functions can be defined by means of the electric and magnetic spherical
vector harmonics Nσmn andMσmn as [39]

Lσmn (r,k) =
Nσmn (r,k)+Mσmn (r,k)√

2
, (18)

Rσmn (r,k) =
Nσmn (r,k)−Mσmn (r,k)√

2
. (19)

The additional superscript (1) in equations (16) and (17) denotes the replacement of spherical Bessel
functions by Hankel functions within the definitions of M and N and represents ingoing and outgoing
waves, respectively. The basis set Lσmn and Rσmn are then eigenvectors of the helicity operator Λ̂ = p̂/|p̂|×
where p̂ is the momentum operator, with eigenvalues λ∓ =∓1. Note that there are different conventions in
which polarisation is considered left- and right-handed.

Assuming small chirality of the medium, χ ≪ 1, the bulk Green’s tensor can then be approximated by

G(0) =
µeinrk0r

4π k20n
2
r r

3

[(
n2r k

2
0r

2 + inrk0r− 1
)
I−
(
n2r k

2
0r

2 + 3inrk0r− 3
)
er⊗ er

]
+χ

µk0einrk0r

4π
[eϕ ⊗ eθ − eθ ⊗ eϕ ] , (20)

where k0 = ω/c is the vacuum wave number and er, eθ and eϕ are the spherical unit vectors of r= rD− rA.
When modelling atomic or molecular interactions inside a surrounding macroscopic medium, local-field

and screening effects need to be taken into account. This can be achieved by using LFC models. Here, we
choose the Onsager real cavity model [29] to work out the corrections due to local-field effects inside a chiral
medium. In a nonchiral medium, this leads to correction factors to the total Green’s tensor that differ for
electric and magnetic interactions. In a chiral medium, we find that additionally to the distinction of
magnetic and electric interactions, L- and R-HCP excitations need to be corrected via different factors as
well. The corrected dual Green’s tensor is then given by

Gc,lfc
λλ ′ = cλLcλ ′LGL

λλ ′ (k−)+ cλRcλ ′RGR
λλ ′ (k+) , (21)

where the subscripts λ, λ ′ ∈ {e,m} denote the additional factors and operations on the Green’s tensor
defined by equation (9) and the chiral correction factors are given by

ceLR
=

3(nr∓χ)(±2µχ + 2µnr + nr)

µ(2µ− 4χ2 + 1)+ n2r (4µ+ 2)
, (22)

cmL
R
=

3
(
µ+ 2n2r ± 2nrχ

)
µ(2µ− 4χ2 + 1)+ n2r (4µ+ 2)

. (23)

In the limit of small χ, we can write them as

ceL ≈ ce−χζe , ceR ≈ ce +χζe , (24)

cmL ≈ cm +χζm , cmR ≈ cm−χζm , (25)

where ce and cm are the well-known LFC factors for nonchiral media,

ce =
3ε

1+ 2ε
, cm =

3

1+ 2µ
, (26)

and ζe and ζm are given by

5
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ζe =
cecm
3nr

, ζm =
2cecm
3nr

. (27)

The introduction of different correction factors for left- and right-handed circularly polarised waves
alters the structure of the Green’s tensor significantly more than in the nonchiral case, where LFC yields a
mere overall scaling of the total Green’s tensor.

3.2. Green’s tensor for chiral mediator
In the limit of dilute gases the surrounding medium can be modelled by N mediator molecules. Electric
mediators can be viewed as an environment by explicitly including them in the Green’s tensor via their
electric polarisability [20–22, 40]. Here, we extend the theory to chiral mediator molecules in the
environment. The considered system is schematically shown in figure 1(c). We consider only a single
mediator moelcule here and analyse the geometry dependent discrimination in such a system. The
generalisation to a density of mediators, donors and acceptors is then straightforward, where in case of
several donors one has to distinguish between coherent and incoherent initial states of the donor molecules.
We assume that the mediator itself is a chiral molecule in its ground state that features a resonance at the
exchanged energy h̄ω. Additionally, we assume that the transitions of the mediator molecule are isotropic
and that the intermolecular distances are larger than their size, such that we may approximate the mediator
as point-like but still retain the dipole approximation. Finally, assuming that the dilute-gas limit of the
Clausius-Mosotti relation is a good approximation, we find for the dual Green’s tensor,

Gλ1λ2 (rA,rD) =G(0)
λ1λ2

(rA,rD)+GM
λ1λ2

(rA,rD) , (28)

GM
λ1λ2

(rA,rD) =−
∑
λ,λ ′

G(0)
λ1λ

(rA,rM) ·
αλλ ′

ε0
·G(0)

λ ′λ2
(rM,rD) , (29)

whereG(0)
λλ ′ is the dual free-space Green’s tensor defined by equation (9) whereG is substituted by the

free-space Green’s tensorG(0) and αλλ ′ =αλλ ′(ωD) is the dual polarisability tensor of the mediator at ωD

given by

αλλ ′ (ωD) =
1

3h̄

∑
k

(
⟨0|dλ|k⟩M⊗⟨k|dλ ′ |0⟩M

ωk +ωD + iγk
+
⟨k|dλ|0⟩M⊗⟨0|dλ ′ |k⟩M

ωk−ωD + iγk

)
, (30)

where |k⟩M are the excited states of M, ωk are their transition frequencies and 1/γk the respective lifetimes.
The chiral property of the mediator, i.e. its rotatory strength RM, see equation (10), appears in the mixed
electric-magnetic polarisabilities,

αem =−αT
me ∝ RM . (31)

Next, we apply some assumptions for the mediator to simplify the polarisability tensor. Assuming that
there exists an excited state of M in resonance with ωD, such that ωk = ωD, we find that this resonance
dominates αλλ ′ . If we additionally assume that this resonant state is degenerate in its orbital magnetic
quantum number, i.e. features an isotropic transition, we find that the polarisabilty tensor is proportional to
the identity, αλλ ′ = αλλ ′I and given by

αλλ ′ =
1

3h̄

(
dMλ · d

M∗
λ ′

2ω+ iγM
− i

dMλ ′ · dM∗
λ

γM

)
, (32)

where dMλ = ⟨0|d̂λ|1⟩ is the electric/magnetic transition dipole and γM is the linewidth of the resonant
mediator transition. Assuming that there are no additional line-broadening effects, the linewidth is given by
the spontaneous decay rate of the excited state, γM =

∑
λω

3|dMλ |2/(3c3πε0h̄). The decay rate γM is much
smaller than the eigenfrequency ω and hence Reαλλ ′ ≪ Imαλλ ′ .

The theory can easily be extended to N mediators by introducing a sum over severalMi in equation (28)
with their respective mediator Green’s tensor GMi

λλ ′ . Even densities of identical mediators can be considered
by replacing this sum with an integral over said density. Relaxing the assumption of isotropic transitions in
the mediator molecule leads to off-diagonal components of the polarisability tensor and hence to additional
contributions toGM. It is plausible to assume that in many cases the contribution due to the diagonal of the
α-tensor dominates and we restrict ourselves to isotropic transitions here to simplify the resulting discussion.
Extending the framework to non-isotropic transitions is however straightforward.

6
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4. RET rate expressions

Here, we provide explicit analytical expressions for the derived and studied rates.

4.1. RET rate in vacuum
In vacuum we use the free-space Green’s tensor to evaluate the rate formula (5). It is given by

G(0) (rA,rD,ω) =−
c2eiωr/c

4πωr2

{[
1− i

ωr

c
− ω2r2

c2

]
I−
[
3− 3i

ωr

c
− ω2r2

c2

]
er⊗ er

}
, (33)

where r= |rA− rD|, I is the 3x3-identity matrix and er = (rA− rD)/r is again the unit vector pointing from
rD to rA. The discriminatory and nondiscriminatory contributions to the free space rate in terms of dual rate
terms (6) are given by

Γ0
disc = Γemme +Γemem +Γmeme +Γmeem ∝ RARD (34)

and

Γ0
nd =

∑
λλ ′

Γλλλ ′λ ′ . (35)

Explicitly these expressions yield

Γ0
disc =

µ2
0ρRDRA

18π h̄2r6

(
3+ 2

r2ω2

c2
+ 2

r4ω4

c4

)
, (36)

Γ0
nd =

µ2
0ρ

36π h̄2r6

{
3
(
|dAe |2|d

D
e |2 + |d

A
m|2|d

D
m|2
)

+
(
|dAe |2 + |d

A
m|2
)(
|dDe |2 + |d

D
m|2
)[ω2r2

c2
+

ω4r4

c4

]}
. (37)

Dividing them by each other and approximating |de| ≫ |dm| for all molecules leads then to the degree of
discrimination given by equation (49).

4.2. RET rate in chiral medium
When donor and acceptor are immersed in a chiral medium, we use the local-field corrected chiral bulk
Green’s tensor (21) to evaluate the rate formula (5). The two discriminatory and one nondiscriminatory
contributions to the rate in terms of dual rate terms (6) are given by

ΓD
disc = Γemme +Γemem +Γmeme +Γmeem ∝ RDRA , (38)

Γχ
disc = Γemee +Γmeee +Γemmm +Γmemm ∝ RAχ, (39)

Γnd =
∑
λλ ′

Γλλλ ′λ ′ . (40)

We refrain from giving their explicit forms, as these expressions are very lengthy and convoluted.

4.3. RET rate in the presence of a chiral mediator
Using the general rate equation (5) together with the Green’s tensor given by equation (28), we can calculate
the RET rate in the presence of a chiral mediator. The total rate can be divided into three different parts,
such that

Γ = ΓDA +ΓDA−DMA +ΓDMA , (41)

ΓDA =
∑

Γλ1λ2λ3λ4 , (42)

ΓDA−DMA =
∑

Γλaλb
λ1λ2λ3λ4

, (43)

ΓDMA =
∑

Γλaλbλcλd
λ1λ2λ3λ4

, (44)

where ΓDA and ΓDMA are the rates from direct and mediated transfer, respectively, and ΓDA−DMA is their
interference term. The individual contributions are given by equation (6) and additionally
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Γλaλb
λ1λ2λ3λ4

=
2πρµ2

0

9h̄2

(
dAλ1
· dA∗λ2

)(
dD∗λ3
· dDλ4

)
αλaλb

×Tr
[
G(0)

λ1λ4
(rA,rD) ·G(0)∗T

λaλ3
(rM,rD) ·G(0)∗T

λ2λb
(rA,rM)

]
+ c.c. , (45)

Γλaλbλcλd
λ1λ2λ3λ4

=
2πρµ2

0

9h̄2

(
dAλ1
· dA∗λ2

)(
dD∗λ3
· dDλ4

)
αλaλbαλcλd

×Tr
[
G(0)

λ1λd
(rA,rM) ·G(0)

λcλ4
(rM,rD) ·G(0)∗T

λaλ3
(rM,rD) ·G(0)∗T

λ2λb
(rA,rM)

]
. (46)

In the case of an unknown acceptor enantiomer we hence obtain two different discriminatory rates, one
where the donor discriminates the acceptor ΓD

disc ∝ RARD and one where the mediator discriminates the
acceptor ΓM

disc ∝ RARM. They are given by

ΓD
disc =

∑[
Γemem +Γmeem +Γmeme +Γemme

+Γλλ
emem +Γλλ

meem +Γλλ
meme +Γλλ

emme

+Γλλλ ′λ ′

emem +Γλλλ ′λ ′

meem +Γλλλ ′λ ′

meme +Γλλλ ′λ ′

emme

+Γλ1λ2λ1λ2
meme +Γλ1λ2λ2λ1

emme

]
∝ RARD , (47)

with λ1 ̸= λ2 and,

ΓM
disc =

∑[
Γem
emλλ +Γme

emλλ +Γem
meλλ +Γme

meλλ

+Γemλ ′λ ′

emλλ +Γmeλ ′λ ′

emλλ +Γemλ ′λ ′

meλλ +Γmeλ ′λ ′

meλλ

+Γλ ′λ ′em
emλλ +Γλ ′λ ′me

emλλ +Γλ ′λ ′em
meλλ +Γλ ′λ ′me

meλλ

]
∝ RARM . (48)

The remaining nonvanishing contributions form the nondiscriminatory rate Γnd. Similar to the chiral
medium case, we refrain from giving their explicit form, as these expressions are very lengthy and convoluted.

The chosen simplifying assumptions of isotropic mediator transitions, resonance and lastly that all three
involved molecules are of the same species enable us to discuss the degree of discrimination in the presence
of the mediator independent of the molecular-species. Relaxing any of these assumptions for the application
to different systems is however straightforward.

5. Degree of discrimination

We derived the RET rate Γ (5) between a chiral excited donor molecule and a chiral ground-state acceptor
molecule by using perturbation theory within macroscopic QED [32]. We may then take the environment of
interest (here free space, chiral medium and a chiral mediator molecule in resonance) into account by
substituting the appropriate Green’s tensor into equation (6). The resulting rate then consists of a
contribution Γnd insensitive to the handedness of the acceptor and contributions Γdisc sensitive to the
acceptor’s handedness. Depending on the system the discriminatory contribution itself may consist of several
parts that either arise from the chirality of the donor, the chirality of the medium or the chirality of the
mediator.

We defined the degree of discrimination as δ = Γdisc/Γnd (12). By using equations (36) and (37) we
obtain for δ in free space,

δ0 =
RARD

c2|dAe |2|d
D
e |2

(
3c4 + 2c2r2ω2 + 2r4ω4

)
(3c4 + c2r2ω2 + r4ω4)

, (49)

where r is the intermolecular distance and h̄ω is the transition energy, and we have approximated |de| ≪ |dm|
to simplify the expression. The degree of discrimination assumes lower and upper bounds in the limit of very
small, nonretarded distances ωr/c≪ 1, and very large, retarded distances ωr/c≫ 1, compared to the reduced
wavelength λ= c/ω of the dominant molecular transition respectively. In the limit of small distances we find

lim
r→0

δ0 =
RARD

c2|dAe |2|d
D
e |2

, (50)
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Figure 2. Degree of discrimination δ for the example of 3-MCP for all cases presented in this work: the free space degree of
discrimination δ0, the discrimination due to the chirality of a chiral medium δχ, the discrimination due to the donor inside a
chiral medium δD, the discrimination due to a chiral mediator in the center between donor and acceptor δM and the
discrimination due to the donor with a mediator between donor and acceptor δD.

while the upper (retarded or far-zone) limit is given by approximately twice the lower limit. The degree of
discrimination as a function of the distance r is plotted in figure 2 in comparison with the cases considered in
the following for the example of 3-methyl-cyclopentanone (3-MCP) as donor and acceptor species.

For the comparison of the discrimination in all presented cases in figure 2, we have chosen 3-MCP in its
equatorial methyl-group configuration. 3-MCP in this configuration features a transition with a very small
electric transition dipole moment (|de|= 2.44× 10−31 Cm) compared to its magnetic one
(|dm|= 3.31× 10−32 Cm) [41–44]. This leads to a relatively large rotatory strength R/c= Im[de · dm]
≈ |de|2/7. The transition energy is given by h̄ω = 4.23 eV (6.44× 1015 s−1) and a reduced transition
wavelength of c/ω = λ/2π = 46.87 nm. The chosen example is a chiral molecule whose properties are well
known and which has been used in a variety of similar studies with the aim of achieving discrimination such
as in [44]. This makes 3-MCP an appropriate candidate system to demonstrate the discriminatory power of
RET.

Employing the framework of macroscopic QED allows us to account for the impact of a chiral
environment on the process rate by determining the appropriate classical Green’s tensorG that solves the
Helmholtz equation and its boundary conditions in the presence of the environment of interest.

We first consider a chiral medium surrounding the molecular system as depicted in figure 1(b). The chiral
medium may be characterized by its permittivity ε, permeability µ and its chirality χ. The sign of χ then
depends on the handedness of the medium. In the case of a medium surrounding the system, local-field and
screening effects must be accounted for via LFCs. Here, we chose the Onsager real cavity model to calculate
the LFC for the Green’s tensor inside a chiral medium. The resulting corrections to the Green’s tensor are
much more involved than the ones obtained inside a nonchiral one. While for a nonchiral medium one finds
two different correction factors ce = 3ε/(1+ ε) and cm = 3/(1+ 2µ) for electric and magnetic interactions,
the chiral LFC leads to four different correction factors that additionally distinguish between left- and
right-handed circularly polarised (L- and R-HCP) excitations of the electromagnetic field. In the first order
of the medium chirality, χ they are given by equations (24) and (25), ceL/R ≈ ce∓χζe, cmL/R ≈ cm±χζm,
where ce and cm are the known electric and magnetic correction factors for a nonchiral medium and the
additional chiral contributions to the correction factors are given by ζe = ζm/2= cecm/3

√
εµ. The local-field

corrected Green’s tensor for a chiral bulk medium is then given by equation (21).

9
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Figure 3. Degree of discrimination due to a surrounding chiral medium in the nonretarded and retarded limits. We have assumed
here that the donor and acceptor are the same species. The solid lines are given by the full expression, while the dashed lines are
given by the approximations f 0 (54) and f∞ (55) which are valid for nr =

√
εµ≪ |de|/|dm| and we have chosen a trivial

permeability µ= 1.

Using the local-field corrected Green’s tensor we find that immersed in a chiral medium with known
handedness, the total RET rate (5) between a chiral donor with known handedness and a chiral acceptor with
unknown handedness features an additional discriminatory contribution,

Γ = Γnd +ΓD
disc +Γχ

disc , (51)

where similar to the free-space case ΓD
disc ∝ RARD, but we also find the contribution Γχ

disc ∝ RAχ.
Analogously, the degree of discrimination inside a chiral medium can be split into two terms, such that

δ = δD + δχ , (52)

where δD = ΓD
disc/Γnd is the donor-induced degree of discrimination and δχ = Γχ

disc/Γnd the
medium-induced degree of discrimination.

In the first order of the medium chirality χ ≪ 1, the donor-induced degree of discrimination δD yields
the same result as that obtained inside a nonchiral medium [1].

In this work, we focus on the discrimination of the acceptor that arises from the medium, δχ. Similar to
the free-space case we find that δχ assumes lower and upper bounds in the two opposite distance limits.
Assuming |nrdm| ≪ |de| and χ ≪ 1, they can be approximated by

lim
r→0

δχ ≈
χRA

c|dAe |2
× f0 , lim

r→∞
δχ ≈

χRA

c|dAe |2
× f∞ , (53)

with f0 and f∞ entirely determined by the properties of the medium,

f0 =
2nr (cmζe− ceζm)

c2e
, (54)

f∞ =
2(3cecm− nrceζm + 3nrcmζe)

c2e
, (55)

where nr =
√
εµ is the nonchiral refractive index, cλ and ζλ are the correction factors, see equations (26)

and (27), and we have assumed real valued medium parameters for simplicity.
When neglecting the chirality of the LFC factors in equations (27), i.e. for ζλ = 0, the medium-induced

discrimination vanishes in the limit of small distances, limr→0 δχ = 0. The discrimination in this limit is
hence entirely due to local-field effects.

Using the explicit expressions for the correction factors given by equations (26) and (27) we find that for
media with |nr|> 1/2, which is true for most media, f0 < 0 while f∞ > 0. This is illustrated in figure 3, where
f 0 and f∞ are plotted as a function of the nonchiral refractive index nr =

√
εµ (with real permittivities ε and

trivial permeability µ= 1).
For the plot, we assumed that donor and acceptor are the same species, where in one case we assume for

the transition dipoles |de|/|dm|= 10 and in the other |de|/|dm|= 100. The behaviour of the bounds for large
nr is determined by |de|/|dm|, while the behaviour for small nr is determined by χ of the medium which we
chose here to be 0.3. Furthermore, we find that for real medium properties ε and µ the values of f 0 and f∞
are given by approximately−1 and 4 for χ ≪ nr≪ |de|/|dm|. As a consequence δχ changes sign as a
function of the intermolecular distance, i.e. while same-handed acceptors are preferred by RET for large
distances r⩾ c/ω, the rate involving opposite-handed acceptors is dominant for small distance r< c/ω.
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This is shown for the example of 3-MCP inside a chiral medium with χ= 0.3, ε= 1.8 and µ≈ 1 in
figure 2, where δχ is plotted as a function of the intermolecular distance in comparison with the remaining
cases discussed in this work. An inversion of discrimination as a function of the distance has previously been
predicted for strongly absorbing dielectric media surrounding the system [1].

In the limit of a dilute gas as chiral medium, the surrounding environment can alternatively be modelled
by N mediator molecules. Electric mediators can be treated as environment by including them into the
Green’s tensor via their electric polarisability [20–22, 40]. Here, we use such an approach for chiral mediator
molecules. The considered system is schematically shown in figure 1(c). We assume that the mediator is
possibly a chiral molecule in its ground state that features a resonance for a chiral transition at the exchanged
energy h̄ω.

Similar to the chiral medium, the chiral mediator can itself discriminate the acceptors, assuming that the
handedness of the mediator is known. We then find an additional contribution to the degree of
discrimination,

δ = δD + δM , (56)

where δD ∝ RARD is the donor-induced degree of discrimination, and δM ∝ RARM is the mediator-induced
degree of discrimination whose rotatory strength is RM.

The rate Γ in the presence of a mediator in lowest-order perturbation theory consists of three parts,
where one term results from the direct transfer of the excitation from donor to acceptor independent of the
mediator, ΓDA, one part from the scattering of the excitation at the mediator, ΓDMA, and lastly one term from
the interference of both process paths, ΓDA−DMA. In the nonretarded or near-zone limit ωr/c≪ 1, the
mediated transfer rate ΓDMA dominates the RET rate; assuming that |de| ≫ |dm| for all involved molecules,
we find

lim
r→0

δ ≈ lim
r→0

δM =
RARM

c2|dAe |2|d
M
e |2

, (57)

where dMe is the electric transition dipole moment of the mediator. The degree of discrimination in this limit
is hence comparable to the one found in free space, equation (50). While the discrimination in this limit does
not change significantly, the RET rate itself can be greatly enhanced in the presence of a close-by
mediator [20–22]. In the case of an achiral mediator, i.e. RM = 0, the mediation even leads to a suppression
of the discrimination by a factor of |dMm |2/|d

M
e |2≪ 1 compared to the nonretarded discrimination in free

space. In this case we find

lim
r→0

δ = lim
r→0

δD ≈
|dMm |2

|dMe |2
× RARD

c2|dAe |2|d
D
e |2

. (58)

In the opposite distance limit ωr/c≫ 1, the transfer rate is dominated by the direct transfer ΓDA and is
independent of the mediator. The degree of discrimination is hence given by the free space result (49) in the
retarded or far-zone distance limit.

In the intermediate distance regime, the relative positions of the three particles can have a large impact
on the discriminatory effect. This is shown in figures 4 and 5 for the nonretarded and retarded regime,
respectively. We assume for the plots that all three particles are the same species, where the mediator and
donor are same-handed and their handedness is known. We have normalised the results to the free-space
case, which due to the assumption |de| ≫ |dm| yields molecule-independent results.

In figure 4 the degree of discrimination is plotted when the donor and acceptor molecules are placed at a
nonretarded distance of rDAω/c= 0.2 and the mediator position is varied. Placing the mediator in the center
of the donor and acceptor suppresses the donor-induced discrimination, δD ≈ 0, but shows the highest
discriminatory effect via the mediator, which is comparable to the free space discrimination, δM ∼ δ0.
Placing the donor further from the center inverts this scenario, such that δM ≈ 0 and δD ≈ δ0. As a
consequence, the combined discrimination δ = δM + δD is approximately position-independent and
comparable to the free space discrimination δ0.

In figure 5 the degree of discrimination is plotted when the donor and acceptor molecules are placed at a
retarded distance of rDAω/c= 5 and the mediator position is varied. The mediator-induced discrimination
δM is again largest and comparable to the free space discrimination δ0 when placing the mediator at the
center of the geometry, while the donor-induced discrimination δD is best enhanced by the mediator by
placing it at narrow interference peaks outside the center of the donor-acceptor pair and on their connecting
axis. The total discrimination δ = δD + δM then profits most from a mediator placed at the center, where the
discrimination can be roughly doubled compared to δ0.
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Figure 4. Degree of discrimination in the presence of a mediator in the nonretarded distance regime as a function of the mediator
position. We divide the degree of discrimination into two parts, one part arising from the chiral property of the mediator δM and
one from the chiral property of the donor δD, see equation (56), while the total degree of discrimination is given by their sum
δ = δD + δM. The donor is placed at the origin (0, 0), while the acceptor is placed at (rDA,0) with a nonretarded distance
rDA = 0.2c/ω from the donor. We assume here that all three particles are the same species.

Figure 5. Degree of discrimination in the presence of a mediator in the retarded distance regime as a function of the mediator
position. We divide the degree of discrimination into two parts, one part arising from the chiral property of the mediator δM and
one from the chiral property of the donor δD, see equation (56), while the total degree of discrimination is given by their sum
δ = δD + δM. The donor is placed at the origin (0, 0), while the acceptor is placed at (rDA,0) with a retarded distance rDA = 5c/ω
from the donor. We assume here that all three particles are the same species.

The discrimination in the presence of a mediator is additionally plotted as a function of the
donor–acceptor-distance for the example of all three molecules being 3-MCP in figure 2 in comparison with
the discrimination inside a chiral medium and the free-space case. The mediator is here fixed at the center
point between the donor and acceptor. The plot also shows the discussed distance limits for δD and δM.

The analysis assumes that the positions of the involved molecules is known. In real-life applications this
will not be the case. In case of densities of molecule clouds the positions need to be integrated over. For
acceptor and donor clouds (assuming that the donors are prepared in an incoherent initial state) the
integration over the densities is performed over the rates itself. In case of the mediator cloud the integration
has to be done over the transition matrix elementMfi, which could in general lead to new interference
features but will usually wash out the interference patterns shown in figures 4 and 5. While the microscopic
picture is of course related to the macroscopic one, the results seem fundamentally different. This is due to
our assumption in the microscopic case of being on resonance with the transition in the mediator molecule
which we assume to have a narrow width that is given by the spontaneous decay rate.

6. Conclusion

In this study we have examined discrimination through RET involving chiral molecules within a chiral
environment; we have focused on attempting to discriminate between differently handed acceptor particles.
Our investigation involved two different chiral environments: a macroscopic chiral medium surrounding
both the donor and acceptor molecules, and a single chiral mediator molecule in close proximity.
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By applying the Curie symmetry principle to the challenge of chiral discrimination, it becomes evident
that detecting the handedness of a given chiral object necessitates the incorporation of the handedness of
another chiral object. Consequently, our findings underscore the necessity of introducing a chiral element
with a predetermined handedness to elicit the discriminatory effect. This chiral element can manifest as the
donor molecule itself, the surrounding medium, or the mediator molecule. The resulting discrimination can
then be categorized as arising either from the donor (δD), the mediator (δM) or the medium (δχ).
Furthermore, an implication of the Curie symmetry principle is the absence of a three-body discrimination
scenario, exemplified by a rate contribution proportional to RARDRM in the mediator case or RARDχ in the
medium case. We may prove this by contradiction: let us suppose that contributions proportional to
RARDRM persist and that we lack prior knowledge of the participants’ handedness. This would lead to the
left-handed molecule-specific rate ΓLLL featuring a positive term proportional to RARDRM, while ΓRRR would
exhibit the same term but with an opposite sign. Consequently, one could potentially measure ΓLLL > ΓRRR,
thereby distinguishing these scenarios without any prior knowledge of handedness. Given that such a
situation contradicts the Curie symmetry principle, we infer that these contributions must indeed vanish
across all systems.

We proceeded to analyze the discrimination attributed to a chiral medium, denoted as δχ, revealing that
for the majority of systems, discrimination in the retarded (far-zone) limit is approximated as
δχ ≈ 4χRA/(c|dAe |2), while in the nonretarded (near-zone) limit, we obtain δχ ≈−χRA/(c|dAe |2). These
approximations are applicable to systems satisfying the conditions χ ≪ 1, |dm| ≪ |de|, µ− 1≪ 1, and
χ ≪ nr≪ |de|/|dm|. Notably, the alteration in the sign of δχ concerning distance implies a shift in the
preferred handedness for RET discrimination as the distance changes.

This inversion of discrimination emerges as a direct consequence of the introduced LFCs. Our approach
involved the formulation of a LFC model designed for chiral media, built upon the Onsager real cavity
model. In this model, infinitesimally small vacuum spheres encompassing both the donor and acceptor
positions are introduced. Within this configuration, the Green’s tensor, which characterizes the excitation
transfer from donor to acceptor, comprises two transmissions through the surfaces of these vacuum spheres.
We expressed these transmissions as matrices operating within a selected spherical vector wave function
framework, akin to the well-established approach for planar multilayered systems [45]. Specifically, as the
sphere radius becomes infinitesimally small, these transmission matrices can be approximated by diagonal
matrices, ultimately yielding the correction factors (as detailed in equation (27) that are subsequently applied
to the chiral bulk Green’s tensor (as shown in equation (21)). This corrected chiral bulk Green’s tensor offers
a versatile tool for investigating various processes immersed within a chiral medium.

The distance at which inversion can be observed is in the nonretarded regime and as such is notably
small. In the illustrated case of 3-MCP, we anticipate the inversion to transpire around r≈ 0.5c/ω,
corresponding to approximately 25 nm. When distances closely align with the dimensions of the involved
molecules, additional effects and processes become relevant, such as Dexter electron transfer. This transfer
arises from the electron wave function overlap between the molecules and is expected to emerge over a
distance of several Angstrø ms. While it is possible to expand the theory to incorporate Dexter transfer, it is
important to recognise that the results would then be heavily reliant on the particular molecular system
under consideration, and substantive variations would mainly emerge at distances within the Angstrø m
scale. Given that our objective is to gain general insights from an analytical exploration, we have intentionally
excluded these effects.

In analogy to their molecular counterparts, namely de, dm, and R, the properties of the medium, i.e. ε, µ,
and χ, are not entirely independent parameters. Consequently, when considering a fixed chirality (χ), the
nonchiral refractive index (nr) cannot be chosen arbitrarily small. Employing a microscopic model for the
medium or adopting the Drude–Lorentz model could offer a means to incorporate these interconnected
relationships. It is worth noting that we deliberately refrained from selecting parameter combinations for the
medium that could potentially contradict these underlying dependencies.

Nevertheless, we have systematically presented our findings across an extensive parameter space of
media. The dynamic evolution within the metamaterials realm continually expands our capacity to tailor
media with precise optical characteristics. While the domain of metafluids remains in its early stages, the
implications of our results extend to solid materials as well, leveraging the extensive spectrum of
metamaterials that has been both developed and studied.

It is worth emphasising that the presented results for a system immersed in a chiral medium are valid for
macroscopic media whose optical properties are well described by their macroscopic parameters within the
relevant length scale. Nonetheless, the assumption of macroscopic parameters might not be adequate for
highly dilute gases, where the medium’s behavior is primarily governed by its individual constituents. In this
context, we probed the impact of a single chiral mediator molecule in the vicinity of the system.
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Our findings demonstrate that in the limit of nonretarded distances between molecules, the
discrimination is predominantly dictated by the mediator. In stark contrast, at large separation distances, the
discrimination becomes independent of the mediator, with the sole contribution originating from the donor
particle. Meanwhile, the intermediate distance regime exhibits a pronounced reliance on the specific
geometry. For distances smaller than the reduced wavelength, discrimination arises solely from either the
mediator or the donor depending on the geometry, with negligible additive effects between the two. In
scenarios where the donor and acceptor are separated by several reduced wavelengths, we noted that the
mediator-induced discrimination δM benefits most from a central mediator placement. Conversely, the
enhancement of discrimination δD attributable to the donor occurs most effectively when placing the
mediator on interference peaks outside the donor-acceptor arrangement. This nicely illustrates the intricacies
that arise on the introduction of a third-body and the roles played by direct, relay, and interference
pathways [20–22, 46, 47].

Our approach involved introducing assumptions pertaining to the mediator and its polarizability tensor,
enabling a comprehensive discussion that maintains generality. Relaxing these assumptions will lead to
results contingent on the mediator’s specific molecular structure [28]. Furthermore, our framework can be
easily extended to multiple mediators and mediator cloud densities. Multiple mediators introduce additional
process channels that interfere with each other, while substituting specific mediator positions with densities
results in the blurring of interference patterns.

In summation, we proffer a variety of overarching insights into RET taking place within chiral
environments. Our presented results furnish a guiding framework for future explorations in this domain,
potentially facilitating intuitive predictions. For tailored systems, precision in calculations can be enhanced
through the various methodologies we have discussed. Novel techniques for accommodating chiral
environments within the macroscopic QEDs framework have been introduced and elaborated upon. We
employed the Onsager real cavity model to account for local-field and screening effects within chiral media,
leading to corrections to the rate of energy transfer. As a consequence, our findings reveal an intriguing
asymmetry: while one chiral handedness of the acceptor is preferred by the energy transfer in one distance
regime, the opposite handedness prevails in the alternate regime. It would be interesting to employ
alternative models for LFCs in future work in order to study this asymmetry further. Any proposed or actual
experiments may prove involved in trying to measure the effect of the chiral medium relative to
discrimination occurring between donor and acceptor moieties, and it is hoped that this work will stimulate
further experimental study.
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