
Information and Computation 298 (2024) 105168
Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier.com/locate/yinco

Model checking timed recursive CTL

Florian Bruse ∗, Martin Lange ∗

Theoretical Computer Science / Formal Methods, University of Kassel, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 June 2022
Received in revised form 22 March 2024
Accepted 4 April 2024
Available online 9 April 2024

Keywords:
Timed automata
Model checking

We introduce Timed Recursive CTL, a merger of two extensions of the well-known
branching-time logic CTL: Timed CTL is interpreted over real-time systems like timed
automata; Recursive CTL introduces a powerful recursion operator which takes the
expressiveness of this logic CTL well beyond that of regular properties. The result is an
expressive logic for real-time properties. We show that its model checking problem is
decidable over timed automata, namely 2-EXPTIME-complete.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY-NC license (http://creativecommons .org /licenses /by-nc /4 .0/).

1. Introduction

Temporal logics are widely used as formal languages for the specification of properties of reactive systems. The most
commonly known such logics are LTL [1], CTL [2] and CTL∗ [3], having achieved this status – especially when it comes
to LTL and CTL– partially because of their intuitive syntax. Both LTL and CTL can be seen as extensions of propositional
logic by a small set of intuitive temporal operators. This simplicity in syntax is also reflected by relatively low expressive
power; both LTL and CTL do not even reach up to full regularity in the sense that they are not equi-expressive to finite-state
word and tree automata, respectively. In addition, CTL and LTL’s incomparability in expressive power had led to discussions
and studies on what is “the right” temporal logic for program specification, as well as for example the introduction of the
aforementioned CTL∗ , unifying both of them. By now, it is clear that there is no single right temporal logic. Instead, it is the
demands on expressive power and pragmatics raised by particular applications which determine what the best temporal
logic for those specific purposes is.

There is, however, a common understanding of the limitations put onto a logic’s usability given by its expressive power.
In particular, so-called “regular” temporal logics – i.e. those that do not exceed the expressive power of corresponding
finite automata models – typically have appealing computational properties like decidability of their model and satisfiability
checking problems [4], finite or tree model properties [5], etc. In this way, regular expressive power is a cornerstone in
the study of the theory of temporal specification languages, and when exceeding it one should expect to lose some of
these properties. On the other hand, one also gains expressive power by definition when extending the expressive power
of a logic beyond regularity, and there are interesting program properties which are not regular and can therefore not be
expressed in such logics, like the absence of buffer over-/underflows [6], assume-guarantee properties [7], etc. The literature
contains several non-regular extensions of temporal logics or related modal fixpoint logics, e.g. PDL[CFL] [8], FLC [9] and
HFL [7]. These have certain features in common: a syntax that makes it difficult to understand the meaning of formulas,
and – despite undecidability of their satisfiability problems – a decidable model checking problem over finite structures
[10–12]. The upshot to take from this is that model checking need not become undecidable when going beyond regular
expressiveness.

* Corresponding authors.
E-mail addresses: florian.bruse@uni-kassel.de (F. Bruse), martin.lange@uni-kassel.de (M. Lange).
https://doi.org/10.1016/j.ic.2024.105168
0890-5401/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license (http://
creativecommons .org /licenses /by-nc /4 .0/).

https://doi.org/10.1016/j.ic.2024.105168
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2024.105168&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
mailto:florian.bruse@uni-kassel.de
mailto:martin.lange@uni-kassel.de
https://doi.org/10.1016/j.ic.2024.105168
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
In order to overcome issues with unintuitive syntaxes in expressive specification languages, a temporal logic called
Recursive CTL (RecCTL) was recently proposed [13]. It extends the basic branching-time temporal logic CTL with a single
recursion operator which takes formulas as arguments that can be manipulated using other temporal and Boolean operators
and then be passed into a recursive call. This achieves expressive power, capturing all regular branching-time properties and
many non-regular ones. The former is due to the fact that, semantically, recursion is explained via least fixpoints (as it is
common in programming language semantics). So whilst syntactically, RecCTL extends the fairly simple CTL, semantically it
is rather an extension of the modal μ-calculus [14], the archetypical yet unintuitive regular program logic [15].

As mentioned above, decidability of model checking for such logics can be retained, but at the cost of higher computa-
tional complexity. For RecCTL, it is exponentially worse than for CTL, being EXPTIME-complete compared to P-completeness
for CTL.

Another way of extending the expressive power of temporal logics, which has been followed in the literature for quite
some time, is more semantic in nature: in the labelled transition systems that logics like CTL are interpreted over, the
evolution of time is modelled abstractly via discrete steps that are taken when passing from one state to another. Hence,
the only real timing properties expressible in such logics are unitless and non-quantitative like “at some point in the future”
etc., or bound to fixed steps if discrete transitions are assigned a concrete amount of time passed. This is not sufficient for
the modelling of embedded or real-time systems. For example, in [16], concrete timing constraints play a role in correctness
properties, for instance as in “within 5 milliseconds of receiving a signal, a control command is issued.”

In order to capture such effects, transition systems have been extended to model the flow of time more realistically
with non-negative, real-numbered delays between time points. Timed automata [17] are a popular model for the finite
representation of such systems. Their greater expressiveness compared to ordinary discrete systems is indicated by the fact
that the basis for algorithmic solutions to temporal logic decision problems, the reachability problem, is already PSPACE-
complete [17].

One of the most popular temporal logics for expressing more complex reachability properties of timed automata is Timed
CTL (TCTL) [18], an extension of CTL that is capable of making simple assertions about the amount of time that passes before
certain events occur on some paths, or on all paths. Its model checking problem over timed automata is not more difficult
than simple reachability: it is also PSPACE-complete [19].

Here we introduce and study Timed Recursive CTL (TRCTL), a logic that arises from combining the extensions to real-time
on one hand, and to non-regular properties on the other. We show that TRCTL retains decidability of model checking over
timed automata, but the combination increases the complexity to 2-EXPTIME-completeness.

The paper is organised as follows. In Sect. 2 we recall necessary preliminaries about timed automata, TCTL, and about
RecCTL. In Sect. 3 we then introduce TRCTL formally. In Sect. 4 and Sect. 5 we establish 2-EXPTIME-completeness of its
model checking problem. The upper bound is obtained by an exponential reduction to the RecCTL model checking problem,
making use of the known region graph abstraction. This happens in Sect. 4. The lower bound, given in Sect. 5, makes use
of the possibility to encode large numbers in the clock values of timed automata and TRCTL’s ability to manipulate them
in a way that simulates a suitable game problem. This game problem is complete for the class 2-EXPTIME and provides a
suitable intermediate problem for a reduction from the generic word problem for doubly-exponential time-bounded Turing
machines and model checking TRCTL. It uses the same principles that can also be found in the proof of the theorem stating
that alternating s(n)-space bounded Turing machines can simulate deterministic 2O(s(n))-time bounded Turing machines
[20].

The lower bound presented here strengthens a corresponding result in a preliminary version of this paper [21], where
2-EXPTIME-hardness was established for TRCTL’s model checking problem over timed automata with an unbounded number
of clocks. In fact, the number of clocks used in that proof was linear. More precisely, it was shown that there is a family
(An)n≥1 of timed automata with An using n +1 clocks such that model checking TRCTL over any class of systems containing
this family is 2-EXPTIME-hard. Here we improve the lower bound and show that a single clock suffices for 2-EXPTIME-
hardness already. Moreover, this holds already for the expression complexity of the TRCTL model checking problem, i.e. the
hardness result is obtained over a fixed automaton, and we also show that already quite simple fragments of TRCTL admit
the hardness result, in contrast to a quite diverse complexity landscape in the TCTL setting [19].

We conclude in Sect. 6 with remarks on possibilities to extend this work.

2. Preliminaries

For n > 0, we write [n] for the set {0, . . . , n − 1}.

2.1. Models of real-time systems

We recall timed automata as models of (infinite-state) real-time systems and the untiming construction known as the
region-graph construction or abstraction [17] that is the basis for decidability proofs about reachability in and model check-
ing over such systems.

2.1.1. Timed transition systems
A timed labelled transition system (TLTS) over a finite set Prop of atomic propositions is a T = (S, →, s0, λ) such that
2

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
• S is a set of states containing a designated starting state s0,
• →⊆ S × S ∪ S × R≥0 × S is the transition relation, consisting of two kinds:

– discrete transitions of the form s → t for s, t ∈ S , and

– delay transitions of the form s d−→ t for s, t ∈ S and d ∈ R≥0, satisfying s 0−→ t iff s = t for any s, t ∈ S , and

∀d,d1,d2 ∈ R≥0 such that d = d1 + d2,∀s, t ∈ S : s
d−→ t ⇔ ∃u ∈ S such that s

d1−→ u and u
d2−→ t ,

• λ : S→ 2Prop labels the states with the set of atomic propositions that hold true in it.

The extended transition relations
d=⇒, d ∈ R≥0, are obtained by padding discrete transitions with delays:

s
d=⇒ t iff ∃d1,d2 ∈ R≥0, s′, t′ ∈ S such that s

d1−→ s′, s′ → t′, t′ d2−→ t and d= d1 + d2

A trace is a sequence π = s0
d0=⇒ s1

d1=⇒ . . .

Note that we only consider TLTS over a singleton set of discrete actions. This is done purely since the temporal logics
based on CTL used in this paper do not consider different actions. It would be possible to extend the entire theory to TLTS
over several discrete transition relations a−→, b−→, . . ., and make the logics aware of these.

An (untimed) labelled transition system (LTS) is a TLTS over an empty delay transition relation. It is finite if the set of its
states is finite.

2.1.2. Clock constraints
Let X = {x, y, . . .} be a set of R≥0-valued variables called clocks. By CC(X) we denote the set of clock constraints over X

which are conjunctions of formulas of the form
 or x ⊕ c for x ∈X , c ∈N and ⊕ ∈ {≤, <, ≥, >, =}.
A clock evaluation is a function η : X → R≥0. A clock constraint ϕ is interpreted in a clock evaluation η in the obvious

way:

• η |=
 holds for any η,
• η |= ϕ1 ∧ ϕ2 if η |= ϕ1 and η |= ϕ2,
• η |= x ⊕ c if η(x) ⊕ c for ⊕ ∈ {≤, <, ≥, >, =}.

Given a clock evaluation η, d ∈ R≥0 and a set R ⊆ X , we write η+d for the clock evaluation that is defined by
(η+d)(x) = η(x) + d for any x ∈ X , and η|R for the clock evaluation that is defined by η|R(x) = 0 for x ∈ R and
η|R(x) = η(x) otherwise.

2.1.3. Timed automata
As with TLTS, here we consider timed automata whose transitions are always taken with a single action which is conse-

quently not named. As above, the reason for considering this simplified model is purely the fact that CTL-based logics - the
main object of study in this paper – are oblivious of differences in actions anyway. For a detailed introduction into timed
automata see e.g. [17,22].

A timed automaton (TA) over Prop is a A = (L, X , �0, ι, δ, λ) where

• L is a finite set of so-called locations containing a designated initial location �0 ∈ L,
• X is a finite set of clocks,
• ι : L → CC(X) assigns a clock constraint, called invariant, to each location,
• δ ⊆ L × CC(X) × 2X × L is a finite set of transitions,
• λ : L → 2Prop is a propositional labelling.

Note that we write �
g,R−→ �′ instead of (�, g, R, �′) ∈ δ. In such a transition, g is called the guard, and R ⊆ X are the reset

clocks of this transition.
The index of the TA A is the largest constant occurring in its invariants or guards, denoted m(A). The size of A is defined

as usual (see e.g. [22]) via

|A| = |δ| · (2 · (log L)+ |X | + logm(A))+ |L| · 2 · (log |X | + log m(A))+ |L| · |Prop|.
Note that the size is only logarithmic in the value of constants used in clock constraints as they can be represented in
binary notation, for instance.

TA are models of state-based real-time systems. The semantics, or behaviour of a given TA A = (L, X , �0, ι, δ, λA) is
defined by a TLTS TA over the time domain R≥0 as follows.

• The state set is S = {(�, η) ∈ L × (X → R≥0) | η |= ι(�)} consisting of pairs of locations and clock evaluations that satisfy
the locations’s invariant.
3

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
• The initial state is s0 = (�0, η0) where η0(x) = 0 for all x ∈X .
• Delay transitions retain the underlying location and (possibly) advance the value of clocks in a state: for any (�, η) ∈ S

and d ∈ R≥0 we have (�, η) d−→ (�, η+d) if η+d |= ι(�).
• Discrete transitions possibly change the location and reset clocks: for any (�, η) ∈ S , �′ ∈ L and R ⊆X we have (�, η) →

(�′, η|R) if there is g ∈ CC(X) such that (�, g, R, �′) ∈ δ and η|R |= ι(�′).
• The propositional label of a state is inherited from the propositional label of the underlying location: λ(�, η) = λA(�).
• Clock constraints hold in a state if they hold for its clocks, i.e. (�, η) |= χ iff η |= χ .

In other words, a TA finitely represents a TLTS. Clearly, not every TLTS is finitely representable, so only a subset is captured
by TA.

2.2. Temporal logics

We recall the two most relevant temporal logics which form the basis for the definition of Timed Recursive CTL in
Sect. 3: Timed CTL, the extension of pure CTL by operators to quantitatively speak about the passage of time, and Recursive
CTL, the extension of CTL by a recursion operator which gives it much greater expressive power.

2.2.1. Timed computation tree logic
As before, let Prop be a set of atomic propositions and X be a set of clocks. Formulas of Timed CTL (TCTL) are given by

the following grammar.

ϕ ::= q | χ | ϕ ∧ ϕ | ¬ϕ | E(ϕ U J ϕ) | A(ϕ U J ϕ)

where q ∈ Prop, χ is a clock constraint over X , and J denotes an interval in R≥0 with integer bounds, i.e. it takes one of
the forms [n, m], (n, m], [n, m), (n, m), [n, ∞), (n, ∞) with n, m ∈N, n ≤m.

Other Boolean connectives are defined as abbreviations in the usual way: tt := q ∨ ¬q for some q ∈ Prop, ff = ¬tt,
ϕ ∨ψ := ¬(¬ϕ ∧¬ψ), ϕ→ψ := ¬ϕ ∨ψ , etc. Likewise, other familiar temporal operators can be obtained as abbreviations
as well: Q F J ϕ := Q (tt U J ϕ) for Q ∈ {E, A}, Q G J ϕ := ¬Q F J¬ϕ where E= A and A = E. We also write certain intervals
in the form ⊕n with ⊕ ∈ {≤, <, ≥, >, =} when possible. For instance EF>2q stands for EF(2,∞)q, and AG≤5q stands for
AG[0,5]q. Moreover, for an interval [c, d], we write x ∈ J to abbreviate x ≥ c ∧ x ≤ d, and likewise for open and semi-open
intervals.

TCTL formulas are interpreted over R≥0-timed transition systems T = (S, →, s0, λ) with clock constraints as part of the
propositional labelling: �ϕ�T denotes the set of states in T in which ϕ holds, defined inductively as follows.

�q�T := {s | q ∈ λ(s)}
�χ�T := {s | s |= χ}

�ϕ ∧ψ�T := �ϕ�T ∩ �ψ�T
�¬ϕ�T := S \ �ϕ�T

�E(ϕ U J ψ)�T := {s ∈ S | there is a trace π = s, . . . such that π |= ϕ U J ψ}
�A(ϕ U J ψ)�T := {s ∈ S | for all traces π = s, . . . we have π |= ϕ U J ψ}

and for an infinite non-Zeno trace1 π = s0
d0=⇒ s1

d1=⇒ s2
d2=⇒ . . . we have π |= ϕ U J ψ iff

∃i ≥ 0,∃d ∈ [0,di],∃s′ such that si
d=⇒ s′ and (

i−1∑
h=0

dh)+ d ∈ J and s′ ∈ �ψ�T and

∀ j < i,∀d′ ∈ [0,d j],∀s′ such that s j
d′=⇒ s′ we have T , s′ |= ϕ ∨ψ and

∀d′ ∈ [0,d),∀s′ such that si
d′=⇒ s′ we have T , s′ |= ϕ ∨ψ.

We write T , s |= ϕ if s ∈ �ϕ�T for arbitrary s ∈ S , and also T |= ϕ if T , s0 |= ϕ .
The disjunction in the last two clauses of the semantics of the U-operator ensures that formulas like E(x = 0 U x > 0)

are not unsatisfiable, which clearly would be a modelling artefact.
The model checking problem for TCTL is the following: given a TA A with clock constraints in � and a TCTL formula ϕ ,

decide whether or not TA |= ϕ .

1 Recall that a Zeno trace is one on which only a finite amount of time passes, yet infinitely many discrete transitions happen.
4

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
Proposition 2.1 ([23,19]). The model checking problem for TCTL is PSPACE-complete, even for TA over a single clock.

2.2.2. Temporal logic with recursion
We briefly present Recursive CTL (RecCTL), the other building block besides TCTL that makes up Timed Recursive CTL, to

be defined in the following section.
Let Prop be a set of atomic propositions. Formulas of RecCTL are obtained by addition of the recursion operator to (the

purely modal part of) CTL. Let V1 = {x, y, . . .} be a set of propositional variables and V2 = {F , . . .} be a set of so-called
recursion variables. Formulas of RecCTL are given by the following grammar:

ϕ ::= q | x | ϕ ∧ ϕ | ¬ϕ | EXϕ |�(ϕ, . . . ,ϕ)

� ::=F | recF(x1, . . . , xk).ϕ

where x, xi ∈ V1, F ∈ V2. A formula derived from ϕ in this grammar is called propositional, one derived from � is called
first-order. Formulas are interpreted over (untimed) LTS T over some state set S . A propositional formula ϕ denotes a
predicate �ϕ�T ∈ 2S , i.e. a set of states just like any CTL formula does; a first-order formula however denotes a predicate
transformer ���T : 2S × · · · × 2S → 2S .

We do not give the details of the formal semantics here. It suffices to note that the recursion operator is interpreted
as the least fixpoint in the corresponding complete lattice of first-order, or predicate transformers. For this to work seam-
lessly, i.e. these fixpoints to exist, we need to guarantee that any variable F is used only monotonically in ϕ inside of
recF(�x, �y). ϕ . The fact that the logic features negation (¬) and application (�(ϕ1, . . . , ϕk)) requires a slightly more in-
volved syntactic criterion for monotonicity. In particular, in order to know whether some variable is used monotonically, it
may be required to know this for others as well. For details we refer to the literature [13] or the next section where the
machinery is carried out for full Timed Recursive CTL.

An important result on RecCTL to note here, as it will be used later on in Sect. 4, is decidability of its model checking
problem.

Proposition 2.2 ([13]). The model checking problem for RecCTL over finite LTS is EXPTIME-complete.

3. Timed recursive computation tree logic

We now introduce Timed Recursive CTL, starting by stating its syntax. Given that it is a descendant of RecCTL, we have to
deal with negation in order to filter out non-well-formed formulas that cannot be endowed with proper semantics. Once we
have given semantics to well-formed formulas, we close with some examples to illustrate what can and cannot be expressed
in this logic.

3.1. The formal syntax

3.1.1. Operators of timed recursive CTL
Let Prop be a set of atomic propositions and X be a set of clocks. The syntax of Timed Recursive CTL (TRCTL) is similar

to that of RecCTL in that we distinguish between propositional and first-order formulas. We also need two kinds of variables
again: first-order variables V2 = {F , G, . . .} to form recursion anchors and propositional variables V1 = {x, y, . . .} for formal
parameters of recursive formulas. Formulas are then given by

ϕ ::= p | χ | x | ϕ ∧ψ | ¬ϕ | E(ϕ U J ϕ) |�(ϕ, . . . ,ϕ)

� ::=F | recF(x1, . . . , xk).ϕ

where p ∈ Prop, χ is a clock constraint over X , k ≥ 0, x, x1, . . . , xk ∈ V1, F ∈ V2, and J denotes an interval in R≥0 with
integer bounds as in the syntax for TCTL. We write m(ϕ) to denote the largest constant that occurs in interval annotations
of the Until operators in ϕ .

Note that CTL features the Next operators Q X as well as the Until operators Q U. The former is missing in TCTL since
there is no “next” moment in dense real time. RecCTL, however, seems to feature the Next but not the Until. This is simply
because Q (ϕ U ψ) is expressible via Q X using the recursion operator which is stronger than propositional fixpoints, i.e.
Q (ϕ U ψ) ≡ (recF(). ψ ∨ (ϕ ∧ Q XF()))(), written more conveniently as recF . ψ ∨ (ϕ ∧ Q XF), along the lines of the
embedding of CTL into the modal μ-calculus. This does not work for the time-bounded Until operator any more. Hence,
TRCTL features such the Until but not the Next operator just like TCTL.

Other Boolean and temporal operators are defined in the usual way, for instance EF J ϕ := E(ttU J ϕ), AG J ϕ := ¬EF J¬ϕ ,
etc. and will be used freely henceforth.

This gives rise to fragments of TRCTL which result from the restriction to certain temporal operators or intervals of
certain kind only. For example, we write TRCTL[EF] for the set of TRCTL-formulas which use EF (and therefore possibly also
AG) as the only temporal operator, and in particular no binary Until operators. Likewise, we write TRCTL[=], TRCTL[≤, ≥]
5

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
(∅,∅)� p (∅,∅)�χ ({F},∅)�F ({x},∅)� x

(X ,Y)�ϕ (X ′,Y ′)�ψ

(X ∪X ′,Y ∪Y ′)�ϕ ∧ψ

(X ,Y)�ϕ

(Y,X)�¬ϕ

(X ,Y)�ϕ (X ′,Y ′)�ψ

(X ∪X ′,Y ∪Y ′)�E(ϕ U J ψ)

(X ,Y)�ϕ x1, . . . , xk /∈Y, y1, . . . , yk′ /∈X , F /∈Y
(X \ {x1, . . . , xk,F},Y \ {y1, . . . , yk′ })� recF(x1, . . . , xk, y1, . . . , yk′).ϕ

(X ,Y)�� (X1,Y1)�ϕ1 · · · (Xk,Yk)�ϕk (X ′
1,Y ′1)�ψ1 · · · (X ′

k′ ,Y
′
k′)�ψk′

(X ∪
k⋃

i=1

Xi ∪
k′⋃

j=1

Y ′j ,Y ∪
k⋃

i=1

Yi ∪
k′⋃

j=1

X ′
j)��(ϕ1, . . . ,ϕk,ψ1, . . . ,ψk′).ϕ

Fig. 1. The rules for establishing well-formedness of a TRCTL formula.

and TRCTL[<, >] for the fragment in which every interval is formed using the corresponding operators only. We will use
index notation like TRCTLk to denote the fragment of TRCTL whose formulas are constructed over a set of clocks X of fixed
size k. We combine these notations into something like TRCTL1[EF, =] for instance, restricting both the use of temporal
operators and intervals at the same time, and allowing a single clock to occur in the clock constraints in formulas as well
as the timed automata that they get interpreted over. So, for example, EF=4(x = 2) is a formula of this fragment, while
EF≤4(x = 2) is not.

3.1.2. Well-formed formulas
Not every formula generated by the formal syntax as introduced above is well-formed. For instance, when a recursion

formula has k formal parameters as in the formula � = recF(x1, . . . , xk). ϕ , it should only be applied to a tuple of k
arguments as in �(ϕ1, . . . , ϕk). The same goes for any subformula of the form F(ψ1, . . . , ψk). Violations of this are, of
course, quite easily spotted, so we will not formalise this requirement here.

A more difficult issue is that of monotonicity: The recursion operator in TRCTL is explained via fixpoints in complete
lattices, and this requires the defining formula of a recursion to be monotonic in its arguments. Since it is possible to define
non-monotonic functions in TRCTL, e.g. via recF(x).¬x, tracking whether a complex formula is monotonic in a given
argument is difficult. The typing system in Fig. 1 does this. A statement of the form (X , Y) �ϕ says that the variables that
occur positively in ϕ are exactly those in X , and the variables that occur negatively in ϕ are exactly those in Y . Positive
occurrence is a generalisation of the well-known criterion to occur only under an even number of negations, and, hence,
entails that the formula in question is monotonic in the variable in question.

The rules then formalise the behaviour of the intended semantics of TRCTL formulas w.r.t. monotonicity. For ex-
ample, the penultimate rule formalises that, in a formula of the form recF(x1, . . . , xk, y1, . . . , yk′).ϕ , the variables
x1, . . . , xk, y1, . . . , xk′ as well as the recursion variable F do not occur freely. However, in ϕ , the recursion variable F may
not occur negatively, and neither can the variables x1, . . . , xk identified as parameters in which ϕ is monotonic. Conversely,
y1, . . . , yk′ may not occur positively, since ϕ is antitonic in these.

Note that this version of the rules assumes that all variables that occur monotonically in a recursive definition appear
before all variables that occur antitonically. This can, of course, be relaxed at the cost of more notation; we refrain from
doing that here to keep this already somewhat unwieldy definition readable. For a detailed discussion of the typing system,
including an in-depth explanation of its rules, see [13] where the notion of well-formedness is made precise for RecCTL, an
untimed version of TRCTL.

Definition 3.1. We call a formula ϕ of TRCTL without free variables well-formed if the statement (∅, ∅) �ϕ is derivable using
the rules shown in Fig. 1.

3.1.3. Vectorial form
The semantics of the recursion operator will be explained using least fixpoints in complete function lattices. This makes

the Bekic̀ Lemma [24] available which allows formulas with mutual dependencies between recursion variables to be written
down in a more readable form. A formula in vectorial form, (see e.g. [25] for its use in the modal μ-calculus) is a

rec i

⎛
⎜⎝

F1(x1, . . . , xk) . ϕ1
...

Fn(x1, . . . , xk) . ϕn

⎞
⎟⎠ (ψ1, . . . ,ψk).

Informally, this defines not just one but several functions F1, . . . , Fn which may all depend on each other in a mutually
recursive way formalised in the ϕ j ’s. In the end, the function named by Fi is applied to the initial arguments ψ1, . . . , ψk .
6

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
3.2. The formal semantics

As with TCTL, (propositional) well-formed formulas of TRCTL are interpreted in states of a TLTS T = (S, →, s0, λ). In fact,
it suffices to extend the semantics of TCTL to those operators (propositional variables and first-order formulas) which do
not already occur in the syntax of TCTL. Due to the presence of variables, we need variable interpretations ϑ in order to
explain the meaning of a formula inductively. Such a ϑ maps propositional variables to sets of states, ϑ(x) ∈ 2S for x ∈ V1,
and first-order variables to functions of corresponding arity over these: ϑ(F) : 2S × . . .× 2S → 2S . These functions form
a complete Boolean lattice ordered pointwise, hence least fixpoints of monotone functionals mapping one such function
to another exist due to the Knaster-Tarski Theorem [26]. These fixpoints are used to explain the meaning of the recursion
operator. For details, we refer to the exposition on RecCTL [13] or on HFL [7] that this idea goes back to – the only difference
is that there, S is the state space of an untimed LTS rather than a TLTS.

A propositional formula ϕ gives rise to a set �ϕ�Tϑ of states that satisfy it under the variable interpretation ϑ , and
similarly for first-order formulas and corresponding first-order functions. The semantics is defined as follows. The clauses
presented for ϕ ∈ TCTL apply here as well under the provision that each �·�T is replaced by �·�Tϑ . Additionally,

�x�Tϑ ϑ(x) for x ∈ V1 and ��(ϕ1, . . . ,ϕk)�Tϑ ���Tϑ (�ϕ1�Tϑ , . . . , �ϕk�Tϑ)

for propositional formulas, while for first-order formulas we set �F�Tϑ := ϑ(F) if F ∈ V2 and

�recF(x1, . . . , xk).ϕ�Tϑ :=
�{ f : (2S)k → 2S | ∀S1, . . . , Sk : �ϕ�Tϑ[F �→ f ,x1 �→S1,...,xk �→Sk] ⊆ f (S1, . . . , Sk)}

where � denotes the point-wise intersection for functions: (f � g)(S) := f (S) ∩ g(S).

3.3. Examples

We illustrate the use of the recursion operator in TRCTL to form structurally complex properties which cannot be ex-
pressed in TCTL. We refer to [13] for more exposition regarding RecCTL. It is helpful, though, to imagine the recursive
formulas to be unrolled so that new arguments are being built and these to be plugged in for the formal parameters.

Example 3.2. Consider ϕag :=
(
recF(x, y). (x ∧¬y) ∨F(AF≤3x, AF≤2 y)

)
(p, p). Unrolling of the recursion shows that it is

equivalent to
∨
i≥0

AF≤3AF≤3 . . .AF≤3︸ ︷︷ ︸
i times

p ∧¬AF≤2AF≤2 . . .AF≤2︸ ︷︷ ︸
i times

p

stating “there is an i such that on all paths we see i occurrences of p in distances of at most 3 seconds, but not in
distances of at most 2 seconds.” Negating this to ¬ϕag then formalises “whenever it is possible to see p in distances of 3
seconds i times on a path, then it is also possible to do so in distances of 2 seconds on some path.” This is inspired by the
formalisation of assume-guarantee properties in HFL [7].

Example 3.3. Note that the context-free grammar G with productions

F1 → F2 F3 , F2 → out | inF2 F2 , F3 → ε | inF3 | outF3

generates the set of all {in, out}-sequences such that some prefix contains more out’s than in’s. It can be seen as the set of
all finite computations in which a buffer underflow occurs. Now consider the TRCTL formula

ϕbuf := rec 1

⎛
⎝ F1(x) . F2(F3(x))

F2(x) . E(pout U≥1 x)∨ E(pin U≥1 F2(F2(x)))
F3(x) . x∨ E(pin U≥1 F3(x))∨ E(pout U≥1 F3(x))

⎞
⎠ (tt) .

It states that there is a path forming a buffer underflow, provided that consecutive traversal of states satisfying pin or pout

for at least 1 second are taken as input/output actions for the buffer. Then ¬ϕbuf formalises absence of such underflows
under this interpretation.

4. Upper bounds for model checking

We show that the model checking problem for TRCTL is 2-EXPTIME-complete. We begin with the upper bound based on
a standard untiming construction called the region graph construction [17], which turns a TLTS arising from a TA A into a
finite untimed LTS known as the region graph RA . This construction and its derivatives are often used in decidability proofs
for decision problems on TA. Let ϕ ∈ TRCTL and A be a TA, both over the same sets of clocks X and atomic propositions
Prop. In the following we only consider TLTS TA that arise from some TA A = (L, X , �0, ι, δ, λA).
7

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
4.1. The region abstraction

The region abstraction is a mapping of such TLTS into finite LTS. It is based on an equivalence relation �m , for m ∈N, on
clock evaluations defined as (see also [22], Def. 9.42): η�m η′ iff

for all x ∈X : η(x) > m and η′(x) > m

or �η(x)� = �η′(x)� and frac(η(x))= 0⇔ frac(η′(x))= 0

and for all y ∈X with η(y)≤m and η′(y)≤m :
frac(η(x))≤ frac(η(y))⇔ frac(η′(x))≤ frac(η′(y)).

Here, frac(r) denotes the fractional part of a real number. The above definition makes clock evaluations equivalent iff, for
each clock, (i) either both clocks have a value bigger than m, or (ii) they compare in the same way w.r.t. all integers less
than m and, moreover, the passage of time will have equivalent evaluations reach the next integral value first for the same
clock. It is not hard to verify that �m is indeed an equivalence relation for any m. An equivalence class in this equivalence
relation is also called a region.

The equivalence relation is lifted to states of the TLTS TA in the most straightforward way by setting

(�,η)�m (�′, η′) iff �= �′ and η�m η′ .

We write [η]m for the equivalence class of η under �m and likewise for [(�, η)]m which we usually write as (�, [η]m)

since they are indeed the same. When m is clear from the context we may also drop it and simply write [η] or (�, [η]),
respectively.

This is not only an equivalence relation on the state space of TA but in fact even a congruence w.r.t. the labelling and
discrete and delay transitions when m ≥m(A). This is what makes it usable in order to abstract the uncountable state space
of TA into a finite discrete state space. However, note that a delay transition in a TLTS may cross several regions at once, for
example if delaying by one time unit or more. This has to be made explicit in the transition structure of the region graph.
Hence, for each region [η]m , we define a unique successor region via

• suc([η]m) = [η]m if η(x) > m for all x ∈X ,
• suc([η]m) = [η′]m iff there is d ∈ R≥0 such that η+d = η′ , and η+d′ ∈ [η]m ∪ [η′]m for all 0 < d′ < d, and [η]m �= [η′]m .

This simply formalises the notion that suc([η]m) is either [η]m itself in case that all clocks have values bigger than m, or
that suc([η]m) is the first region different from [η]m that one enters if time passes.

Let � be a finite set of clock constraints over the clocks X that the timed automaton A is defined over. These clock
constraints will be made visible as additional propositions in the construction. The region graph of the TA A with additional
clock constraints in �, written R�

A , is the LTS (over propositions Prop ∪ �) obtained as the quotient of TA under the
congruence relation �m (with m =m(A)), together with an additional collapse of delay transitions for different delays into
a single “some-delay” value τ that connects a region with its successor region. The components of the region graph are as
follows.

• The state space is {(�, [η]m) ∈ L × (X → R≥0)/�m | η |= ι(�)}. The initial state is (�0, [η0]m).
• Discrete transitions from one state to another state are carried through, i.e. we have (�, [η]m) → (�′, [η′]m) iff η �m η′

and (�, η) → (�′, η′).
• Delay transitions always lead to the successor region, i.e. (�, [η]m) → (�′, [η′]m) iff � = �′ and [η′]m = suc([η]m).
• The propositional labelling not only assigns atomic propositions to states via p ∈ λ(�, [η]) iff p ∈ λA(�) for any p ∈ Prop,

but also interprets any clock constraint χ ∈� as an atomic proposition in the region graph via χ ∈ λ(�, [η]) iff (�, η) |=
χ .

Proposition 4.1 ([17]). Let A be a TA over n clocks with � locations and of index m, and � be a set of clock constraints over these
clocks. Then R�

A is an (untimed) LTS of size � · 2O(n(logn+logm)) · |�|, i.e. exponential in |A|, and there is a trace s0
d0=⇒ s1

d1=⇒ . . . in
TA iff there is a path [s0] →[s1] → . . . in R�

A .

4.2. Elimination of interval bounds

We assume that there is some clock z �∈ X which is mentioned neither in A nor in ϕ . This clock z will be used to
remove intervals from the temporal operators in ϕ , making the passing of time explicit. The intuitive trick is to replace, e.g.
a subformula EF[c,d]ψ by EF(z ≥ c ∧ z ≤ d ∧ ψ) thus making the moment explicit at which a time point in the interval
[c, d] is reached. This is of course not sound in general, as nothing guarantees that z has the value 0 at the beginning of
the evaluation of this formula. This cannot be enforced in the formula; note that z = 0 ∧ EF(z ≥ c ∧ z ≤ d ∧ ψ) does not
8

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
express the desired property for instance. In fact, the required combinator between z = 0 and the rest of the formula is
an and-then in the sense that z is to be reset and then the formula is supposed to hold, which is not Boolean in nature.
This can be realised by constructions in the model in a slightly non-standard way (see [22], Thm. 9.37). For this we use an
additional proposition r that is not mentioned anywhere in ϕ or A.

First we consider the corresponding amendment of the formula ϕ . Let ϕz result from it by replacing every subformula

• E(ψ1 U J ψ2) by EX(r ∧ EXE((¬r ∧ψz
1) U (¬r ∧ z ∈ J ∧ψz

2))), and
• A(ψ1 U J ψ2) by EX(r ∧ EXA((¬r →ψz

1) U (¬r → z ∈ J ∧ψz
2))).

Note that ϕz contains additional clock constraints in comparison to ϕ , resulting from the elimination of intervals in the
temporal operators.

Let R :=R�
A where � is the set of all clock constraints occurring in ϕz . Let R′ result from it by adding, for each state

(�, [η]) a new state (�, [η])′ which is labelled with the proposition r only, and has transitions

(�, [η])→ (�, [η])′ → (�, [η|{z}]) .

This has introduced new traces in this region graph: at any moment, it is now possible to reset clock z, and then continue
some original trace. Moreover, the resetting of z becomes visible through the traversal of a state that satisfies r. Since z is
not used in A, this is the only way that it is being reset. Finally, during such a reset of clock z, no time elapses.

The following forms the basis of an exponential reduction of TRCTL model checking to RecCTL model checking.

Lemma 4.2. Let A be a TA, ϕ ∈ TRCTL, and R′, ϕz be as defined above.

a) ϕz is a formula of (untimed) RecCTL and is constructible in time O(|ϕ|).
b) R′ is an (untimed) LTS of size at most (singly) exponential in |A| and linear in |ϕ| and also constructible in such time.
c) TA |= ϕ iff R′ |= ϕz .

Proof. Part (a) is easily verified. Part (b) follows directly from Proposition 4.1. It remains to show part (c), which is done by
an induction on the structure of ϕ .

In order to deal with variable interpretations, define, for a variable interpretation ϑ on TA , a corresponding variable
interpretation ϑ on R′ via ϑ(x) = {(l, [η]) | (l, η) ∈ ϑ(X)}. We can then show by induction that

(�,η) ∈ �ψ�TAϑ iff (�, [η]) ∈ �ψz�R′
ϑ

for all subformulas ψ of ϕ . Note that this implies that, similarly to TCTL, the logic TRCTL cannot distinguish states that are
equivalent under the region abstraction.

The interesting cases are that of an until formula, i.e. one of the form E(ψ1 U J ψ2), and that of recursion and application.
The first case follows via a standard construction to integrate path constraints into the region graph. First, observe that r
holds exactly at the extra states of the form (�, [η])′ , i.e. those after which z is reset. Hence,

(�, [η]) ∈ �EX(r ∧ EXE((¬r ∧ψz
1) U (¬r ∧ z ∈ J ∧ψz

2)))�R′
ϑ

iff

(�, [η|{z}]) ∈ �E((¬r ∧ψz
1) U (¬r ∧ z ∈ J ∧ψz

2))�R′
ϑ

for all (timed) variable interpretations ϑ , and the analogue holds for universally quantified U-formulas. By Proposition 4.1

we know that there is a trace s0
d0=⇒ s1

d1=⇒ . . . in TA iff there is a path [s0] →[s1] → . . . in R�
A , and this holds iff there is

such a path in R′ without going through states labelled r. It follows that

(�,η) ∈ �E(ψ1 U J ψ2)�TAϑ iff (�, [η]) ∈ �EX(r ∧ EXE((¬r ∧ψz
1) U (¬r ∧ z ∈ J ∧ψ2)))�R′

ϑ .

The second case is that of recursion, i.e. that of a subformula of the form �(ψ1, . . . , ψk) with � = recF(x1, . . . , xk). ψ ′ .
Recall that the semantics of ψ is defined as

�{ f : (2S)k → 2S | ∀S1, . . . , Sk : �ψ ′�TAϑ[F �→ f ,x1 �→S1,...,xk �→Sk] ⊆ f (S1, . . . , Sk)}
using the Knaster-Tarski Theorem. Here we make use of the Kleene Fixpoint Theorem which states that this least fixpoint
can equivalently be obtained as the limit of a sequence of functions that is defined via

f0 = (S1, . . . , Sk) �→ ∅
f i+1 = (S1, . . . , Sk) �→ �ψ ′�TA

ϑ[F �→ f i ,x1 �→S1,...,xk �→Sk].
9

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
This characterisation also holds for RecCTL by replacing TA by R′ and ψ ′ by ψ ′z which yields a sequence of functions
defined as

f ′0 = (S1, . . . , Sk) �→ ∅
f ′i+1 = (S1, . . . , Sk) �→ �ψ ′z�R′

ϑ[F �→ f i ,x1 �→S1,...,xk �→Sk]
which can easily be seen to stabilise after finitely many steps since R′ is finite. Using the induction hypothesis, we obtain
that

(�,η) ∈ f i(�ψ1�TAϑ , . . . , �ψk�TAϑ) iff (�, [η]) ∈ f ′i (�ψz
1 �R′

ϑ , . . . , �ψz
k �R′

ϑ)

for all i ∈N and for all variable interpretations ϑ . Since, for some i, we have that f ′i = f ′i+1, the desired result follows. �
It follows that we obtain that fixpoint iteration in the sense of the Kleene’s Fixpoint Theorem also stabilises for TRCTL

after finitely many steps, even though the LTS generated by a TA is not finite.

4.3. The reduction

Theorem 4.3. The model checking problem for TRCTL over TA is decidable in 2-EXPTIME.

Proof. Let a TA A and a TRCTL formula ϕ be given. To check whether TA |= ϕ holds, first construct R′ and ϕz as described
above. According to Lemma 4.2, this can be done in exponential time, and it suffices to check whether or not R′ |= ϕz

holds. According to Proposition 2.2, the latter can be solved in exponential time. Altogether, this gives a doubly exponential
upper bound on the time complexity of model checking TRCTL over TA. �
5. Lower bounds for model checking

We now proceed with the lower bound proof. Towards this, we characterise doubly-exponential time in Proposition 5.1.
We then present a generic set of minimal operations on (representations of) large numbers that need to be available to
extract a hardness proof based on Proposition 5.1. We then show that this set of minimal operations can be realised in a
number of fragments of TRCTL, i.e. restrictions of TRCTL to a minimal set of operators such as TRCTL[EF, =]. Moreover, we
can carry out these hardness proofs over a fixed TA with one clock only, which yields hardness already for the expression
complexity of TRCTL and which is optimal in the usage of clocks (note that the 0-clock setting is RecCTL, whose model
checking problem is known to be in EXPTIME).

5.1. Doubly exponential time complexity

The lower bound for the complexity model checking problem of TRCTL is established, as usual, by a polynomial reduction
from a problem that is already known to be 2-EXPTIME-hard.

5.1.1. Witnesses for doubly exponential time complexity
The generic candidate of a 2-EXPTIME-hard problem is the word problem for deterministic doubly exponentially time-

bounded Turing machines. Such reductions to decision problems on temporal logics typically encode witnesses like Turing
machine runs as temporal structures like traces for linear-time logics, or trees for branching-time logics. This creates a
slight mismatch here: the standard witness for acceptance of a word by a deterministic Turing machine is an inherently
linear structure. Properties expressed in CTL-like branching-time logics generally look for branching structures in models,
though. However, luckily there is a characterisation of deterministic time-bounded complexity classes via alternating Turing
machines. In particular, the class 2-EXPTIME coincides with the class of problems solved by an alternating exponentially
space-bounded Turing machine [20].

This shows that besides the traditional and straightforward characterisation of problems solvable in 2-EXPTIME through
the existence of linear runs (of particular nature because of the underlying determinism), there is also a characterisation via
the existence of tree-like structures in principle. While we do not make use of the word problem for alternating exponential
time-bounded Turing machines explicitly, we can use such an alternating, tree-like characterisation using exponential mem-
ory. This characterisation is the square table of doubly-exponential size introduced in [20] that witnesses an accepting run
of a 2-EXPTIME machine which, when explored locally, can fit into alternating exponential space. This reformulation allows
us to focus on the source of this high complexity coming from the power of the operators in the logic, separating this from
the issues on real-time in the underlying model, which are used to generated storage of exponential size.

It is standard to reduce the word problem for Turing machines to the empty-word problem, asking whether a given
Turing machine accepts the empty word (within given resource bounds), as it is easy to construct, from a machine M
and a word w , a machine Mw which first replaces its input by w and then proceeds with the computation of M on it.
Moreover, it is equally standard to assume that acceptance at the end of a computation is only signalled after the head has
10

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
been moved to the leftmost position on it, to remain there until a possible time bound has run out. This standardisation of
a final configuration makes a reduction technically easier.

Finally, since we consider computational effort modulo polynomials only, we can assume that the time bound for a
deterministic machine under consideration is not only some 22p(n)

for a polynomial p(n) but just 22n
. In fact, for technical

reasons we assume it to be 22n − 2, which is of course still possible within the limits of polynomial reductions.

5.1.2. Deterministic Turing machines
A Deterministic Turing Machine (DTM) is a tuple M = (Q , �, �, q0, δ, qacc), where Q is a finite set of states containing

the initial and accepting states q0 and qacc , � is the input alphabet, � ⊇� is the tape alphabet containing a special symbol
� ∈ � \ �. We assume the existence of a special boundary symbol # that is not contained in �. Finally, δ ⊆ Q × � →
Q × � × {L, R, N} is the transition function.

Let �̂ := � ∪ (Q ×�) ∪{#}. Let f :N →N. The unique f (n)-time-bounded computation of M on the empty input can be
represented by a square, containing f (n) rows, representing time, each of which contains f (n) symbols from �̂, representing
a configuration, or space. Each row is of the form #w# for some w ∈ (�̂ \ {#}) f (n)−2 containing exactly one symbol from
Q × �; the bottom row is #(q0, �)� f (n)−3#, and the top row is of the form #(qacc, �)w# for some w ∈ �̂ f (n)−3. Thus, the
square of dimension f (n) × f (n) represents, from bottom to top, the successive configurations of the DTM, padded by the
boundary symbols on both sides.

M’s transition function δ gives rise to a relation δ̂ ⊆ �̂ such that (y1, y2, y3, x) ∈ δ̂ iff whenever y1, y2, y3 are consecu-
tive symbols in row t at positions s − 1, s, s + 1, then x is the symbol at position s in row t + 1.

5.1.3. Certificates for doubly exponential time complexity
An f (n)-certificate (for M and given n) is a set of mutually recursive predicates Certa : [f (n)] × [f (n)] →{
, ⊥}, one for

each a ∈ �̂ with the following properties. Intuitively, Certa(t, s) holds true iff the s-th symbol in the t-th configuration of
the unique computation of M on the empty input is a. Formally, this certificate must satisfy the following properties.

• Cert(qacc,�)(f (n) − 1, 0) holds true.

• For all t ∈ {1, . . . , f (n) − 1}, s ∈ {1, . . . , f (n) − 2} and a ∈ �̂ \ {#} with Certa(t, s) there are b1, b2, b3 ∈ �̂ with
(b1, b2, b3, a) ∈ δ̂ such that

Certb1(t − 1, s− 1)∧ Certb2(t − 1, s)∧ Certb3(t − 1, s+ 1)

holds true.
• For all t ∈ {0, . . . , f (n) − 1}, s ∈ {0, f (n) − 1}, we have Certa(t, s) iff a = #.
• Certa(0, 1) iff a = (q0, �), and for all s = 2, . . . , f (n) − 2: Certa(0, s) iff a =�.

Note that the last two clauses fix the values of a in Certa(t, s) uniquely for the left, lower und right edge of the square
defined by the coordinates t, s, and determinism of the TM A then fixes the values at the inner coordinates uniquely as
well.

As mentioned before, the above characterisation of acceptance in deterministic time-bounded Turing machines is taken
from the construction of their simulation by alternating space-bounded Turing machines in [20]. It can therefore be used to
establish a generic 2-EXPTIME-hardness result.

Proposition 5.1. It is 2-EXPTIME-hard to decide, given a DTM M and an n ∈ N encoded unarily, whether or not there is a 22n
-

certificate for M and n in the sense above.

Proof. This can be seen by a polynomial-time reduction from the word problem for any DTM M′ deciding a 2-EXPTIME-
complete problem. Given M′ and an input w , clearly M′

w , which first replaces the input by w and then behaves like
M, can be computed in polynomial time. This replaces the word problem for M′ by the empty-word problem for M′

w .
M′

w accepts the empty word, and, hence, M accepts w , iff there is a 22n
-certificate for M′

w : Clearly, an accepting run
of M on the empty word gives rise to a 22n

-certificate by simply writing down the configurations of the run, delimited
by #, below each other. On the other hand, a 22n

-certificate for M′ is a proof that an accepting run of M′ on the empty
word exists, as the values of Certa(t, s) for fixed t spell out the t-th configuration of the run. It is easily verified that if the
values of the Certa(t, s) give rise to some configuration, then the values of the Certa(t + 1, s) spell out the unique successor
configuration. �

The prerequisite of n being given in unary encoding rather than the perhaps more expected binary encoding is not a
trick to disguise an exponential blow-up as a polynomial one. Note that, in the reduction sketched above from the word
problem with input consisting of a DTM M and a word w to the empty-word problem for a simulating DTM Mw , the
time needed for Mw ’s computation on the empty word is largely determined by the time needed for M’s computation on
w on length |w|. The parameter n given in the formulation of the empty-word problem above can be seen as the remains
11

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
of the input word w which has been factored into the machine in order to make the reduction technically simpler. But
such a parameter is still needed in order to facilitate the time bound in a sensible way. So n can be seen as the remains
of w in terms of its length, and a unary encoding of n guarantees that an f (n)-time bound in the empty-word problem
corresponds to an f (n)-time bound in the original word problem. If n was encoded in binary, we would have to consider
triply exponential time bounds in the empty-word problem and would additionally have to separate the inputs M and w
in the word problem. So unary encoding is the natural choice here.

5.2. A generic template for a doubly exponential lower time-bound

A doubly exponential lower bound for model checking TRCTL can be obtained by a polynomial reduction from the
problem stated in Proposition 5.1, namely deciding the existence of a 22n

-certificate (for the empty-word problem) for a
given DTM. To establish this we would need to construct, given such a DTM M and an n ∈ N, a TA AM,n and a TRCTL
formula ϕM,n each of polynomial size in |M| and n, such that AM,n |= ϕM,n iff there is a 22n

-certificate for M and n.
However, we aim to maximise effects in the sense of establishing lower bounds for some small fragments. In order to do
so, we will provide a generic template for 2-EXPTIME-hardness which, as the following will show, is mainly due to the
higher-order nature of TRCTL whereas the real-time nature allows us to form the basis for this by providing numbers of
exponential size.

Definition 5.2. Let A be a class of timed automata, let k ≥ 1, and let ops be a set of (temporal or interval) operators like EF,
=, ≤ etc. An (A, k, ops)-encoding of large numbers is a sequence Enc= (An, 〈·〉n, zeron, maxn, incn, decn, eq0

n)n≥0 such that, for
all n ≥ 0, the following hold:

• An is a timed automaton from A of polynomial size in n over k clocks,
• 〈·〉n is a function that assigns a set of states 〈m〉n in the timed transition system TAn to any m ∈ [22n],
• zeron and maxn are closed formulas of TRCTLk[ops] satisfying

�zeron�An = 〈0〉n , �maxn�An = 〈22n − 1〉n
• incn(x), decn(x) are formulas of TRCTLk[ops], each with a single propositional variable x, satisfying for all m ∈ [22n]:

�incn(x)�An[x�→〈m〉n] = 〈m+ 1 mod 22n 〉n ,

�decn(x)�An[x�→〈m〉n] = 〈m− 1 mod 22n 〉n ,

• eq0
n(x) is a formula of TRCTLk[ops], with a single propositional variable x, satisfying for all m ∈ [22n]:

s0 ∈ �eq0
n(x)�An[x�→〈m〉n] iff m= 0

where s0 is the initial state of TAn .

Additionally, all these formulas need to be of polynomial size in n and be defined over the same k clocks as the An .

In other words, a (A, k, ops)-encoding of large numbers provides a way to represent numbers up to doubly exponential
size in n for any given n ≥ 0, defining 0 and 22n − 1 and to increase, decrease and test them for being equal to 0 using
formulas of TRCTLk[ops].

The condition on eq0
n might seem counter-intuitive at first, given its restriction to the starting state of TAn instead of

a constraint applicable at all states in TAn . However, as we will see shortly, this is both sufficient and necessary: it is
sufficient since the generic hardness proof mostly “happens at” the initial state in the sense that the encoding happens in
the arguments of the corresponding formula, which are sets of pairs of a location and a clock evaluation. Hence, the formula
does not manipulate time in the classic sense of using EU etc., but rather it manipulates sets of the aforementioned form.
Restricting the condition to the initial state is necessary as the manipulation of such arguments happens at an abstract level
where sets or states are transformed and, hence, referring to the actual clock value is not possible.

We will often drop the index ·n in the components of such an encoding and simply write 〈m〉 instead of 〈m〉n , inc instead
of incn and so on when n can be derived from the context.

Given an encoding of large numbers we can define further formulas as abbreviations, namely

eq1
n(x) := eq0

n(decn(x)) gt0
n(x) := ¬eq0

n(x) ltmax
n (x) := ¬eq0

n(incn(x))

eqmax
n (x) := eq0

n(incn(x)) gt1
n(x) := gt0

n(x)∧¬eq1
n(x)

The following is an immediate consequence of the properties demanded in Definition 5.2 and the semantics of the
Boolean operators.
12

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
Lemma 5.3. The following hold for any given n in any given encoding Enc:

s0 ∈ �eq1
n(x)�An[x�→〈m〉n] iff m= 1,

s0 ∈ �eqmax
n (x)�An[x�→〈m〉n] iff m= 22n − 1,

s0 ∈ �gt0
n(x)�An[x�→〈m〉n] iff m > 0,

s0 ∈ �gt1
n(x)�An[x�→〈m〉n] iff m > 1,

s0 ∈ �ltmax
n (x)�An[x�→〈m〉n] iff m < 22n − 1.

The existence of such encodings suffices to prove 2-EXPTIME-hardness of model checking for corresponding TRCTL-
fragments over corresponding classes of timed automata.

Theorem 5.4. If there is an (A, k, ops)-encoding of large numbers Enc, then the model checking problem for TRCTLk[ops] over the class
A of timed automata is 2-EXPTIME-hard.

Proof. Let Enc= (An, 〈·〉n, zeron, maxn, incn, decn, eq0
n)n≥0 be such an encoding, and suppose that a DTM M = (Q , �, �, q0,

δ, qacc) and some n ∈ N are given. We need to construct a timed automaton AM,n and a TRCTLk[ops]-formula ϕM,n such
that there is a 22n

-certificate for M and n iff T |= ϕM,n for the timed transition system T that arises from the timed
automaton AM,n . We simply let AM,n :=An that is given by Enc.

For the construction of ϕM,n let �̂= {a1, . . . , am} and δ̂ be as defined in Sect. 5.1, resulting from Q , �, δ. Then we define
ϕM,n as

rec (qacc,�)

⎛
⎜⎜⎜⎜⎝

...

Cai (t, s) . chkai (t, s) ∨ ∨
(b1,b2,b3,ai)∈δ̂

nxtb1,b2,b3(t, s)

...

⎞
⎟⎟⎟⎟⎠ (max, zero)

where

chka(t, s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eq0(s)∨ eqmax
n (s) , if a= #

eq0(t)∧ eq1
n(s) , if a= (q0,�)

gt1(s)∧ ltmax
n (s) , if a=�

ff , otherwise

nxtb1,b2,b3(t, s) := gt0(t)∧ gt0(s)∧ ltmax(s) ∧
Cb1(dec(t),dec(s))∧ Cb2(dec(t), s)∧ Cb3(dec(t), inc(s)).

Clearly, An only uses k clocks by definition and is of polynomial size in |M| and n. Moreover, ϕM,n does not use more
clocks than the k given ones either (which may occur in the subformulas incn etc.) or any other temporal or inter-
val operators than those defined in ops already, and it is of such polynomial size, too. Hence, this construction yields a
polynomially-sized instance of the model checking problem for the TRCTLk[ops]-fragment.

We now claim that TAn |= ϕM,n iff there is a 22n
-certificate for M. This follows from the fact that the definition of

the Cai mirrors the pattern of the certificate Cert described in Sec. 5.1, and correctness of the arithmetic follows from
Definition 5.2 and Lemma 5.3. Note that ϕM,n is well-defined w.r.t. monotonocity of the Cai since all of them occur only
positively in nxtb1,b2,b3(t, s). The variables s and t occur both positively and negatively but they are not recursion variables,
so this is unproblematic. �

Here we see why the conditions on eq0
n , eq1

n , etc. were sufficient: The functions incn and decn ,which manipulate sets,
always appear in an operand position, while eq0

n etc. are always used after no time has actually elapsed and no transitions
have happened, whence it is sufficient that they be well-defined on the initial state of the TLTS in question.

Note that the input to a model checking problem is a pair consisting of a system description and a formalisation of a
correctness property. The complexity is measured in the size of the pair, but the two parts play very different roles under
different view points. There are two established metrics for measuring the model checking complexity of a logic in each
parameter separately, the data complexity and the expression complexity. The data complexity is the complexity of model
checking for any fixed formula, measured in the size of the system description. It is an important measure in program
specification where correctness properties are often small and vary little while systems descriptions are much larger and
vary a lot more. The expression complexity is the complexity of model checking for any fixed transition system. It is an
important measure of the expressive power of the logic. The result above in Theorem 5.4 can be refined show that the
model checking problem for TRCTLk[ops] is 2-EXPTIME-hard already in its expression complexity for many instances of ops.
13

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
Corollary 5.5. Suppose there is a (A, k, ops)-encoding of large numbers Enc defining a constant sequence of timed automata (An)n≥0 ,
i.e. An =Am for all n, m. Then the expression complexity of TRCTLk[ops] over the class A of timed automata is already 2-EXPTIME-
hard.

Proof. This follows immediately from the observation that, in this case, the construction in the proof of Theorem 5.4 yields
a fixed timed automaton independent of the DTM M and the parameter n. �
Remark 5.6. In the following, we will establish hardness in the sense of the Corollary 5.5 for various fragments of TRCTL1,
i.e. for formulas and TA using only one clock. On the other hand, we have chosen to introduce the definition of (A, k, ops)-
encodings of large numbers, and Theorem 5.4 in a form that is parameterised in the number of clocks. This was done to
keep the result as general as possible, and to leave open further work that might produce hardness results using even less
expressive fragments, which then might need to revert to more than one clock. Such fragments exist, for example, when
restricting expressive power below that of TCTL, see e.g. [19].

5.3. Hardness proofs for several fragments

Our goal is now to show 2-EXPTIME-hardness for several fragments of TRCTL by showing that they satisfy the re-
quirements of the generic hardness proof given in Theorem 5.4, and even those for the expression complexity given in
Corollary 5.5. As a minimum, these fragments will contain the temporal operator EF and one of the one of the three sets
of clock constraints {=}, {<, >}, {≤, ≥} or {[d, d′]} for any fixed d ≤ d′ as permitted clock constraints for EF. Except in the
last case, propositional clock constraints are also restricted to use only = or <, > or ≤, ≥, while in the last case, we need
propositional clock constraints of arbitrary forms. The first set is contained in the last one for d = d′ = 1, but we will see
that it makes sense to prove 2-EXPTIME-hardness for both of them separately since the first set is more accessible and has
stronger restrictions on clock constraints.

Recall that Theorem 5.4 requires us to provide a (A, k, ops)-encoding of large numbers for each of the four sets men-
tioned above. Hence, we have to provide a sequence (An, 〈·〉n, zeron, maxn, incn, decn, eq0

n)n≥0 that satisfies the requirements
of the theorem, namely that 〈·〉n assigns a unique set of states in TAn to each number in [22n], which can then be queried
or manipulated using zeron, maxn, incn and decn . It is immediate that this requires TAn to have at least exponentially many
states in n, yet An is required to have size polynomial in n. Hence, there is no hope to achieve this using simply exponen-
tially many different locations. This is also not surprising, since not using at least one clock would make the whole problem
collapse to the RecCTL model checking problem, which is just EXPTIME-complete. Somewhat surprisingly, we can actually
make do with a one-state timed automaton that contains no propositions, no transitions and has only one clock z. Note
that this immediately satisfies the requirements of Corollary 5.5 provided that we can satisfy those of Theorem 5.4.

Given that we have resorted to a one-state automaton, the whole mechanics of encoding large numbers will have to
happen through clock values and clock constraints. Hence, from now on we will identify clock values and states, since the
location component in a state is always the same. Since we want to produce polynomially-sized formulas, simply using
clock constraints directly to implement the formulas required by Theorem 5.4 will not work even for a binary encoding of
numbers. However, we can, in fact, encode and manipulate numbers, or rather their binary representations, using constantly
many formulas. Recall how binary incrementation and decrementation works: A bit is set in the binary representation of
m + 1 if either

• it is set in the representation of m, and a bit of lesser significance is not set there, or
• it is not set in the representation of m, but all bits of lesser significance are set there.

Decrementation uses a similar pattern. It follows that, in order to decide whether a bit is set in the binary representation of
the increment or decrementat of a number, it suffices to know the values of all bits of lesser significance in its representa-
tion, as well as the value of the bit itself. In fact, it is enough to know whether some bit of lower significance is set or not
set, and the value of the bit itself. Theorem 5.4 requires us to assign a specific set of states in the system generated by our
one-state automaton to each number in [22n], i.e. a set of clock values. Hence, it is enough to find 2n many different clock
values that play the roles of the bits in the encoding of large numbers. A bit is set in the set 〈m〉n iff the respective clock
value is contained in this set.

There are two difficulties with this approach: The operators EF and AG, i.e. the passage of time, only allow controlled
increases of z. Hence, we decide that bits of lesser significance shall be encoded by larger clock values, while smaller clock
values encode bits of larger significance. Moreover, the operators EF and AG, unless properly controlled via clock constraints,
always talk about the uncountably many different clock values that are reachable via the passage of time, while we only
have finitely many bits that need to be represented. Hence, we have to be quite careful when designing our formulas, incn ,
etc. The general idea is to make sure that sets are manipulated such that the set of all clock values can be partitioned into
finitely many intervals that are easy to control.

In the following, let A be the TA ({�}, {z}, �, ι, ∅, λ) with ι(�) =
 and λ(�) = ∅, i.e. the one-state automaton with no
propositions, transitions or clock constraints. Let S = {(�, r) | r ≥ 0} be its state space.
14

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
The case of ops= {EF, ≤, ≥} We begin with the case where the only available clock constraints, both as atomic propositions
and also when used as the subscript of EF, are of the form z ≤ k and z ≥ k for arbitrary k. Note that clock constraints of
the form z = k, z > k and z < k are also available via the obvious boolean combinations, but only as propositions, not as
interval bounds.

Our bits will be half-open intervals of clock values of the form [k, k + 1) and we will make sure that we only ever have
to consider sets that either contain all clock values from such an interval, or none. Given such a set x ⊆ S , it encodes the
value m =∑

0≤k≤2n−1 bk · 2k where bk = 1 if (�, 2n− 1 −k) ∈ x and bk = 0 otherwise. Note that the non-integral clock values
do not appear in this definition, and that the most significant bit is that where the clock has value 0. In other words, (�, k)

is to be included in the representation of m iff the k + 1st most significant bit is set in the standard binary representation
of m, i.e. iff � m

22n−1−k � ≡ 1 mod 2.

Lemma 5.7. The sequence (An, 〈·〉n, zeron, maxn, incn, decn, eq0
n)n defined via

• An =A,
• 〈m〉n :=⋃

0≤k≤2n−1{(�, r) | � m
22n−1−k � ≡ 1 mod 2 and k ≤ r < k + 1},

• zeron := ff and maxn := z < 2n − 1,
• incn(x) :=maxn ∧

(
(x ∧ EF≥1(¬x ∧maxn) ∨ (¬x ∧ AG≥1(maxn → x))

)
,

• decn(x) :=maxn ∧
(
(x ∧ EF≥1(x ∧maxn) ∨ (¬x ∧ AG≥1(maxn →¬x)

)
,

• eq0
n(x) := ¬x ∧ AG≥1¬x

is an ({A}, 1, {EF, ≤, ≥})-encoding of large numbers.

Proof. Obviously, the formulas above satisfy all the syntactic requirements for encodings of large numbers. In particular,
since they use only constantly many clock constraints for numbers of at most exponential size, the size of the formulas is
indeed polynomial in n if those numbers are given in binary. Hence, we focus on the semantic aspects of Definition 5.2.

Recall that the definition of 〈·〉n partitions the interval [0, 2n − 1) of clock values into 2n many half-open intervals of
the form [k, k + 1), and that these are the bits we use in the encoding, with [0, 1) encoding the most significant bit and
[2n − 2, 2n − 1) encoding the least significant one. The crucial part here is that, for each interval [k, k + 1), the encoding
of a large number either contains all states (�, r) with r ∈ [k, k + 1) or none of them. Clearly this is the case for zeron

and maxn , as these define either the empty set or the set {(�, r) | 0 ≤ r < 2n − 1}. The encoding 〈m〉n then formalises the
correspondence between bits in the binary representation of m and intervals whose clock values are contained in 〈m〉n:
For all 0 ≤ k < 2n − 1, the kth bit, starting from the least significant one, is set in the binary representation of m iff 〈m〉n
contains all states of the form (�, r) with r ∈ [2n − 2 − k, 2n − 1 − k).

The requirements of Definition 5.2 on eq0
n , zeron and maxn are straightforward. Hence, it remains to show that incn and

decn both maintain the partition into intervals of the form [k, k + 1) and that they indeed encode binary incrementation
and decrementation, respectively. Towards the former, note that if the semantics of x is a union of sets of the form {(�, r) |
k ≤ r < k + 1}, then so is the semantics of EF≥1x and that of derived formulas: If k is the biggest number such that the set
{(�, r) | k ≤ r < k + 1} is in the semantics of x, then (�, k − ε) is in the semantics of EF≥1x for all ε ≥ 0, but not (�, k) itself.
The claims w.r.t. binary incrementation and decrementation are then shown via straightforward verification. �
The case of ops= {EF, <, >} This fragment is quite similar to the previous one.

Lemma 5.8. The sequence (An, 〈·〉n, zeron, maxn, incn, decn, eq0
n)n defined via

• An =A,
• 〈m〉n :=⋃

0≤k≤2n−1{(�, r) | � m
22n−1−k � ≡ 1 mod 2 and k ≤ r < k + 1},

• zeron := ff and maxn := z < 2n − 1,
• incn(x) :=maxn ∧

(
(x ∧ EF>1(¬x ∧maxn ∨ (¬x ∧ AG>1(maxn → x))

)
,

• decn(x) :=maxn ∧
(
(x ∧ EF>1(x ∧maxn) ∨ (¬x ∧ AG>1(¬maxn →¬x)

)
,

• eq0
n(x) := ¬x ∧ AG>1¬x

is an ({A}, 1, {EF, <, >})-encoding of large numbers.

Proof. The proof is very similar to that of Lemma 5.7. The syntactic difference is that the definition of maxn changes, and
that in the clock constraints at EF and AG the condition ≥ 1 has been replaced by > 1. However, note that due to the
way that half-open intervals work, there is no semantic difference here: If the semantics of x is a (union of) half-open
interval(s) of the form {(�, r) | k ≤ r < k + 1} and (�, r′) is in the semantics of EF≥1x, then there is some r′ and i ≥ 1 such
that r′ + i ∈ [k, k + 1). In particular, r′ + i < k + 1, so there is ε > 0 such that r′ + i + ε < k + 1, too. �
15

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
The case of ops= {EF, =} If we restrict ourselves to equalities in the clock constraints, the constructions from the previous
paragraph do not transfer without some adjustments. In particular, is not clear how a constraint of the form z < 2n − 1 can
be replaced, and how the half-open intervals from the previous paragraph can be addressed, given that time can only flow
in integral units.

Towards the former, let EF∗(ϕ) be a macro defined as recF φ ∨ EF=1F and AG∗(ϕ) as ¬EF∗(¬ϕ). Clearly, EF∗z =
2n − 2 entails z < 2n − 1 on integral clock values. Note that the initial state of any timed LTS has clock value 0 for all
clocks, and if time is only allowed to flow in integral units, all relevant clock values towards the semantics of a formula will
only depend on states with integral clock values. Hence, instead of half-open intervals of the form [k, k + 1), we use point
intervals of the form [k, k].

Lemma 5.9. The sequence (An, 〈·〉n, zeron, maxn, incn, decn, eq0
n)n defined via

• An =A,
• 〈m〉n :=⋃

0≤k≤2n−1{(�, k) | � m
22n−1−k � ≡ 1 mod 2},

• zeron := ff and maxn := EF∗z = 2n − 2,
• incn(x) :=maxn ∧

(
(x ∧ EF∗(¬x ∧maxn) ∨ (¬x ∧ AG∗(maxn → x)

)
,

• decn(x) :=maxn ∧
(
(x ∧ EF∗(x ∧maxn) ∨ (¬x ∧ AG∗(maxn →¬x)

)
,

• eq0
n(x) := AG∗¬x

is an ({A}, 1, {EF, =})-encoding of large numbers.

Proof. By verification of the claims on EF∗ and AG∗ . �
The case of ops = {EF, [d, d′]∗} Finally, we study the case where the available clock constraints contain at least one finite
interval of the form [d, d′] with d ≤ d′ natural numbers. The interesting part here are the clock constraints used in conjunc-
tion with the temporal operators. The previous proof pattern still works, even if temporal operators are restricted to ones
of the form of e.g. EF[3,5] , i.e. if one can only make statements on the flow of time in increments somewhere between at
least 3 and at most 5 units. The crucial observation is that only the lower bound of the interval matters; it mostly suffices
to adapt to such a lower bound by stretching the area on which encodings happen by this factor. Hence, our bits will be
half-open intervals of the form [d · k, d · (k + 1)).

However, as a divergence from the previous cases, we have to use a clock constraint of a different form than z ∈ [d, d′] in
order to define maxn . Hence, for propositional constraints we allow ourselves to use arbitrary clock constraints, but interval
bounds on temporal quantifiers are restricted to one fixed interval [d, d′]. By writing [d, d′]∗ instead of [d, d′], we signal that
the restriction to [d, d′] is valid only for clock constraints at temporal operators, while propositional clock constraints of
other forms are also used.

Lemma 5.10. Let 1 ≤ d ≤ d′ be integers. Let EF∗ϕ := recF ϕ ∨ EF[d,d′]F and AG∗ϕ := ¬EF∗¬ϕ .
The sequence (An, 〈·〉n, zeron, maxn, incn, decn, eq0

n)n defined via

• An =A,
• 〈m〉n :=⋃

0≤k≤2n−1{(�, r) | � m
22n−1−k � ≡ 1 mod 2 and d · k ≤ r < d · (k + 1)},

• zeron := ff and maxn := z ∈ [0, d · 2n − 2],
• incn(x) :=maxn ∧

(
(x ∧ EF∗(¬x ∧maxn)) ∨ (¬x ∧ AG∗(maxn → x))

)
,

• decn(x) :=maxn ∧
(
(x ∧ EF∗(x ∧maxn) ∨ (¬x ∧ AG∗(maxn →¬x)

)
,

• eq0
n(x) := ¬x ∧ AG∗¬x

is an ({A}, 1, {EF, [d, d′]∗})-encoding of large numbers.

Proof. By verification. �
Remark 5.11. The above result also holds if the interval bounds are equal, i.e. for point intervals, in which case it collapses
to the previous result. It also holds for open and half-open intervals. The extension to open or half-open interval bounds
follows a similar pattern as the extension from ≤ and ≥ to < and > does.

Putting it all together From the above, and Theorem 4.3, we obtain that the TRCTL model checking problem is 2-EXPTIME-
hard already in very restricted settings.

Theorem 5.12. The TRCTL model checking-problem is 2-EXPTIME-hard already in expression complexity for all fragments that contain
at least the operators EF and clock constraints of the form ≥, >, = already over TA with one clock only. Moreover, let 1 ≤ d ≤ d′ be
16

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
natural numbers. Then, for fragments that contain at least EF[d,d′] and arbitrary propositional clock constraints, the hardness result
also holds, and similarly for open and half-open intervals.

This results is to be contrasted with similar results for TCTL where there are clear complexity differences between the
settings for one clock, two clocks, or more than two clocks, and where also the kind of clock constraints available matters
[19]. The explanation for this is that the power added through recursion is so big that it completely overshadows all the
subtle differences that arise in the non-recursive setting, since e.g. iterated reachability by multiples of a time unit (cf. EF∗
above) can be expressed.

Remark 5.13. To our knowledge, the hardness in expression complexity is lost if formulas of the form z ≤ 2n − 1 etc. are
not available. However, the general hardness results, i.e. those for the combined complexity, persist even in the one-clock
setting; one simply has to modify the underlying TA to be parameterised in n to enforce the necessary conditions via
location constraints. Since having these formulas present adds no complexity to the model checking problem, keeping them
in the logic appears natural.

6. Conclusion & further work

We have introduced Timed Recursive Temporal Logic (TRCTL) and shown that its model checking problem is 2-EXPTIME-
complete, already over TLTS generated by TA with one clock only and with very restricted temporal operators and clock
constraints available. It should be noted that these lower bounds contrast a much richer complexity landscape present in
TCTL w.r.t. the number of clocks or the clock constraints available [19].

TRCTL’s satisfiability problem is undecidable; this is inherited from Recursive Temporal Logic [13]. TRCTL is strictly
stronger in expressive power than its two constituent parts RecCTL and TCTL since either can express properties that
the other cannot, namely higher-order properties [13] or real-time properties. A fine-grained comparison of the expres-
sive power TRCTL against that of TCTL is still to be done, i.e. it is open exactly which properties can be expressed in TRCTL,
but not in TCTL.

Further research concerns two angles: practicability and extensions in expressive power. With respect to the former, the
2-EXPTIME-complete model checking problem might seem prohibitive, yet higher-order algorithms are open to optimisa-
tions that can yield surprisingly competitive algorithms [27,28]. The latter angle includes straightforward extensions such
as propositions that test for the value of some clock that are unlikely to require new methods, but also more intricate ones
like diagonal constraints etc. which, of course, are also likely to lead to undecidability [29].

CRediT authorship contribution statement

Florian Bruse: Writing – review & editing, Writing – original draft. Martin Lange: Writing – review & editing, Writing –
original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] A. Pnueli, The temporal logic of programs, in: Proc. 18th Symp. on Foundations of Computer Science, FOCS’77, IEEE, Providence, RI, USA, 1977,
pp. 46–57, https://doi .org /10 .1109 /SFCS .1977.32.

[2] E.A. Emerson, E.M. Clarke, Using branching time temporal logic to synthesize synchronization skeletons, Sci. Comput. Program. 2 (3) (1982) 241–266,
https://doi .org /10 .1016 /0167 -6423(83)90017 -5.

[3] E.A. Emerson, J.Y. Halpern, “Sometimes” and “not never” revisited: on branching versus linear time temporal logic, J. ACM 33 (1) (1986) 151–178.
[4] E.A. Emerson, C.S. Jutla, The complexity of tree automata and logics of programs, SIAM J. Comput. 29 (1) (2000) 132–158, https://doi .org /10 .1137 /

s0097539793304741.
[5] M.Y. Vardi, Why is modal logic so robustly decidable?, in: Proc. DIMACS Workshop on Descriptive Complexity and Finite Models, in: DIMACS Series in

Discr. Math. and Theor. Comp. Sci., vol. 31, DIMACS/AMS, 1996, pp. 149–183.
[6] A.P. Sistla, E.M. Clarke, N. Francez, A.R. Meyer, Can message buffers be axiomatized in linear temporal logic?, Inf. Control 63 (1/2) (1984) 88–112.
[7] M. Viswanathan, R. Viswanathan, A higher order modal fixed point logic, in: CONCUR’04, in: LNCS, vol. 3170, Springer, 2004, pp. 512–528, https://

doi .org /10 .1007 /978 -3 -540 -28644 -8 _33.
[8] D. Harel, A. Pnueli, J. Stavi, Propositional dynamic logic of nonregular programs, J. Comput. Syst. Sci. 26 (2) (1983) 222–243, https://doi .org /10 .1016 /

0022 -0000(83)90014 -4.
[9] M. Müller-Olm, A modal fixpoint logic with chop, in: Proc. 16th Symp. on Theoretical Aspects of Computer Science, STACS’99, in: LNCS, vol. 1563,

Springer, 1999, pp. 510–520, https://doi .org /10 .1007 /3 -540 -49116 -3 _48.
17

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/0167-6423(83)90017-5
http://refhub.elsevier.com/S0890-5401(24)00033-6/bib7B2781F4F82BEC876C2DC277C5728DD3s1
https://doi.org/10.1137/s0097539793304741
https://doi.org/10.1137/s0097539793304741
http://refhub.elsevier.com/S0890-5401(24)00033-6/bibEEFAF0AA353C06423CBCA3269C3EFDC8s1
http://refhub.elsevier.com/S0890-5401(24)00033-6/bibEEFAF0AA353C06423CBCA3269C3EFDC8s1
http://refhub.elsevier.com/S0890-5401(24)00033-6/bibAA866EB0B56A97F3264898F896022316s1
https://doi.org/10.1007/978-3-540-28644-8_33
https://doi.org/10.1007/978-3-540-28644-8_33
https://doi.org/10.1016/0022-0000(83)90014-4
https://doi.org/10.1016/0022-0000(83)90014-4
https://doi.org/10.1007/3-540-49116-3_48

F. Bruse and M. Lange Information and Computation 298 (2024) 105168
[10] M. Lange, Model checking propositional dynamic logic with all extras, J. Appl. Log. 4 (1) (2005) 39–49, https://doi .org /10 .1016 /j .jal .2005 .08 .002.
[11] M. Lange, C. Stirling, Model checking fixed point logic with chop, in: Proc. 5th Conf. on Foundations of Software Science and Computation Structures,

FOSSACS’02, in: LNCS, vol. 2303, Springer, 2002, pp. 250–263, https://doi .org /10 .1007 /3 -540 -45931 -6 _18.
[12] R. Axelsson, M. Lange, R. Somla, The complexity of model checking higher-order fixpoint logic, Log. Methods Comput. Sci. 3 (2007) 1–33, https://

doi .org /10 .2168 /LMCS -3(2 :7)2007.
[13] F. Bruse, M. Lange, Temporal logic with recursion, in: Proc. 27th Int. Symp. on Temporal Representation and Reasoning, TIME’20, in: LIPIcs, vol. 178,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 6:1–6:14, https://doi .org /10 .4230 /LIPIcs .TIME .2020 .6.
[14] D. Kozen, Results on the propositional μ-calculus, Theor. Comput. Sci. 27 (1983) 333–354, https://doi .org /10 .1016 /0304 -3975(82)90125 -6.
[15] D. Janin, I. Walukiewicz, On the expressive completeness of the propositional μ-calculus with respect to monadic second order logic, in: Proc. 7th

Conf. on Concurrency Theory, CONCUR’96, in: LNCS, vol. 1119, Springer, 1996, pp. 263–277.
[16] R. Alur, T.A. Henzinger, Logics and models of real time: a survey, in: Real-Time: Theory in Practice, REX’91 Workshop, in: LNCS, vol. 600, Springer,

1992, pp. 74–106.
[17] R. Alur, D.L. Dill, A theory of timed automata, Theor. Comput. Sci. 126 (2) (1994) 183–235, https://doi .org /10 .1016 /0304 -3975(94)90010 -8.
[18] R. Alur, C. Courcoubetis, D. Dill, Model-checking in dense real-time, Inf. Comput. 104 (1) (1993) 2–34, https://doi .org /10 .1006 /inco .1993 .1024.
[19] F. Laroussinie, N. Markey, P. Schnoebelen, Model checking timed automata with one or two clocks, in: Proc. 15th Int. Conf. on Concurrency Theory,

CONCUR’04, in: LNCS, vol. 3170, Springer, 2004, pp. 387–401, https://doi .org /10 .1007 /978 -3 -540 -28644 -8 _25.
[20] A.K. Chandra, D. Kozen, L.J. Stockmeyer, Alternation, J. ACM 28 (1) (1981) 114–133, https://doi .org /10 .1145 /322234 .322243.
[21] F. Bruse, M. Lange, Model checking timed recursive CTL, in: Proc. 28th Int. Symp. on Temporal Representation and Reasoning, TIME’21, in: LIPIcs,

vol. 206, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 12:1–12:14.
[22] C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press, 2008.
[23] R. Alur, C. Courcoubetis, D. Dill, Model-checking for real-time systems, in: Proc. 5th Ann. IEEE Symp. on Logic in Computer Science, LICS’90, IEEE

Computer Society Press, 1990, pp. 414–427, https://doi .org /10 .1109 /LICS .1990 .113766.
[24] H. Bekić, Programming Languages and Their Definition, Selected Papers, LNCS, vol. 177, Springer, 1984.
[25] A. Arnold, D. Niwiński, Rudiments of μ-Calculus, Studies in Logic and the Foundations of Mathematics, vol. 146, North-Holland, 2001.
[26] A. Tarski, A lattice-theoretical fixpoint theorem and its application, Pac. J. Math. 5 (1955) 285–309, https://doi .org /10 .2140 /pjm .1955 .5 .285.
[27] F. Bruse, J. Kreiker, M. Lange, M. Sälzer, Local higher-order fixpoint iteration, in: Proc. 11th Int. Symp. on Games, Automata, Logics, and Formal

Verification, GandALF’20, in: EPTCS, vol. 326, 2020, pp. 97–113, https://doi .org /10 .4204 /EPTCS .326 .7.
[28] Y. Hosoi, N. Kobayashi, T. Tsukada, A type-based HFL model checking algorithm, in: Proc. 17th Asian Symp. on Programming Languages and Systems,

APLAS’19, in: NCS, vol. 11893, Springer, 2019, pp. 136–155, https://doi .org /10 .1007 /978 -3 -030 -34175 -6 _8.
[29] P. Bouyer, F. Laroussinie, N. Markey, J. Ouaknine, J. Worrell, Timed temporal logics, in: Models, Algorithms, Logics and Tools - Essays Dedicated to Kim

Guldstrand Larsen on the Occasion of His 60th Birthday, in: LNCS, vol. 10460, Springer, 2017, pp. 211–230, https://doi .org /10 .1007 /978 -3 -319 -63121 -
9 _11.
18

https://doi.org/10.1016/j.jal.2005.08.002
https://doi.org/10.1007/3-540-45931-6_18
https://doi.org/10.2168/LMCS-3(2:7)2007
https://doi.org/10.2168/LMCS-3(2:7)2007
https://doi.org/10.4230/LIPIcs.TIME.2020.6
https://doi.org/10.1016/0304-3975(82)90125-6
http://refhub.elsevier.com/S0890-5401(24)00033-6/bib4477582910176321029A5E9B969A0F2Bs1
http://refhub.elsevier.com/S0890-5401(24)00033-6/bib4477582910176321029A5E9B969A0F2Bs1
http://refhub.elsevier.com/S0890-5401(24)00033-6/bibFD59F1055A10A55B2D8D73AA5E66AD70s1
http://refhub.elsevier.com/S0890-5401(24)00033-6/bibFD59F1055A10A55B2D8D73AA5E66AD70s1
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1006/inco.1993.1024
https://doi.org/10.1007/978-3-540-28644-8_25
https://doi.org/10.1145/322234.322243
http://refhub.elsevier.com/S0890-5401(24)00033-6/bib2D1EAFB17E6BFBBBA3A90295F2F84A6Fs1
http://refhub.elsevier.com/S0890-5401(24)00033-6/bib2D1EAFB17E6BFBBBA3A90295F2F84A6Fs1
http://refhub.elsevier.com/S0890-5401(24)00033-6/bib49DB45298D0619AB0A22A860261AD1EAs1
https://doi.org/10.1109/LICS.1990.113766
http://refhub.elsevier.com/S0890-5401(24)00033-6/bibBE19FB0ADDF05086FDAA47047ABA9C49s1
http://refhub.elsevier.com/S0890-5401(24)00033-6/bib883B5FB2B69F7ABF0BE00761EA031509s1
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.4204/EPTCS.326.7
https://doi.org/10.1007/978-3-030-34175-6_8
https://doi.org/10.1007/978-3-319-63121-9_11
https://doi.org/10.1007/978-3-319-63121-9_11

	Model checking timed recursive CTL
	1 Introduction
	2 Preliminaries
	2.1 Models of real-time systems
	2.1.1 Timed transition systems
	2.1.2 Clock constraints
	2.1.3 Timed automata

	2.2 Temporal logics
	2.2.1 Timed computation tree logic
	2.2.2 Temporal logic with recursion

	3 Timed recursive computation tree logic
	3.1 The formal syntax
	3.1.1 Operators of timed recursive CTL
	3.1.2 Well-formed formulas
	3.1.3 Vectorial form

	3.2 The formal semantics
	3.3 Examples

	4 Upper bounds for model checking
	4.1 The region abstraction
	4.2 Elimination of interval bounds
	4.3 The reduction

	5 Lower bounds for model checking
	5.1 Doubly exponential time complexity
	5.1.1 Witnesses for doubly exponential time complexity
	5.1.2 Deterministic Turing machines
	5.1.3 Certificates for doubly exponential time complexity

	5.2 A generic template for a doubly exponential lower time-bound
	5.3 Hardness proofs for several fragments

	6 Conclusion & further work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

