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Abstract In solid mechanics, Maxwell stresses are known to be induced if a body is exposed to magnetic
and, in the case of dielectrics, electric fields. Acting as tractions at outer or inner surfaces as well as volume
forces, they are superimposed with tractions and stresses due to mechanical loads and provide a more or less
significant contribution, depending on loading, material properties and geometric aspects. The Maxwell stress
tensor, constituting the physical and mathematical basis, however, is controversially discussed to date. Several
formulations are known, most of them having been suggested more than 100years ago. Being equivalent in
vacuum, they differ qualitatively just as quantitatively in solid or fluidicmatter. In particular, the dissimilar effect
of body forces, emanating from a choice of established Maxwell stress tensor approaches, on crack tip loading
in dielectric solids is investigated theoretically in this paper. Due to the singularity of fields involved, their
impact is basically non-negligible compared to external mechanical loading. The findings obtained indicate
that fracture mechanics could be the basis of an experimental validation of Maxwell stress tensors.

Keywords Electromechanics · Fracture of dielectrics · Maxwell stress controversy · Crack tip singularity ·
Anisotropy

1 Introduction

The coupling of electrical or magnetic quantities, on the one hand side, and mechanical stress or strain on
the other is probably among the most investigated so-called multiphysical problems in deformable matter
nowadays. In this context, piezoelectricity, electro- and magnetostriction and flexoelectricity are commonly
explored effects, in particular in the engineering and solid-state mechanics community. Especially in soft
materials, electro- ormagnetostatically induced stresses, known asMaxwell stresses, are exploited for actuation
purposes in, e.g., artificialmuscles [1–3] or soft robots [4,5]. Being physically related to thewell-knownLorentz
force acting on free charges in vacuum [6–8], they are essentially disregarded in stiffmaterials such as ceramics,
metals or many polymers, where constitutive effects listed above usually dominate. An exception is found in
fracture mechanics of dielectric solids, mostly with piezoelectric coupling, under electromechanical loading.
In some works [9–14], Maxwell stresses are taken into account in the form of electric field-induced tractions
on the crack faces, which effectuate a relief of the crack tip loading. The effect of Maxwell stresses acting
as body forces has, to our best knowledge, never been investigated in this context. Both effects coexist in a
cracked dielectric and can be investigated separately due to the principle of linear superposition.

Most of the solid mechanics papers that address this subject are based on the Maxwell stress tensor
introduced by Minkowski [15]. However, different approaches have been published around the same time,
e.g., by Einstein and Laub [16], Abraham [17] and Lorentz [18]. While all these approaches yield identical
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global forces acting on bodies embedded in vacuum, they produce dissimilar local tractions and stresses even
in a vacuum environment and cause different resulting forces in fluidic or solid surrounding matter. Besides
quantitative discrepancies there are qualitative differences, in so far as the Maxwell stress tensor according to
Einstein and Laub is the only of the aforementioned that provides non-vanishing body forces in the case of an
isotropic homogeneous medium. Furthermore, the approaches differ in respect of tensor symmetry, where an
asymmetric Maxwell stress tensor correlates with local body couples.

It should be noted that constitutive effects, such as piezoelectricity or electrostriction, must be clearly
distinguished from electric body forces and surface tractions stemming from the Maxwell stress tensor, since
their physical origin is totally different, see e.g., [19]. For example in [20–22], a total stress is introduced that is
composed additively of Cauchy and Maxwell stresses, and which is finally calculated based on balance equa-
tions and a tailored thermodynamic potential. While displacements emerging from boundary value problems
may thereupon become identical for different formulations of Maxwell stress tensors, the Cauchy stresses and
energies involved are dissimilar. Considering the Cauchy stress to be relevant for mechanical fracture, the
prediction of structural failure necessarily requires the explicit knowledge of an appropriate Maxwell stress
tensor.

To investigate forces arising in an electric field, an experiment has been made with an oil droplet immersed
in an oil bath [23]. While the densities of the two fluids are sufficiently similar to inhibit buoyancy, the
dielectric permittivity differs by a factor of 2.25. The observed shape change of the droplet was later taken as
a basis to validate the Maxwell stress approaches in connection with numerical calculations [24,25]. In [24],
solely two of the four above-mentioned models were considered, and effects of body forces due to Maxwell
stress and electrostriction have been disregarded; thus, the results of the study are not fully conclusive. In
[25] the evaluation of the oil droplet experiment was improved by numerically calculating the time-dependent
deformation of the interface accounting for surface tension and viscous stresses. The Lorentz model finally
provided plausible results in light of correctly predicting an oblate shape of the droplet in steady state.Moreover,
the total force on a magnet immersed in a ferrofluid was measured, which also provided indications of the
possible validity of the Lorentz model; however, the low magnetic susceptibility of the ferrofluid resulting in
minor deviations between the models’ predictions leads the author to deem the experiment inconclusive.

Consequently, an experiment is sought providing conditions that allow for the greatest possible effect of
Maxwell stresses on easily accessable quantities. Large gradients of the electric field are favorable in this
context, just as interfaces exhibiting a pronounced jump of dielectric permittivity. A crack in a brittle dielectric
solid exposed to a perpendicular electric field is supposed to provide these conditions in the vicinity of the crack
tip, where electric and mechanical fields are known to theoretically exhibit a singular behavior approaching
infinity. The induced electrostatic body forces are complemented by the well-known tractions on the crack
faces coming along with a jump of the Maxwell stress tensor. Although the induced displacement field will
be too small to be exploited for evaluation, the effect of Maxwell stresses might have an essential influence on
the crack tip loading and thus on the effective crack growth resistance.

The goal of this paper is to calculate and investigate Maxwell stresses in front of the tip of a crack in
electrically loaded isotropic and anisotropic dielectric materials, exemplarily based on the approaches of
Einstein–Laub and Abraham. The induced stresses are superimposed with those emanating from a mechanical
load with an intensity typically effectuating critical crack growth in ceramics. Implications with regard to
fracture mechanics and the potential of such experiments in terms of validation of the theory of Maxwell
stresses will be critically discussed.

2 Theoretical framework

In the following, electrostatic as well as mechanically quasistatic problems will be considered. Additionally,
owing to the inherent brittleness of the dielectrics of interest, infinitesimal strain theory is adopted. While the
former allows to dispense with magnetic quantities and to introduce an electric potential ϕ, whose negative
gradient provides the electric field

Ei = −ϕ,i , (1)

the latter introduces the Cauchy strain tensor εi j with the suitable strain–displacement relation in terms of

εi j = 1

2
(ui, j + u j,i ) . (2)
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Table 1 Established formulations of the Maxwell stress tensor and related body forces; Di : electric displacement, κ0: vacuum
permittivity

T el
i j f eli

Lorentz [18] κ0Ei E j − 1
2 (κ0Ek Ek)δi j κ0E j, j Ei

Minkowski [15] Ei D j − 1
2 (EkDk)δi j

1
2 (Dj E j,i − E j D j,i )

Abraham [17] 1
2 (Ei D j + E j Di ) − 1

2 (Ek Dk)δi j
1
2 (Dj E j,i − E j D j,i ) + 1

2 (Di E j − Dj Ei ), j

Einstein–Laub [16] Ei D j − 1
2 (κ0Ek Ek)δi j (Dj − κ0E j )Ei, j

ElectricMaxwell stresses act in twoways. On the one hand they occur as surface traction teli at every bi-material
interface in dielectric bodies. This traction vector is linked to the jump of the Maxwell stress tensor Ti j via the
unit normal n j of the interface [24]

teli =
(
T+
i j − T−

i j

)
n+
j . (3)

The superscripts+ and− denote the two sides of the interface andmay, e. g., represent the interior and exterior,
respectively, of a crack slit, where n+

j points from− to+. These tractions have been taken into account in some
publications in the context of piezoelectric fracture mechanics [9–13]. For example, calculations in [14,26]
showed a reduction in crack tip loading of up to 40% due to Maxwell stresses on the faces of a Griffith crack.
The effect of the electric body forces f eli , on the other hand, has not been taken into account yet. They are
derived from the Maxwell stress tensor according to

f eli = Ti j, j . (4)

While there is widespread agreement on the definition of the Maxwell stress tensor in vacuum, its formulation
in matter is part of a century-long controversy [24,27,28], starting with the publications of [15,17]. Some of
the most famous contributions to this controversy are collected in Table 1, where zero free volume charges are
assumed.

It is worth noting that the Lorentz tensor [18] coincides with the vacuum Maxwell stress tensor, which all
models pass into in case of vanishing polarization and whose divergence yields the electrostatic part of the
well-known Lorentz force exerted on free charges. When looking at the third column of Table 1, it becomes
clear that themodels according to Lorentz, Abraham andMinkowski provide vanishing body forces in isotropic
homogeneous media, since in this case the electric displacement is simply replaced by Di = κBEi with the
dielectric permittivity κB. Furthermore, the Maxwell stress tensors by Minkowski and Einstein and Laub
are generally not symmetric which results in the existence of body couples and local torsional moments,
respectively, and thus in an asymmetry of the Cauchy stress tensor [8,19].

In the following, only models with symmetric stress tensors are considered. In the case of an isotropic
dielectric, this applies to the model of Einstein and Laub (EL), whereas the other three Maxwell stress tensors,
despite their symmetry, are unsuitable, not producing any body forces in an isotropic homogeneous medium.
The investigations in a transversely isotropic dielectric are eventually based on the model according to Abra-
ham (A). Due to these choices, all investigations are feasible within the framework of nonpolar continuum
mechanics. It should not remain unmentioned that the Minkowski tensor is commonly applied evaluating sur-
face tractions, e. g., in piezoelectric fracture mechanics [26,29], whereupon the attracting forces at opposite
crack faces in the limiting case of κB → ∞ are consistent with those known from capacitor plates.
In order to calculate the stresses caused by the body forces, the balance equations

Di,i = 0 (5)

and

σi j, j = − f eli (6)

have to be solved first. Equations (5) and (6) generally constitute a nonlinear and bilaterally coupled system
of equations if the medium has piezoelectric properties, introducing the Cauchy stress according to

σi j = ci jklεkl − eki j Ek, (7)
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and the electric displacement

Di = eiklεkl + κi j E j . (8)

Electric field and strain are introduced here as independent variables Eqs. (5) and (6) have to be solved
for. Elastic, piezoelectric and dielectric properties are represented by the tensors ci jkl , eki j and κi j . Two
interacting electromechanical coupling mechanisms due to piezoelectricity and Maxwell stress are considered
in this model, while real materials exhibit further coupling mechanisms owing to, e.g., electrostriction or
flexoelectricity. Although electromechanical problems frequently target piezoelectric materials, dielectrics
without piezoelectric properties are considered in the following, avoiding the effort in solving a coupled
system of nonlinear partial differential equations. Thus, Eq. (5) is first solved independently for the electric
field, accounting for Eq. (8)with eikl = 0. The body forces are then calculated and inserted into Eq. (6). Because
of the unilateral decoupling of the equations, the body forces represent dead loads in the mechanical sense.
Based on the principle of the minimum of the total potential energy, the balance equations are transformed
into the weak form ∫

�

(σi jδui, j − f eli δui ) dV −
∫

∂�

texti δui dA −
∫




teli δui dA = 0 ,

∫

�

Diδϕ,i dV −
∫

∂�

ωextδϕ dA = 0 ,

(9)

which will be solved in the further course with the help of the finite element (FE) method. Here, � and ∂�
are the domain occupied by the dielectric body and its boundary, respectively, while 
 ⊆ ∂� is the union of
all interfaces on which Maxwell tractions act according to Eq. (3), and quantities with the superscript “ext”
represent externally controlledmechanical and electrical boundary conditions. Furthermore, the surface charge
density

ω = −ni Di (10)

has been introduced. Since the influence of the body forces is the focus of the investigations, electrically
induced surface tractions teli will not be considered further on. Although they generally cannot be neglected in
fracture mechanics of dielectrics, their impact on crack tip loading can simply be taken into account by linear
superposition.

2.1 Einstein–Laub model in an isotropic dielectric

First of all, an isotropic homogeneous dielectric with permittivity κB under static electrical load will be
considered. The only model from Table 1 providing nonzero body forces in this case is the one by Einstein
and Laub [16], i.e.,

f eli = f ELi = (κB − κ0)E j Ei, j . (11)

Emanating from the microscopic Lorentz force acting on dipoles, the general formulation according to Table 1,
which is often referred to as Kelvin force density in the literature, represents the macroscopic force on a
polarized material point due to graded electric fields [30]. To investigate the effect of these body forces on
crack problems numerically, the two-dimensional model depicted in Fig. 1 is used in combination with the FE
package FEniCS [31,32].

It is loaded purely electrically via the electric displacement Dext
2 at the upper and lower boundaries, and

the crack is assumed impermeable for electric fields and traction free, i. e., ωext, texti = 0. Furthermore, a
generalized state of plane strain is assumed, implying ε33 = 0 and E3, D3 = 0. Due to symmetry and the
small ratio of crack length to body dimension, the model approximates a Griffith crack in an infinite plate,
allowing for reasonable comparison with analytical solutions. For the linear-elastic isotropic material of the
plate Young’s modulus E = 210GPa, Poisson’s ratio ν = 0.3 and an electric permittivity κB = 10κ0 are
assumed. The weak formulation of the problem at hand is obtained from Eq. (9) according to

∫

�

κBϕ,iδϕ,i dV −
∫

∂�

Dext
i niδϕ dA = 0 (12)



Electrostatic body forces in cracked dielectrics 881

Fig. 1 Square plate with center crack of length 2a and electrical load Dext
2

Fig. 2 Finite element mesh of the problem given in Fig. 1 with detailed excerpt of the crack tip. The crack faces are highlighted
in red

and

∫

�

(
ci jklεi jδεkl − f ELi δui

)
dV = 0, (13)

so that the electric field is obtained independently from Eq. (12) due to the unilateral coupling. The body force
vector f ELi is subsequently calculated via Eq. (11) at every node of the FE mesh illustrated in Fig. 2 and finally
plugged into Eq. (13) which is eventually solved.

The unit vectors of the body force, emanating from this procedure, are depicted in Fig. 3. Apparently, the
vector field has two axes of symmetry. Of particular interest is the magnified area around the crack tip. There,
all vectors are directed radially to the crack tip because of the singularity of the electric field at this point and
the gradient Ei, j in Eq. (11). The symmetry around the x1-axis in this region indicates that the body forces
result in a compressive stress on the ligament, i.e., on a straight line in front of the crack tip, where the polar
angle θ = 0, see Fig. 1.

For an assessment in the context of fracturemechanics, the stressesσ12 andσ22 on the ligament near the crack
tip (r/a � 1) are of particular interest and are thus depicted in Fig. 4 for an electric load Dext

2 = 0.01C/m2.
Due to the absence of external mechanical loading or piezoelectric coupling, any mechanical stress is induced
electrically byMaxwell body forces.While there are no shear stresses σ12 of relevantmagnitude, a compressive
stress σ22 < 0 is obtained which seems to be singular at r → 0. It should be noted that this singularity cannot
be proven rigorously on the basis of a numerical solution and
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Fig. 3 Unit vectors of body forces resulting from the model of [16] with detailed excerpt of the crack tip (Dext
2 = 0.01C/m2)

Fig. 4 Numerically calculated shear and normal stresses on the ligament (θ = 0) caused by the body forces with unit vectors
plotted in Fig. 3

will be characterized in the following. The basic hypothesis is that the compressive stresses on the ligament
are approximated well by an approach of the form

σEL
22 (r, θ = 0) = LELr

η (14)

for r/a � 1. The factor LEL, depending on loading, the dielectric constant and geometry, plays the same role
as the stress intensity factors (SIF) of Linear Elastic Fracture Mechanics (LEFM) and η represents the type of
singularity. To determine the latter, it is useful to introduce the natural logarithm of the absolute value of the
numerically calculated compressive stresses, so that Eq. (14) can be transformed to

ln
(|σEL

22 |/MPa
) = ln

(|LEL|/(MPam−η)
) + ηζ (15)

with the substitution ζ = ln(r/m). Since Eq. (15) is a linear equation with ζ being the independent variable,
the exponent η can be approximated by linear regression according to [33]

η ≈
∑n

i=1

(
ζi − ζ

) (
ln(|σEL

22 (ζi )|/MPa) − ln(|σEL
22 (ζi )|/MPa)

)

∑n
i=1

(
ζi − ζ

)2 , (16)

where i ∈ {1, . . . , n} numbers the discrete values involved and quantities with an overbar are arithmetic
averages. The result of the regression depends on the range rmin < r < rmax in which Eq. (16) is evaluated.
The dependence on the upper limit is illustrated in Fig. 5, where η is plotted vs. rmax/a, while the edge length
rmin/a = 10−5 of the first finite element in front of the crack tip is chosen as the lower limit in all cases. The
results for the exponent vary essentially

by ±2% around η = −1. The stress σEL
22 consequently appears to exhibit an r−1-singularity which domi-

nates over the r− 1
2 -singularity of LEFM associated with the well-known mode-I relation [34]

σmech
22 (r, θ = 0) = KI√

2π
r− 1

2 + O
(
r

1
2

)
, r → 0, (17)
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Fig. 5 Approximated values of the exponent η depending on the upper limit of the evaluation range rmax/a of the linear regression

Fig. 6 Parameter studies of the induced stress on the ligament based on Eq. (19)

where KI is the corresponding stress intensity factor (SIF).More detailed knowledge of the factor LEL is needed
to investigate the relation between the two singular behaviors. By means of parameter studies and dimensional
analysis it was found that the compressive stress in the vicinity of the crack tip is well approximated employing

LEL = −1

2

(
Dext
2

)2
(

1

κB
− κ0

κ2
B

)
a, (18)

whereupon the relation

σEL
22 (r, θ = 0) = −a

2

(
Dext
2

)2
(

1

κB
− κ0

κ2
B

)
r−1 (19)

finally holds. The factor 1/2 was identified by comparison with the numerical data.
The strong singularity leads to an infinite energy in any domain enclosing a crack tip. This fact is just as

unphysical as any kind of singularity itself, being attributed to the unrealistic model of a sharp crack tip. Akin
to classical LEFM, where the problem of infinite stresses is circumvented by considering their asymptotic
behavior in the crack tip near field rather than their magnitudes, a SIF complemented by an “L-factor,”
according to Eq. (18), might constitute a suitable fracture law for brittle dielectrics. In this context, the size of
the L-dominated compared to the K -dominated zone is crucial and will thus be investigated below.

Some results of numerical parameter studies are summarized in Fig. 6. The first plot shows the compressive
stress σEL

22 caused by the body forces at a fixed location r/a = 10−4 in front of the crack tip as a function of the
electrical load Dext

2 . All other parameters and boundary conditions are constant. A parabolic curve matching
Eq. (19) is obvious. The maximum absolute value of 5 GPa at Dext

2 = 0.01C/m2, corresponding to an electric
field Eext

2 = Dext
2 /κB ≈ 8.8 · 106 V/m, constitutes an enormous compressive stress at the selected position.

The second plot shows the compressive stress at the same location as a function of the permittivity ratio κB/κ0
at a constant electrical load Dext

2 = 0.01C/m2. According to the bracketed part of Eq. (19) it has a minimum
at κB/κ0 = 2 and approaches zero for κB/κ0 → ∞. The linear relationship between stress at a fixed location
r/a = 10−4 and the half crack length a is confirmed in the third plot.

A comparison of the numerical results and the approach given in Eq. (19) is shown in Fig. 7.
If the above-described crack is additionally loaded with a tensile stress σ ext

22 , the total stress on the ligament
in the crack tip near field is well approximated by

σ22(r, θ = 0) = σmech
22 (r, θ = 0) + σEL

22 (r, θ = 0) = KI
(
σ ext
22

)
√
2πr

+ LEL
(
Dext
2

)

r
(20)
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Fig. 7 Comparison of the numerically calculated compressive stress from the Einstein–Laub model and the approximation
according to Eq. (19)

Fig. 8 Mechanically induced (dashed), electrically induced (dash-dotted) and combined (solid) stresses on the ligament in the
vicinity of a crack tip

applying linear superposition. The first term exhibits the classical 1/
√
r -singularity with the approximate SIF

KI ≈ σ ext
22

√
πa, and the second term is adopted from Eq. (14) where all location-invariant terms are collected

in LEL. The opposing signs of LEL and KI together with the different types of singularities lead to a stress
distribution on the ligament which has got two characteristic points. The first one is a maximal stress

σmax = − 1

4π

K 2
I

LEL
=

( σ ext
22

Dext
2

)2 1

4
(
1
κB

− κ0
κ2
B

) (21)

at the distance

rmax = 8π
( LEL

KI

)2 = 8

(
Dext
2

)4
(
σ ext
22

)2
( 1

κB
− κ0

κ2
B

)2
a (22)

to the crack tip which is indicated by a triangle in Fig. 8. The second characteristic point is a root of Eq. (20),
providing a radial distance to the crack tip

rcom = 1

4
rmax (23)

below which the stress is compressive and which is indicated by a filled circle in Fig. 8. To get an estimate for
these radii,

Figure 9 shows the ratio of the electrically and mechanically induced stress for various electric loads
Eext
2 = Dext

2 /κB plotted versus the normalized radial coordinate. As largest electric load Eext
2 = 107 V/m is

chosen, sincemost dielectric bulkmaterials break down electrically at this load [35]. In order to provide an upper
limit of the effect of the body forces, a comparatively smallmechanical load KI = 1MPa

√
m, corresponding to

the fracture toughness of ceramics in order of magnitude, a typical permittivity of non-piezoelectric dielectrics
κB = 10κ0 [35,36] and a large crack length a = 100mm are employed. For the chosen parameters and upper
bound of Dext

2 , it follows from Eq. (18) that the factor LEL is in the range of [−400 Pam, 0], where zero
represents the load-free case. Additionally, a typical radius of atoms ratom ≈ 10−10 m is indicated in Fig. 9 by
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Fig. 9 Ratio of electrically and mechanically induced stresses in the vicinity of the crack tip for a range of electric loads and a
constant mechanical load corresponding to KI = 1MPa

√
m. The radii of maximal stress according to Eq. (22) are marked with

triangles and those of compressive stress from Eq. (23) as circles. The electric permittivity is κB = 10κ0, and the crack length is
a = 100mm

Fig. 10 Maximum stress from Eq. (21) at constant mechanical load KI = 1MPa
√
m with κB = 10κ0 and κB = 103κ0. The

crack length is in both cases a = 100mm

a vertical dashed line for the sake of comparison. Since the point of changeover from compressive to tensile
stress rcom comes along with a ratio σEL

22 /σmech
22 = −1, marked as circles in Fig. 9, it becomes clear that,

for Eext
2 ≤ 106 V/m, the distances to the crack tip where the electrostatic body forces cause a compressive

total stress are smaller than atom radii and thus violate the continuum hypothesis which LEFM and Maxwell
stresses are based on. On the other hand, the K-concept of LEFM is only applicable if the 1/

√
r -dominated

zone according to Eq. (17) is sufficiently larger than the domain at the crack tip deviating from this course.
While classically the focus in this context is on small scale yielding or phase transformation, Fig. 8 illustrates
that body forces can take on this role equally. Defining the zone in which the body forces have a significant
impact on the 1/

√
r -singularity as |σEL

22 /σmech
22 | ≥ 0.05, this area is limited by r = 5 · 10−8 m in the case of

Eext
2 = 106 V/m and thus substantially larger than atom radii.
Since electric fields beyond those depicted in Fig. 9 are hardly bearable for most bulk materials and

much smaller mechanical loads are irrelevant in terms of fracture mechanics, the radii rcom and rmax, being
proportional to a (compare Eq. (22)), could only increase in the case of longer cracks or for a larger dielectric
constant. Similar considerations can be made for the maximal stress from Eq. (21), which is included as
triangles in Fig. 9 and plotted double-logarithmically versus the electric load in Fig. 10. Even for an electric
load Eext

2 = 107 V/m and κB = 10κ0, there is still a maximal tensile stress of about 102 MPa, which increases
by two orders of magnitude if the electric load is decreased by one, independent of the crack length a, see
Eq. (21). So, there is always a large tensile stress in the vicinity of the crack tip, however, being far below
corresponding magnitudes of pure mechanical loading. Directly at the crack tip there could be compressive
stress which might inhibit crack growth even under critical mechanical loading.

An exception to the dielectrics considered so far with a permittivity of κB = 10κ0 is ferroelectric ceramics
such as barium titanate (BT) or lead zirconate titanate (PZT). Their permittivity is typically κB ≈ 103κ0, which
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Fig. 11 Ratio of electrically and mechanically induced stresses versus radial distance from crack tip on the ligament in the style
of Fig. 9 with κB = 103κ0

leads to an increase of the radii rmax and rcom by four orders of magnitude as a comparison of Figs. 9 and 11
shows.

The size of the region in which the electrostatic body forces have a relevant influence is thus several
orders of magnitude above atomic radii at an electric field strength of Eext

2 ≥ 105 V/m and thus definitely
ranges within the scope of continuum theories. As shown in Fig. 10, the maximum tensile stress decreases by
two orders of magnitude if the permittivity is increased. However, ferroelectric ceramics exhibit piezoelectric
coupling properties so that Eqs. (5) and (6) form a bilaterally coupled systemof nonlinear differential equations,
requiring further research for the sake of quantitative findings.

2.2 Abraham model in a transversely isotropic dielectric

In the following, the influence of the body force

f Ai = 1

2
(Dj E j,i − E j D j,i ) + 1

2
(Di E j − Dj Ei ), j , (24)

resulting from the Maxwell stress model according to Abraham, on a crack of the geometry as the one in
Fig. 1 will be investigated. Since the body force vector f Ai in the case of electrostatics vanishes in isotropic
homogeneous dielectrics, a transversely isotropic material is considered in this section. For this purpose, the
stiffness and permittivity tensors cpq and κi j of single-crystal BT are employed, the former of which is depicted
in Voigt notation. Although the Maxwell stress tensor of Einstein and Laub is non-symmetric in anisotropic
media, the associated body force

f ELi = (Dj − κ0E j )E j,i (25)

is also considered in this section for the purpose of comparison. Since an influence of the orientation of the
transverse isotropy is to be expected, the material tensors are introduced both for x1- as well as x2-poling-
directions, resulting in thematrix representations shown in Table 2 with the coefficients fromTable 3. Although
these coefficients have been determined in experiments with an intrinsic constitutive coupling, keeping strain
and electric field, respectively, constant, they may readily be adopted here for the sake of gaining fundamental
insights. It should further be noted that the ratio of anisotropy (κ11−κ22)/κ11 of just roughly 12% is responsible
for the electrostatic body force according to the Abraham model. As before, an electric displacement of
Dext
2 = 0.01C/m2 is applied as electrical boundary condition.
The body force unit vectors calculated for the two transversal orientations and Maxwell stress models are

shown in Fig. 12. Accordingly, the vectors eAi of the Abraham model rotate by 180◦ if the orientation of the
transverse isotropy is changed, while the vectors eELi remain virtually unaffected.
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Table 2 Material tensors of transversely isotropic elastic dielectric for different poling orientations

x1-orientation x2-orientation

cpq

(
c11 c12 0
c12 c22 0
0 0 c44

) (
c22 c12 0
c12 c11 0
0 0 c44

)

κi j

(
κ11 0
0 κ22

) (
κ22 0
0 κ11

)

Table 3 Elastic and dielectric constants of single-crystal barium titanate in generalized plane strain condition [37]

c11 (GPa) c22 (GPa) c12 (GPa) c44 (GPa) κ11 (C (Vm)−1) κ22 (C (Vm)−1)

162 166 77.5 42.9 12.57 × 10−9 11.16 × 10−9

Fig. 12 Unit vectors of the body forces derived from the Maxwell stress tensors according to [17] (top row) and [16] (bottom
row) near the crack tip in a transversely isotropic medium with two different orientations of the transversal axis given in Table 2

The direction of the vectors eAi in Fig. 12 indicates that there is tensile stress in case of a x1-orientation
and compressive stress in the case of x2-orientation of the transversal axis. The directions of the vectors eELi
result, as in the isotropic case, in compressive stresses independent of the anisotropy orientation. This issue is
shown in more detail in Fig. 13 in terms of the shear stresses σA

12(r, θ = 0), σEL
12 (r, θ = 0) and tensile stresses

σA
22(r, θ = 0), σEL

22 (r, θ = 0) in front of the crack tip. As the shear stresses are many orders of magnitude
smaller than the normal stresses, they are negligible as in the isotropic case. As expected, the normal stress
σA
22(r, θ = 0) changes its sign if the orientation of the transversal axis is rotated by 90◦ and apparently exhibits

a singularity at the crack tip, while σEL
22 (r, θ = 0) is negative in both cases. Given that stresses in the crack tip

near field are still well approximated by approaches of the shape

σA
22(r, θ = 0) = LAr

ηA ,

σEL
22 (r, θ = 0) = LELr

ηEL ,
(26)

the types of the singularities being expressed by the exponents ηA and ηEL are estimated in the same way
as in the previous section applying Eq. (16). The result of this evaluation is presented in Fig. 14. While the
ηEL are symmetrically distributed around ηEL = −1 with a maximal deviation of ±4%, the values ηA are
comparatively wide spread in a range of −1.72 ≤ ηA ≤ −1.31. However, one can conclude by comparison of
the plots a) and b) that |ηEL| < |ηA|. Since no specific value could be identified for ηA, a unique derivation of
LA, as it was done for the Einstein and Laub model in the previous section, cannot be performed. However,
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Fig. 13 a Shear and b normal stresses on the ligament near a crack tip caused by the body forces of the Abraham and Einstein–
Laub Maxwell stress models in a transversely isotropic material, according to Tables 2 and 3, with different orientations of the
transversal axis

Fig. 14 Exponents ηA and ηEL, according to Eq. (26), of the singularities depicted in Fig. 13 for the a Einstein–Laub and b
Abraham models calculated via Eq. (16) and illustrated in the style of Fig. 5. Results with x1-orientation are marked as circles
and those with x2-orientation as triangles

Fig. 15 Intensity factors LA and LEL of the singularities in Fig. 13 for the a Einstein–Laub and b Abraham models calculated
via Eq. (27). Results with x1-orientation are marked as circles and those with x2-orientation as triangles

linear regression is applied to calculate approximations according to [33]

( |LA|(m(2+ηA)/N)
|LEL|(m/N)

)
= exp

(
ln(|σA/EL

22 (ζi )|/MPa) − ηA/ELζ

)
. (27)

The results of both models are depicted in Fig. 15. Obviously, LA is several orders of magnitudes smaller than
LEL. After all, it is concluded that the radius of significant influence of σA

22 is much smaller than the one of
σEL
22 , whereupon the continuum hypothesis is probably violated. Consequently, experimental observations on

crack closure might support either Einstein and Laub’s or Abraham’s theory of Maxwell stress.
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3 Conclusion

Electrostatically induced body forces based on Maxwell stress tensors introduced by Einstein and Laub on the
one hand and Abraham on the other have been investigated numerically with regard to implications on fracture
mechanics of brittle dielectrics. While the model of Einstein and Laub yields nonzero body forces in the case
of isotropic homogeneous media, Abraham’s theory requires anisotropy, just as other established theories, e.g.,
by Minkowski or Lorentz. Furthermore, the above models differ in terms of symmetry of the Maxwell stress
tensor and quantitative predictions. Experimental validations of the approaches have scarcely been informative
to date, inter alia due to the lack of samples in which the investigated effect is sufficiently pronounced compared
to other ones, although recent numerical simulations of the deformation of a droplet support Lorentz’s model.
A brittle cracked specimen might be an appropriate means in this context, since the crack tip gives rise to a
distinctive field concentration, exhibiting even a singularity in its initial configuration and for infinitely small
deformations, respectively. Due to this aspect, the body forces induced by an electric field have a larger impact
on the mechanical behavior than for any other kind of sample. It could be shown at the example of the two
chosenMaxwell stress models that stresses in front of the crack tip of an electromechanically loaded specimen
are noticeably, however, differently influenced by the electric field, depending on the model. Remarkable
are compressive stresses predicted close to the crack tip and a higher-order singularity, certainly requiring a
modification of the classical K-concept of conventional linear elastic fracture mechanics for the assessment
of crack growth initiation. The occurrence of the predicted strong singularity raises the fundamental question
of whether the model of a sharp crack is really the “philosopher’s stone,” or if an approach accounting for a
finite crack opening displacement, thus dispensing with any kind of crack tip singularity, is the way to go. The
parameter range in terms of crack length, ratio of electrical and mechanical loads and dielectric permittivity
has to be chosen carefully in view of length scales involved in the continuum approach. It could be shown
that an appropriate choice is within the scope of technical feasibility of an experiment, predominantly with
piezoelectric ceramics. To evaluate the plausibility of different Maxwell stress models, easily measurable
critical loads of crack growth initiation will serve as an indicator instead of whole displacement fields as in
previous experiments. However, a meaningful evaluation of experiments necessarily requires the consideration
of additional effects in themodel, in particular electrostriction and piezoelectricitywhich are theoreticallywell-
established.
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