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Abstract

Over recent years, a variety of nanostructure gas sensor designs have been published,
utilizing structures such as planar high electron mobility transistors (HEMTs) and one-
dimensional structures like nanorods, nanowires, and nanotubes. Even though these
sensors have demonstrated responses to certain target gases, generally all designs also
showed cross-sensitivites to other gases in the same order of magnitude. However, a
concept for developing highly selective nanowire sensors that are sensitive to only one
specific gas species and meet the requirements for industrial mass production is still
missing.

Sensors based on one-dimensional structures are more promising for the detection of low
gas concentrations compared to planar designs due to their higher surface-to-volume
ratios. Gallium nitride (GaN) is a wide band gap (≈ 3.4 eV) semiconductor material
which recently has been focused on as a candidate for high performance gas sensors due
to its high carrier saturation velocity, fast electron mobility, and thermal, mechanical,
and chemical stability [1].

Prior to the beginning of this project, our project partners from TU Braunschweig and
the University of Freiburg presented a highly selective NO2 nanowire sensor based on
tin oxide (SnO2 ) [2], showing sensor responses for NO2 which were several orders of
magnitudes higher relative to the responses for six investigated comparative gases. This
outstandingly high selectivity was gained by a functionalization of the semiconductor
surface with organic self-assembled monolayers (SAMs) and could be explained with the
aid of density functional theory (DFT-) simulations. The DFT-calculations revealed that
the energetic position of the SAM-gas frontier orbitals in respect to Fermi level of the

v



nanowire is the key factor to determine if a charge transfer between semiconductor and
gas molecule can occur or not. This insight leads to the promising strategy of fabricating
sensor structures tailored to be sensitive towards single gas species by choosing suitable
organic functionalities and matching of the nanowire-SAM Fermi level [2]. However,
sensors based on irregularly grown and bent SnO2 nanowires don’t provide reproducible
results and hence prevent a reliable prediction of sensor responses. GaN nanowires are
offering the potential to overcome these impediments. Furthermore the choice of GaN
as active sensing material is promising for the fabrication of sensors that are long term
stable and which can operate over a wide range of temperatures.

This thesis investigates macroscopic device simulations of GaN nanowires in the context
of gas sensing applications. To this end, straight nanowires with bottom and top
contacts are modeled as the basic device geometry. Various sensor structures, including
resistors, pn-diodes, and transistor-like npn-junctions, are investigated to identify optimal
sensor designs in terms of structure, doping concentrations, and morphology. Numerical
modeling is performed using the proprietary semiconductor drift-diffusion solver Quatra
(QUAntized TRAnsport). As Quatra did not support high-field dependencies of carrier
mobilities the source code has been extended by a Canali and a Transfered-Electron
model as part of this thesis work. In order to account for the surface states introduced by
docking gas molecules Quatra supports the incorporation of a Shockley-Read-Hall based
surface trap model. The data required for the trap densities and energy trap levels were
supposed to be gained through atomistic DFT-simulations carried out at the University
of Freiburg. Besides the knowledge of trap charge densities and energy levels, literature
research identified an intrinsic Fermi level pinning and the oxidation condition of the
nanowire surface as additional key parameters that need to be precisely defined for a
reliable prediction of the sensor behavior.
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Zusammenfassung

In den vergangenen Jahren wurden diverse Konzepte für auf Nanostrukturen basierende
Gassensoren publiziert. Dabei wurden planare elektronische Bauteile wie High Elec-
tron Mobility Transistoren (HEMT) oder eindimensionale Strukturen wie Nanosäulen,
Nanodrähte oder Nanoröhrchen zur Detektion bestimmter Gase verwendet. Während
zwar immer die Sensitivität der Bauteile bezüglich des bevorzugten Gases demonstriert
werden konnte, zeigten sich jedoch in allen Studien Sensitivitäten bezüglich analysierter
Vergleichsgase die zwar generell kleiner waren, aber in der gleichen Größenordnung
lagen. Es fehlt bisher ein Nanodraht-Sensordesign das dazu geeignet ist gezielt selektiv,
reproduzierbar und langzeitstabil eine spezifische Gassorte zu detektieren und gleichzeitig
die Anforderung an einen industriellen Produktionsablauf zu erfüllen.

Aufgrund ihres größeren Verhältnisses von aktiver Oberfläche zu Volumen sind Sen-
sorentwürfe die auf eindimensionalen Strukturen basieren vielversprechender für die
hochempfindliche Detektion geringer Gaskonzentrationen als planare Konzepte. Als aus-
sichtsreicher Kandidat für die Hochleistungsdetektion bestimmter Gassorten ist Galliumni-
trid in letzter Zeit vermehrt in den Fokus gerückt [1]. Galliumnitrid ist ein Halbleiter mit
großer Bandlücke (≈ 3.4 eV), der sich durch hohe Elektronen-Sättigungsgeschwindigkeiten,
einen hohe Elektronen-Mobilität, sowie durch seine thermische wie mechanische und
chemische Stabilität auszeichnet.

Vorab dieses Projekts haben unsere Projektpartner von der TU Braunschweig und der
Universität Freiburg eine Studie zu einem hochselektiven NO2 -Nanodrahtsensor auf der
Basis von Zinnoxid (SnO2 ) veröffentlicht [2]. Die hier ausgewertete Sensorempfindlichkeit
bezüglich NO2 war um mehrere Größenordnungen höher als für alle sechs untersuchten
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Vergleichsgase. Diese herausstechend hohe Selektivität konnte erreicht werden durch eine
Funktionalisierung der Oberfläche mit organischen self-assembled monolayers (SAMs).
Dieses Verhalten konnte mit Hilfe von Dichtefunktional Theorie (DFT-) Simulationen
erklärt werden. Die DFT-Berechnungen zeigten, dass ein Ladungsaustausch zwischen
angedocktem Gasmolekül und dem Nanodraht nur möglich ist, wenn die energetische Lage
der SAM-Gas Grenzorbital in der Nähe des Fermi-Levels des SAM-Nanodraht-Systems
liegt [2]. Mit dieser Erkenntnis sollte es möglich sein auf einzelne Gassorten maßgeschnei-
derte Nanodrahtsensoren zu entwerfen, die hochselektive und hochempfindliche Sen-
sorempfindlichkeiten aufweisen. Der Nachteil des in [2] präsentierten Sensorentwurfs sind
die unregelmäßig und gekrümmt gewachsenen SnO2 Nanodrähte. Hierdurch ist keine
exakte Reproduzierbarkeit der Ergebnisse zwischen verschiedenen Sensoren des gleichen
Typs zu erwarten. Hier stellt die Verwendung von GaN anstelle von SnO2 eine vielver-
sprechende Alternative dar. Darüber hinaus sollte es mit GaN als aktivem Sensormaterial
aufgrund seiner Robustheit möglich sein langzeistabile Sensoren zu fertigen, die über eine
große Spanne an Temperaturen operieren können.

Der Fokus dieser Arbeit liegt auf makroskopischen Bauteil-Simulationen für GaN Nan-
odrähte im Anwendungsfeld der Gassensorik. Dafür werden gerade gewachsenen Nan-
odrähte, die am Boden und der Oberseite elektrisch kontaktiert sind, als grundlegende
Bauteilgeometrie angenommen. Hierauf basierend werden verschiedener Sensorstruk-
turen wie Widerstände, PN-Dioden oder transistorartige NPN-Übergänge modelliert,
mit dem Ziel optimale Sensorkonzepte bezüglich Struktur, Dotierkonzentrationen und
Morphologie zu identifizieren. Die numerische Modellierung des Ladungstransports
wird mit Hilfe des hauseigenen Drift-Diffusions-Lösers Quatra (QUAntized TRAnsport)
durchgeführt. Da Quatra zu Beginn der Arbeit über kein Modell für die Abhängigkeit
der Ladungsträgermobilitäten bezüglich hoher Feldstärken verfügte, wurde der Quell-
code von Quatra um ein Canali-Modell und ein Transfered-Electron-Modell im Rahmen
dieser Arbeit erweitert. Um die Wechselwirkungen zwischen Halbleiter und andockenden
Gasmölekülen zu berücksichtigen bietet Quatra ein Modell für Oberflächenzustände,
welches letztendlich einem Term für Shockley-Read-Hall-Rekombinationen entspricht.
Die hierfür benötigten Informationen über die Zustandsdichten und deren zugehörigen
Energieniveaus sollten durch atomistische DFT-Simulationen an der Universität Freiburg
gewonnen werden. Neben der Kenntnis der Zustandsdichten und Energieniveaus, zeigt
die Literaturrecherche, dass auch die Kenntnis über ein mögliches intrinsisches Fermi-
Level-Pinning der Nanodrahtoberfläche und deren eventuelle Oxidierung unerlässlich ist,
um das Nanodrahtverhalten korrekt zu beschreiben und vorherzusagen.
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1 Introduction

In recent times the influence of harmful gases emitted by our modern industrial society
regarding the creation of environmental issues encountered a surging awareness. Reducing
the human foot print for climate change, driven by the emission of greenhouse gases and
the prevention of diseases caused by pollutants have become key factors to consider for
industrial production. This holds for products, like combustion engines in cars as well as
for production processes. The automotive industry and vehicles belong to the largest
sources of nitrogen oxides (NOx), such as nitric oxide (NO) or nitric dioxide (NO2), which
are among the most harmful gases affecting human health and they can produce acid rain
and ozone [2,3]. In contrast to the negative repercussions of NOx emissions, hydrogen
(H2) is one of the most promising candidates to substitute carbon-based fuels, providing
a clean and renewable energy source [4]. As hydrogen is higly volatile and inflammable,
safety measures like reliable leakage detection become crucial during production, storage
and transport [4]. Furthermore, miniature gas sensors could be used in health care for
the respiratory monitoring [5]. These examples shall illustrate how the selective detection
of specific gases is a critical requirement for several industrial branches [2].
Nanoscaled gas sensors promise to provide several advantages over the currently available
macroscaled sensors as they offer the prospective of having sensors with outstanding
sensitivities which would enable the detection of tiny amounts of certain target gases.
Such sensors could be incorporated in small devices of everydays live like smartphones
or smartwatches with the purpose of monitoring health data. Furthermore would this
omnipresence of sensors allow large scaled environmental evaluations for a variety of
parameters by interpreting every individual measurement as part of a grid information.
Further advantages could be cheapness, low power consumption and long term stability.
As promising these benefits are, just as high are the scientific hurdles to overcome for the
realization of marketable devices. Practical sensors have to work long term stable apart
from lab conditions which means outside of a well defined environment. Electrical gas
sensors have to chemically react with their surrounding in order to generate electrical
signals. This means that a sensor could generally be exposed to any arbitrary gas species,
which must not alter the sensor behavior or encourage device degradation. Besides that,
not only is it essential that sensor responses are reproducible without regular recalibration
and that the sensors must be able to be reactivated within a brief time, the gas species
to detect will usually be present as a small part in a mix of a large variety of gas species.
Therefore, it is required that these sensors not only provide a large sensor response, but
also that the response is highly selective for the target gas. However modern chemo
resistive semiconductor gas sensors offer only a high sensitivity for a broad spectrum of
gases and hence a rather weak selectivity. Novel organic-inorganic hybrid gas sensors
showed to be a promising approach to overcome this issue. In this setting organic func-
tional molecule groups are assembled on the semiconductor surface in order to adjust the
gas/functional group highest molecular orbital (HOMO) or lowest unoccupied molecular
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1 Introduction

orbital (LUMO) energy levels with respect to the semiconductor Fermi level [2]. With
this adjustment only the desired gas offers a HOMO or LUMO energy position close
to the semiconductor Fermi level so that a charge transfer can occur, for other gases a
charge transfer becomes impeded leaving the sensor resistance unchanged. Additionally
leads the usage of nanowires instead of thin films to an improvement in sensitivity since
nanowires offer a very large surface-to-volume ratio as desired in surface effect dependent
sensing.

In this thesis work Gallium Nitride (GaN) nanowires, with surfaces functionalized
in the aforementioned manner, acting as gas sensor devices, shall be examined by nu-
merical simulations. GaN is a promising material for nanowire sensing application as
it’s direct and large band gap of around 3.4 eV enables operations in harsh conditions
by offering a wide range thermal and radiative stability. [6] Moreover, its chemical and
mechanical robustness provides the ability to produce sensors with reliable and pre-
dictable sensor responses. In this way different sensor structures such as pure resistors,
resistive core/shell-structures, diodes or transistors are supposed to be analyzed. The
simulations shall give insight into the nanowire gas sensors electrical behavior, in order
to make the sensor response understandable and furthermore predictable. Eventually
these theoretical results shall be used to optimize the gas sensor devices according to
parameters like structure, morphology and doping profiles. As a metric for the sensor
performance, all structures will be analyzed regarding linearity and responsiveness. Here,
the sensor response will mean the sensitivity of the sensor towards a change in target gas
concentration and is given by the percentage change of the nanowire current relative to
its reference current in air environment1.

This thesis work was part of the BMBF project ”WireControl” and has been carried out in
close cooperation with our project partners from TU Braunschweig and the University of
Freiburg. Within this project TU Braunschweig was responsible for the production of the
GaN nanowire samples including the surface functionalization and for the experimental
evaluation. At the University of Freiburg numerical simulations on an atomistic level
have been conducted using Density Functional Theory (DFT) calculations. Hereby a
deeper understanding of the interactions of certain gas species with the functionalized
semiconductor surfaces were meant to be gained. In addition, the DFT calculations
should provide estimation approaches for parameters such as trap energy levels and
densities to be included in the surface model used in the device simulations presented in
this work.

1A formula representation for sensor response and linearity is given in section 3.2.
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Figure 1.1: Gas sensor using an array of functionalized nanowires. [7]

Fig. 1.1 shows a schematic, which illustrates the general sensing principle of electrical
nanowire gas sensors as they are analyzed in this thesis work. Such sensors consists
of regularly grown nanowire columns, which are electrically contacted on the top and
the bottom, enabling comparative resistance measurements. The nanowire surfaces are
functionalized with amine terminated self-assembled monolayers2 (SAMs). Due to the
amines electron donating character the SAMs serve as adsorption sites for the electron
affine NO2 molecules [2]. The energetic conditions of the frontier molecules adsorbed on
the surface, relative to the Fermi-Level of the semiconductor-functional group system,
determine if the electrical resistance of the nanowires will be affected by the adsorption
of the gas molecules or not [2].

2N -[3-(Trimethoxysilyl)propyl]ethylenediamine (en-APTAS 1) [2]
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1 Introduction

1.1 State of the Art

The development of nanostructures serving as high sensitive and selective gas sensors
has been an active field of research in recent years. Several different basic approaches
for sensor structures such as high-electron mobility transistors (HEMT) [8, 9] or one
dimensional nanostructures like nanowires(NWs) [6,10,11], nanorods(NRs) [3, 12] and
nanotubes(NTs) [13] have been employed. Moreover, gas sensors have been reported based
on various semiconductor materials like ZnO, SnO2 or GaN. Different strategies have been
reported to improve sensor sensitivity including the employment of hybrid structures [3],
surface treatments [12] or surface functionalization [2,10]. One dimensional structures
have proven to be more suitable for the detection of low gas concentration due to their
high surface-to-volume ratio [12]. A common issue of the so far reported nanostructure
gas sensors preventing an industrial production is having practical limitations for at
least one of the key parameters. A high complexity of the device or the manufacturing
process and the use of expensive functionalization materials makes the sensor design
cost-intensive. The necessity of high operating temperatures or a weak selectivity towards
a single gas species might limit the practical use. Furthermore the sensor responses need
to be reproducible and long term stable. Sim et al. [10] reported a NO2 sensor based on
suspended GaN nanowires with a surface functionalized by a Pt-Pd alloy deposition. Here,
the Schottky contact forms a depletion region at the metal-semiconductor interface which
altered when the sensor was exhibited to certain gases. Thereby the resulting conducting
channel in the nanowire could be shrinked or expanded [10]. The Sensor showed a
responsivity between 4.35 % at 150 ◦C and 25.57 % at 350 ◦C with an almost linear
response [10]. The selectivity found to be given by a two- to four times higher response
for NO2 against to two other comparative gases. A NO sensor based on InGaN/GaN
multi-quantum well-embedded p-i-n GaN nanorods and a much less complex design
based on hydrogen peroxide treated GaN nanorods without intentional doping have been
published by Redeppa et al. [3, 12]. The diode based sensor showed responses regarding
NO concentrations of 100 ppm of around 30 % and 115 % at 35 ◦C without and with UV
illumination respectively. The response to NO was about three times higher compared to
the response regarding NO2 . The sensor based on the surface treated nanorods showed a
response of 30.21 % at an operating temperature of 50 ◦C, but no data according selectivity
has been reported. A sensor based on high crystalline GaN nanowires top contacted via
a graphene channel has been presented by Shin et al. [1]. The sensor showed a distinct
response of 23 %. A comparison with four other gases resulted in responses between 1.7 %
and 5 %. No information was given on how accurate the sensor distinguishes between
NO2 and NO. However, the graphene channel improved the sensitivity regarding NO2

compared to a reference GaN nanowire sensor from 3.1 % to 23 %. Hoffmann et al. [2]
reported a NO2 sensor based on SnO2 nanowires with surfaces functionalized by organic
self-assembled monolayers (SAMs) offering an outstanding selectivity and sensitivity at
room temperature. The sensor showed a response of 2100 % for NO2 concentrations
as little as 0.4 ppm, while the responses to NO and several other comparative gases
were two to three orders of magnitudes lower. DFT-calculations revealed that charge
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1.1 State of the Art

transfer was only possible in case of a suitable alignment of the SAM frontier molecular
orbitals with respect to the Fermi level of SAM-nanowire system [2]. The large variety of
organic functionalities makes this approach seem promising for the tailored production of
nanowire sensors with highly selective responses to certain gases. [2]. However irregularly
grown arrays of SnO2 nanowires with arbitrary nanowire intersections will be an obstacle
for reproducibility and hence for predictable sensor responses. Therefore the results
presented in [2] have been a motivation for this project as GaN enables the fabrication
of arrays with regular and straight grown nanowires suitable for device simulation and
promising for long term stability. Arrays of GaN nanorods3 had been realized by our
partners at TU Braunschweig [14] prior to the beginnging of the project. The combination
of GaN nanostructures and a surface functionalization by organic SAMs has the potential
to overcome the impediments for an industrial manufacturing of highly selective gas
sensors. An overview4 of reported sensor structures in recent years can be found in the
following table.

Table 1.1: Characteristics of previously reported nanostructure gas sensors

Author Year Structure Target-Gas
(concentration)

Operating
Temperature

Light
Assisted

Sensor
Response

Sim et al.
[10]

2013 GaN NW re-
sistors Pt-Pd
functionalized

NO2 (100 ppm) 350 ◦C No 25.57 %

Hoffmann
et al. [2]

2014 SnO2 function-
alized with or-
ganic SAMs

NO2 (0.4 ppm) Room Temp. Yes 2100 %

Abdullah
et al. [4]

2014 GaN NWs H2 (100 ppm) Room Temp. No 127 %

Bishop et
al. [15]

2015 BGaN/GaN
Superlattice

NO2 (450 ppm) 250 ◦C No 30 %

Reddeppa
et al. [3]

2019 InGaN/GaN
qw-embedded
p-i-n GaN NRs

NO (100 ppm) 35 ◦C Yes 115 %

Khan et al.
[6]

2020 GaN NWs ZnO
functionalized

SO2 (10 ppm) Room Temp. No 12.1 %

Reddeppa
et al. [12]

2021 GaN NRs
H2O2 treated

NO (100 ppm) 50 ◦C Yes 30.21 %

Shin et al.
[1]

2021 GaN NWs with
graphene chan-
nel

NO2 (100 ppm) Room Temp. Yes 23 %

3with diameters down to 400 nm
4non-complete
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1 Introduction

The sensor response values in table 1.1 represent the peak sensitivity that can be found
in the individual publications. In general the time dependence of sensor responses don’t
show on/off-characteristics, instead peak levels need to be built up by time as chemical
reactions between sensor and gas species take place. Furthermore measurements at
different operation temperatures show deviating responses.

1.2 Methodology

Throughout this thesis work the electrical behavior of organic-inorganic hybrid gas sensors
based on GaN shall be numerically analyzed with the aim of making the sensor behavior
predictable and in order to identify optimum sensor concepts. Starting from purely
resistive GaN nanowire sensors, different approaches such as diodes, core/shell-structures
or transistors shall be investigated. For each case the influence of geometrical dimensions
as well as of different doping profiles might be critical parameters on which the studies
will focus. Two different sensor approaches are shown exemplary in the figures 1.9 and
1.10.

1.2.1 Sensing Principle

The sensing principles of the devices to be analyzed are based on a resistance change
caused by docking gas molecules on the functionalized semiconductor surface introducing
either a charge transfer between the two systems or via electrostatic effects. Apart from
pure resistors, a PN-junction in reverse bias or a transistor approach could be used, where
adsorbed gas molecules lead to a carrier inversion, building up a small conductive channel
close to the surface. While diode or transistor based devices should offer a sharper sensor
response combined with a lower energy consumption, for sensors based on pure nanowire
resistors a higher linearity should be expected.

A visual idea of the sensing principle can be gained from figure 1.1, assuming the depicted
nanowires to form an array of resistive sensors. These resistors are electrically contacted
on the bottom and the top and carry functional molecule groups on the surface where
surrounding gas molecules can dock. The functional groups are used for a Fermi level
adjustment in order to provide selectivity regarding certain gas species. Figure 1.2
further elucidates the sensing principle. As can be seen here, gas molecules docking
on the functional group increase the nanowire resistance by a charge transfer from
the nanowire to the functional group / gas system and the resulting carrier depletion
in the semiconductor. The sensor can be reactivated by breaking up the bond using
UV-illumination. For other gas species or a different semiconductor - functional group
constellation also a charge transfer in the opposite direction would be possible which
would result in a reduction of the nanowire resistance. The Fermi level position of the
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1.2 Methodology

Figure 1.2: Sensing principle [2]

semiconductor - functional group system is the determining parameter for an occurrence
and the direction of the charge transfer, as shall be shown by figure 1.3. In the example

Figure 1.3: Relative position of gas LUMO and HOMO states [2]

shown in figure 1.3 only NO and NO2 would have triggered as sensor response (with
opposite sign), since only for these two gases the Fermi level of the semiconductor -
functional group system lies close to the gases HOMO or LUMO respectively. This
scenario shows how the Fermi level adjustment is critical for selective sensing.

9
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1.2.2 Modeling

The part of numerical modeling will be undertaken by the use of the proprietary semi-
conductor drift-diffusion solver Quatra (QUAntized TRAnsport) which implements the
Scharfetter-Gummel box method for the discretization of the electron/hole continuity
equations and the Poisson equation. Together those three equations form a coupled
system of non-linear differential equations commonly called the drift-diffusion model.
When combined with additional models for recombination processes (especially for re-
combination at surface) and mobility dependencies (e.g. according to temperature,
doping and electric field strength), this model exhaustively describes carrier transport in
semiconductors without incorporated quantum structures like quantum wells, quantum
wires or quantum dots. The drift-diffusion model is given by the continuity equations for
electrons and holes and the Poisson-equation as follows:

q
∂

∂t
n=∇ · (−qµnn∇φ+ qDn∇n)−R

−q ∂
∂t
p=∇ · (−qµpp∇φ− qDp∇p) +R (1.1)

∇ · (ε∇φ) = −q(p− n+ND −NA + cs).

An explicit derivation of the drift-diffusion model will be given in the carrier transport
section 2.2 in chapter 2.
For the solution of quantized populations5 Quatra enables a FEM k · p- Schrödinger
solver. The coupling of bulk and quantized populations is given by the Poisson equation
and capture [16].

High-Field Mobility Model

At the beginning of this thesis work carrier mobilities could either be chosen region wise
constant or having a doping and temperature dependence according to the Arora model.
A new set of Arora parameters has been added to the material file in order to provide
an optimum representation for wurtzite GaN low field mobilities. The parameter set
originates from Mnatsakanov et al. [17] where a fitting of the Arora model for wurtzite
n/p-GaN according to experimental data is given. In order to represent carrier mobilities
accurately in the presence of high electric fields, two field dependent mobility models
have been implemented in the C++ source code of Quatra. Those new models can be
connected with the Arora model via its resulting low field mobility.

5Commonly needed for the simulation of optoelectronic devices like LEDs or semiconductor lasers.
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1.2 Methodology

The first high field representation of the carrier mobility is a model derived by Canali
et al. [18] in 1975. The Canali-model has been developed by fitting a formula for
the drift velocity according to experimental data taken from measurements in silicon.
Therefore this model is commonly used to calculate the high field mobility in silicon
or semiconductors with band structures alike [19]. For the field dependent mobility
according to the Canali-model the low field mobility µlow is multiplied with a factor
which decays for an increasing electric field strength E

µ(E) = µlow
1(

1 +
(
µlowE
vsat

)β) 1
β

. (1.2)

Therefore the drift velocity of the carriers vd, which is given by the product of the mobility
and the electric field strength

vd = µ(E)E (1.3)

can be separated into two regimes.

In the low field regime the term
(
µlowE
vsat

)β
is negligible, hence the mobility is field

independent and simply given by the low field mobility.

vd ≈ µlowE (1.4)

The drift velocity is directly proportional to the electric field strength, resistors driven in
that regime behave according to the Ohmic law.

In the high field regime the previously neglected term dominates the denominator of
eq. (1.2). In this case the drift velocity approaches the saturation velocity vsat

vd ≈ vsat. (1.5)

In figure 1.4 the dependence of the drift velocity on the electric field strength according
to the canali model is illustrated. The interval in the double logarithmic plot where
the slope of the curve is one corresponds to the linear low field regime. After the linear
regime the drift velocity saturates against the value of vsat

11
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Figure 1.4: The drift velocity depicted over the electric field strength calculated with the
Canali-Model. Example values for silicon at 300 K taken from [18]. β = 1.3,

µlow = 1450 cm2

Vs , vsat = 1.05 · 107 cm
s

The simplicity of the Canali formulation doesn’t allow more complicated drift velocity-field
characteristics as needed for an accurate fitting of the mobilities in GaN. Drift velocity
data obtained by Monte Carlo simulations [20] show a pronounced peak well above
the saturation velocity followed by a negative differential velocity in III/V-compound
semiconductors [21]. Therefore the so-called Transfered-Electron model [19, 21–23] is
commonly used for those kind of semiconductors. The here given extended form of the
Transfered-Electron model has been suggested by several studies for an optimum fitting
for wurtzite GaN [21,23,24]

µ(E) =
µlow + µ1

(
E
E0

)α
+ vsat

E1

(
E
E1

)β−1

1 + γ
(
E
E0

)α
+
(
E
E1

)β . (1.6)

In figs. 1.5 and 1.6 the Transfered Electron model is compared to the Canali model
evaluated for wurtzite GaN. The double logarithmic plot in 1.5 gives a good estimate of
the linear regime of the mobility, while the linear plot in 1.6 elucidates the characteristics
of the peak regime. The comparison reveals how the strictly increasing Canali model
fails to represent the velocity peak while predicting a more extended linear regime with
the parameter set given. The Canali model also shows a much earlier saturation (below
200 kV

cm compared to 600 kV
cm of the TE-Model). Both models are in a good agreement for

field strengths below 40 kV
cm . All parameter values for figs. 1.5 and 1.6 have been taken
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1.2 Methodology

from [20] except for the the β-parameter of the Canali model (βcanali) and the low field
mobility6 which originates from [21].

Figure 1.5: Double logarithmic plot of the
drift velocity-field characteristic.
Comparison of the Canali and
the Tranfered Electron model
for wurtzite GaN. Parameter
set-up: µlow = 830 cm2

Vs , µ1 = 0,
α = 1, β = 7.2, βcanali = 1.7,
γ = 6.2, vsat = 1.9 · 107 cm

s

0 200 400 600 800
0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

E [kV/cm]
v

d
[c

m
/s

]

Canali
Transfered Electron

Figure 1.6: Linear plot of the drift velocity-
field characteristic. Like in
fig. 1.5 again a comparison of
the Canali and the Tranfered
Electron model for wurtzite
GaN using the same parameter
set-up. Here the focus is put on
the hundred kV

cm regime.

Surface Model

In order to use Quatra to simulate the behavior of a gas sensor, the changes on the
electronic structure introduced by docking gas molecules at the nanowire surface need to
be represented in the drift-diffusion model eq. (1.1). For this purpose Quatra provides a
surface trap model that takes care of charge conservation and the fact that charges act
as sources of electric fields equally. On the one hand this is realized by a recombination
term based on a Shockley-Read-Hall model [25,26] entering the continuity equations in
the drift-diffusion model [27–29]

Rs =
vsnvsp(np− nT0pT0)

vsn(n+ nT0) + vsp(p+ pT0)

= Ns
CnCp(np− n2

i )

Cn(n+ nT0) + Cp(p+ pT0)
. (1.7)

Here n, p are the local carrier densities and ni is the intrinsic carrier density, which
according to the mass-action-law [30] is given by the square root of the product of

6Assuming a doping concentration of 7 · 1016 cm3 at 300 K.
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the equilibrium carrier densities. Ns represents the density of the surface traps. The
expressions

vsn = NsCn

vsp = NsCp (1.8)

are the surface recombination velocities of electrons and holes respectively, with Cn

and Cp being capture parameters given by the product of the thermal velocity and the
respective capture cross sections

Cn = vthσn

Cp = vthσp. (1.9)

Here Cn represents the probability that an electron from the conduction band is captured
by a trap while Cp stands for the probability of a hole captured from valence band.
The densities nT0 and pT0 can be expressed by

nT0 = ni exp(
ET − Ei

kBT
)

pT0 = ni exp(
Ei − ET

kBT
) (1.10)

where ET and Ei are the regarding trap and the intrinsic energy levels [28]. Those
densities can be seen as carrier densities when the Fermi level would fall together with
the trap energy level [25].

On the other hand one has to consider that an occupied acceptor trap level generates a
negative charge while an unoccupied donor trap level generates a positive charge7

csA = −NsAfT

csD = NsD(1− fT), (1.11)

where fT ∈ [0, 1] denotes the trap level occupancy factor. In thermal equilibrium the
neutrality condition demands that the surface charges are compensated by counter charges
in the semiconductor bulk. Due to this charge accumulation a gradient of the potential
is introduced in the surfaces region, leading to a potential difference between the surface
and the inner bulk material. This effect is taken care of by Quatra’s trap charge model by
offering an occupancy factor in correspondence to eq. (1.7) yielding trap charge densities
of

csA = −NsA
Cnn+ CppT0

Cn(n+ nT0) + Cp(p+ pT0)

csD = NsD
Cpp+ CnnT0

Cn(n+ nT0) + Cp(p+ pT0)
(1.12)

7The surface charges densities are given normalized to the elementary charge here, since the elementary
charge is already considered as a factor in 1.1.
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1.2 Methodology

and entering them via the surface charge term cs into Gauss’s law8.

In addition to this trap level induced surface charge (or also used singularly) an arbitrary
constant charge can be impressed at every surface. Quatra understands a surface to be
every intersection of two different materials [27]. Such a constant surface charge can for
example be used to model ions that are docking at the nanowires, and hence introducing
a charge to the surface, but do not participate in any kind of charge transfer. This would
be a common scenario for gas molecules docking at oxidized surfaces, where the oxide
layer prevents any charge transfer. Altogether the surface charge term to be considered
in Gauss’s law is then given by [29]

cs = csA + csD + cconst. (1.13)

As can be seen from eqs. (1.7)–(1.12) the necessary parameters to describe the model
completely are the trap densities NA,s/D,s, their corresponding trap levels ET and the
electron and hole capture parameters Cn/p. These trap charge expressions go along very
well with the charge transfer mechanisms according to an alignment of HOMO/LUMO
states with the semiconductor Fermi level as postulated by Hoffmann et al. [2]. Therefore
the given surface trap model gives rise to be a promising approach for the representation
of the surface effects to be analyzed.

However the needed information for total trap density and energy trap levels in the
semiconductor-amine-gas system is still missing.

To this end atomistic Density Functional Theory (DFT) calculations might be needed
in order to determine the energetic positions of the gas molecules HOMO and LUMO
when docked to the functional group at the semiconductor surface. Subsequently these
results could be incorporated in the above trap model to simulate the behavior of the
sensor device. Figure 1.7 shows an exemplary result for the density of states for gained
by DFT calculations carried out at the Fraunhofer IWM Freiburg for ZnO nanowire
sensors. The gaps in the valence band arise from OH-groups on top and on the bottom of
the semiconductor as can be seen on the right side of fig. 1.8. The states introduced by
docking gas molecules can be modeled via a fixed energy level (Dirac shaped distribution)
see 1.8. Moreover DFT calculations enable the determination of charge transfer inbetween
the semiconductor/functional group/gas molecule system.

In fig. 1.8 the negative region on the z-axis represents the semiconductor material. Hence
integration over this region yields the net charge transfer from the semiconductor material
to the SAM/gas system for a single molecule docked to the system. Nonetheless this
information is insufficient to describe the trap model as the probability for the capture
of gas molecules by the SAMs as well as the feasible SAM density remain uncertain.
Therefor the total trap density has to be fitted against experimental results.

8Which is given by the third equation of 1.1
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Figure 1.7: Result of DFT calculations for the density of states. Here exemplarily shown
for a system of ZnO, functional group and NO2. [31]

Figure 1.8: Charge transfer from ZnO to gas molecule. Red fillings indicate charge
accumulation, blue fillings indicate charge depletion [31]
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Geometry generation

Geometry development including doping definition and meshing is realized by using
Sentaurus Structure Editor which expects script files written in the programming language
Scheme as input from which it can create output files in the DF-ISE format that is
necessary for usage in Quatra.
In the figures 1.9 and 1.10 an example of a cylindrical nanowire resistor and a NPN
transistor shall be shown respectively. In the left picture the surface charge is positioned
right at the interface of the semiconductor and the (light blue) air volume, while in the
right picture it is placed on top of thin oxide layer (air volume not shown here).

Figure 1.9: Current Distribution
in a nanowire sensor

n

n

p

Figure 1.10: NPN transistor with depicted
doping profiles

1.3 Challenges

Fermi level pinning at the nanowire surface

Nanowires offer an extraordinarily large surface-to-volume ratio compared to bulk devices.
While on one hand this property makes nanowires a promising choice for sensing purposes,
on the other hand it strongly demands to put a focus on undesired surface effects
throughout the design of such nanowire sensors.
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At semiconductor surfaces the electronic structure is varied from that within bulk. This
results from the abrupt ending of the crystal periodicity and is due to interactions of surface
atoms with their surrounding environment. Dangling bonds originating from unsatisfied
surface atoms as well as adsorbed molecules can introduce surface states. Depending on
the nature and the densities of these surface states the Fermi level can be pinned at the
surface leading to a space charge region in the vicinity of the surface [29,32,33].

It is fairly obvious that in common semiconductor manufacturing, crystals in which the
Fermi level is determined by surface defects instead of by doping concentrations are
highly undesirable, as they would not show the expected semiconducting behavior. For
gas sensing purposes on the other hand, devices in which the position of the Fermi level is
mainly dependent on surface conditions would be promising to offer extraordinarily high
sensing responses. Simple nanowire resistors (or better insulators) for example, could
show a transistor-like behavior when additional surface states introduced by docking gas
molecules shift the Fermi level towards the conduction band edge, and hence opening up
a conducting channel in the nanowire. On the other hand, to sensors that shall offer a
high linearity, an inherent Fermi level pinning of the nanowire crystal could be a major
obstacle.

D(E) x

E

Ec

Ev

EFS

EFB

D(E) x

E

Ec

Ev

EF

Figure 1.11: When the Fermi level at the surface is pinned due to a high density of
surface states the bands in the bulk need to bent in order to equalize the two
different Fermi levels. This figure which describes the process qualitatively
was taken from [32].
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Several experimental and theoretical studies [33,34] found the Fermi level to be pinned
at the GaN m-plane surface while some others found the opposite [35–37]. Thus the
literature study gives rise that the electronic structure at the m-plane surface strongly
depends on the growth conditions. The following table presents an overview of the
reviewed articles regarding Fermi level pinning including their key messages.

Table 1.2: Fermi level pinning for non-polar GaN: Literature overview

Source Fermi
Level
Pinning

Method Key Message

[34, 38] Yes DFT Fermi level gets pinned at 0.5 - 0.7 eV below conduc-
tion band minimum by unoccupied gallium dangling
bonds

[33] Yes IV/
SPC/
PL

Fermi level is pinned at nanowire sidewall / Deoxi-
dation unpins the Fermi level

[35] No DFT Occupied N-derived surface state lies just below
valence band maximum and the empty Ga-derived
state lies above conduction band minimum

[36] No STM/
STS/
DFT

No surface states in the band gap due to dangling
bonds. No Fermi level pinning for defect concentra-
tions < 2 · 1012 cm−2

[37] Yes STM/
STS

N and Ga derived dangling bond surface states are
outside the band gap. Fermi level pinning found
due to high density of defect states, but no pinning
because of surface states

For a deeper understanding of the Fermi level pinning in the context of nanowire sensing
section 2.4 provides a theoretical example for n-doped cylindrical nanowires.
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With the insights from section 2.4 several consequences of a Fermi level pinning at
the surface in respect of sensing purposes can be concluded, given in the following
enumeration9:

1. Fermi level pinning might limit the minimum diameter for the nanowires when the
sensor design is based on permanent current flow. On the other hand nanowires
around the critical diameter could be promising to be used as transistor sensors,
offering a very large sensor response. Therefore the functionalization of the surface
need to work in a way that adsorbed gas molecules influence the critical diameter and
hence opening up or closing the inner channel. Sensors based on closed channels10

are furthermore desirable in respect of energy consumption.

2. The minimum diameter depends on the doping concentration. For example using
eq. (2.182) in order to estimate the critical diameter, GaN wires at a pinned surface
Fermi level of 0.55 eV below the conduction band minimum11 show critical diameters
of ≈ 80 nm and ≈ 49 nm for an n-doping of 6.25 · 1017 cm−3 and 1.8 · 1018 cm−3

respectively [33].

3. The electric field accompanied by the potential barrier of the space charge region
confines electrons in the center of the wire while generated holes would be driven
towards the surface. Hence the recombination of electrons with surface traps or
holes accumulated at the surface will be impeded.

4. The wire conductivity is not simply proportional to the total diameter but to
(d− dcritical)2.

5. Space-charge-limited currents might occur, as described below in the following
subsection.

6. Only for nanowires having a diameter equal or larger than the critical diameter the
pinned Fermi level at the surface designates the height of the potential barrier. In
wires below the critical diameter the scarcity of volume carriers limits the built up
barrier. Instead the Fermi level drops, meaning a reduction of available carriers in
the conduction band.

7. Heat dissipation limited to a small channel might have a negative influence regarding
device degradation.

This list elucidates the importance of a proper knowledge of the condition of the func-
tionalized in respect of device simulation.

9without claims of completeness
10to be opened up by docking gas molecules
11A value numerically predicted by [34,38] as well as experimentally found by [33].
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Space-charge-limited currents

Another effect found in various studies [33,39,41] for thin and low doped nanowires, is
that the voltage-characteristics is dominated by space-charge-limited (SCL) currents.
In [33,39] the occurrence of SCL currents was shown to be a consequence of the Fermi
level pinning at the surface.

In all studies mentioned above, nanowires having a vertical length of around 1 µm have
been used at voltages from 0 to a few volts. Therefore the occurring electric field strengths
must have lain well below 10 MV

m , hence the mobility can be seen independent of the
electric field strength. In contrast to an expected ohmic behavior, SCL currents show a
quadratic dependency of the applied voltage in this field strength regime [30].

This gives rise to the assumption that sensor designs which desire a linear sensor response12

demand a sufficiently large combination of wire diameter and doping concentration.
Furthermore Fermi level pinning as a source of carrier depletion needs to be considered.

Oxidation of the nanowire surface

During the project phase our partners at TU Braunschweig indicated that the growth
of GaN nanowires with pristine surfaces would probably not be feasible. Instead the
formation of an oxide layer at the GaN surface was observed for the fabricated samples.
If so, the original sensor concept based on charge transfer between gas molecules and
semiconductor would not be possible anymore. Therefore a different strategy would have
to be found and additional simulations considering the oxide layer had to be carried out
accordingly.

Uncertainty factors due to surface functionalization

The trap charge density that is introduced to the semiconductor for certain amounts of
gas concentrations, which is needed for the prediction of the sensor response, is a factor of
uncertainty. The density of SAMs that can be placed on the nanowire surface and their
trapping cross sections regarding certain gas molecules would need to be known. Therefore
an iterative fitting procedure in order to match the simulation results with the practical
experiments might be necessary. Furthermore the strategy of incorporating energy trap
levels taken from results of DFT-simulations does not provide mutual interactions between
the nanowire-SAM/SAM-gas systems in a self-consistent manner.

12for example for sensors that shall give information on gas concentrations instead of purely detecting
the occurrence of certain gases
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1.4 Outline

This thesis is organized as follows. In the first part of Chapter 2 basics of crystalline
structures are introduced while the second part of Chapter 2 is devoted to the fundamentals
of semiconductor physics. Governing equations of carrier transport are explicitly derived
from basic axioms leading to the the drift-diffusion-model and recombination processes
needed for the surface model. Chapter 3 introduces the simulation set-up and presents the
results for different exemplarily chosen experiments. A conclusion of the results is given
in chapter 4. The Appendix contains a highlighted overview of the parameters for the new
high field mobility models, as well as the used material file with the complete parameter
configuration. Furthermore example geometries for the different device structures and a
simulation command file can be found here.

22



2 Fundamentals of Semiconductor Physics

2.1 Semiconductor/GaN Fundamentals

2.1.1 Crystal Structures

Ideal crystals are characterized by a periodically arrangement of identical atomic groups.
The periodicity can be described mathematically by an invariance regarding a spatial
translation vector

T =

3∑
i=1

uiai, ui ∈ Z. (2.1)

Here ui are integers and ai represent translation vectors for the i-th primitive base vector,
meaning that a particle that is getting dislocated by the translation vector T finds the
exactly same conditions as before the translation. So the physical properties of the crystal
can be described by the properties of a primitive cell respecting periodic boundaries. A
primitive cell can be defined as the parallelepiped formed by the three base vectors ai.
Figure 2.1 shows an example with the base originated from the center of a lattice point [42].

a1

a2

a3

Figure 2.1: Visualization of a primitive cell [42]

The volume of such a primitive cell is then given by the parallelepiped product

Vc = |a1 · (a2 × a3)| . (2.2)

23



2 Fundamentals of Semiconductor Physics

Wigner-Seitz Cell

Another way to define a primitive cell is the so-called Wigner-Seitz cell. Here the volume
of the primitive cell is given by the set of points having the least distance to a chosen
lattice point compared to any other lattice point. In order to construct such a cell, in a
first step, for an arbitrarily chosen atom, one has to draw lines connecting all directly
neighboring atoms. Then the Wigner-Seitz cell is found for the smallest volume confined
by the intersection of bisector planes drawn perpendicular to each line [30]. The concept
is shown in 2.2 in 2D, where the bisector planes decay to bisector lines and the enclosed
volume to an area.

a2

a1

a2

a1

a2

Figure 2.2: Two examples comparing the generation a primitive cell by primitive base
vectors (red area) and the corresponding Wigner-Seitz cell (blue area) in 2D.

Just as for the primitive cells derived using primitive base vectors, whole crystal space
can be covered by connecting the primitive Wigner-Seitz-Cells.

Reciprocal Lattice

Since any physical property keeps the periodicity of the crystal lattice

f(R) = f(R + T), (2.3)

it is always possible to be expressed in terms of a Fourier series expansion

f(R) =
∑
G

cG exp(G ·R). (2.4)

Here the amplitudes cG have to fulfill c∗G = c−G for f(R) to be a real function. Besides
the identification of the amplitudes, vectors G have to be found in the way that the
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invariance regarding a translation T is kept. Therefore the primitive base vectors of a
reciprocal lattice are defined as

b1 = 2π
a2 × a3

a1 · (a2 × a3)
=

2π

Vc
a2 × a3

b2 = 2π
a3 × a1

a1 · (a2 × a3)
=

2π

Vc
a3 × a1 (2.5)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
=

2π

Vc
a1 × a2.

Obviously each reciprocal lattice vector is orthogonal to two of the primitive vectors of
the direct lattice

bi · aj = 2πδij . (2.6)

Now every lattice point in the reciprocal lattice can be expressed by a reciprocal vector

G =
3∑
i=1

vibi (2.7)

with vi being integer numbers. Using such a reciprocal lattice vector in the Fourier
expansion for a translation in the direct lattice, we get

f(R + T) =
∑
G

cG exp (G · (R + T)) =
∑
G

cG exp(G ·R) exp(G ·T) (2.8)

where the argument of second exponential function yields a multiple integer of 2π

exp(G ·T) = exp

(
(2π

3∑
i=1

uivi)

)
= 1 (2.9)

since ui and vi are given as integers. Hence, we get f(R + T) = f(R) as demanded by
the lattice periodicity.

For the sake of visualization a simple cubic direct lattice shall be taken as an example.

a

a1

a2

a3

Figure 2.3: Simple cubic lattice [42]
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Here, all primitive vectors of the direct lattice have the same length of the lattice
constant a

a1 = ax̂

a2 = aŷ (2.10)

a3 = aẑ.

The volume of the primitive cell is then given by

Vc = a1 · (a2 × a3) = a3 (2.11)

and the primitive translation vectors of the reciprocal lattice are given via eq. (2.5)

b1 =
2π

a
x̂

b2 =
2π

a
ŷ (2.12)

b3 =
2π

a
ẑ,

enclosing a likewise cubic volume of the reciprocal cell

Vrc =
(2π)3

Vc
=

(
2π

a

)3

. (2.13)

The primitive Wigner-Seitz cell of the reciprocal lattice is called first Brillouin zone [42].
It’s borders cut the reciprocal lattice vectors at

±1

2
b1 = ±π

a
x̂

±1

2
b2 = ±π

a
ŷ (2.14)

±1

2
b3 = ±π

a
ẑ.

The Crystal Structure of GaN

Realistic semiconductor crystals do not crystallize in a simple cubic lattice. For example
Silicon and Germanium crystallize in a diamond lattice, which can be seen as the
interpenetration of two face-centered cubic lattices [30]. In contrast to those single-
element semiconductors or most III-IV compounds which crystallize in the zincblende
structure, GaN has got a wurtzite1 crystal structure. In the wurtzite structure every
atoms four nearest neighbors are equidistantly distributed forming tetrahedrons [30] as

1Zincblende structure is also possible
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can be seen in 2.4. The corresponding Brillouin zone for a wurtzite crystal is also shown
in this figure.

a

c
Γ

kx

ky

kz

Figure 2.4: Left: GaN wurtzite crystal with lattice constants ‘a‘ and ‘c‘. Right: Brillouin
zone of the GaN wurtzite structure [30].

2.1.2 Band Structure / Density of States / Fermi Distribution / Carrier
Densities

The energetic conditions of electrons bound to a nucleus by Coulomb force can be
described by the Schrödinger equation, which has been postulated by Erwin Schrödinger
in 1926 [43]. Here the state of the particles is not given in a deterministic manner
but as wavefunctions holding the information of the probability for the occupation of
a certain position2 and momentum. In a crystal, the valence electrons are affected by
a periodic potential caused by the Coulomb forces of a periodic arrangement of atoms.
The proximity of the neighbouring atoms causes overlapping wavefunctions (or orbitals),
so that the probability to find one particular electron is not limited to a certain atom
but spans over the whole crystal. This enables the crystal to be conductive. In such
an arrangement the energy states get separated into bands of allowed quasi-continuous
energies interrupted by gaps of forbidden states. Approximate solutions for these band
structures can be found by solving the Schrödinger equation for an one electron problem
applying the later introduced Bloch theorem [30,44,45]. Since the Schrödinger Equation
is a postulate, it cannot be derived from any other fundamental physical law. Nonetheless
there are ways to get an intuitive access to it [44, 46]. Therefore the total energy of

2The square of the wave functions can be interpreted as the probability of presence. Those regions
which have a none vanishing wavefunction, meaning that an electron could be found with a certain
probability, are also called orbitals.

27



2 Fundamentals of Semiconductor Physics

an electron is considered to be consisting of the kinetic energy of the particle and the
potential energy arising from external sources.

E = Ekin + Epot (2.15)

For a non-relativistic particle the mass can assumed to be constant and the kinetic energy
reads

Ekin =
mv2

2
=

p2

2m
. (2.16)

The potential energy depends on the position in the (in general time dependent) force
field and shall be denoted as Epot = V (R, t). Using this notation and multiplying the
total energy with the desired wave function yields

EΨ =
p2

2m
Ψ + V (R, t)Ψ. (2.17)

Assuming the solution of the wave function for a free electron which are in the form of
plane waves

Ψ(R, t) = Ψ0e
−(ωt−k·R) = Ψ0e

− 
~ (Et−p·R), (2.18)

using E = ~ω and the crystal momentum p = ~k, where ~ = h
2π is the reduced Planck

constant, and analyzing the argument of the exponential function it gives rise that the
energy and momentum terms in 2.17 can be substituted by time and spatial derivatives
of the wave function. Evaluation of the derivative gets

∂

∂t
Ψ(R, t) = −E

~
Ψ(R, t) => EΨ = ~

∂

∂t
Ψ (2.19)

and

∇ · ∇Ψ(R, t) = ∆Ψ(R, t) = −p
2

~2
Ψ(R, t) => p2Ψ = −~2∆Ψ. (2.20)

Substituting 2.19 and 2.20 into 2.17 one yields the space and time dependent Schrödinger
Equation

− ~2

2m
∆Ψ(R, t) + V (R, t)Ψ(R, t) = ~

∂

∂t
Ψ(R, t). (2.21)

Since the potential in semiconductor crystals is caused by the atomic cores and hence it
can be assumed to be time invariant, here the potential shall be considered only having
a spatial dependence. Assuming that the frequencies which with the excited particles
decay from one quantum state to another are slow compared to the eigenfrequencies of
the quantum states, which is generally the case [44], the Schrödinger equation can be
solved stationary to give insight to the energetic distribution of carriers. In this case the
wavefunctions are having sharp energies and hence are given by harmonic oscillators with
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frequencies of wn = En
~ and amplitudes of only spatial dependence. Here the Schrödinger

equation can be simplified to3

− ~2

2m
∆ψ(R, t) + V (R)ψ(R, t) = ~

∂

∂t
ψ(R, t)(

− ~2

2m
∆Ψ(R) + V (R)Ψ(R)

)
e−


~Et = EΨ0e

−k·R︸ ︷︷ ︸
Ψ(R)

e−

~Et

(
− ~2

2m
∆ + V (R)

)
︸ ︷︷ ︸

Ĥ(R)

Ψ(R) = EΨ(R). (2.22)

So, in the stationary case, the wave functions Ψ are described as eigenfunctions of the
so-called Hamiltonian operator Ĥ with corresponding eigenvalues E.

ĤΨ(R,k) = EΨ(R,k) (2.23)

As can be seen from eq. (2.22) the Hamiltonian operator is the sum of the operators for
kinetic and potential energy and hence it serves as the operator of total energy.

The solution of this eigenvalue equation for a free particle (constant potential energy)

∆Ψ(R) = −2m

~2
(E − V0)Ψ(R) (2.24)

is obviously described by a homogeneous Helmholtz equation(
∆ + k2

)
Ψ(R) = 0 (2.25)

with the crystal momentum4

k =

√
2m(E − V0)

~
. (2.26)

Solutions of this equation can be found as plane waves of the form eq. (2.18), having a
total energy of

E =
~2k2

2m
+ V0. (2.27)

For the 1D issue of a single particle being confined in-between infinitely high potential
walls, a so-called potential well, the wave functions must vanish outside of the well.

3This result can also be found by a separation of variables, so that a general solution of the time
dependent Schrödinger equation could be generated as a superposition of weighted stationary solutions
multiplied with their corresponding oscillators.

4Since the total energy must be greater than the potential energy E − V0 > 0, the solutions must
be non-attenuated, meaning, infinitely spatial distributed plane waves, having a sharply defined
momentum or energy according to the Heisenberg uncertainty principle.
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Assuming again a constant potential within the well, it becomes obvious that the
solutions of the wave functions here are also given in the shape of plane waves. In order
to be continuous those waves must also be zero at the well‘s borders, therefore solutions
are only possible as standing waves with half wave lengths being multiple integers of the
well thickness l = nλ2 . Using λ = 2π

k and eq. (2.26) to express this finding in terms of the
energy

l = n
λ

2
= n

π

k
= n

~π√
2m(E − V0)

we find the allowed energies to be quantized with energy eigenvalues of

En =
1

2m

~
nπ

l︸︷︷︸
p=~k


2

+ V0. (2.28)

This equation gives some interesting insights into the conditions of the energy states in a
quantum well. First of all, the energy level of the ground state will never fall together

with the bottom of the well, but will always be shifted up by an energy of 1
2m

(~π
l

)2
.

The kinetic energy (or the crystal momentum) of subsequent eigenstates leap by energy
quantums proportional to the square of their quantum numbers. Furthermore the crystal
momentum is reciprocally dependent of the square of the quantum well‘s width kn ∝ 1

l2
,

which means that narrow quantum wells will lead to eigenstates of higher kinetic energy.
The broader the well gets the more wavelengths fit into it and hence the eigenstates move
closer together, moreover the ground states moves closer to the well‘s bottom. Even
though this gives rise that for an infinitely large well the quantization of the energy states
vanishes, the solution does not transit to the solution of a free particle, since still the
boundary condition of a vanishing field would have to be fulfilled in infinity. Figure 2.5
illustrates these solutions of the stationary Schrödinger equation.
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V =∞

0
V = V0

l

E1

E2

E3

Figure 2.5: First three allowed energy states within a infinitely high quantum well with
corresponding wave functions and the probability of presence depicted as
shaded areas. Here dark areas represent spots of high probability, completely
white areas stand for a probability of zero.

Bloch Theorem

The calculation of energy states in a semiconductor crystal using realistic potentials is
difficult and requires the use of expensive computational methods. Nonetheless several
realistic physical properties of particles in a semiconductor potential can be found by
solving the stationary Schrödinger equation for a one electron problem. Here the Coulomb
forces among the valence electrons are neglected, hence the potential energy of the electron
solely arises from the periodically arranged atomic cores. In this case the potential energy
shows to have the periodicity of the unit cell [45]

V (R + Rl) = V (R), (2.29)

where Rl represents a lattice vector. The Bloch theorem states that the wave functions
for particles in such a periodic potential are given by the so-called Bloch functions [30]

Ψ(R,k) = un(R,k)e(k·R) (2.30)

where un and Ψ have the periodicity of the direct lattice

un(R + Rl) = un(R). (2.31)

The index n denotes the different eigenfunctions belonging to a fixed wave vector k [45].

Putting the Bloch functions into the stationary Schrödinger equation (2.22) and using
the vector theorem [47]

∆(ΦA) = Φ∆A + 2∇Φ · ∇A + A∆Φ
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one gets (
− h2

2m
∆− h2

m
k · ∇+

h2k2

2m
+ V (R)

)
un = En(k)un(R, k). (2.32)

Here the k dependence of the kinetic energy in the Hamiltonian identifies the possible
energy states as energy bands, as they are functions of the wave vector. In general an
eigenvalue equation like this allows multiple solutions for a fixed wave vector, resulting in
several bands of allowed energy states. This degeneracy is counted by the index n. For
energy states within the band gap eq. (2.32) demands complex wave vectors for which
the Bloch theorem is not satisfied. Those states are forbidden [45]. The bandstructure of
GaN can be seen in figure 2.6 .

Figure 2.6: The bandstructure of wurtzite GaN. [Source Ioffe Institute [48].]

2.1.3 Density of states and Fermi distribution in thermal equilibrium

The density of states D(E) represents the amount of energy states within the energy
interval E + dE allowed to be occupied by electrons. In 2.6 it can be seen that for a
sufficiently small momentum k the energy relation E(k) (also called dispersion relation)
at the Γ-Point still have the parabolic shape of the free electron solution5 eq. (2.27). In
this regime the particles in a semiconductor crystal still behave like free particles but
the influence of the periodic crystal potential changes the dispersion relation in some
ways. First by defining the energy to be zero at the maximum of the valence band, the
potential energy V0 becomes the energy of the conduction band minimum (representing
the band gap). Furthermore the curvature will be different compared to that of the
free electron solution. As can be seen by eq. (2.27) this curvature is determined by the

5For the highest valence bands (light holes and heavy holes) and the lowest conduction band.
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particle mass which can given by deriving E two times regarding k. Hence, with this
quadratic approximation the influence of the potential is already considered by a so-called
effective mass

m∗ = ~2

(
d2E

dk2

)
. (2.33)

So the E(k)-relation for an electron close to conduction band minimum can be approxi-
mated by the parabolic equation

E =
~2k2

2m∗
+ Ec. (2.34)

E

k

Ec

Figure 2.7: Illustration of the dispersion relation for valence and conduction band.

Because of the parabolic shape of the dispersion relation, valid k-vectors have to fullfill

k2 − 2m∗

~2
(E − Ec) = 0 (2.35)

⇒ k2
x + k2

y + k2
z − ρ2 = 0 (2.36)

hence for any energy level E they describe a spherical surface6 with radius

ρ = k =

√
2m∗(E−Ec)

~ .

6On the so-called Ewald sphere
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kz

ky

kx

kn

Figure 2.8: For energies lying in the conduction band (E > Ec), the states occupy a

spherical volume in k-space with radius kn =

√
2m∗(E−Ec)

~ [42].

The differential volume to accommodate additional states for an infinitesimal deviation
of the wave vector thus is given by spherical shells

dV = 4πk2dk. (2.37)

The differential increment of the number of states in such a shell is given by the shell
volume divided by the volume of a singular state

dN =
dV

Vs
. (2.38)

Since due to the crystal periodicity the components of the wave vector have to fulfill the
condition ki = ni

2π
Li

each state occupies a volume of [42]

Vs =
(2π)3

L3
=

(2π)3

Vc
. (2.39)

Integration over the whole spherical volume delivers the total number of states in k-space

N(k) =
Vc

(2π)3

ˆ

V

dV =
Vc

(2π)3

kˆ

0

4πk′2dk′

=
Vc

3(2π2)
k3. (2.40)

In order to get the number of states in energy space eq. (2.34) can be used to express the
crystal momentum in terms of the energy

N(E) =
Vc

3(2π2)

(
m∗

~2

) 3
2

(E − Ec)
3
2 .
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Deriving the number of states regarding the energy gives the rate

dN

dE
=

Vc

4π2

(
m∗

~2

) 3
2 √

E − Ec. (2.41)

As the density of states D(E) is defined as the volume related differential rate of the
number of states and the energy D(E) = 1

Vc

dN
dE , we get

D(E) =
1

4π2

(
m∗

~2

) 3
2 √

E − Ec. (2.42)

Carrier densities

The density of states can be used to determine the carrier concentration within a
semiconductor. Therefore each state needs to multiplied with it’s occupation probability
and summed up over the corresponding energy band7. The electron density is then given
by

n =

∞̂

Ec

2D(E)f(E)dE (2.43)

where f(E) is the occupation probability for a state in the conduction band. Since holes
in the valence band occur if a state is not occupied, here the complementary function
1− f(E) can be used, resulting in

p =

Evˆ

−∞

2D(E)[1− f(E)]dE. (2.44)

Fermi Distribution

As fermions, electrons are liable to the Pauli exclusion principle. The energetic distribution
of those kind of particles in an electron gas is governed by Fermi-Dirac-Statistics

f(E) =
1

1 + exp
(
E−EF
kBT

) . (2.45)

Here, EF is the so-called Fermi energy, which is defined as the energy having an occupation
probability of 1

2 .

7An additional factor of 2 has to be added, in order to consider the two different electron spins allowed
per each state.
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Using Fermi-Dirac statistics, the electron concentration in the conduction band becomes

n =

∞̂

Ec

1

2π2

(
m∗

~2

) 3
2

√
E − Ec

1 + exp
(
E−EF
kBT

)dE (2.46)

Unfortunately there is no closed analytic expression for this integral, hence n has to be
evaluated numerical considering Fermi-Dirac statistics. For non-degenerated n-doped (or
intrinsic) semiconductors the Fermi energy lies below the conduction band energy. If the
distance from the conduction band is several kBT the exponential function becomes large
and approximately determines the denominator. In this case f(E) can be approximated
by Boltzmann statistics

f(E) = exp

(
−E − EF

kBT

)
. (2.47)
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D = −4kBT/Fermi

D = −4kBT/Boltzmann

D = −1kBT/Fermi

D = −1kBT/Boltzmann

D = +2kBT/Fermi

D = +2kBT/Boltzmann

Figure 2.9: Comparison of Fermi- and Boltzmann statistics for given distances ’D’ of the Fermi-level from the
conduction band edge (arbitrarily chosen at 3.4 eV). For a Fermi-level lying at distance of 4 kBT
below the band edge, Boltzmann statics approximates the Fermi probability function at the band
edge and above to a very good level. While at a distance of -1 kBT already a distinct deviation can
be seen, in the degenerated case Boltzmann statistic fails completely, having a probability much
greater than 1 at the band edge
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With Boltzmann statistics both carrier concentrations can be evaluated analytically, as
the solutions of eqs. (2.43) and (2.44)

n = Nc exp

(
−Ec − EF

kBT

)
(2.48)

p = Nv exp

(
−EF − Ev

kBT

)
. (2.49)

Intrinsic Carrier Concentration

In intrinsic semiconductors every electron in the conduction band originates from a hole
in the valence band. So it’s obvious that

n = p = ni (2.50)

and

np = n2
i = NcNv exp

(
− Eg

kBT

)
. (2.51)

Equation (2.51) is the mass action law [30] with the intrinsic carrier concentration ni

and the band gap energy Eg = Ec − Ev.

The equality of carrier concentrations enables the calculation of the Fermi energy for an
intrinsic semiconductor Ei using eqs. (2.48) and (2.49)

Nc exp

(
−Ec − EF

kBT

)
= Nv exp

(
−EF − Ev

kBT

)
(2.52)

⇒ Ei = EF =
Ec + Ev

2
+
kBT

2
ln
Nv

Nc
. (2.53)

The intrinsic Fermi level lies roughly in the middle of the band gap [30].

Non-Degenerated Semiconductor

For moderately n-doped semiconductors the Fermi energy lies several kBT below the
conduction band edge. So equations eqs. (2.48) and (2.49) can still be used to determine
the carrier concentrations and hence also the mass action law(2.51) stays valid. But now
the majority of electrons does not originate from the valence band anymore but from
ionized impurities, so that

n 6= p. (2.54)
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Unlike the carrier concentrations the total amount of negative charges have to be
compensated by positive charges. This leads to the charge neutrality condition

n+N−A = p+N+
D . (2.55)

With N−A and N+
D being the ionized acceptors and donors respectively. So considering a

purely n-doped crystal the charge neutrality demands

n = p+N+
D . (2.56)

Substituting p via eq. (2.56) in the mass action law n can be determined by a quadratic
equation

n2 −N+
Dn− n

2
i = 0

n =
N+

D

2
+

1

2

√
(N+

D )2 + (2ni)2 (2.57)

showing that n ≈ N+
D is a good approximation of the electron density if N+

D >> 2ni.
Assuming furthermore a complete ionization of the impurities N+

D = ND, the carrier
densities can be approximated by

n ≈ ND (2.58)

p ≈ n2
i

ND
(2.59)

With this approximation the Fermi energy would then result from Equation (2.48)

ND ≈ Nc exp

(
−Ec − EF

kBT

)
(2.60)

⇒ EF ≈ Ec + kBT ln
ND

Nc
(2.61)

In the case that incomplete ionization has to be considered, the amount of ionized
impurities can be determined by [30]

N+
D =

1

1 + gD exp(EF−ED
kBT

)
(2.62)

and

N−A =
1

1 + gA exp(EA−EF
kBT

)
(2.63)

respectively. Here ED and EA are the energy levels of the impurities, gD and gA consider
the band degeneracy8 and the fact that each state can be occupied by two electrons of
opposite spin. Assuming again that n ≈ N+

D the Fermi level can be calculated from

Nc exp

(
−Ec − EF

kBT

)
≈ 1

1 + 2 exp(EF−ED
kBT

)
. (2.64)

8In general gD = 2 and gA = 4 covering for a non-degenerated conduction band and two degenerated
valence bands (light holes and heavy holes) at k = 0, like it is true for most semiconductors [30]
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Non-Equilibrium Fermi Distribution

If the semiconductor is exhibited to an outer stimulus9, carrier concentrations leave
the condition of thermal equilibrium. Here, the probabilities of carrier generation and
recombination differ and the mass action law is not valid anymore. Since relaxation
processes are much faster than recombination processes each band can be seen as being
in equilibrium even though the two carrier species among each other are not. Therefore
two separate quasi Fermi levels10 can be defined. Using these auxiliary functions the
carrier concentrations can be determined in the previous manner, just substituting the
Fermi level by the corresponding quasi Fermi level.

n = Nc exp

(
−Ec − EFn

kBT

)
= ni exp

(
−Ei − EFn

kBT

)
(2.65)

p = Nv exp

(
−
EFp − Ev

kBT

)
= ni exp

(
−
EFp − Ei

kBT

)
. (2.66)

This turns the mass action law changes for carrier concentrations beyond thermal
equilibrium to

np = n2
i exp

(
EFn − EFp

kBT

)
. (2.67)

From eqs. (2.65) and (2.66) the quasi Fermi energies can be calculated for a known carrier
concentration [30]

EFn = Ec + kBT ln
n

Nc
= Ei + kBT ln

n

ni
(2.68)

EFp = Ev − kBT ln
p

Nv
= Ei − kBT ln

p

ni
. (2.69)

2.2 Carrier Transport

In order to model carrier transport within semiconductors, here the Drift-Diffusion-Model
will be used, where two equations for the temporal derivatives of the respective carriers
and a third equation for the spatial derivative of the potential form a coupled non-linear
system of equations. With this approach the macroscopic behavior of bulk semiconductor
devices can be described. Before deriving the Drift-Diffusion Model from Maxwell’s
Equations, the singular parts the model is build on shall be closer introduced.

9Like a light illumination or a bias voltage
10Also called imref (Fermi spelled backwards) functions.
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2.2.1 Drift Current

In the presence of an electric field, carriers in partially filled bands encounter an accel-
eration, where for moderate field strengths the resulting mean carrier drift velocity is
proportional to the acting field

vn = −µnE (2.70)

vp = µpE. (2.71)

Here, the constants of proportionality µn and µp are the so-called carrier mobilities for
electrons and holes. The reason for the negative sign in the electron drift velocity is
that physically electrons move in the direction opposite of the acting direction of the
electric field. Different scattering processes within the material, like phonon scattering,
scattering at impurities or carrier-carrier scattering impede the acceleration of electrons
and holes. This indicates that the mobilities show a distinct temperature and doping
dependency. Both mobilities together completely represent the material influence on the
conduction current. Considering eq. (2.70) in the drift current density, which is the sum
of the products of the electron and hole space charge densities and their corresponding
drift velocities

J = nqvn + pqvp = q(µnn+ µpp)E (2.72)

and comparing it to the Ohmic law

J = σE, (2.73)

one can see that the conductivity σ depends on the carrier densities and the corresponding
mobilities, holding the material properties.

σ = q(µnn+ µpp) (2.74)

In the case of sufficiently high electric fields, where the influence of the field on scattering
processes cannot be neglected, the linear relation for the mean drift velocity does not
hold any more and an additional field dependence of the mobilities must be considered.
Here, the Ohmic law is not valid. A detailed insight in the mobility field dependence and
different modeling strategies are given in section 1.2.2.

2.2.2 Diffusion Current

Unlike in metals, carrier densities in semiconductors devices can vary significantly in
space. For example in the case that carriers are locally excited due to an outer stimulus,
like a local light illumination, or if the semiconductor simply consists of differently doped
regions. A non-uniform carrier concentration causes equalization processes, where carriers
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diffuse from regions of higher concentration to those of lower concentration. Diffusion
processes introduce a current flow apart from the aforementioned drift current, not driven
by an electric field but purely by a concentration gradient

Jn(diff) = qDn∇n (2.75)

Jp(diff) = −qDp∇p. (2.76)

For the total current densities those diffusion currents superimpose with the drift currents.
The constants of proportionality Dn and Dp are the so-called diffusion coefficients. Since
they are describing a capability of the carriers to move, one can already assume that they
are depending on the carrier mobilities. In order to derive their mobility dependence11,
thermal equilibrium shall be considered. As it is shown in the next section, in thermal
equilibrium there is no net current flow, hence the drift and diffusion currents cancel
each other out

qµnnE = −qDn∇n. (2.77)

Where for the spatial derivative the integral from eq 2.43

∇n(R) = ∇
∞̂

Ec(R)

2D(E)fn(E)dE (2.78)

has to be considered again. Equation (2.78) identifies the spatial dependence of the
carrier density as a function of the energetic position of the conduction band edge. This
is because here the energetic distance from Fermi level is inherently covered. By this
energetic difference the occupation probability of the states in the conduction band is
designated, as shall be illustrated by the example of a simple diode formed by an intrinsic
and a N+-semiconductor region shown in fig.(2.10).

11For non-degenerated semiconductors given by the so-called Einstein relation [49]
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Ec

EF
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∆E(x1)

∆E(x2)

∆E(x3)

Figure 2.10: In this example three different regions for the carrier density can be identified
- the intrinsic (x < x1) and the N+ − region region (x > x3), where the
carrier density will be constant, though with different values each, and a
depletion region (x1 <= x <= x3) in which the energetic position of the
conduction band12 varies regarding the Fermi level.

Using the chain rule, equation 2.78 can be transformed to 13

∇n(R) = ∇n(Ec(R)) =
∂n

∂Ec
∇Ec. (2.79)

Now, the latter derivative in eq. (2.79) can be rewritten in terms of the electric field [30]

∇Ec = qE. (2.80)

Substituting these results into eq. (2.77), the equation of the equilibrium current reads

qµnnE = −q2Dn
∂n

∂Ec
E, (2.81)

where by comparing the coefficients of E and rearranging the terms, the diffusion
coefficient finally results in a general expression giving the relation between diffusion
coefficient and carrier mobility.

Dn = −µnn
q

(
∂n

∂Ec

)−1

= −µn
q

n

n′(Ec)
, (2.82)

As mentioned in section 2.1.3, assuming Fermi-Dirac statistics there is no closed ana-
lytic expression for the carrier densities represented by F(E c(x)). But again for carrier

12And hence the carrier density
13The continuous nature of D(E)fn(E) (for a 3d density of states) is sufficient to ensure a continuous

differentiable primitive integral in 2.78 according to the fundamental theorem of calculus. On the
other hand, this shows that the validity of the diffusion coefficients is limited to the continuum case
(a volume of (quasi-)continuous states), in comparison to quantum structures like wells or dots, where
the population is determined by capture rates.
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concentrations where the Fermi-level is substantially below the conduction band edge,
substituting Fermi-Dirac statistics with Maxwell-Boltzmann statistics delivers an ap-
propriate approximation for the carrier densities. In this case a closed expression for
diffusion coefficient can be found by evaluating

(
∂n

∂Ec

)−1

=

(
∂

∂Ec
Nc exp

(
−Ec − EF

kBT

))−1

(2.83)

=

(
− 1

kBT
Nc exp

(
−Ec − EF

kBT

))−1

=

(
− n

kBT

)−1

= −kBT

n
.

With this result eq. (2.82) simplifies and the electron diffusion coefficient can be calculated
directly from the electron mobility. Analogous treatment of the hole current yields a
similar result for the hole diffusion current, leading to the Einstein relation

Dn =
kBT

q
µn (2.84)

Dp =
kBT

q
µp. (2.85)

It has to be kept in mind that this simple relation from eqs. (2.84) and (2.85) is only
valid for non-degenerated semiconductors. If the Fermi-level is close to the conduction
band edge, or above, the diffusion coefficients must be evaluated numerically.

It might be worthwhile to notice the n
n(Ec)′ structure in eq. (2.82), meaning that by taking

the inverse and integration regarding Ec, a relation between conduction band bending
and carrier density can be found

n(Ec(R)) = n(Ec(R0)) exp(− µn
qDn

[Ec(R)− Ec(R0)])

= n(Ec(R0)) exp(
1

kBT
[Ec(R0)− Ec(R)]). (2.86)

This equation, stating an exponential decay of the electron density for an upward
bending conduction band, can be expressed by means of the electrostatic potential using
Ec = −qΦ + const [50]

n(Φ(R)) = n(Φ(R0)) exp(
q

kBT
[Φ(R)− Φ(R0)]). (2.87)
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The hole density can be derived in an analogous manner. From simply taking the
logarithm of (2.87) an expression for the potential can be found as

Φ(R) = Φ(R0) +
kBT

q
ln

(
n(R)

n(R0)

)
= Φ(R0) +

kBT

q
[lnn(R)− lnn(R0)] . (2.88)

According to eq. (2.88) the diffusion of carriers shapes a non-constant potential profile
throughout the semiconductor. With this varying potential an electric field goes along
which causes a drift current counteracting the diffusion current. The field strength that is
build up when thermal equilibrium is reached14, can be found by using E(R, t) = −∇Φ15

with eq. (2.88).

E(R) = −∇Φ(R0)︸ ︷︷ ︸
0

−kBT

q

∇ lnn(R)−∇ lnn(R0)︸ ︷︷ ︸
0


= −kBT

q
∇ lnn(R). (2.89)

Applying the insights from above to the example of a pn-junction in thermal equilibrium
(see fig. 2.11), one can draw the following conclusions:

Φ

Ec

p-Region n-Region

EFEv

x1

x2

x3

∆Φ32

∆Φ31 = Ubi

qUbi

Figure 2.11: Example built-in voltage

When the pn-diode is in thermal equilibrium, for electrons in the n-Region a potential
barrier ∆Φ31 = Φ(x3)− Φ(x1) = kBT

q ln n(x3)
n(x1) = Ubi has to be overcome in order to move

14Since thermal equilibrium was the key assumption for the derivation of the equations above
15Which is derived in eq. (2.129) in the next chapter.
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into the p-Region. This potential difference which is commonly called built-in voltage16,
is determined by the ratio of the carrier densities in the n- and p-Region. On the other
hand, in terms of the electron density eq. (2.87) states a exponential decay regarding the
potential difference17. For example comparing the electron densities of n- and p-Region
n(x1) = n(x3) exp( −qkBT

[Φ(x3)− Φ(x1)]) = n(x3) exp(−qUbikBT
).

Interestingly, the fact that we derived the above conclusions only from eq. (2.82) shows
that in a semiconductor consistent of only one material18, the condition of carrier densities
and potential in thermal equilibrium is purely governed by the ratio of carrier mobilities
and diffusion coefficients.

2.2.3 Total Current Density

The superposition of the drift and diffusion parts yield the total current density

J = Jdrift + Jdiffusion = q(µnn+ µpp)E + q(Dn∇n−Dp∇p). (2.90)

For spatially constant diffusion coefficients this formulation becomes especially handy,
since the current density now consists of the superposition of one drift vector and one
diffusion vector

J = q(µnn+ µpp)E + q∇(Dnn−Dpp). (2.91)

Current dependency on quasi Fermi level

Another formulation for electron and hole currents, which is especially useful for the
interpretation of the results in chapter 3, connects the current densities with the gradient
of their corresponding quasi Fermi level. As a restriction for the derivation Boltzmann
approximation shall be assumed. With this assumption the electron current density can
be determined from eq. (2.90) to be

Jn = qµnnE + µnkBT∇n. (2.92)

Using eq. (2.80) and Boltzmann approximation for the carrier densities outside of thermal
equilibrium eq. (2.65) this can be expressed as

Jn = µnn∇Ec + µnkBT ∇
(
Nc exp

(
EFn − Ec

kBT

))
. (2.93)

16or diffusion voltage
17when moving into a region of lower potential
18homojunction
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Equating the second gradient to

∇
(
Nc exp

(
EFn − Ec

kBT

))
= Nc exp

(
EFn − Ec

kBT

)
1

kBT
∇ (EFn − Ec)

=
n

kBT
(∇EFn −∇Ec)

the electron current density equation transforms to

Jn = µnn∇Ec + µnn∇EFn − µnn∇Ec

Jn = µnn∇EFn (2.94)

showing the current density to be directly proportional to the product of the carrier
density and the gradient of the quasi Fermi level. Similar treatment of the hole current
density equation delivers the analogous result

Jp = µpp∇EFp. (2.95)

This formulation of the current densities give further insight into the Fermi level. Since
in thermal equilibrium there are no net current densities Jn = Jp = 0, one can conclude
that

∇EF = 0, (2.96)

demanding a constant Fermi level throughout the whole semiconductor.

2.2.4 Drift-Diffusion Model

In order to find a dependency between the semiconductor current and charge density
(described by the so-called continuity equation), Maxwell’s equation shall be considered
where both quantities occur as source terms. The set of Maxwell’s equations defines a
coupled system of partial differential equations governing all macroscopic electromagnetic
phenomena [47].

∇×E = − ∂

∂t
B (2.97)

∇×H = J +
∂

∂t
D (2.98)

∇ ·D = ρ (2.99)

∇ ·B = 0 (2.100)

With the following vectorial and scalar field quantities:
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• E := electric field strength V/m

• D := electric flux density As/m2

• H := magnetic field strength A/m

• B := magnetic flux density V s/m2

• J := current density A/m2

• ρ := space charge density As/m3

The first equation is Faraday’s law of induction, stating that a temporal change in the
magnetic flux density causes a rotation of the electric field. The second equation is
Ampere’s Circuital law describing that an existing current density or a temporal change
in the electric flux density19 leads to a rotation of the magnetic field. Third and fourth
equation are the Gauss’ law for electric and magnetic charges respectively. Here the
electrical space charge density is qualified as source of the electrical flux density and the
magnetic field is determined to be source free (non-existence of magnetic monopoles).

In the condition of eqs. (2.97) - (2.100) Maxwell’s equations are under-determined.
Additional equations can be found in the so-called constitutive equations, that are
holding material information, connecting the electric and magnetic field strengths with
their according flux densities. Here, the case of linear, time invariant, isotropic and region
wise homogeneous materials shall be considered. The electric and magnetic flux densities
are determined by the permittivity ε0 and permeability µ0 of free space

• ε0 := 8.854 · 10−12 As/V m

• µ0 := 4π · 10−7 V s/Am

and the electric material polarization P arising from the dislocation of atoms and electrons
(also of ions and molecules) by an acting electric field within the matter

D = ε0E + P. (2.101)

With the former assumptions the material polarization depends linearly on the electric
field strength [51]

P = ε0(εr − 1)E (2.102)

19The term ∂
∂t
D, called Displacement current, was added by Maxwell to Ampere’s Circuital law resulting

in waves as solutions of the electric and magnetic field in the case of non-static fields.
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and hence also the flux density is directly proportional to the electric field strength

D = ε0εrE = εE. (2.103)

Here εr is the so-called relative permittivity covering the influence of material on the
flux density. For anisotropic materials the permittivity becomes a second-rank tensor
(dyad).

A relative magnetic permeability µr can be derived analogously, but, since only non-
magnetic materials (µr ≈ 1) are considered in this thesis work it shall be neglected here.
This leaves the relation between magnetic flux density and field strength to be

B = µ0H = µH. (2.104)

At the interface between two materials homogeneity is not valid anymore resulting in
non-continuous flux densities. This issue can be addressed by applying appropriate
boundary conditions. Those boundary conditions are a direct consequence of Maxwell’s
equations and can be derived by integrating them on an infinitesimal junction over the
interface [52]. Assuming a surface normal vector n̂ pointing from material 2 to material
1 we get

n̂×E1 = n̂×E2 (2.105)

n̂×H1 = n̂×H2 + Js (2.106)

n̂ ·D1 = n̂ ·D2 + ρs (2.107)

n̂ ·B1 = n̂ ·B2. (2.108)

The tangential component of the electric field and the normal component of the magnetic
flux density have to be continuous at the junction of an interface. The tangential
component of the magnetic field and the normal component electric flux density can
vary by a surface current density Js[A/m] and a surface charge density ρs[As/m

2]
respectively.

Special cases of the boundary conditions can be defined for interfaces between two
dielectric materials, where no surface charges or currents can be applied and hence all
vectorial field components have to be continuous at the junction

n̂×E1 = n̂×E2 (2.109)

n̂×H1 = n̂×H2 (2.110)

n̂ ·D1 = n̂ ·D2 (2.111)

n̂ ·B1 = n̂ ·B2 (2.112)
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and at the interface between a dielectric material and a perfect electric conductor (material
2)

n̂×E1 = 0 (2.113)

n̂×H1 = Js (2.114)

n̂ ·D1 = ρs (2.115)

n̂ ·B1 = 0 (2.116)

where all field values inside the perfect conductor have to vanish [52].

For all calculations in the following section a given sufficiently continuous differentiability
of the field quantities is assumed. With this assumption the continuity equation can be
derived by using Schwarz’s theorem. Taking the divergence of Ampere’s law eq. (2.98)
and considering the fact that the curl of a vector field is always divergence free, one
gets

∇ · (∇×H )︸ ︷︷ ︸
0

= ∇ · ( J +
∂

∂t
D)

0 = ∇ · J +∇ · ∂
∂t

D

0 = ∇ · J +
∂

∂t
∇ ·D

− ∂

∂t
ρ

(2.99)
= ∇ · J. (2.117)

With the definition of the divergence of a vectorial field F [53] as a closed integral over

surface enclosing an infinitesimal volume

∇ · F = lim
V→0

1

V

‹
F · dA, (2.118)

eq. (2.117) can be identified as a formulation of charge conservation.

− ∂

∂t
ρ=∇ · J = lim

V→0

1

V

‹
J · dA (2.119)

Charges can not simply vanish but a change in charge density needs to be caused by a
net inflow or outflow of current over the surface of the infinitesimal volume.

Now the current density J in the continuity equation shall be substituted by the semi-
conductor total current eq. (2.90). For reasons of clarity the single drift and diffusion
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parts will be reordered according to the electron current density and hole current density
respectively.

− ∂

∂t
ρ=∇ · (qµnnE + qDn∇n︸ ︷︷ ︸

Jn

+ qµppE− qDp∇p︸ ︷︷ ︸
Jp

) (2.120)

The charge density in a semiconductor can be expressed by [52]

ρ = q(p− n+ND −NA) (2.121)

where ND and NA are the amount of ionized donors and acceptors respectively. Assuming
them to be constant in time eq. (2.120) becomes

−q ∂
∂t

(p− n) =∇ · (qµnnE + qDn∇n︸ ︷︷ ︸
Jn

+ qµppE− qDp∇p︸ ︷︷ ︸
Jp

). (2.122)

Since charge conservation must be valid for each kind of carrier species separately, the
continuity equation can be decomposed into two equations, one for each kind of carrier.
Here one has to consider that in a semiconductor electron hole pairs can be generated or
electrons and holes can recombine. In eq. (2.122) this is considered by the difference of p
and n, since for each generated electron also a hole with equal amount of charge (but
opposite sign) is generated, leaving the total charge density unchanged. When separating
the equation this needs to be handled by adding a coupled net recombination rate R for
electron-hole pairs, with opposite sign in each equation

R = Recombination Rate−Generation Rate.

After the separation for the two different carrier species and adding of the net recombi-
nation rate we get the so far decoupled equation system

q
∂

∂t
n=∇ · (qµnnE + qDn∇n)−R (2.123)

−q ∂
∂t
p=∇ · (qµppE− qDp∇p) +R. (2.124)

It can easily be seen that the summation of eqs. (2.123) and (2.124) results in the original
continuity equation (2.122).

Now in this formulation each equation depends on the unknown and not independent
vectorial electric field distribution. With the electric fields vector components the equation
system has five unknown variables for only two equations. In order to derive an equation
to determine the electric field, Maxwell’s equations shall be revisited. Because of the
divergence free character of a rotational field, from the Gauss law for magnetic charges
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eq. (2.100) one can see that the magnetic flux density can be expressed by a vector
potential

∇ ·B = ∇ · (∇×A) = 0. (2.125)

The potential A is commonly referred to as the magnetic vector potential. With

B = ∇×A. (2.126)

Faraday’s law can be transformed by using Schwarz’s theorem again

∇×E = − ∂

∂t
∇×A

∇× (E +
∂

∂t
A) = 0. (2.127)

Since

∇× (∇φ) = 0

eq. (2.127) identifies E + ∂
∂tA as a gradient field and an expression for E as a sum of a

scalar and vector potential is found

E = −∇φ− ∂

∂t
A. (2.128)

The negative sign for the scalar potential is only a historical definition in order to
carry the conventional sign of the voltage [47]. Using the formulation of the potentials
eqs. (2.126) and (2.129) Maxwell’s equations change their appearance20. As it seems
reasonable to describe carrier transport processes in semiconductors, for the further anal-
ysis the simplification of electro-quasistatics shall be used, where the temporal changes
of the flux densities are seen as slow enough to neglect induction phenomena but the
effect of displacement currents are still considered. It can easily be seen that from a
vanishing temporal derivative magnetic flux density, a vanishing time derivative of the
magnetic vector potential follows, and hence the expression of the electric field simplifies to

E = −∇φ. (2.129)

With these assumptions Gauss law for electric charges 2.99 now becomes

∇ · (εE) = ρ

∇ · (ε∇φ) = −ρ. (2.130)

20Interestingly Maxwell postulated the equation in the sense of potentials, while the nowadays commonly
known form originates from O. Heaviside [47].
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In the case of a spatially independent permittivity the scalar potential φ satisfies the
Poisson equation

∆φ = −ρ
ε
. (2.131)

With substituting eq. (2.129) into the two continuity equations (2.123) and (2.124),
now only a third unknown (given by the potential) remains which can be expressed
by eq. (2.130). Those three equations together form a coupled non-linear system of
equations.

q
∂

∂t
n=∇ · (−qµnn∇φ+ qDn∇n)−R (2.132)

−q ∂
∂t
p=∇ · (−qµpp∇φ− qDp∇p) +R (2.133)

∇ · (ε∇φ) = −ρ (2.121)
= −q(p− n+ND −NA). (2.134)

This equation system is called the drift-diffusion model and will be used in this thesis
work to describe the carrier transport in semiconductors.

Since the assumptions of electro-quasistatics were used, also the effects of this simplifi-
cation on the carrier transport in semiconductors shall be analyzed. Substituting the
magnetic vector potential into Ampere’s law (2.98) and taking the time derivative of the
equation yields

∇×∇× ∂

∂t
A = µ

∂

∂t
( J + ε

∂

∂t
E)

0 =
∂

∂t
( Jσ + JD +

ε

σ

∂

∂t
Jσ) (2.135)

Here the current density is considered to consist of a drift current (denoted as Jσ) and
a diffusion current (denoted as JD) furthermore the displacement current is expressed
in terms of the drift current. Since the time derivative of the total current (including
displacement current) vanishes, the electro-quasistatic assumptions only allow a constant
total current density (Jc), but to show transient behavior among the single components

Jc = Jσ + JD +
ε

σ

∂

∂t
Jσ. (2.136)

Equation (2.136) defines an inhomogeneous ordinary differential equation for the drift
current

∂

∂t
Jσ = −σ

ε
Jσ −

σ

ε
( Jc − JD ), (2.137)

with the solution

Jσ = Jσ(0)e−
σ
ε
t + (Jc − JD)[1− e−

σ
ε
t]. (2.138)
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The derivative of eq. (2.138) gives information on the displacement current

ε

σ

∂

∂t
Jσ = [(Jc − JD)− Jσ(0)]e−

σ
ε
t. (2.139)

From eq. (2.139) it can be seen that the displacement current has to vanish from sufficiently
large time t and hence also the time derivative of the electric field has to show the same
evanescent behavior.

In the non-transient case (t→∞) the drift current density becomes

Jσ
t→∞
= Jc − JD (2.140)

and hence without any external bias

Jσ = −JD. (2.141)

For the charge density we get from Gauss law

∇ · ε
σ
Jσ = ρ

∇ · Jσ =
σ

ε
ρ (2.142)

and from continuity equation

− ∂

∂t
ρ = ∇ · (Jσ + JD). (2.143)

Comparing both equations one gets an ordinary differential equation describing the
temporal dependence of the charge density

∂

∂t
ρ = −σ

ε
ρ−∇ · JD (2.144)

with the solution

ρ = ρ(0)e−
σ
ε
t − ε

σ
∇ · JD[1− e−

σ
ε
t]. (2.145)

In case of steady state, ρ becomes

ρ
t→∞
= − ε

σ
∇ · JD (2.146)

showing that the resulting charge density at any point R is caused by a non-vanishing
source strength of the diffusion current.

2.3 Recombination processes

In this section the net recombination rate R, appearing as a source term in eqs. (2.132)
and (2.133) shall be quantified. In general this recombination rate is given by a superpo-
sition of different effects causing radiative and non-radiative extinction of carriers. Here
the most importent effects considered in the semiconductor models used in this thesis
work shall be introduced.
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2.3.1 Radiative recombination

In direct semiconductors like Gallium Nitride radiative recombination processes are likely
to occur, since here the maxima of the valence and conduction band fall together in
momentum-space (k-space) only separated by the energy of the bandgap. This means
that an electron and a hole can directly recombine without having other particles (like
phonons) involved for the sake of momentum conservation. In this way an electron-hole
pair get extinct by the recombination of an electron from the conduction band and a hole
from the valence band under the emission of a photon with the band energy Eg, taking
care of the conservation of energy. Fig 2.12 exemplifies this process.

E

k

hf = Eg

Figure 2.12: Radiative recombination: Extinction of one electron-hole-pair by emission
of one photon carrying the bandgap energy

With this considerations it becomes evident that electrons and holes are equally needed in
order for such an interband transition to take place. Therefore the radiative recombination
rate should be proportional to the product of electron and hole densities

Rn = Rp = Bnp, (2.147)

where B represents the average capture coefficient [30,52].

In order to find the radiative net recombination rate Rrad also generation processes with
the rate Gth, existing due to the constantly occurring thermal excitation of carriers, need
to be considered

Rrad = Rn −Gn = Rp −Gp = Bnp−Gth. (2.148)
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At thermal equilibrium the net recombination rate vanishes since recombination and
generation processes equal each other out and we find the generation rate to be [30,52]

Bn0p0 −Gth = 0

⇒ Gth = Bn0p0. (2.149)

It makes sense to assume that this relation is also valid outside of thermal equilibrium
since thermal generation merely depends on temperature and the band gap energy and
hence is independent of the actual carrier densities (as long the valence band isn’t heavily
depleted of electrons to be thermally excited), so that the radiative net recombination
rate can be given as

Rrad = B(np− n0p0) = B(np− n2
i ). (2.150)

Since n, p are the equilibrium carrier densities increased by the carrier densities excited
by the outer stimulus ∆n = ∆p

n = n0 + ∆n (2.151)

p = p0 + ∆p (2.152)

the expression for Rrad can be rearranged for further insight:

Rrad = B[(n0 + ∆n)(p0 + ∆p)− n0p0]

= B[∆np0 + ∆pn0 + ∆n∆p]

= B[∆n(p0 + ∆p) + ∆pn0]

and with ∆n = ∆p

Rrad = B∆n(n0 + p0 + ∆n). (2.153)

This shows that the radiative net recombination rate is proportional to the product of
the excess carrier density and the sum of the equilibrium densities and the excess carrier
density. With this, some simplifications for border cases can be derived.

Low-Injection-Regime

In the low injection regime where the density of the majority carriers exceeds the excess
carrier density by orders of magnitude, the expression within the braces in eq. (2.153) is
strongly dominated by the majority carrier density. Therefore the densities of minority
and excess carriers can be neglected.

For the example of a p-semiconductor one would could make the following assumptions,
see fig. fig. 2.13:
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n, p
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p0 + ∆p

Figure 2.13: Example of carrier densities in a p-semiconductor right after an outer
stimulus led to the generation of excess electron-hole-pairs.

p0 ≈ NA >> n0 + ∆n. (2.154)

Using this assumption, the radiative net recombination rate simplifies to

Rrad ≈ BNA∆n. (2.155)

Since R was defined as the difference of the rates of recombination and thermal gener-
ation, the temporal change of the excess carrier density21 is given by the negative net
recombination rate

d∆n(t)

dt
= −R = −BNA∆n(t). (2.156)

The solution of this ordinary differential equation states an exponential decay of the
excess carrier density conveying the system back to thermal equilibrium

∆n(t) = ∆n(0)e−BNAt = ∆n(0)e−
t
τn (2.157)

and is identifying the inverse of the product of BNA as a time constant

τn =
1

BNA
(2.158)

commonly referred to as carrier lifetime.

An analogous approach using the example of a n-semiconductor would yield the carrier
lifetime for the excess hole densities as

τp =
1

BND
. (2.159)

21introduced by an outer stimulus
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High-Injection-Regime

The second border case is the high injection scenario where the excess carriers density
even surpasses the majority carrier density by a large amount ∆n >> n0 + p0. Here the
bracketed term of eq. (2.153) is now dominated by ∆n, furthermore the non-equilibrium
densities can be approximated by the density of the excess carriers

p ≈ n ≈ ∆n. (2.160)

With these assumptions the radiative net recombination rate becomes approximately

Rrad ≈ B∆n2 ≈ Bn2. (2.161)

2.3.2 Non-Radiative Recombination

Besides the emission of light, recombination can also take place under the emission of
phonons22 or due to impacts among the carriers, where the energy is transmitted from one
carrier to another23. The most common sources for phonon emissions are defects within
the crystal like impurities or dislocations [30,52]. These defects, commonly referred to as
traps, introduce additional states that can be occupied by the carriers. While in most
applications recombination due to trap states are undesired processes in this thesis work
the introduction of surface traps by a suitable treatment of the semiconductor surface shall
be used to control the sensor behavior. Therefore, the model now introduced, represents
the trapping mechanism used to model the corresponding surface recombination processes
as shown in section 1.2.2.

Recombination through trap states (Shockley-Read-Hall-Recombination)

In the early 1950s, based on insights given by Robert N. Hall, William Shockley and
William Thornton Read first developed a model representing the recombination of
electrons and hole through traps, energetically suited within the band gap [25,26]. For
the derivation of the model four basic processes have been considered, which are electron
capture, electron emission, hole capture and hole emission (see fig. 2.14).

22The quasi-particles assigned to vibrations of crystal lattice (heat)
23Auger Processes
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Ev

a)Ec

ET

b) c) d)

Figure 2.14: a) Electron capture, b) Electron emission, c) Hole capture, d) Hole emission
Here the lines in the center of the band gap represent trap levels, opaque
circles depicture electrons, transparent circles holes [25]

Electron capture: In the case of electron capture, an electron from the conduction occupies
a trap level that lies at an energetic position within the band gap. In this process the
energy difference of the conduction band and the trap level is most commonly conserved
by emission of heat24. Obviously the rate of electron capture depends on the electron
density in the conduction band, the trap density Nt and their regarding probability of
occupation ft and average capture cross section cn [25, 52]

Re = nNt(1− ft)cn. (2.162)

Here the expression 1− ft represents the probability that a trap level is free and hence
can be occupied by an electron.

Electron emission: For electron emission electrons leap from the trap level into the
conduction band due to thermal excitation. Therefore the rate of emission needs to
be proportional to the amount of occupied trap levels and the average emission rate.
In general the emission rate would also depend on the availability of free states in
the conduction band, for non-degenerated semiconductors this factor can be ignored
though [25,52].

Ge = Ntften. (2.163)

Hole capture: Hole capture means a recombination of an electron suited at a trap
level with an hole in the valence band. Hence the corresponding recombination rate is
proportional to the hole density, the amount of occupied trap levels and an averaged hole
capture rate cp [25, 52].

Rh = pNtftcp. (2.164)

Hole emission: Hole generation through a trap state occurs when electrons from the valence
band get thermally excited to occupy a trap level. For this process an excitation energy

24Energy conservation by emission of a photon is also possible
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lower than the band gap energy is sufficient. Assuming non-degenerated semiconductors
the valence band can be expected to be well-filled, whereby the dependence of the electron
availability can be neglected. This leaves the process to be proportional to the amount
of free trap states Nt(1− ft) and the average emission rate [25,52].

Gh = Nt(1− ft)ep. (2.165)

Assuming further that both carriers equalize among each other25 the net recombination
rate yields26 [25, 52]

RSRH = Nt
cncp(np− n2

i )

cn(n+ n1) + cp(p+ p1)
. (2.166)

Where the respective auxiliary carrier densities n1 and p1 are

n1 = n exp(
ET − EFn

kBT
)

2.65
= Nc exp(

ET − Ec

kBT
)

2.65
= ni exp(

ET − Ei

kBT
) (2.167)

and

p1 = p exp(
EFp − ET

kBT
)

2.66
= Nv exp(

Ev − ET

kBT
)

2.66
= ni exp(

Ei − ET

kBT
) (2.168)

the carrier densities when the Fermi level would fall together with the regarding trap
level [25]. Considering eqs. (2.167) and (2.168) it becomes obvious that only those defects
having an energy trap level suited close to the middle of the band gap27 can act as
effective recombination centers [30]. Deviations of the trap level from the intrinsic Fermi
level would lead to an exponential growth of one of the two terms of the denominator,
and hence leading to a strong decay of recombination rate. This enables to simplify
eq. (2.166) to [30]

RSRH = NT
cncp(np− n2

i )

cn(n+ ni) + cp(p+ ni)
. (2.169)

Auger-Recombination

Auger recombination processes occur due to the collision of carriers. For example this
could happen when two conduction band electrons collide in the vicinity of a hole.
Through the impact, energy and momentum are transferred from one electron to another
while the energy emitting electron recombines with a hole [54]. Analogous to this, the
recombination energy can also be transferred to second hole instead. On the other hand,

25Meaning Rec −Gee = 0 and Rhc −Ghe = 0
26A thorough and comprehensive derivation of the following formula is given in [25]
27More precise at energies around the intrinsic Fermi level.
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2 Fundamentals of Semiconductor Physics

electron-hole-pairs can be generated due to impact ionization. This gives rise to four
different processes to be analysed in order to find the Auger net recombination rate.

Ev

a)Ec b) c) d)

Figure 2.15: a) Electron capture, b) Electron emission, c) Hole capture, d) Hole emission
The four processes contributing to Auger recombination [52]

For electron capture an electron from the conduction band recombines with a hole in the
valence band while giving it’s excitation energy to another electron in the conduction
band. After this the high energetic electron will go through a relaxation process, most
likely to conserve the energy by emission of lattice vibrations (heat). This capture process
requires three particles, two electrons in the conduction band and a hole from the valence
band to occur, therefore the recombination rate depends quadratic on electron density
and a linearly on the hole density [52]:

Re = cnn
2p. (2.170)

Electron emission in the sense of a Auger process means the generation of electron-hole-
pairs due to impact ionization. Here the impact is caused by an electron having at
least twice the band gap energy. In this way the high energetic electron remains in the
conduction band after the abrupt relaxation that causes the valence electron to leap into
the conduction band. The emission rate is proportional to the electron density [52]:

Ge = enn. (2.171)

Analogous to electron capture the recombination energy can be taken by a hole in the
valence band. For this process only one electron in the conduction band but two holes in
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2.4 Fermi-Level-Pinning

the valence band are needed. The corresponding rate is than given by [52]:

Rh = cpnp
2. (2.172)

The fourth process is hole emission. Here, impact ionization caused by a high energetic
hole in the valence band leads to a valence electron leaping to the conduction band. The
rate for this process can be given by [52]:

Gh = epp. (2.173)

Again the principle of detail balancing can be used to reduce the number of unknown
variables for the rate equation. We get

Re −Ge = 0 = cnn
2
0p0 − enn0

⇒ en = cnn
2
i (2.174)

and

Rh −Gh = 0 = cpn0p
2
0 − epp0

⇒ ep = cpn
2
i . (2.175)

With this the Auger net recombination rate is given as the sum of both individual net
rates, which yield [52]

RAug = cnn
2p− cnnn2

i + cpnp
2 − cppn2

i

= (cnn+ cpp)(np− n2
i ). (2.176)

2.4 Fermi-Level-Pinning

In the following the consequences of a pinned Fermi level at the nanowire surface shall
be discussed in the context of the sensing behavior.

When the Fermi level is pinned at the surface, the neutrality condition demands a
bending of the bands in the bulk material in order to match the surface level [32]. Hence
a space charge region is built up in the vicinity of the surface. Given the example of a
n-semiconductor
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a) d < dcritical b) d = dcritical

Ec

Ev

c) d > dcritical

EF

ΦB

-qΦs

-qΦs

depletion

region

conductive

channel

Figure 2.16: Shaded areas represent a space charge region. a) The diameter of the
nanowire is below the critical diameter. Here, the carrier concentration
in the bulk volume does not suffice to compensate for the Fermi level
difference. Hence the a smaller potential barrier compared to wires with
larger diameters builts up. The nanowire becomes completely depleted,
the Fermi level drops as the scarcity of carriers becomes the dominating
factor. b) The space charge region is still spanned throughout the whole
wire. Therefore nanowires around the critical diameter are still completely
insulating, but the volume is just big enough to built up a potential barrier
to equalize the bulk Fermi level with the Fermi level of the surface. c) In
nanowires bigger than the critical diameter the space charge region only
spans over an outer part of the wire. In the inner a conducting channel
remains that defines the resistivity of the wire [39].

the bands in the bulk are bent upwards, creating a potential barrier for electrons to
overcome in order to reach the surface. Hereby sensor principles based on surface
recombination are hindered as electrons are confined to an inner cylindrical region around
the nanowire center. This inner region forms a conducting channel while the depleted
outer parts are insulating. Hence, the resistivity of the nanowire does not depend on
the cross section of the nanowire but only on the cross section of the inner region [39].
Furthermore, in thin wires below a critical diameter, the volume charge in the depleted
area is too small to build up a sufficiently large potential barrier. This case results in vastly
depleted and hence insulating nanowires. Here the potential barrier is lower compared to
wires above the critical diameter [39], as can be seen in fig.fig. 2.16. In order to predict
the critical diameter of a nanowire the Schottky-model shall be used to determine the
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2.4 Fermi-Level-Pinning

surface potential. In this model an abrupt transition from the neutral region to a space
charge region with a constant charge distribution is assumed. Furthermore the potential
is assumed to be pinned at the surface. In this case the surface potential is simply given
by difference of the different Fermi levels [32]

−qΦs = EFB − EFS . (2.177)

On the other hand the potential can be found by solving the poisson equation for
cylindrical coordinates. The Laplace operator in cylindrical coordinates is given by

∆Φ =
1

ρ

δ

δρ

(
ρ
δΦ

δρ

)
+

1

ρ2

δ2Φ

δ2φ
+
δ2Φ

δ2ρ
.

Because of the cylindrical symmetry of the potential in nanowires the derivatives according
to the z-coordinate and the angle φ become zero. Hereby the poisson equation to solve28

∆Φs =
qND

ε
(2.178)

simplifies to

1

ρ

δ

δρ

(
ρ
δΦ

δρ

)
=
qND

ε
(2.179)

with the solution [39,40]

Φs =
qND

4ε

(
r2
ch −

d2

4
− 2r2

ch ln
2rch
d

)
. (2.180)

Here rch is the radius of the inner conducting channel and d the diameter of the penetrating
space charge region.

28Assuming the charge density only arises from the completely ionized impurities.
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rch

dcritical
2

Figure 2.17: Nanowire cross-section. The shaded area represents the depleted space
charge region, the inner circle with radius rch shows the conducting channel.

The critical diameter is found where the radius of the conducting channel vanishes
(rch = 0). Here the surface potential is given by

Φs =
−qND

16ε
d2
critical. (2.181)

Substituting this solution in eq. (2.177) and solving for the critical diameter yields

dcritical =

√
16ε (EFB − EFS)

q2Nd
. (2.182)

Interestingly this result for the potential differs only by a factor 2
√

2 from that of the
same problem in 1D29, for example to be found in [32].

29Where in contrast to the cylindrical geometry two of the coordinates are assumed to have infinite
extension.
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3 Simulation Results for Electronic
Properties of GaN Nanowires

3.1 Introduction of Analyzed Sensor Structures

The fundamental evaluation set-up is given by the following four nanowire base struc-
tures:

• Resistors

• PN-Diodes

• N+N−-Diodes

• Transistors.

For each group of sensor devices, analyses have been carried out according to variations of
morphology and doping concentrations. Furthermore two different basic sensor concepts
have been analyzed. The first concept is assuming sensors offering a GaN/functional
group/Air interface where the sensing behavior is based on charge transfer between GaN
and the functional groups due to introduced surface states. Additionally to this concept
simulations have been carried out having a 10 nm thick oxide layer incorporated at
nanowire/Air-interfaces, as experimental results by our partners at TU Braunschweig
indicated that structures without oxidised surfaces won’t be feasible in practice. Therefore
the functional groups have to be realized on the oxide layer rather than on the GaN
surface directly in order to provide sensor selectivity by designed molecule capture. The
thusly introduced dipole moment at the nanowire surface is the source of the electrostatic
effects, providing the sensor behavior. In the simulations this effect is considered by
adding a fixed surface charge on top of the oxide layers. For both concepts the quantities
of trap levels and energies as well as the fixed surface charges are simply given by
parameter variations as data by atomistic DFT-calculations was still lacking by the end
of this thesis work. All simulations have been solved as 2D-problems making use of the
wire’s cylindrical symmetry. A graphical overview of the simulated sensor structures is
given in fig. 3.1.
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3 Simulation Results for Electronic Properties of GaN Nanowires

Figure 3.1: Overview of analyzed sensor structures: a)
pure nanowire resistor, b) pn-diode, c) n+n−-
junction, d) npn-transistor

3.2 Discussion and Results

Throughout the simulations linearity (or more precisely the linearity deviation “∆L”)
and responsitivity have been determined to serve as quality metrics for the individual
sensor designs. Those two metrics are evaluated according to

Response =
∆I

Ibase
· 100%

with ∆I = Igas − Iair and Ibase = Iair if the target gas is reductive1 or ∆I = Iair − Igas

and Ibase = Igas when the target gas is oxidative2, and

∆L = max

(∣∣∣∣Response(Cs)− g(Cs)

g(Cs)

∣∣∣∣) · 100%,

where Cs is the surface charge density and g(Cs) represents the response of a linear
sensor.

1Correspondent to sensors aiming for an increase in conductance
2Aiming for an increasing resistance
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3.2 Discussion and Results

3.2.1 Resistors

The resistors have been modeled as single nanowires electrically contacted at bottom
and top. For all resistors a wire length of 1 µm was assumed. As mentioned before,
simulations have been carried out with and without oxide layer at the nanowire surface.
The difference between those simulation results shall also be discussed in this section.
Both structures are depicted in figs. 3.2 and 3.3. In the left part of this figure the
radial 2D-cut of the actual cylindrical nanowire shall emphasize the general simulation
area, the right part focuses on meshing. As can be seen the mesh is refined at the
nanowire/oxide-interface where the surface charge is seated, as changes of analyzed values
are expected to be most prominent in the vicinity of this region.

Figure 3.2: 2D cut of the cylindrical
nanowire resistor. Here no ox-
ide layer is added to the sur-
face, offering a direct GaN/Air-
interface. In this set-up carrier
exchange between GaN and gas
molecule affects the wire resis-
tance.

Figure 3.3: Nanowire with illustrated cur-
rent density and meshing. The
mesh is refined at a GaN/Oxide-
interface region. Here surface
charges oriented at Oxide/Air-
interface are the source of
changes in the nanowire resis-
tance.
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3.2.2 Results using surface trap charge model

All surface traps have been modeled with a trap charge energy 0.5 eV below the conduction
band energy. The trap charge density has been varied between 0 cm−2 and 1 · 1012 cm−2

representing the amount of docked gas molecules at the nanowire surface. In order
to explain the sensors working principle the results for nanowires having diameters of
80 nm, 100 nm and 150 nm at doping concentrations of 1 ·1017 cm−3 and 6.25 ·1017 cm−3

are shown exemplarily and will be discussed compared to each other at the end of the
section.
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Diameter 150 nm / n-Doping 6.25*1017 cm-3
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Figure 3.4: a) A positive space charge is built up in the vicinity of the surface as a
consequence of captured electrons by the negative surface trap charges. b)
Due to the charges an electric field has established hindering electrons from
moving further towards the surface. c) The conduction band rises close to the
surface as the electron density drops in this region, as can be seen in figure
d). The results indicate an inner conducting channel of around 40 nm radius
still unaffected at the highest surface charge of 1012 cm−2. Figures e) and f)
show the sensors IV curve in linear and semi-logarithmic scale.
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Diameter 100 nm / n-Doping 6.25*1017 cm-3
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Figure 3.5: Compared to the results of the 150 nm diameter, the linear plot of the space
charge now shows a distinct plateau close to the surface, which lies in the order
of the doping concentration. This is due to the fact that in this region the
electron density is orders of magnitudes lower than the doping concentration.
The overall affected area also spans wider, leaving an unaffected channel
having a radius of only around 15 nm at the highest surface charge density.
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Diameter 80 nm / n-Doping 6.25*1017 cm-3
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Figure 3.6: When decreasing the nanowire diameter further to 80 nm, the carrier depletion
reaches deeper into the nanowire, now affecting the whole nanowire at the
highest surface charge density. An outer annulus with a width around 15 nm
is largely depleted in this case.
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Diameter 150 nm / n-Doping 1*1017 cm-3
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Figure 3.7: In lower doping case, a space charge region spans over the whole nanowire
already for the scenario with second highest doping of 5 · 10−3 cm−3. The
Fermi level drops as the electron density is reduced over the complete wire
for the two scenarios with highest doping. However, the electron density is
still more than an order of magnitude higher for the second highest surface
charge compared to the highest.

The results above show that with the given assumption of the energy trap levels, the
acceptor traps will become partially populated by electrons in the proximity, leading to a
negatively charged surface. The electric field created by this negative layer of charges
drives electrons from the vicinity of the surface towards the center of the nanowire as
a potential barrier is built up for electrons to overcome in order to reach the surface.
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3.2 Discussion and Results

Due to this, the outer part of the nanowire becomes depleted and hence insulating,
leaving an inner conductive channel. Therefore the conductivity of the nanowire is no
longer determined by the nanowire diameter, but by the effective diameter of this inner
conducting channel. As desired for the sensor purpose, the conductivity decreases with
increasing trap charge density as shown by the lowering currents in the IV-curve.

When reducing the nanowire diameter this effect becomes more prominent, as the ratio
of surface to volume increases. The outer depletion area becomes wider as there are less
volume carriers compared to the surface traps. Furthermore the ratio of the radii of the
inner conductive and the outer insulating perimeters decreases. These effects result in a
higher sensor responsitivity, which can be seen by comparing the IV-Characteristics.

In the case of higher doping3, at 80 nm the nanowire shows a distinct deviation in
the IV-Characteristics even for small amounts of surface charge indicating a very high
responsitivity. On the other hand the space charge region spans over the whole nanowire
for high surface charge concentrations. There is no unaffected inner channel anymore as
the amount of volume carriers was not sufficiently high enough to shield the nanowire
center. This result is in a good agreement with Calarco et al. [33,39], where a critical
diameter of around 80 nm was found for GaN nanowires with an intrinsic4 doping of
6.25 ∗ 1017 cm−3. In devices like that, the IV-Characteristics is determined by space-
charge-limited-currents5 leading to a non-linear relation of voltage and current [33].
Therefore nanowires having a thickness around the critical diameter or below are not
applicable for linear sensing devices.

In the lower doping scenario6 the aforementioned surface effects become much more
prominent compared to the case of the nanowire with higer doping. For the same amount
of surface charge the space charge region penetrates deeper into the nanowire as there
are less volume carriers within the inner bulk perimeter to satisfy the surface charge.
Hence the conducting channel becomes smaller. Even for the resistor with the largest
diameter of 150 nm a surface charge of 1 · 1012 cm−2 causing a carrier depletion affecting
the whole wire. The carrier density reduces even in the center and thus the Fermi level
in the semicondutor drops. This shows that at a doping concentration of 1 · 1017 cm−3

sensors having a diameter of 150 nm would already operate around a critical diameter.
The critical diameter can be increased by a reduction of the doping or decreased by an
increase of the doping concentration.

Therefore the doping concentration can be used as a key parameter for the sensing
behavior. Moreover, as both measures, reducing the intrinsic n-type doping or reducing
the nanowire diameter, show similar consequences they can be considered to compensate
for each other if one of the options is practically not feasible.

3n = 6.25 ∗ 1017 cm−3

4or unintentional
5not considered here
6n = 1 ∗ 1017 cm−3
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3 Simulation Results for Electronic Properties of GaN Nanowires

Current over Surface Charge

Figure 3.8 visualizes the sensitivity of the nanowire resistors regarding certain amounts
of surface charge. Therefore the current is evaluated at a fixed voltage for a varying
surface charge. Again the curves emphasize the major impact of doping concentrations
and nanowire diameter on the sensor response identifying low doped and preferably thin
nanowires as optimal choice in order to gain high sensor responses.

10
11

10
12

10
-7

10
-6

10
-5

10
-4

C
u
rr

e
n
t 
[A

]

Change in Current (x-cut at 1V)

Figure 3.8: Current vs. surface charge

3.2.3 Results Including Oxide Layer at the Nanowire Surface

All following analyses will be carried out under the assumption of an oxidized GaN surface.
Hence, in all sensor structure models an additional oxide layer with a thickness of 10 nm
has been placed on the surface, separating the nanowire from the air environment. As for
those devices a charge transfer between nanowire and gas molecules is prevented by the
oxide layer, here the sensing principle will be based on electrostatic effects. Therefore it
is assumed that the functional molecule groups are seated on top of the oxide layer and a
dipole moment is created by docking gas molecules. An existing dipole moment on the
surface reduces or increases the carrier concentrations in the outer region of the nanowire
by electrostatic attraction or repulsion. This variation in the carrier density will directly
affect the nanowire conductance and hence the current flow. In order to simulate this
effect a fixed density of positive surface charges seated at the oxide-gas interface is added
to the model.
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Resistors

The resistors analyzed here had a length of 1 µm and variation of diameters between
150 nm and 200 nm and doping concentrations between N = 1015 cm−3 and N =
1017 cm−3.

The figures 3.9 - 3.12 show how due the positive surface charge the conduction band
shows a down bending along the radial axis. This effect increases for an increasing surface
charge, hence the electron density becomes elevated in the outer part of the nanowire.
Therefore the conductivity increases resulting in a higher current flow. Without surface
charge no band bending occurs. Also for devices with oxide layer this effect becomes
more prominent for smaller diameters as well as for lower doping concentrations, since
the relative increase is higher in those set-ups. The influence of diameter and doping
shall be illustrated by the comparisons shown in fig. 3.14. Comparable to the results
presented in the previous section simulations with negative surface charge reveal the
opposite behavior, meaning an up-bending of the conduction band close to the surface
(carrier depletion).
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Figure 3.9: Conduction Band Resistor
150 nm and n-doping of 1 · 1017
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Figure 3.10: Conduction Band Resistor
200 nm and n-doping of 1·1017

Fig. 3.13 shows exemplarily how the presence of a surface charge affects the IV-
characteristics.

In fig. 3.14 the sensor response of resistor sensors for different diameters and doping
concentrations is shown in a double logarithmic scale. Curves with a slope of 1 indicate a
linear response. Furthermore, it can be seen that the response increases for lower doping
and smaller diameters. Results also show that the linearity of the sensor suffers for very
low doping concentrations.
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Figure 3.11: Electron Density Resistor
150 nm and n-doping of
1 · 1017
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Figure 3.12: Electron Density Resistor
200 nm and n-doping of
1 · 1017

Figure 3.13: IV-Curve behaviour for increasing surface charge

76



3.2 Discussion and Results

Figure 3.14: Resistor Sensor Response: Comparison of dif-
ferent diameters and doping concentrations.
Dashed lines represent linear sensor response
for comparison.

3.2.4 PN-Diodes

The analyzed diodes have a diameter of 150 nm, they consist of a 1 µm long n-region and
a 300 nm long p-region. A 10 nm thick oxide layer was added to the nanowire surface,
therefore the surface charge is placed at the oxide/air-interface. Constant doping profiles
have been chosen with n = 1017 cm−3 and p = 5 · 1016cm−3.
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Figure 3.15: 2D cut of the cylindrical
nanowire PN-Diode including
a 10 nm thick oxide layer. The
doping concentrations shown
in this figure are not given in
cm−3 but in m−3.

Figure 3.16: Nanowire with illustrated
meshing. The mesh is refined
at a GaN/Oxide-interface re-
gion and over the PN-junction
(with an additional 25 nm long
interface in each region.)

The results shown in this section demonstrate that a positive surface charge shifts the
threshold voltage to lower values while the IV-behavior stays unaffected in reverse bias.
Unlike the resistor sensors, here, the generation of a conducting channel near the sur-
face is prevented by the potential difference at the contacts. While the surface charge
leads to a carrier inversion across the p-region, the pn-junction shifts close to the p-
contact. Here, as expressed by a steep slope in the band structure (dashed line graphs in
fig. 3.17), a strong electric field prevents the electrons to further recombine with the holes.
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Figure 3.17: Comparison of the band structure along the y-axis with and without surface
charges
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Figure 3.18: Influence of surface charge for diode IV-curve

The sensor response for the investigated diode is depicted in fig 3.19. The results show
no considerable improvement in the maximum response compared to the resistor sensors
while loosing their linear characteristics. Combined with the higher degree of complexity,
diode sensors appear as a less desirable sensor design.
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Figure 3.19: Diode Sensor Response: Blue and red curves
show the response of the diode when oper-
ated slightly below and above threshold volt-
age. The two dashed black curves serve as
comparison with a linear sensor.

3.2.5 N+N−- Junctions

Junctions formed by highly n-doped (n+) and low n-doped (n−) regions build up a much
smaller potential barrier compared to pn-diodes. As a consequence, a linearity compared
to those of resistors can be expected for voltages exceeding the rather small threshold
voltage. Two different sensor set-ups are compared here. Here, each differently doped
n-region has a length of 500 nm. The doping concentration of the highly doped region
is fixed at 1018 cm−3 while for the lower doped region concentrations of 1016 cm−3 and
5 · 1016 cm−3 are distinguished.
Figures 3.20 and 3.21 illustrate the rather small electron barrier formed by the junction
already leading to weakly non-linear IV-Curves (fig. 3.22) when no surface charge is
applied. Considering a surface charge density high enough to remove the energy barrier
the conduction band reveals the behavior of two series resistors, as can be seen by the
two straight lines. The different slopes represent the non-identical resistances.
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Figure 3.20: Conduction band: No surface charge
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Figure 3.21: Conduction band: Including surface charge
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Figure 3.22: IV Curve of a sensor based on a n+n−-junction
where n+ = 1018 and n− = 1016.
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Figure 3.23: Sensor response of the n+n−-junction.

Fig. 3.22 shows the corresponding IV-Curve. In forward bias the IV-curves of the device
are weakly non-linear for low surface charge densities. With increasing surface charge the
non-linearity vanishes and the graphs look like resistor curves. In reverse bias the contact
potential hinders electrons to populate the vicinity of the contact in the low doped
region. In this way the resistance of that region becomes voltage dependent, resulting
in a damped slope for increasing negative voltages. In fig. 3.23 the sensor response is
depicted. A higher response was shown by the set-up with the higher doping contrast.
Both curves show a good linearity while lying in the range of the resistor responses.
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3.2.6 Transistors

In this section the simulation results for two transistor set-ups are compared to each other.
Both structures had a diameter of 200 nm and 1 µm long n-regions. The two different
p-regions had length of 300 nm and 700 nm respectively. Again, a 10 nm thick oxide
layer was added to the surface. In contrast to diodes, npn-transistors with equally doped
n-regions don’t have a potential difference at the contacts. The doping concentrations
were chosen in both cases as n = 1017cm−3 and p = 5 · 1016cm−3.

Results using a 300 nm long p-Region

Since there is no gate electrode the transistor is generally high-ohmic without the presence
of a surface charge. Nonetheless, the band structure depicted in fig. 3.24 shows that
due to the short p-region and the doping contrast, the potential barrier created by the
pn-junctions is relatively low which is reducing the blocking behavior of the device.
As there is no plateau build up for the potential, the depletion region spans over the
whole p-semiconductor. Due to this, for a certain ”threshold voltage” the potential
barrier is low enough for the electrons to overcome, meaning the transistor is loosing its
insulating character. For a sufficiently large surface charge a carrier inversion is reached
in the p-region, opening a conducting channel near the surface and hence increasing the
conductance. In this case the device is behaving like a resistor, or more precisely like
three resistors in series connection. This effect is illustrated by the red line in fig.3.25
and the transistors IV-curve shown in fig. 3.27.
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Figure 3.24: Conduction band near the surface along the y-axis: No surface charge
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Figure 3.25: Conduction band near the surface along the y-axis: Including surface charge

Figure 3.26: The current density in the device illustrates how the surface charge creates
a conductive channel at the surface, acting like a parallel resistor to the
junctions bridging the p-region
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Figure 3.27: Transistor IV Curve: An increasing surface charge reduces the potential barrier
and hence the threshold voltage. When completely flattened the resulting
parallel resistor dominates the IV-behavior.

Like for the diode, the sensor response of the transistor (fig.3.28) was again evaluated
slightly above and below the threshold voltage of the uncharged case. Large responses
can be reached when driven below threshold voltage but the response would be highly
non-linear. Driven above the threshold voltage the response is approximately linear over
a large range of surface charge density but also lower compared to the response gained
below threshold. This results from a much higher initial current serving as reference.
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Figure 3.28: Transistor Sensor Response: Blue and red curves show the response of the
transistor when operated slightly below and above threshold voltage. The two
dashed black curves serve as comparison with a linear sensor.
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Results using a 700 nm long p-Region

With the incorporation of a 700 nm long p-region, a more distinct potential barrier is
built up. As can be seen by the red curve fig. 3.29 this barrier does not vanish for the
maximum voltage of 3.5 V, leaving the device insulating. In fig. 3.30 the influence of a
surface charge with a density of 1 · 1012 cm−2 on the band structure is illustrated. Again
a carrier inversion could be reached, making the device conductive. Due to the much
better blocking behaviour in the case charge free surface, higher responses compared to
the transistor with shorter p-region can be yield for surfaces charges sufficiently large
to eliminate the potential barrier. However, since the device is insulating in the charge
free case, the linearity is weak and low gas concentrations might not be detectable as the
resulting surface charge could be insufficient for an effective reduction of the potential
barrier.
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Figure 3.29: Conduction band along the y-axis: No surface charge
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Figure 3.30: Conduction band along the y-axis: Including surface charge

Figure 3.31: The current density in the device illustrates how the surface charge creates
a conductive channel at the surface, acting like a parallel resistor to the
junctions bridging the p-region
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Figure 3.32: Transistor IV Curve: An increasing surface
charge reduces the potential barrier and hence
the threshold voltage. When completely flat-
tened the resulting parallel resistor dominates
the IV-behavior.

3.2.7 Comparison

In this section all analyzed sensor structures shall be compared according to their sensor
responses and linearity deviations. Results are illustrated in figures 3.33 and 3.34. Sensor
responses are evaluated at a surface charge density of Cs = 1011 cm−2 where most sensors
still behaved linear to a good degree. Even though the resistor sensors with the lowest
doping concentrations showed the highest sensor responses they were not considered
here because of their weak linearity. Due to that, two resistor sensors are chosen for
the comparison, both having a diameter of 150 nm with doping concentrations of n =
1017 cm−3 and n = 1016 cm−3. For the n+n−-junction the higher contrast design is
compared since it showed the better overall performance. Even though the transistor with
700 nm p-region showed the highest responsivity of all devices (3043 %), the transistor
with the shorter p-region is chosen for the comparison below, as it offers a better linearity
and the possibility to detect lower gas concentrations.
Fig. 3.33 and 3.34 illustrate the performance of the different sensor devices. It can be
seen that for resistors the lower doped sensor offers a significantly higher sensor response
(218.3 % compared to 26.5 % in case of higher doping) while the resistor with the highest
doping concentrations offers the best linearity (2.6 %) of all analyzed sensors. The
diode driven above threshold showed the lowest sensor response with a value of 8.1 %
while already having a maximum deviation of 105.8 % from a linear sensor device. This
large deviation only occurs for high surface charge densities, for a surface charge up
to 1011 cm−2 the maximum deviation stays below 3.5 %. Driven below the threshold
voltage the diode’s response reaches comparable values to that of lowly doped resistor
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but suffering from a very high linearity deviation (1121.5 %). The n+n−-junction lies in
between the results of the two resistors, having a sensor response of 109.4 % and linearity
deviation of 9.6 %. For the transistor driven above threshold a high response of 574.4 %
can be observed, at a linearity deviation of 57 %. Similarly like the diode the linearity
deviation rises for high surface charge densities while it stays below 24 % for densities
up to 1011 cm−2. The highest response (2221.1 %) was gained for the transistor driven
slightly below threshold voltage but this sensor would also be highly non-linear.

Figure 3.33: Comparison of sensor responses for different exemplarily chosen sensor structures.

Figure 3.34: Deviation from linear sensor response
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4 Conclusions and Outlook

4.1 Conclusions

The usage of GaN nanowires enables promising sensor structures for the detection of
specific gases. The results presented in the previous chapter show that an approach of
combining drift-diffusion-simulations with a surface model introduced in chapter 1.2.2
can be applied in order to understand the behavior of nanowire gas sensors. Moreover,
the results show that GaN nanowires with oxidized surfaces are in general still applicable
for gas sensing purposes. If in this case high selectivities compared to the approach of
Hoffmann et al. [2] can be reached by a suitable surface functionalization remains unclear
and has to be shown by experimental results. An intrinsic pinning of the nanowire
surface would on the one hand superimpose the sensing mechanism and on the other hand
introduce constraints regarding the device dimensions due to the critical diameter. In
order to determine the sensor behavior, this bias in the energetic position of the surface
needs to be incorporated into the device simulations. Therefore a precise knowledge of
the nanowire surface conditions regarding the state of oxidation and Fermi level pinning
has shown to be crucial for a reliable predictability of sensor responses. Even though the
original project goal of having a working sample of a nanowire gas sensor with sensor
responses predictable by device simulations1 was not achieved, the results gained are
still capable of giving insight to general phenomena of nanowire electronics and to serve
as a guidance for the design of nanowire gas sensors. Critical diameters including their
doping dependence predicted by the simulation results are in a good agreement with the
results observed and theoretically explained by Calarco et al. [33,39]. A sufficiently large
trap charge density will determine the Fermi level at the surface causing a bending of
the bands and hence an accumulation or depletion of carriers in the volume close to the
surface. This variation in the carrier density will directly affect the nanowire conductance
and hence the current flow. An increase of the surface-to-volume ratio goes along with
an increase of the surface trap densities compared to the volume carrier concentrations.
Therefore there are less carriers within the adjacent volume to recombine with the surface
traps and the depletion region grows deeper towards the nanowire center, reducing the
conductive part of the nanowire. This is comparable to a diodes PN-junction width,
where the depletion region expands deeper into the bulk material when lower doping
concentration are incorporated for one of the carrier species.
In order to facilitate the realization of low doping concentrations, simulations regarding
a GaN/AlGaN/GaN core-shell sensor had been carried out. The approach proved to
be impractical for all analyzed material compositions, as leakage currents over the
AlGaN-barrier could not be prevented, resulting in non-linear IV-characteristics.

1realized by simulation results of atomistic Density Functional Theory for energy trap levels and densities
subsequently incorporated in a macroscopic device simulation
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For the comparison of the sensing performance of the individual sensor structures, devices
with incorporated oxide layer on the GaN surface have been chosen, as devices without
oxide layer could currently not be realized according to our partners at TU Braunschweig.
The results can be summarized as follows.
Pure nanowire resistors showed higher responses for lower diameters and doping concen-
trations, but the linearity suffers when the combined set-up of both parameters is chosen
too low. Diodes showed low responses when driven above threshold voltage and a highly
non-linear behavior when driven below, making the concept less preferable compared to
resistors, especially considering the higher device complexity. Reverse biasing proofed
not to be practical for sensing applications for all analyzed diode sensor structures. On
the other hand a diode driven slightly below threshold voltage could work in a similar
way. With this approach a low power sensor with considerably high sensor response
could in general be realized. However those kind of sensors would not be useful in
applications requiring a high sensor linearity, but could be used for low power pure
“on/off-sensors”. Sensors based on n+n−-junctions showed comparable results to those of
resistors. Transistors showed very high responsivities combined with a comparatively
moderate non-linearity for low surface charge concentrations. By varying the size of the
p-region or the doping concentrations and driven at a suitable operation voltage they
can also be tailored to act as ”on/off”-sensors, triggering at a specific amount of surface
charge (gas concentration). But they are also coming with a higher degree of complexity
compared to pristine nanowire resistors.

4.2 Outlook

Till the end of this thesis work nor the realization of physical GaN sensor samples could
be realized, neither results from the atomistic DFT-calculations for the energy levels of
the HOMO/LUMO states in the system of semiconductor and functional group could
be gained. Due to the lack of this data, trap energy levels and densities had to be
guessed and do not represent a realistic gas-SAM-nanowire interaction. In general, the
results presented above still have to be validated by practical experiments. If necessary,
corrections have to be made for the simulation set up with a subsequent reevaluation of
optimal sensor designs in an iterative process of simulation and experimental validation.
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5 Appendix

5.1 New parameters for doping and field dependent carrier
mobilities

# Fie ld dependent mob i l i ty model
# Canal i model
f i e l d d e p e n d e n c e v s a t C e = 1.9064 e5 #m∗ sˆ−1 i o f f e . ru
f i e l d d ep en d en c e v sa t C h = 1.9064 e5 #m∗ sˆ−1 i o f f e . ru
f i e l d d e p e n d e n c e b e t a C e = 0 .5 #s de v i c e manual
f i e l d dependence be ta C h = 1 .2 #sd e v i c e manual

# Trans fered Elec t ron model
f i e l d dependence v sa t TE e = 1.9064 e5 #m∗ sˆ−1 i o f f e . ru
f ie ld dependence mu1 TE e = 0 #mˆ2∗Vˆ−1∗ s ˆ1 s d ev i c e manual
f i e ld dependence F0 TE e = 22089360 #V∗mˆ−1
f i e ld dependence F1 TE e = 22089360 #V∗mˆ−1
f i e ld dependence a lpha TE e = 1 #s de v i c e manual
f i e ld dependence be ta TE e = 7.2044 #sd ev i c e manual
f ie ld dependence gamma TE e = 6.1973 #s d ev i c e manual

f i e ld dependence vsa t TE h = 1.9064 e5 #m∗ sˆ−1 i o f f e . ru
f ie ld dependence mu1 TE h = 0.0 #mˆ2∗Vˆ−1∗ s ˆ1 s de v i c e manual
f i e ld dependence F0 TE h = 4e5 #V∗mˆ−1
f i e ld dependence F1 TE h = 4e5 #V∗mˆ−1
f i e ld dependence a lpha TE h = 0.0 #s de v i c e manual
f i e ld dependence beta TE h = 4.0 #sd e v i c e manual
f ield dependence gamma TE h = 0.0 #sd ev i c e manual

# MNatsakanov parameters f o r Arora Model 300K ( a l l va lue s taken from [ 4 ] )
mobi l i ty arora Amin e = 0.0055 # [m2/Vs ]
mob i l i t y a ro ra a lphamin e = 1
mob i l i t y a ro ra Ad e = 0.0945 # [m2/Vs ]
m o b i l i t y a r o r a a l p h a d e = 1
mobi l i ty arora AN e = 2e23 # [m−3]
mob i l i t y a ro ra a lphaN e = 1
mob i l i t y a ro ra Aa e = 1
m o b i l i t y a r o r a a l p h a a e = 1
mobi l i ty arora Amin h = 0.0003 # [m2/Vs ]
mob i l i ty a ro ra a lphamin h = 0
mobi l i ty arora Ad h = 0.0167 # [m2/Vs ]
mob i l i t y a ro ra a lphad h = 1
mobi l i ty arora AN h = 3 e23 # [m−3]
mob i l i ty a ro ra a lphaN h = 1
mob i l i ty a ro ra Aa h = 2
m o b i l i t y a r o r a a l p h a a h = 1
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5 Appendix

5.2 Examplary Sensor Geometries

5.2.1 Resistor

( d e f i n e geoname ”n@node@ geo ”)
( d e f i n e gridname ”n@node@ mesh”)

( d e f i n e wire mat ”GaN”)
( d e f i n e ambient ”Gas”)

( d e f i n e r e f w i r e 0 .0001)
( d e f i n e r e f a i r 0 . 0 1 )

( d e f i n e contact hgth 0 . 0 5 )

( d e f i n e w i r e l g t h 1 . 0 )
( d e f i n e wi r e top (+ contact hgth w i r e l g t h ) )
( d e f i n e top cont hgth (+ wire top contact hgth ) )
( d e f i n e btm cont hgth (+ 0 contact hgth ) )
( d e f i n e w i r e rad @radius@ )
( d e f i n e a i r t o p top cont hgth )
( d e f i n e air btm 0)
( d e f i n e a i r wdth (+ wire rad 0 . 2 ) )
( d e f i n e in t e r f a c e wdth 0 . 0 1 )

( d e f i n e ndop @n doping@ )
( d e f i n e ndoping (∗ ndop 1e6 ) )

( sde : delay−graphics−update #t )

( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 air btm 0)
( p o s i t i o n a i r wdth top cont hgth 0) ambient ” Gas Surrounding ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n wi re rad air btm 0)
( p o s i t i o n (+ wire rad in t e r f a c e wdth ) top cont hgth 0) ambient ” Gas In t e r f a c e ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 0 0)
( p o s i t i o n wi re rad btm cont hgth 0) wire mat ”GaN btm cont ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 btm cont hgth 0)
( p o s i t i o n wi re rad wi re top 0) wire mat ”GaN wire1 ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 wi re top 0)
( p o s i t i o n wi re rad top cont hgth 0) wire mat ”GaN top cont ”)

( sdegeo : de f ine −contact−s e t ” ncontact ” 0 .05 ( c o l o r : rgb 1 0 0) ”//”)
( sdegeo : de f ine −contact−s e t ” pcontact ” 0 .05 ( c o l o r : rgb 0 0 1) ”++”)
( sdegeo : de f ine −2d−contact ( f ind−edge−id ( p o s i t i o n (/ wi re rad 2) 0 0) ) ” ncontact ”)
( sdegeo : de f ine −2d−contact ( f ind−edge−id ( p o s i t i o n (/ wi re rad 2) top cont hgth 0) )
” pcontact ”)

( s d e d e l a u n i z e r : set−parameters ” type ” ”boxmethod ”)
( sdedr : set−meshing−eng ine ” n o f f s e t ”)
( s d e n o f f s e t : c reate −g l o b a l ” usebox ” 1 ”maxnumpoints” 800000 ” r e c o v e r h o l e s ” 1)
( s d e d e l a u n i z e r : set−parameters ”maxPoints” 800000)
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( sdedr : de f ine −constant−p r o f i l e ” ndoping de f ” ” Arsen icConcentrat ion ” ndoping )

( sdedr : de f ine −constant−p r o f i l e −r eg i on ” n r e g i o n p l a c ” ” ndoping de f ” ”GaN btm cont ”)
( sdedr : de f ine −constant−p r o f i l e −r eg i on ” n r eg i on p l a c2 ” ” ndoping de f ” ”GaN wire1 ”)
( sdedr : de f ine −constant−p r o f i l e −r eg i on ” n r eg i on p l a c3 ” ” ndoping de f ” ”GaN top cont ”)

; ( sdedr : de f ine −re f inement−s i z e ” Gas s i z e ” (∗ r e f a i r 2) (∗ r e f a i r 2) (∗ r e f a i r 2)
(/ r e f a i r 10) (/ r e f a i r 10) (/ r e f a i r 10) )

; ( sdedr : de f ine −re f inement−r eg i on ” Gas re f ” ” Gas s i z e ” ” Gas Surrounding ”)
; ( sdedr : de f ine −re f inement−s i z e ” Wire s i z e ” (∗ r e f w i r e 2) (∗ r e f w i r e 2) (∗ r e f w i r e 2)

(/ r e f w i r e 10) (/ r e f w i r e 10) (/ r e f w i r e 10) )
; ( sdedr : de f ine −re f inement−r eg i on ” Wire re f ” ” Wire s i z e ” ”GaN wire1 ”)
; ( sdedr : de f ine −re f inement−r eg i on ” Wire re f2 ” ” Sub Size ” ”GaN conetip ”)
; ( s d e n o f f s e t : c reate −n o f f s e t −i n t e r f a c e ” r eg i on ” ” Gas Surrounding ” ”GaN wire1”

” h l o c a l ” r e f w i r e ” f a c t o r ” 1 . 1 )
; ( sdedr : de f ine −re f inement−s i z e ” Ox ide s i z e ” (∗ re f Ox 2) (∗ re f Ox 2) (∗ re f Ox 2)

(/ re f Ox 10) (/ re f Ox 10) (/ re f Ox 10))
; ( sdedr : de f ine −re f inement−r eg i on ” Ox ide r e f ” ” Ox ide s i z e ” ” Oxide Substrate ”)

( d e f i n e g a s f a c t 0 . 0 5 )
( d e f i n e w i r e f a c t 0 . 0 5 )
( d e f i n e i n t e r f a c e f a c t w i r e f a c t )

( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ”GaN btm cont” ” maxlevel ” 50
” maxedgelength ” (∗ w i r e f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ”GaN wire1” ” maxlevel ” 50
” maxedgelength ” (∗ w i r e f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ”GaN top cont” ” maxlevel ” 50
” maxedgelength ” (∗ w i r e f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ” Gas Surrounding ” ” maxlevel ” 50 ” maxedgelength ”
(∗ g a s f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ” Gas In t e r f a c e ” ” maxlevel ” 50
” maxedgelength ” (∗ i n t e r f a c e f a c t 0 . 1 5 ) )

( sde : delay−graphics−update #f )
( sde : save−model geoname )
; ( sde : bui ld−mesh ” n o f f s e t ” ( s t r i ng −append ” −F d f i s e −x −o” geoname ) geoname )
( sde : bui ld−mesh ”mesh” ”−discont inuousData −n o f f s e t −d −F d f i s e ” geoname )
; ( i s e : bui ld−mesh ”mesh” ”−discont inuousData −P ” geoname )
; ( sde : bui ld−mesh ”snmesh” ”− r e c t −w 4 −u −d −d f i s e ” geoname )
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5.2.2 PN-Diode

( d e f i n e geoname ”n@node@ geo ”)
( d e f i n e gridname ”n@node@ mesh”)

( d e f i n e wire mat ”GaN”)
( d e f i n e ambient ”Gas”)

( d e f i n e r e f w i r e 0 .0001)
( d e f i n e r e f a i r 0 . 0 1 )

( d e f i n e contact hgth 0 . 025 )

( d e f i n e w i r e l g t h n 1)
( d e f i n e w i r e l g t h p 0 . 3 )
( d e f i n e nwire top (+ contact hgth w i r e l g t h n ) )
( d e f i n e pwire top (+ nwire top w i r e l g t h p ) )
( d e f i n e top cont hgth (+ pwire top contact hgth ) )
( d e f i n e btm cont hgth (+ 0 contact hgth ) )
( d e f i n e w i r e rad @radius@ )
( d e f i n e a i r t o p top cont hgth )
( d e f i n e a i r wdth (∗ wire rad 1 . 2 5 ) )
( d e f i n e in t e r f a c e wdth 0 . 0 1 )
( d e f i n e o x i d e t h i c k n e s s 0 . 01 )
( d e f i n e ox GaN inter f width 0 . 005 )
( d e f i n e junct i on dpth 0 .025 )
( d e f i n e w i r e i n t e r f p e n e t r a t i o n f a c t o r 3)

( d e f i n e ndop @n doping@ )
( d e f i n e pdop @p doping@ )
( d e f i n e ndoping (∗ ndop 1e6 ) )
( d e f i n e pdoping (∗ pdop 1e6 ) )

( sde : delay−graphics−update #t )

( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n (+ wi re rad o x i d e t h i c k n e s s ) 0 0)
( p o s i t i o n (+ (+ wire rad o x i d e t h i c k n e s s ) a i r wdth ) pwire top 0)
ambient ” Gas Surrounding ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n (+ wi re rad o x i d e t h i c k n e s s ) 0 0)
( p o s i t i o n (+ (+ wire rad o x i d e t h i c k n e s s ) i n t e r f a c e wdth ) pwire top 0)
ambient ” Gas In t e r f a c e ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n wi re rad 0 0)
( p o s i t i o n (+ wire rad o x i d e t h i c k n e s s ) pwire top 0)
”Oxide” ” Oxide layer ”)

( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 0 0)
( p o s i t i o n (− wire rad (∗ ox GaN inter f width w i r e i n t e r f p e n e t r a t i o n f a c t o r ) )
nwire top 0) wire mat ”GaN wire n ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n
(− wire rad (∗ ox GaN inter f width w i r e i n t e r f p e n e t r a t i o n f a c t o r ) ) 0 0)
( p o s i t i o n wi re rad nwire top 0)
wire mat ”GaN Ox int n ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 nwire top 0)
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( p o s i t i o n (− wire rad (∗ ox GaN inter f width w i r e i n t e r f p e n e t r a t i o n f a c t o r ) )
pwire top 0) wire mat ”GaN wire p ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n
(− wire rad (∗ ox GaN inter f width w i r e i n t e r f p e n e t r a t i o n f a c t o r ) )
nwire top 0) ( p o s i t i o n wi re rad pwire top 0)
wire mat ”GaN Ox int p ”)

( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 (− nwire top junct i on dpth ) 0)
( p o s i t i o n (− wire rad ox GaN inter f width ) nwire top 0) wire mat ” Junct ion n ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 nwire top 0)
( p o s i t i o n (− wire rad ox GaN inter f width ) (+ nwire top junct ion dpth ) 0)
wire mat ” Junct ion p ”)

( sdegeo : de f ine −contact−s e t ” ncontact ” 0 .05 ( c o l o r : rgb 1 0 0) ”//”)
( sdegeo : de f ine −contact−s e t ” pcontact ” 0 .05 ( c o l o r : rgb 0 0 1) ”++”)
( sdegeo : de f ine −2d−contact ( f ind−edge−id ( p o s i t i o n (/ wi re rad 2) 0 0) ) ” ncontact ”)
( sdegeo : de f ine −2d−contact ( f ind−edge−id ( p o s i t i o n (/ wi re rad 2) pwire top 0) ) ” pcontact ”)

( s d e d e l a u n i z e r : set−parameters ” type ” ”boxmethod ”)
( sdedr : set−meshing−eng ine ” n o f f s e t ”)
( s d e n o f f s e t : c reate −g l o b a l ” usebox ” 1 ”maxnumpoints” 800000 ” r e c o v e r h o l e s ” 1)
( s d e d e l a u n i z e r : set−parameters ”maxPoints” 800000)

( sdedr : de f ine −constant−p r o f i l e ” ndoping de f ” ” Arsen icConcentrat ion ” ndoping )
( sdedr : de f ine −constant−p r o f i l e ” pdoping de f ” ” BoronConcentration ” pdoping )

( sdedr : de f ine −constant−p r o f i l e −r eg i on ” n r eg i on p l a c2 ” ” ndoping de f ” ”GaN wire n ”)
( sdedr : de f ine −constant−p r o f i l e −r eg i on ” p r eg i on p l a c1 ” ” pdoping de f ” ”GaN wire p ”)
( sdedr : de f ine −constant−p r o f i l e −r eg i on ” n r eg i on p l a c4 ” ” ndoping de f ” ”GaN Ox int n ”)
( sdedr : de f ine −constant−p r o f i l e −r eg i on ” p r eg i on p l a c3 ” ” pdoping de f ” ”GaN Ox int p ”)
( sdedr : de f ine −constant−p r o f i l e −r eg i on ” n r eg i on p l a c6 ” ” ndoping de f ” ” Junct ion n ”)
( sdedr : de f ine −constant−p r o f i l e −r eg i on ” p r eg i on p l a c5 ” ” pdoping de f ” ” Junct ion p ”)

( d e f i n e g a s f a c t 0 . 0 5 )
( d e f i n e w i r e f a c t 0 . 0 5 )
( d e f i n e i n t e r f a c e f a c t (/ w i r e f a c t 2 . 5 ) )

( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ”GaN wire n”
” maxlevel ” 50 ” maxedgelength ” (∗ w i r e f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ”GaN wire p”
” maxlevel ” 50 ” maxedgelength ” (∗ w i r e f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ”GaN Ox int n”
” maxlevel ” 50 ” maxedgelength ” (∗ i n t e r f a c e f a c t 0 . 1 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ”GaN Ox int p”
” maxlevel ” 50 ” maxedgelength ” (∗ i n t e r f a c e f a c t 0 . 1 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ” Junct ion n ”
” maxlevel ” 50 ” maxedgelength ” (∗ i n t e r f a c e f a c t 0 . 1 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ” Junct ion p ”
” maxlevel ” 50 ” maxedgelength ” (∗ i n t e r f a c e f a c t 0 . 1 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ” Gas Surrounding ”
” maxlevel ” 50 ” maxedgelength ” (∗ g a s f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ” Oxide layer ”
” maxlevel ” 50 ” maxedgelength ” (∗ i n t e r f a c e f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ” Gas In t e r f a c e ”
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” maxlevel ” 50 ” maxedgelength ” (∗ i n t e r f a c e f a c t 0 . 1 5 ) )

( sde : delay−graphics−update #f )
( sde : save−model geoname )
( sde : bui ld−mesh ”mesh” ”−discont inuousData −n o f f s e t −d −F d f i s e ” geoname )

5.2.3 Transistor

( d e f i n e geoname ”n@node@ geo ”)
( d e f i n e gridname ”n@node@ mesh”)

( d e f i n e wire mat ”GaN”)
( d e f i n e ambient ”Gas”)

( d e f i n e r e f w i r e 0 .0001)
( d e f i n e r e f a i r 0 . 0 1 )

( d e f i n e contact hgth 0 . 025 )

( d e f i n e w i r e l g t h n 1)
( d e f i n e w i r e l g t h p 0 . 3 )
( d e f i n e nwire top (+ contact hgth w i r e l g t h n ) )
( d e f i n e pwire top (+ nwire top w i r e l g t h p ) )
( d e f i n e top cont hgth (+ (+ nwire top pwire top ) contact hgth ) )
( d e f i n e btm cont hgth (+ 0 contact hgth ) )
( d e f i n e w i r e rad @radius@ )
( d e f i n e a i r t o p top cont hgth )
( d e f i n e air btm 0)
( d e f i n e a i r wdth (∗ wire rad 2) )
( d e f i n e in t e r f a c e wdth 0 . 0 1 )
( d e f i n e o x i d e t h i c k n e s s 0 . 01 )

( d e f i n e ndop @n doping@ )
( d e f i n e pdop @p doping@ )
( d e f i n e ndoping (∗ ndop 1e6 ) )
( d e f i n e pdoping (∗ pdop 1e6 ) )

( sde : delay−graphics−update #t )

( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n (+ wi re rad o x i d e t h i c k n e s s ) 0 0)
( p o s i t i o n (+ (+ wire rad o x i d e t h i c k n e s s ) a i r wdth )(+ nwire top pwire top )
0)
ambient ” Gas Surrounding ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n wi re rad 0 0)
( p o s i t i o n (+ wire rad o x i d e t h i c k n e s s ) nwire top 0)
”Oxide” ” Oxide layer1 ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n wi re rad nwire top 0)
( p o s i t i o n (+ wire rad o x i d e t h i c k n e s s ) pwire top 0)
”Oxide” ” Oxide layer2 ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n wi re rad pwire top 0)
( p o s i t i o n (+ wire rad o x i d e t h i c k n e s s ) (+ nwire top pwire top ) 0)
”Oxide” ” Oxide layer3 ”)

98



5.2 Examplary Sensor Geometries

( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n (+ wire rad o x i d e t h i c k n e s s ) a ir btm 0)
( p o s i t i o n (+ (+ wire rad o x i d e t h i c k n e s s ) i n t e r f a c e wdth ) (+ nwire top pwire top ) 0)
ambient ” Gas In t e r f a c e ”)

( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 0 0)
( p o s i t i o n wi re rad nwire top 0)
wire mat ”GaN wire n ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 nwire top 0)
( p o s i t i o n wi re rad pwire top 0)
wire mat ”GaN wire p ”)
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 pwire top 0)
( p o s i t i o n wi re rad (+ nwire top pwire top ) 0)
wire mat ”GaN wire n2 ”)

( sdegeo : de f ine −contact−s e t ” ncontact ” 0 .05 ( c o l o r : rgb 1 0 0) ”//”)
( sdegeo : de f ine −contact−s e t ” pcontact ” 0 .05 ( c o l o r : rgb 0 0 1) ”++”)
( sdegeo : de f ine −2d−contact ( f ind−edge−id
( p o s i t i o n (/ wi r e rad 2) 0 0) ) ” ncontact ”)
( sdegeo : de f ine −2d−contact ( f ind−edge−id
( p o s i t i o n (/ wi r e rad 2) (+ nwire top pwire top ) 0 ) ) ” pcontact ”)

( s d e d e l a u n i z e r : set−parameters ” type ” ”boxmethod ”)
( sdedr : set−meshing−eng ine ” n o f f s e t ”)
( s d e n o f f s e t : c reate −g l o b a l ” usebox ” 1 ”maxnumpoints” 800000 ” r e c o v e r h o l e s ” 1)
( s d e d e l a u n i z e r : set−parameters ”maxPoints” 800000)

( sdedr : de f ine −constant−p r o f i l e ” ndoping de f ” ” Arsen icConcentrat ion ” ndoping )
( sdedr : de f ine −constant−p r o f i l e ” pdoping de f ” ” BoronConcentration ” pdoping )

( sdedr : de f ine −constant−p r o f i l e −r eg i on ” n r eg i on p l a c2 ” ” ndoping de f ” ”GaN wire n ”)
( sdedr : de f ine −constant−p r o f i l e −r eg i on ” n r eg i on p l a c3 ” ” ndoping de f ” ”GaN wire n2 ”)
( sdedr : de f ine −constant−p r o f i l e −r eg i on ” p r eg i on p l a c1 ” ” pdoping de f ” ”GaN wire p ”)

( d e f i n e g a s f a c t 0 . 0 5 )
( d e f i n e w i r e f a c t 0 . 0 5 )
( d e f i n e i n t e r f a c e f a c t (/ w i r e f a c t 2 ) )

( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ”GaN wire n”
” maxlevel ” 50 ” maxedgelength ” (∗ w i r e f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ”GaN wire n2”
” maxlevel ” 50 ” maxedgelength ” (∗ w i r e f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ”GaN wire p”
” maxlevel ” 50 ” maxedgelength ” (∗ i n t e r f a c e f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ” Gas Surrounding ”
” maxlevel ” 50 ” maxedgelength ” (∗ g a s f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ” Oxide layer1 ”
” maxlevel ” 50 ” maxedgelength ” (∗ i n t e r f a c e f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ” Oxide layer2 ”
” maxlevel ” 50 ” maxedgelength ” (∗ i n t e r f a c e f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ” Oxide layer3 ”
” maxlevel ” 50 ” maxedgelength ” (∗ i n t e r f a c e f a c t 0 . 1 5 ) )
( s d e n o f f s e t : c reate −n o f f s e t −block ” r eg i on ” ” Gas In t e r f a c e ”
” maxlevel ” 50 ” maxedgelength ” (∗ i n t e r f a c e f a c t 0 . 1 5 ) )
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( sde : delay−graphics−update #f )
( sde : save−model geoname )
( sde : bui ld−mesh ”mesh” ”−discont inuousData −n o f f s e t −d −F d f i s e ” geoname )

5.3 Examplary Simulation Command File

f i l e s {

r e s u l t d i r = Results Node@node@
input = n@previous@ geo msh
mdb = quatra mat l . par
SingleFileMDB

}

output {
#AreaFactor=1e12
#Luminescence { }
#SRHPerEntity
#I n i t i a l S o l u t i o n

}

s u r f a c e {
Region = [ GaN wire1 ]
Adjacent = [ Gas In t e r f a c e ]
#TrapChargeOff
AcceptorTraps {

EnergyLevel = 2 .89 # eV with r e s p e c t to va l ence band edge
Density = @Trap Dens@ # cmˆ−2
ElectronCaptureCoef f = @< @Trap Dens@/@v sr@ >@ # scmˆ−3
HoleCaptureCoeff = @< @Trap Dens@/@v sr@ >@ # scmˆ−3The f i l e

}

#DonorTraps {
# EnergyLevel = −0.5 # eV with r e s p e c t to conduct ion band edge
#Density = @Trap Dens@ # cmˆ−2
# ElectronCaptureCoef f = @< @Trap Dens@/2∗@v sr@ >@ # scmˆ−3
# HoleCaptureCoeff = @< @Trap Dens@/2∗@v sr@ >@ # scmˆ−3
#}

#Charge { Constant = @Cs@ }
}

parameters {

temperature = @temperature@
Mobi l i ty = Arora
Fie ldDependentMobi l i ty = Trans f e redElec t ron
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BodyOfRevolution
SRH
Auger {}
Radiat ive
#Lumirecomb

Doping{
Units = SI

}

#Pola r i za t i onCharge s {
# Inte r f a c e sOn ly
#}
#SpreadFunction = PredictorFermi

}

numerica l {
bulk mindens 3d = 1e4

#wel lcont mindens = 1e−10
#capture max exponent = 22 .0 # up to now : 5
p o t g u e s s c o n s t n e u t r a l z o n e
d e v s o l v e r {

# l i n e a r s o l v e r = pard i so
l i n e a r s o l v e r = umfpack
i t e r a t i o n s = 900
o s c o b s e r v a t i o n c y c l e s = 10

bank rose
verbose

}
# d e v p r e s o l v e r {
# l i n e a r s o l v e r = pard i so
# l i n e a r s o l v e r = umfpack
# i t e r a t i o n s = 800
# bank rose
# verbose
# }

ramper charge {
m i n i t e r a t i o n s = 2
r e l a t i v e e r r o r = 5e−5

}
}

s t a t i o n a r y {

ncontact {
vo l tage = 0 .0

}

#boundaryCharge {
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# min = @Min@
# max = @Max@
# minstep = 0.005
# maxstep = 0.01
# i n i t s t e p = 0.01
# w r i t e s t a t e = chrg dens
#}

acceptorSurfTrapDens {
min = @Min@
max = @Max@
minstep = 0.0025
maxstep = 0.01
i n i t s t e p = 0.005
w r i t e s t a t e = chrg dens

}

#polChargeDensity {
#min = 0 .0
#max = 0 .5
#minstep = 0.025
#maxstep = 0.05

# i n i t s t e p = 0.05
# e x t r a p o l a t i o n

# w r i t e s t a t e = sqw piezo
#}

pcontact {
#min = 2 .4
#max = 3 .5
#minstep = 0.002
#maxstep = 0.02
#i n i t s t e p = 0.02
min = 3 .5
max = 0 .0
minstep = −0.01
maxstep = −0.02
i n i t s t e p = −0.02

#e x t r a p o l a t i o n

output {
s tep = −0.05

# luminescence
}

}

}
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[51] P. Leuchtmann, Einführung in die elektromagnetische Feldtheorie. Pearson Studium,
2005.

[52] S. L. Chuang, Physics of Photonic Devices. Wiley, 2009.

[53] I. Bronstein, K. Semendjajew, G. Musiol, and H. Mühlig, Taschenbuch der Mathe-
matik. Harri Deutsch Verlag, 5 ed., 2001.

[54] J.-J. Huang, H.-C. Kuo, and S.-C. Shen, Nitride Semiconductor Light-Emitting
Diodes (LEDs): Materials, Technologies and Applications. Woodhead Publishing,
2018.

109





List of Figures

1.1 Gas sensor using an array of functionalized nanowires. [7] . . . . . . . . . 5

1.2 Sensing principle [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Relative position of gas LUMO and HOMO states [2] . . . . . . . . . . . . 9

1.4 The drift velocity depicted over the electric field strength calculated with
the Canali-Model. Example values for silicon at 300 K taken from [18].

β = 1.3, µlow = 1450 cm2

Vs , vsat = 1.05 · 107 cm
s . . . . . . . . . . . . . . . . 12

1.5 Double logarithmic plot of the drift velocity-field characteristic. Compar-
ison of the Canali and the Tranfered Electron model for wurtzite GaN.
Parameter set-up: µlow = 830 cm2

Vs , µ1 = 0, α = 1, β = 7.2, βcanali = 1.7,
γ = 6.2, vsat = 1.9 · 107 cm

s . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Linear plot of the drift velocity-field characteristic. Like in fig. 1.5 again a
comparison of the Canali and the Tranfered Electron model for wurtzite
GaN using the same parameter set-up. Here the focus is put on the
hundred kV

cm regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Result of DFT calculations for the density of states. Here exemplarily
shown for a system of ZnO, functional group and NO2. [31] . . . . . . . . 16

1.8 Charge transfer from ZnO to gas molecule. Red fillings indicate charge
accumulation, blue fillings indicate charge depletion [31] . . . . . . . . . . 16

1.9 Current Distribution in a nanowire sensor . . . . . . . . . . . . . . . . . . 17

1.10 NPN transistor with depicted doping profiles . . . . . . . . . . . . . . . . 17

1.11 When the Fermi level at the surface is pinned due to a high density of
surface states the bands in the bulk need to bent in order to equalize
the two different Fermi levels. This figure which describes the process
qualitatively was taken from [32]. . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Visualization of a primitive cell [42] . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Two examples comparing the generation a primitive cell by primitive base
vectors (red area) and the corresponding Wigner-Seitz cell (blue area) in 2D. 24

2.3 Simple cubic lattice [42] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Left: GaN wurtzite crystal with lattice constants ‘a‘ and ‘c‘. Right:
Brillouin zone of the GaN wurtzite structure [30]. . . . . . . . . . . . . . . 27

2.5 First three allowed energy states within a infinitely high quantum well with
corresponding wave functions and the probability of presence depicted
as shaded areas. Here dark areas represent spots of high probability,
completely white areas stand for a probability of zero. . . . . . . . . . . . 31

2.6 The bandstructure of wurtzite GaN. [Source Ioffe Institute [48].] . . . . . 32

2.7 Illustration of the dispersion relation for valence and conduction band. . . 33

2.8 For energies lying in the conduction band (E > Ec), the states occupy a

spherical volume in k-space with radius kn =

√
2m∗(E−Ec)

~ [42]. . . . . . . 34

111



2.9 Comparison of Fermi- and Boltzmann statistics for given distances ’D’ of the Fermi-level from

the conduction band edge (arbitrarily chosen at 3.4 eV). For a Fermi-level lying at distance of

4 kBT below the band edge, Boltzmann statics approximates the Fermi probability function at

the band edge and above to a very good level. While at a distance of -1 kBT already a distinct

deviation can be seen, in the degenerated case Boltzmann statistic fails completely, having a

probability much greater than 1 at the band edge . . . . . . . . . . . . . . . . . . . . 36

2.10 Diode example for carrier density . . . . . . . . . . . . . . . . . . . . . . . 42

2.11 Diode example built-in voltage . . . . . . . . . . . . . . . . . . . . . . . . 44

2.12 Radiative recombination: Extinction of one electron-hole-pair by emission
of one photon carrying the bandgap energy . . . . . . . . . . . . . . . . . 54

2.13 Example of carrier densities in a p-semiconductor right after an outer
stimulus led to the generation of excess electron-hole-pairs. . . . . . . . . 56

2.14 a) Electron capture, b) Electron emission, c) Hole capture, d) Hole emission
Here the lines in the center of the band gap represent trap levels, opaque
circles depicture electrons, transparent circles holes [25] . . . . . . . . . . 58

2.15 a) Electron capture, b) Electron emission, c) Hole capture, d) Hole emission
The four processes contributing to Auger recombination [52] . . . . . . . . 60

2.16 Shaded areas represent a space charge region. a) The diameter of the
nanowire is below the critical diameter. Here, the carrier concentration
in the bulk volume does not suffice to compensate for the Fermi level
difference. Hence the a smaller potential barrier compared to wires with
larger diameters builts up. The nanowire becomes completely depleted,
the Fermi level drops as the scarcity of carriers becomes the dominating
factor. b) The space charge region is still spanned throughout the whole
wire. Therefore nanowires around the critical diameter are still completely
insulating, but the volume is just big enough to built up a potential barrier
to equalize the bulk Fermi level with the Fermi level of the surface. c) In
nanowires bigger than the critical diameter the space charge region only
spans over an outer part of the wire. In the inner a conducting channel
remains that defines the resistivity of the wire [39]. . . . . . . . . . . . . . 62

2.17 Nanowire cross-section. The shaded area represents the depleted space
charge region, the inner circle with radius rch shows the conducting channel. 64

3.2 2D cut of the cylindrical nanowire resistor. Here no oxide layer is added
to the surface, offering a direct GaN/Air-interface. In this set-up carrier
exchange between GaN and gas molecule affects the wire resistance. . . . 67

3.3 Nanowire with illustrated current density and meshing. The mesh is
refined at a GaN/Oxide-interface region. Here surface charges oriented at
Oxide/Air-interface are the source of changes in the nanowire resistance. . 67

3.4 tiny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 tiny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 tiny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 tiny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 Conduction Band Resistor 150 nm and n-doping of 1 · 1017 . . . . . . . . 75

112



3.10 Conduction Band Resistor 200 nm and n-doping of 1 · 1017 . . . . . . . . 75
3.11 Electron Density Resistor 150 nm and n-doping of 1 · 1017 . . . . . . . . . 76
3.12 Electron Density Resistor 200 nm and n-doping of 1 · 1017 . . . . . . . . . 76
3.13 IV-Curve behaviour for increasing surface charge . . . . . . . . . . . . . . 76
3.15 2D cut of the cylindrical nanowire PN-Diode including a 10 nm thick oxide

layer. The doping concentrations shown in this figure are not given in
cm−3 but in m−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.16 Nanowire with illustrated meshing. The mesh is refined at a GaN/Oxide-
interface region and over the PN-junction (with an additional 25 nm long
interface in each region.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.17 Comparison of the band structure along the y-axis with and without
surface charges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.18 Influence of surface charge for diode IV-curve . . . . . . . . . . . . . . . . 79
3.20 Conduction band: No surface charge . . . . . . . . . . . . . . . . . . . . . 81
3.21 Conduction band: Including surface charge . . . . . . . . . . . . . . . . . 81
3.24 Conduction band near the surface along the y-axis: No surface charge . . 83
3.25 Conduction band near the surface along the y-axis: Including surface charge 84
3.26 The current density in the device illustrates how the surface charge creates

a conductive channel at the surface, acting like a parallel resistor to the
junctions bridging the p-region . . . . . . . . . . . . . . . . . . . . . . . . 84

3.29 Conduction band along the y-axis: No surface charge . . . . . . . . . . . . 86
3.30 Conduction band along the y-axis: Including surface charge . . . . . . . . 87
3.31 The current density in the device illustrates how the surface charge creates

a conductive channel at the surface, acting like a parallel resistor to the
junctions bridging the p-region . . . . . . . . . . . . . . . . . . . . . . . . 87

3.33 Comparison of sensor responses for different exemplarily chosen sensor structures. 89
3.34 Deviation from linear sensor response . . . . . . . . . . . . . . . . . . . . . . 89

113


