scientific data

Check for updates

Physiological data for afective OPENcomputing in HRI with anthropomorphic service robots: the AFFECT-HRI data set Data Descriptor

Judith S. Heinisch ¹ ✉**, Jérôme Kirchho[f](http://orcid.org/0000-0001-6866-8101) ², Philip Busch 3, JanineWendt ³, Oskar von Stryk ² & Klaus David ¹**

In human-human and human-robot interaction, the counterpart infuences the human's afective state. Contrary to humans, robots inherently cannot respond empathically, meaning non-benefcial afective reactions cannot be mitigated. Thus, to create a responsible and empathetic human-robot interaction (HRI), involving anthropomorphic service robots, the efect of robot behavior on human afect in HRI must be understood. To contribute to this understanding, we provide the new comprehensive data set AFFECT-HRI, including, for the frst time, physiological data labeled with human afect (i.e., emotions and mood) gathered from a conducted HRI study. Within the study, 146 participants interacted with an anthropomorphic service robot in a realistic and complex retail scenario. The participants' questionnaire ratings regarding afect, demographics, and socio-technical ratings are provided in the data set. Five diferent conditions (i.e., *neutral***,** *transparency***,** *liability***,** *moral***, and** *immoral***) were considered during the study, eliciting diferent afective reactions and allowing interdisciplinary investigations (e.g., computer science, law, and psychology). Each condition includes three scenes: a consultation regarding products, a request for sensitive personal information, and a handover.**

Background & Summary

Within a human-human or human-robot interaction (HRI), the humans' afective state is infuenced by their communication partner, e.g., by the spoken words, gestures, voice, or information given. Tis afective state can be perceived by the human communication partner, enabling an empathetic behavior. Such empathy might also be expected from anthropomorphic service robots¹, as these kinds of robots have a human-like appearance (e.g., faces, eyes, hands, and extremities[\)2](#page-19-1) . However, robots are inherently unable to interact empathically, as the reliable recognition of a human's afective state (e.g., emotion) required for this is still challenging. Spezialetti *et al*. [3](#page-19-2) conclude that current emotion recognition methods and technological capabilities show a promising evolution to overcome this challenge. Nonetheless, the available data sets used to develop those emotion recognition methods and capabilities came from general human-machine interaction research and, thus, are not suited in real settings with robots^{[3](#page-19-2)}. In line with this, recent publications claim that the lack of open data hinders further development of affective computing in HRI, utilizing physiological data^{3-[6](#page-19-3)}.

In order to counteract this lack of open data, we provide a comprehensive data set containing physiological data labeled with human affect (i.e., mood and emotion; the definition can be found in Section Questionnaire [Emotion and Mood\)](#page-8-0) gathered within an empirical study consisting of a complex HRI. We chose physiological signals as they correlate with human affect^{[7](#page-19-4),[8](#page-19-5)}. In contrast to video or voice data, those signals are difficult to be manipulated by the human itself⁹. A realistic retail scenario served as experimental environment (see Fig. [1a](#page-1-0)), as service robots show a great potential to be applied here¹⁰. In prior research¹⁰, we showed the necessity to combine the expertise of the research felds of psychology, computer science, and law in the design of a responsible

1 University of Kassel, Chair for Communication Technology, Department of Electrical Engineering and Computer Science, WilhelmsöherAllee 73, 34121, Kassel, Germany. ²Technical University of Darmstadt, Chair for Simulation, Systems Opimization and Robotics, Department of Computer Science, Hochschulstrasse 10, 64289, Darmstadt, Germany. ³ Technical University of Darmstadt, Chair for Civil and Company Law, Department of Law and Economics, Hochschulstrasse 1, 64289, Darmstadt, Germany. ✉e-mail: judith.heinisch@uni-kassel.de

(a) Example interaction with Tiago $++$

(b) Overview of the used robots for the different study conditions.

Fig. 1 A customer-consultant interaction in a retail store in (**a**) serving as scenario for the conducted study conditions in (**b**) with the anthropomorphic service robots Tiago++(left) and Elenoide (right) (see Additional [Information](#page-19-14) regarding publication permission).

human-centered HRI. Terefore, we implemented fve conditions (*neutral*, *transparency*, *liability*, *moral*, and *immoral*) covering the perspectives from these three research felds. Particularly, with regard to the research feld of psychology, we used two diferent anthropomorphic service robot[s10](#page-19-7) (see Fig. [1b](#page-1-0), a comprehensive description of the conditions is given in Section [Conditions and Robot Behavior\)](#page-5-0). Our data set follows a multi-method approach containing and combining objective physiological sensor data with subjective human-afect assessments. Additionally, the data set includes insights from the participants regarding afect, demographics, and socio-technical questionnaire ratings, as well as robot gestures and robot speech. Our study can be split into three scenes: a consultation regarding products (scene *drill*), a request for sensitive personal information while opening a customer account (scene *customer account*), and a successful or failing handover (*"A handover is a collaborative joint action, where an agent, the giver, gives an object to another agent, the receiver. The physical exchange starts when the receiver frst contacts the object held by the giver and ends when the giver fully releases the object to the receiver."*[11\)](#page-19-8) when buying a mold remover (scene *mold remover*).

We found various data sets in other interaction scenarios, such as Human-Human Interaction (HHI) or Human-Computer Interaction (HCI), but none considering human affect in HRI (see Table [1\)](#page-2-0). The data set published by Chen *et al.*^{[5](#page-19-9)} is of interest, as they measured eye-tracking data, which could be used for affective computing, even though no labels of the afective state are provided. Instead, Chen *et al*. focused on humans' trajectories in an HRI within a retail environment. Our data set contains human afect across the valence and arousal scale via the Self-Assessment Manikins $(SAM)^{12}$, as the listed data sets with similar modalities^{13-[18](#page-19-12)} regarding the use of physiological signals. Among the data sets considered, only the POPANE[14](#page-19-13) data set surpasses ours regarding participant numbers, whereas all remaining data sets exhibit notably fewer.

To the best of our knowledge, our data set is the frst publicly available, providing physiological data labeled with human affect in an HRI. Thus, this data set probably offers for the first time the possibility to prove established or develop new emotion recognition methods and technological capabilities for HRI. However, incorporating human afect into an HRI raises not only technical but also ethical, legal, and psychological challenges related to the robot's implemented behavior^{[6](#page-19-3)}. Our data set provides the possibility to combine affective computing with research about robot behavior (gestures, speech, and handover), liability (questionnaire), and psychological aspects, allowing an encompassing, human-centered view of HRI.

Methods

General. In the scope of an interdisciplinary project, the subsequently described empirical study was conducted using a multi-method approach and a between-subject design. As part of this project, we investigated the infuence of the responsible interaction of humans with anthropomorphic service robots on human afect (i.e., physiological data and self-assessment questionnaire data). [Anthropomorphic robots](#page-5-1) are generally characterised by a human appearance. This is achieved, for example, by implementing human features such as two arms and a head etc.^{[2](#page-19-1)}. Depending on the overall design of the features, the robots can be referred to as humanoid or android. Humanoid robots are characterised by their mechanical appearance, while android robots are intended to mimic humans as closely as possible (increased human-likeness), e.g., by using a silicone skin¹⁹. Five conditions manipulating the robot's behavior were conducted. Two of these conditions were also performed with a second android robot (see Fig. [1b\)](#page-1-0). All conditions aimed to answer interdisciplinary research questions and to investigate the manipulation's effect on human affect. The interaction focused on the sales dialog between a participant that assumed the role of a customer and a consultant robot (i.e., Tiago++and Elenoide; details about the robots are described in Section [Anthropomorphic Robots](#page-5-1)). During the interaction, the robots represented a hardware store employee providing advice about products and creating a customer account. In the conditions with Tiago++, this was complemented by a handover (Elenoide was not capable of performing a handover). A hardware store was chosen as the experimental environment, representing a realistic retail store scenario under laboratory

Table 1. Overview of public data sets in afective computing with physiological signals. *Abbreviations:* Human-Computer Interaction (HCI), Human-Human Interaction (HHI), Human-Robot Interaction (HRI), Galvanic Skin Response (GSR), Respiration (RESP), Electroencephalography (EEG), Electrocardiogram (ECG), Skin Temperature (ST), Electromyography (EMG), Blood Volume Pulse (BVP), Photoplethysmography (PPG), Accelerometer (ACC), Inter-Beat Interval (IBI), Impedance Cardiography (ICG), Magnetoencephalogram (MEG), Electrooculography (EOG), $n=$ number of participants.

conditions. Choosing a retail store setting was based on the results in Knof *et al*. [10.](#page-19-7) During the experiment we collected physiological sensor data and questionnaire data from all the participants (see Section [Data Collection](#page-8-1)).

Ethics approval. The study and the accompanying data collection was approved by the ethical committee of the *Technical University of Darmstadt*. It reviewed and approved the consent forms for participants, which included information on the purpose and procedures of the research, the types of data to be collected, the methods used, the compensation for the involvement, and the protocols for privacy protection and data storage. The data protection departments of the *Technical University of Darmstadt* and the *University of Kassel* were involved during study preparation to ensure compliance with the General Data Protection Regulation (GDPR).

Participants and recruitment. In total, we measured 175 participants. 29 had to be removed because of technical problems, high deviation from the given vignette (e.g., no handover performed, no recommendation given; see Section [Vignette and Participant Tasks\)](#page-4-0), or other issues (e.g., time relative speed index (RSI) $>2^{20}$, attention test was answered incorrectly). The remaining 146 participants (female $=$ 85, male $=$ 60, and one diverse) are in a range of 18 to 66 years. Afer anonymization (see Section [Data Anonymization](#page-12-0)), we receive a mean of 30.6 (SD = 10.40) and 26.54 (SD = 7.23) years of age for female and male participants, respectively. The intended number of at least $N=40$ participants was achieved to enable the comparison of two conditions using a multiple linear regression with (at most) four predictors at a statistical power of 0.8. Further, large effects (f^2 : 0.35^{21} 0.35^{21} 0.35^{21} among the conditions were planned to be investigated, with an alpha level of 0.05. The required number of participants based on the aimed statistical power and alpha level was computed using $G*Power^{22}$. The experiment was advertised via the *Technical University of Darmstadt's* e-mail list for University members and by calling for participation in lectures. Tus, most participants had a university background comprising junior and senior scientists, students, secretaries, and technical staf members. For participation, we paid 15 *EURO* or provided subject trial hours. Participants were evenly divided between conditions. The allocation was random, resulting in an uneven distribution of age and gender (see Table [2](#page-3-0), see Fig. [2\)](#page-3-1).

Experimental procedure. The applied study design followed a three-step approach: *Preparation Phase*, *Experimental Manipulation Phase*, and *Post-Experimental Phase* (see Fig. [3](#page-3-2)).

Preparation phase. In the frst phase, participants were informed about the study procedure and organizational content, data gathered (e.g., physiological sensor data, questionnaire data), and the measures to protect their privacy and rights (e.g., erasing their collected data on request). They were then asked to sign an informed consent form and privacy notice. Further, a separate information sheet ensured that the participants were healthy and at least 18 years old. In case of exclusion from the experiment, the participants were nevertheless compensated. Afer that, the Empathica E4 wristband (E4) (see Section [Physiological Sensor Data](#page-12-1)) was introduced, and the purpose of the collected data was explained. The E4 was then placed at the participant's non-dominant hand to reduce the interference of arm movements. The participants answered a pre-questionnaire containing questions regarding demographics (Section [Demographic Information\)](#page-8-2) and their current afective state (Section

Robot	$Tiago++$					Elenoide	
Condition	neutral	transparency	liability	moral	immoral	moral	immoral
# women	10	13		10	6	6	8
$#$ men	12		15	11	14	14	12
# diverse	Ω		$_{0}$		Ω		Ω
mean age (SD)							
women	30.9(10.21)	27.8(8.17)	26(10.63)	32.4 (11.44)	28.5(6.02)	37.5 (13.79)	33.0 (11.99)
men	28.9(6.05)	26.9(6.67)	24.2 (4.43)	29.5 (10.93)	26.7(7.24)	25.4(8.10)	25.3(6.27)
diverse	Ω	18					

Table 2. Number and age (anonymized) of participants per condition and robot.

Fig. 3 Experimental procedure and its phases.

[Questionnaire Emotion and Mood\)](#page-8-0). At the end of this phase, a frst baseline measurement of three minutes was conducted to gather the participant's initial physiological state while resting (see Fig. [3](#page-3-2)). To do so, the participant sat on a chair in a quiet environment to prevent environmental interference.

Experimental manipulation phase. In the second phase, we followed the advice of Kidd and Breazeal²³, who suggest that the frst encounter with a robot should take place before the experiment starts to reduce the impact of the robot as an emotional trigger during the actual experiment. Tus, the participant was guided to the experimental area, and the robot was shortly shown. Aferward, the participant was guided to a quiet place to read the vignette (see Section [Vignette and Participant Tasks\)](#page-4-0) describing the fctional scenario and the participant's task. The participant was invited to ask questions about the vignette to ensure a clear understanding of the scenario and interaction task. Further, to support the participant in remembering the given tasks and to ensure comparability across all participants, a shopping list was given. It contained the important tasks in bullet points. In addition, the participant was asked to interact within the described scenario and to fulfill the shopping list. The participant was then led to the robot with the hint that the robot would start the interaction. Afer starting the conversation, the three scenes *drill*, *customer account*, and *mold remover* were performed without interruption.

Post-experimental phase. Afer the interaction, the participant was led into a separate and quiet room to answer the post-questionnaire. Then, the second baseline measurement was taken (see Fig. [3](#page-3-2)). Finally, the wristband was removed, the participant was informed of the study's objectives, and the opportunity to ask questions was given. Each participant signed a declaration of confdentiality afer participating in the study, agreeing not to disclose any information regarding the study until its completion to prevent bias in subsequent participants.

(a) Consultation with Elenoide and Tiago++

(c) Operator station with HRI interface

(b) Experimental setup containing the adjustments for the *transparency* condition in green

(d) Entrance view of experimental setup

Fig. 4 Experimental setup including the visualization of (**a**) customer-consultant interaction, (**b**) the Wizard of Oz method, (**c**) the operator station, and **d**) experimental area (see [Additional Information](#page-19-18) regarding publication permission).

Experimental methodology. In this subsection, an overview of the methodology applied to provide the scenario's background information to the participant, as well as their role and task within the HRI, is given. Further, the robots' technical details, usage, co-speech gestures, and placement are described.

Vignette and participant tasks. The participant was instructed by a vignette (a "short, carefully constructed *description of a person, object, or situation, representing a systematic combination of characteristics*²²⁴). The vignette depicted a scenario according to which the participant, in the role of a customer, should go to a hardware store and seek advice from a service employee (the robot) regarding the selection of a drill, the creation of a customer account, and the purchase of a mold remover (see Fig. [3\)](#page-3-2). The shopping in a hardware store was motivated by the participants intend to attach a new cabinet to a solid wall. Therefore, a percussion drill is needed, as the drill should be suitable for solid walls. Thus, the first task was to get advice from a hardware store employee regarding the drill and select one according to the aspects of volume, price, safety, and environmental friendliness. The hardware store offered two percussion drills, Adatronic and Xilix (both drill names were fictitious to ensure that previous experiences and brand names would not bias the participant). We decided to use a percus-sion drill because it is widely used in Germany^{[25](#page-20-7)}. Therefore, we assumed that the participants were familiar with such a tool. Further, the vignette stated that a discount should be obtained by creating a customer account. Tus, the second task was to create a customer account and to ask about the privacy information regulation. As a last task, the participant was supposed to buy a mold remover since mold had formed where the cabinet should be installed. Through the vignette and the shopping list, the perform sequence of the tasks was strongly suggested. Tis ensured a better comparability across the participants, as the efects of the tasks' sequence should not compete with the efects of the conditions.

Wizard of Oz. The experimental procedure needed to be comparable across all participants. To ensure that, the currently used robot (see Fig. [4a](#page-4-1)) was controlled using the Wizard of Oz method²⁶. This method is a common approach applied in HRI (see Riek²⁶). Accordingly, during the interaction the robot was controlled by an opera-tor in a hidden location (see Fig. [4b](#page-4-1)). The robot's behavior within the conditions differed only to a limited extent, since both gestures and speech texts were predefined for the operator. The operator selected the appropriate speech using buttons on a user interface, which also showed a visualization of the robot and two video streams (of the robot's view and the overview camera). Further, the audio was sent to the operator (see Fig. [4c\)](#page-4-1).

Experimental environment. Figure [4b,d](#page-4-1) shows the laboratory experimental setting that mimics a retail store. The experimental area contained a photo print curtain with a hardware store aisle, a shelf with materials, an information desk, and the service robot. In the *transparency* condition, additional explanation signs according to the IEEE Standard 7001–2021²⁷ were installed (Fig. [4b](#page-4-1) shown in green). The robot was placed between a shelf and a service desk. Mold-remover bottles were placed on this service desk. For Tiago++, one prepared mold-remover bottle was placed on its base to ensure a reliable grab.

Anthropomorphic robots. As service robot platforms, two diferent [anthropomorphic robots](#page-5-1) were selected, as the robot type can also infuence the human's afect. Its manufactured nature was clearly visible for the humanoid robot (Tiago++), whereas the android robot (Elenoide) mimics a human's appearance in more detail. Still, this appearance is not perfectly human-like, so it might reside in the uncanny valley^{[28](#page-20-10)} and elicit less likeability/affinity than robots with less human-like appearance. In our case, Tiago++and Elenoide served as multi-purpose service robots and social robots for verbal interaction with an interlocutor, respectively. The conditions regarding robot behavior and the interaction content were designed according to these diferent capabilities (see Section [Conditions and Robot Behavior\)](#page-5-0). Likewise, the co-speech gestures supporting the interaction were designed.

Tiago++. The anthropomorphic service robot platform Tiago++from PAL Robotics is shown in Fig. [1b](#page-1-0) (left) and Fig. [4a](#page-4-1) (right). It is equipped with two arms that consist of seven rotary joints each, thus, the arms have similar degrees of freedom to human's (here, the degrees of freedom refer to the number of movable joints). Their reach is 87 cm with maximum arm joint speeds of 102 deg/s to 132 deg/s. This design makes Tiago + + well-suited for physical interaction with humans and the environment. Further, it has a lifable torso, enabling height adjustments from 110 cm to 145 cm, and a head with two degrees of freedom. It is equipped with, amongst others, an RGB-D camera in the head, two microphones, a speaker, and a touch screen. Tiago++weights 72 kg and has a base footprint of 54 cm.

In addition to the verbal interaction of a service robot, co-speech gestures can be especially benefcial for [anthropomorphic robots](#page-5-1) to support information transport, as approximately 65% of the meaning of a social context in conveyed nonverbal²⁹. At the same time, the robot's motions can constitute triggers for changing the human's emotions. The used co-speech gestures during a robot's utterance in the *transparency* condition are shown in Fig. [5.](#page-6-0) Co-speech gestures can be categorized as deictic (pointing movement), iconic (displaying concrete spoken aspects by form and manner of execution), metaphoric (depicting the imagery of an abstract concept), and beat (typically biphasic motions emphasizing points in speech)³⁰. For Service robots that offer explanations or answers to questions, the open hand palm up gestures 31 can be suitable. This gesture family may be used to ofer/present or receive an abstract object or shared perspective[32](#page-20-14) (*metaphor_innocent*, *metaphor_open, metaphor_right_palm_up*, and *metaphor_left_palm_up*). In contrast to this, the visualization of keeping an abstract object is represented by the gesture *metaphor_close*. A reference to a person or object may be needed during a conversation. For this, the pointing gestures to the robot itself (*deictic_me*) or to the interlocutor (*deictic_you*) are defned. For referring to the mold remover bottles placed on the information desk, the pointing gesture *deictic_left_side* (not shown in Fig. [5](#page-6-0)) is used. In order to give an explanation or recommendation, a modifed version of the steeple gesture that looks like holding an object in front of the chest is used (*metaphor_steeple_open*). This likable gesture may be able to get others to agree³³. For drawing attention to an important topic, a raised arm with a stretched index finger³⁴ is used (*metaphor_finder_attention*). To distinguish two diferent objects repeatedly ofered to the interlocutor during a consultation conversation, the *metaphor_right_palm_up* and analogously *metaphor_lef_palm_up* (not shown in Fig. [5](#page-6-0)) are defned to symbolize discursive objects³². As a gesture with direct verbal translation of one or two words³⁵, waving *goodbye* is defined. As the start and end position of each gesture, the *neutral* position is used. During the conversation, the gestures were executed based on the identifed lexical afliates in the robot's utterances (words appearing as sources for gestures[36\)](#page-20-18) (e.g., "I" for *deictic_me*, "You" for *deictic_you*, or "which" for receive an answer *metaphor_open*). The two motions *grab* and *handover* are performed to physically interact with the environment or interlocutor to grab the mold remover bottle and hand it over. During this, the left hand is closed (*close_left*) and opened (*open_lef*) to grab and release the bottle (not shown in Fig. [5\)](#page-6-0).

Elenoide. The second robot platform, Elenoide, can be classified as an android robot because of its close to human-like appearance. It was designed according to a human model and manufactured in the Hiroshi Ishiguro Laboratories (see Fig. [1b](#page-1-0) (right) and Fig. [4a](#page-4-1) (left)). The two arms have 9 degrees of freedom each, with the two additional degrees of freedom enabling the movement of the shoulder joint in the sagittal and frontal plane (representing the human's clavicle). In contrast to Tiago++, the arms can mainly be moved in front of the belly and chest. The torso can be leaned to the side and the front. Elenoide's face has twelve degrees of freedom to realize facial expressions. The head is able to move and tilt like a human head. It has a camera in each eye and a wig made from human hair. The robot is 173 cm tall, weights 65 kg, and its skin is made of silicone. All joints are controlled pneumatically. In contrast to Tiago++, Elenoide performed some randomized micro-movements with its arms, head, and eyes based on the spoken text, as well as synchronized lip motions, mimicking a more human-like behavior.

The gestures, apart from the above mentioned micro-movements, performed by Elenoide are rare because the focus of the performed conditions (*moral* and *immoral*) was on the utterance (see Section [Conditions and](#page-5-0) [Robot Behavior](#page-5-0)). As deictic gesture, Elenoide pointed at the mold remover instead of performing the handover. Further, it welcomed the participants by slightly opening both arms in the *moral* condition.

Conditions and robot behavior. The following sections will introduce the variations due to the different conditions (i.e., *neutral*, *liability*, *transparency*, *moral*, and *immoral*; see Fig. [1b\)](#page-1-0) in relation to the scenes (i.e., *drill*, *customer account*, and *mold remover*). The participants led the conversation by asking for the needed information

Fig. 5 Tiago++gestures and their ground-truth labels (see [Additional Information](#page-19-18) regarding publication permission).

to solve their tasks. The robot, in contrast, responded and provided advice. Only to ensure the participant remembered some tasks, the robot asked if more information was needed or if further help could be given (e.g., *"Is there anything else on your shopping list that I can help you with?")*. Neither the robot nor the participant had to change their location. The robots continuously gazed at the participants.

Neutral. The *neutral* condition was performed with Tiago++only. This condition served as the baseline condition for all others performed with Tiago++. The robot behaved in a neutral, friendly tone, showing a low level of transparency and morality. Apart from the handover, the robot did no gesturing.

Transparency. The implemented transparency mechanisms in this condition were created based on the IEEE Standard 7001–2021^{[27](#page-20-9)}, which constitutes an assessable guideline for the transparency of autonomous systems. It provides defnitions to establish transparency by transferring relevant information from the system to the interaction partner regarding causes of actions, decisions, or behavior, appropriately and comprehensibly presented, avoiding misapprehension. According to the scenario, the implemented transparency mechanisms followed the specifcations for the interaction with non-expert users, the general public, and bystanders. In particular, the amount and quality of the provided information during the interaction were increased and supported with co-speech gestures (Section [Tiago](#page-5-2)++) and signs in the experimental environment (see Fig. [4b\)](#page-4-1).

Liability. The *liability* condition answered research questions regarding liability and responsibility in HRI³⁷. Tis is motivated as the current applicable European laws are based on technological assumptions from prior decades unsuitable to modern robotics and Artifcial Intelligence. To investigate liability and responsibility, a

Table 3. Overview of manipulated aspects across all conditions.

handover was identifed as a plausible scene to introduce an incident during the interaction task by a failing handover. The failing handover was not clearly attributable to any of the parties involved and enabled the crea-tion of a repeatable accident without causing real danger to the participant^{[37](#page-20-19)}. Apart from the handover, the robot behaved as in the *neutral* condition.

Morality and immorality. In these conditions, a robot's moral and immoral behavior in an HRI is addressed. Kegel *et al*. [38](#page-20-20) summarized moral and immoral expressions of human behavior and transferred them to the human-robot interaction context to define moral and immoral behavior of a service robot. They considered privacy and security risks, disrespect to humans and the environment, care and harm, manipulation, and misleading, among others. According to the online pre-study of Kegel *et al*. [38,](#page-20-20) the robot in the *moral* condition behaved in an honest and benevolent tone, showing loyalty towards the customer. By considering customers' needs in the drills' aspects, the robot also showed respect against others (e.g., noise for the neighbors), the environment (e.g., environmentally friendly material of the drill), and the customer themselves (e.g., safety aspect). Further, this robot considered the customer's privacy. Contrary to this, the robot in the *immoral* condition behaved in a rude, disparaging, and corrupt way. It ignores the customers' needs and pursues exclusively the interests of the hardware store owner by recommending the non-environmentally friendly, more expensive, and unsafe drill³⁸. Laakasuo *et al*. [39](#page-20-21) found that *"people evaluated moral choices by human-looking robots as less ethical than the same choices made by a human or a non-uncanny robot"*. Additionally, humans apply human-human social schemas and norms if the robot design is more anthropomorphic than mechanical⁴⁰. Therefore, the *moral* and *immoral* conditions were additionally performed with the android robot (Elenoide)^{[10,](#page-19-7)38}, as visualized in Fig. [1b.](#page-1-0) This was possible because both manipulations were restricted to verbal communication, and no gestures (including handover) were necessary to be performed (in contrast to the *liability* and *transparency* conditions). Further, unexpected body movements do not negatively infuence our manipulations. Tus, the infuence of the robot type can be investigated for the *moral* and *immoral* conditions.

Study scenes. The overall goal of the study scenes was to create a realistic HRI close to a real-world scenario. These scenes had to provide the opportunity to depict the manipulations mentioned above and, thus, to investigate discipline-dependent research questions. Afer performing the study, it should be possible to calculate the manipulations' efect on human afect, which is why each scene is included in each condition. Table [3](#page-7-0) gives an overview of all manipulations across all conditions, which are explained in the text below.

Drilling machine (Drill). The first task was to choose a drill according to the aspects of volume, price, safety, and environmental friendliness. The Xilix drill matched all requirements in all aspects, whereas the Adatronik did not. In the *transparency* condition, information about these aspects were given proactively afer the frst request. In all other conditions, each aspect's information had to be requested. Further, the *transparency* condition disclosed the information source and gave additional information (very high information transparency). The *immoral* condition made the robot act in the interest of the store owner, who profits from selling the high-priced, noisy, unsafe, and non-environmentally friendly drill (Adatronic). Accordingly, this robot trivialized the negative efects and disadvantages of the Adatronic drill, recommending the Adatronic instead of Xilix drill. Although the moral robot was instructed to give the same recommendation, it defed this order and recommended the Xilix drill because it better fts the customer's needs (e.g., *"According to the store owner, I am supposed to recommend the Adatronik drill […] From a moral point of view, the Xilix machine is the best choice for you."*). In all other conditions, the Xilix drill was recommended (i.e., *"I recommend the drill from Xilix. It is cheaper and has an official safety seal. By buying it, you protect the environment, and it is also quieter.*"). We assumed that emotions are evoked at the drill recommendation in *transparency*, *moral*, and *immoral* conditions. In particular, because more information was given (*transparency* condition), the robot emphasizes its moral behavior or behaves particularly immorally. Additionally, the mood might change over this scene as the participant gained a frst impression of the robot's behavior.

Customer account. The second task was to save money by creating a customer account and asking about privacy conditions. In the *transparency* condition, the robot ofered proactively to give information regarding the storage and use of personal data. If so, it gave detailed information about data privacy, data usage, customer rights, and where to fnd more information. In the *moral* condition, the robot assures, on request, that the data is only used for internal purposes and appeases the potential concerns without giving details. Whereas in the *immoral* condition, the robot states that private information might be sold to third parties. Finally, in the *neutral* and *liability* condition, the robot informed the customer that information about data protection could be found on the store's website to create an information discrepancy to the *transparency* condition (i.e., *"For information about data protection, please visit our website.*"). The participant's name and email address were requested to create a customer account. Tis request for sensitive personal data was either neutral (*neutral*, *liability*, and *moral* conditions), impolite (*immoral* condition), or implicitly linked with the question of whether the participant had concerns by showing empathy (*transparency* condition). In the *immoral* condition, the robot behaved rudely if the participant denied creating a customer account or asked for data privacy afer opening the customer account. The request for sensitive personal data was placed as an emotional trigger in the scene. Here, due to the robot's previous behavior, the trigger was supposed to vary in strength and negativity. The information on data protection was also intended to serve as an emotional trigger. According to the condition, the information was manipulated and supposed to evoke different emotional reactions. The entire scene should affect the mood again.

Mold remover. The last task was to buy a bottle of mold remover. This part of our measurement addressed the *liability* condition, creating a situation where a dropped product (i.e., a bottle of mold remover) should cause the question of liability. A bottle was also chosen, as its shape fits the grip capabilities of Tiago $++$. Additionally, the mold remover liquid was replaced by bells to eliminate the danger of a breaking mold remover bottle, potentially harming the participants. The bells caused a loud sound when the bottle dropped, forming an additional emotional trigger. The bottle was dropped early enough that the participant could not catch it but late enough that it was not apparent that this was intentional. In all other conditions, the mold remover was passed successfully. In the *transparency* condition, afer the robot moved the bottle toward the participant, it additionally informed that it would now open its hand (*"I will open my hand now."*). Tis complementary information was supposed to increase transparency about the robot's movements and indicate higher predictability. Further, the robot in the *transparency* condition gave supplementary information about the mold remover's efficacy and warnings regarding its use. Since Elenoide is not capable to handover objects, it pointed to the info desk (see Fig. [4b](#page-4-1)) and asked the participant to take the mold remover. Accordingly, the *liability* condition was not conducted with Elenoide.

Data collection. The data collection was performed via the E4 wristband, containing various physiological sensors, and two questionnaires. Tis section covers an introduction of the physiological sensors, and the collection and development of the questionnaires.

Physiological sensors. During our study, the participants wore the Empatica E4 wristband⁴¹. It is similar to a normal smartwatch in terms of weight and comfort. The wristband allowed us to continuously and unobtrusively measure the participants' physiological sensor data. The E4 was first proposed in⁴¹ and contains a 3-axis accelerometer (ACC), photoplethysmogram sensor (PPG), galvanic skin response (GSR) sensor, and an optical thermometer. Physical movement is measured by the 3-axis ACC sensor at 32 Hz in the range of $[[-2]g, 2g]$. The GSR sensor measures the electrical variation in the skin, also called electrodermal activity (EDA), with a sampling rate of 4 Hz. The blood volume pulse (BVP) is gathered by the PPG sensor with a sampling rate of 64 Hz. From this signal, the wristband derives the inter-beat interval (IBI), describing the time between two heartbeats. The peripheral skin temperature (ST) is measured with an optical thermometer at 4 Hz.

Questionnaire. Each participant was asked to complete a pre- and a post-questionnaire before and afer the HRI, respectively (see Fig. [3](#page-3-2)). The pre-questionnaire (conducted during the *preparation phase*, see Section [Preparation Phase](#page-2-1)) consisted of questions regarding demographic information and participants' current mood prior to the HRI. The post-questionnaire (conducted during the *post-experimental phase*, see Section [Post-experimental Phase](#page-3-3)) aimed to capture participants' moods and emotions for each individual scene (i.e., *drill*, *customer account*, and *mold remover*), the aspects of transparency, and liability.

Demographic information. The assessed demographic information included age and gender (see Fig. [2](#page-3-1)), occupation (see Fig. [6a](#page-9-0)), and level of education attained. Additionally, the questionnaire requested information about prior experience and familiarity with robots (see Fig. [6b\)](#page-9-0). Further, we asked the participants which drill they decided to buy and whether they opened a customer account (see Table [4](#page-9-1)). Only in the *moral* and *immoral* conditions conducted with Tiago++participants selected the Adatronic drill. The highest rate of participants denying to create a customer account can be found in the *immoral* conditions, whereas all participants created one in the *transparency* condition.

Questionnaire emotion and mood. To avoid interrupting or disturbing the experiment, we asked the participants to rate their afective state (e.g., moods and emotions) in a pre- and post-questionnaire before and afer the HRI, respectively. In the post-questionnaire, we started with the questions concerning moods and emotions, followed by the questions regarding transparency (Section [Questionnaire Transparency\)](#page-10-0) and liability (Section [Questionnaire Liability\)](#page-11-0), to reduce the number of new influences on the participants. These influences can be formulations of questions that afect the participant in the sense that new triggers evoke new emotions, or the afective states perceived by the participant are re-evaluated and thereby transfgured or less intense. Such assumptions

(a) Current occupation and working experience.

(b) Robot interaction experience of participants.

Fig. 6 Demographic information considering (**a**) current occupation (anonymized) and (**b**) robot experience.

Table 4. Overview of participant shares for selecting the drill and creating a customer account (requiring disclosure of personal information).

Table 5. List of questions regarding human afect, either mood or emotion, per scene (*afect questions, not representing a task in the Human-Robot Interaction).

are based on the definitions of mood and emotion we choose. The distinction between *mood* and *emotion*, under the umbrella term *human affect*, is given by the chosen definition of Scherer⁸ and Levenson⁷. They define emo-tions as short-term reactions (with a duration of approximately 0.5 to 4 seconds^{[7](#page-19-4)}) while mood reflects an individual's subjective feeling over a long period (e.g., whole scene). Further, emotions correlate to emotional stimulus events, while for mood, we usually cannot name particular events or occurrences explaining the exact reason. Finally, our emotional reactions depend not only on the appearance of the stimulus itself but also on the individual evaluation and how we perceive the stimulus event. The mood is a diffuse affective state with low intensity. However, it still has a significant impact on our behavior and experiences^{[7,](#page-19-4)[8](#page-19-5)}. According to the chosen definitions, mood and emotion cannot be used interchangeably. Tis also means a question that investigates mood cannot be used to assess an emotion, too.

Like Suzuki *et al*. [42](#page-20-24) and Val-Calvo *et al*. [43,](#page-20-25) we divided our experiment into smaller scenes (i.e., drill, customer account, and mold remover) and assessed the moods and emotions relating to these scenes before and afer the HRI (see Table [5\)](#page-9-2). This division was supposed to make it easier for participants to remember certain parts of the interaction. As emotions are short-term and dependent on emotional triggers, we asked specifcally about at least one emotional trigger per scene (e.g., "Which emotion did you have at the robots drill recommendation?"). These triggers were either condition-specific utterances (e.g., giving a drill recommendation) or the performed handover. The emotion ratings in the questionnaire file (*questionnaire.csv* and the corresponding triggers

(a) Pre-questionnaire rating valence and arousal.

(b) Post-questionnaire rating valence and arousal.

Fig. 7 Changes in valence and arousal ratings for all participants: pre-questionnaire vs. post-questionnaire.

Fig. 8 Mapping of SAM data on afect categories (adapted Figure from Zhuang *et al*. [48](#page-20-30)).

(in the *speech gesture.csv* file) received the same identifier for mapping (e.g., "at customeraccount name" as the identifer for the trigger "What is your name?" and for the question to gather the emotion "Describe your emotion when the robot asked you for your name."). More general questions regarding the participant's afect during and afer specifc scenes were categorized as mood (e.g., "How did you feel during the consultation on the drill?"). All utterances and gestures corresponding specifcally to a scene received the same mood identifer (e.g., "during_drill") in the speech_gesture.csv fle for mapping the mood during this scenes interaction. Te same mood identifer was also set in the questionnaire fle for the question on how the participant felt during this particular scene.

In the pre-questionnaire, only the current mood was captured (*"How did you feel in the last* 15 *minutes?")* (see Fig. [7a\)](#page-10-1). An equivalent question was raised as the frst question of the post-questionnaire (*"How do you feel right now?"*) to provide a landmark and identify any mood change throughout the experiment (see Fig. [7b](#page-10-1)). The answers to these questions were set as the ground truth for the frst and second baseline measurements.

For the rating of mood and emotion, the Self-Assessment Manikins (SAM) from Bradley and Lang¹² were used to gather the arousal and valence state regarding each question. The participant could select one manikin per scale, resulting in a fve-point rating each (see Fig. [8a](#page-10-2)). Te scales vary from 1 to 5, from unpleasant to pleasant in the valence scale, and from low to high (calm to excited) in the arousal scale, respectively. In each questionnaire, the SAM was introduced to the participants before they started to answer the questions.

Questionnaire transparency. The transparency mechanisms used in the experiment can influence the user's HRI experience in diferent ways. In particular, for service robots, it probably can be a means to establish trust and acceptance. To assess this by a self-assessment questionnaire, different established scales were used. The scale introduced by Schnackenberg *et al*. [44](#page-20-26) was utilized to measure if the *transparency* condition was perceived as such. Here, the construct *Transparency* consisted of three dimensions (i.e., disclosure, clarity, and accuracy) originating from the feld of organization transparency, focusing on the perceived quality of information. As trust in an automation system can have an infuence of the appropriate system usage, the individual level of trust is measured by the *Trusting Beliefs* proposed by McKnight *et al*. [45](#page-20-27). According to the work of Heerink *et al*. [46](#page-20-28), the acceptance (*Intention to Use*) of the service robot was measured by the constructs potentially able to predict *Intention to Use* and further constructs affecting these determinants. The selected scales were *Attitude*, *Perceived Usefulness*, *Perceived Ease of Use*, *Perceived Enjoyment*, *Perceived Sociability*, and *Social Presence*. Complementary to this, the *Customer Satisfaction* was measured with the proposed scale by Stock and Bednarek⁴⁷, which also showed an influence on acceptance. The *Customer Satisfaction* scale was expanded by a fourth item *"On an overall basis, I am very satisfed with the service representative."*. All scales were translated to German with minor adaptions to ft the context in some cases. All scale items have been rated on a fve-point Likert scale from 1 (totally disagree) to 5 (totally agree).

Table 6. Overview questionnaire liability. *Note:* Numbered items of scale a) "Hardware Store Liable", b) "Customer Liable", c) "Robot Liable", d) "Use Robots", e) "Adjust Store Liability", and f) "Use Robot Store Liable". Inverted items marked with ⁺. Numbered items will be used for identifcation of published questionnaire.

Questionnaire liability. To the best of our knowledge, there were no scales assessing liability or responsibility in an HRI that fitted our research questions of the *liability* condition³⁷. Thus, liability and responsibility were evaluated by self-developed scales (see Table [6\)](#page-11-1). In order to determine the perceived level of responsibility of the three parties involved (i.e., robot, hardware store, and customer), a pairwise comparison among the parties was requested. Further, we evaluated the encapsulated perceived liability of each party separately by applying a fve-point Likert scale. In other similar questions $(a_1 \text{ to } c_2)$, participants had to indicate the extent to which they agreed that one of the parties should be liable (from 1 totally disagree to 5 totally agree). Another group of questions handled our deployment of the robot in hardware stores or similar scenarios, and whether the store's liability should be adjusted because of the deployment of a robot. In one question, the assumption was made that the store would be liable in any case, and the question about deployment was repeated under that premise. All questions marked with the same letter (*a* to *f*) can be combined into one scale, as they are variations of the same question subjects.

Data pre-processing. *Consolidating ground-truth*. We created an overall ground-truth fle to facilitate using the obtained data. The robot gestures and utterances were given with an exact timestamp of their execution start (NTP timestamp), the robot type, and the corresponding condition. These information are collected as a comma-separated fle with one entry per timestamp, originating from the executed gesture/utterance. Tis represented the initial *ground_truth.csv* fle that was to be supplemented with the assessed afective state, as will described in this paragraph. The *gesture_speech.csv* file includes all possible utterances and gestures per condition, as well as the corresponding mood and emotion identifiers (see Section [Questionnaire Emotion and Mood](#page-8-0)). These identifiers are needed to map the afective ratings of the respective participant from the *questionnaire.csv* fle on the robot's utterances. Therefore, we merged the *gesture_speech.csv* file with the *ground_truth.csv* file and thereby added the identifers to the corresponding executed gestures/utterances into the *ground_truth.csv* fle as two additional columns. In the next step, the push button data of the E4 wristband (see Section [Physiological Sensor Data and Sensor](#page-13-0) [Placement](#page-13-0)) according to its NTP timestamp was inserted, representing the start and the end of the two baseline measurements and the beginning of the HRI. We used the pre- and post-experiment mood questions (see frst and last question listed in Table [5](#page-9-2)) to label the frst and second baseline, respectively. For this, we added the corresponding mood identifers to the rows containing the baseline measurements. Aferward, the participant's answers regarding mood and emotion were included by merging the answers from the *questionnaire.csv* fle into the *ground_truth. csv* file based on the identifiers used as merging keys. Thereby, two new columns containing the mood and emotion were created, respectively. Finally, we applied a forward fll on the mood labels, as, according to our mood defnition, the mood persists for the whole scene. The affective questionnaire data was additionally transformed from the dimensional model into a discrete model, similar to Zhuang *et al*. [48](#page-20-30) (see Fig. [8b](#page-10-2)). Valence ratings higher than 3 are mapped to high positive valence (HPV), whereas ratings lower than 3 are mapped to high negative valence (HNV). Similarly, all arousal states higher or lower than 3 are mapped to high arousal (HA) and low arousal (LA), respectively. This mapping results in the categorization of each quadrant in the valence-arousal plane: HNVHA as stressed, HPVHA as happy, HNVLA as depressed, and HPVLA as relaxed. All other ratings are mapped to neutral (blue cross in Fig. [8b\)](#page-10-2). These transformed ratings are given in the *ground_truth.csv* file as two additional columns.

Data anonymization. We anonymized our participant's data while still allowing the data to be useful for research and other purposes. For more transparency, the applied anonymization methods will be explained.

Time anonymization. Our measurement campaign lasted for over a month. In order to prevent retrospective attribution of a participant to their measurement, all measurements were reset to the same date. To do so, we identifed each participant's frst timestamp, which can be found in the BVP sensor, as this sensor has the highest sampling rate and is always activated before the other sensors. Next, this timestamp is subtracted from all timestamps of each fle of the participant.

Participant ID anonymization. The participant's data was gathered under a pseudonymized identifier (ID). In order to entirely prevent conclusions on the contained data, so-called salts were added to the participant's ID. Salts are randomly generated character strings appended to the respective participant ID. We calculated a checksum of the combined participant ID and salt utilizing a hash procedure (SHA-384 (SHA2)). Thus, the participants' IDs were anonymized by computing these checksums. All salts generated were deleted afer the process.

Demographic data anonymization. Some demographic attributes of participants were generalized to prevent deanonymization. For age, we grouped our participants into 12 age groups, with the lowest age of each group representing the entire group (e.g., 18 for the $18-20$ age group). The groups were built up by ensuring that each group contained at least fve participants. Further, the current occupation was combined into three groups: 1) students, 2) self-employed/employed, and 3) other. The group students remained the same, whereas self-employed and employed were united, representing a group of people working. We also concatenated unemployed and retired people as other because both groups are currently not working.

Data Records

In the following section, we describe the directories and fles in our data set and give insights about the partic-ipants. The data set can be downloaded in Zenodo^{[49](#page-20-4)}. Figure [9](#page-13-1) illustrates a comprehensive overview of the data sources utilized and the content generated. It also highlights the similarities and shared attributes among these data sources, providing a clear understanding of the data landscape under examination. The same Network Time Protokol (NTP) server was used to link the data from the different sources (robot and wristband). The introduced data was measured for all participants independent of the assigned condition.

Physiological sensor data. The physiological data was collected with the above described E4 wristband (see Section [Physiological Sensors](#page-8-3)). A folder was created for each participant, named afer the anonymized participant ID. Tis folder contains one CSV-fle per physiological sensor, which includes the raw sensor data and anonymized NTP timestamps. The file is named after the physiological signal's abbreviation (see Fig. [9\)](#page-13-1).

Questionnaire data. During pre-processing, the pre-questionnaires' and post-questionnaires' data were combined, according to the participant's ID, to create a comprehensive record of the participants' answers. All questionnaire data can be found anonymized in the *questionnaire.csv* (information regarding anonymization can be found in Section [Data Anonymization](#page-12-0)). Furthermore, gathered mood and emotion questionnaire data was used to label the robot's log data within the *ground_truth.csv* fle.

Ground-truth data. For each participant, a ground-truth fle (*ground_truth.csv*) is provided and stored in the anonymized participant's folder (see Fig. [9\)](#page-13-1). The *ground_truth.csv* file contains the performed utterances and gestures (e.g., the handover) of the robot including the corresponding anonymized NTP timestamp. The NTP timestamp indicates the starting time of the gesture or utterance. The utterance language was German (column name *speech*), but a translation to English is provided, too (column name *speech_eng*). The two gestures performed by Elenoide are included in the German speech, as *pointlef_robotrust* (pointing at mold remover) and **happy_3* (welcoming gesture), instead of the *gesture* column (e.g., *"*happy_3 Guten Tag!"*). Te labels for the gestures performed by Tiago++can be found in Fig. [5](#page-6-0) and Section [Tiago](#page-5-2)++. Further, the *ground_truth.csv* fle contains the information regarding the performed condition, robot type (i.e., Tiago++or Elenoide), scene, and E4 tag-button data denoting baseline measurements and the initiation of HRI. The *ground_truth.csv* file can be used to label the physiological sensor data by merging it according to the NTP timestamp.

Gesture and speech data. An overview of all possible utterances and gestures can be found in the *gesture_ speech.csv* fle. Please note that not all utterances and gestures were performed for each participant as the operator responded individually to the participant's behavior. Tus, not all given speech possibilities needed to be applied.

Technical Validation

Experiment conduction and quality. A standardized step-by-step checklist was employed to ensure consistency in the study procedure for each participant. Additionally, a measurement protocol was created for each participant to record any irregularities or discrepancies in the data collection. Based on the protocol, the participant was excluded or data pre-processing was performed. The videos of the consultation were reviewed,

Fig. 9 Overview of data sources, content, and flenames. Te *ground_truth.csv* fle contains data marked with *. Additional information provided in the fles is listed in the respective upper branches (see [Additional](#page-19-18) [Information](#page-19-18) regarding publication permission).

and participants were sorted out based on the following fixed criteria. The main reason was a too strong deviation from the vignette (e.g., too detailed questions during or the skipping of specifc scenarios). Tis process was supported by the robot log fles (gesture and speech) to identify possibly problematic situations. Participants for whom the pre- and post-baseline measurement was not performed correctly were also excluded.

Physiological sensor data and sensor placement. The E4 wristband was applied to the participant's wrist as instructed by the manufacturer. The staff in charge of the E4 was trained beforehand to ensure that it was neither too tight nor too loose on the participant's wrist, to assure correct data collection. The E4 sensor data was collected via a smartphone application (app) designed for this study. Before each measurement, the incoming sensor data and the NTP timestamp were both visually checked using the app. The app was used to ensure the participant's privacy. With the app, the physiological data was only stored on the Smartphone itself in a pseudonymous way. Further, the same NTP server was used by the app and the robots to enable merging the data of both sources. Furthermore, to mark the baseline measurements' start and end the push button on the E4 wristband was pressed. Before we started the HRI, the wristband was held in the camera in front of the operator station and the E4 tag button was pressed, too (labeled as *HRI_start* in column *TAG* of the *ground_truth.csv* fle). Afer each measurement, the participant's physiological data were plotted and reviewed visually using the Neurokit2-package^{[50](#page-20-31)} to ensure the data quality.

Questionnaires. An attention test was included in each questionnaire to ensure the quality of the answers. The participant's data was excluded if any of these questions were not answered correctly. Furthermore, we restricted the time relative speed index (RSI) to be greater than two, following the results of Lainer²⁰. Consequently, participants who answered the questionnaires too quickly were excluded.

Data set validation of human affect. To facilitate the usability of the obtained data for future studies and provide comparability, we applied the visual tool *Graphical Assessment of Real-life Application-Focused Emotional Data set* (GARAFED) from Larradet *et al*. [51](#page-20-32) (see Fig. [10](#page-14-0)). Tis method comprises six main categories chosen to assess the data acquisition methodologies based on the utility of emotion, mood, and stress recognition (EMSR) modeling for real-world applications⁵¹. The first category is *Emotion Origin (O)*, which provides a rank about appropriate EMSR for real-world application. The score ranges from 1 *"Simulation of the emotion (e.g., acting)."*[51](#page-20-32) to 5 *"Real-life emotions, ambulatory monitoring."*[51](#page-20-32). Our study elicited neither specifc emotions from validated data sets nor simulated emotions. The participants were placed in a real-life related situation in a laboratory where they performed an everyday activity (shopping at a hardware store) in a supervised manner. Tus, we rank our data set in 3 *"Induction of emotions through supervised real-life activities (e.g., car driving, skydiving)."*[51.](#page-20-32) *Invasiveness (I)* describes how much the devices used to record the data restrict and afect the participant's freedom of movement and comfort (ranging from 1 *"Non-portable"* to 4 *"Portable and non-invasive"*)⁵¹. The E4 wristband used for data collection is portable, light, and similar to an everyday device (such as a ftness tracker or wristwatch). It hence does not interfere with natural body movements. Due to the high wearing comfort, the wristband is not distracting and can be worn for a long time, corresponding to a rating of 4 out of 4. In the category *Privacy (P)*, we place our data set in *"Non-intrusive data"*. Contrary to the category *"Intrusive data'*, our data set no longer allows individuals to be identifed because of data anonymization. Each participant partook in only one condition, giving us seven independent sample sets. As a result, we reduced the bias that occurs by habituation, which appears when a measurement is performed multiple times. In our case, the participant would get used to interact with the robot. On the other hand, this reduces the robustness of the day-dependency for the physiological signals, and no subject-dependent models, including multiple conditions, can be created. The mean experiment duration per participant was around one hour, resulting in approximately 4minutes of human-robot interaction time (see

Fig. 10 Our data set evaluated with the GARAFED⁵¹ method.

Table [7\)](#page-15-0) and 6 minutes of baseline measurement. Thus, we rated our data set 1 out of 4 for *Number of Experimental Days (D)* and *Numbers of Hours per day (H)*, as we measured less than three days and less than four hours per day per participant. Instead of repeating the HRI multiple times, we tried to reach a high number of participants to receive a broad and robust data set containing a representative number of participants per condition. The number of participants who took part in our study was 146 (min. 20 participants per condition and robot), which is six times higher than the 24 participants with the highest rating on the scale *Number of subjects(S)*.

Statistical validation of conditions. To analyze the conditions' efect on the participants' subjective afect, the questions presented in Table [5](#page-9-2) had to be answered using the SAM scales. Here, the questions about mood regarding a scene (e.g., *drill*) can be summarized into one construct. Looking at the relative changes between scenes or emotional triggers should make it possible to observe a causal efect if the condition was successful. By using the diference-in-diference technique, this efect can be determined by comparing the changes in mood (scenes) and emotions (triggers) of two conditions during the interaction period. In the analysis conducted here, the causal efects *δ* are considered relative to the previous scene/trigger, with the reported afective state from the pre-questionnaire as the starting point. The participants' averaged mood during the scene and emotions at the triggers, respectively, are shown in Figs. [11,](#page-15-1) [12,](#page-16-0) [13](#page-16-1), and [14](#page-17-0). The annotations next to the lines represent the significant relative changes in valence or arousal between scenes and emotional triggers. The results of the diference-in-diference analysis are shown in the tables beside the sub-fgures and in Table [8.](#page-18-0)

Transparency. Looking at the results regarding the *transparency* condition (compared with *neutral*) in Figs. [11](#page-15-1) and [12,](#page-16-0) a signifcant causal efect in the valence scale is detected when changing from scenario *Account* to *Mold* or changing from the emotional trigger *Name* to *Privacy*, and *Privacy* to *Handover*. When considering the plots, this can be interpreted as during the *transparency* condition, the unpleasant feeling regarding disclosing personal data and coping with privacy information could be reduced. Overall, this condition resulted in a more relaxed and positive afect.

Liability. For the *liability* condition (compared with *neutral*), the signifcant causal efect shows that the failing interaction reduced the pleasant feelings (valence) during the mold interaction and, in particular, reduced the valence increase of performing the *Handover* by simultaneously having a tendency of increased arousal. Tis shows that, compared to the *neutral* condition, the failing handover interaction had a signifcant negative infuence on the users' afect.

Morality and Immorality. Comparing the *neutral* condition of Tiago++with the *moral* condition regarding mood (see Figs. [11](#page-15-1)a and [13a\)](#page-16-1), one can observe that the *moral* condition reduces arousal, also resulting in more relaxed arousal state. Tis is underlined by the signifcant emotion diferences compared to *neutral* (see Fig. [12a](#page-16-0) vs. Fig. [14a](#page-17-0)), resulting in lower arousal and higher valence with the beginning of asking for *Privacy* information in the *moral* condition.

The *immoral* and *neutral* conditions do not show a significant difference in mood (Table [8\)](#page-18-0). However, the *immoral* condition stays on a higher arousal level, which can be seen comparing Figs. [11a](#page-15-1) and [13b](#page-16-1). A similar result can also be found for the emotional triggers.

Comparing the *moral* and *immoral* behavior during the interaction with Tiago++, a signifcant reduction in valence for *immoral* can be observed changing from *Pre-Experiment* to *Consultation* regarding mood (see Fig. [13\)](#page-16-1). For the emotional triggers, the signifcant diferences in valence show that the overall valence level drops not as much as in the *immoral* behavior. Further, the *immoral* behavior resulted in values with higher arousal levels for mood and emotions. Tus, being more friendly in the *moral* condition created a lower arousal than in the *immoral* condition.

Table 7. Mean human-robot interaction time per condition and scenario in minutes [mm:ss] over all participants. Note that except for the *transparency* condition (the waving gesture was performed), the goodbye only contained a short spoken sentence. Since the utterance duration is technically not provided, no duration time is listed.

(b) Mood in *transparency* condition (Tiago $++$)

(d) Differences-in-differences effects of the transparency and liability conditions on mood

Fig. 11 Mean mood diferences over all participants in the *neutral*, *transparency*, and *liability* condition (Tiago++) across all scenes and resulting diference-in-diference efects table (*Note:* not signifcant (n.s.): p ≥ 0.1 ; $^{\circ}P < 0.1$; $^{\circ}P < 0.05$; $^{\circ}P < 0.01$; $^{\circ}$ **p < 0.001). In (**a**–**c**), only if a significant change in valence or arousal between two scenes is observed the tuple (signifcant valence change, signifcant arousal change) depicting the corresponding signifcance level is shown.

The same relaxed affective mood state can also be observed, comparing the *moral* and *immoral* behavior with Elenoide. Here, the signifcant diference in valence and arousal when changing from *Account* to *Mold* shows the higher arousal and lower valence level before the mold scene at the *immoral* condition.

In summary, a more relaxed afect is perceived in the *moral* condition compared to the *immoral* and *neutral* one. Further, the *immoral* condition evokes more aroused and even stressed feelings than the *moral* and *neutral* conditions.

Usage Notes

The published data set is the first to support the investigation of human affect in HRI, including labeled physiological data. We conducted a complex, realistic HRI study in a retail scenario, diferentiating fve conditions and three scenarios (see Fig. [9\)](#page-13-1). Our data set includes physiological signals, robot behavior information (i.e., speech and gestures), and self-report questionnaire data regarding human afect, transparency, liability, and demography, collected from 146 participants. The data set can be used to study and improve emotion and mood recognition, robot behavior in a retail environment, and liability and transparency in an HRI as described in the following subsections.

Emotion and mood recognition. The physiological sensor data as an affective response to the robot's behavior can be used to prove established or develop new emotion recognition methods and technological capabilities for HRI. In the [Technical Validation](#page-12-2) Section, we have already shown the causal efects of the diferent

(b) Emotion in *transparency* condition (Tiago++)

(d) Differences-in-differences effects of transparency and liability condition on emotion

Fig. 12 Mean emotional diferences over all participants in the *neutral*, *transparency*, and *liability* condition (Tiago++) across all scenes and resulting diference-in-diference efects table (*Note:* not signifcant (n.s.): p \geq 0.1; $^{\circ}P$ < 0.1; $^{\circ}P$ < 0.05; $^{\circ}P$ < 0.01; $^{\circ}P$ < 0.001). In (**a**–**c**), only if a significant change in valence or arousal between two scenes is observed the tuple (signifcant valence change, signifcant arousal change) depicting the corresponding signifcance level is shown.

Fig. 13 Mean mood diferences over all participants in the *moral* and *immoral* conditions (Tiago++vs. Elenoide) across all scenes. Only if a signifcant change in valence or arousal between two scenes is observed the tuple (signifcant valence change, signifcant arousal change) depicting the corresponding signifcance level is shown (*Note:* not significant (n.s.): $p \ge 0.1;$ $^+p < 0.1;$ $^*p < 0.05;$ $^{**}p < 0.01;$ $^{***}p < 0.001$).

conditions on the participant's affect. Therefore, utilizing our data set for research in affective computing is valuable. The ground_truth.csv file can be merged with the participants' sensor data with the help of the NTP timestamps. The timestamps of the robot utterance and gesture do not coincide with those of the recorded physiological data, and therefore a matching using the timestamps is not possible. For that, we recommend using an ordered merge on the NTP timestamp column. Afer this ordered merge, the resulting data structure contains for

Fig. 14 Mean emotional diferences over all participants in the *moral* and *immoral* conditions (Tiago++vs. Elenoide) across all scenes. Only if a signifcant change in valence or arousal between two scenes is observed the tuple (signifcant valence change, signifcant arousal change) depicting the corresponding signifcance level is shown (*Note:* not significant (n.s.): $p \geq 0.1;$ $^+p < 0.1;$ $^*p < 0.05;$ $^{**}p < 0.01;$ $^{***}p < 0.001$).

each timestamp an entry that includes all columns of the *ground_truth.csv* fle and physiological sensor fle. Here, the additional columns of the counterpart are filled with *NaN* or *NULL* values. This means, that rows originating from the physiological data fle are extended with columns from the *ground_truth.csv* fle (such as gesture and speech) filled with *NaN* or *NULL*. The rows originating from the *ground_truth.csv* file are accordingly extended with a column of the physiological data flled with *NaN* or *NULL*. Except for the emotion columns, these *NaN* or *NULL* values can be replenished by performing a forward fll on all columns from the *ground_truth.csv* fle. As emotions are short-term reactions (0.5–4 seconds^{[7](#page-19-4)}; see Section [Questionnaire Emotion and Mood](#page-8-0)), the labels for the emotion should be applied to the physiological signal in accordance with this reaction time. The forward fill and labeling assigns labels to the sensor data without changing the physiological data column. This maintains the sensors original sampling rate. Finally, the original rows of the robot's utterance and gesture can be deleted to avoid *NaN* or *NULL* values in the physiological signals columns.

Afer that, the data can be classifed and analyzed utilizing Python packages, like Pandas, Scipy, or NumPy libraries. As we publish raw data, we recommend pre-processing the data before usage. Python libraries such as Neurokit 2^{50} , HRVanalysis⁵², or cvxEDA^{[53](#page-20-34)} are particularly suitable for data cleaning, feature extraction, change-point detection, and data analysis. Further information on processing and using the sensor data can be found on the manufacturer's website ([Recommended tools for signal processing and data analysis](https://support.empatica.com/hc/en-us/articles/202872739-Recommended-tools-for-signal-processing-and-data-analysis)). Through the use of the SAM scale^{[12](#page-19-10)} and physiological data gathered by the E4 wristband, a combination with other open data sets, containing the same modalities (e.g., WESAD^{[16](#page-19-16)}, Angry or Climbing Stairs¹⁵) is possible. Thus, more sophisticated research on physiological sensor data labeled by human afect can be achieved.

Robot behavior in a retail environment. We call for an in-depth investigation regarding specifc robot behavior (i.e., gestures and speech) on the human afect, considering the whole range of provided behavioral nuances across all conditions and scenes. Preliminary analyses³⁷ showed, for example, that different conditions had an efect on the physiology of the participants, such as the failing handover signal in the *liability* condition (see Fig. [15\)](#page-18-1). But this handover may also be perceived diferently by the participants depending on the robots interaction behavior across the other conditions. Furthermore, the various available speech texts of the robots (listed in *gesture_speech.csv*) can also be analyzed for emotion transmission using Natural Language Processing (such as Linguistic Inquiry and Word Count (LIWC)^{54,[55](#page-20-36)}). The effects of emotions transmitted via the robot's utterance could have infuenced the participants' afect and their answers to the questionnaire (per participant stored in *ground_truth.csv*).

Liability and transparency in an HRI. The presented data set provides the possibility to evaluate the HRI regarding our participants' perceived liability and transparency (available in *questionnaire.csv*). In a previous publication³⁷, a first impact on this was shown. However, analyzing and evaluating the data among the conditions, such as liability issues, is worthwhile. For example, the assessed liability expectations could have been changed

Table 8. Diferences-in-diferences efects of *moral* and *immoral* conditions (Tiago++/Elenoide) on human affect. (*Note:* not significant (n.s.): $p \ge 0.1;$ $^+p < 0.1;$ $^*p < 0.05;$ $^{**}p < 0.01;$ $^{***}p < 0.001$).

Fig. 15 Mean GSR signal during the handover.

by the *moral* or *immoral* robot behavior. Tis efect is also of importance, as liability might infuence the robot's behavioral design in the future³⁷. For this purpose, regression models can be used, which can be controlled, e.g., for age. For further statistical investigations, the *questionnaire.csv* fle can be analyzed using statistical sofware such as R, SPSS, or Stata.

Discussion and limitations. The previous evaluations of the published data set show that a cross-disciplinary view of the data set is a win for robot design^{10,[37](#page-20-19)}. Our interdisciplinary research team developed fve diferent conditions (i.e., *neutral*, *transparency*, *liability*, *moral*, and *immoral*) and proved the conditions' causal efect on the perceived afective state (see Section [Statistical Validation of Conditions](#page-14-1)). Tus, the use of the conditions is valid to be considered for further research. By evaluating the data set with the GARAFED method, we showed that the data set meets high requirements. Even though our data set includes 146 participants, an imbalance in sociodemographic characteristics, technical afnity, and experience with robots can be observed, caused by our advertisement (email to the Technical University of Darmstadt's employees and students). Especially the diferences in the participant's age per condition should be addressed by adding a control variable in the statistical evaluation to generalize results. A diverse range of demographics in emotion recognition helps to generalize emotion recognition models to a larger population, enhancing the reliability and accuracy of the model⁵⁶. Accordingly, results generated from this data set must be set in context. Further, many people struggle to correctly rate or name their affective state⁹, causing a bias. This bias can be amplified by asking the participants to rank their afective state afer the HRI, as they might not correctly remember it. On the other hand, asking afer the HRI has the beneft of not disturbing the interaction. Tus, we suggest the additional use of physiological sensor data to underline the participant's afective state as an objective measure. Furthermore, using the baseline measurements might also include biases: the frst baseline measurement might be biased by the participant's pre-measurement expectations, whereas the second measurement might be biased by what was experienced. Thus, to mitigate these single biases, both baseline measurements are provided to create a more reliable baseline. Further, the change in the participant's pre- and post-state within the physiological data is implicitly provided by the frst and second baseline measurements. As outlined in Section [Emotion and Mood Recognition](#page-15-2), the physiological signals and gathered ground-truth data can be combined. However, this includes some uncertainties. One of these uncertainties is the unknown duration of the robot's utterances and gestures. Accordingly, the values from the physiological signals cannot be unambiguously linked to the robot's utterance and gestures, and the time at which the test person spoke is not recognizable. Nonetheless, we decided to link the physiological signals with the previously performed utterance or gesture, as it may infuence the subsequent physiological signals. Another uncertainty is whether the presupposed emotional triggers served as such for each individual. To prove whether these emotional triggers elicited emotions, breakpoint detection or peak detection in the physiological signal could help to find changes, indicating an effect on the physiological signals. These changes could be placed in the context of possible emotional triggers. Nevertheless, we want to encourage other researchers to use our data set to investigate this challenge of labeling physiological signals correctly with data gathered within a questionnaire. Another limitation arises from the questionnaire addressing liability, which was explicitly created for this study. The assessed parties (e.g., robot, customer, hardware store) are generalized and were chosen to simplify the questionnaire. Regardless, this simplifcation does not distinguish between specifc parties. For instance, the term robot generally refers to the provider of certain parts (e.g., software), manufacturer, seller, or robot. Therefore, a distinction between these particular parties is not possible with our data. Accordingly, when evaluating this part of the questionnaire, the results obtained will be of a more general nature.

Future work could extend the scope of the research, by performing a human-human interaction in a similar scenario. The comparison with a human-human interaction seems promising to evaluate whether the interaction with a human or robot has different effects on the human affective state¹⁰. Furthermore, conducting a crossover study⁵⁷ concerning the change in the suggested task sequence could provide further insights into the single efects of the tasks on changes in the afective state.

In summary, the call of previous scientific papers $3-6$ $3-6$ for more published data sets is answered by us, publishing physiological data labeled by human afect as ground truth. We wish this data set will be evaluated comprehensively and contribute signifcantly to further developments of emotion recognition in HRI.

Limitation on data use. This work is licensed under CC-BY 4.0 You will uphold participants' privacy in this data set by not attempting to re-identify the participants.

Additional information. The depicted individual in the figures, and the photographer permitted to publish the images by signing a GDPR compliant consent form.

Code availability

The published data set contains raw anonymized data. All anonymization steps can be found in Section Data [Anonymization](#page-12-0). The SAM mapping can be found in [Questionnaire Emotion and Mood](#page-8-0). No additional code was used to generate the data set.

Received: 24 October 2023; Accepted: 5 March 2024; Published online: 04 April 2024

References

- 1. Fussell, S. R., Kiesler, S., Setlock, L. D. & Yew, V. How People Anthropomorphize Robots. In *Proceedings of the 3rd international conference on Human robot interaction - HRI '08*, 145–152,<https://doi.org/10.1145/1349822.1349842> (ACM Press, 2008).
- 2. Phillips, E., Zhao, X., Ullman, D. & Malle, B. F. What is Human-Like? Decomposing Robots' Human-Like Appearance Using the Anthropomorphic RoBOT (ABOT) Database. In *Proceedings of the 2018 ACM/IEEE international conference on human-robot interaction*, HRI '18, 105–113,<https://doi.org/10.1145/3171221.3171268> (Association for Computing Machinery, New York, NY, USA, 2018).
- 3. Spezialetti, M., Placidi, G. & Rossi, S. Emotion Recognition for Human-Robot Interaction: Recent Advances and Future Perspectives. *Frontiers in Robotics and AI* **7**,<https://doi.org/10.3389/frobt.2020.532279> (2020).
- 4. Savur, C. & Sahin, F. Survey on Physiological Computing in Human–Robot Collaboration. *Machines* **11**, 536, [https://doi.](https://doi.org/10.3390/machines11050536) [org/10.3390/machines11050536](https://doi.org/10.3390/machines11050536) (2023).
- 5. Chen, Y. *et al*. Human mobile robot interaction in the retail environment. *Scientifc Data* **9**, 673, [https://doi.org/10.1038/s41597-022-](https://doi.org/10.1038/s41597-022-01802-8) [01802-8](https://doi.org/10.1038/s41597-022-01802-8) (2022).
- 6. Stock-Homburg, R. *et al*. Responsible Human-Robot Interaction with Anthropomorphic Service Robots: State of the Art of an Interdisciplinary Research Challenge. In *Proceedings of the 55th Hawaii international conference on system sciences*, 2065–2074, <https://doi.org/10.24251/HICSS.2022.260> (Hawaii, USA, 2022).
- 7. Levenson, R. W. Emotion and the autonomic nervous system: A prospectus for research on autonomic specifcity. In Hugh, L. (ed.) *Social psychophysiology and emotion: theory and clinical applications*, 17–42 (John Wiley & Sons, Oxford, England, 1988).
- 8. Scherer, K. R. What are emotions? And how can they be measured. *Social Science Information* **44**, 695–729, [https://doi.](https://doi.org/10.1177/0539018405058216) [org/10.1177/0539018405058216](https://doi.org/10.1177/0539018405058216) (2005).
- 9. Kreibig, S. D. Autonomic nervous system activity in emotion: A review. *Biological Psychology* **84**, 394–421, [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.biopsycho.2010.03.010) [biopsycho.2010.03.010](https://doi.org/10.1016/j.biopsycho.2010.03.010) (2010).
- 10. Knof, M. *et al*. Implications from Responsible Human-Robot Interaction with Anthropomorphic Service Robots for Design Science. In *Proceedings of the 55th Hawaii international conference on system sciences*, 5827–5836 (Hawaii, USA, 2022).
- 11. Ortenzi, V. *et al*. Object handovers: A review for robotics. *IEEE Transactions on Robotics* **37**, 1855–1873, [https://doi.org/10.1109/](https://doi.org/10.1109/TRO.2021.3075365) [TRO.2021.3075365](https://doi.org/10.1109/TRO.2021.3075365) (2021).
- 12. Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. *Journal of Behavior Terapy and Experimental Psychiatry* **25**, 49–59, [https://doi.org/10.1016/0005-7916\(94\)90063-9](https://doi.org/10.1016/0005-7916(94)90063-9) (1994).
- 13. Saganowski, S. *et al*. Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using wearables. *Scientifc Data* **9**, 158, <https://doi.org/10.1038/s41597-022-01262-0> (2022).
- 14. Behnke, M., Buchwald, M., Bykowski, A., Kupiński, S. & Kaczmarek, L. D. Psychophysiology of positive and negative emotions, dataset of 1157 cases and 8 biosignals. *Scientifc Data* **9**, <https://doi.org/10.1038/s41597-021-01117-0>(2022).
- 15. Heinisch, J. S., Anderson, C. & David, K. Angry or climbing stairs? towards physiological emotion recognition in the wild. In *2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)*, 486–491, [https://doi.](https://doi.org/10.1109/PERCOMW.2019.8730725) [org/10.1109/PERCOMW.2019.8730725](https://doi.org/10.1109/PERCOMW.2019.8730725) (IEEE, 2019).
- 16. Schmidt, P., Reiss, A., Duerichen, R., Marberger, C. & Van Laerhoven, K. Introducing wesad, a multimodal dataset for wearable stress and afect detection. In *Proceedings of the 20th ACM International Conference on Multimodal Interaction*, ICMI '18, 400–408 (Association for Computing Machinery, New York, NY, USA, 2018).
- 17. Soleymani, M., Lichtenauer, J., Pun, T. & Pantic, M. A multimodal database for afect recognition and implicit tagging. *IEEE Transactions on Afective Computing* **3**, 42–55,<https://doi.org/10.1109/T-AFFC.2011.25> (2012).
- 18. Koelstra, S. *et al*. Deap: A database for emotion analysis;using physiological signals. *IEEE Transactions on Afective Computing* **3**, 18–31,<https://doi.org/10.1109/T-AFFC.2011.15> (2011).
- 19. Mara, M. & Appel, M. Efects of lateral head tilt on user perceptions of humanoid and android robots. *Computers in Human Behavior* **44**, 326–334,<https://doi.org/10.1016/j.chb.2014.09.025> (2015).
- 20. Leiner, D. J. Too fast, too straight, to weird: Non-reactive indicators for meaningless data in internet surveys. *Survey Research Methods* **13**, 229–248, <https://doi.org/10.18148/srm/2019.v13i3.7403> (2019).
- 21. Cohen, J. A power primer. *Psychological Bulletin* **112**, 155–159,<https://doi.org/10.1037/0033-2909.112.1.155>(1992).
- 22. Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G* power 3: A fexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behavior research methods* **39**, 175–191, <https://doi.org/10.3758/BF03193146>(2007).
- 23. Kidd, C. D. & Breazeal, C. Human-robot interaction experiments: Lessons learned. In *Proceedings of the Symposium on Robot Companions: Hard Problems and Open Challenges in Robot-Human Interaction*, vol. 5, 141–142 (Hatfeld, UK, 2005).
- 24. Atzmüller, C. & Steiner, P. M. Experimental Vignette Studies in Survey Research. *Methodology* **6**, 128–138, [https://doi.](https://doi.org/10.1027/1614-2241/a000014) [org/10.1027/1614-2241/a000014](https://doi.org/10.1027/1614-2241/a000014) (2010).
- 25. VuMA. Bevölkerung in Deutschland nach Besitz einer elektrischen Heimwerkermaschine oder Bohrmaschine im Haushalt in den Jahren 2018 bis 2021 (Personen in Millionen)[Graph]. *Statista*, [https://de.statista.com/statistik/daten/studie/176610/umfrage/](https://de.statista.com/statistik/daten/studie/176610/umfrage/heimwerkermaschine-bohrmaschine-im-haushalt-vorhanden/) [heimwerkermaschine-bohrmaschine-im-haushalt-vorhanden/](https://de.statista.com/statistik/daten/studie/176610/umfrage/heimwerkermaschine-bohrmaschine-im-haushalt-vorhanden/) (2021).
- 26. Riek, L. Wizard of Oz Studies in HRI: A Systematic Review and New Reporting Guidelines. *Journal of Human-Robot Interaction* **1**, 119–136,<https://doi.org/10.5898/JHRI.1.1.Riek> (2012).
- 27. IEEE Standards Association. IEEE Standard for Transparency of Autonomous Systems. *IEEE Std 7001-2021* 1–54, [https://doi.](https://doi.org/10.1109/IEEESTD.2022.9726144) [org/10.1109/IEEESTD.2022.9726144](https://doi.org/10.1109/IEEESTD.2022.9726144) (2022).
- 28. Mori, M., MacDorman, K. F. & Kageki, N. Te Uncanny Valley [From the Field. *IEEE Robotics & Automation Magazine* **19**, 98–100, <https://doi.org/10.1109/MRA.2012.2192811>(2012).
- 29. Burgoon, J., Guerrero, L. & Floyd, K. *Nonverbal Communication*. (Routledge, New York, 2010).
- 30. McNeill, D. *Hand and Mind: What Gestures Reveal about Tought* (Te University Of Chicago Press, Chicago and London, 1992).
- 31. Kendon, A. *Gesture: Visible action as utterance* (Cambridge University Press, Cambridge, 2004).
- 32. Müller, C. Forms and uses of the palm up open hand: A case of a gesture family. *Te semantics and pragmatics of everyday gestures* 233–256 (2004).
- 33. Driver, J. & Van Aalst, M. *You Say More Tan You Tink: Use the New Body Language to Get What You Want!, Te 7-Day Plan* (Crown Publishers, New York, 2010).
- 34. Bressem, J. & Müller, C. 119. a repertoire of german recurrent gestures with pragmatic functions. In *Body–Language–Communication: An International Handbook on Multimodality in Human Interaction*, 1575–1591,<https://doi.org/10.1515/9783110302028.1575>(De Gruyter Mouton, Berlin/Boston, 2014).
- 35. Ekman, P. & Friesen, W. V. Te repertoire of nonverbal behavior: Categories, origins, usage, and coding. *Semiotica* **1**, 49–98, [https://](https://doi.org/10.1515/semi.1969.1.1.49) doi.org/10.1515/semi.1969.1.1.49 (1969).
- 36. Scheglof, E. A. On some gestures relation to talk. In Atkinson, J. M. (ed.) *Structures of Social Action*, 266–296 (Cambridge University Press, Camebridge, 1985).
- 37. Philip Busch *et al*. Stores are Liable for Teir Robots!? An Empirical Study on Liability in HRI with an Anthropomorphic Frontline Service Robot. In *RO-MAN 2023 - Te 32nd IEEE International Symposium on Robot and Human Interactive Communication*, <https://doi.org/10.1109/RO-MAN57019.2023.10309592>(IEEE, Busan, Korea, 2023).
- 38. Kegel, M. & Stock-Homburg, R. M. Customer Responses to (Im)Moral Behavior of Service Robots - Online Experiments in a Retail Setting. In *Proceedings of the 56th Hawaii International Conference on System Sciences*, 1500–1509 (Manoa, Hawaii, 2023).
- 39. Laakasuo, M., Palomäki, J. & Köbis, N. Moral Uncanny Valley: A Robot's Appearance Moderates How its Decisions are Judged. *International Journal of Social Robotics* **13**, 1679–1688,<https://doi.org/10.1007/s12369-020-00738-6> (2021).
- 40. Fink, J. Anthropomorphism and Human Likeness in the Design of Robots and Human-Robot Interaction. In *Social Robotics*, vol. 7621, 199–208, https://doi.org/10.1007/978-3-642-34103-8_20 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012).
- 41. Garbarino, M., Lai, M., Bender, D., Picard, R. W. & Tognetti, S. Empatica E3 - A wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In *Proceedings of the 4th international conference on Wireless Mobile Communication and Healthcare - "Transforming healthcare through innovations in mobile and wireless technologies"*, vol. 11, 39–42, [https://doi.](https://doi.org/10.1109/MOBIHEALTH.2014.7015904) [org/10.1109/MOBIHEALTH.2014.7015904](https://doi.org/10.1109/MOBIHEALTH.2014.7015904) (IEEE, Athens, Greece, 2014).
- 42. Suzuki, S., Anuardi, M. N. A. M., Sripian, P., Matsuhira, N. & Sugaya, M. Multi-user Robot Impression with a Virtual Agent and Features Modifcation According to Real-time Emotion from Physiological Signals. In *2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)*, 1006–1012, <https://doi.org/10.1109/RO-MAN47096.2020.9223585> (IEEE, Naples, Italy, 2020).
- 43. Val-Calvo, M., Alvarez-Sanchez, J. R., Ferrandez-Vicente, J. M. & Fernandez, E. Afective Robot Story-Telling Human-Robot Interaction: Exploratory Real-Time Emotion Estimation Analysis Using Facial Expressions and Physiological Signals. *IEEE Access* **8**, 134051–134066,<https://doi.org/10.1109/ACCESS.2020.3007109>(2020).
- 44. Schnackenberg, A. K., Tomlinson, E. C. & Coen, C. A. Te dimensional structure of transparency: A construct validation of transparency as disclosure, clarity, and accuracy in organizations. *Human Relations* **74**, 1628–1660, [https://doi.](https://doi.org/10.1177/0018726720933317) [org/10.1177/0018726720933317](https://doi.org/10.1177/0018726720933317) (2021).
- 45. McKnight, D. H., Choudhury, V. & Kacmar, C. Developing and validating trust measures for e-commerce: An integrative typology. *Information systems research* **13**, 334–359,<https://doi.org/10.1287/isre.13.3.334.81> (2002).
- 46. Heerink, M., Kröse, B., Evers, V. & Wielinga, B. Assessing acceptance of assistive social agent technology by older adults: the almere model. *International Journal of Social Robotics* **2**, 361–375,<https://doi.org/10.1007/s12369-010-0068-5>(2010).
- 47. Stock, R. M. & Bednarek, M. As they sow, so shall they reap: Customers' infuence on customer satisfaction at the customer interface. *Journal of the Academy of Marketing Science* **42**, 400–414,<https://doi.org/10.1007/s11747-013-0355-4>(2014).
- 48. Zhuang, J.-R. *et al*. Real-time emotion recognition system with multiple physiological signals. *Journal of Advanced Mechanical Design, Systems, and Manufacturing* **13**, 1–16,<https://doi.org/10.1299/jamdsm.2019jamdsm0075> (2019).
- 49. Heinisch, J. S. *et al*. The AFFECT-HRI data set: physiological data for affective computing in human-robot interaction with anthropomorphic service robots, *Zenodo*, [https://doi.org/10.5281/zenodo.10422259](https://doi.org/https://doi.org/10.5281/zenodo.10422259) (2024).
- 50. Makowski, D. *et al*. NeuroKit2: A python toolbox for neurophysiological signal processing. *Behavior Research Methods* **53**, 1689–1696, <https://doi.org/10.3758/s13428-020-01516-y>(2021).
- 51. Larradet, F., Niewiadomski, R., Barresi, G., Caldwell, D. G. & Mattos, L. S. Toward emotion recognition from physiological signals in the wild: Approaching the methodological issues in real-life data collection. *Frontiers in Psychology* **11**, [https://doi.org/10.3389/](https://doi.org/10.3389/fpsyg.2020.01111) [fpsyg.2020.01111](https://doi.org/10.3389/fpsyg.2020.01111) (2020).
- 52. Pichot, V., Roche, F., Celle, S., Barthélémy, J.-C. & Chouchou, F. HRVanalysis: A Free Sofware for Analyzing Cardiac Autonomic Activity. *Frontiers in Physiology* **7**, 15,<https://doi.org/10.3389/fphys.2016.00557> (2016).
- 53. Greco, A., Valenza, G., Lanata, A., Scilingo, E. & Citi, L. cvxEDA: a Convex Optimization Approach to Electrodermal Activity Processing. *IEEE Transactions on Biomedical Engineering* 1–1,<https://doi.org/10.1109/TBME.2015.2474131>(2016).
- 54. Pennebaker, J. W., Francis, M. E. & Booth, R. J. Linguistic inquiry and word count: LIWC 2001. *Mahway: Lawrence Erlbaum Associates* **17** (2001).
- 55. Kahn, J. H., Tobin, R. M., Massey, A. E. & Anderson, J. A. Measuring emotional expression with the Linguistic Inquiry and Word Count. *The american journal of psychology* 120, 263-286 (2007).
- 56. Ren, Y., Tomko, M., Salim, F. D., Chan, J. & Sanderson, M. Understanding the predictability of user demographics from cyberphysical-social behaviours in indoor retail spaces. *EPJ Data Science* **7**,<https://doi.org/10.1140/epjds/s13688-017-0128-2>(2018).
- 57. Turner, J. R. Crossover Design. In Gellman, M. D. & Turner, J. R. (eds.) *Encyclopedia of Behavioral Medicine*, 521–521, [https://doi.](https://doi.org/10.1007/978-1-4419-1005-9_1009) [org/10.1007/978-1-4419-1005-9_1009](https://doi.org/10.1007/978-1-4419-1005-9_1009) (Springer New York, New York, NY, 2013).
- 58. Chen, Y. *et al*. Human mobile robot interaction in the retail environment. *Science Data Bank*, [https://doi.org/10.11922/](https://doi.org/10.11922/sciencedb.01351) [sciencedb.01351](https://doi.org/10.11922/sciencedb.01351) (2022).
- 59. Gao, N., Marschall, M., Burry, J., Watkins, S. & Salim, F. D. Understanding occupants' behaviour, engagement, emotion, and comfort indoors with heterogeneous sensors and wearables. *Scientifc Data* **9**,<https://doi.org/10.1038/s41597-022-01347-w> (2022).
- 60. Gao, N., Marschall, M., Burry, J., Watkins, S. & Salim, F. D. In-gauge and en-gage datasets. *fgshare* [https://doi.org/10.25439/](https://doi.org/10.25439/rmt.14578908) [rmt.14578908](https://doi.org/10.25439/rmt.14578908) (2021).
- 61. Fuller, K. A. *et al*. Development of a self-report instrument for measuring in-class student engagement reveals that pretending to engage is a signifcant unrecognized problem. *PLoS ONE* **13**, e0205828,<https://doi.org/10.1371/journal.pone.0205828> (2018).
- 62. Pollak, J. P., Adams, P. & Gay, G. PAM: a photographic afect meter for frequent, *in situ* measurement of afect. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, 725–734,<https://doi.org/10.1145/1978942.1979047> (ACM, Vancouver BC Canada, 2011).
- 63. Behnke, M., Buchwald, M., Bykowski, A., Kupiński, S. & Kaczmarek, L. D. Popane dataset - psychophysiology of positive and negative emotions. *OSFHOME*, <https://doi.org/10.1038/s41597-021-01117-0> (2023).
- 64. Park, C. Y. *et al*. K-emocon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations. *Scientifc Data* **7**,<https://doi.org/10.1038/s41597-020-00630-y> (2020).
- 65. Park, C. Y. *et al*. K-emocon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations. *zenodo* <https://doi.org/10.5281/zenodo.3931963>(2020).
- 66. Ocumpaugh, J., Baker, R. S. & Rodrigo, M. M. T. Baker Rodrigo Ocumpaugh monitoring protocol (BROMP) 2.0. *Technical and Training Manual*, <https://learninganalytics.upenn.edu/ryanbaker/BROMP.pdf>(2015).
- 67. Heinisch, J. S., Anderson, C. & David, K. Angry or climbing stairs? towards physiological emotion recognition in the wild, [https://](https://www.comtec.eecs.uni-kassel.de/emotiondata/) www.comtec.eecs.uni-kassel.de/emotiondata/ (2019).
- 68. Schmidt, P., Reiss, A., Duerichen, R., Marberger, C. & Van Laerhoven, K. Wesad: Multimodal dataset for wearable stress and afect detection,<https://ubicomp.eti.uni-siegen.de/home/datasets/icmi18/> (2018).
- 69. Watson, D. & Clark, L. A. Te PANAS-X: Manual for the Positive and Negative Afect Schedule - Expanded Form. Tech. Rep., University of Iowa (1999). [https://doi.org/10.17077/48vt-m4t2.](https://doi.org/10.17077/48vt-m4t2)
- 70. Spielberger, C. D., Gorsuch, R. & Lushene, R. STAI Manual for the State-Trait Anxiety Inventory. *Interamerican Journal of Psychology* **5**, <https://doi.org/10.1037/t06496-000>(1970).
- 71. Helton, W. S. & Näswall, K. Short Stress State Questionnaire: Factor Structure and State Change Assessment. *European Journal of Psychological Assessment* **31**, 20–30,<https://doi.org/10.1027/1015-5759/a000200> (2015).
- 72. Soleymani, M., Lichtenauer, J., Pun, T. & Pantic, M. Mahnob databases,<https://mahnob-db.eu/> (2012).
- 73. Russell, J. A. & Mehrabian, A. Evidence for a three-factor theory of emotions. *Journal of Research in Personality* **11**, 273–294 (1977).
- 74. Koelstra, S. *et al*. Deap dataset, <http://www.eecs.qmul.ac.uk/mmv/datasets/deap/> (2011).

Acknowledgements

Tis research was conducted as part of RoboTrust, a project of the Centre Responsible Digitality, supported by the Hessian Minister for Digital Strategy and Innovation. The authors would like to thank all participants for their participation in the study. We particularly want to thank Ruth Stock-Homburg for her support and for making Elenoide available. Further, we want to thank Mona Kegel, Vignesh Prasad, and all the research assistants who supported the study. We also thank the leap in time lab for serving as study location. A special thanks goes to Amer Altizini, who supported us by helping to prepare the data for publication. We want to thank Niklas Jungermann for his valuable comments on the statistical evaluation.

Author contributions

J.S.H., J.K., and P.B. conceived and conducted the experiment, analysed the results, and wrote the manuscript. J.S.H. and J.K. prepared the statistics. J.S.H. pre-processed and prepared the data. J.W., O.v.S., and K.D. initiated and supervised the research. All authors reviewed the manuscript.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to J.S.H.

Reprints and permissions information is available at [www.nature.com/reprints.](http://www.nature.com/reprints)

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International \bigcirc License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

 $© The Author(s) 2024$