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A B S T R A C T   

Changes in policy and new plans can significantly influence land use and trigger land use change in the long 
term. The data for pre- and post-policy implementation is necessary to assess the specific policy’s impact on land 
use. In the early nineties, Germany started promoting renewable energy production, including bioenergy, which 
changed the agricultural landscape. Remote sensing (RS) image-based machine learning models can be beneficial 
for mapping agricultural land use in the present and the past. However, machine learning classification models 
trained on RS data from specific training sites and time may not be able to predict data for unknown sites and 
unknown temporal points due to changes in crop phenology, field features, or ecological site circumstances 
because most of the models are limited in their performances according to variations of the training data set. 
Therefore, this study aims to assess the spatial–temporal transferability of Landsat-based agricultural land use 
type classification. The study was developed to map agricultural land cover (5 classes: maize, grasslands, summer 
crops, winter crops, and mixed crops) in two regions in Germany (North Hesse and Weser-Ems) between the 
years 2010 and 2018 using Landsat archive data (i.e., Landsat 5, 7, and 8). Two machine learning models 
(random forest − RF and 2D convolution neural network – 2DCNN) were trained and evaluated according to no 
transferability (reference) scenario and three spatial–temporal scenarios using mF1 and class level F1 values. 
Three model transferability scenarios were evaluated: a) temporal – S1, b) spatial – S2, and c) spatiotemporal – 
S3. The reference scenario, without transferability, achieved an overall accuracy of 89.1% and a macro F1 score 
of 0.74 for RF and 89.9% and 0.75 for CNN, respectively. Under three transferability scenarios (S1, S2, and S3), 
the macro F1 scores decreased to 0.67, 0.66, and 0.62 for RF, and 0.68, 0.62, and 0.58 for CNN, respectively. The 
dissimilarity between the data employed to train the model and data from the new domain indicated a clear link 
that could explain the reduction in model predictability. Moreover, the performance degradation could be 
attributed to the disparity in environmental, climatic, and crop calendar conditions between the two domains. 
Understanding the extent of model performance degradation during transferability is crucial for developing 
effective strategies to mitigate these issues and enhance the generalisability of machine learning models for 
agriculture land cover mapping.   

1. Introduction 

During the last century, the rapid growth of the population has 
caused changes in the Earth’s land use and land cover (LULC) at an 
alarming rate (Hooke et al., 2012). The land cover change represents an 
alteration of the cover, and land use change indicates a modification of 
how the land is being utilised or handled. The combination of both 

processes is called land use and land cover change (LULCC). Anthro-
pogenic activities to support human needs (e.g., for food, fibre, and 
energy) are the primary cause of the LULCC. 

Multiple reports and studies have shown that in the last century, 
most of the natural land cover (e.g., primary forests, natural grasslands) 
has been gradually converted to arable lands to grow crops. According to 
the FAO data, the total agricultural land cover in the world increased by 
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six percent between 1961 and 2019, accounting for 282 million hectares 
(FAO, 2023). Apart from food and feed production, the utilisation of 
cropland for non-food products and services also triggered the expansion 
of agricultural land cover. 

Understanding the status of the agricultural land cover (e.g., in terms 
of the total cropland area and distribution of crop types) and its change 
over the spatial–temporal domain is vital for food security and sus-
tainable development (Pérez-Hoyos et al., 2017; See et al., 2015). 
Moreover, for many countries and regions, remote sensing (RS) studies 
are the best, or only, way to obtain detailed information on historical 
land-use conditions (Braun, 2021). RS based methods (Asam et al., 2022; 
Blickensdörfer et al., 2022; Ofori-Ampofo et al., 2021) have shown the 
potential to acquire efficient and accurate information about agricul-
tural land cover. The availability of time series RS satellite data (both 
optical and RADAR) and the application of machine learning (ML) al-
gorithms boosted large-scale cropland mapping (Asam et al., 2022; 
Ofori-Ampofo et al., 2021). 

Most of the published cropland mapping studies are using freely 
available medium-resolution satellite image time series such as Sentinel 
1 & 2 and Landsat with supervised ML models. For example, the recent 
study by Asam et al. (2022) used Sentinel 1 & 2 time series data with 
random forest (RF) ML algorithm for mapping 17 crop types in Germany 
for the year 2018 at 10 m spatial resolution with 75.5 % overall accu-
racy. However, the Sentinel data with 10 m spatial resolution are 
available only since 2015. To evaluate the long-term impact of policies 
encouraging potentially destructive land use activities, time-series RS 
data covering broader time horizons are vital (Song, 2023). For example, 
the Renewable Energy Act introduced in Germany in year 2000 was 
intended to promote energy generation from renewable sources. Elec-
tricity generated in biogas plants using dedicated energy crops (e.g., 
maize silage) as feedstock were particularly supported. In the following 
years, the change of agricultural land cover and land use in many parts 
of Germany were observed, raising concerns and discussions about 
“maizifaction” of the landscape for biogas production (Vergara and 
Lakes, 2019). In this particular case, covering the whole period of the 
policy impact using RS data requires information about land cover and 
land use going back until the year 2000. To obtain cropland data and its 
spatial distribution before the year 2015, the Landsat data with 30 m 
spatial resolution can be employed (Kyere et al., 2019). Landsat provides 
RS data covering the time since the early 1970 s until nowadays using a 
series of satellites (i.e., Landsat 1–9). Kyere et al. (2019) combined 
Landsat data and cropland parcel boundaries from the states to map four 
crop types in the North Hesse region in Germany and achieved 71 % 
overall accuracy by using the RF model. 

Many studies on cropland or crop-type mapping with RS satellite 
data are using field data from the same year to train and validate the 
models (Wu et al., 2023). This is due to the limitation of the field data 
availability in other years. Besides the lack of training data from 
different years, the performance of the models is further challenged by 
changes in crop phenology due to annual weather patterns and farming 
practices. Most of the created models are good at predicting data in the 
same domain as the training data but are decreasing their performance 
when transferred to other temporal contexts. To avoid the limitation of 
model transferability in different periods, Kyere et al. (2019) suggested 
employing multi-year data to train models. By including multi-year data 
for the training phase, the model learns different annual crop phenology 
patterns that help improving predictions for the other years. As reported 
by Kyere et al. (2019), a six percent increment in overall accuracy was 
observed when the model was trained using multi-year data. 

Similarly, studies reporting cropland mapping with RS data are 
mostly limited to a certain geographical region. When the model 
developed and trained for one region is applied to predict values in the 
different spatial regions, the accuracy of predicted values might be 
reduced due to significant spatial change. However, if the model has 
been trained with data from multiple spatial regions, it can be effectively 
transferred to a new spatial region (Orynbaikyzy et al., 2022). A recent 

study by Ajadi et al., (2021) showed that cropland mapping with multi- 
region training data using the XGBoost ML model can be accurately 
transferred to another spatial region. Similarly, Orynbaikyzy et al. 
(2022) reported that using multi-state training data with the RF model 
could help to reduce the accuracy loss in spatial transferability of a 
model. 

To understand changes in cropland or crop types, it is necessary to 
have information from both past and current scenarios. Even though 
historical RS datasets for cropland mapping have been available (e.g., 
Landsat, MODIS), there is limited availability of field data to validate 
model predictions. At the same time, due to the missing field data for all 
spatial regions, the ability to transfer the model trained on one spatial 
region to another would help to close this gap. However, like in the case 
of temporal transferability, the evaluation of the model prediction is 
limited. For example, Kyere et al. (2019) and Orynbaikyzy et al. (2022) 
independently evaluated the temporal and spatial transferability of RS 
data models using RF algorithms. The authors of both studies attempted 
to enhance transferability by training on multiple year or location 
datasets. Regarding temporal domain transferability, Kyere et al. (2019) 
employed data from different years, while Orynbaikyzy et al. (2022) 
leveraged multiple location datasets (e.g., different states from Ger-
many) for spatial domain transferability assessment. However, to our 
knowledge, no published studies evaluate all the possible crop mapping 
RS data model transferability scenarios − temporal, spatial, and spa-
tial–temporal transferability, and their performance in terms of predic-
tion quality. 

Furthermore, the recently published study by Meyer and Pebesma, 
(2021) suggested a new approach to reporting the uncertainty of the ML 
model prediction in an unknown space. The study introduces the 
dissimilarity index (DI) computed by comparing the model’s training 
data and data from the unknown space. In the second step, a threshold is 
set and applied to the DI values to mark where the model can success-
fully predict the value, and the so-called area of applicability (AOA) is 
defined. Applying the concept of DI and AOA can be beneficial to 
overcome the model’s weakness and increase its robustness for trans-
ferring the model into new domains. 

Instead of training models with multiple datasets (feeding all the 
possible variations of data), domain adaptation (DA) techniques could 
be another way to solve the model transferability problem in different 
domains. As Peng et al., (2022) summarised, multiple shallow and deep 
DA methods are available. Shallow DA methods, such as instance-based, 
feature-based, and classifier-based, are widely used due to their 
computational efficiency. However, their effectiveness in improving 
model transferability can vary depending on the specific application. On 
the other hand, deep DA methods utilise deep adversarial networks to 
align the distributions of source and target domains, potentially leading 
to better model transferability. A study by Peng et al. (2022) demon-
strated the potential of DA methods to improve model transferability in 
two temporal RS datasets. However, it also highlighted the risk of 
exacerbating performance degradation if inappropriate DA methods are 
employed. Moreover, due to their computational complexity, the model 
training process can significantly slow down when DA methods are 
applied. 

Before considering applications of the complex and computationally 
intensive DA methods, the changes in model performances during the 
transferability and the reasons for those changes need to be better un-
derstood. Therefore, this study defined two research questions, namely 
i) to what extent the crop type classification model performance is 
decreasing during model transferability and ii) what causes those per-
formance changes when the model is trained with multiple Landsat 
datasets from the same domain (multiple years or locations). Based on 
the results of Kyere et al. (2019) and Orynbaikyzy et al. (2022), the 
authors of this study hypothesise that training the model with multiple 
Landsat datasets could enhance the model transferability between do-
mains to map crop types in past periods. To answer the research ques-
tions and to prove the hypothesis, this study has been designed a) to 
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evaluate ML model transferability in three scenarios (temporal, spatial, 
spatial–temporal), b) to compare the effects of the training data and the 
ML algorithms for model transferability scenarios, and c) to understand 
possible reasons (e.g., precipitation, elevation) affecting the data, and 
limiting the model predictions. 

2. Materials and methods 

2.1. Study area 

The study was conducted in two regions in Germany, namely North 
Hesse (NH) and Weser-Ems (WE) (Fig. 1). These regions were selected to 
consider different physical and geographic features like elevation, 
climate, terrain and diversity of landscapes. Moreover, both regions 
differ in their area. Additionally, they represent contrasting extents of 
the biogas sector development. NH experienced moderate biogas sector 
growth, while WE is a region with a substantial biogas expansion. 

North Hesse region is located in the central part of Germany and 
consists of five districts – Kassel, Waldeck-Frankenberg, Schwalm-Eder, 
Hersfeld Rotenburg, and Werra-Meissner. The total area of the region is 
ca. 6900 km2, and it is characterised by diverse landscapes and farming 
conditions (Kyere et al., 2019). The major soil region in North Hesse is 
mountains and hills predominantly of non-metamorphic sandstone, 
claystone and marlstone, and sedimentary rocks partly covered by loess. 
In the western part of the region mountains and hills predominantly of 
slates are found. Characteristic soils of the region are Cambisols, Pod-
zols, Luvisols, Gleysols and Leptosols. The quality of soils measured in 
terms of Muencheberg Soil Quality Rating (Mueller et al., 2007) is 
predominantly very low and low (values up to 50) in western and 
eastern parts of the region in districts of Waldeck-Frankenberg, Hersfeld 
Rotenburg, and Werra-Meissner, while better quality soils with average 
(60–70) and high (70–85) values are found in the central part of the 
North Hesse region in Schwalm-Eder and Kassel districts. The favourable 
lands for farming are found mainly in flat valleys and plateaus with 
moderate slopes, which are often covered by loess of a substantial 
thickness (Wagner, 2011). The natural vegetation of North Hesse region 
is dominated by beech forests of low or moderately alkaline sites (Suck 
et al., 2014). Elevation ranges from 101 to 754 m with mean annual 
temperatures of 9–10 ◦C in the lowlands and 5–6 ◦C in the highlands. 
The mean annual rainfall ranges from 500 to 1300 mm (Kyere et al., 
2019). 

Weser-Ems region is a former government district of Lower Saxony in 
the northwest part of Germany. It consists of 12 districts and five 
district-free towns and has a total area of ca. 14,965 km2. The region is 
characterized by high agricultural activity. In particular, the southern 
part of the region is dominated by pig and poultry farms, while the 
northern part hosts high shares of permanent grasslands serving the 
dairy cattle husbandry (Niedersächsisches Ministerium für Ernährung 
Landwirtschaft und Verbraucherschutz, 2022). Weser-Ems region is 
dominated by two soil regions: i) Holocene Coastal Plains with charac-
teristic soils like Tidal Marsh and Regosols on the islands and along the 
in the North See coast in the northern part of the region and ii) older 
glacial drift areas with Cambisols, Podzols, Gleysols, Luvisols and His-
tosols in the rest of the region. High quality soils (Soil Quality Rating 
values of 70–85) are found in the coastal area in the districts of Aurich, 
Wittmund and Friesland, and in the western part of district Leer. The 
major part of agricultural soils in Weser-Ems region are of low (50–60) 
and average (60–70) quality. Extremely low (less than 35) and very low 
quality soils (35–50) are mostly found in districts Cloppenburg and 
Emsland (Mueller et al., 2007). Elevation ranges from 0 to ca. 95 m 
above sea level (Müller and Haberlandt, 2018). The coastal area of the 
Weser-Ems region is dominated by costal vegetation, in particular by 
sage meadows and salt marshes. Further main natural vegetation types 
in the northern part of the region are ash and sycamore wet forests and 
alluvial forests, mixed pedunculate oak forests, bog birch and black 
alder forests. In the southern part the natural vegetation is dominated by 

beech forests and mixed pedunculate oak forests of low-alkaline sites. In 
the south-west part of the region, predominantly in the district Emsland, 
the typical vegetation of highly acidic bogs is found (Suck et al., 2014). 
The area belongs mainly to the Northwest German lowlands climate 
model region with a mean average annual temperature of 8.6 ◦C and a 
mean average annual rainfall of 730 mm (Deutscher Wetterdienst, 
2018). 

2.2. Data 

2.2.1. Reference data 
Farmers consistently collect and submit the Integrated Administra-

tion and Control System (IACS) dataset as a component of the common 
agricultural policy subsidy payment program. Due to the data protection 
laws, the IACS data is not publicly available. However, upon the request 
of the relevant authorities, the data can be exceptionally made available 
to scientific institutions for research purposes. In the past, the IACS data 
has been successfully used for developing crop-type mapping tasks using 
satellite images as training and validation datasets (Blickensdörfer et al., 
2022). Therefore, this study also employed the IACS data from the two 
study locations covering the period between 2010 and 2018. The se-
lection of this period exclusively depended on the availability of the 
IACS data in the two study areas. The IACS data contained the GIS vector 
polygon layer, and each polygon had the following attributes: year and 
crop type that was grown in that polygon in the respective year. In this 
study, the crop types in the IACS data were grouped into five classes: 
maize, grasslands, winter crops, summer crops, and mixed crops. 
Additionally, this grouping was chosen to enable the use of the trained 
models for biogas development induced LULCC assessments beyond this 
study, e.g. by exploring the extent the increasing areas of maize have 
replaced other crops and grasslands, for example as reported by Leva-
vasseur et al., (2023). 

Even though the two selected regions are within the same country, 
they still showed distinct differences in dominating soils, types of nat-
ural vegetation, elevation and agricultural activities. The total selected 
crop field area for the WE was about 8800 km2, and the entire crop field 
area in the NH was 2300 km2. Similarly, the number of crop fields 
differed significantly between the two regions. The total number of crop 
fields in the WE was above 280000, and in the NH, it was above 98000. 
The distribution of the crop classes also showed discrepancies in the two 
regions (Fig. 2). The most prominent distinction was that about 25 % of 
crop fields in the WE region were maize, while in the NH region, it was 
less than 10 %. However, grassland and summer crops indicated similar 
proportions of fields in both regions. In contrast, about 35 % of fields in 
the NH region were winter crops, while only 15 % were winter crops in 
the WE region. 

2.2.1.1. Satellite remote sensing data. The satellite image searching, 
downloading, and pre-processing were completed using the Google 
Earth Engine (Gorelick et al., 2017) Python application program inter-
face and two Python libraries ‘geemap’ (Wu, 2020) and ‘eemont’ 
(Montero, 2021). Landsat scenes with less than 60 % cloud coverage 
(from Landsat 5, 7, and 8 satellites) which covered both study regions, 
were retrieved for each year (between 2010 and 2018) from March to 
October. Even though there are slight differences in spectral ranges of 
the three Landsat sensors, it was confirmed that there is no significant 
impact on the classification results due to these spectral differences 
(Flood, 2014). The Landsat 5 data was available until May 2012, and 
Landsat 8 data was available from 2013. The Landsat 7 data has been 
available since 1999, but due to its scan line corrector failure, all the 
images since 2003 contained gaps (Wulder et al., 2019). In this study, 
the data from Landsat 7 data was not corrected to remove the gaps, and 
those gaps were considered as no data pixels similar to cloud and 
shadow areas. The retrieved Landsat scenes were Collection-2 Level-2 
products that provided atmospherically corrected surface reflectance 

J. Wijesingha et al.                                                                                                                                                                                                                             



ISPRS Journal of Photogrammetry and Remote Sensing 213 (2024) 72–86

75

Fig. 1. Location of Germany (grey-coloured country) in the continent Europe (a) and location of two study areas (pattern filled area) within Germany, including 
locations of major cities in Germany (b). The blue-outlined areas were used as testing areas for the reference scenarios in each respective modelling exercise. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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data, including the cloud mask layer (Landsat Level-2 Surface Reflec-
tance Science Product courtesy of the U.S. Geological Survey) (Crawford 
et al., 2023). 

First, these image scenes were masked using the cloud masking al-
gorithm from ‘eemont’ library and then scaled the images (between 
0 and 1) using offset and gain values from metadata. Since Landsat 5 
sensor (thematic mapper – TM) only contained six spectral bands (B1: 
blue, B2: green, B3: red, B4: near- infrared1, B5: near-infrared1, and B7: 
mid- infrared) the same spectral bands were selected from the Landsat 7 
(enhanced thematic mapper plus – ETM+) and Landsat 8 (operational 
land imager – OLI). In addition to the spectral bands, four spectral 
vegetation indices (VIs) were computed following Kyere et al. (2019) 
(normalised vegetation index – NDVI, enhanced vegetation index – EVI, 
optimised soil-adjusted vegetation index – OSAVI, and normalised dif-
ference moisture index – NDMI). At the end of this step, each image 
scene contained six spectral bands and four VIs. Then all the annual 
image scenes were categorized into each bimonthly period (i.e., March- 
April, May-June, July-August, September-October), and the median 
image per each two-month (temporal aggregation) period was 
computed. It resulted in four bi-monthly median images per year, each 
containing ten image layers (6 bands + 4 VIs). Finally, those four median 
images with ten layers were downloaded for each year. 

According to the rule of thumb and minimum mapping unit, at least 
nine contiguous pixels are required to identify an object. To avoid mixed 
pixel problems, only crop fields bigger than 0.9 ha (30 m x 30 m x 10 =
9000 m2) were selected in this study. Satellite data of each year were 
overlaid with corresponding IACS data, and mean values of each band 
and VI per each crop field polygon were extracted. Data preparation and 
extraction were done using R programming. Each polygon contained 40 
mean values (10 layers x 4 time points). 

2.3. Model development for the reference case 

This study employed two machine/deep learning (ML/DL) algo-
rithms for evaluating model transferability scenarios. The RF ML algo-
rithm was one of the algorithms explored in this study because it has 

already been widely applied by the previously mentioned studies (Kyere 
et al., 2020; Orynbaikyzy et al., 2022) that examined spatial and tem-
poral transferability of crop type mapping. The RF algorithm is an 
ensemble tree-based algorithm (Breiman, 2001) which needs input as a 
1D array. In this study, the input vector for the RF algorithm was a 1D 
array with 40 elements (Fig. 3). 

The convolution neural network (CNN) was the second algorithm 
examined in this study. CNN is a state-of-the-art deep-learning model-
ling method that showed the potential for land cover and crop type 
classification using satellite time series data (Pelletier et al., 2019). Time 
series data are usually 1D data, and application 1D CNN is the most 
common application in crop-type classification using satellite time series 
data (Pelletier et al., 2019). So, this study applied a spectral-temporal 
aggregation that converted 1D time series data into 2D array data to 
apply 2D CNN, which was a step forward from the method suggested by 
Pelletier et al., (2019). Initially, one instance of input data in this study 
was the 1D array with 40 elements. So, it was converted to a 2D array 
with ten rows and four columns, where each row represents a band or VI, 
and each column represents the temporal value of the corresponding 
band or VI for four temporal points per year (Fig. 4). This new 2D array 
served as input into the 2D CNN, where the convolution filters can 
simultaneously identify the combination of spectral and temporal 

Fig. 2. Crop parcel ratio distribution in the two study regions between years 2010 and 2018.  

Fig. 3. Time series data as a 1D array (Not all 40 values are represented). M 
stands for month, and the number next to the letter M is for the month number. 
B stands for Landsat image band number. NDVI: Normalised difference vege-
tation index, EVI: Enhanced vegetation index, OSAVI: Optimised soil adjusted 
vegetation index, NDMI: Normalised difference moisture index. 
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patterns. This study exemplarily focuses on mentioned two algorithms, 
which have already shown the potential of crop-type mapping applica-
tions with time series RS data, representing both traditional ML and DL 
aspects. 

The model development and evaluation were conducted in Python 
using ‘sklearn’ and ‘tensorflow’ libraries. Since this study contained two 
classification algorithms (RF, CNN), and two study sub-regions (NH, 
WE), a total of four models were trained. The summary of the trained 
models is given in Table 1. The hyperparameters of the RF models were 
found using a subsample data set. According to that, RF hyper-
parameters were max_features = ‘sqrt’, criterion = ‘entropy’, min_sam-
ples_leaf = 1, min_samples_split = 8, and, n_estimators = 600. The model 
training was done with parallel processing. 

The 2D CNN model consisted of two convolution blocks followed by 

a fully connected flatteneden layer. In each convolution block double 
convolution with the ‘ReLu’ activation function was applied and batch 
normalization was applied in between. The convolution filters always 
were 3 × 3 kernel with ‘same’ padding and one stride value. At the end 
of each convolution block 2D max pooling was done. The fully con-
nected layers contained 25 % dropout. For both class levels, above 
96,000 trainable parameters were in the 2D CNN models. The model 
optimizer was set to stochastic gradient descent (SGD) with learning rate 
of 0.0001 and momentum of 0.9. The categorical cross-entropy loss was 
employed as the loss function in the model training. The model training 
was done for 50 epochs using GPU processors. 

In the model training process, spatial–temporal subsets from both 
training data were held out for model testing purposes. The respective 
held-out datasets were Schwalm-Eder district (DE735) data in 2017 
from the NH and Cloppenburg district (DE948) data in 2017 from the 
WEs. The held-out dataset was applied to the trained model. The model 
predicted new labels, and the predicted values were compared against 
the actual values. The following model evaluation metrics were 
computed: overall accuracy (OA) (Eq. (1)), class-level F1 (Eq. (2)), and 
Macro F1 (mF1) (Eq. (3) values. Since this was the usual model training 
and testing procedure without transferability scenarios, it was consid-
ered a reference case scenario. In this case, the evaluation metric values 
are the reference OA, reference class level F1 and reference mF1. 

Overallaccuracy(OA) =
No.ofcorrectlyclassifiedsamples

Totalsamples
× 100 (1)  

F1 =
TP

TP + 1
2 (FP + FN)

(2)  

MacroF1(mF1) =
∑i=n

i=1F1i

n
(3)  

Class-level F1 in multiclass problem was computed similarly to binary 
classification problem by considering one class vs rest classes approach. 
In Eq. (2)) TP is truly positive, FP is false positive, and FN is false 
negative. mF1 (Eq. (3)) is the arithmetic mean of each class-level F1 
score. 

2.4. Model testing for transferability cases 

The trained models were tested in three model transferability sce-
narios to evaluate the temporal, spatial, and spatial–temporal trans-
ferability of the models (Fig. 5). The summary of the dataset tested in 
each transferability scenario is explained in Table 2. First, the data from 
the same region but in a separate temporal period was evaluated in the 
temporal transferability case. Next, the data from the same period but in 
other spatial regions was assessed in the spatial transferability case. 
Finally, data from distinct spatial regions and temporal periods were 
tested in the third spatial–temporal transferability assessment. 

In each transferability case, model predictions were compared with 
the actual labels, and the aforementioned evaluation metrics (i.e., OA, 
mF1, class-level F1) were computed. Furthermore, to assess changes in 
each transferability case against the reference case, a percentage of 
change of mF1 and class-level F1 values was computed (Equation (4). 

Fig. 4. Time series data as a 2D array (All 40 values are included). M stands for 
month, and the number next to the letter M represents the number of the 
month. B stands for Landsat image band number. NDVI: Normalised difference 
vegetation index, EVI: Enhanced vegetation index, OSAVI: Optimised soil 
adjusted vegetation index, NDMI: Normalised difference moisture index. 

Table 1 
Overview of trained models.  

Spatial region & period of the 
training data 

Machine learning algorithm Model 
name 

North Hesse 
2013 – 2018 

Random forest NH-RF 
2D Convolution Neural 
Network 

NH-CNN 

Weser-Ems 
2013 – 2018 

Random forest WE-RF 
2D Convolution Neural 
Network 

WE-CNN  
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MetricChange =

(
MetricReference − MetricTransferability

MetricReference

)

× 100 (4)  

2.5. Model transferability exploration 

To explore the potential reasons for changes in model evaluation 
metrics in the transferability cases, first, the DI concept from Meyer and 
Pebesma, (2021) was applied. The DI values can explain the dissimi-
larity of the predictor variables compared to the training data. The DI 
threshold value was defined based on the computed DI values for the 
training dataset. The DI values of the test datasets were separated using 
the threshold value, where data below the threshold is considered true 
for AOA and the data above the threshold value will be regarded as false 
for AOA. The DI and AOA calculation was done using the ‘CAST’ 
package in R (Meyer et al., 2023). In each transferability scenario, the 
percentage of data that came under true for AOA was linked with the 
model accuracies, and their relationship was assessed. According to the 
relationship, possible reasons for variation in model performances were 

Fig. 5. Schematic representation of the a) reference case (no transfer outside the spatial and temporal domain), b) temporal transfer (S1), c) spatial transfer (S2), and 
d) spatial–temporal transfer (S3). The dotted line represents the training data boundary of each domain. The black squares represent the distribution of the data used 
for model training, and the grey triangles indicate the distribution of test data where the model is transferred to new data. In each transferability scenario, the test 
data (transfer) would always be outside the training data boundary of the time and/or space domain. 

Table 2 
Assessed scenarios and respective training and testing datasets.  

Scenario Training dataset Testing dataset 

Reference (Ref) NH data between 
2013 and 2018 

Subset data from training dataset 
from Schwalm-Eder district in 2017 

WE data between 
2013 and 2018 

Subset data from training dataset 
from Cloppenburg district in 2017 

Temporal 
transferability (S1) 

NH data between 
2013 and 2018 

NH data between 2010 and 2012 

WE data between 
2013 and 2018 

WE data between 2010 and 2012 

Spatial transferability 
(S2) 

NH data between 
2013 and 2018 

WE data between 2013 and 2018 

WE data between 
2013 and 2018 

NH data between 2013 and 2018 

Spatial-temporal 
transferability (S3) 

NH data between 
2013 and 2018 

WE data between 2010 and 2012 

WE data between 
2013 and 2018 

NH data between 2010 and 2012  
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explained. 
Moreover, to explain the changes in model performance, other 

possible factors (i.e., parcel size, elevation/slope, rainfall/temperature) 
in each transferability case were compared against the reference case. 
Above mentioned factors can have significant impact on model accu-
racy. For example, Kyere et al., (2019) highlighted that smaller size 
fields tend to result in lower accuracy in crop type mapping compared to 
bigger fields due to high probability of mixed pixels. Similarly, Oryn-
baikyzy et al., (2022) pointed out that factors such as elevation and soil 
quality could also affect model’s prediction on the new location data. 
Further, crop type mapping analysis by Blickensdörfer et al., (2022) also 
showed that climate and season variable could impact the crop type 
mapping using RS time series data. The field size data was computed 
from IACS data. Elevation data was acquired from the 30 m global 
Shuttle Radar Topography Mission (SRTM) digital elevation model 
(Shuttle Radar Topography Mission Global, 2013), and the slope was 
computed. The weather data (temperature, precipitation) was retrieved 
from the ‘global surface summary of the day’ database (National Cli-
matic Data Center, 2021). Graphical and statistical comparisons using 
boxplots were made to understand the difference between reference and 
transferability case data. 

3. Results 

3.1. Landsat time series data 

A selected VI (NDVI) bi-monthly average time series for each crop 
class is shown in Fig. 6 for the two regions and two distinct years. 
Mostly, there was a distinct time series pattern among the five crop 
classes explored in this study. The maize class had lower VI values be-
tween March and June, then showed maximum VI values during July- 
August. A similar pattern could be seen for the summer crops in the 
WE. However, the summer crop VI time series for the NH showed 
maximum values in both May-June and July-August. Furthermore, a 
variation between years can be observed too. For the winter crops, the 
highest VI values were in May-June, and, after that, they showed 
reduced values in other months. Additionally, grassland showed slight 
VI value changes during the whole period. Nevertheless, the grassland 
fields in the NH indicated a higher fluctuation of VI value compared to 
the WE’s grassland fields. The VI time series for mixed crop class in the 
NH showed a comparable pattern to winter crops, and mixed crops in the 
WE showed an equivalent pattern to summer crops. 

Fig. 6. Average normalised difference vegetation index (NDVI) bi-monthly time series for each crop class in two different regions and two selected years. Lines in 
each point indicate the upper and lower confidence intervals of each average NDVI value. 
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3.2. Model performances in the reference case (Ref) 

All models showed more than 88 % OA regardless of utilised training 
data (i.e., NH data, WE data) or ML algorithm (i.e., RF, CNN). Table 3 
summarises the OA and mF1 values of each model in the reference case. 
NH data models showed similar mF1 values for both algorithms (0.76). 
However, for the WE data model with CNN showed a slightly higher 
mF1 value than RF (CNN = 0.74, RF = 0.72). 

From all four models, the winter crop class obtained the highest 
class-level F1 values (over 0.95) (Fig. 7). Maize and grassland classes 
also showed above 0.85 class level F1 values. However, the summer crop 
class showed above 0.75 F1 values for models trained with NH data, 
while the same class’s F1 value from the models trained with WE data 
was 0.65. The mixed crop class demonstrated the lowest class level F1 
values in all models. Nevertheless, there was no significant difference in 
F1 values between the two ML algorithms. 

3.3. Model performance for the transferability scenarios 

The models trained with WE data showed an apparent decrease in 
performance from S1 to S3 (Table 4). For example, the OA of the three 
scenarios of the RF model trained with WE data were 85 %, 82 %, and 
70 % for the S1, S2, and S3 scenarios, respectively. However, the models 
trained with NH data using the RF algorithm demonstrated slightly 
different results than those with CNN, where the S1 transferability 
scenario obtained the lowest performance. In the S1 scenario, both ML 
algorithms showed similar mF1 values for the NH data models, while 
narrowly better performance was obtained by CNN for WE data models. 
Nevertheless, RF models obtained scarcely better mF1 values than CNN 
models in S2 and S3 scenarios in both NH and WE data models. 

3.4. Comparison of reference and transferability cases 

The model performance’s metric values from each transferability 
scenario were compared against those of the reference case, and the 
percentage change of the metric values was computed. The percentage 
difference of the mF1 values was plotted in Fig. 8. The comparison 
distinctly revealed that for all models, the model performance is 
decreasing when the model is transferred to different complex domains. 
As mentioned earlier, the performance of the model trained with WE 
data decreased from the reference case to S3 scenarios in an orderly 
manner (Ref > S1 > S2 > S3). For the S1 scenario, the mF1 percentage 
difference was below − 6 % for both ML algorithms. The RF models 
trained with WE data resulted in lower performance losses during S1 and 
S2 scenarios than CNN models. In the S3 scenario, the models trained 
with WE data at CL2 level showed − 19 % and − 24 % of mF1 differences 
for the two ML algorithms. 

The RF models trained with NH data demonstrated a unique pattern 
where the mF1 difference was similar in all three scenarios (− 15.5 % on 
average). In contrast, CNN models for the same setup displayed 
decreasing model performance from the reference case to the S3 sce-
nario (Ref > S1 > S2 > S3), which was similar to the models trained with 
WE data. 

Class level F1 values presented different crop-specific patterns for the 
three different model transferability scenarios (Fig. 9). The maize class 
showed a positive or no difference in F1 values in three transferability 

scenarios for the model trained with NH data. However, the model 
trained with WE data indicated decreasing F1 values from S1 to S3 
scenarios. Comparable to the maize class, the grassland class also 
showed a similar F1 value pattern in the two model types. In contrast, 
summer and winter crop classes F1 values from the model trained with 
NH data demonstrated decreasing patterns from S1, S2, and S3. 
Nevertheless, the model trained with WE data did not show such a 
prominent pattern for those two classes. 

3.5. €Model transferability and area of applicability 

The DI-based AOA values were computed for each observation in the 
reference case and three transferability scenarios. According to the 
percentage of the observations where AOA was True was linked against 
the OA values (Fig. 10). The models trained with NH data indicated that 
88 %, 90 %, 89 %, and 78 % of the tested data were within the AOA for 
Ref, S1, S2, and S3 scenarios. However, those values did not show a clear 
pattern with the complexity of the transferability scenarios. Neverthe-
less, 93 %, 90 %, 90 %, and 87 % of observations from Ref, S1, S2, and S3 
scenarios were considered within the AOA for the models trained with 
WE data. It explained that the amount of data points that were similar to 
the data that used to train the model were decreased when the 
complexity of transferability cases increased. The same pattern was 
shown in the OA values from the model trained with WE data (Table 4). 
Therefore, the correlation coefficient between OA and the percentage of 
True AOA observations was significantly positive (0.9). 

3.6. (Potential) influences of spatial and temporal conditions settings 

Crop parcel size, elevation, and slope differed among spatial regions, 
which may be a potential cause for performance reduction in S2 (spatial) 
and S3 (spatial–temporal) transferability scenarios. As shown in Fig. 11, 
the field sizes of all crop classes were bigger in the WE region compared 
to the NH region. In S2 and S3 scenarios, the models trained with the NH 
data, which contained smaller fields, obtained better model perfor-
mances when transferring the model to a bigger field size region. 

Since the WE region is located in a flat area in northern Germany, the 
mean elevation of most of the crop fields in the WE was between 0 m and 
50 m (Fig. 11). Similarly, the slope percentage in the crop fields was also 
near zero. In contrast, the crop fields in the NH region had a mean 
elevation of about 300 m, and the percentage slope of the fields was 10 – 
15 %. When the model trained with NH data (NH-CNN) was tested with 
data from the WE region (under the S2 scenario), the model performance 
decreased by 20 %. However, when the model trained with WE data was 
transferred to the NH region, less than 15 % of performance loss 
occurred. The possible explanation is that models trained with relatively 
flat area data could perform well also in highly undulated landscapes. 

In the S1 and S3 scenarios, temporal periods were dissimilar between 
the data used for model training and testing in the transfer region. 
Weather patterns (e.g., temperature, precipitation) and crop calendars 
are possible factors that may vary between two different periods. The 
mean air temperature and precipitation patterns of the two regions and 
two different periods are illustrated in Fig. 12. However, there was no 
apparent difference or shifts in temperature and precipitation patterns 
either between regions, nor between references (2013 – 2018) or 
transfer years (2010 – 2012). Nevertheless, when NH models were 
transferred to a new temporal domain, their performances decreased by 
about 15 %. In comparison, WE data models showed only a 5–6 % 
reduction in model performance. Further, the crop calendar (i.e., sowing 
date and harvesting date) within the same region could differ due to 
weather conditions in distinct years, which might influence the model 
predictions by altering standard phenological patterns. 

4. Discussion 

Ascribable spatial and temporal changes across the data can reduce 

Table 3 
Summary of the model performance in the reference case. NH: North Hesse, WE: 
Weser-Ems, RF: random forest, CNN: 2D convolution neural network.  

Model name Overall accuracy (%) Macro F1 

NH-RF  90.2  0.765 
NH-CNN  89.7  0.758 
WE-RF  88.3  0.722 
WE-CNN  90.1  0.740  
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the model performances when the models are transferred to unfamiliar 
spatial and temporal domains. The unavailability of adequate data that 
could explain all the possible variabilities in spatial and temporal do-
mains always makes it challenging to build a generalised model that 
works across domains. Consequently, models trained on one domain are 
often transferred to a new domain despite a performance loss. However, 
understanding the extent of performance reduction during the model 
transferability is essential for analysing the predicted values. Therefore, 
this study was designed to quantify or assess how much the model 
performance changes when the trained model is transferred to three 
domains (S1, S2, and S3) for crop type mapping application using 
Landsat time series data. The findings from this study demonstrated that 
model performances decreased in all three transferability scenarios 
compared to the reference case (no-transfer case), and the order model 
performance reduction were temporal, spatial and spatial–temporal 
scenarios in ascending order of losses. 

Temporal transferability was the first scenario that assessed the 
model transferability to predict crop classes in the same spatial domain 
as the model trained but during another period. Usually, crop manage-
ment practices might be similar in the same region, and the distribution 
of the crop types within the regions could be also similar. However, the 
crop calendar (i.e., sowing date and harvesting date) could differ even 
within the same region due to weather conditions in distinct years. 
Multiyear data could usually be employed to train the model to account 

for these variations, and this study also followed a similar approach by 
training models using data from five years (2013 – 2018). Even though 
the models learned from the 5 years data, the model performances were 
reduced by up to 15 %. These results align with the results reported by 
Kyere et. al., (2019), where trained crop-type classification models with 
multiyear Landsat data also showed reduced performance for prediction 
on new year data. In comparison to the crop-type mapping, Praveen 
et al., (2019) reported that the overall accuracy of LULC mapping (e.g., 
built-up, cropland, fallow land, grassland, water) was reduced by only 
about 1 % compared to the reference case. 

However, the results showed that two models from two regions 
indicated completely different accuracy losses. The temporal trans-
ferability models with NH data showed lower performances than the 
models with WE data because the field size in the NH was comparatively 
small. Kyere et. al., (2019) also explained that a smaller field size lowers 
the model’s prediction accuracy. The possible reason for that could be 
that RS image mean values extracted from smaller fields were only based 
on a small number of pixels, and those pixels could also be affected by 
boundary effect that could have the mixed pixels instead of pure crop 
pixels. 

Based on Fig. 12, visual changes in climate variables were not found, 
and the authors did not explore this in-depth in this study. However, 
further research to investigate this matter and to find out the link be-
tween model transferability and changes in climate variables or how to 
include them in the model is needed. The climate shift in two different 
regions or periods could also impact the different phenological stages of 
the crops, which could limit the model transferability. Further, the 
changes in cultivars, farming practices, such as the preparation of land, 
and post-harvesting practices due to different policy implementations 
and technological evolvement in various years could also be reflected in 
the vegetation phenology (Ghazaryan et al., 2018). These changes in 
phenology pose a challenge in achieving consistent RS time series pat-
terns across different years (Blickensdörfer et al., 2022). Therefore, 
more research is needed regarding the consideration of environmental, 
climatic and geographic variables in RS data analysis concerning the 
model performance in transferability scenarios (Blickensdörfer et al., 

Fig. 7. The class-level F1 values bar graphs for the reference case. CNN: 2D convolution network algorithm model, RF: random forest algorithm model, NH data: 
North Hesse data, WE data: Weser-Ems data. 

Table 4 
Model performance summary for the temporal (S1), spatial (S2), and spa-
tial–temporal (S3) transferability scenarios. NH: North Hesse, WE: Weser-Ems, 
RF: random forest, CNN: 2D convolution neural network.  

Model name Overall accuracy (%) Macro F1 

S1 S2 S3 S1 S2 S3 

NH-RF  74.1  85.0  84.4  0.645  0.645  0.647 
NH-CNN  83.7  82.8  80.5  0.678  0.614  0.598 
WE-RF  85.4  82.2  70.0  0.698  0.678  0.588 
WE-CNN  83.6  75.5  62.1  0.695  0.643  0.563  

J. Wijesingha et al.                                                                                                                                                                                                                             



ISPRS Journal of Photogrammetry and Remote Sensing 213 (2024) 72–86

82

2022). For example, applying growing degree days into classification 
models could tackle shifts in phenology due to climate differences in two 
spatial regions or temporal periods (Nyborg et al., 2022a). 

Apart from the environmental reasons, applying a bi-monthly 
Landsat time series (four observations per year) could also limit the 
temporal transferability where changes in crop-specific temporal pat-
terns would not be prominent to distinguish the analysed crop types 
within source and target temporal domains. The temporal transferability 
of RF models with four observations (bi-monthly) showed an average of 
79.8 % accuracy, while RF models from Kyere et al., (2019) with two 
observations showed 77.3 % average accuracy. This explained that the 
densification of the RS time series could help to distinguish crop types 
easily and improve temporal transferability. Supporting the same 
argument, Blickensdörfer et al., (2022) reported that densified RS time 
series using Sentinel 2 and Landsat data improved crop type classifica-
tion. However, to go back in time to map crop types to analyse the effect 
of biogas development on agricultural land cover during the last 20 
years, Landsat stands as the sole viable choice (Kyere, 2020). 

The model trained with data from one spatial region was tested on 
data from another under the second transferability scenario (S2). This 
study showed that when the model trained with data from multiple 
districts from similar regions was transferred to a new spatial region, the 
absolute Macro F1 values were changed between − 0.04 and − 0.14. In 
comparison, the crop type (11 classes) classification models with 
Sentinel-2 single crop year data also confirmed that the spatial trans-
ferability of the models could decrease the macro F1 value between 0.02 
and 0.15 (Orynbaikyzy et al., 2022). The performance loss for spatial 
transferability can be likely attributed to changes in environmental, 
climate, and management conditions. For example, Orynbaikyzy et al., 
(2022) reported that the crop classification model transferability within 
different spatial locations inside Germany could be challenging because 
farmers selected their cultivars according to the environmental condi-
tions. For example, different cultivars from the same crop type are 
cultivated in distinct regions due to contrasts in soil quality, which may 
have dissimilar phenological patterns that could increase the 
complexity. Additionally, the distribution of crop types in two regions 

could also reduce model performances. For example, maize was the most 
prominent crop in the WE region and when the model trained with WE 
data was transferred to the NH region, the less prominent maize share 
showed substantial performance loss in the maize class. In comparison, 
similar performance loss was observed for the winter crop class when 
the model was trained with NH data, which contained a higher share of 
winter crops transferred to the WE region, which had a lower share of 
winter crops. As suggested by Rusňák et al., (2023), this problem could 
be overcome by consideration of crop type distribution in the models. 
Further, incorporating data from larger regions might decrease the crop 
type distribution problem and increase the model transferability in the 
spatial domain (Johnson and Mueller, 2021). However, having label 
data over larger regions is mostly the bottleneck in crop type mapping 
exercises. 

In the third transferability scenario (S3), the complex shifts in both 
temporal and spatial domains were assessed. The models predicted 
values in an unexplored spatial region and distinct period and it showed 
that the model performances decreased by about 25 %. These results 
confirmed that it is very challenging to transfer model across both 
spatial and temporal domains. DI and AOA-based calculation results 
followed a similar trend. The implementation of DI-based AOA 
demonstrated the potential explanation for the uncertainty in the model 
transferability. A positive relationship was noticed between the quantity 
of observation under AOA and the model accuracies in the trans-
ferability scenarios (Fig. 10). Consequently, when label data is unavai-
lable to assess the model transferability performance, AOA may offer a 
means of comprehending the prediction uncertainty in the new domain 
(spatial and/or temporal) (Meyer and Pebesma, 2021). 

As mentioned earlier, this study employed the Landsat time series 
data from Landsat 5, 7 and 8 satellites to map events in past periods. The 
temporal target domain data (between 2010 and 2012) were only from 
Landsat 5 and 7, and the source domain data (between 2013 and 2018) 
contained data from Landsat 7 and 8. Even though Flood, (2014) re-
ported that there was no impact of multi-sensor Landsat satellite bands 
for classification purposes, there could be an impact from changes in the 
satellite sensors to the model transferability. On the other hand, 

Fig. 8. Macro F1 (mF1) score difference as a percentage for three transferability scenarios. S1: temporal transferability, S2: spatial transferability, S3: Spatial- 
temporal transferability, NH: North Hesse, WE: Weser-Ems, CNN: 2D Convolution neural network, RF: Random forest. 
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supporting that argument, Frantz et al., (2023) reported that spatial and 
temporal metrics derived from multiple Landsat sensors tend to contain 
uncertainties between years, and the quality of the observation 
increased from the past to the present when advanced satellite sensors 
were introduced. Furthermore, the computation of the median image 
from each two-month observation could have affected the data because 
the number of scenes per area in a given two-month period could differ 
due to the availability of scenes with clear sky observations. However, 
according to Frantz et al., (2023) the number of scenes with clear sky 
observation is not more important than seasonal data distribution, 
which this study tried to keep consistently. 

RF was one of the ML models employed in this study where derived 
spatial–temporal RS values were directly input as predictor variables 
followed. The authors did not explore other ML models since the RF was 
already proven to be one of the best ML models for crop type mapping 
tasks with temporal RS variables (Kyere et al., 2019; Orynbaikyzy et al., 
2022). As ML models tried to find the nonlinear relationships of the data 
in the hyperspace, it was not easy to adjust the models to adapt to the 
source and target domain. However, applying shallow DA techniques 
might be helpful to map data from both source and target domains to the 
shared domain before applying it to ML models (Peng et al., 2022). 
However, this was not a part of this study, and could be explored in the 
future research work. In addition, evaluating other available ML models 
(e.g., XGBoost) would also be recommended to find out how DA 

methods will deal with different ML models when transferred to 
different spatial and temporal domains. 

In terms of DL, this study explored the spectral-temporal guidance 
CNN model, which showed better results in the no-transfer scenario than 
the RF model. Similar results were reported by Pelletier et al., (2019), 
who used similar CNN models and obtained better OA values than 
respective RF models. However, limited temporal observation in the 
dataset (four per variable) might be restricted the potential of CNN 
models, where more temporal observation showed better results (Pel-
letier et al., 2019). Furthermore, the developed CNN models showed 
poor transferability performances compared to RF, probably because 
multiple temporal observations were required for better understanding 
the difference between source and target domains. On the other hand, 
this study did not explore the application of deep DA methods with CNN 
models and as mentioned earlier, it will be the next step of our research. 
Therefore, using novel deep transfer learning could increase the model 
transferability using CNN and other DL models (Ma et al., 2024; 
Rußwurm and Körner, 2020). One example would be, self-supervised 
pretraining of the data using novel DL methods to solve the problems 
like temporal shift, spectral noise, inconsistencies in the time series data 
(Nyborg et al., 2022b; Xu et al., 2024; Yuan and Lin, 2021). Even though 
there has been massive progress in this field in recent years, there are 
still many challenges. For example, increased computational costs, the 
limited availability of adequate training datasets and incorporation with 

Fig. 9. Class level F1 score difference as a percentage for three transferability scenarios. S1: temporal transferability, S2: spatial transferability, S3: Spatial-temporal 
transferability, NH: North Hesse, WE: Weser-Ems, CNN: 2D Convolution neural network, RF: Random forest. 
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the newest developments, which are crucial for the full utilisation of 
transfer learning for multi-regional, past and present crop type mapping 
using RS time series. 

5. Conclusions 

This study is the first to quantify the performance loss of crop clas-
sification models trained on Landsat data when transferred to different 
spatial or temporal domains. It also investigates the potential causes of 
this performance loss. The study found that models trained on data from 
different spatial or temporal domains within the same country consis-
tently underperform when transferred, regardless of the machine 

learning algorithm used. Therefore, further research employing multiple 
datasets that represent a multitude of spatial and temporal domains and 
applications of DA methods (shallow and deep) with novel DL models to 
evaluate the model transferability is recommended. 

Based on the outcomes of this study following conclusions can be 
drawn:  

• Crop-type mapping with sparse time series data from Landsat images 
is possible, and especially applicable for crop-type mapping tasks 
concerning the distant past.  

• The model accuracies and macro F1 scores declined when the model 
was transferred to different spatial and/or temporal domains, and 

Fig. 10. Scatter plots between the percentage of observation under the area of applicability true and overall accuracy. S1: temporal transferability, S2: spatial 
transferability, S3: Spatial-temporal transferability, NH: North Hesse, WE: Weser-Ems, CNN: 2D Convolution neural network, RF: Random forest. 

Fig. 11. Difference between a) Parcel size, b) mean elevation of the parcel, and c) mean slope of the parcel between the two regions and crop classes.  
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the order of model transferability loss was temporal (S1), spatial (S2) 
and spatial–temporal (S3).  

• The two ML algorithms (RF and CNN) employed in this study showed 
no substantial differences in their performance.  

• The observation percentage under the AOA was linked to the model 
accuracy, which could be a practical metric for understanding the 
new dataset’s predictions using the trained model.  

• The environmental, climatic and geographic data can be used to 
better elucidate the reasons for challenges in the model trans-
ferability scenarios. 

6. Data and supplementary material 

The employed Landsat data is freely available at respective databases 
(e.g., USGS earth explorer). The code is made available at https:// 
github.com/jmatics/landsat-croptype-spatial–temporal-transferability. 
IACS data are not made available due to confidentiality reasons. 
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