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This paper studies how a continuum of individuals interacting in a binary public goods game can 
secure cooperation through transmitting and enforcing norms. The evolutionary model consists 
of three distinct dimensions: behavior, norms, and approval preferences. In line with the indirect 
approach proposed by Güth and Yaari (1992), behavior results from utility maximization, while 
norms and approval preferences evolve over time. The underlying evolutionary processes differ 
concerning speed and nature. Whereas norms evolve at the cultural level through peer interactions 
and socialization, approval preferences are (at least partly) biologically inherited and transmitted 
from parents to their offspring. We find that if cultural and biological reproductive fitnesses are 
derived from material and social factors, then an interplay of social disapproval mechanisms gives 
rise to stable equilibria in which positive cooperation levels persist. Moreover, we find stable 
equilibria characterized by heterogeneous behavior and moral attitudes across individuals.

1. Introduction

Human societies uphold cooperation among non-related individuals, even if such behavior is relatively costly to the individuals 
themselves. The ability to bridge the divergence of self-interest and cooperation is often accredited to the existence and transmission 
of informal institutions such as social norms (see, e.g., Elster, 1989; Ostrom, 2000). A social norm captures a society’s shared under-
standing of what behavior is appropriate in a particular situation (Crawford and Ostrom, 1995). Individuals follow social norms due 
to the threat of social sanctions, such as disapproval by others (Voss, 2001; Fehr and Fischbacher, 2004). Moreover, individuals often 
go out of their way to act according to what they consider morally right. Such self-based standards of behavior are often referred 
to as personal norms (Nyborg, 2018). They guide an individual’s behavior through inner feelings such as guilt and self-perception 
(Thøgersen, 2006). Acknowledging the existence of norms and their impact on individuals’ decision-making can explain cooperative 
behavior.1 However, it raises new questions regarding their underlying evolutionary foundations.

This paper investigates how a continuum of individuals recurrently interacting in a binary public goods game can secure cooper-
ation through the transmission of a cooperation-prescribing norm and norm-sensitive preferences. To this end, we identify and study 
dynamically stable equilibria. The main contribution to the existing literature is two-fold. First, to the best of my knowledge, the 
paper presents the first model that describes the co-evolution of personal norms, social norms, and approval preferences. Thereby, it 
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endogenizes the formation of norms and the mechanism that enforces them. Second, we incorporate a variety of different social dis-
approval mechanisms and thereby highlight their potential role. We find that an interplay of social disapproval mechanisms enables 
the existence of stable equilibria with positive cooperation levels as well as heterogeneous behavior, personal norms, and approval 
preferences across individuals.

The model consists of three distinct dimensions: behavior, norms, and approval preferences. Following the indirect approach

proposed by Güth and Yaari (1992), individuals act rationally and maximize utility. Norms and approval preferences are subject to 
evolution. Norms evolve at the cultural level through peer interactions and socialization institutions (Henrich and Gil-White, 2001). 
Approval preferences are (at least partly) transmitted through biological reproduction (Chudek and Henrich, 2011). The evolution 
of norms and preferences is driven by social status, a combination of material payoff and social approval. The underlying notion 
is that socially successful individuals have a greater impact on the opinion formation of their peers (Bowles and Gintis, 1998) and 
are more likely to find mating partners (Turke, 1989; Buss and Schmitt, 1993). Thus, their personal norms and approval preferences 
spread in society. The distribution of personal norms specifies what the individuals generally regard as appropriate, thus defining 
the social norm (Cooter, 1998; Carbonara et al., 2008). Social disapproval arises from three sources: social norm violation by acting 
against what society generally considers appropriate, personal norm non-conformity by holding moral views that conflict with those 
of others, and hypocrisy by engaging in behavior that conflicts with one’s own personal norm.

The paper contributes to the evolutionary literature on norms employing the indirect evolutionary approach proposed by Güth and 
Yaari (1992). The underlying idea is that utility governs behavior, determining the reproductive fitness of cultural and biological 
traits that, in turn, shape the utility function.2

Mengel (2008) uses this approach to analyze the cultural transmission of cooperation norms in non-integrated societies. Individuals 
are recurrently matched to interact in the prisoners’ dilemma. Any individual having internalized the cooperation norm experiences 
internal sanctions when she defects. Incomplete integration is modeled through a biased matching structure that favors interaction 
between alike individuals (in terms of norm internalization). Mengel (2008) finds that cooperation norms of intermediate strength 
can survive at high levels of integration and low institutional pressure. In contrast, strict norms require either low levels of integration 
or high institutional pressure.

Alger and Weibull (2013, 2016) also study evolutionary models that incorporate assortative matching. Rather than norm inter-
nalization, they focus on the evolution of preferences for complying with a certain moral norm. The moral norm is endogenous to 
the game and determined by what can be viewed as an application of Kant’s categorical imperative: “What would maximize welfare 
given that everyone acted accordingly?”. Similar to Mengel (2008), they find that assortative matching gives rise to the stability of 
norm-sensitive preferences.

Fershtman and Weiss (1998) study another evolutionary model of norm-sensitive preferences. Individuals are recurrently matched 
into pairs and interact in a continuous contribution game. Fershtman and Weiss (1998) focus on social rewards as a behavioral co-
determinant, where social rewards for complying with the social norm positively depend on the average contribution level in society. 
Their results indicate that if preferences are observable, individuals condition their behavior based on the preferences of the player 
they are facing, which enables preferences for social rewards to be evolutionary stable.

The model of this paper complements the above analyses by studying situations where the material payoff does not depend on the 
behavior of in-group peers but rather on that of society as a whole. In such situations, assortative matching and observable preferences 
provide no evolutionary advantage to cooperative individuals, so additional explanations are needed.

Traxler and Spichtig (2011) present an evolutionary model that studies such a public goods game played at the societal level. 
The model endogenizes the disutility of sanctions for social norm violation. Similar to Fershtman and Weiss (1998), sanctions pos-
itively depend on society’s overall contribution level. This setup gives rise to multiple behavioral equilibria. Society reaches each 
behavioral equilibrium with some positive probability for every interaction in the public goods game. Similar to the model of this 
paper, Traxler and Spichtig (2011) assume that the reproductive fitness of preferences is co-determined by material payoff and social 
sanctions. They find that evolution favors an intermediate degree of social sanction sensitivity since it allows individuals to behave 
flexibly and adapt their behavior to the given environment.

The remainder of this paper is as follows. Section 2 presents the static theoretical framework. Section 3 discusses equilibrium 
behavior for exogenous norms and preferences. Sections 4 and 5 study the evolution of norms and preferences, respectively. Section 6
discusses the results, whilst Section 7 concludes and provides an outlook for future research.

2. Theoretical framework

We study a continuum of individuals 𝑖 ∈  = [0, 1], who recurrently interact in a binary public goods game. Each individual 𝑖

executes action 𝑎𝑖 ∈  = {0, 1}, which corresponds to either contributing to the public good (𝑎𝑖 = 1, ‘cooperate’) or not (𝑎𝑖 = 0, 
‘defect’). The share of individuals that contribute is 𝜓 . At times, we refer to 𝜓 as the cooperation level or share.

2 Many other strands of literature look at norms in an evolutionary context. Young (1993, 1996, 2015), Sethi and Somanathan (1996), Binmore and Samuelson 
(1994), Nyborg and Rege (2003b), Rege (2004), Azar (2004), and Lindbeck et al. (1999) focus on the evolution of behavior to rationalize norm-compliance. Bisin 
and Verdier (1998); Bisin et al. (2004); Bisin and Verdier (2001), Tabellini (2008), and Bezin (2019) study cultural evolution through rational socialization, where 
parents rationally choose what values to transmit to their offspring. Panebianco (2016) introduces an evolutionary model of norms that incorporates the persuasion of 
peers. Boyd and Richerson (1990), Bowles and Gintis (1998), Mitteldorf and Wilson (2000), Henrich (2004), and Boyd and Richerson (2005) propose group selection 
arguments where norms persist since they are group-advantageous. Beyond norms, this paper contributes to the general literature on the evolution of cooperation-
inducing traits using the indirect evolutionary approach (Bester and Güth, 1998; Guttman, 2003, 2013; Poulsen and Poulsen, 2006; Müller and von Wangenheim, 
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An individual 𝑖’s approval preferences are indicated by her preference type 𝜃𝑖 = (𝜃𝑖
𝑠

, 𝜃𝑖
𝑝
) ∈Θ ⊂ ℝ2

≥0, where Θ is an arbitrarily large 
but finite set.3 The vector 𝜆 ∈ [0, 1]|Θ| describes the distribution of approval preferences in society, where 𝜆𝜃 ∈ [0, 1] corresponds to 
the share of individuals 𝑖 for whom 𝜃𝑖 = 𝜃. The support of a distribution 𝜆 indicates the existing preference types in this population, 
supp(𝜆) ∶= {𝜃 ∈Θ ∶ 𝜆𝜃 > 0}. We require that 

∑
𝜃∈supp(𝜆) 𝜆𝜃 = 1.

We write an individual 𝑖’s personal norm as 𝑛𝑖 ∈ {0, 1}. Individual 𝑖 holds the cooperation norm, 𝑛𝑖 = 1, if she considers cooperation 
the only morally right thing to do. Suppose individual 𝑖 does not hold the cooperation norm, 𝑛𝑖 = 0. In that case, she considers all 
possible actions appropriate.4 We sometimes refer to the sub-population of individuals who hold the cooperation norm as norm 
holders. Analogously, an individual is a norm non-holder if she does not hold the cooperation norm. Individuals communicate their 
personal norms to peers. We assume this communication occurs truthfully (possibly due to a positive probability of being detected 
as a liar, which might lead to substantial social and material costs).5

The social norm captures societies’ shared understanding of appropriate behavior. In line with Cooter (1998) and Carbonara et 
al. (2008), a social norm is thus defined by the distribution of personal perceptions of morally acceptable behavior, the distribution 
of personal norms. We indicate the share of individuals that hold the cooperation norm by 𝜙 ∈ [0, 1]. If 𝜙 is large, many individuals 
believe that cooperating is the only morally right thing to do, and we say it is a strong social norm.

Throughout the analysis, we assume that norms are equally distributed in all sub-populations of preference types. Hence, social 
norm 𝜙 indicates the proportion of norm holders among all individuals in society as well as among all individuals who hold a particular 
preference type 𝜃 ∈ supp(𝜆). This is a simplifying assumption, further motivated by (1) norm internalization being independent of an 
individual’s preferences (see Section 4.1) and (2) 𝜙 corresponding to the expected share of norm holders among all individuals who 
hold the same preference type if, in addition to some mild conditions, differences in the shares of norms holders across preference 
types arise only due to random occurrences.

Individual 𝑖’s material payoff derives from her action 𝑎𝑖 and the cooperation level 𝜓 according to the payoff-function 𝑚 ∶ ×
[0, 1] →ℝ. Throughout, we assume 𝑚(𝑎𝑖 , 𝜓) is continuous and differentiable in its second argument.6 To capture the nature of public 
goods games, we assume that cooperating is relatively costly. For simplification purposes, we assume that cooperating becomes 
relatively more costly in the share of others who cooperate.7 Appendix A.1 discusses consequences of relaxing this assumption.

Definition 1 (Material payoff). 𝑚(𝑎𝑖 , 𝜓) s.t. ∀𝜓 ∈ [0, 1]:

1. 𝜕𝑚(𝑎𝑖 ,𝜓)
𝜕𝜓

> 0,

2. Δ𝑚(𝜓) ∶= 𝑚(0, 𝜓) − 𝑚(1, 𝜓) > 0, and
3. dΔ𝑚(𝜓)

d𝜓
> 0.

Throughout the analysis, we refer to Δ𝑚(𝜓) as the costs of cooperation.
Self-approval captures how an individual evaluates her behavior based on her personal norm. An individual who holds the coop-

eration norm and does not act accordingly experiences inner emotions such as guilt and loss of self-esteem.

Definition 2 (Self-approval). 𝑝(𝑎𝑖 , 𝑛𝑖) = (𝑎𝑖 − 1)𝑛𝑖.

Social approval captures how 𝑖 is perceived by her peers and derives from three separate components. First, individuals are subject 
to social disapproval for social norm violation (1 −𝑎𝑖)𝑣(𝜙). This social disapproval arises as a consequence of acting inappropriately in 
the eyes of the public. It requires the social norm to be present and increases in its strength, 𝑣(0) = 0 and d𝑣(𝜙)

d𝜙
> 0. Second, individuals 

are subject to social disapproval for non-conformity 𝑘(|𝑛𝑖 −𝜙|). The more individuals in society hold moral views conflicting with those 
of 𝑖, the greater 𝑖’s disapproval for non-conformity. Thus, social disapproval for non-conformity increases in the distance between 
𝑖’s personal and the social norm. If 𝑖’s personal norm coincides with the social one, she experiences no such disapproval. Formally, 
d𝑘(|𝑛𝑖−𝜙|)
d|𝑛𝑖−𝜙| > 0 and 𝑘(0) = 0. Third, individuals are subject to social disapproval for hypocrisy (1 − 𝑎𝑖)𝑛𝑖 ℎ, where ℎ > 0. An individual 𝑖

is perceived as a hypocrite if she does not cooperate despite holding the cooperation norm. Social disapproval coincides with negative 
social approval. So, we write the following.

Definition 3 (Social approval). 𝑠(𝑎𝑖 , 𝑛𝑖 , 𝜙) = (𝑎𝑖 − 1)[𝑣(𝜙) + 𝑛𝑖 ℎ] − 𝑘(|𝑛𝑖 − 𝜙|).

3 In principle, the set of preference types coincides with all possible elements of ℝ2
≥0. However, this may create problems regarding the traceability of the evolutionary 

model, so we adopt this simplifying assumption. Other than for illustrative purposes, we do not impose any restrictions on which preference types exist or may occur 
by allowing Θ to be arbitrarily large.

4 Since the analysis explicitly focuses on the evolution of pro-social norms that induce cooperation, we disregard norms that prescribe defection.
5 Abeler et al. (2019) show in a meta-analysis that untruthful reporting occurs surprisingly little, even if it benefits an individual. Bašić and Quercia (2022) provide 

evidence that truth-telling is motivated by social concerns.
6 By understanding material payoff in expected terms, the described framework can also capture public dilemma games played in smaller randomly matched groups 

(e.g., prisoner’s dilemma), where 𝜓 is the expected action of a randomly chosen individual.
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Table 1

Overview of variables and functions.

Symbol Description

Societal Framework

𝑖 individual index
𝑚 material payoff
Δ𝑚 costs of cooperation
𝑝 self-approval
𝑠 (�̃�) social approval (expressed)
𝑣 (�̃�) social disapproval for

social norm violation (expressed)
ℎ (ℎ̃) social disapproval for

hypocrisy (expressed)
𝑘 (�̃�) social disapproval for

non-conformity (expressed)
Δ𝑘 (Δ�̃�) difference in social disapproval for

non-conformity (expressed)
𝛿 gossip

Behavior

𝑎 action
𝜓 cooperation share
𝜎 behavioral distribution
𝜎𝑛,𝜃 cooperation share of 𝑖 s.t. 𝜃𝑖 = 𝜃 ∧ 𝑛𝑖 = 𝑛

𝜎𝑛 cooperation share of 𝑖 s.t. 𝑛𝑖 = 𝑛

𝑢 utility
Σ∗ set of NE

Symbol Description

Norms

𝑛 personal norm
𝜙 social norm
𝑐 cultural fitness
𝐶𝑛 average cultural fitness of 𝑖 s.t. 𝑛𝑖 = 𝑛

𝛾 weight of social approval on cultural fitness
𝐼𝑝(𝜆) potential imperfect-social-norm CE

Approval Preferences

𝜃 preference type
𝜃𝑠 preference for social approval
𝜃𝑝 preference for self-approval
𝜆 preference distribution
𝜆𝜃 share of 𝑖 s.t. 𝜃𝑖 = 𝜃 at 𝜆

supp(𝜆) support of 𝜆

𝑏 biological fitness
𝐵𝜃 average biological fitness of 𝑖 s.t. 𝜃𝑖 = 𝜃

𝐵𝜆 average biological fitness of distribution 𝜆

𝜌 weight of social approval on biological fitness
𝜃𝑑 the dominant preference type
𝜆𝑑 preference distribution s.t. 𝜆𝜃𝑑 = 1

Following Nyborg and Rege (2003b), we assume that peers partly express social disapproval towards 𝑖 as a direct reaction to 
her behavior and personal norms. This occurs through gestures such as raised eyebrows or similar, which do not automatically 
imply substantial costs for the individuals expressing them (Rege, 2004). Neither are they necessarily subject to a deliberate and/or 
conscious decision (Blau, 1964; Gächter and Fehr, 1999). Observing these gestures of disapproval affects an individual’s well-being 
through negative emotions of feeling rejected and condemned.8

Throughout the analysis, we assume that as a consequence of individuals engaging in information sharing (gossip) about their 
peers’ behavior and personal norms, actual social disapproval exceeds the social disapproval expressed towards an individual. We 
indicate the degree of gossip in society by 𝛿 ∈ℝ≥0.9

The expression of social disapproval for social norm violation occurs as a reaction to observing behavior. Similarly, expressing 
social disapproval for non-conformity occurs directly from observing a personal norm. We write social disapproval for social norm 
violation and non-conformity that is directly communicated to an individual as �̃�(𝜙) and �̃�(|𝑛𝑖 − 𝜙|) respectively. Gossip among peers 
proportionally increases social disapproval for social norm violation and non-conformity. Hence, we write 𝑣(𝜙) = �̃�(𝜙)(1 + 𝛿) and 
𝑘(|𝑛𝑖 − 𝜙|) = �̃�(|𝑛𝑖 − 𝜙|)(1 + 𝛿). Throughout, �̃�(𝜙) and �̃�(|𝑛𝑖 − 𝜙|) are continuous and differentiable.

The expression of social disapproval for hypocrisy requires observers of 𝑖’s action to be aware of her respective personal norm and 
vice versa. Either the observers have previously observed it, or others in society have shared the information with them. Therefore, 
expressed social disapproval for hypocrisy ℎ̃ is linked to the level of gossip 𝛿. Moreover, some actual social disapproval for hypocrisy 
only arises from pooling information through gossip and drawing conclusions therefrom.10 Thus, social disapproval for hypocrisy is 
disproportionately greater than the expressed one, ℎ > ℎ̃ (1 + 𝛿).

Definition 4 (Expressed social approval). �̃�(𝑎𝑖 , 𝑛𝑖 , 𝜙) = (𝑎𝑖 − 1)[�̃�(𝜙) + 𝑛𝑖 ℎ̃] − �̃�(|𝑛𝑖 − 𝜙|).

Table 1 summarizes the variables and functions most relevant for following the main text of this paper. It also includes terms that 
we introduce in the upcoming sections.

3. Behavior

Behavior derives from utility maximization and is always in a Nash equilibrium (NE). The underlying idea is that whilst the 
individuals’ cultural and biological characteristics change over time, they choose their behavior rationally at any point in time. An 

8 Note that feelings of social disapproval can also be triggered internally. Individuals know the distribution of norms in society and form expectations about the 
personal norms of their peers. An individual who believes her peers disapprove of her experiences negative feelings. By changing the setup accordingly, we alter the 
underlying story but not the formal analysis.

9 Engaging in gossip may itself be a public goods game to which the results of this paper apply.
10 For example, let us consider two observers of 𝑖 in two separate situations so that one may only observe 𝑎𝑖 and the other only 𝑛𝑖 . Gossip between these two individuals 

potentially leads to social disapproval of 𝑖 if it reveals that 𝑖 behaves inconsistently with her personal norms. However, none of the two observers previously expressed 
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Fig. 1. Equilibrium behavior.

individual 𝑖’s utility depends on her material payoff 𝑚(𝑎𝑖 , 𝜓), self-approval 𝑝(𝑎𝑖 , 𝑛𝑖), and the social approval expressed towards her 
�̃�(𝑎𝑖 , 𝑛𝑖 , 𝜙). The degree to which these components determine utility depends on her preference type 𝜃𝑖 = (𝜃𝑖

𝑠
, 𝜃𝑖

𝑝
).

Definition 5 (Utility). 𝑢(𝑎𝑖 , 𝑛𝑖 , 𝜓 , 𝜙, 𝜃𝑖) = 𝑚(𝑎𝑖 , 𝜓) + 𝜃𝑖
𝑠

�̃�(𝑎𝑖 , 𝑛𝑖 , 𝜙) + 𝜃𝑖
𝑝

𝑝(𝑎𝑖 , 𝑛𝑖).

Consider any individual with personal norm 𝑛 and preference type 𝜃. We can inspect her incentives to cooperate by comparing the 
utility of both actions: 𝑢(1, 𝑛, 𝜓 , 𝜙, 𝜃) −𝑢(0, 𝑛, 𝜓 , 𝜙, 𝜃) = 𝜃𝑝 𝑛 +𝜃𝑠 ℎ̃𝑛 +𝜃𝑠 �̃�(𝜙) −Δ𝑚(𝜓). An individual who does not hold the cooperation 
norm, 𝑛 = 0, encounters a trade-off between social disapproval for social norm violation 𝜃𝑠 �̃�(𝜙) and costs of cooperation Δ𝑚(𝜓). 
Norm holders additionally face social disapproval for hypocrisy 𝜃𝑠 ℎ̃ and self-disapproval 𝜃𝑝 when defecting. Social disapproval for 
non-conformity does not impact behavioral incentives.

Let 𝜎𝑛,𝜃 be the share of individuals with personal norm 𝑛 and preference type 𝜃 that cooperate. Moreover, 𝜎𝑛 =
∑

𝜃∈supp(𝜆) 𝜆𝜃 𝜎𝑛,𝜃

indicates the share of cooperators among individuals with personal norm 𝑛. Hence, we can write the cooperation level as 𝜓 =
𝜙𝜎1 + (1 − 𝜙)𝜎0. The vector 𝜎 consists of all vectors (𝜎1,𝜃 , 𝜎0,𝜃) and, thus, describes the complete distribution of behavior. The 
following proposition constitutes the main result of this section.

Proposition 1 (Equilibrium behavior). For each 𝜆 ∈ [0, 1]|Θ| and 𝜙 ∈ [0, 1], there is a connected and non-empty set Σ∗ s.t.

1. 𝜎 ∈ Σ∗ ⇔ 𝜎 is a NE and

2. for all �̂� , ̌𝜎 ∈ Σ∗, 𝜙�̂�1 + (1 − 𝜙)�̂�0 = 𝜙�̌�1 + (1 − 𝜙)�̌�0.

Proof. Proposition 1 follows from Lemmas 4 and 6 in Appendix B.1.

The above states that all NE at any social norm 𝜙 and preference distribution 𝜆 form a connected and non-empty set Σ∗. Moreover, 
all NE yield the same cooperation share 𝜓∗. At times, we may write the set of NE and the equilibrium cooperation level explicitly as 
functions of the social norm 𝜙 and preference distribution 𝜆: Σ∗(𝜙, 𝜆) and 𝜓∗(𝜙, 𝜆).11 For ease of readability, the discussion sometimes 
refers to one specific NE, although Σ∗ is not necessarily a singleton. This NE then serves as a representative for all elements in Σ∗ , 
and we write it as 𝜎∗.

To illustrate the intuition behind the above result, we start by discussing a society that is homogeneous regarding approval 
preferences, supp(𝜆) = {𝜃}. In this case, Σ∗(𝜙, 𝜆) is a singleton (see Lemma 11 in Appendix B.1). Consider the graphical illustration in 
Fig. 1. The costs of cooperation at any cooperation level 𝜓 are Δ𝑚(𝜓). By Definition 1, Δ𝑚(𝜓) is strictly increasing. Next, consider the 
function 𝑁(𝜓 , 𝜙) that sorts all individuals’ social and self-approval gains from cooperation in descending order. The first 𝜙 individuals 
hold the cooperation norm and thus avoid social disapproval for social norm violation 𝜃𝑠 �̃�(𝜙), social disapproval for hypocrisy 𝜃𝑠 ℎ̃, 
and self-disapproval 𝜃𝑝 when cooperating. The remaining 1 − 𝜙 individuals do not hold the cooperation norm and thus only avoid 
social disapproval for social norm violation 𝜃𝑠 �̃�(𝜙). 𝑁(𝜓 , 𝜙) is a decreasing function by construction.

If at some cooperation level 𝜓 , 𝑁(𝜓 , 𝜙) lies above Δ𝑚(𝜓), an individual currently not cooperating prefers to do so. Similarly, if 
𝑁(𝜓 , 𝜙) lies below Δ𝑚(𝜓), an individual who cooperates prefers to defect. The NE corresponds to the unique intersection of both 
curves or, if no intersection exists, to one of the boundary points. Fig. 1a shows an example in which all norm holders strictly prefer 
to cooperate, and all norm non-holders strictly prefer to defect. Fig. 1b provides an example of some non-holders being sufficiently 
motivated to cooperate. The costs of cooperation equal social disapproval for social norm violation in a manner that all norm non-
holders are indifferent.

When preferences are heterogeneous, we can also sort all individuals according to their utility gains from cooperating, yielding a 
decreasing function. The unique equilibrium share of cooperators 𝜓∗ is at this function’s intersection with the costs of cooperation 
Δ𝑚(𝜓). However, the set of all NE is no longer necessarily a singleton but possibly a connected set. This may occur if at least two 

11 Note that we can show that Σ∗ would be asymptotically stable if behavior was to follow an evolutionary process of pairwise comparison dynamics (see Lemma 4
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in Appendix B.1), providing additional reasoning as to why we expect society to reach an element in this set.
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sub-groups of individuals ̂ = {𝑖 ∈  ∶ 𝑛𝑖 = �̂� ∧ 𝜃𝑖 = �̂�} and ̌ ∶= {𝑖 ∈  ∶ 𝑛𝑖 = �̌� ∧ 𝜃𝑖 = �̌�} are indifferent between both behavioral 
routines, �̂�𝑠 �̃�(𝜙) + �̂��̂�𝑠 ℎ̃ + �̂��̂�𝑝 = Δ𝑚(𝜓∗) = �̌�𝑠 �̃�(𝜙) + �̌��̌�𝑠 ℎ̃ + �̌��̌�𝑝. If so, there may exist infinitely many NE 𝜎∗ that all exhibit varying 
sub-group cooperation levels 𝜎∗

�̂�,�̂�
and 𝜎∗

�̌�,�̌�
, but the same total cooperation level 𝜓∗ .

We can use the above results to examine how different variables and functions influence the equilibrium cooperation level 𝜓∗ . 
To do so, we focus on a society with homogeneous approval preferences since, in the long run (when preferences are endogenous), 
all individuals behave as if their preferences were homogeneous. Hence, to analyze the effect of different variables and functions on 
the equilibrium outcome, it suffices to analyze how they affect equilibrium behavior under the homogeneous preference distribution 
that society mimics.

Proposition 2 (Comparative results for equilibrium behavior). Consider any 𝜆 ∈ [0, 1]|Θ| s.t. supp(𝜆) = {𝜃}. The equilibrium cooperation 
share 𝜓∗ is (weakly) greater for greater negative costs of cooperation −Δ𝑚(⋅), preference for self-approval 𝜃𝑝, preference for social approval 
𝜃𝑠, social norm 𝜙, expressed disapproval for social norm violation �̃�(⋅), and expressed social disapproval for hypocrisy ℎ̃.

Proof. Lemma 8 and Proposition 16 in Appendix B.1 constitute the formal equivalent to the above.

Consider Fig. 1 and note that an increase in −Δ𝑚(𝜓) corresponds to a decrease in the costs of cooperation Δ𝑚(𝜓). Such a decrease 
shifts the respective curve downwards and its intersection with 𝑁(𝜓 , 𝜙) to the right. The equilibrium cooperation share must increase. 
An increase in the social norm 𝜙 implies that more individuals hold the cooperation norm. Hence, social disapproval for social norm 
violation also increases. Graphically, both horizontal segments of 𝑁(𝜓 , 𝜙) shift upwards, and their vertical connection moves to the 
right. Consequently, the equilibrium level of cooperation must rise. By similar reasoning, increases in 𝜃𝑠 and �̃�(𝜙) move both segments, 
and increases in 𝜃𝑝 and ℎ̃ move the left segment of 𝑁(𝜓 , 𝜙) upwards, which (weakly) increases the equilibrium cooperation share 
𝜓∗.

4. Norms

4.1. Evolutionary framework

Personal norms of culturally successful individuals spread in society. We assume that cultural success depends on material factors 
(e.g., income, occupational prestige) and social factors (e.g., social reputation, respect). Thus, material payoff and social approval 
co-determine the cultural fitness that drives the evolution of norms.

Definition 6 (Cultural fitness). 𝑐(𝑎𝑖 , 𝑛𝑖 , 𝜓 , 𝜙) = 𝑚(𝑎𝑖 , 𝜓) + 𝛾 𝑠(𝑎𝑖 , 𝑛𝑖 , 𝜙), where 0 < 𝛾 is the weight of social approval on cultural fitness.

Following the existing literature, we assume that cultural transmission of norms mainly occurs through horizontal (peer interac-
tions) and oblique transmission (socialization institutions). First, individuals are more likely to copy the cultural traits of culturally 
successful peers (Henrich and Gil-White, 2001). Second, access to specific social networks as well as financial means favors the chances 
of acquiring privileged cultural positions (e.g., teachers, politicians), in turn increasing the impact on the opinion formation process 
of others (Bowles and Gintis, 1998; Gintis, 2003b). Access to certain social networks is often denied if an individual is subject to social 
disapproval (Cinyabuguma et al., 2005; Traxler and Spichtig, 2011). Since norms evolve based on learning through socialization, and 
there is no evident systematic relationship to an individual’s preferences, we assume that norm internalization occurs independently 
of an individual’s approval preferences. Formally, we can best describe the cultural evolution of norms using imitative dynamics (see 
Sandholm, 2010). Therefore, we employ the well-studied replicator dynamics.12

Definition 7 (Norm dynamics).

�̇� = 𝜙(1 − 𝜙)(𝐶1(𝜎, 𝜙) − 𝐶0(𝜎, 𝜙))

= 𝜙(1 − 𝜙)((𝜎1 − 𝜎0)(𝛾 𝑣(𝜙) − Δ𝑚(𝜓)) − 𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(𝜙)),

where Δ𝑘(𝜙) = 𝑘(|0 −𝜙|) −𝑘(|1 −𝜙|) is the difference in social disapproval for non-conformity between norm non-holders and holders, 
and 𝐶𝑛(𝜎, 𝜙) = 𝜎𝑛 𝑐(1, 𝑛, 𝜓 , 𝜙) + (1 − 𝜎𝑛)𝑐(0, 𝑛, 𝜓 , 𝜙) is the average cultural fitness of all individuals with personal norm 𝑛 ∈ {0, 1}.

Throughout, we refer to a rest point of norm dynamics as a cultural equilibrium (CE) and may indicate it by 𝜙∗. A stable CE is one 
for which the social norm always remains close to it when starting sufficiently close to the CE. The CE is asymptotically stable if the 
social norm converges to it.
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12 Following Sandholm (2010), we can show that the results of this paper also hold for a variety of other population dynamics.
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4.2. Equilibrium analysis

We continue by discussing the results most relevant to the paper’s further analysis and findings.13 To this end, we investigate and 
discuss the existence and stability of different CE for an exogenous preference distribution 𝜆.

4.2.1. No-social-norm cultural equilibrium

The first CE corresponds to the absent social norm 𝜙∗ = 0, where no individual holds the cooperation norm. All individuals have 
neither personal nor social incentives to cooperate and, thus, defect, 𝜓∗(0, 𝜆) = 0. Such a CE always exists and is always asymptotically 
stable.

Proposition 3 (Asymptotically stable no-social-norm CE). For any 𝜆 ∈ [0, 1]|Θ|, 𝜙 = 0 is an asymptotically stable CE.

Proof. See Appendix B.2.

Starting from 𝜙∗ = 0, assume that a small group of norm holders appears. As the new social norm 𝜙 remains near zero, the norm 
holders are subject to high social disapproval for non-conformity. Moreover, internalizing the cooperation norm may induce them to 
either change their action to cooperation or keep defecting. In the former case, the norm holders incur material costs but avoid social 
disapproval for social norm violation. However, the avoided social disapproval minimally impacts the difference in average cultural 
fitness as the social norm 𝜙 is close to zero. In the latter case, everyone obtains the same material payoff and social disapproval for 
social norm violation. However, the norm holders behave hypocritically, negatively impacting their cultural fitness. Consequently, 
the norm holders obtain lower cultural fitness on average in both cases, inducing a return to 𝜙∗ = 0.

4.2.2. Perfect-social-norm cultural equilibrium

Next, we discuss the perfect-social-norm CE 𝜙∗ = 1, where all individuals hold the cooperation norm. The perfect-social-norm CE 
always exists.

Proposition 4 (Asymptotically stable perfect-social-norm CE). For any 𝜆 ∈ [0, 1]|Θ|, 𝜙 = 1 is an asymptotically stable CE if

1. 𝜓∗(1, 𝜆)(𝛾 𝑣(1) −Δ𝑚(𝜓∗(1, 𝜆))) − 𝛾(1 − 𝜓∗(1, 𝜆))ℎ + 𝛾Δ𝑘(1) > 0 and

2. (a) 𝜃𝑠 �̃�(1) < Δ𝑚(𝜓∗(1, 𝜆)) ∀𝜃 ∈ supp(𝜆) or

(b) Δ𝑘(1) > (1 − 𝜓∗(1, 𝜆))ℎ.

Proof. See Appendix B.2.

Proposition 4 states that the perfect-social-norm CE is asymptotically stable if (1) the norm holders, corresponding to all individuals 
in society, obtain greater cultural fitness on average than a hypothetical group of norm non-holders would if they were not cooperating 
and (2) either (a) any individual would prefer to defect if she was not holding the cooperation norm or (b) the difference in social 
disapproval for non-conformity outweighs average social disapproval for hypocrisy.

At the perfect social norm 𝜙∗ = 1, society consists of only norm holders, implying that the cooperation share 𝜓∗(1, 𝜆) coincides with 
𝜎∗
1 . Consider a small cultural mutation to social norm 𝜙 < 1. Since the post-mutation social norm 𝜙 is close to one, the behavioral 

incentives for norm holders change only slightly. Consequently, the norm-holder cooperation share 𝜎∗
1 and the total cooperation 

share 𝜓∗(𝜙, 𝜆) remain close to the pre-mutation cooperation share 𝜓∗(1, 𝜆). Hence, after the cultural mutation, it holds that the norm 
holders obtain greater cultural fitness on average than the norm non-holders if all norm non-holders defect, 𝜎∗

1 (𝛾 𝑣(𝜙) − Δ𝑚(𝜓∗)) +
𝛾(1 − 𝜎∗

1 )ℎ +Δ𝑘(𝜙) > 0.
Suppose the individuals who abandon the cooperation norm due to cultural mutation are no longer sufficiently motivated to 

cooperate, 𝜎∗
0 = 0. In that case, the average cultural fitness of norm holders exceeds that of norm non-holders at the new social norm 

𝜙, and cultural evolution reinstates the perfect social norm 𝜙∗ = 1. This is the case if Condition 2a holds: If all individuals would 
strictly prefer to defect if they were not holding the cooperation norm at the perfect social norm 𝜙∗ = 1, 𝜃𝑠 �̃�(𝜙) < Δ𝑚(𝜓∗(1, 𝜆)), they 
prefer to defect when not holding the cooperation norm at any social norm 𝜙 close to 𝜙∗ = 1, 𝜃𝑠 �̃�(𝜙) < Δ𝑚(𝜓∗(𝜙, 𝜆)).

Alternatively, suppose that some individuals who abandon the cooperation norm prefer to cooperate, 𝜎∗
0 > 0. As a consequence, 

differences in average social disapproval for social norm violation and material costs of both norm holder populations become less 
pronounced when compared to the case in which all norm non-holders defect, (𝜎∗

1 −𝜎∗
0 )(𝛾 𝑣(𝜙) −Δ𝑚(𝜓∗)) < 𝜎∗

1 (𝛾 𝑣(𝜙) −Δ𝑚(𝜓∗)). This 
increases the relative impact of differences in social disapproval for non-conformity Δ𝑘(𝜙) and hypocrisy (1 − 𝜎∗

1 )ℎ on differences 
in cultural fitness. Condition 2b ensures that after the cultural mutation to social norm 𝜙, the difference in social disapproval for 
non-conformity outweighs average social disapproval for hypocrisy, Δ𝑘(𝜙) > (1 − 𝜎∗

1 )ℎ. Hence, norm holders obtain more cultural 
fitness than norm non-holders on average, and cultural evolution reinstates the perfect social norm 𝜙∗ = 1.
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13 Appendix A.2 briefly discusses some additional CE that may exist.
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The above highlights the importance of social disapproval for non-conformity in stabilizing a perfect social norm. Similarly, the 
proposition illustrates that social disapproval for hypocrisy may destabilize the perfect social norm as it negatively affects Conditions 
1 and 2b. The underlying reason is that only the norm holders can behave hypocritically and thus hold an evolutionary disadvantage.

Proposition 5 (Robustness of an asymptotically stable perfect-social-norm CE). Consider any 𝜆 ∈ [0, 1]|Θ| s.t. there exists a CE of Proposi-

tion 4. There is a neighborhood 𝑈 of 𝜆 s.t. 𝜙 = 1 is an asymptotically stable CE at any �̂� ∈ 𝑈 .

Proof. See Appendix B.2.

Proposition 5 establishes that if the perfect social norm is an asymptotically stable CE of Proposition 4 at preference distribution 
𝜆, then it is also an asymptotically stable CE at any other preference distribution �̂� that is sufficiently close to 𝜆. The underlying 
intuition is that at preference distribution 𝜆 and any social norm 𝜙 in the neighborhood of 𝜙∗ = 1, the norm holders obtain strictly 
greater cultural fitness than the norm non-holders, (𝜎∗

1 − 𝜎∗
0 )(𝛾 𝑣(𝜙) −Δ𝑚(𝜙)) + 𝛾(1 − 𝜎∗

1 )ℎ +Δ𝑘(𝜙) > 0. A small change in preferences 
from 𝜆 to �̂� only alters norm population behavior (𝜎∗

1 , 𝜎∗
0 ) at any social norm 𝜙 slightly. Hence, the inequality above still holds at 

�̂�. Thus, the norm holders still obtain greater cultural fitness than the norm non-holders at preference distribution �̂� and any social 
norm 𝜙 in the neighborhood of 𝜙∗ = 1. The perfect social norm is an asymptotically stable CE at preference distribution �̂�.

Finally, we analyze how different variables and functions may relate to the existence of an asymptotically stable CE of Proposi-
tion 4. We focus on the special case of homogeneous preferences, supp(𝜆) = {𝜃}, where approval preferences are relatively small as 
compared to the weight of social approval on cultural fitness, 𝜃𝑠 < 𝛾(1 + 𝛿) and 𝜃𝑝 < 𝛾(ℎ − (1 + 𝛿)ℎ̃). We do so since this constitutes 
the relevant case for further analysis in Section 5. The results are summarized in the following proposition.

Proposition 6 (Comparative results for an asymptotically stable perfect-social-norm CE). Consider any specification of the model with 
𝜆 ∈ [0, 1]|Θ| s.t. supp(𝜆) = {𝜃} and (𝜃𝑠 , 𝜃𝑝) < (𝛾(1 + 𝛿), 𝛾(ℎ − (1 + 𝛿)ℎ̃)).

1. The CE of Proposition 4 more likely exists if the weight of social approval on cultural fitness 𝛾 , social disapproval for social norm violation 
𝑣(⋅), the difference in social disapproval for non-conformity Δ𝑘(⋅), and negative costs of cooperation −Δ𝑚(⋅) are large.

2. There exists a CE of Proposition 4 if

(a) social disapproval for hypocrisy ℎ and/or costs of cooperation Δ𝑚(⋅) are small, and/or

(b) the difference in social disapproval for non-conformity Δ𝑘(⋅) and/or social norm violation 𝑣(⋅) are large.

3. A small increase in 𝜓∗, ceteris paribus, ambiguously affects the conditions of Proposition 4.

Proof. Proposition 17 in Appendix B.2 constitutes the formal equivalent to the above.

Regarding the existence of an asymptotically stable perfect-social-norm CE of Proposition 4, the first two statements of Proposi-
tion 6 ascribe a negative role to social disapproval for hypocrisy ℎ and the costs of cooperation Δ𝑚(⋅), while ascribing a positive role 
to the weight of social approval on cultural fitness 𝛾 , social disapproval for social norm violation 𝑣(⋅), and the difference in social 
disapproval for non-conformity Δ𝑘(⋅). The perfect social norm is an asymptotically stable CE if and only if the average cultural fitness 
of the norm holders is greater than that of norm non-holders at social norms 𝜙 close to the perfect one 𝜙∗ = 1. Hence, we can illustrate 
why the above proposition holds by discussing how the different variables and functions impact differences in cultural fitness.

For this purpose, recall that individuals who hold the cooperation norm always have more incentives to cooperate, implying 
that their share of cooperators must always be greater than the share among norm non-holders, 𝜎∗

1 ≥ 𝜎∗
0 . Consequently, greater social 

disapproval for social norm violation 𝑣(⋅) impacts norm holders’ average cultural fitness less than that of norm non-holders. Similarly, 
if the cooperation costs are small, cooperating norm holders forego less material payoff, positively impacting their cultural fitness. 
For the perfect social norm to be asymptotically stable, it must hold that the norm holders are subject to more social approval than 
the norm non-holders in some neighborhood of the perfect social norm. Otherwise, the norm non-holders would, on average, obtain 
higher material payoff (since fewer of them cooperate) and social approval. If the norm holders’ average social approval is larger, 
then differences in cultural fitness increase in the weight of social approval on cultural fitness 𝛾 in their favor. Furthermore, a greater 
difference in social disapproval for non-conformity Δ𝑘(⋅) positively impacts the cultural fitness of norm holders at any social norm 
close to the perfect one. Lastly, social disapproval for hypocrisy ℎ may hinder asymptotic stability of a perfect-social-norm CE since 
only the carriers of the cooperation norm can be subject to it. Hence, they hold an evolutionary disadvantage, possibly hindering 
the spread of the cooperation norm. Note that for social disapproval for hypocrisy to prevent the perfect social norm from being 
asymptotically stable, hypocrisy must occur, 𝜎∗

1 < 1.
The third statement of Proposition 6 holds due to two countervailing effects on differences in cultural fitness stemming from 

an increase in the cooperation share 𝜓∗. On the one hand, increasing the cooperation share 𝜓∗ reduces average social disapproval 
for hypocrisy (1 − 𝜓∗)ℎ, increasing the norm holders’ average cultural fitness. On the other hand, an increase in the cooperation 
share 𝜓∗ raises the costs of cooperation Δ𝑚(𝜓∗), negatively impacting the cultural fitness of the cooperating norm holders. Which 
effect dominates depends on how responsive the cooperation costs Δ𝑚(⋅) are with respect to 𝜓∗. Generally, a larger responsiveness 
corresponds to a greater cost increase due to an increased cooperation share 𝜓∗ , thus favoring domination of the latter effect.

Note that the third statement of Proposition 6 implies that changes in the preferences for approval 𝜃𝑠 and 𝜃𝑝 as well as expressed 
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social disapproval for hypocrisy ℎ̃ and social norm violation �̃�(⋅) affect the existence of an asymptotically stable perfect-social-norm CE 
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Fig. 2. Imperfect-social-norm CE.

indirectly through the cooperation share (recall Proposition 2 in Section 3). Consequently, changes in social disapproval for hypocrisy 
and social norm violation affect it directly through their actual values ℎ and 𝑣(⋅) and indirectly through their expressed counterparts 
ℎ̃ and �̃�(⋅). Although these indirect effects have not been accounted for in the discussion of Proposition 6, the formal results still hold 
when doing so.

4.2.3. Imperfect-social-norm cultural equilibrium

The following proposition describes an asymptotically stable CE of an imperfect social norm 𝜙∗ ∈ (0, 1).

Proposition 7 (Asymptotically stable imperfect-social-norm CE). For any 𝜆 ∈ [0, 1]|Θ|, 𝜙 ∈ (0, 1) is an asymptotically stable CE if

1. 𝜃𝑠 �̃�(𝜙) < Δ𝑚(𝜙) < 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 ∀𝜃 ∈ supp(𝜆),
2. 𝛾 𝑣(𝜙) + 𝛾Δ𝑘(𝜙) =Δ𝑚(𝜙), and

3. 𝛾( d𝑣(𝑥)
d𝑥

|𝑥=𝜙 + dΔ𝑘(𝑥)
d𝑥

|𝑥=𝜙) <
dΔ𝑚(𝑥)

d𝑥
|𝑥=𝜙.

Proof. See Appendix B.2.

Condition 1 implies that at social norm 𝜙∗ all norm non-holders strictly prefer to defect and all norm holders strictly prefer to 
cooperate, implying norm population behavior is (𝜎∗

1 , 𝜎∗
0 ) = (1, 0) for all social norms in the neighborhood of 𝜙∗ . Condition 2 ensures 

that social norm 𝜙∗ is a CE, while Condition 3 implies it is asymptotically stable.
Fig. 2 presents a graphical illustration of the proposition for the case of homogeneous preferences, supp(𝜆) = {𝜃}. The intuition 

easily carries over to the heterogeneous preferences case. At the respective imperfect social norm and some neighborhood around it, 
individuals cooperate if and only if they hold the cooperation norm, (𝜎∗

1 , 𝜎∗
0 ) = (1, 0). For norm dynamics to be at rest, the average 

cultural fitness of the norm holders must equal that of the norm non-holders. This is satisfied if the costs of cooperation Δ𝑚(𝜙∗) equal 
the differences in social disapproval for social norm violation and non-conformity on cultural fitness 𝛾 𝑣(𝜙∗) + 𝛾Δ𝑘(𝜙∗). Suppose some 
individuals randomly internalize (abandon) the cooperation norm. In that case, the average cultural fitness of the norm holders must 
fall below (above) that of the norm non-holders for society to return to the CE 𝜙∗ . This applies if an increase (decrease) in 𝜙∗ increases 
(decreases) the costs of cooperation more than the difference in social approval. Graphically, Δ𝑚(𝜙) intersects 𝛾 𝑣(𝜙) + 𝛾Δ𝑘(𝜙) from 
below at 𝜙∗. Hence, asymptotic stability of the CE requires material payoff to be relatively more responsive to changes in the 
cooperation share than social disapproval is to changes in the social norm.

Proposition 8 (Robustness of an asymptotically stable imperfect-social-norm CE). Consider any 𝜆 ∈ [0, 1]|Θ| s.t. there exists an imperfect-

social-norm CE 𝜙∗ ∈ (0, 1) of Proposition 7. For all 𝜖 > 0, there is a neighborhood 𝑈 of 𝜆 s.t. at any �̂� ∈ 𝑈 , there exists an asymptotically 
stable set Φ̂ ⊂ (𝜙∗ − 𝜖, 𝜙∗ + 𝜖).

Proof. Follows from Proposition 18 in Appendix B.2.

Proposition 8 implies that if there exists an imperfect-social-norm CE 𝜙∗ of Proposition 7 at preference distribution 𝜆, then for all 
preference distributions �̂� close to 𝜆, there exists a CE �̂�∗ close to 𝜙∗ that society coordinates into at preference distribution �̂� and social 
norm 𝜙∗. Fig. 3 illustrates the underlying intuition of this result graphically. At preference distribution 𝜆, the right intersection of the 
two solid lines constitutes the asymptotically stable CE 𝜙∗. Consider some preference distribution �̂� that differs only slightly from 𝜆. 
Let 𝜖1 be the share of individuals that prefer to defect at 𝜙∗ and some neighborhood if they hold the cooperation norm. Analogously, 
let 𝜖0 be the share of individuals that prefer to cooperate if they do not hold the cooperation norm. If �̂� is close to 𝜆, 𝜖0 and 𝜖1 are close 
to zero, and equilibrium behavior in some neighborhood of 𝜙∗ is 𝜎∗

1 = 1 − 𝜖1, 𝜎∗
0 = 𝜖0, and 𝜓∗ = 𝜙∗(1 − 𝜖1) + (1 − 𝜙∗)𝜖0. Substituting 

this into Definition 7 yields that norm dynamics are at rest if (1 − 𝜖1 − 𝜖0)(𝛾 𝑣(𝜙) −Δ𝑚(𝜙(1 − 𝜖1) +(1 − 𝜙)𝜖0)) − 𝛾 𝜖1ℎ + 𝛾Δ𝑘(𝜙) = 0. The 
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intersection of the two dotted lines at �̂�∗ in Fig. 3 represents such a rest point. It is asymptotically stable since Δ𝑚(𝜙(1 −𝜖1) +(1 −𝜙)𝜖0)
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Fig. 3. Robustness of an imperfect-social-norm CE.

intersects 𝛾 𝑣(𝜙) + 𝛾
𝜖1ℎ

1−𝜖1−𝜖0
+ 𝛾

Δ𝑘(𝜙)
1−𝜖1−𝜖0

from below. The closer the two preference distributions �̂� and 𝜆, the closer the dotted lines are 

to the solid lines and, consequently, �̂�∗ is to 𝜙∗.
We continue by analyzing how different variables and functions may affect the potential existence as well as an existing imperfect-

social-norm CE of Proposition 7. For this purpose, we again focus on the case of homogeneous preferences, supp(𝜆) = {𝜃}, where 
approval preferences are relatively small as compared to the weight of social approval on cultural fitness, 𝜃𝑠 < 𝛾(1 + 𝛿) and 𝜃𝑝 <

𝛾(ℎ − (1 + 𝛿)ℎ̃).
Conditions 1 and 2 of Proposition 7 imply that an imperfect social norm 𝜙 can only be a CE of Proposition 7 if the differences 

in social disapproval for social norm violation and non-conformity on cultural fitness exceed the norm-based cooperation incentives 
of norm non-holders but fall short of the norm-based cooperation incentives of norm holders, 𝜃𝑠 �̃�(𝜙) < 𝛾 𝑣(𝜙) + 𝛾Δ𝑘(𝜙) < 𝜃𝑠 �̃�(𝜙) +
𝜃𝑠 ℎ̃ + 𝜃𝑝. Graphically, this corresponds to the green curve being between the two blue curves in Fig. 2. We refer to all social norms 
𝜙 satisfying this condition as the set of potential imperfect-social-norm CE 𝐼𝑝(𝜆).

Lemma 1 (Potential imperfect-social-norm CE). Consider any 𝜆 ∈ [0, 1]|Θ| s.t. supp(𝜆) = {𝜃} and (𝜃𝑠 , 𝜃𝑝) < (𝛾(1 + 𝛿), 𝛾(ℎ − (1 + 𝛿)ℎ̃)). Let 
𝐼𝑝(𝜆) = {𝜙 ∈ [0, 1] ∶ 𝜃𝑠 �̃�(𝜙) < 𝛾 𝑣(𝜙) + 𝛾Δ𝑘(𝜙) < 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝}.

1. 𝐼𝑝(𝜆) increases in ℎ̃ and 𝜃𝑝 and

2. 𝜃𝑠 ℎ̃ + 𝜃𝑝 > 0 ⇔ 𝐼𝑝(𝜆) ≠ ∅.

Proof. See Appendix B.2.

Lemma 1 states that the set of potential imperfect-social-norm CE 𝐼𝑝(𝜆) (1) increases in expressed social disapproval for hypocrisy 
ℎ̃ and the preference for self-approval 𝜃𝑝 and (2) is non-empty if and only if expressed social disapproval for hypocrisy and self-
approval affect utility, 𝜃𝑠 ℎ̃ + 𝜃𝑝 > 0. The underlying reason is that expressed social disapproval for hypocrisy ℎ̃ and the preference 
for self-approval 𝜃𝑝 are responsible for the difference in cooperation incentives of norm holders and non-holders. Graphically, an 
increase in ℎ̃ and 𝜃𝑝 shifts the norm holders cooperation incentives 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 upwards, whilst leaving the norm non-holders 
cooperation incentives 𝜃𝑠 �̃�(𝜙) unaffected in Fig. 2. The set of potential imperfect-social-norm CE 𝐼𝑝(𝜆) increases. If expressed social 
disapproval for hypocrisy and self-approval were not to affect utility, 𝜃𝑠 ℎ̃ + 𝜃𝑝 = 0, then norm holders and non-holders would have 
the same incentives to cooperate at all social norms 𝜙. Both blue lines in Fig. 2 coincide, and Condition 1 of Proposition 7 can never 
be satisfied. The set of potential imperfect-social-norm CE 𝐼𝑝(𝜆) is the empty set.

Note that for any social norm 𝜙 in the set of potential imperfect-social-norm CE 𝐼𝑝(𝜆), there exist cost curves Δ𝑚(⋅) that induce 
𝜙 to be an asymptotically stable CE, namely those cost curves that yield Conditions 2 and 3 of Proposition 7 to hold. Hence, the 
above highlights the positive role of expressed social disapproval for hypocrisy ℎ̃ and self-approval 𝜃𝑝 for the potential existence of 
an asymptotically stable imperfect-social-norm CE.

Finally, we investigate the effect of changes in different variables and functions on an existing imperfect-social-norm CE 𝜙∗ of 
Proposition 7 and, hence, the corresponding cooperation level 𝜓∗ = 𝜙∗.

Proposition 9 (Comparative results for an asymptotically stable imperfect-social-norm CE). Consider any 𝜆 ∈ [0, 1]|Θ| s.t. an imperfect-

social-norm CE 𝜙∗ ∈ (0, 1) of Proposition 7 exists.

1. For some larger weight of social approval on cultural fitness 𝛾 , social disapproval for social norm violation 𝑣(⋅), or negative costs of 
cooperation −Δ𝑚(⋅), there exists an asymptotically stable set Φ̂ s.t. �̂� > 𝜙∗ for all �̂� ∈ Φ̂.

2. Suppose 𝜙∗ >
1
2 (𝜙∗ <

1
2 ). A change in social disapproval for non-conformity 𝑘(⋅) corresponding to a larger absolute difference |Δ𝑘(⋅)|
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leads to the existence of an asymptotically stable set Φ̂ s.t. �̂� > 𝜙∗ (�̂� < 𝜙∗) for all �̂� ∈ Φ̂.
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Proof. Proposition 19 in Appendix B.2 constitutes the formal equivalent to the above.

First, the proposition implies that slight increases in the weight of social approval on cultural fitness 𝛾 , social disapproval for 
social norm violation 𝑣(⋅), and negative costs of cooperation −Δ𝑚(⋅) induce an imperfect-social-norm CE 𝜙∗ to rise. The underlying 
reason is that the described changes impact differences in cultural fitness in favor of the norm holders, strengthening the social norm. 
Graphically, an increase in social disapproval for social norm violation 𝑣(⋅) shifts 𝛾 𝑣(𝜙) + 𝛾Δ𝑘(𝜙) upwards in Fig. 2. Similarly, an 
increase in the weight 𝛾 rotates 𝛾 𝑣(𝜙) + 𝛾Δ𝑘(𝜙) counterclockwise around its x-intercept. An increase in −Δ𝑚(⋅) corresponds to a 
downward shift of the cost curve Δ𝑚(𝜓). These movements of the two curves imply that their intersection, the CE, moves to the right. 
Hence, the CE strengthens.

Second, the proposition makes some inferences regarding social disapproval for non-conformity 𝑘(⋅). The effect of a change in 
social disapproval for non-conformity depends on the relative strength of the social norm. In particular, if the difference in social 
disapproval for non-conformity becomes more pronounced, a relatively strong CE further strengthens, whereas a relatively weak CE 
further weakens. Graphically, increasing |Δ𝑘(⋅)| rotates 𝛾 𝑣(𝜙) + 𝛾Δ𝑘(𝜙) in Fig. 2 counterclockwise around it’s point at 12 (recall that 
at this point Δ𝑘(𝜙) = 0). This shifts its intersection with Δ𝑚(𝜙), the CE, to the right or left, depending on whether 𝜙∗ >

1
2 or 𝜙∗ <

1
2

respectively. Hence, social disapproval for non-conformity supports the persistence of relatively strong social norms 𝜙∗ >
1
2 even if 

other forces favor a weakening. By similar reasoning, conformity concerns can trap a relatively weak social norm 𝜙∗ <
1
2 , despite 

other forces supporting a further spread.
Small changes in approval preferences 𝜃 and expressed social disapproval for hypocrisy ℎ̃ do not affect the situation. Such changes 

alter the cooperation incentives of individuals. However, if these alterations are sufficiently small, they do not change equilibrium 
behavior (𝜎∗

1 , 𝜎∗
0 ) = (1, 0) and, hence, the equilibrium cooperation share 𝜓∗ = 𝜙. Consequently, to (marginally) impact the equilibrium 

cooperation level 𝜓∗ at an imperfect-social-norm CE 𝜙∗, we need to target it indirectly through the CE 𝜙∗.

5. Approval preferences

This section endogenizes the formation of approval preferences. Throughout, we assume that biological evolution occurs signifi-
cantly slower than cultural, so norms always reach a CE before further changes in preferences occur.

5.1. Evolutionary framework

Approval preferences evolve through biological reproduction.14 Like cultural fitness, material payoff and social approval co-
determine the fitness that drives biological reproduction. Formally, we write an individual’s biological fitness as follows.

Definition 8 (Biological fitness). 𝑏(𝑎𝑖 , 𝑛𝑖 , 𝜓 , 𝜙) = 𝑚(𝑎𝑖 , 𝜓) + 𝜌𝑠(𝑎𝑖 , 𝑛𝑖 , 𝜙), where 0 < 𝜌 < 𝛾 is the weight of social approval on biological 
fitness.

Individuals with relatively high biological fitness have greater access to social and material resources, positively affecting their 
parenting abilities (Irons, 1979; Geary et al., 2004). This increases their reproductive fitness through greater survival chances of their 
offspring (Turke, 1989; Buss and Schmitt, 1993; Wiederman, 1993) as well as greater chances of finding mating partners (Bereczkei 
and Csanaky, 1996; Shackelford et al., 2005). Similar to cultural evolution, biological evolution follows imitative dynamics.

Definition 9 (Preference dynamics).

�̇�𝜃 = 𝜆𝜃 (𝐵𝜃(𝜎, 𝜙) − 𝐵𝜆(𝜎, 𝜙)) ∀𝜃 ∈Θ,

where

• 𝐵𝜆(𝜎, 𝜙) =
∑

𝜃∈supp(𝜆) 𝜆𝜃 𝐵𝜃(𝜎, 𝜙),
• 𝐵𝜃(𝜎, 𝜙) = 𝜙𝐵1,𝜃(𝜎, 𝜙) + (1 − 𝜙)𝐵0,𝜃(𝜎, 𝜙), and
• 𝐵𝑛,𝜃(𝜎, 𝜙) = 𝜎𝑛,𝜃 𝑏(1, 𝑛, 𝜓 , 𝜙) + (1 − 𝜎𝑛,𝜃)𝑏(0, 𝑛, 𝜓 , 𝜙).

Note that 𝐵𝜃(𝜎, 𝜙) and 𝐵𝜆(𝜎, 𝜙) correspond to the average biological fitness of all individuals with preference type 𝜃 and all 
individuals in society at preference distribution 𝜆 respectively. In line with the equilibrium notion for norms, we call a rest point of 
preference dynamics a biological equilibrium (BE). At times, we indicate a BE by 𝜆∗. We write a pair of a preference distribution and 
social norm as the vector (𝜆, 𝜙) and employ stability notions as introduced in Section 4.

14 Note that vertical transmission (parents to offspring) of preferences not only occurs through biological reproduction but also cultural socialization. However, to 
avoid confusion in the text regarding the evolutionary processes of preferences and norms, we refer to all transmission processes from parents to offspring as biological 
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reproduction.
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5.2. Equilibrium analysis

This section proceeds with the formal analysis when preference formation is endogenous. First, we introduce a preference type that 
always induces biological fitness-maximizing behavior. Based on this preference type, we characterize BE, whose dynamic stability 
we then investigate. In particular, for each CE 𝜙∗ of Section 4, we investigate whether a BE 𝜆∗ and the CE 𝜙∗ form a stable pair 
(𝜆∗, 𝜙∗). By focusing on the asymptotically stable CE presented in Section 4, we ensure that (𝜆∗, 𝜙∗) is always stable on the norm 
dimension, allowing us to focus our discussion on the biological evolution of preferences.

5.2.1. The dominant preference type and biological equilibria

We start by presenting the preference type that always induces biological fitness-maximizing behavior.

Definition 10 (The dominant preference type). 𝜃𝑑 ∶= (𝜌(1 + 𝛿), 𝜌(ℎ − (1 + 𝛿)ℎ̃)).

Let 𝜆𝑑 be the preference distribution for which only preference type 𝜃𝑑 exists. Any individual with preference type 𝜃𝑑 experiences 
disutility from expressed social disapproval equal to the degree that it is proportionally increased through gossip 𝛿 and then impacts 
biological fitness, 𝜃𝑑

𝑠
= 𝜌(1 + 𝛿). The preference for self-approval accounts for social disapproval for hypocrisy that arises from infor-

mation pooling, 𝜃𝑑
𝑝
= 𝜌(ℎ − (1 + 𝛿)ℎ̃). By substituting 𝜃𝑑

𝑠
and 𝜃𝑑

𝑝
into the utility function, it becomes apparent that the utility of an 

individual with preference type 𝜃𝑑 mimics biological fitness.
Suppose some individuals are of preference type 𝜃𝑑 at preference distribution 𝜆, 𝜃𝑑 ∈ supp(𝜆). Since equilibrium behavior max-

imizes an individual’s utility, equilibrium behavior of individuals with preference type 𝜃𝑑 maximizes their biological fitness (see 
Lemma 19 in Appendix B.3). Hence, individuals with preference type 𝜃𝑑 always obtain (weakly) greater biological fitness than their 
peers, 𝐵𝜃𝑑 (𝜎∗, 𝜙) ≥ 𝐵𝜃(𝜎∗, 𝜙) ∀𝜃 ∈Θ. Unless all individuals currently maximize their biological fitness, the preference type 𝜃𝑑 spreads 
in society, �̇�𝜃𝑑 = 0 ⇔ 𝐵𝜃𝑑 (𝜎∗, 𝜙) = 𝐵𝜃(𝜎∗, 𝜙) ∀𝜃 ∈ supp(𝜆). Now suppose that preference type 𝜃𝑑 is not necessarily present at distri-
bution 𝜆. If all individuals behave as if their preference type was 𝜃𝑑 , they maximize biological fitness, and preference dynamics are 
at rest. Moreover, if all individuals behave as if their preference type was 𝜃𝑑 , norm population behavior (𝜎∗

1 , 𝜎∗
0 ) is as if preferences 

were distributed according to 𝜆𝑑 . Given this reasoning, we infer that any preference distribution 𝜆 and CE 𝜙∗ constitute a stable BE 
and CE if norm population behavior is as if preferences were distributed according to 𝜆𝑑 . The following lemma captures this result 
formally.

Lemma 2 (BE and CE). For any 𝜆 ∈ [0, 1]|Θ| s.t. 𝜙∗ ∈ [0, 1] is a CE, (𝜆, 𝜙∗) is a rest point if

• 𝜙∗ ∈ (0, 1) and (𝜎1, 𝜎0) = (�̄�1, ̄𝜎0) ∀𝜎 ∈ Σ∗(𝜙∗, 𝜆), ̄𝜎 ∈ Σ∗(𝜙∗, 𝜆𝑑 ) or

• 𝜙∗ ∈ {0, 1} and 𝜓∗(𝜙∗, 𝜆) = 𝜓∗(𝜙∗, 𝜆𝑑 ).

Proof. See Appendix B.3.

Note that the second condition requires that if all individuals share the same personal norm, 𝜙∗ ∈ {0, 1}, the equilibrium cooper-
ation share is as if only the dominant preference type existed, 𝜓∗(𝜙∗, 𝜆) = 𝜓∗(𝜙∗, 𝜆𝑑 ). In that case, actual norm population behavior 
is fully described by only the existing norm population’s behavior, which coincides with the overall equilibrium cooperation share, 
𝜎∗

𝜙∗ = 𝜓∗(𝜙∗, 𝜆). Therefore, Condition 2 is equivalent to stating that for a no- or perfect-social norm CE, 𝜙∗ ∈ {0, 1}, equilibrium norm 
population behavior at preference distributions 𝜆 and 𝜆𝑑 is alike.

5.2.2. Biological equilibrium and no-social-norm cultural equilibrium

Next, we establish that any preference distribution 𝜆 is a stable BE for the no-social-norm CE.

Proposition 10 (Stable BE and no-social-norm CE). For any 𝜆 ∈ [0, 1]|Θ|, (𝜆, 0) is a stable rest point.

Proof. See Appendix B.3.

Recall that at any preference distribution 𝜆, the no-social-norm CE 𝜙∗ = 0 exists and is asymptotically stable (see Proposition 3 in 
Section 4.2.1). Moreover, all individuals always defect since they have neither personal nor social incentives to cooperate, 𝜓∗(0, 𝜆) = 0. 
Consequently, all individuals behave alike, and biological evolution is at rest, �̇�𝜃 = 0 ∀𝜃 ∈ Θ. A biological mutation from preference 
distribution 𝜆 to �̂� neither alters the CE 𝜙∗ = 0 nor equilibrium behavior 𝜓∗(0, �̂�) = 0. The dynamic system remains at rest. Hence, 
preference distribution 𝜆 and the no-social-norm CE indeed correspond to a stable rest point of the dynamic system. Note that the 
above implies that although always stable, any (𝜆, 0) is never asymptotically stable. Biological mutations across the set of all possible 
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preference distributions, however, never disrupt the situation.



Games and Economic Behavior 147 (2024) 242–267F. Mankat

5.2.3. Biological equilibrium and perfect-social-norm cultural equilibrium

Next, we investigate the existence of a stable BE and perfect-social-norm CE.

Proposition 11 (Stable BE and perfect-social-norm CE). For any 𝜆 ∈ [0, 1]|Θ|, (𝜆, 1) is a stable rest point if (1) 𝜓∗(1, 𝜆) = 𝜓∗(1, 𝜆𝑑 ) and 
(2) 𝜙 = 1 is a CE of Proposition 4 at 𝜆.

Proof. See Appendix B.3.

Consider any preference distribution 𝜆 and suppose the conditions of Proposition 11 hold. Recall that Condition 1 of Proposition 11
implies that 𝜆 is a BE. Since Condition 2 implies that the perfect social norm is an asymptotically stable CE at preference distribution 
𝜆, (𝜆, 1) constitutes a rest point of the dynamic system.

Consider a small biological mutation to some preference distribution �̂�. Since the post-mutation preference distribution �̂� is close 
to 𝜆, the perfect social norm remains an asymptotically stable CE (recall Proposition 5 in Section 4.2.2). Hence, the social norm 
does not change, and everyone holds the cooperation norm, 𝜙∗ = 1. If the biological mutation does not alter the cooperation share, 
𝜓∗(1, 𝜆) = 𝜓∗(1, 𝜆𝑑 ), then all individuals maximize biological fitness at preference distribution �̂�. The dynamic system remains at rest. 
Biological mutation does not disrupt the situation as the equilibrium behavior and norm do not change.

Alternatively, biological mutation may alter the cooperation share, 𝜓∗(1, �̂�) ≠ 𝜓∗(1, 𝜆𝑑 ). Suppose, for example, that the biological 
mutants strictly prefer to defect at the perfect social norm 𝜙∗ = 1 and cooperation costs Δ𝑚(𝜓∗(1, 𝜆)), resulting in a decrease of 
the cooperation share, 𝜓∗(1, �̂�) < 𝜓∗(1, 𝜆). Since at the pre-mutation preference distribution 𝜆 all individuals maximized biological 
fitness, cooperating yielded (weakly) greater biological fitness than defecting, 𝑏(1, 1, 𝜓∗(1, 𝜆), 1) ≥ 𝑏(0, 1, 𝜓∗(1, 𝜆), 1). The decrease 
in the cooperation share reduces the costs of cooperation, Δ𝑚(𝜓∗(1, �̂�)) < Δ𝑚(𝜓∗(1, 𝜆)), while the social norm and, thus, social 
disapproval when defecting remain unchanged. It follows that cooperating yields strictly greater biological fitness than defecting after 
the biological mutation, 𝑏(1, 1, 𝜓∗(1, �̂�), 1) > 𝑏(0, 1, 𝜓∗(1, �̂�), 1). The defecting biological mutants obtain less than average biological 
fitness, erode, and preferences return to 𝜆. Throughout, the social norm 𝜙∗ = 1 does not change. (𝜆, 1) is indeed stable.

Note that if an asymptotically stable perfect-social-norm CE exists at preference distributions 𝜆𝑑 , then 𝜆𝑑 itself constitutes a stable 
BE for the perfect-social-norm CE. In that case, Proposition 11 classifies which other preference distributions 𝜆 constitute stable BE. 
Consequently, we can assess how different variables and functions relate to the existence of a stable BE and perfect-social-norm CE 
by identifying when the perfect-social-norm CE of Proposition 4 exists at preference distribution 𝜆𝑑 . Since the dominant preference 
type 𝜃𝑑 satisfies the specifications of 𝜃 in Proposition 6 of Section 4.2.2, the corresponding results apply to 𝜆𝑑 . We expand on these 
insights by examining small changes that affect cooperation incentives through preferences 𝜃𝑑 . In particular, we investigate small 
changes in the weight of social approval on biological fitness 𝜌 and social disapproval for hypocrisy ℎ. As a starting point, we suppose 
that cooperation is incomplete, 𝜓∗(1, 𝜆𝑑 ) ∈ (0, 1); otherwise, increases in 𝜌 and ℎ leave the situation unaltered (hypocrisy does not 
occur, and larger cooperation incentives cannot yield a greater cooperation level).

Proposition 12 (Comparative results for stable BE and perfect-social-norm CE). Suppose 𝜓∗(1, 𝜆𝑑 ) ∈ (0, 1).

1. A small increase (decrease) in the weight of social approval on biological fitness 𝜌 favors the existence of a perfect-social-norm CE of 
Proposition 4 at 𝜆𝑑 if dΔ𝑚(𝑥)

d𝑥
|𝑥=𝜓∗(1,𝜆𝑑 ) <

(𝑣(1)+ℎ)(𝛾−𝜌)
𝜓∗(1,𝜆𝑑 ) (

dΔ𝑚(𝑥)
d𝑥

|𝑥=𝜓∗(1,𝜆𝑑 ) >
(𝑣(1)+ℎ)(𝛾−𝜌)

𝜓∗(1,𝜆𝑑 ) ).

2. A small increase (decrease) in social disapproval for hypocrisy ℎ favors the existence of a perfect-social-norm CE of Proposition 4 at 𝜆𝑑

if d𝑚(𝑥)
d𝑥

|𝑥=𝜓∗(1,𝜆𝑑 ) <
(𝑣(1)+ℎ)(𝛾−𝜌)𝜌

𝛾−𝜓∗(1,𝜆𝑑 )(𝛾−𝜌) (
d𝑚(𝑥)
d𝑥

|𝑥=𝜓∗(1,𝜆𝑑 ) >
(𝑣(1)+ℎ)(𝛾−𝜌)𝜌

𝛾−𝜓∗(1,𝜆𝑑 )(𝛾−𝜌) ).

Proof. Proposition 20 in Appendix B.3 constitutes the formal equivalent to the above.

Proposition 12 establishes ambiguous effects of small increases in the weight of social approval on biological fitness 𝜌 and social 
disapproval for hypocrisy ℎ for the existence of an asymptotically stable CE of Proposition 4 at preference distribution 𝜆𝑑 . The 
described changes increase the cooperation incentives of the dominant preference type 𝜃𝑑 at the perfect social norm 𝜙∗ = 1, 𝜃𝑑

𝑠
�̃�(1) +

𝜃𝑑
𝑠

ℎ̃ + 𝜃𝑑
𝑝
= 𝜌𝑣(1) + 𝜌ℎ, and, consequently, the cooperation share 𝜓∗(1, 𝜆𝑑 ). As outlined in Proposition 6 in Section 4.2.2, such an 

increase in 𝜓∗(1, 𝜆𝑑 ) has two countervailing effects: (1) It increases the costs of cooperation, making the perfect social norm less 
likely an asymptotically stable CE, and (2) it decreases average social disapproval for hypocrisy, (1 − 𝜓∗)ℎ, making the perfect social 
norm more likely an asymptotically stable CE. Depending on the responsiveness of the cooperation costs, d𝑚(𝑥)

d𝑥
|𝑥=𝜓∗(1,𝜆𝑑 ), one of the 

two effects dominates, where less responsiveness generally favors the second. Note that an increase in social disapproval for hypocrisy 
ℎ requires a less responsive cost curve to be beneficial compared to an increase in the weight of social approval on biological fitness 𝜌. 
The reason is that an increase in the weight 𝜌 solely affects the cooperation level 𝜓∗(1, 𝜆𝑑 ). In contrast, increasing social disapproval 
for hypocrisy ℎ also directly impacts cultural fitness differences in the norm non-holder’s favor.

These results highlight that although a larger cooperation share 𝜓∗(1, 𝜆𝑑 ) may be beneficial for a stable BE and perfect-social-norm 
CE to exist since it reduces social disapproval for hypocrisy (1 − 𝜓∗(1, 𝜆𝑑 ))ℎ, increasing cooperation incentives through behavioral 
and biological channels may actually have an adverse effect when the cooperation costs Δ𝑚(⋅) are relatively responsive to changes 
in the cooperation share.

Although the above results prove the potential existence of a stable BE and perfect-social-norm CE (𝜆∗ , 1), such a point is never 
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asymptotically stable (given Θ is sufficiently large). In particular, whereas the CE is asymptotically stable, the BE is only stable. The 
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underlying reason is that biological evolution remains at rest after a biological mutation that leaves the social norm and equilibrium 
behavior unaltered. The absence of asymptotic stability raises the theoretical possibility of repeated random biological mutations driv-
ing society to some preference distribution �̂� that is no longer stable or for which the CE 𝜙∗ = 1 is no longer stable, both of which may 
threaten the persistence of cooperation. The following proposition establishes that, under some conditions, this does not pose a threat.

Proposition 13 (Asymptotically stable set of BE and perfect-social-norm CE). If Conditions 1 and 2b of Proposition 4 hold at 𝜆𝑑 , then 
{(1, 𝜆) ∶ 𝜓∗(1, 𝜆) = 𝜓∗(1, 𝜆𝑑 )} is an asymptotically stable set.

Proof. See Appendix B.3.

Suppose the perfect social norm 𝜙∗ = 1 is a CE of Proposition 4 at preference distribution 𝜆𝑑 . Proposition 13 states that the 
combination of (1) all preference distributions 𝜆 mimicking 𝜆𝑑 in terms of equilibrium behavior, 𝜓∗(1, 𝜆) = 𝜓∗(1, 𝜆𝑑 ), and (2) the 
perfect social norm 𝜙∗ = 1 form an asymptotically stable set if the difference in social disapproval for non-conformity outweighs 
average social disapproval for hypocrisy, Δ𝑘(1) > (1 − 𝜓∗(1, 𝜆𝑑 ))ℎ. The underlying reason is that in this case, the perfect social norm 
𝜙∗ = 1 is a CE at any preference distribution 𝜆 as long as the cooperation share satisfies 𝜓∗(1, 𝜆) = 𝜓∗(1, 𝜆𝑑 ), which introduces some 
robustness of the perfect-social-norm CE with respect to biological mutations. These insights further underscore the stabilizing role 
of disapproval for non-conformity 𝑘(⋅) and the potentially destabilizing role of hypocrisy disapproval ℎ. In addition, the importance 
of a sufficiently large cooperation share 𝜓∗ becomes more prominent.

5.2.4. Biological equilibrium and imperfect-social-norm cultural equilibrium

We continue by investigating when a preference distribution 𝜆 and an imperfect social norm 𝜙∗ ∈ (0, 1) constitute a stable BE and 
CE.

Proposition 14 (Stable BE and imperfect-social-norm CE). Suppose 𝜙∗ ∈ (0, 1) is a CE of Proposition 7 at 𝜆𝑑 . For any 𝜆 ∈ [0, 1]|Θ|, (𝜆, 𝜙∗)
is a stable rest point if 𝜙∗ ∈ (0, 1) is a CE of Proposition 7 at 𝜆.

Proof. See Appendix B.3.

We begin by discussing the underlying intuition behind the above proposition. If the social norm 𝜙∗ is a CE of Proposition 7 at 
preference distribution 𝜆𝑑 , all norm non-holders strictly prefer to defect and all norm holders to cooperate at social norm 𝜙∗ and 
costs of cooperation Δ𝑚(𝜙∗), 𝜃𝑑

𝑠
�̃�(𝜙∗) < Δ𝑚(𝜙∗) < 𝜃𝑑

𝑠
�̃�(𝜙∗) + 𝜃𝑑

𝑠
ℎ̃ + 𝜃𝑑

𝑝
. Since an individual of preference type 𝜃𝑑 always maximizes 

biological fitness, cooperating maximizes biological fitness if and only if an individual holds the cooperation norm, 𝑏(1 −𝑛, 𝑛, 𝜙∗ , 𝜙∗) <

𝑏(𝑛, 𝑛, 𝜙∗, 𝜙∗) ∀𝑛 ∈ {0, 1}. If the social norm 𝜙∗ is a CE of Proposition 7 at preference distribution 𝜆, all individuals strictly prefer to 
behave accordingly, 𝜃𝑠 �̃�(𝜙∗) < Δ𝑚(𝜙∗) < 𝜃𝑠 �̃�(𝜙∗) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 ⇒ (𝜎∗

1 , 𝜎∗
0 ) = (1, 0). Consequently, preference dynamics are at rest. It 

follows that 𝜆 constitutes a BE for which 𝜙∗ is an asymptotically stable CE.
Suppose some biological mutation to preference distribution �̂� occurs. If equilibrium behavior does not change at the post-mutation 

preference distribution �̂�, (𝜎∗
1 , 𝜎∗

0 ) = (1, 0), then the social norm 𝜙∗ remains a CE and the dynamic system at rest. Consequently, the 
biological mutation does not disrupt the situation. Alternatively, suppose, for example, that the biological mutants strictly prefer to 
behave differently. As a result, the social norm 𝜙∗ may no longer constitute a CE at preference distribution �̂�. Since the post-mutation 
preference distribution �̂� is close to 𝜆, however, the CE �̂�∗ that society reaches at preference distribution �̂� remains close to 𝜙∗

(recall Lemma 8 in Section 4.2.3). Moreover, since the post-mutation preference distribution �̂� and social norm �̂�∗ are close to the 
pre-mutation values 𝜆 and 𝜙∗, the post-mutation cooperation share 𝜓∗(�̂�, �̂�) and, consequently, the costs of cooperation Δ𝑚(𝜓∗(�̂�, �̂�))
also remain close to the pre-mutation values 𝜓∗(𝜙∗, 𝜆) = 𝜙∗ and Δ𝑚(𝜓∗(𝜙∗, 𝜆)). Hence, after the biological mutation, cooperating 
still maximizes an individual’s biological fitness if and only if the individual holds the cooperation norm, 𝑏(1 − 𝑛, 𝑛, 𝜓∗(�̂�, �̂�), �̂�) <

𝑏(𝑛, 𝑛, 𝜓∗(�̂�, �̂�), �̂�) ∀𝑛 ∈ {0, 1}. Moreover, all individuals whose approval preferences did not change due to biological mutation (all 
non-mutants) behave accordingly. Since they previously strictly preferred to cooperate or defect, the small changes in the social 
norm and cooperation costs do not alter their optimal behavior, implying they still maximize their biological fitness. The biological 
mutants, however, behave differently. They deviate from biological fitness-maximizing behavior and erode. Preferences return to 𝜆. 
Since the post-mutation social norm �̂�∗ is close to 𝜙∗ and the social norm 𝜙∗ is an asymptotically stable CE at preference distribution 
𝜆, cultural evolution reinstates the social norm 𝜙∗ once preferences return to 𝜆.

Similar to the results of Section 5.2.3, Proposition 14 implies that if an imperfect-social-norm CE exists at preference distribu-
tion 𝜆𝑑 , then (𝜆𝑑 , 𝜙∗) forms a stable BE and imperfect-social-norm CE. The proposition then classifies to which other preference 
distributions 𝜆 this also applies. To establish that there may exist a stable BE and imperfect-social-norm CE, it thus remains for us 
to argue when an imperfect-social-norm CE 𝜙∗ may exist at preference distribution 𝜆𝑑 . For this purpose, recall that the set of po-
tential imperfect-social-norm CE 𝐼𝑝(𝜆𝑑 ) is non-empty if and only if cooperation incentives of norm holders exceed those of norm 
non-holders, 𝜃𝑑

𝑠
ℎ̃ + 𝜃𝑑

𝑝
> 0. Substituting for the dominant preference type 𝜃𝑑 yields that the set of potential imperfect-social-norm CE 

𝐼𝑝(𝜆𝑑 ) is non-empty if and only if social disapproval for hypocrisy exists and affects biological fitness, 𝜌ℎ > 0. Hence, the presence of 
social disapproval for hypocrisy, ℎ > 0, becomes a necessary condition for the existence of a stable BE and imperfect-social-norm CE of 
Proposition 14. The underlying reason is that social disapproval for hypocrisy is responsible for the wedge in cooperation incentives 
255

at the behavioral and biological level, 𝜃𝑑
𝑠

ℎ̃ + 𝜃𝑑
𝑝
= 𝜌ℎ.
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Proposition 15 (Potential existence of a stable BE and imperfect-social-norm CE). There exist 𝜙∗ ∈ (0, 1), 𝜆 ∈ [0, 1]|Θ|, and Δ𝑚(⋅) s.t. 
(𝜆, 𝜙∗) is a stable rest point of Proposition 14 if and only if ℎ > 0.

Proof. See Appendix B.3.

The proposition establishes the potential existence of a stable BE and imperfect-social-norm CE and underscores the criticality of 
social disapproval for hypocrisy. For each social norm 𝜙 ∈ 𝐼𝑝(𝜆𝑑 ), any cost curve Δ𝑚(⋅) inducing Conditions 2 and 3 of Proposition 7

to hold at this social norm and preference distribution 𝜆𝑑 enables the existence of a stable (𝜆, 𝜙∗).
Note that we can infer how (small) changes in different variables and functions may impact an existing stable BE and imperfect-

social-norm CE of Proposition 14 by applying the results of Proposition 9. In line with the discussion succeeding Proposition 9, small 
changes in behavioral incentives do not impact the situation.

By similar reasoning as in Section 5.2.3, any stable (𝜆∗, 𝜙∗) of Proposition 14 is never asymptotically stable, which enables 
repeatedly occurring biological mutations to threaten the persistence of an imperfect-social-norm CE and, thus, cooperation altogether. 
Contrary to the perfect-social-norm CE, however, we cannot show that an asymptotically stable set exists that secures the persistence of 
the imperfect-social-norm CE. This may have severe consequences for society as the imperfect-social-norm CE could eventually vanish 
by chance. We can show that for this to occur, a biological mutation must lead to the appearance of individuals that are indifferent 
between both actions at social norm 𝜙∗ and cooperation costs Δ𝑚(𝜙∗). The following lemma captures this insight formally.

Lemma 3 (Asymptotically stable set of BE and imperfect-social-norm CE). Consider any CE 𝜙∗ of Proposition 7 at 𝜆𝑑 . 𝑢(1, 𝑛, 𝜙∗, 𝜙∗, 𝜃) ≠
𝑢(0, 𝑛, 𝜙∗, 𝜙∗, 𝜃) ∀𝜃 ∈Θ, 𝑛 ∈ {0, 1} ⇒ {(𝜙∗, 𝜆) ∶ (𝜎1, 𝜎0) = (1, 0) ∀𝜎 ∈ Σ∗(𝜙∗, 𝜆)} is an asymptotically stable set.

Proof. See Appendix B.3.

Lemma 3 states that an asymptotically stable set ensuring the persistence of the imperfect-social-norm CE exists if there could be no 
preference type 𝜃 that induces behavioral indifference, 𝑢(1, 𝑛, 𝜙∗, 𝜙∗, 𝜃) ≠ 𝑢(0, 𝑛, 𝜙∗, 𝜙∗, 𝜃) ∀𝑛 ∈ {0, 1}, 𝜃 ∈Θ. Although this assumption 
is not consistent with the conceptual approach of this model (since we assume that the set of preference types Θ is arbitrarily large 
and represents all possible preference types ℝ2

≥
), the lemma illustrates how high the proportion of biological mutations that could 

threaten the persistence of the imperfect-social-norm CE is.

6. Discussion

The evolutionary analysis highlights the role different social disapproval mechanisms play in preserving and fostering norm-driven 
cooperation. At the behavioral level, social disapproval for social norm violation and hypocrisy introduce incentives to comply with 
the social norm and one’s personal norm, respectively. Hence, both foster cooperative behavior.

At the cultural level, social disapproval for social norm violation favors the spread of the social norm. Since the share of cooperators 
among norm holders is generally larger than among norm non-holders, the norm holders are subject to less social disapproval for 
social norm violation on average, which impacts cultural fitness differences in their favor. Social disapproval for non-conformity 
supports the persistence of relatively strong social norms even if other forces favor a weakening. At the same time, it potentially traps 
a relatively weak social norm despite other forces supporting a further spread. By a similar mechanism, it stabilizes a social norm if 
it is either perfect or absent. Social disapproval for hypocrisy generally hinders the spread of the norm. Since only the carriers of the 
cooperation norm can experience social disapproval for hypocrisy, they have an evolutionary disadvantage. This insight contrasts 
with the impact on equilibrium behavior, where greater social concerns for hypocrisy favor cooperation.

At the biological level, preferences for social approval persist due to social disapproval for social norm violation and hypocrisy 
affecting biological fitness. The preference for self-approval compensates for the inability to overlook the full extent of actions re-
garding social disapproval for hypocrisy. If individuals could oversee the full extent, ℎ = (1 + 𝛿)ℎ̃, then no personal concerns are 
necessary for the dominant preference type to maximize biological fitness. Individuals who hold the cooperation norm would follow 
their personal norms only to avoid social disapproval for hypocrisy.

The complete absence of social disapproval for hypocrisy, ℎ = ℎ̃ = 0, implies that individuals who hold the cooperation norm 
have neither personal nor social incentives to follow their personal norm, 𝜃𝑑

𝑠
ℎ̃ + 𝜃𝑑

𝑝
= 0. Behavior across both norm populations 

is equal, implying no differences in average material payoff and social disapproval for social norm violation. Cultural evolution is 
solely driven by conformity, implying society could only reach a stable perfect- or no-social-norm CE. The potential heterogeneity in 
personal norms vanishes. If social disapproval for non-conformity were also absent, cultural evolution would be subject to random 
walk. For deterministic cultural evolution to occur, society requires some other mechanism such as institutional pressure (see, e.g., 
Gintis, 2003b; Mengel, 2008) or conformity bias in social learning (see, e.g., Henrich and Boyd, 1998, 2001; Chudek and Henrich, 
2011; Nordblom and Žamac, 2012; Michaeli and Spiro, 2015).

These insights underscore the importance of one of the primary motivations for developing this paper’s dynamic model: the mu-
tual endogenization of norms and preferences to draw a more complete picture of the underlying dynamic system. When preferences 
and norms are endogenous, social disapproval for social norm violation alone does not determine norms, whereas if preferences are 
exogenous, it does.

Our results provide some rationale for the existence of heterogeneous preferences leading to pro-social behavior, an observation 
generally in line with empirical findings (see, e.g., Fisman et al., 2007). In particular, our analysis indicates that individuals can 
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differ vastly regarding their biological characteristics as long as all behave optimally regarding biological fitness given the aggregate 
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outcome. Within the scope of our model, this holds if preferences are distributed such that the resulting equilibrium behavior at some 
social norm is as if society was homogeneous with preferences that maximize biological fitness. These results also contribute to the 
literature on gene-culture co-evolution (see, among others, Gintis, 2003a, 2011; Richerson and Boyd, 2010; Richerson et al., 2010; 
Chudek and Henrich, 2011), as they highlight how the existing culture (social norm) shapes the genes (preferences) that may prevail 
in equilibrium.

Throughout, the analysis concerns the asymptotic stability of CE, but only stability (in the sense of Lyapunov) of BE. The underlying 
reason is that although biological mutation may alter preferences, such alterations may not disrupt the prevailing social norm or 
equilibrium behavior. The biological mutation has no effect in that case, and the dynamic system remains at rest. However, if it does 
have an effect, our analysis indicates that the biological mutants erode and society returns to the original social norm and equilibrium 
behavior. Nevertheless, the absence of asymptotic stability raises the theoretical possibility of repeated random biological mutations 
driving preferences to some distribution that is no longer stable. We have shown that, under some conditions, this does not threaten 
the persistence of a perfect-social-norm CE, implying our model can explain the endurance of (possibly incomplete) norm-driven 
cooperation. However, we cannot infer the same for an imperfect-social-norm CE, suggesting it could vanish by chance. Nevertheless, 
our results indicate that the probability of this occurring at any point in time seems rather small, since, of all preference types that 
can appear, the biological mutation must give rise to precisely those preference types that induce indifference between both actions. 
This reasoning seems especially appropriate when interpreting the model of this paper as a continuous approximation of a discrete 
system with finitely many individuals as well as an infinite set of possible preference types (Θ =ℝ2

≥0). Moreover, accrediting a small 
probability to the biological mutations that may trigger the erosion of the imperfect social norm can explain why imperfect social 
norms have existed so far, even if they cannot be ensured to prevail.

7. Concluding remarks

This paper contributes to the theoretical literature exploring the evolutionary roots of norm-driven cooperation. The results suggest 
that if norm and preference transmission depends on material and social factors, then an interplay of social disapproval mechanisms 
can explain the existence of different stable equilibria varying regarding their social norms and cooperation levels. Although in 
equilibrium, preferences are potentially heterogeneous, behavior is as if they were homogeneous. Social disapproval for social norm 
violation incentivizes individuals to cooperate at the behavioral level, favors norm evolution at the cultural level, and allows for 
social approval preferences at the biological level. Social disapproval for non-conformity stabilizes perfect social norms at the cultural 
level. Social disapproval for hypocrisy introduces cooperation incentives at the behavioral and biological levels. Thereby, it enables 
the existence of stable long-run equilibria characterized by heterogeneous personal norms and behavior. However, it negatively 
impacts the cultural fitness of individuals who defect despite holding cooperation-prescribing personal norms, possibly hindering the 
preservation of a perfect social norm if cooperation is very costly.

The model of this paper builds on some notable assumptions that need further investigation. We assume that the reproduction of 
norms and preferences depends on social approval. However, how exactly this occurs is left as somewhat of a black box. One possible 
explanation is that social disapproval is associated with lower material payoff. This perspective is in line with traditional approaches 
from evolutionary game theory that consider material payoff as the sole determinant of reproductive fitness. The underlying idea in this 
paper more closely aligns with approaches from cultural evolutionary models. The assumption is that the transmission of traits occurs 
through complex channels and is biased by social status. However, this leaves unanswered how the weights of reproductive fitness 
are precisely determined, which is likely an endogenous process to society. Future research in that direction needs to complement 
this paper.

Moreover, we made some assumptions regarding the relationship between cultural and biological evolution. Particularly, we 
assumed that social approval has a more significant impact on cultural than biological fitness. In addition, we assumed that norms are 
equally distributed across all preference types. In reality, it seems plausible that the share of norm holders differs across preference 
types, possibly because either individuals may be more inclined to adopt norms from others that are similar to them or certain 
preference types are more likely to adopt pro-social norms. In the latter case, it is an open question of how preferences condition the 
adoption of norms: Is it rather the individuals who likely follow norms who adopt them? Or is it precisely these individuals who do 
not, since they then may cooperate even when it is sub-optimal from a fitness perspective? Further research needs to address these 
questions, as well as how our results change when weakening the assumptions.

Another aspect that requires further investigation is the role of communication. Throughout the analysis, we assume that individ-
uals engage in gossip, express disapproval, and share their personal norms. Communication with peers is arguably costly and may 
provide limited benefits. Therefore, it can be regarded as a public goods dilemma in which individuals must cooperate to sustain 
cooperation in other situations. Since gossip does not create any incentive problems regarding one’s own optimal behavior, the results 
of this paper can explain why individuals gossip with peers. We cannot apply this argument to the other two communication dimen-
sions since social disapproval for hypocrisy and non-conformity introduce incentives to misrepresent personal norms. In Section 2, 
we argued that a positive probability of being detected when lying and severe material or social costs when being detected may cause 
truth-telling to be the best response. Nevertheless, further work incorporating communication as a behavioral dimension needs to 
complement this paper.15

15 Models that investigate the signaling of preferences in an evolutionary setting are proposed by Gintis et al. (2001) and Müller and von Wangenheim (2019) among 
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others.
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Appendix B. Proofs and additional formal results

B.1. Behavior

Lemma 4. For all 𝜆 ∈ [0, 1]|Θ| and 𝜙 ∈ [0, 1], the set of all NE is convex and asymptotically stable under a best-response dynamics.

Proof. Hofbauer and Sandholm (2009) show that the set of all NE is convex and asymptotically stable for any stable game. Con-
sider any two possible strategy distributions �̂� and �̌� with the corresponding cooperation shares �̂� and �̌� . The game is stable if 
𝜙 
∑

𝜃∈supp(𝜆) 𝜆𝜃(�̂�1,𝜃 − �̌�1,𝜃)(𝑢(1, 1, �̂� , 𝜙) − 𝑢(0, 1, �̂� , 𝜙) − 𝑢(1, 1, �̌� , 𝜙) + 𝑢(0, 0, �̌� , 𝜙)) + (1 − 𝜙) 
∑

𝜃∈supp(𝜆) 𝜆𝜃(�̂�0,𝜃 − �̌�0,𝜃)(𝑢(1, 𝑛, �̂� , 𝜙) −
𝑢(0, 𝑛, �̂� , 𝜙) − 𝑢(1, 𝑛, �̌� , 𝜙) + 𝑢(0, 𝑛, �̌� , 𝜙)) = 𝜙 

∑
𝜃∈supp(𝜆) 𝜆𝜃(�̂�1,𝜃 − �̌�1,𝜃)(Δ𝑚(�̌�) − Δ𝑚(�̂�)) + (1 − 𝜙) 

∑
𝜃∈supp(𝜆) 𝜆𝜃(�̂�0,𝜃 − �̌�0,𝜃)(Δ𝑚(�̌�) −

Δ𝑚(�̂�)) = (�̂� − �̌�)(Δ𝑚(�̌�) − Δ𝑚(�̂�)) ≤ 0. Note that this condition is always satisfied, since Δ𝑚(⋅) is increasing. Thus, the game is 
stable, which suffices to prove the lemma. □

Lemma 5. For all 𝜆 ∈ [0, 1]|Θ|, 𝜙 ∈ [0, 1], 𝑛 ∈ {0, 1}, and 𝜃 ∈ supp(𝜆), 𝜎 ∈ Σ∗(𝜙, 𝜆) implies:

1. 𝜎𝑛,𝜃 = 1 if 𝑛(𝜃𝑝 + 𝜃𝑠 ℎ̃) + 𝜃𝑠 �̃�(𝜙) > Δ𝑚(𝜙𝜎1 + (1 − 𝜙)𝜎0) and

2. 𝜎𝑛,𝜃 = 0 if 𝑛(𝜃𝑝 + 𝜃𝑠 ℎ̃) + 𝜃𝑠 �̃�(𝜙) < Δ𝑚(𝜙𝜎1 + (1 − 𝜙)𝜎0).

Proof. Consider any 𝜎 ∈ Σ∗(𝜙, 𝜆). Consider the difference in utilities from cooperation and defection for individuals with personal 
norm 𝑛 and preference type 𝜃: Δ𝑢𝑛,𝜃 = 𝑢(1, 𝑛, 𝜓 , 𝜙, 𝜃) − 𝑢(0, 𝑛, 𝜓 , 𝜙, 𝜃) = 𝑛(𝜃𝑝 + 𝜃𝑠 ℎ̃) + 𝜃𝑠 �̃�(𝜙) − Δ𝑚(𝜙𝜎1 + (1 − 𝜙)𝜎0). Then 𝑛(𝜃𝑝 +
𝜃𝑠 ℎ̃) + 𝜃𝑠 �̃�(𝜙) > Δ𝑚(𝜙𝜎1 + (1 − 𝜙)𝜎0) implies that cooperation is strictly preferred to defection. Thus, 𝜎𝑛,𝜃 = 1 must be true in any NE. 
Analogously, 𝑛(𝜃𝑝 + 𝜃𝑠 ℎ̃) + 𝜃𝑠 �̃�(𝜙) < Δ𝑚(𝜙𝜎1 + (1 − 𝜙)𝜎0) implies that defecting is strictly preferred. Thus, 𝜎𝑛,𝜃 = 0 must be true in 
any NE. □

Lemma 6. For all 𝜆 ∈ [0, 1]|Θ|, 𝜙 ∈ [0, 1], and �̂�, ̌𝜎 ∈ Σ∗(𝜙, 𝜆), 𝜙�̂�1 + (1 − 𝜙)�̂�0 = 𝜙�̌�1 + (1 − 𝜙)�̌�0.

Proof. Consider any �̂�, ̌𝜎 ∈ Σ∗(𝜙, 𝜆). Let �̂� = 𝜙�̂�1 + (1 −𝜙)�̂�0 and �̌� = 𝜙�̌�1 + (1 −𝜙)�̌�0. Assume by contradiction that �̂� > �̌� . It follows 
that Δ𝑚(�̂�) > Δ𝑚(�̌�). For all 𝑛 ∈ {0, 1} and 𝜃 ∈ supp(𝜆), (𝜃𝑠 �̃�(𝜙) + 𝑛(𝜃𝑠 ℎ̃ + 𝜃𝑝) ≥ Δ𝑚(�̂�) ⇒ 𝜃𝑠 �̃�(𝜙) + 𝑛(𝜃𝑠 ℎ̃ + 𝜃𝑝) > Δ𝑚(�̌�)) ⇒ �̂�𝑛,𝜃 ≤

�̌�𝑛,𝜃 ⇒ �̂� ≤ �̌� . We have reached a contradiction. □

Lemma 7. For all 𝜆 ∈ [0, 1]|Θ|, �̌�, �̂� ∈ supp(𝜆), 𝜙 ∈ [0, 1], and �̌�, �̂� ∈ {0, 1}, (�̌�(�̌�𝑝 + �̌�𝑠 ℎ̃) + �̌�𝑠 �̃�(𝜙) > �̂�(�̂�𝑝 + �̂�𝑠 ℎ̃) + �̂�𝑠 �̃�(𝜙)) ⇒ (𝜎�̌�,�̌� ≥

𝜎�̂�,�̂� ∀𝜎 ∈ Σ∗(𝜙, 𝜆)).

Proof. Assume by contradiction that for some 𝜆 ∈ [0, 1]|Θ|, 𝜙 ∈ [0, 1], 𝜎 ∈ Σ∗(𝜙, 𝜆), �̌�, �̂� ∈ {0, 1}, and �̌�, �̂� ∈ supp(𝜆), �̌�(�̌�𝑝 + �̌�𝑠 ℎ̃) +
�̌�𝑠 �̃�(𝜙) > �̂�(�̂�𝑝 + �̂�𝑠 ℎ̃) + �̂�𝑠 �̃�(𝜙) and 𝜎�̌�,�̌� < 𝜎�̂�,�̂� . 𝜎�̌�,�̌� < 𝜎�̂�,�̂� ⇒ 𝜎�̂�,�̂� > 0 ⇒ �̌�(�̌�𝑝 + �̌�𝑠 ℎ̃) + �̌�𝑠 �̃�(𝜙) ≥ Δ𝑚(𝜓∗(𝜙, 𝜆)) ⇒ �̂�(�̂�𝑝 + �̂�𝑠 ℎ̃) + �̂�𝑠 �̃�(𝜙) >

Δ𝑚(𝜓∗(𝜙, 𝜆)) ⇒ 𝜎�̂�,�̂� = 1 ⇒ 𝜎�̂�,�̂� ≥ 𝜎�̌�,�̌� . We have reached a contradiction. □
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Lemma 8. For all 𝜆 ∈ [0, 1]|Θ|, 𝜓∗(𝜙, 𝜆) is non-decreasing in 𝜙.
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Proof. Consider any 𝜆 ∈ [0, 1]|Θ|. We have to show that 𝑥 > 𝑦 ⇒ 𝜓∗(𝑥, 𝜆) ≥ 𝜓∗(𝑦, 𝜆). Assume by contradiction that 𝑥 > 𝑦 and 
𝜓∗(𝑥, 𝜆) < 𝜓∗(𝑦, 𝜆). 𝜓∗(𝑥, 𝜆) < 𝜓∗(𝑦, 𝜆) ⇒ Δ𝑚(𝜓∗(𝑥, 𝜆)) < Δ𝑚(𝜓∗(𝑦, 𝜆)). For all 𝑛 ∈ {0, 1} and 𝜃 ∈ supp(𝜆), 𝑛(𝜃𝑝 + 𝜃𝑠 ℎ̃) + 𝜃�̃�(𝑦) ≥
Δ𝑚(𝜓∗(𝑦, 𝜆)) ⇒ 𝑛(𝜃𝑝 + 𝜃𝑠 ℎ̃) + 𝜃�̃�(𝑥) > Δ𝑚(𝜓∗(𝑥, 𝜆)). It follows that �̂�𝑛,𝜃 ≥ �̃�𝑛,𝜃 for all �̂� ∈ Σ∗(𝑥, 𝜆), ̃𝜎 ∈ Σ∗(𝑦, 𝜆), 𝑛 ∈ {0, 1}, 𝜃 ∈ supp(𝜆). 
Hence, 𝜓(𝑥, 𝜆) ≥ 𝜓(𝑦, 𝜆). We have reached a contradiction. □

Lemma 9. For all 𝜆 ∈ [0, 1]|Θ|, 𝜙 ∈ [0, 1], and 𝜎 ∈ Σ∗(𝜙, 𝜆), 𝜎0 ≤ 𝜎1.

Proof. Let 𝑦 =
∑

𝜃∈Θ̂ 𝜆𝜃 , where Θ̂ ∶= {𝑥 ∈ supp(𝜆) ∶ 𝑥𝑠 �̃�(𝜙) ≥ Δ𝑚(𝜓∗(𝜙, 𝜆))}. The share of norm non-holders who strictly prefer to 
defect is given by 1 − 𝑦. Therefore, 1 − 𝑦 ≤ 1 − 𝜎0 and 𝑦 > 𝜎0. Let 𝑧 =

∑
𝜃∈Θ̌ 𝜆𝜃 , where Θ̌ ∶= {𝑥 ∈ supp(𝜆) ∶ 𝑥𝑠 �̃�(𝜙) + 𝑥𝑠 ℎ̃ + 𝑥𝑝 >

Δ𝑚(𝜓∗(𝜙, 𝜆))}. The share of norm holders who strictly prefer to cooperate is given by 𝑧. Thus, 𝜎1 ≥ 𝑧. (𝜃𝑠 �̃�(𝜙) ≥ Δ𝑚(𝜓∗(𝜙, 𝜆)) ⇒
𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 > Δ𝑚(𝜓∗(𝜙, 𝜆))) ⇒ (𝜃 ∈ Θ̂⇒ 𝜃 ∈ Θ̌) ⇒ 𝑧 ≥ 𝑦 ⇒ 𝜎1 ≥ 𝜎0. □

Lemma 10. For all 𝜆 ∈ [0, 1]|Θ| and 𝜙 ∈ [0, 1], (�̂�𝑝 + �̂�𝑠 ℎ̃ + �̂�𝑠 �̃�(𝜙) ≠ 𝜃𝑠 �̃�(𝜙) ∀�̂�, 𝜃 ∈ supp(𝜆)) ⇒ ((�̂�1, ̂𝜎0) = (�̌�1, ̌𝜎0) ∀�̂� , ̌𝜎 ∈ Σ∗(𝜙, 𝜆)).

Proof. Consider any 𝜆 ∈ [0, 1]|Θ| and 𝜙 ∈ [0, 1]. �̂�𝑝 + �̂�𝑠 ℎ̃ + �̂�𝑠 �̃�(𝜙) ≠ �̌�𝑠 �̃�(𝜙) ∀�̂�, �̌� ∈ supp(𝜆) implies that there is at most one 𝑛 ∈ {0, 1}
s.t. 𝑛(�̄�𝑝 + �̄�𝑠 ℎ̃) + �̄�𝑠 �̃�(𝜙) =Δ𝑚(𝜓∗(𝜙, 𝜆)) for some �̄� ∈ supp(𝜆).

For 1 − 𝑛 ∈ {0, 1} and all 𝜃 ∈ supp(𝜆), (1 − 𝑛)(𝜃𝑝 + 𝜃𝑠 ℎ̃) + 𝜃𝑠 �̃�(𝜙) ≠ Δ𝑚(𝜓∗(𝜙, 𝜆)) ⇒ �̂�1−𝑛,𝜃 = �̌�1−𝑛,𝜃 ∀�̂�, ̌𝜎 ∈ Σ∗(𝜙, 𝜆) ⇒ �̂�1−𝑛 =
�̌�1−𝑛 ∀�̂�, ̌𝜎 ∈ Σ∗(𝜙, 𝜆). For all �̌� , ̂𝜎 ∈ Σ∗(𝜙, 𝜆), 𝜙�̌�1 + (1 −𝜙)�̌�0 = 𝜙�̂�1 + (1 −𝜙)�̂�0 and �̌�1−𝑛 = �̂�1−𝑛 implies that �̌�𝑛 = �̂�𝑛. Hence, (�̂�1, ̂𝜎0) =
(�̌�1, ̌𝜎0) ∀�̂� , ̌𝜎 ∈ Σ∗(𝜙, 𝜆). □

Lemma 11. For all 𝜆 ∈ [0, 1]|Θ| and 𝜙 ∈ [0, 1], (for all �̂�, �̌� ∈ supp(𝜆) and �̂�, �̌� ∈ {0, 1}, �̂�(�̂�𝑝 + �̂�𝑠 ℎ̃) + �̂�𝑠 �̃�(𝜙) = �̌�(�̌�𝑝 + �̌�𝑠 ℎ̃) + �̌�𝑠 �̃�(𝜙) ⇒
�̂� = �̌� and �̂� = �̌�) ⇒ (Σ∗(𝜙, 𝜆) is a singleton).

Proof. Consider any 𝜆 ∈ [0, 1]|Θ| and 𝜙 ∈ [0, 1]. If for all �̂�, �̌� ∈ supp(𝜆) and �̂�, �̌� ∈ {0, 1}, �̂�(�̂�𝑝 + �̂�𝑠 ℎ̃) + �̂�𝑠 �̃�(𝜙) = �̌�(�̌�𝑝 + �̌�𝑠 ℎ̃) + �̌�𝑠 �̃�(𝜙) ⇒
�̂� = �̌� ∧ �̂� = �̌�, then there is at most one pairing of �̄� ∈ {0, 1} and �̄� ∈ supp(𝜆) s.t. �̄�(�̄�𝑝 + �̄�𝑠 ℎ̃) + �̄�𝑠 �̃�(𝜙) =Δ𝑚(𝜓∗(𝜙, 𝜆)).

For all 𝜃 ∈ supp(𝜆) and 𝑛 ∈ {0, 1}, 𝑛(𝜃𝑝 + 𝜃𝑠 ℎ̃) + 𝜃𝑠 �̃�(𝜙) ≠ Δ𝑚(𝜓∗(𝜙, 𝜆)) ⇒ 𝜎𝑛,𝜃 = �̌�𝑛,𝜃 ∀𝜎, ̌𝜎 ∈ Σ∗(𝜙, 𝜆). Thus, if ∄�̄� ∈ supp(𝜆) s.t. 
�̄�(�̄�𝑝 + �̄�𝑠 ℎ̃) + �̄�𝑠 �̃�(𝜙) =Δ𝑚(𝜓∗(𝜙, 𝜆)) for all �̄� ∈ {0, 1}, then 𝜎 = �̌� for all 𝜎, ̌𝜎 ∈ Σ∗(𝜙, 𝜆).

Next, consider that ∃!�̄� ∈ supp(𝜆) s.t. �̄�(�̄�𝑝 + �̄�𝑠 ℎ̃) + �̄�𝑠 �̃�(𝜙) = Δ𝑚(𝜓∗(𝜙, 𝜆)) for some �̄� ∈ {0, 1}. For all 𝜎, ̌𝜎 ∈ Σ∗(𝜙, 𝜆), 𝜓∗(𝜙, 𝜆) =
𝜙 
∑

𝜃∈supp(𝜆) �̌�1,𝜃 +(1 −𝜙) 
∑

𝜃∈supp(𝜆) �̌�0,𝜃 = 𝜙 
∑

𝜃∈supp(𝜆) 𝜎1,𝜃 +(1 −𝜙) 
∑

𝜃∈supp(𝜆) 𝜎0,𝜃 . �̌�𝑛,𝜃 = 𝜎𝑛,𝜃 if 𝑛 ≠ �̄�∨𝜃 ≠ �̄� ⇒ 𝜙 
∑

𝜃∈supp(𝜆)⧵{�̄�} �̌�1,𝜃 +
(1 −𝜙) 

∑
𝜃∈supp(𝜆)⧵{�̄�} �̌�0,𝜃 = 𝜙 

∑
𝜃∈supp(𝜆)⧵{�̄�} 𝜎1,𝜃 +(1 −𝜙) 

∑
𝜃∈supp(𝜆)⧵{�̄�} 𝜎0,𝜃 ⇒ 𝜙�̌�1,�̄� +(1 −𝜙)�̌�0,�̄� = 𝜙𝜎1,�̄� +(1 −𝜙)𝜎0,�̄� . 𝜎1−�̄�,𝜃 = �̌�1−�̄�,�̄� ⇒

𝜎�̄�,𝜃 = �̌��̄�,�̄� . Thus, 𝜎 = �̌� ∀𝜎, ̌𝜎 ∈ Σ∗(𝜙, 𝜆). □

Lemma 12. For all 𝜆 and 𝜙 ∈ [0, 1], there is a neighborhood 𝑈 of 𝜙 s.t. ∀�̂� ∈ 𝑈 ⧵ {𝜙}, Σ∗(�̂�, 𝜆) is a singleton.

Proof. Consider any 𝜙 ∈ [0, 1]. Let 𝜖 > 0 be s.t. ∀�̂�, �̌� ∈Θ and �̂�, �̌� ∈ {0, 1}, �̂�(�̂�𝑝 + �̂�𝑠 ℎ̃) + �̂�𝑠 �̃�(𝜙) > �̌�(�̌�𝑝 + �̌�𝑠 ℎ̃) + �̌�𝑠 �̃�(𝜙) ⇒ �̂�(�̂�𝑝 + �̂�𝑠 ℎ̃) +
�̂�𝑠 �̃�(�̂�) > �̌�(�̌�𝑝 + �̌�𝑠 ℎ̃) + �̌�𝑠 �̃�(�̂�) for all �̂� ∈ (𝜙 − 𝜖, 𝜙 + 𝜖). Such 𝜖 exists due to continuity of �̃�. Moreover, consider any �̂�, �̌� ∈ {0, 1} and 
�̂�, �̌� ∈Θ s.t. �̂�(�̂�𝑝 + �̂�𝑠 ℎ̃) + �̂�𝑠 �̃�(𝜙) = �̌�(�̌�𝑝 + �̌�𝑠 ℎ̃) + �̌�𝑠 �̃�(𝜙). (�̌� ≠ �̂� or �̌� ≠ �̂� ⇒ �̂�(�̂�𝑝 + �̂�𝑠 ℎ̃) + �̂�𝑠 �̃�(�̂�) ≠ �̌�(�̌�𝑝 + �̌�𝑠 ℎ̃) + �̌�𝑠 �̃�(�̂�) ∀�̂� ≠ 𝜙. Hence, 
for all 𝜆 ∈ [0, 1]|Θ| and �̂� ∈ (𝜙 − 𝜖, 𝜙 + 𝜖) ⧵ {𝜙}, (for all �̂�, �̌� ∈ supp(𝜆) and �̂�, �̌� ∈ {0, 1}, �̂�(�̂�𝑝 + �̂�𝑠 ℎ̃) + �̂�𝑠 �̃�(𝜙) = �̌�(�̌�𝑝 + �̌�𝑠 ℎ̃) + �̌�𝑠 �̃�(𝜙) ⇒
�̂� = �̌� and �̂� = �̌�). Lemma 11 implies that for all 𝜆 ∈ [0, 1]|Θ| and �̂� ∈ (𝜙 − 𝜖, 𝜙 + 𝜖) ⧵ {𝜙}, Σ∗(�̂�, 𝜆) is a singleton. □

Lemma 13. For all 𝜆 ∈ [0, 1]|Θ|, lim𝑥→1(𝜓∗(𝑥, 𝜆)) = 𝜓∗(1, 𝜆).

Proof. Lemma 8 proves that 𝜓∗ is non-decreasing in 𝜙. Thus, 𝜓∗(𝜙, 𝜆) ≤ 𝜓∗(1, 𝜆) for all 𝜙 < 1. It remains to be shown that ∀𝜖 > 0, 
∃𝜉 > 0 s.t. (𝜙 > 1 − 𝜉 ⇒ 𝜓∗(𝜙, 𝜆) > 𝜓∗(𝜙, 𝜆) − 𝜖).

Note that 
∑

𝜃∈supp(𝜆) s.t. 𝜃𝑝+𝜃𝑠 �̃�+𝜃𝑠 �̃�(1)≥Δ𝑚(𝜓∗(1,𝜆)) 𝜆𝜃 = 𝜓∗(1, 𝜆) is true. Moreover, it implies that 
∑

𝜃∈supp(𝜆) s.t. 𝜃𝑝+𝜃𝑠 �̃�+𝜃𝑠 �̃�(1)>Δ𝑚(𝜓∗(1,𝜆)−𝜖) 𝜆𝜃

𝜓∗(1, 𝜆) > 𝜓∗(1, 𝜆) − 𝜖. Let 𝜉 > 0 be s.t. for all 𝜙 > 1 − 𝜉, 𝜙 
∑

𝜃∈supp(𝜆) s.t. 𝜃𝑝+𝜃𝑠 �̃�+𝜃𝑠 �̃�(𝜙)>Δ𝑚(𝜓∗(1,𝜆)−𝜖) 𝜆𝜃 > 𝜓∗(1, 𝜆) − 𝜖. Such a 𝜉 exists due 
to continuity of �̃�.

At any 𝜙 > 1 − 𝜉, it must be true that 𝜓∗(𝜙, 𝜆) > 𝜓∗(1, 𝜆) − 𝜖. Assume by contradiction that 𝜓∗(𝜙, 𝜆) ≤ 𝜓∗(1, 𝜆) − 𝜖. 𝜓∗(𝜙, 𝜆) ≤
𝜓∗(1, 𝜆) −𝜖 ⇒Δ𝑚(𝜓∗(𝜙, 𝜆)) ≤Δ𝑚(𝜓∗(1, 𝜆) −𝜖) ⇒ (

∑
𝜃∈supp(𝜆) s.t. 𝜃𝑝+𝜃𝑠 �̃�+𝜃𝑠 �̃�(𝜙)>Δ𝑚(𝜓∗(1,𝜆)−𝜖) 𝜆𝜃 >

𝜓∗(1,𝜆)−𝜖

𝜙
⇒

∑
𝜃∈supp(𝜆) s.t. 𝜃𝑝+𝜃𝑠 �̃�+𝜃𝑠 �̃�(𝜙)>Δ𝑚

𝜓∗(1,𝜆)−𝜖

𝜙
) ⇒ 𝜎∗

1 >
𝜓∗(1,𝜆)−𝜖

𝜙
for all 𝜎∗ ∈ Σ∗(𝜙, 𝜆) ⇒ 𝜓∗(𝜙, 𝜆) ≥ 𝜎∗

1 𝜙 > 𝜓∗(1, 𝜆) − 𝜖. We reached a contradiction. Therefore 𝜓∗(𝜙, 𝜆) >

𝜓∗(1, 𝜆) − 𝜖 for any 𝜙 > 1 − 𝜉. Lemma 13 is true. □

Lemma 14. For all 𝜆 ∈ [0, 1]|Θ|, lim𝑥→1(min𝜎∈Σ∗(𝑥,𝜆)(𝜎1)) = lim𝑥→1(max𝜎∈Σ∗(𝑥,𝜆)(𝜎1)) = 𝜓∗(1, 𝜆).

Proof. From 𝜎1 > 𝜎0 for all 𝜎 ∈ Σ∗(𝜙, 𝜆) and 𝜓 = 𝜙𝜎1 + (1 − 𝜙)𝜎0 follows that for all 𝜙 ∈ [0, 1) and 𝜎 ∈ Σ∗(𝜙, 𝜆): min𝜎∈Σ∗(𝜙,𝜆)(𝜎1) ≥
∗ ∗
259

𝜓∗(𝜙, 𝜆) and max𝜎∈Σ∗(𝑥,𝜆)(𝜎1) ≤
𝜓 (𝜙,𝜆)

𝜙
. Proposition 14 follows from lim𝑥→1(𝜓∗(𝑥, 𝜆)) = lim𝑥→1(

𝜓 (𝑥,𝜆)
𝑥

) = 𝜓∗(1, 𝜆). □
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Lemma 15. Consider any 𝜆 ∈ [0, 1]|Θ| and 𝜙 ∈ [0, 1]. ∀𝜖 > 0 ∃𝜉 > 0 s.t. |𝜙 − �̂�| < 𝜉 ⇒ |𝜓∗(𝜙, 𝜆) − 𝜓∗(�̂�, 𝜆)| < 𝜖.

Proof. Consider any 𝜆 ∈ [0, 1]|Θ|, 𝜙 ∈ [0, 1], 𝜎 ∈ Σ∗(𝜙, 𝜆). Suppose by contradiction that there is 𝜖 > 0 s.t. for all 𝜉 > 0, |𝜙 − �̂�| < 𝜉

and |𝜓∗(𝜙, 𝜆) − 𝜓∗(�̂�, 𝜆)| ≥ 𝜖 for some �̂�. Consider any such 𝜖 > 0.
𝜓∗(𝜙, 𝜆) = 𝜓∗(�̂�, 𝜆) clearly leads to a contradiction. Next, suppose 𝜓∗(�̂�, 𝜆) ≤ 𝜓∗(𝜙, 𝜆) −𝜖 (analogously for 𝜓∗(�̂�, 𝜆) ≥ 𝜓∗(𝜙, 𝜆) +𝜖). 

Since 𝜓∗ is non-decreasing in 𝜙 (recall Lemma 8), this can only be true if �̂� < 𝜙. Consider any 𝜃 ∈ supp(𝜆), 𝑛 ∈ {0, 1} s.t. 𝜃𝑠 �̃�(𝜙) +
(𝜃𝑠 ℎ̃ + 𝜃𝑝)𝑛 ≥ Δ𝑚(𝜓∗(𝜙, 𝜆)) > Δ𝑚(𝜓∗(𝜙, 𝜆) − 𝜖). Let 𝜉 be so small that 𝜃𝑠 �̃�(�̂�) + (𝜃𝑠 ℎ̃ + 𝜃𝑝)𝑛 > Δ𝑚(𝜓∗(𝜙, 𝜆) − 𝜖) for all �̂� ∈ (𝜙 − 𝜉, 𝜙). 
Since (a) 𝜓∗(�̂�, 𝜆) < 𝜓∗(𝜙, 𝜆) − 𝜖) and (b) Δ𝑚 increasing in 𝜓 , 𝜃𝑠 �̃�(�̂�) + (𝜃𝑠 ℎ̃ + 𝜃𝑝)𝑛 > Δ𝑚(𝜓∗(�̂�, 𝜆)) for all �̂� ∈ (𝜙 − 𝜉, 𝜙). For all 
𝜃 ∈ supp(𝜆), 𝑛 ∈ {0, 1}, �̂� ∈ (𝜙, 𝜙 − 𝜉), 𝜎 ∈ Σ∗(𝜙, 𝜆), ̂𝜎 ∈ Σ∗(�̂�, 𝜆), 𝜎𝑛,𝜃 > 0 ⇒ 𝜃𝑠 �̃�(𝜙) + (𝜃𝑠 ℎ̃ + 𝜃𝑝)𝑛 ≥ Δ𝑚(𝜓∗(𝜙, 𝜆)) ⇒ 𝜃𝑠 �̃�(�̂�) + (𝜃𝑠 ℎ̃ +
𝜃𝑝)𝑛 > Δ𝑚(𝜓∗(�̂�, 𝜆)) ⇒ �̂�𝑛,𝜃 = 1 ⇒ 𝜎𝑛 ≤ �̂�𝑛. Consequently, 𝜓∗(𝜙, 𝜆) − 𝜓∗(�̂�, 𝜆) = 𝜎1,𝜃 𝜙 + 𝜎0,𝜃(1 − 𝜙) − �̂�1,𝜃 �̂� − �̂�0,𝜃(1 − �̂�) ≤ 𝜎1,𝜃 𝜙 +
𝜎0,𝜃(1 − 𝜙) − 𝜎1,𝜃 �̂� − 𝜎0,𝜃(1 − �̂�) = 𝜎1(𝜙 − �̂�) + 𝜎0,𝜃(�̂� − 𝜙) < 𝜎1𝜉. Hence, for 𝜉 ≤

𝜖

𝜎1
, 𝜙 − �̂� < 𝜉 ⇒ 𝜓∗(𝜙, 𝜆) − 𝜓∗(�̂�, 𝜆) < 𝜖. We have 

reached a contradiction, implying that the lemma is true. □

Lemma 16. Consider any 𝜆 ∈ [0, 1]|Θ| and 𝜙 ∈ [0, 1]. ∀𝜖 > 0 ∃𝜉 > 0 s.t. ∀�̂� ∈ [0, 1]|Θ|: 
∑

𝜃∈Θ |𝜆𝜃 − �̂�𝜃| < 𝜉 ⇒ |𝜓∗(𝜙, 𝜆) − 𝜓∗(𝜙, �̂�)| < 𝜖.

Proof. Consider any 𝜆, �̂� ∈ [0, 1]|Θ|, 𝜙 ∈ [0, 1], 𝜎 ∈ Σ∗(𝜙, 𝜆), �̂� ∈ Σ∗(𝜙, �̂�), and 𝜖 > 0. Let 0 < 𝜉 < 𝜖. Suppose 
∑

𝜃∈Θ |𝜆𝜃 − �̂�𝜃| < 𝜉.
Suppose that 𝜓∗(𝜙, 𝜆) > 𝜓∗(𝜙, �̂�) (analogously for 𝜓∗(𝜙, 𝜆) < 𝜓∗(𝜙, �̂�)). For all 𝜃 ∈ supp(𝜆) and 𝑛 ∈ {0, 1}, 𝜓∗(𝜙, 𝜆) > 𝜓∗(𝜙, �̂�) ⇒

Δ𝑚(𝜓∗(𝜙, 𝜆)) > Δ𝑚(𝜓∗(𝜙, �̂�)) ⇒ (𝑛(𝜃𝑠 ℎ̃ + 𝜃𝑝) + 𝜃𝑠 �̃�(𝜙) ≥ Δ𝑚(𝜓∗(𝜙, 𝜆)) ⇒ 𝑛(𝜃𝑠 ℎ̃ + 𝜃𝑝) + 𝜃𝑠 �̃�(𝜙) > Δ𝑚(𝜓∗(𝜙, �̂�))) ⇒ �̂�𝑛,𝜃 ≥ 𝜎𝑛,𝜃 ⇒

𝜓∗(𝜙, �̂�) ≥ 𝜙 
∑

𝜃∈supp(𝜆) �̂�𝜃 𝜎1,𝜃 + (1 − 𝜙) 
∑

𝜃∈supp(𝜆) �̂�𝜃 𝜎0,𝜃 . Moreover, 𝜓∗(𝜙, 𝜆) = 𝜙 
∑

𝜃∈supp(𝜆) 𝜆𝜃 𝜎1,𝜃 + (1 − 𝜙) 
∑

𝜃∈supp(𝜆) 𝜆𝜃 𝜎0,𝜃 . 0 <

𝜓∗(𝜙, 𝜆) − 𝜓∗(𝜙, �̂�) ≤ 𝜙 
∑

𝜃∈supp(𝜆)(𝜆𝜃 − �̂�𝜃)𝜎1,𝜃 + (1 − 𝜙) 
∑

𝜃∈supp(𝜆)(𝜆𝜃 − �̂�𝜃)𝜎0,𝜃 ≤
∑

𝜃∈supp(𝜆)(𝜆𝜃 − �̂�𝜃) ≤
∑

𝜃∈Θ(𝜆𝜃 − �̂�𝜃) < 𝜉 < 𝜖. Hence, ∑
𝜃∈Θ |𝜆𝜃 − �̂�𝜃| < 𝜉 implies that |𝜓∗(𝜙, 𝜆) − 𝜓∗(𝜙, �̂�)| < 𝜉. Thus, Lemma 16 is true. □

Lemma 17. Consider any 𝜙 ∈ (0, 1) and 𝜆 ∈ [0, 1]|Θ| s.t. ∀𝜃, �̄� ∈ supp(𝜆), �̄�𝑠 �̃�(𝜙) ≠ 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝. ∀𝜖 > 0 ∃𝜉 > 0 s.t. ∀�̂� ∈ [0, 1]|Θ|, ∑
𝜃∈Θ |𝜆𝜃 − �̂�𝜃| < 𝜉 implies that for all 𝜎 ∈ Σ∗(𝜙, 𝜆) and �̂� ∈ Σ∗(𝜙, �̂�), |𝜎𝑛 − �̂�𝑛| < 𝜖 ∀𝑛 ∈ {0, 1}.

Proof. Consider any 𝜙 ∈ (0, 1) and 𝜆 ∈ [0, 1]|Θ| s.t. ∀𝜃, �̄� ∈ supp(𝜆), �̄�𝑠 �̃�(𝜙) ≠ 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝. Consider any 𝜖 > 0. Let 𝜉 = 𝜖 ×
min{ 𝜙

1−𝜙
, 1−𝜙

𝜙
}. Note, 𝜉 < 𝜖. Let �̂� ∈ [0, 1]|Θ| be s.t. 

∑
𝜃∈Θ |𝜆𝜃 − �̂�𝜃| < 𝜉. Throughout, we investigate differences in any 𝜎 ∈ Σ∗(𝜙, 𝜆)

and �̂� ∈ Σ∗(𝜙, �̂�). To prove the lemma, we distinguish three cases: (1) 𝜓∗(𝜙, 𝜆) = 𝜓∗(𝜙, �̂�), (2) 𝜓∗(𝜙, 𝜆) < 𝜓∗(𝜙, �̂�), and (3) 𝜓∗(𝜙, 𝜆) >

𝜓∗(𝜙, �̂�).
First, we look at 𝜓∗(𝜙, 𝜆) = 𝜓∗(𝜙, �̂�). Let 𝑛 ∈ {0, 1} be s.t. for all 𝜃 ∈ supp(𝜆), 𝑛(𝜃𝑝 + 𝜃𝑠 ℎ̃) + 𝜃𝑠 �̃�(𝜙) ≠ Δ𝑚(𝜓∗(𝜙, 𝜆)). Such an 𝑛

exists since �̄�𝑠 �̃�(𝜙) ≠ �̌�𝑠 �̃�(𝜙) + �̌�𝑠 ℎ̃ + �̌�𝑝 for all �̌�, �̄� ∈ supp(𝜆). For all 𝜃 ∈ supp(𝜆), ((𝑛(𝜃𝑝 + 𝜃𝑠 ℎ̃) + 𝜃𝑠 �̃�(𝜙) > Δ𝑚(𝜓∗(𝜙, 𝜆)) ⇒ 𝑛(𝜃𝑝 +
𝜃𝑠 ℎ̃) +𝜃𝑠 �̃�(𝜙) > Δ𝑚(𝜓∗(𝜙, �̂�))) and (𝑛(𝜃𝑝 +𝜃𝑠 ℎ̃) +𝜃𝑠 �̃�(𝜙) < Δ𝑚(𝜓∗(𝜙, 𝜆)) ⇒ 𝑛(𝜃𝑝 +𝜃𝑠 ℎ̃) +𝜃𝑠 �̃�(𝜙) < Δ𝑚(𝜓∗(𝜙, �̂�)))) ⇒ �̂�𝑛,𝜃 = 𝜎𝑛,𝜃 . (�̂�𝑛,𝜃 =
𝜎𝑛,𝜃∀𝜃 ∈ supp(𝜆) ∧ 𝜎𝑛 =

∑
𝜃∈supp(𝜆) 𝜆𝜃 𝜎𝑛,𝜃 ∧ �̂�𝑛 =

∑
𝜃∈supp(𝜆) 𝜆𝜃 �̂�𝑛,𝜃 +

∑
𝜃∈Θ(�̂�𝜃 − 𝜆𝜃)�̂�𝑛,𝜃) ⇒ �̂�𝑛 = 𝜎𝑛 +

∑
𝜃∈Θ(�̂�𝜃 − 𝜆𝜃)�̂�𝑛,𝜃 . �̂�𝑛 − 𝜎𝑛 =∑

𝜃∈Θ(�̂�𝜃 −𝜆𝜃)�̂�𝑛,𝜃 ⇒ |𝜎𝑛 − �̂�𝑛| =
∑

𝜃∈Θ(|�̂�𝜃 −𝜆𝜃|)�̂�𝑛,𝜃 <
∑

𝜃∈Θ(|�̂�𝜃 −𝜆𝜃|) < 𝜉 < 𝜖 ⇒ |𝜎𝑛 − �̂�𝑛| < 𝜖. Moreover, let 𝑥 = |𝑛 −1 +𝜙|. Recall 𝜉 <

𝜖, 𝜉
𝑥

1−𝑥
< 𝜖, and |𝜎𝑛 − �̂�𝑛| < 𝜖. 𝜓∗(𝜙, 𝜆) = 𝜓∗(𝜙, �̂�) ⇒ 𝑥𝜎𝑛 +(1 −𝑥)𝜎1−𝑛 = 𝑥�̂�𝑛 +(1 −𝑥)�̂�1−𝑛 ⇒ |𝜎1−𝑛 − �̂�1−𝑛| = |𝜎𝑛 − �̂�𝑛| × 𝑥

1−𝑥
< 𝜉 × 𝑥

1−𝑥
=

𝜖 ×min{ 𝜙

1−𝜙
, 1−𝜙

𝜙
} × 𝑥

1−𝑥
. (min{ 𝜙

1−𝜙
, 1−𝜙

𝜙
} < 1 and ( 𝑥

1−𝑥
=min{ 𝜙

1−𝜙
, 1−𝜙

𝜙
} or 𝑥

1−𝑥
= 1∕ min{ 𝜙

1−𝜙
, 1−𝜙

𝜙
})) ⇒ 𝑥

1−𝑥
×min{ 𝜙

1−𝜙
, 1−𝜙

𝜙
} ≤ 1 ⇒

𝜉
𝑥

1−𝑥
< 𝜖. Thus, |𝜎1−𝑛 − �̂�1−𝑛| < 𝜖.

Second, we look at 𝜓∗(𝜙, 𝜆) < 𝜓∗(𝜙, �̂�). For all 𝜃 ∈ supp(𝜆) and 𝑛 ∈ {0, 1}, 𝜓∗(𝜙, 𝜆) < 𝜓∗(𝜙, �̂�) ⇒Δ𝑚(𝜓∗(𝜙, 𝜆)) < Δ𝑚(𝜓∗(𝜙, �̂�)) ⇒
(𝑛(𝜃𝑠 ℎ̃ + 𝜃𝑝) + 𝜃𝑠 �̃�(𝜙) ≤ Δ𝑚(𝜓∗(𝜙, 𝜆)) ⇒ 𝑛(𝜃𝑠 ℎ̃ + 𝜃𝑝) + 𝜃𝑠 �̃�(𝜙) < Δ𝑚(𝜓∗(𝜙, �̂�))) ⇒ �̂�𝑛,𝜃 ≤ 𝜎𝑛,𝜃 ⇒

∑
𝜃∈supp(𝜆) 𝜆𝜃 �̂�𝑛,𝜃 ≤

∑
𝜃∈supp(𝜆) 𝜆𝜃 𝜎𝑛,𝜃 =

𝜎𝑛. �̂�𝑛 =
∑

𝜃∈supp(𝜆) 𝜆𝜃 �̂�𝑛,𝜃 +
∑

𝜃∈Θ(�̂�𝜃 − 𝜆𝜃)�̂�𝑛,𝜃 . (
∑

𝜃∈supp(𝜆) 𝜆𝜃 �̂�𝑛,𝜃 ≤ 𝜎𝑛 ∧
∑

𝜃∈Θ(|�̂�𝜃 − 𝜆𝜃|)�̂�𝑛,𝜃 < 𝜉) ⇒ �̂�𝑛 < 𝜎𝑛 + 𝜉. Thus, �̂�1 < 𝜎1 + 𝜉

and �̂�0 < 𝜎0 + 𝜉. Let 𝑛 ∈ {0, 1} be s.t. �̂�𝑛 > 𝜎𝑛. Such an 𝑛 must exist since otherwise 𝜓∗(𝜙, 𝜆) < 𝜓∗(𝜙, �̂�) cannot be true. It follows 
that 𝜎𝑛 < �̂�𝑛 < 𝜎𝑛 + 𝜉 ⇒ |𝜎𝑛 − �̂�𝑛| < 𝜉 < 𝜖. Let 𝑥 = |𝑛 − 1 + 𝜙|. 𝜓∗(𝜙, 𝜆) < 𝜓∗(𝜙, �̂�) ⇒ 𝑥𝜎𝑛 + (1 − 𝑥)𝜎1−𝑛 < 𝑥�̂�𝑛 + (1 − 𝑥)�̂�1−𝑛. �̂�𝑛 <

𝜎𝑛 + 𝜉 ⇒ 𝑥𝜎𝑛 + (1 − 𝑥)𝜎1−𝑛 < 𝑥𝜎𝑛 + 𝑥𝜉 + (1 − 𝑥)�̂�1−𝑛 ⇒ 𝜎1−𝑛 −
𝑥

1−𝑥
𝜉 < �̂�1−𝑛 < 𝜎1−𝑛 + 𝜉. By same reasoning as above, 𝜉

𝑥

1−𝑥
< 𝜖. (𝜉 < 𝜖

and 𝜉
𝑥

1−𝑥
< 𝜖) ⇒ |𝜎𝑛 − �̂�𝑛| < 𝜖. The proof of the third case is analog to that of the second case. Therefore, we refrain from writing it 

out.
We have shown that for any 𝜖 > 0, 

∑
𝜃∈Θ |𝜆𝜃 − �̂�𝜃| < 𝜖 × min{ 𝜙

1−𝜙
, 1−𝜙

𝜙
} implies that |𝜎𝑛 − �̂�𝑛| < 𝜖. Thus, the lemma is indeed 

true. □

Proposition 16. Consider any specification of 𝜃, �̃�(⋅), ℎ̃, Δ𝑚(⋅), 𝜙, and 𝜆 s.t. supp(𝜆) = {𝜃}.

1. For all 𝑥, 𝑦 ∈ℝ≥0, (𝜃𝑝 = 𝑥 ⇒ 𝜓∗(𝜙, 𝜆) = 𝑦) ⇒ (𝜃𝑝 > 𝑥 ⇒ 𝜓∗(𝜙, 𝜆) ≥ 𝑦).

2. For all 𝑥, 𝑦 ∈ℝ≥0, (𝜃𝑠 = 𝑥 ⇒ 𝜓∗(𝜙, 𝜆) = 𝑦) ⇒ (𝜃𝑠 > 𝑥 ⇒ 𝜓∗(𝜙, 𝜆) ≥ 𝑦).

3. For all 𝑥, 𝑦 ∈ℝ≥0, (ℎ̃ = 𝑥 ⇒ 𝜓∗(𝜙, 𝜆) = 𝑦) ⇒ (ℎ̃ > 𝑥 ⇒ 𝜓∗(𝜙, 𝜆) ≥ 𝑦).

4. For all 𝑥(𝑧) and 𝑦 ∈ℝ≥0, (�̃�(𝑧) = 𝑥(𝑧) ⇒ 𝜓∗(𝜙, 𝜆) = 𝑦) ⇒ (�̃�(𝑧) > 𝑥(𝑧) ⇒ 𝜓∗(𝜙, 𝜆) ≥ 𝑦).

5. For all 𝑥(𝑧) and 𝑦 ∈ℝ≥0, (�̃�(𝑧) = 𝑥(𝑧) ⇒ 𝜓∗(𝜙, 𝜆) = 𝑦) ⇒ (�̃�(𝑧) > 𝑥(𝑧) ⇒ 𝜓∗(𝜙, 𝜆) ≥ 𝑦).
260

6. For all 𝑥(𝑧) and 𝑦 ∈ℝ≥0, (Δ𝑚(𝑧) = 𝑥(𝑧) ⇒ 𝜓∗(𝜙, 𝜆) = 𝑦) ⇒ (Δ𝑚(𝑧) < 𝑥(𝑧) ⇒ 𝜓∗(𝜙, 𝜆) ≥ 𝑦).
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Proof. Consider any specification of the model and 𝜙 ∈ [0, 1]. Since supp(𝜆) is a singleton, Σ∗(𝜙, 𝜆) is a singleton (see Lemma 11). 
We can derive the following conditions for equilibrium behavior:

1. 𝜎∗
1 = 𝜎∗

0 = 𝜓∗ = 0 if 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 ≤Δ𝑚(0),
2. 𝜎∗

0 = 0, 𝜎∗
1 ∈ [0, 1], 𝜓∗ ∈ [0, 𝜙] s.t. Δ𝑚(𝜓∗) = 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 if Δ𝑚(0) ≤ 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 ≤Δ𝑚(𝜙),

3. 𝜎∗
0 = 0, 𝜎∗

1 = 1, 𝜓∗ = 𝜙 if 𝜃𝑠 �̃�(𝜙) ≤Δ𝑚(𝜙) ≤ 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝,

4. 𝜎∗
0 ∈ [0, 1], 𝜎∗

1 = 1, 𝜓∗ ∈ [𝜙, 1] s.t. Δ𝑚(𝜓∗) = 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 if Δ𝑚(𝜙) ≤ 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 ≤Δ𝑚(1), and
5. 𝜎∗

1 = 𝜎∗
0 = 𝜓∗ = 1 if Δ𝑚(1) ≤ 𝜃𝑠 �̃�(𝜙) ≥.

Suppose, for example, 𝜎∗
0 = 0, 𝜎∗

1 ∈ [0, 1], 𝜓∗ ∈ [0, 𝜙] (case 2). A change in the model to some larger 𝜃𝑠 , 𝜃𝑝, ℎ̃, �̃�(⋅), or −Δ𝑚(⋅) leads 
to the if condition of case 2 being either violated or not. In the former, one of the cases 3, 4, or 5 applies, implying 𝜓∗ ≥ 𝜙. In the 
latter case, Δ𝑚(𝜓∗) = 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 holds before and after the change. Since Δ𝑚′(𝑥) ∀𝑥, greater 𝜃𝑠, 𝜃𝑝, ℎ̃, �̃�(⋅), or −Δ𝑚(⋅) must, 
thus, be accompanied by an increase in 𝜓∗. The arguments for the remaining cases are analog. □

B.2. Norms

Proof of Proposition 3. Consider any 𝜆 ∈ [0, 1]|Θ|. 𝜙 = 0 is always a rest point of norm dynamics (Definition 7). It remains to be 
shown that 𝜙 = 0 is asymptotically stable. 𝜙 = 0 is asymptotically stable if for all �̂� close to 0 and every behavioral distribution 
𝜎 ∈ Σ∗(�̂�, 𝜆) that society potentially reaches at this �̂�, norm dynamics satisfy: ̇̂

𝜙 < 0. Thus, 𝜙 = 0 is asymptotically stable if ∃𝜖 > 0 s.t. 
�̂�(1 − �̂�)[(𝜎1 − 𝜎0)(𝛾 𝑣(�̂�) −Δ𝑚(𝜓∗(�̂�, 𝜆))) − 𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(�̂�)] < 0 for all �̂� ∈ (0, 𝜖) and 𝜎 ∈ Σ∗(�̂�, 𝜆). Since �̂�(1 − �̂�) > 0 ∀�̂� ∉ {0, 1}
and argmin𝑎 Δ𝑚(𝑎) = 0, this condition is satisfied if (𝜎1 − 𝜎0)(𝛾 𝑣(�̂�) −Δ𝑚(0)) − 𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(�̂�) < 0 ∀�̂� ∈ (0, 𝜖), 𝜎 ∈ Σ∗(�̂�, 𝜆). Let 𝜖

be sufficiently close to 0 s.t. 𝛾Δ𝑘(�̂�) < 0 and 𝛾 𝑣(�̂�) −Δ𝑚(0) < 0 ∀�̂� ∈ (0, 𝜖). Such an 𝜖 exists due to continuity of Δ𝑘 and 𝑣. Moreover, 
we know that (𝜎1 −𝜎0) ∈ [0, 1] (see Lemma 9) and 𝛾(1 −𝜎1)ℎ ≥ 0. Thus, (𝜎1 −𝜎0)(𝛾 𝑣(�̂�) −Δ𝑚(0)) − 𝛾(1 −𝜎1)ℎ + 𝛾Δ𝑘(0) < 0 ∀�̂� ∈ (0, 𝜖)
and 𝜎 ∈ Σ∗(�̂�, 𝜆). 𝜙 = 0 is an asymptotically stable CE. □

Proof of Proposition 4. Consider any 𝜆 ∈ [0, 1]|Θ|. 𝜙 = 1 is asymptotically stable if for all �̂� close to 1 and every behavioral dis-

tribution 𝜎 ∈ Σ∗(�̂�, 𝜆) that society potentially reaches at this �̂�, norm dynamics satisfy: ̇̂
𝜙 > 0. Thus, 𝜙 = 1 is asymptotically stable 

if ∃𝜖 > 0 s.t. �̂�(1 − �̂�)[(𝜎1 − 𝜎0)(𝛾 𝑣(�̂�) − Δ𝑚(𝜓∗(�̂�, 𝜆))) − 𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(�̂�)] > 0 for all �̂� ∈ (1 − 𝜖, 1) and 𝜎 ∈ Σ∗(�̂�, 𝜆). Since 
�̂�(1 − �̂�) > 0 ∀�̂� ∈ (0, 1), this condition is satisfied if (𝜎1 − 𝜎0)(𝛾 𝑣(�̂�) − Δ𝑚(𝜓∗(1, 𝜆))) − 𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(�̂�) > 0 for all �̂� ∈ (1 − 𝜖, 1)
and 𝜎 ∈ Σ∗(�̂�, 𝜆).

First, suppose 𝜃𝑠 �̃�(1) < Δ𝑚(𝜓∗(1, 𝜆)) for all 𝜃 ∈ supp(𝜆). lim𝑥→1(𝜓∗(𝑥, 𝜆)) = 𝜓∗(1, 𝜆) ⇒ lim𝑥→1(Δ𝑚(𝜓∗(𝑥, 𝜆))) = Δ𝑚(𝜓∗(1, 𝜆)). Thus, 
for all �̂� in some neighborhood of 𝜙 = 1, 𝜃𝑠 �̃�(�̂�) < Δ𝑚(𝜓∗(�̂�, 𝜆)) ⇒ 𝜎0 = 0 ∀𝜎 ∈ Σ∗(�̂�, 𝜆). (lim𝑥→1(𝜎∗

0 ) = 0 ∧ lim𝑥→1(𝜎∗
1 ) = 𝜓∗(1, 𝜆)) ⇒

lim𝑥→1(min𝜎∈Σ∗(𝑥,𝜆)((𝜎1 − 𝜎0)(𝛾 𝑣(𝑥) − Δ𝑚(𝜓∗(1, 𝜆))) − 𝛾(1 − 𝜎∗
1 )ℎ + 𝛾Δ𝑘(𝑥))) = 𝜓∗(1, 𝜆)(𝛾 𝑣(1) − Δ𝑚(𝜓∗(1, 𝜆))) − 𝛾(1 − 𝜓∗(1, 𝜆))ℎ +

𝛾Δ𝑘(1) > 0 ⇒ ∃𝜖 > 0 s.t. ∀�̂� ∈ (1 − 𝜖, 1), 𝜎 ∈ Σ∗(�̂�, 𝜆), (𝜎1 − 𝜎0)(𝛾 𝑣(�̂�) −Δ𝑚(𝜓∗(1, 𝜆))) − 𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(𝑥) > 0.
Next, suppose Δ𝑘(1) > (1 − 𝜓∗(1, 𝜆))ℎ. (Δ𝑘(1) > (1 − 𝜓∗(1, 𝜆))ℎ and lim𝑥→1(𝜎∗

1 ) = 𝜓∗(1, 𝜆)) ⇒ lim𝑥→1(min𝜎∈Σ∗(𝑥,𝜆)(Δ𝑘(𝑥) − (1 −
𝜎1)ℎ)) =Δ𝑘(1) − (1 − 𝜓∗(1, 𝜆))ℎ > 0. Moreover, lim𝑥→1(𝜎∗

1 ) = 𝜓∗(1, 𝜆) ⇒ lim𝑥→1(min𝜎∈Σ∗(𝑥,𝜆)(𝜎1(𝛾 𝑣(𝑥) −Δ𝑚(𝜓∗(𝑥, 𝜆))) − 𝛾(1 − 𝜎1)ℎ +
𝛾Δ𝑘(𝑥))) = 𝜓∗(1, 𝜆)(𝛾 𝑣(1) − Δ𝑚(𝜓∗(1, 𝜆))) − 𝛾(1 − 𝜓∗(1, 𝜆))ℎ + 𝛾Δ𝑘(1) > 0. Hence, there is some 𝜖 > 0 s.t. ∀�̂� ∈ (1 − 𝜖, 1) and 𝜎 ∈
Σ∗(�̂�, 𝜆), −𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(�̂�) > 0 and 𝜎1(𝛾 𝑣(�̂�) − Δ𝑚(𝜓∗(�̂�, 𝜆))) − 𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(�̂�). Since (𝜎1 − 𝜎0) ∈ [0, 𝜎1] (see Lemma 9), 
(𝜎1 − 𝜎0)(𝛾 𝑣(�̂�) −Δ𝑚(𝜓∗(�̂�, 𝜆))) − 𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(�̂�) > 0.

Thus, the stated conditions imply that 𝜙 = 1 is an asymptotically stable CE at 𝜆. □

Proof of Proposition 5. Consider any 𝜆 ∈ [0, 1]|Θ| s.t. 𝜙∗ = 1 is a CE of Proposition 4. First, consider the case of 𝜓∗(1, 𝜆)(𝛾 𝑣(1) −
Δ𝑚(𝜓∗(1, 𝜆))) − 𝛾(1 − 𝜓∗(1, 𝜆))ℎ + 𝛾Δ𝑘(1) > 0 and Δ𝑘(1) > (1 − 𝜓∗(1, 𝜆))ℎ . Since these inequalities are strict, there is some 𝜖 > 0 s.t. 
for all 𝑥 ∈ (𝜓∗(1, 𝜆) − 𝜖, 𝜓∗(1, 𝜆) + 𝜖), 𝑥(𝛾 𝑣(1) −Δ𝑚(𝑥)) − 𝛾(1 −𝑥)ℎ + 𝛾Δ𝑘(1) > 0 and Δ𝑘(1) > (1 −𝑥)ℎ. Consider any such 𝜖. Lemma 16
implies that there is a neighborhood 𝑈 of 𝜆 s.t. �̂� ∈ 𝑈 ⇒ 𝜓∗(1, �̂�) ∈ (𝜓∗(1, 𝜆) − 𝜖, 𝜓∗(1, 𝜆) + 𝜖). Hence, there is a neighborhood 𝑈 of 
𝜆 s.t. �̂� ∈ 𝑈 implies that the sufficient conditions for a perfect-social-norm CE are satisfied at �̂�. Thus, 𝜙∗ = 1 is a CE for all �̂� ∈ 𝑈 for 
some neighborhood 𝑈 of 𝜆.

Next, consider the case of 𝜓∗(1, 𝜆)(𝛾 𝑣(1) − Δ𝑚(𝜓∗(1, 𝜆))) − 𝛾(1 − 𝜓∗(1, 𝜆))ℎ + 𝛾Δ𝑘(1) > 0 and 𝜃𝑠 �̃�(1) < Δ𝑚(𝜓∗(1, 𝜆)) for all 
𝜃 ∈ supp(𝜆). Recall from the proof of Proposition 4 that lim𝑥→1(𝜎∗

0 ) = 0 and lim𝑥→1(𝜎∗
1 ) = 𝜓∗(1, 𝜆) at 𝜆. For any �̂� ∈ [0, 1]|Θ|, 

𝜙 = 1 is a CE if for all 𝑥 in some neighborhood of 1 society reaches a behavioral distribution 𝜎 ∈ Σ∗(𝑥, �̂�) s.t. (𝜎1 − 𝜎0)(𝛾 𝑣(𝑥) −
Δ𝑚(𝜓∗(𝑥, �̂�))) − 𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(𝑥) > 0. This holds if lim𝑥→1(min𝜎∈Σ∗(𝑥,�̂�)((𝜎1 − 𝜎0)(𝛾 𝑣(𝑥) −Δ𝑚(𝜓∗(𝑥, �̂�))) − 𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(𝑥))) =
lim𝑥→1(min𝜎∈Σ∗(𝑥,�̂�)((𝜓∗(1, �̂�) − 𝜎0)(𝛾 𝑣(1) −Δ𝑚(𝜓∗(1, �̂�))) − 𝛾(1 − 𝜓∗(1, �̂�))ℎ + 𝛾Δ𝑘(1))) > 0. There is 𝛼 > 0 s.t. for all 𝑦1 ∈ (𝜓∗(1, 𝜆) −
𝛼, 𝜓∗(1, 𝜆) + 𝛼) and 𝑦0 ∈ [0, 𝛼), (𝑦1 − 𝑦0)(𝛾 𝑣(1) − Δ𝑚(𝑦1)) − 𝛾(1 − 𝑦1)ℎ + 𝛾Δ𝑘(1) > 0. Consider any such 𝛼. Let 𝜉 ∈ (0, 𝛼) be s.t. 
�̂� ∈ {𝑥 ∈ [0, 1]|Θ| ∶

∑
𝜃∈Θ |𝜆𝜃 − 𝑥𝜃| < 𝜉} ⇒ (𝜓∗(1, �̂�) ∈ (𝜓∗(1, 𝜆) − 𝛼, 𝜓∗(1, 𝜆) + 𝛼) and Δ𝑚(𝜓∗(1, �̂�)) > �̃�(1) ∀𝜃 ∈ supp(𝜆)). Such 

𝜉 exists by Lemma 16 and continuity of all involved functions. Δ𝑚(𝜓∗(1, �̂�)) > �̃�(1) ∀𝜃 ∈ supp(𝜆) ⇒ ∃𝜖 > 0 s.t. Δ𝑚(𝜓∗(𝑥, �̂�)) >

�̃�(𝑥) ∀𝑥 ∈ (1 − 𝜖, 1), 𝜃 ∈ supp(𝜆) ⇒ 𝜎0,𝜃 = 0 ∀𝜃 ∈ supp(𝜆), 𝑥 ∈ (1 − 𝜖, 1), 𝜎 ∈ Σ∗(𝑥, �̂�). Consider any such 𝜖. It follows that for all 
𝜃 ∈ supp(𝜆), 𝑥 ∈ (1 − 𝜖, 1), and 𝜎 ∈ Σ∗(𝑥, �̂�), 𝜎0 =

∑
𝜃∈supp(�̂�) �̂�𝜃 𝜎0,𝜃 =

∑
𝜃∈Θ(�̂�𝜃 − 𝜆𝜃)𝜎0,𝜃 +

∑
𝜃∈supp(𝜆) 𝜆𝜃 𝜎0,𝜃 =

∑
𝜃∈Θ(�̂�𝜃 − 𝜆𝜃)𝜎0,𝜃 ≤
261

∑
𝜃∈Θ(�̂�𝜃 − 𝜆𝜃) ≤ 𝜉. Thus, �̂� ∈ {𝑥 ∈ [0, 1]|Θ| ∶

∑
𝜃∈Θ |𝜆𝜃 − 𝑥𝜃| < 𝜉} ⇒ 𝜎0 ≤ 𝛼 ∀𝑥 ∈ (1 − 𝜖, 1), 𝜎 ∈ Σ∗(𝑥, �̂�) ⇒ lim𝑥→1(max𝜎∈Σ∗(𝑥,�̂�)(𝜎0) ≤ 𝛼. 
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(lim𝑥→1 max𝜎∈Σ∗(𝑥,�̂�)(𝜎0) < 𝛼 and 𝜓∗(1, �̂�) ∈ (𝜓∗(1, 𝜆) − 𝛼, 𝜓∗(1, 𝜆) + 𝛼)) ⇒ lim𝑥→1(min𝜎∈Σ∗(𝑥,�̂�)((𝜓∗(1, �̂�) − 𝜎0)(𝛾 𝑣(1) −Δ𝑚(𝜓∗(1, �̂�))) −
𝛾(1 − 𝜓∗(1, �̂�))ℎ + 𝛾Δ𝑘(1))) > 0 ⇒ 𝜙 = 1 is an asymptotically stable CE at �̂�. □

Proposition 17. Consider any specification of the model with Δ𝑘(⋅), 𝑣(⋅), Δ𝑚(⋅), ℎ, 𝛾 , and 𝜆 s.t. supp(𝜆) = {𝜃} ∧ (𝜃𝑠 , 𝜃𝑝) < (𝛾(1 + 𝛿), 𝛾(ℎ −
(1 + 𝛿)ℎ̃)).

1. • For all 𝑥 ∈ℝ≥0, (𝛾 = 𝑥 ⇒ 𝜙∗ = 1 is a CE of Proposition 4) ⇒ (𝛾 > 𝑥 ⇒ 𝜙∗ = 1 is a CE of Proposition 4).

• For all 𝑥1(𝑧), (Δ𝑘(𝑧) = 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙∗ = 1 is a CE of Proposition 4) ⇒ (Δ𝑘(𝑧) > 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙∗ = 1 is a CE of 
Proposition 4).

• For all 𝑥(𝑧), (𝑣(𝑧) = 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙∗ = 1 is a CE of Proposition 4) ⇒ (𝑣(𝑧) > 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙∗ = 1 is a CE of Proposition 4).

• For all 𝑥(𝑧), (Δ𝑚(𝑧) = 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙∗ = 1 is a CE of Proposition 4) ⇒ (Δ𝑚(𝑧) < 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙∗ = 1 is a CE of 
Proposition 4).

2. (a) • ∃𝑥 s.t. ℎ < 𝑥 ⇒ 𝜙∗ = 1 is a CE of Proposition 4.

• ∃𝑥(𝑧) s.t. Δ𝑚(𝑧) < 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙∗ = 1 is a CE of Proposition 4.

(b) • ∃𝑥(𝑧) s.t. Δ𝑘(𝑧) > 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙∗ = 1 is a CE of Proposition 4.

• ∃𝑥(𝑧) s.t. 𝑣(𝑧) > 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙∗ = 1 is a CE of Proposition 4.

3. 𝜕(𝑧(𝛾 𝑣(1)−Δ𝑚(𝑧))−𝛾(1−𝑧)ℎ+𝛾Δ𝑘(1))
𝜕𝑧

> 0 ⇔ ℎ+𝛾 𝑣(1)−Δ𝑚(𝑧)
𝑧

> Δ𝑚′(𝑧).

Proof. First, note that if supp(𝜆) is a singleton, then 𝜃𝑠 �̃�(1) ≥ Δ𝑚(𝜓∗(1, 𝜆)) ⇒ 𝜃𝑠 �̃�(1) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 > Δ𝑚(𝜓∗(1, 𝜆)) ⇒ 𝜓∗(1, 𝜆) = 1 ⇒
Δ𝑘(1) > (1 −𝜓∗(1, 𝜆))ℎ. Hence, 2a does not hold implies 2b holds. To investigate a perfect-social-norm CE at homogeneous preference 
distribution 𝜆 it, thus, suffices to investigate when Condition 1 of Proposition 4 holds.

Consider any specification of the model. We start with the first statement. Consider any 𝑥 s.t. 𝛾 = 𝑥 ⇒ Condition 1 of Proposition 4
holds. Hence, 𝜓∗(1, 𝜆)(𝑥𝑣(1) −Δ𝑚(𝜓∗(1, 𝜆))) −𝑥(1 −𝜓∗(1, 𝜆))ℎ +𝑥Δ𝑘(1) > 0. −Δ𝑚(𝜓∗(1, 𝜆)) < 0 ⇒ 𝜓∗𝑣(1) −(1 −𝜓∗(1, 𝜆))ℎ +Δ𝑘(1) >

0 ⇒ (𝛾 > 𝑥 and Δ𝑚(⋅), 𝜓∗(1, 𝜆), Δ𝑘(⋅), 𝑣(⋅) independent of 𝛾 ⇒ 𝜓∗(1, 𝜆)(𝛾 𝑣(1) −Δ𝑚(𝜓∗(1, 𝜆))) − 𝛾(1 − 𝜓∗(1, 𝜆))ℎ + 𝛾Δ𝑘(1) > 0 ⇒ Con-
dition 1 of Proposition 4 holds). The proof of the second bullet point of the first statement (concerning Δ𝑘(⋅)) closely follows the 
above given the observation that Δ𝑘(𝑧) > 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒Δ𝑘(1) > 𝑥(1).

Next, consider any 𝑥(𝑧) s.t. 𝑣(𝑧) = 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ Condition 1 of Proposition 4 holds. Let �̄� be s.t. 𝑣(𝑧) = 𝑥(𝑧)(⇔ �̃�(𝑧) = 𝑥(𝑧)
1+𝛿

) ∀𝑧 ∈
[0, 1] ⇒ 𝜓∗(1, 𝜆) = �̄� . Hence, �̄�(𝛾 𝑥(1) −Δ𝑚(�̄�)) − 𝛾(1 − �̄�)ℎ + 𝛾Δ𝑘(1) > 0. First, suppose �̄� = 1. Hence, 𝛾 𝑥(1) −Δ𝑚(1) + 𝛾Δ𝑘(1) > 0. 
(𝑣(𝑧) > 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ �̃�(1) >

𝑥(1)
1+𝛿

⇒ 𝜓∗(1, 𝜆) ≥ �̄� ⇒ 𝜓∗(1, 𝜆) = 1) and 𝛾 𝑣(1) −Δ𝑚(1) + 𝛾Δ𝑘(1) > 0 ⇒ Condition 1 of Proposition 4

holds. Next, suppose �̄� ∈ (0, 1). Hence, �̄�(𝛾 𝑥(1) − 𝜃𝑠
𝑥(1)
1+𝛿

− 𝜃𝑠 ℎ̃ − 𝜃𝑝) − 𝛾(1 − �̄�)ℎ + 𝛾Δ𝑘(1) > 0 ⇔ �̄�(𝛾 − 𝜃𝑠

1+𝛿
)𝑥(1) + �̄�(𝛾 ℎ − 𝜃𝑠 ℎ̃ −

𝜃𝑝) − 𝛾 ℎ + 𝛾Δ𝑘(1) > 0. 𝑣(𝑧) > 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ �̃�(1) >
𝑥(1)
1+𝛿

⇒ 𝜓∗(1, 𝜆) ≥ �̄� . 𝑣(1) > 𝑥(1), 𝜓∗(1, 𝜆) ≥ �̄� , 𝛾(1 + 𝛿) > 𝜃𝑠, and 𝜃𝑝 + 𝜃𝑠 ℎ̃ <

𝜃𝑝 + 𝛾(1 + 𝛿)ℎ̃ < 𝛾 ℎ ⇒ 𝜓∗(1, 𝜆)(𝛾 − 𝜃𝑠

1+𝛿
)𝑣(1) + 𝜓∗(1, 𝜆)(𝛾 ℎ − 𝜃𝑠 ℎ̃ − 𝜃𝑝) − 𝛾 ℎ + 𝛾Δ𝑘(1) > 0 imply Condition 1 of Proposition 4 holds. The 

proof of the last bullet point of the first statement (concerning Δ𝑚(⋅)) closely resembles the previous one.
Next, we turn to the second statement. First, consider 𝑥 < Δ𝑘(1). ℎ < 𝑥 ⇒ (a) 𝜓∗(1, 𝜆) = 0 ∧Δ𝑘(1) > ℎ ⇒ Condition 1 of Proposi-

tion 4 holds, (b) 𝜓∗(1, 𝜆) ∈ (0, 1) ⇒Δ𝑚(𝜓∗(1, 𝜆)) = 𝜃𝑠 �̃�(1) +𝜃𝑠 ℎ̃+𝜃𝑝 ⇒ (𝜓∗(1, 𝜆)(𝛾 𝑣(1) −𝜃𝑠 �̃�(1) −𝜃𝑠 ℎ̃−𝜃𝑝) −𝛾(1 −𝜓∗(1, 𝜆))ℎ +𝛾Δ𝑘(1) >

0 ⇔ 𝜓∗(1, 𝜆)(𝛾 − 𝜃𝑠

1+𝛿
)𝑣(1) + 𝜓∗(1, 𝜆)(𝛾 ℎ − 𝜃𝑠 ℎ̃ − 𝜃𝑝) − 𝛾 ℎ + 𝛾Δ𝑘(1) > 0, Δ𝑘(1) > (1 − 𝜓∗(1, 𝜆))ℎ > ℎ, 𝜃𝑠 < (1 + 𝛿)𝛾 , 𝜃𝑠 ℎ̃ + 𝜃𝑝 < 𝛾 ℎ) ⇒

Condition 1 of Proposition 4 holds, (c) 𝜓∗(1, 𝜆) = 1 ⇒ 𝜃𝑠 �̃�(1) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 ≥Δ𝑚(1) ⇒ 𝛾 𝑣(1) + 𝛾 ℎ > Δ𝑚(1) ⇒ 𝛾 𝑣(1) + 𝛾Δ𝑘(1) > Δ𝑚(1) ⇒
Condition 1 of Proposition 4 holds.

Next, consider any 𝑥(𝑧) s.t. 𝛾 𝑥(1) > Δ𝑚(1) + 𝛾 ℎ. Δ𝑘(𝑧) > 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ Δ𝑘(1) > 𝑥(1). (𝜓∗(1, 𝜆)(𝛾 𝑣(1) − Δ𝑚(𝜓∗(1, 𝜆))) − 𝛾(1 −
𝜓∗(1, 𝜆))ℎ + 𝑥(1) > −Δ𝑚(1) − 𝛾 ℎ + 𝑥(1) > 0) ⇒ (Δ𝑘(1) > 𝑥(1) ⇒ Condition 1 of Proposition 4 holds).

Next, consider any 𝑥(𝑧) s.t. Δ𝑚(1) < min{𝛾 𝑥(1) +𝛾Δ𝑘(1), 𝜃𝑠
𝑥(1)
1+𝛿

+𝜃𝑠 ℎ̃+𝜃𝑝}. 𝑣(1) > 𝑥(1) ⇒ 𝜓∗(1, 𝜆𝑑 ) = 1 ∧Δ𝑚(1) < 𝛾 𝑣(1) +𝛾Δ𝑘(1) ⇒
Condition 1 of Proposition 4 holds.

Next, consider any 𝑥(𝑧) s.t. 𝑥(1) < min{𝛾 𝑣(1) + 𝛾Δ𝑘(1), 𝜃𝑠 �̃�(1) + 𝜃𝑠 ℎ̃ + 𝜃𝑝}. By the same reasoning as above, Conditions 1 and 2 of 
Proposition 4 hold.

Lastly, statement 3 follows from taking the partial derivative of Condition 1 of Proposition 4. □

Proof of Proposition 7. Consider any 𝜆 ∈ [0, 1]|Θ| and 𝜙 ∈ (0, 1) s.t. the stated conditions hold. 𝜃𝑠 �̃�(𝜙) < Δ𝑚(𝜙) < 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ +
𝜃𝑝 ∀𝜃 ∈ supp(𝜆) ⇒ (𝜎1, 𝜎0) = (1, 0) ∀𝜎 ∈ Σ∗(𝜙, 𝜆). Moreover, ∃𝜖 > 0 s.t. 𝜃𝑠 �̃�(�̂�) < Δ𝑚(�̂�) < 𝜃𝑠 �̃�(�̂�) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 ∀𝜃 ∈ supp(𝜆) and �̂� ∈
(𝜙 − 𝜖, 𝜙 + 𝜖) ⇒ (𝜎1, 𝜎0) = (1, 0) for all �̂� ∈ (𝜙 − 𝜖, 𝜙 + 𝜖) and 𝜎 ∈ Σ∗(�̂�, 𝜆). Thus, the equilibrium values 𝜎∗

0 , 𝜎∗
1 , and 𝜓∗(𝜙, 𝜆) are 

continuous and differentiable at 𝜙; 
d𝜎∗

0
d𝑥

|𝑥=𝜙 = 0, 
d𝜎∗

1
d𝑥

|𝑥=𝜙 = 0, and 𝜕𝜓∗(𝑥,𝜆)
𝜕𝑥

|𝑥=𝜙 = 1.

Consider norm dynamics (Definition 7). ((𝜎1, 𝜎0) = (1, 0) and 𝛾(𝑣(𝜙∗) + Δ𝑘(𝜙∗)) = Δ𝑚(𝜙∗)) ⇒ �̇� = 0. Thus, 𝜙 is a rest point. 
𝛾( d𝑣(𝑥)

d𝑥
|𝑥=𝜙∗ + dΔ𝑘(𝑥)

d𝑥
|𝑥=𝜙) <

dΔ𝑚(𝜙)
d𝑥

|𝑥=𝜙 ensures asymptotic stability. To see this, note that since equilibrium behavior satisfies 
(𝜎∗

1 , 𝜎∗
0 ) = (1, 0) in some interval around 𝜙, we can write norm dynamics at 𝜙 as a function of the social norm only. Moreover, 

�̂�(1 − �̂�) > 0 ∀�̂� ∈ (𝜙 − 𝜖, 𝜙 + 𝜖). Thus, a rest point is asymptotically stable if

d[𝐶1(𝜎∗, 𝑥) − 𝐶0(𝜎∗, 𝑥)]
d𝑥

|𝑥=𝜙 = 𝛾( d𝑣(𝑥)
d𝑥

|𝑥=𝜙 + dΔ𝑘(𝑥)
d𝑥

|𝑥=𝜙) −
dΔ𝑚(𝑥)

d𝑥
|𝑥=𝜙 < 0.
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Consequently, 𝜙 is asymptotically stable under the stated conditions and, thus, an asymptotically stable CE. □
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Proposition 18. Consider any 𝜆 ∈ [0, 1]|Θ| for which a CE 𝜙∗ ∈ (0, 1) exists. For all 𝜖 > 0, there is 𝜉 > 0 s.t. �̂� ∈ {𝑥 ∈ [0, 1]|Θ| ∶
∑

𝜃∈Θ |𝜆𝜃 −
𝑥𝜃| < 𝜉} implies that there is some Φ̂ ⊂ (𝜙∗ − 𝜖, 𝜙∗ + 𝜖) s.t.

1. Φ̂ is a minimal, asymptotically stable set at �̂� and

2. for all �̌� ∈ {𝑥 ∈ [0, 1]|Θ| ∶
∑

𝜃∈Θ |𝜆𝜃 − 𝑥𝜃| < 𝜉}, there is some minimal, asymptotically stable set Φ̌ ⊂ (𝜙∗ − 𝜖, 𝜙∗ + 𝜖) at �̌� s.t. each 
�̂� ∈ Φ̂ is in it’s basin of attraction.

Proof. Consider any 𝜆 ∈ [0, 1]|Θ| for which some CE 𝜙∗ ∈ (0, 1) exists. Moreover, consider some 𝜖 > 0. Let 𝜂 ∈ (0, 𝜖) be s.t. (1) �̇� > 0
(⇔ (𝜎1 − 𝜎0)(𝛾 𝑣(𝑥) −Δ𝑚(𝑥𝜎1 + (1 − 𝑥)𝜎0) − 𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(𝑥) > 0) for all 𝑥 ∈ [𝜙 − 𝜂, 𝜙) and (2) �̇� < 0 (⇔ (𝜎1 − 𝜎0)(𝛾 𝑣(𝑥) −Δ𝑚(𝑥𝜎1 +
(1 − 𝑥)𝜎0) − 𝛾(1 − 𝜎1)ℎ + 𝛾Δ𝑘(𝑥) < 0) for all 𝑥 ∈ (𝜙, 𝜙 + 𝜂] and for all 𝜎 ∈ Σ∗(𝑥, 𝜆). Such an 𝜂 exists since 𝜙 is a CE at 𝜆. Let 𝑥 = 𝜙 + 𝜂, 
and 𝑥 = 𝜙 − 𝜂.

Consider 𝜎0 and 𝜎1 for all 𝜎 ∈ Σ∗(𝑥, 𝜆). Since Δ𝑚, �̃�, and ℎ̃ are continuous, ∃𝛼 > 0 s.t. |𝜎𝑛 − �̂�𝑛| < 𝛼 ∀𝑛 ∈ {0, 1} ⇒ (�̂�1 − �̂�0)(𝛾 𝑣(𝑥) −
Δ𝑚(𝑥�̂�1 + (1 − 𝑥)�̂�0)) − 𝛾(1 − �̂�1)ℎ̃+ 𝛾Δ𝑘(𝑥) > 0. Consider any such 𝛼 > 0. Proposition 17 implies that ∃𝜉 s.t. ∀�̂� ∈ [0, 1]|Θ|, 

∑
𝜃∈Θ |𝜆𝜃 −

�̂�𝜃| < 𝜉 implies that for all �̂� ∈ Σ∗(𝑥, �̂�) and 𝜎 ∈ Σ∗(𝑥, 𝜆), |𝜎𝑛 − �̂�𝑛| < 𝛼 ∀𝑛 ∈ {0, 1}. Consequently, 
∑

𝜃∈Θ |𝜆𝜃 − �̂�𝜃| < 𝜉 ⇒ �̇� > 0 at any 
�̂� ∈ Σ∗(𝑥, �̂�).

Analogously, we can show that there is some 𝜉 > 0 s.t. for all �̂� ∈ [0, 1]|Θ|, 
∑

𝜃∈Θ |𝜆𝜃 − �̂�𝜃| < 𝜉 implies that �̇� < 0 at any �̂� ∈ Σ∗(𝑥, �̂�).
Let 𝜉 ∶= min{𝜉 , 𝜉}. �̂� ∈ {𝑥 ∈ [0, 1]|Θ| ∶

∑
𝜃∈Θ |𝜆𝜃 − 𝑥𝜃| < 𝜉} ⇒ (�̇� > 0 at any 𝜎 ∈ Σ∗(𝑥, �̂�) and �̇� < 0 at any 𝜎 ∈ Σ∗(𝑥, �̂�)). Whenever 

society is at social norm 𝑥 ∈ {𝑥, 𝑥}, preference distribution �̂�, and any NE �̂� ∈ Σ∗(𝑥, �̂�), the social norm 𝑥 decreases if 𝑥 = 𝑥 and 
increases if 𝑥 = 𝑥. Hence, the social norm must evolve to some minimal, asymptotically stable set Φ̂∗ ⊂ (𝑥, 𝑥) = (𝜙∗ − 𝜂, 𝜙∗ + 𝜂) ⊂

(𝜙∗ − 𝜖, 𝜙∗ + 𝜖) at �̂�.
Next, we investigate norm evolution at any other �̌� ∈ {𝑥 ∈ [0, 1]|Θ| ∶

∑
𝜃∈Θ |𝜆𝜃 − 𝑥𝜃| < 𝜉}, when starting at some element �̂� ∈ Φ̂. 

�̂� ∈ Φ̂ ⊂ (𝑥, 𝑥) and �̇� > 0 ∧ �̇� < 0 at �̌� imply that there is some minimal, asymptotically stable set Φ̌ ⊂ (𝑥, 𝑥) that norms evolve to when 
starting at �̂� ∈ Φ̂. □

Lemma 18. Consider any 𝜆 ∈ [0, 1]|Θ| for which a CE 𝜙∗ ∈ (0, 1) with equilibrium share 𝜓∗(𝜙∗, 𝜆) = 𝜙∗ exists. Moreover, let 𝜏 ∈ ℝ≥0 be 
s.t. 𝜏 𝑣(𝜙∗) < Δ𝑚(𝜙∗) < 𝜏 ℎ + 𝜏 𝑣(𝜙∗). There is 𝜉 > 0 s.t. �̂� ∈ {𝑥 ∈ [0, 1]|Θ| ∶

∑
𝜃∈Θ |𝜆𝜃 − 𝑥𝜃| < 𝜉} implies that 𝜏 𝑣(�̂�) < Δ𝑚(𝜓∗(�̂�, �̂�)) <

𝜏 ℎ + 𝜏 𝑣(�̂�) for all �̂� ∈ Φ̂∗, where Φ̂∗ is the minimal, asymptotically stable set at �̂� with 𝜙∗ in it’s basin of attraction.

Proof. Consider any 𝜆 ∈ [0, 1]|Θ| for which a CE 𝜙∗ ∈ (0, 1) with equilibrium share 𝜓∗(𝜙∗, 𝜆) = 𝜙∗ exists and 𝜏 ∈ ℝ≥0 s.t. 𝜏 𝑣(𝜙∗) <

Δ𝑚(𝜙∗) < 𝜏 ℎ + 𝜏 𝑣(𝜙∗). Consider any 𝛼, 𝛽 > 0 s.t. ∀𝑥 ∈ (𝜙∗ − 𝛼, 𝜙∗ + 𝛼), 𝑦 ∈ (𝜙∗ − 𝛽 , 𝜙∗ + 𝛽), 𝜏 𝑣(𝑥) < Δ𝑚(𝑦) < 𝜏 ℎ + 𝜏 𝑣(𝑥). Such 𝛼 and 𝛽

exists due to continuity of all involved functions. Consider any 𝛽 < 𝛽 so small that for all 𝜙 ∈ (𝜙∗−𝛽 , 𝜙∗+𝛽), 𝜓∗(𝜙, 𝜆) ∈ (𝜙∗−𝛽 , 𝜙∗+𝛽). 
Lemma 15 implies that such 𝛽 exists. Let 𝜉 > 0 be s.t. ∀�̂� ∈ {𝑥 ∈ [0, 1]|Θ| ∶

∑
𝜃∈Θ |𝜆𝜃 − 𝑥𝜃| < 𝜉}, �̂� ∈ (𝜙∗ − min{𝛼, 𝛽}, 𝜙∗ + min{𝛼, 𝛽})

for all �̂� ∈ Φ̂∗, where Φ̂∗ is the minimal, asymptotically stable set at �̂� with 𝜙∗ in it’s basin of attraction. Such 𝜉 exists due to 
Proposition 18. Consequently, for all ∀�̂� ∈ {𝑥 ∈ [0, 1]|Θ| ∶

∑
𝜃∈Θ |𝜆𝜃 − 𝑥𝜃| < 𝜉} and �̂� ∈ Φ̂∗, 𝜏 𝑣(�̂�) < Δ𝑚(𝜓∗(�̂�, �̂�)) < 𝜏 ℎ + 𝜏 𝑣(�̂�). □

Proof of Lemma 1. Consider any 𝜆 s.t. supp(𝜆) = {𝜃} ∧ 𝜃 < (𝛾(1 + 𝛿), 𝛾(ℎ − (1 + 𝛿)ℎ̃)). We start with the first statement. Consider 
any 𝑧1 < 𝑧2 and 𝐼𝑦 = {𝜙 ∈ [0, 1] ∶ 𝜃𝑠 �̃�(𝜙) < 𝛾 𝑣(𝜙) + 𝛾Δ𝑘(𝜙) < 𝜃𝑠 �̃�(𝜙) + 𝑧𝑦} ∀𝑦 ∈ {1, 2}. To proof the statement, it suffices to show that 
𝐼1 ⊆ 𝐼2, which is clearly true.

Next, consider the second statement of the lemma. Suppose 𝜃𝑠 ℎ̃ + 𝜃𝑝 = 0. Hence, 𝐼𝑝(𝜆) = {𝜙 ∈ [0, 1] ∶ 𝜃𝑠 �̃�(𝜙) < 𝛾 𝑣(𝜙) + 𝛾Δ𝑘(𝜙) <

𝜃𝑠 �̃�(𝜙)} = ∅. Lastly, it remains for us to show that 𝜃𝑠 ℎ̃+ 𝜃𝑝 > 0 ⇒ 𝐼𝑝(𝜆) ≠ ∅. Note that 𝛾 𝑣(0) + 𝛾Δ𝑘(0) = 𝛾(1 + 𝛿)�̃�(0) + 𝛾Δ𝑘(0) < 𝜃𝑠 �̃�(0). 
𝜃𝑠 > (1 + 𝛿)𝛾 ∧ Δ𝑘( 12 ) = 0 ⇒ 𝛾 𝑣( 12 ) + 𝛾Δ𝑘( 12 ) = 𝛾(1 + 𝛿)�̃�( 12 ) + 𝛾Δ𝑘( 12 ) > 𝜃𝑠 �̃�( 12 ). Hence, ∃𝑥 ∈ (0, 12 ) s.t. (i) 𝜃𝑠 �̃�(𝑥) = 𝛾 𝑣(𝑥) + 𝛾Δ𝑘(𝑥) <

𝜃𝑠 �̃�(𝑥) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 and 𝜃𝑠 �̃�′(𝑥) < 𝛾 𝑣′(𝑥) + 𝛾Δ𝑘′(𝑥). Thus, ∃𝜖 ∈ (0, 12 − 𝑥) s.t. ∀𝑦 ∈ (𝑥, 𝑥 + 𝜖), 𝜃𝑠 �̃�(𝑦) = 𝛾 𝑣(𝑦) + 𝛾Δ𝑘(𝑦) < 𝜃𝑠 �̃�(𝑦) + 𝜃𝑠 ℎ̃ + 𝜃𝑝. 
Hence, 𝐼𝑝(𝜆) ∩ (0, 12 ) ≠ ∅ ⇒ 𝐼𝑝(𝜆) ≠ ∅. □

Proposition 19. Consider any specification with Δ𝑘(⋅), 𝑣(⋅), Δ𝑚(⋅), 𝛾 and 𝜆 s.t. supp(𝜆) = {𝜃}. Consider any 𝜙 ∈ (0, 1).

1. • For all 𝑥(𝑧), (𝑣(𝑧) = 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙 ∈ (0, 1) is a CE of Proposition 7 at 𝜆) ⇒ (∃𝜖 > 0 s.t. 𝑣(𝑧) ∈ (𝑥(𝑧), 𝑥(𝑧) +𝜖) ∀𝑧 ∈ [0, 1] ⇒ ∃Φ
s.t. 𝜙 < min(Φ) and Φ is a minimal, asymptotically stable set at 𝜆).

• For all 𝑥(𝑧), (Δ𝑚(𝑧) = 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙 ∈ (0, 1) is a CE of Proposition 7 at 𝜆) ⇒ (∃𝜖 > 0 s.t. Δ𝑚(𝑧) ∈ (𝑥(𝑧) − 𝜖, 𝑥(𝑧)) ∀𝑧 ∈
[0, 1] ⇒ ∃Φ s.t. 𝜙 < min(Φ) and Φ is a minimal, asymptotically stable set at 𝜆).

• For all 𝑥 ∈ ℝ≥0, (𝛾 = 𝑥 ⇒ 𝜙 ∈ (0, 1) is a CE of Proposition 7 at 𝜆) ⇒ (∃𝜖 > 0 s.t. 𝛾 ∈ (𝑥, 𝑥 + 𝜖) ⇒ ∃Φ s.t. 𝜙 < min(Φ) and Φ is a 
minimal, asymptotically stable set at 𝜆).

2. For all 𝑥(𝑧), (Δ𝑘(𝑧) = 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙 ∈ (0, 1) is a CE of Proposition 7 at 𝜆) ⇒ (|Δ𝑘(𝑧)| > |𝑥(𝑧)| ∀𝑧 ∈ [0, 1] ⇒ ∃Φ s.t. Φ is a CE 
at 𝜆 and (a) 𝜙 < min(Φ) if 12 < 𝜙 and (b) 𝜙 > max(Φ) if 12 > 𝜙).

Proof. Consider any specification of the model with Δ𝑘(⋅), 𝑣(⋅), Δ𝑚(⋅), 𝛾 , 𝛿, 𝜆 s.t. supp(𝜆) = {𝜃}, and any 𝜙 ∈ (0, 1).
For statement 1 of the proposition, suppose some 𝑥(𝑧) s.t. 𝑣(𝑧) = 𝑥(𝑧) ∀𝑧 ∈ [0, 1] ⇒ 𝜙 ∈ (0, 1) is a CE of Proposition 7 at 𝜆, which 
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implies 𝛾 𝑥(𝜙) + 𝛾Δ𝑘(𝜙) = Δ𝑚(𝜙) and 𝜃𝑠
𝑥(𝜙)
1+𝛿

< Δ𝑚(𝜙) < 𝜃𝑠
𝑥(𝜙)
1+𝛿

+ 𝜃𝑠 ℎ̃ + 𝜃𝑝. Let 𝜖 <
Δ𝑚(𝜙)

𝜃𝑠
− 𝑥(𝑧)

1+𝛿
. 𝑣(𝑧) ∈ (𝑥(𝑧), 𝑥(𝑧) + 𝜖) ∀𝑧 ∈ [0, 1] ⇒



 1) +

, �̂�), 1) =
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𝑣(𝜙) ∈ (𝑥(𝜙), 𝑥(𝜙) + 𝜖) ⇒ (𝛾 𝑣(𝜙) + 𝛾Δ𝑘(𝜙) > Δ𝑚(𝜙) ∧ 𝜃𝑠 �̃�(𝜙) < Δ𝑚(𝜙) < 𝜃𝑠 �̃�(𝜙) + 𝜃𝑠 ℎ̃ + 𝜃𝑝) ⇒ �̇� > 0. Hence, 𝑣(𝑧) ∈ (𝑥(𝑧), 𝑥(𝑧) + 𝜖) ∀𝑧 ∈
[0, 1] implies that �̇� > 0, implying that the norm dynamics move to some minimal, asymptotically stable set Φ s.t. 𝜙 < min(Φ). The 
proof for the remaining bullet points of statement 1 work analogously.

The proof of statement 2 works analogously to the above with the preceding observation that |Δ𝑘(𝑧)| > |𝑥(𝑧)| ∀𝑧 ∈ [0, 1] ⇒
|Δ𝑘(𝜙)| > |𝑥(𝜙)| ⇒ (a) Δ𝑘(𝜙) > 𝑥(𝜙) if 𝜙 >

1
2 and (b) Δ𝑘(𝜙) < 𝑥(𝜙) if 𝜙 <

1
2 . □

B.3. Approval preferences

Lemma 19. For all 𝜆 ∈ {𝑥 ∈ [0, 1]|Θ| ∶ 𝜃𝑑 ∈ supp(𝑥)}, 𝜃 ∈ supp(𝜆), 𝜙 ∈ [0, 1], 𝑛 ∈ {0, 1}, and 𝜎 ∈ Σ∗(𝜙, 𝜆), 𝐵𝑛,𝜃𝑑 (𝜎, 𝜙) ≥ 𝐵𝑛,𝜃(𝜎, 𝜙) and 
𝐵𝜃𝑑 (𝜎, 𝜙) ≥ 𝐵𝜃(𝜎, 𝜙).

Proof. Consider any 𝜆 ∈ {𝑥 ∈ [0, 1]|Θ| ∶ 𝜃𝑑 ∈ supp(𝑥)}, 𝜃 ∈ supp(𝜆), 𝜙 ∈ [0, 1], 𝑛 ∈ {0, 1}, and 𝜎 ∈ Σ∗(𝜙, 𝜆). Since 𝐵�̄�(𝜎, 𝜙) =
𝜙𝐵1,�̄�(𝜎, 𝜙) + (1 − 𝜙)𝐵0,�̄�(𝜎, 𝜙) ∀�̄� ∈ supp(𝜆), it is sufficient to show that 𝐵𝑛,𝜃𝑑 ≥ 𝐵𝑛,𝜃 for all 𝜃 ∈ supp(𝜆), 𝜙 ∈ [0, 1], 𝑛 ∈ {0, 1}, 𝜎 ∈
Σ∗(𝜙, 𝜆). Assume by contradiction that ∃𝜃 ∈ supp(𝜆), 𝑛 ∈ {0, 1}, 𝜙 ∈ [0, 1], 𝜎 ∈ Σ∗(𝜙, 𝜆) s.t. 𝐵𝑛,𝜃𝑑 (𝜎, 𝜙) < 𝐵𝑛,�̄�(𝜎, 𝜙). 𝐵𝑛,𝜃𝑑 (𝜎, 𝜙) ≠
𝐵𝑛,�̄�(𝜎, 𝜙) only if 𝑏(𝑎, 𝑛, 𝜓∗(𝜙, 𝜆), 𝜙) > 𝑏(1 −𝑎, 𝑛, 𝜓∗(𝜙, 𝜆), 𝜙) ∧𝜎𝑛,𝜃𝑑 ≠ 𝜎𝑛,�̄� . 𝑏(𝑎, 𝑛, 𝜓∗(𝜙, 𝜆), 𝜙) > 𝑏(1 −𝑎, 𝑛, 𝜓∗(𝜙, 𝜆), 𝜙) ⇒ 𝑢(𝑎, 𝑛, 𝜓∗(𝜙, 𝜆),

𝜙, 𝜃𝑑 ) > 𝑢(1 − 𝑎, 𝑛, 𝜓∗(𝜙, 𝜆), 𝜙, 𝜃𝑑 ) ⇒ 𝜎𝑛,𝜃𝑑 = 𝑎 ⇒ 𝜎𝑛,�̄� ≠ 𝑎. However, 𝑏(𝑎, 𝑛, 𝜓∗(𝜙, 𝜆), 𝜙) > 𝑏(1 − 𝑎, 𝑛, 𝜓∗(𝜙, 𝜆), 𝜙) ∧ 𝜎𝑛,𝜃𝑑 = 𝑎 ≠ 𝜎∗
𝑛,�̄�

⇒

𝐵𝑛,𝜃𝑑 (𝜎, 𝜙) > 𝐵𝑛,�̄�(𝜎, 𝜙). We have reached a contradiction. □

Proof of Lemma 2. Consider any 𝜆 ∈ [0, 1]|Θ| s.t. 𝜙∗ ∈ [0, 1] is a CE. Hence, norm dynamics (Definition 7) are at rest, �̇�∗ = 0. The 
two conditions in Lemma 2 can be jointly expressed as 𝜎𝑛 = �̄�𝑛 ∀𝑛 ∈ {0, 1} ⧵ {1 − 𝜙∗}, 𝜎 ∈ Σ∗(𝜙∗, 𝜆𝑑 ), and �̄� ∈ Σ∗(𝜙∗, 𝜆). Moreover, 
(𝜎1, 𝜎0) = (�̄�1, ̄𝜎0) ⇒ 𝜓∗(𝜙∗, 𝜆𝑑 ) = 𝜓∗(𝜙∗, 𝜆). Throughout, we write 𝜓∗ ∶= 𝜓∗(𝜙∗, 𝜆) = 𝜓∗(𝜙∗, 𝜆𝑑 ).

Consider any 𝑛 ∈ {0, 1} ⧵ {1 − 𝜙∗}. First, we investigate the case s.t. ∃𝑎 ∈ {0, 1} s.t. 𝑏(𝑎, 𝑛, 𝜓∗, 𝜙∗) > 𝑏(1 − 𝑎, 𝑛, 𝜓∗, 𝜙). For all 
𝜃 ∈ supp(𝜆), 𝜎 ∈ Σ∗(𝜙∗, 𝜆𝑑 ), and �̄� ∈ Σ∗(𝜙∗, 𝜆), 𝑏(𝑎, 𝑛, 𝜓∗, 𝜙∗) > 𝑏(1 − 𝑎, 𝑛, 𝜓∗, 𝜙∗) ⇒ 𝜎𝑛 = 𝑎 = �̄�𝑛. �̄�𝑛 =

∑
𝜃∈supp(𝜆) 𝜆𝜃 �̄�𝑛,𝜃 = 𝑎 ∈ {0, 1} ⇒

�̄�𝑛,𝜃 = 𝑎 ∀𝜃 ∈ supp(𝜆) ⇒ 𝐵𝑛,�̂� = 𝑏(𝑎, 𝑛, 𝜓∗, 𝜙∗) = 𝐵𝑛,𝜃 ∀𝜃, �̂� ∈ supp(𝜆). Next, we look at the case of 𝑏(0, 𝑛, 𝜓∗, 𝜙∗) = 𝑏(1, 𝑛, 𝜓∗, 𝜙∗). 
𝑏(0, 𝑛, 𝜓∗, 𝜙∗) = 𝑏(1, 𝑛, 𝜓∗, 𝜙∗) ⇒ (1 − 𝑦)𝑏(0, 𝑛, 𝜓∗, 𝜙∗) + 𝑦𝑏(1, 𝑛, 𝜓∗, 𝜙∗) = (1 − 𝑥)𝑏(0, 𝑛, 𝜓∗, 𝜙∗) + 𝑥𝑏(1, 𝑛, 𝜓∗, 𝜙∗) ∀𝑥, 𝑦 ∈ [0, 1] ⇒ 𝐵𝑛,�̂� =
𝐵𝑛,𝜃∀𝜃, �̂� ∈ supp(𝜆). Thus, for all 𝜆 ∈ [0, 1]|Θ|, 𝜙∗ ∈ [0, 1], 𝑛 ∈ {0, 1} ⧵ {1 − 𝜙∗}, 𝜎 ∈ Σ∗(𝜙∗, 𝜆𝑑 ), and �̄� ∈ Σ∗(𝜙∗, 𝜆), 𝜎𝑛 = �̄�𝑛 ⇒
𝐵𝑛,�̂�(�̄� , 𝜙∗) = 𝐵𝑛,𝜃(�̄�, 𝜙∗). Hence, �̇�𝜃 = 0 ∀𝜃 ∈ supp(𝜆). For all 𝜃 ∉ supp(𝜆), �̇�𝜃 = 0. Hence, (𝜆, 𝜙∗) is a rest point of the dynamic sys-
tem. □

Proof of Proposition 10. Proposition 3 implies that 𝜙∗ = 0 is an asymptotically stable CE at any 𝜆 ∈ [0, 1]|Θ|. Hence, in some neigh-
borhood of (𝜆, 0), society always coordinates to 𝜙∗ = 0 before changes in preferences occur. Moreover, �̃�(0) = 0 < Δ𝑚(0) ∀𝜃 ∈ Θ ⇒
𝜓∗(0, 𝜆) = 0 ∀𝜆 ∈ [0, 1]|Θ|. ∀𝜆 ∈ [0, 1]|Θ|, (𝜆, 0) is a rest point. Consequently, (𝜆, 0) is stable ∀𝜆 ∈ [0, 1]|Θ|. □

Proof of Proposition 11. Consider any 𝜆 ∈ [0, 1]|Θ| s.t. 𝜓∗(1, 𝜆) = 𝜓∗(1, 𝜆𝑑 ) and suppose 𝜙∗ = 1 is a CE of Proposition 4 at 𝜆. Lemma 2
implies that (𝜆, 1) is a rest point.

Consider any 𝑈 of 𝜆 s.t. 𝜙∗ = 1 is a CE for all �̂� ∈ 𝑈 . Such a 𝑈 exists by Proposition 5. In some neighborhood of (𝜆, 1), society 
always coordinates to 𝜙∗ = 1 before changes in preferences occur. Therefore, we can reduce our attention to preference dynamics.

First, suppose 𝜓∗(1, 𝜆) = 𝜓∗(1, �̂�) = 𝜓∗(1, 𝜆𝑑 ). 𝜓∗(1, 𝜆𝑑 ) = 𝑥 ∈ {0, 1} ⇒ �̂�1,𝜃 = 𝑥 ∀𝜃 ∈ supp(�̂�) ⇒ 𝐵�̂�(�̂� , 1) =
∑

𝜃∈supp(�̂�) �̂�𝜃(�̂�1,𝜃 𝑏(1, 1, 𝑥,

(1 − �̂�1,𝜃)𝑏(0, 1, 𝑥, 1)) = 𝑏(𝑥, 1, 𝑥, 1) = 𝐵𝜆(�̂� , 1) =
∑

𝜃∈supp(�̂�) 𝜆𝜃(�̂�1,𝜃 𝑏(1, 1, 𝑥, 1) + (1 − �̂�1,𝜃)𝑏(0, 1, 𝑥, 1)) ∀�̂� ∈ Σ∗(1, �̂�) ⇒ 𝐵�̂�(�̂� , 1) =
𝐵𝜆(�̂� , 1) ∀�̂� ∈ Σ∗(1, �̂�). 𝜓∗(1, 𝜆𝑑 ) ∈ (0, 1) ⇒ 𝑏(1, 1, 𝜓∗(1, 𝜆𝑑 ), 1) = 𝑏(0, 1, 𝜓∗(1, 𝜆𝑑 ), 1) ⇒ 𝐵�̂�(�̂� , 1) = 𝐵𝜆(�̂� , 1) ∀�̂� ∈ Σ∗(1, �̂�).

Next, suppose 𝜓∗(1, �̂�) < 𝜓∗(1, 𝜆) = 1. 𝜓∗(1, 𝜆) = 1 ⇒ 𝜓∗(1, 𝜆𝑑 ) = 1 ⇒ 𝜃𝑑
𝑠

�̃�(1) + 𝜃𝑑
𝑠

ℎ̃ + 𝜃𝑑
𝑝
≥ Δ𝑚(1) ⇒ 𝑏(1, 1, 1, 1) ≥ 𝑏(0, 1, 1, 1). 

𝜓∗(1, �̂�) < 1 ⇒ Δ𝑚(𝜓∗(1, �̂�)) < Δ𝑚(1) ⇒ 𝑏(1, 1, 𝜓∗(1, �̂�), 1) − 𝑏(0, 1, 𝜓∗(1, �̂�), 1) > 𝑏(1, 1, 1, 1) − 𝑏(0, 1, 1, 1) ≥ 0. Moreover, 𝜓∗(1, 𝜆) =
1 ⇒ 𝜃𝑝 + 𝜃𝑠 ℎ̃ + 𝜃𝑠 �̃�(1) ≥ Δ𝑚(1)∀𝜃 ∈ supp(𝜆) ⇒ 𝜃𝑝 + 𝜃𝑠 ℎ̃ + 𝜃𝑠 �̃�(1) > Δ𝑚(𝜓∗(1, �̂�))∀𝜃 ∈ supp(𝜆) ⇒ �̂�1,𝜃 = 1∀𝜃 ∈ supp(𝜆), ̂𝜎 ∈ Σ∗(1, �̂�) ⇒
𝐵𝜆(�̂� , 1) = 𝑏(1, 1, 𝜓∗(1, �̂�), 1) ∀�̂� ∈ Σ∗(1, �̂�). Therefore, 𝐵𝜆(�̂� , 1) = 𝑏(1, 1, 𝜓∗(1, �̂�), 1) > 𝑏(1, 1, 𝜓∗(1, �̂�), 1)𝜓∗(1, �̂�) +(1 −𝜓∗(1, �̂�))𝑏(0, 1, 𝜓∗(1
𝐵�̂�(�̂� , 1) ∀�̂� ∈ Σ∗(1, �̂�).

Analog to the previous case, we can show that 𝜓∗(1, �̂�) > 𝜓∗(1, 𝜆) = 0 implies 𝐵𝜆(�̂� , 1) > 𝐵�̂�(�̂� , 1) ∀�̂� ∈ Σ∗(1, �̂�). We refrain form 
writing it out.

Next, suppose 𝜙∗ = 1 > 𝜓∗(1, 𝜆) > 𝜓∗(1, �̂�) > 0. 𝜓∗(1, 𝜆) ∈ (0, 1) ⇒ 𝜓∗(1, 𝜆𝑑 ) ∈ (0, 1) ⇒ 𝜃𝑑
𝑠

�̃�(1) + 𝜃𝑑
𝑠

ℎ̃ + 𝜃𝑑
𝑝
= Δ𝑚(𝜓∗(1, 𝜆𝑑 )) ⇒

𝑏(1, 1, 𝜓∗(1, 𝜆), 1) = 𝑏(0, 1, 𝜓∗(1, 𝜆), 1). 𝜓∗(1, �̂�) < 𝜓∗(1, 𝜆) ⇒ Δ𝑚(𝜓∗(1, �̂�)) < Δ𝑚(𝜓∗(1, 𝜆)) ⇒ 𝑏(1, 1, 𝜓∗(1, �̂�), 1)− 𝑏(0, 1, 𝜓∗(1, �̂�), 1) >

𝑏(1, 1, 𝜓∗(1, 𝜆), 1) − 𝑏(0, 1, 𝜓∗(1, 𝜆), 1) = 0. Consider any 𝜎 ∈ Σ∗(1, 𝜆), ̂𝜎 ∈ Σ∗(1, �̂�) and let �̂�1,𝜆 =
∑

𝜃∈supp(𝜆) 𝜆𝜃 �̂�1,𝜃 . Δ𝑚(𝜓∗(1, �̂�)) <

Δ𝑚(𝜓∗(1, 𝜆)) ⇒ (∀𝜃 ∈ Θ, 𝜃𝑝 + 𝜃𝑠 ℎ̃ + 𝜃𝑠 �̃�(1) ≥ Δ𝑚(𝜓∗(1, 𝜆)) ⇒ 𝜃𝑝 + 𝜃𝑠 ℎ̃ + 𝜃𝑠 �̃�(1) > Δ𝑚(𝜓∗(1, �̂�))) ⇒ �̂�1,𝜃 ≥ 𝜎1,𝜃 ∀𝜃 ∈ supp(𝜆) ⇒ �̂�1,𝜆 =∑
𝜃∈supp(𝜆) 𝜆𝜃 �̂�1,𝜃 ≥

∑
𝜃∈supp(𝜆) 𝜆𝜃 𝜎1,𝜃 = 𝜓∗(1, 𝜆) > 𝜓∗(1, �̂�). (𝑏(1, 1, 𝜓∗(1, �̂�), 1) > 𝑏(0, 1, 𝜓∗(1, �̂�), 1) and �̂�1,𝜆 > 𝜓∗(1, �̂�)) ⇒ 𝐵𝜆(�̂�, 1) =

�̂�1,𝜆 𝑏(1, 1, 𝜓∗(1, �̂�), 1) + (1 − �̂�1,𝜆)𝑏(0, 1, 𝜓∗(1, �̂�), 1) > 𝜓∗(1, �̂�)𝑏(1, 1, 𝜓∗(1, �̂�), 1) + (1 − 𝜓∗(1, �̂�))𝑏(0, 1, 𝜓∗(1, �̂�), 1) = 𝐵�̂�(�̂�, 1). Hence, 
𝐵𝜆(�̂� , 1) > 𝐵�̂�(�̂� , 1).

Lastly, the case of 𝜙∗ = 1 > 𝜓∗(1, �̂�) > 𝜓∗(1, 𝜆) > 0 works analogously to the previous one. Therefore, we refrain from writing it 
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Hence, for all different cases of 𝜓∗(1, 𝜆) and 𝜓∗(1, �̂�), 𝐵𝜆(�̂� , 1) ≥ 𝐵�̂�(�̂� , 1) ∀�̂� ∈ Σ∗(1, �̂�). Any mutation from 𝜆 to �̂� ∈ 𝑈 does not 
alter 𝜙∗ = 1. For any post-mutation NE �̂� ∈ Σ∗(1, �̂�), 𝐵𝜆(�̂� , 1) ≥ 𝐵�̂�(�̂� , 1). Following Weibull (1997), this condition ensures that 𝜆 is 
stable in preference dynamics (Definition 9). Hence, (𝜆, 1) is stable. □

Proposition 20. Consider any specification of the model s.t. 𝜓∗(1, 𝜆𝑑 ) ∈ (0, 1).

1. dΔ𝑚(𝑥)
d𝑥

|𝑥=𝜓∗(1,𝜆𝑑 ) <
(𝑣(1)+ℎ)(𝛾−𝜌)

𝜓∗(1,𝜆𝑑 ) ⇒ d𝜓∗(1,𝜆𝑑 )(𝛾 𝑣(1)−Δ𝑚(𝜓∗(1,𝜆𝑑 )))
d𝜌

− d𝛾(1−𝜓∗(1,𝜆𝑑 ))ℎ

d𝜌
+ d𝛾Δ𝑘(1)

d𝜌
> 0.

2. dΔ𝑚(𝑥)
d𝑥

|𝑥=𝜓∗(1,𝜆𝑑 ) <
(𝑣(1)+ℎ)(𝛾−𝜌)𝜌

𝛾−𝜓∗(1,𝜆𝑑 )(𝛾−𝜌) ⇒
d𝜓∗(1,𝜆𝑑 )(𝛾 𝑣(1)−Δ𝑚(𝜓∗(1,𝜆𝑑 )))

dℎ
− d𝛾(1−𝜓∗(1,𝜆𝑑 ))ℎ

dℎ
+ d𝛾Δ𝑘(1)

dℎ
> 0.

Proof. We start with the first statement. 𝜓∗(1, 𝜆) ∈ (0, 1) ⇒Δ𝑚(0) < Δ𝑚(𝜓∗(1, 𝜆𝑑 )) = 𝜃𝑑
𝑠

�̃�(1) + 𝜃𝑑
𝑠

ℎ̃ + 𝜃𝑑
𝑝

< Δ𝑚(1). For small changes 

in 𝜌, it remains that Δ𝑚(0) < Δ𝑚(𝜓∗(1, 𝜆)) = 𝜃𝑑
𝑠

�̃�(1) + 𝜃𝑑
𝑠

ℎ̃ + 𝜃𝑑
𝑝

< Δ𝑚(1). Hence, dΔ𝑚(𝜓∗(1,𝜆))
d𝜌

=
d(𝜃𝑑

𝑠 �̃�(1)+𝜃𝑑
𝑠 ℎ̃+𝜃𝑑

𝑝 )
d𝜌

, from which we can 

derive dΔ𝑚(𝑥)
d𝑥

|𝑥=𝜓∗(1,𝜆𝑑 ) ∗
d𝜓∗(1,𝜆𝑑 )

d𝜌
= ℎ + 𝑣(1). d𝜓∗(1,𝜆𝑑 )(𝛾 𝑣(1)−Δ𝑚(𝜓∗(1,𝜆𝑑 )))

d𝜌
− d𝛾(1−𝜓∗(1,𝜆𝑑 ))ℎ

d𝜌
+ d𝛾Δ𝑘(1)

d𝜌
> 0 ⇔ d𝜓∗(1,𝜆𝑑 )(𝛾−𝜌)(𝑣(1)+ℎ)

d𝜌
> 0 ⇔

d𝜓∗(1,𝜆𝑑 )
d𝜌

>
𝜓∗(1,𝜆𝑑 )

𝛾−𝜌
⇔ (𝛾−𝜌)(𝑣(1)+ℎ)

𝜓∗(1,𝜆𝑑 ) >
dΔ𝑚(𝑥)

d𝑥
|𝑥=𝜓∗(1,𝜆𝑑 ). Hence, statement 1 of the proposition is true.

Next, consider the second statement of the proposition. By similar reasoning as above, we can show that dΔ𝑚(𝜓∗(1,𝜆))
dℎ

=
d(𝜃𝑑

𝑠 �̃�(1)+𝜃𝑑
𝑠 ℎ̃+𝜃𝑑

𝑝 )
dℎ

, which implies dΔ𝑚(𝑥)
d𝑥

|𝑥=𝜓∗(1,𝜆𝑑 ) ∗
d𝜓∗(1,𝜆𝑑 )

dℎ
= 𝜌. d𝜓∗(1,𝜆𝑑 )(𝛾 𝑣(1)−Δ𝑚(𝜓∗(1,𝜆𝑑 )))

dℎ
− d𝛾(1−𝜓∗(1,𝜆𝑑 ))ℎ

dℎ
+ d𝛾Δ𝑘(1)

dℎ
> 0 ⇔ d𝜓∗(1,𝜆𝑑 )(𝛾−𝜌)(𝑣

dℎ
d𝛾 ℎ

dℎ
> 0 ⇔ (𝛾 − 𝜌)(𝑣(1) + ℎ) d𝜓∗(1,𝜆𝑑 )

dℎ
+ 𝜓∗(1, 𝜆𝑑 )(𝛾 − 𝜌) − 𝛾 > 0 ⇔ (𝛾−𝜌)(𝑣(1)+ℎ)𝜌

𝛾−𝜓∗(1,𝜆𝑑 )(𝛾−𝜌) >
dΔ𝑚(𝑥)

d𝑥
|𝑥=𝜓∗(1,𝜆𝑑 ). Hence, the second statement of the 

proposition is also true. □

Proof of Proposition 13. Consider any CE 𝜙∗ = 1 at 𝜆𝑑 s.t. Conditions 1 and 2b of Proposition 4 hold. Hence,

1. 𝜓∗(1, 𝜆𝑑 )(𝛾 𝑣(1) −Δ𝑚(𝜓∗(1, 𝜆𝑑 ))) − 𝛾(1 − 𝜓∗(1, 𝜆𝑑 ))ℎ + 𝛾Δ𝑘(1) > 0 and
2. Δ𝑘(1) > (1 − 𝜓∗(1, 𝜆𝑑 ))ℎ.

Throughout, let Λ ∶= {(1, 𝜆) ∶ 𝜓∗(1, 𝜆) = 𝜓∗(1, 𝜆𝑑 )}. Consider any 𝜆 ∈Λ. Λ is non-empty since 𝜆𝑑 is always in it. 𝜆 ∈ Λ ⇒ 𝜓∗(1, 𝜆𝑑 ) =
𝜓∗(1, 𝜆). Hence, the two conditions above also hold for 𝜆 and the perfect social norm is a CE of Proposition 4 at 𝜆.

Consider any 𝑈 of 𝜆 s.t. 𝜙∗ = 1 is a CE for all �̂� ∈ 𝑈 . Such a 𝑈 exists by Proposition 5. �̂� ∈ 𝑈 ⧵ Λ ⇒ 𝜙∗ = 1 is a CE at �̂� and 
𝜓∗(1, �̂�) ≠ 𝜓∗(1, 𝜆). By the same reasoning as in the proof of Proposition 11, we can show that 𝜓∗(1, �̂�) ≠ 𝜓∗(1, 𝜆) ⇒ 𝐵𝜆(�̂� , 1) >

𝐵�̂�(�̂� , 1) ∀�̂� ∈ Σ∗(1, �̂�). The mutation from preference distribution 𝜆 ∈ Λ to �̂� ∈ 𝑈 ⧵ Λ does not alter the perfect social norm 𝜙∗ = 1. 
For any post-mutation NE �̂� ∈ Σ∗(1, �̂�), 𝐵𝜆(�̂� , 1) > 𝐵�̂�(�̂� , 1). Following Weibull (1997), this condition ensures that approval preferences 
evolve towards some �̌� ∈ Λ and, thus, return to the set Λ. Throughout the course of preference evolution, the perfect social norm 
remains a CE. The proposition is true. □

Proof of Proposition 14. Consider any CE 𝜙∗ ∈ (0, 1) of Proposition 7 at 𝜆𝑑 . (𝜎1, 𝜎0) = (1, 0) ∀𝜎 ∈ Σ∗(𝜙∗, 𝜆𝑑 ) ⇒ 𝑏(𝑛, 𝑛, 𝜙∗, 𝜙∗) >

𝑏(1 − 𝑛, 𝑛, 𝜙∗, 𝜙∗) ∀𝑛 ∈ {0, 1}. Moreover, consider any 𝜆 s.t. 𝜙∗ ∈ (0, 1) is a CE of Proposition 7 at 𝜆. Hence 𝜃𝑠 �̃�(𝜙∗) < Δ𝑚(𝜙∗) <

𝜃𝑠 �̃�(𝜙∗) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 ∀𝜃 ∈ supp(𝜆) and (𝜎1, 𝜎0) = (1, 0) ∀𝜎 ∈ Σ∗(𝜙∗, 𝜆). Lemma 2 implies (𝜆, 𝜙∗) is a rest point.

For any (�̂�, �̂�) close to (𝜆, 𝜙∗), we write the CE that society reaches at (�̂�, �̂�) as �̂�∗. We continue to show that there is some 𝑈 of 
(𝜆, 𝜙∗) s.t. for all (�̂�, �̂�) ∈ 𝑈 , 𝐵𝜆(�̂�, �̂�∗) > 𝐵�̂�(�̂�, �̂�∗) ∀�̂� ∈ Σ∗(�̂�∗, �̂�). Let the neighborhood 𝑈 of (𝜆, 𝜙∗) be s.t. for all (�̂�, �̂�) ∈ 𝑈 :

1. Σ∗(�̂�∗, �̂�) is a singleton for all �̂�∗ ≠ 𝜙∗,
2. 𝜃𝑠 �̃�(𝜙∗) < Δ𝑚(𝜙∗) < 𝜃𝑠 �̃�(𝜙∗) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 ⇒ 𝜃𝑠 �̃�(�̂�∗) < Δ𝑚(𝜓∗(�̂�∗, �̂�)) < 𝜃𝑠 �̃�(�̂�∗) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 for all 𝜃 ∈Θ,

3. 𝑏(𝑛, 𝑛, 𝜓∗(�̂�∗, �̂�), �̂�∗) > 𝑏(1 − 𝑛, 𝑛, 𝜓∗(�̂�∗, �̂�), �̂�∗) ∀𝑛 ∈ {0, 1}, and
4. �̂�∗ is in the basin of attraction of 𝜙∗ at preference distribution 𝜆 and 𝜆𝑑 .

Such 𝑈 exists due to Lemma 12, Proposition 18, and Lemma 18.
Note, �̂�∗ ≠ 𝜙∗ ⇒ (�̂�1, ̂𝜎0) ≠ (1, 0) ∀�̂� ∈ Σ∗(�̂�∗, �̂�). Assume by contradiction that �̂�∗ ≠ 𝜙∗ and (�̂� , ̂𝜎0) = (1, 0) for �̂� ∈ Σ∗(�̂�∗, �̂�). 

Recall from the above that Σ∗(�̂�∗, �̂�) is a singleton. At 𝜆𝑑 , (a) �̂�∗ is in the basin of attraction of 𝜙∗ and (b) (𝜎1, 𝜎0) = (1, 0) for all 
𝜎 ∈ Σ∗(�̂�∗, 𝜆𝑑 ). Hence, (𝜎1, 𝜎0) = (1, 0) and ̇̂

𝜙∗ ≠ 0 for all 𝜎 ∈ Σ∗(�̂�∗, 𝜆𝑑 ). If (�̂�1, ̂𝜎0) = (1, 0) for all �̂� ∈ Σ∗(�̂�∗, �̂�), then ̇̂
𝜙∗ ≠ 0 must also 

hold at preference distribution �̂�. Consequently, �̂�∗ is not a rest point, which is a contradiction.
Consider any �̂� ∈ Σ∗(�̂�∗, �̂�). First, suppose (�̂�1, ̂𝜎0) ≠ (1, 0). 𝜃𝑠 �̃�(𝜙∗) < Δ𝑚(𝜙∗) < 𝜃𝑠 �̃�(𝜙∗) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 ∀𝜃 ∈ supp(𝜆) ⇒ 𝜃𝑠 �̃�(�̂�∗) <

Δ𝑚(𝜓∗(�̂�∗, �̂�)) < 𝜃𝑠 �̃�(�̂�∗) + 𝜃𝑠 ℎ̃ + 𝜃𝑝 ∀𝜃 ∈ supp(𝜆) ⇒ �̂�𝑛,𝜃 = 𝑛 ∀𝜃 ∈ supp(𝜆) and 𝑛 ∈ {0, 1}. Hence, 𝐵𝜆(�̂� , �̂�∗) = �̂�∗𝑏(1, 1, 𝜓∗(�̂�∗, �̂�), �̂�∗) +
(1 − �̂�∗)𝑏(0, 0, 𝜓∗(�̂�∗, �̂�), �̂�∗) ∧𝐵�̂�(�̂� , �̂�∗) = �̂�∗[�̂�1𝑏(1, 1, 𝜓∗(�̂�∗, �̂�), �̂�∗) +(1 − �̂�1)𝑏(0, 1, 𝜓∗(�̂�∗, �̂�), �̂�∗)] +(1 − �̂�∗)[�̂�0𝑏(1, 0, 𝜓∗(�̂�∗, �̂�), �̂�∗) +
(1 − �̂�0)𝑏(0, 0, 𝜓∗(�̂�∗, �̂�), �̂�∗)]) ⇒ 𝐵𝜆(�̂� , �̂�∗) −𝐵�̂�(�̂� , �̂�∗) = �̂�∗(1 − �̂�1)(𝑏(1, 1, 𝜓∗(�̂�∗, �̂�), �̂�∗) −𝑏(0, 1, 𝜓∗(�̂�∗, �̂�), �̂�∗)) +(1 −�̂�∗)�̂�0(𝑏(0, 0, 𝜓∗(�̂�∗

𝑏(1, 0, 𝜓∗(�̂�∗, �̂�), �̂�∗)) > 0 ⇒ 𝐵𝜆(�̂� , �̂�∗) > 𝐵�̂�(�̂�, �̂�∗). Second, suppose (�̂�1, ̂𝜎0) = (1, 0), which implies �̂�∗ = 𝜙∗. �̂�𝑛 = 𝑛 ∀𝑛 ∈ {0, 1} ⇒
265

�̂�𝑛,𝜃 = �̂�𝑛,�̌� = 𝑛 ∀𝑛 ∈ {0, 1}, 𝜃, �̌� ∈ supp(�̂�) ⇒ 𝐵𝜆(�̂� , �̂�∗) = 𝐵�̂�(�̂� , �̂�∗).
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At (�̂�, �̂�) ∈ 𝑈 , society first coordinates into a CE �̂�∗. At (�̂�, �̂�∗) and any �̂� ∈ Σ∗(�̂�∗, �̂�), 𝐵𝜆(�̂� , �̂�∗) ≥ 𝐵�̂�(�̂�, �̂�∗). Following Weibull 
(1997), 𝜆 is stable on preference dynamics. Throughout the course of preference evolution, the CE that society reach remain very 
close to 𝜙∗ (see Proposition 18). Hence, Proposition 14 is true. □

Proof of Proposition 15. If 𝐼𝑝(𝜆𝑑 ) is non-empty, then any 𝑚(⋅) that renders conditions 2 and 3 of Proposition 7 true yields the 
Proposition 15 to be true. If 𝐼𝑝(𝜆𝑑 ) is empty, then there is no 𝜙 s.t. 𝜙 is a CE of Proposition 7 at 𝜆𝑑 . From Lemma 1, we know that 
𝐼𝑝(𝜆𝑑 ) is non empty if and only if 𝜃𝑑

𝑠
ℎ̃+𝜃𝑑

𝑝
> 0. Substituting for 𝜃𝑑 yields 𝐼𝑝(𝜆𝑑 ) is non-empty if and only if 𝜌ℎ > 0. Since 𝜌 > 0, 𝐼𝑝(𝜆𝑑 )

is non empty if and only if ℎ > 0. □

Proof of Lemma 3. Consider any CE 𝜙∗ of Proposition 7 at 𝜆𝑑 . Suppose that for all 𝜃 ∈ Θ, 𝑛 ∈ {0, 1}, 𝑢(1, 𝑛, 𝜙∗, 𝜙∗) ≠ 𝑢(1, 𝑛, 𝜙∗, 𝜙∗). 
Let Λ = {𝑥 ∈ [0, 1]|Θ| ∶ (𝜎1, 𝜎0) = (1, 0) ∀𝜎 ∈ Σ∗(𝜙∗, 𝑥)}. Consider any 𝜆 ∈ Λ. (𝜎1, 𝜎0) = (1, 0) ∀𝜎 ∈ Σ∗(𝜙∗, 𝜆) and 𝑢(1, 𝑛, 𝜙∗, 𝜙∗) ≠
𝑢(1, 𝑛, 𝜙∗, 𝜙∗) ∀𝜃 ∈ Θ, 𝑛 ∈ {0, 1} implies 𝜙∗ is a CE of Proposition 7 at 𝜆. For any (�̂�, �̂�) close to (𝜆, 𝜙∗), we write the CE that so-
ciety reaches at (�̂�, �̂�) as �̂�∗. Let 𝑈 of 𝜆 be as in the proof of Proposition 14.

Consider any �̂� ∈ 𝑈 ⧵ Λ. As in the proof of Proposition 14, we can show that �̂�∗ ≠ 𝜙∗ ⇒ (�̂�1, ̂𝜎0) ≠ (1, 0) ∀�̂� ∈ Σ∗(�̂�∗, �̂�). In 
conjunction with �̂� ∉ Λ ⇒ (�̂�∗ = 𝜙∗ ⇒ (�̂�1, ̂𝜎0) ≠ (1, 0)), it follows that (�̂�1, ̂𝜎0) ≠ (1, 0) ∀�̂� ∈ Σ∗(�̂�∗, �̂�). By similar reasoning as in the 
proof of Proposition 14, we can show that 𝐵𝜆(�̂�, �̂�∗) > 𝐵�̂�(�̂�, �̂�∗).

Following Weibull (1997), this condition ensures that preferences evolve towards some �̌� ∈Λ. Throughout the course of preference 
evolution, the CE society reaches remains close to 𝜙∗ (see Proposition 18). Once preferences reach an element in Λ, the social norm 
returns to 𝜙∗ implying that the proposition is true. □
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