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Preface

Information can be measured and represented on many different scales and encoded in
multiple formats. The operations that can be used on the data depend on the type of scale
used in measurement. Some scales allow for combining values with numerical operations
while others are only equipped with relational information, e.g., (hierarchical) order relations.
There are at least two principles on how to deal with data that is given in mixed formats with
different scale types. The first is to artificially define operations on the measured scales that
are needed for an analytical method, e.g., numeric addition and multiplication on categorical
values. While this approach is very successful in the field of machine learning, the artificially
introduced operations lack explainability with respect to the data domain. Thus, resulting in
black box models. The second principle is to perform an analysis solely based on operations
that are common to all scales. These, often more algebraic, operations are consistent to the
underlying scales and allow for a rich interpretation of analytical results.

With this work, we focus on the latter principle. We analyze data with ordinal methods
based on the Formal Concept Analysis framework. An analytical tool of this framework
are valid implications within a symbolic data domains. These implications are rules of the
form “if ... then ...” and the abstract concepts they generate, i.e., closed sets of properties
to which no further implication can be applied. Implications and concepts can not only be
used as unit of information but also as tool of reasoning to extend a set of properties A by
a set B that logically follows from A. The set of concepts is equipped with an underlying
hierarchical (order) structure to which we refer to as conceptual data (structure).

Data that is naturally not measured in terms of symbolic properties can be mapped to
such domains. For example, for numeric data one may use thresholds ¢ in combination with
comparisons < to derive symbolic properties. This process is known as conceptual data
scaling. The resulting concept hierarchy and the process of deriving them are the core topics
of our work. Of special interest to us is the application of conceptual data scaling to data
representations in machine learning.

Throughout all our studies we lay a great emphasis on the explainability of these
structures. Explaining here means deriving models that predict or describe the inherent
conceptual structure of a data set or parts of it. These models are themselves conceptual
structures with human interpretable features that are possibly more abstract or simpler.
We approach the explainability aspect from many different perspectives: models whose
structure have a specific semantic, textual explanations generated with principles from
human-computer interaction, logical combinations of symbolic properties, a geometric
view on conceptual structures and a decomposition into explainable parts. This extends
to our presented applications in the realm of machine learning. We not only demonstrate
the applicability of our methods but also interpret what our findings mean for the studied
machine learning algorithms.
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Content Lattice

The linear structure of printed documents require that the highly interrelated pieces of this
work are presented in list form, i.e., a linear order. The result of this linearization can be
seen in the table of contents and contains sixteen chapters and four (disjoint) parts.

In addition to the table of contents we want to show the reader our view on how the
chapters of this thesis are interconnected. For this we propose the content lattice, a
hierarchical structure that groups the chapters based on meta-topics. The content lattice for
this thesis is displayed on the right page and is represented as a line diagram. The diagram
includes all chapters from the main part of this thesis. There are two reading rules that are
required to understand the content lattice:

i) A chapter has all topics that can be reached by following upward paths.

ii) A topic is included in all chapters that can be reached by following downward paths.

For example, chapter nine Ordinal Motifs in Lattices is about Scale Semantic and
Conceptual Views. The topic of Conceptual Views is included in five chapters, i.e., chapter
eight, eleven, twelve, thirteen and fourteen, of which four are also about Machine Learning.
Readers that open this thesis in PDF format can also use the content lattice as a tool to
navigate this thesis by clicking on the chapter titles.

In this thesis, the content lattice not only serves as a means to describe the content,
but as a subject of investigation itself. The overall research field of Conceptual Data
Scaling is composed of three lines of research, the generation of conceptual views via
scaling (Conceptual Views), the interpretation of the applied scaling (Scale Semantic) and
the inversion of the applied scaling (Inverse Scaling). These three topics are — besides
Conceptual Data Scaling — the top most in the diagram and build the main dimensions of
this works content. Within the field of Conceptual Views we study the developed notions in
the field of Machine Learning, which can be inferred from the lower positions in the diagram.
The view that is reflected by the table of contents is retrieved from the content lattice as
follows: part two (Chapter 7 to 10) deals with the theoretical foundation of this work, which
is reflected by the outer nodes that form a cube like structure. The third part (Chapter 11 to
14) deals with the application of the introduced methods in the field of machine learning.
The latter is reflected by the inner nodes below the Machine Learning topic.

On the title page of part two and three we present the content lattice restricted to the
chapters and topics of the given part. This provides a local view on the respective part.
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Abstract

Information that is intended for human interpretation is frequently represented in a structured
manner. This allows for a navigation between individual pieces to find, connect or combine
information to gain new insights. Within a structure, we derive knowledge from inference
of hierarchical or logical relations between data objects. For unstructured data there are
numerous methods to define a data schema based on user interpretations. Afterward, data
objects can be aggregated to derive (hierarchical) structures based on common properties.

There are four main challenges with respect to the explainability of the derived structures.
First, formal procedures are needed to infer knowledge about the data set, or parts of it,
from hierarchical structures. Second, what does knowledge inferred from a structure imply
for the data set it was derived from? Third, structures may be incomprehensibly large for
human interpretation. Methods are needed to reduce structures to smaller representations in
a consistent, comprehensible manner that provides control over possibly introduced error.
Forth, the original data set does not need to have interpretable features and thus only allow
for the inference of structural properties. In order to extract information based on real world
properties, we need methods that are able to add such properties.

With the presented work, we address these challenges using and extending the rich
tool-set of Formal Concept Analysis. Here, data objects are aggregated to closed sets called
formal concepts based on (unary) symbolic attributes that they have in common. The process
of deriving symbolic attributes is called conceptual scaling and depends on the interpretation
of the data by the analyst. The resulting hierarchical structure of concepts is called concept
lattice.

To infer knowledge from the concept lattice structures we introduce new methods based
on sub-structures that are of standardized shape, called ordinal motifs. This novel method
allows us to explain the structure of a concept lattice based on geometric aspects.

Throughout our work, we focus on data representations from multiple state-of-the-art
machine learning algorithms. In all cases, we elaborate extensively on how to interpret
these models through derived concept lattices and develop scaling procedures specific to
each algorithm. Some of the considered models are black-box models whose internal data
representations are numeric with no clear real world semantics. For these, we present a
method to link background knowledge to the concept lattice structure.

To reduce the complexity of concept lattices we provide a new theoretical framework that
allows us to generate (small) views on a concept lattice. These enable more selective and
comprehensibly sized explanations for data parts that are of interest. In addition to that, we
introduce methods to combine and subtract views from each other, and to identify missing
or incorrect parts.



Zusammenfassung

Informationen werden hdufig strukturiert reprasentiert, um fiir Analyst:innen besser ver-
stiandlich zu sein. Die Struktur dient hierbei nicht nur zur Navigation zwischen Inhalten,
sondern erlaubt es auch Informationen zu verkniipfen und zu kombinieren. Innerhalb einer
Struktur lédsst sich Wissen von strukturellen/hierarchischen Eigenschaften und logischen
Verkniipfungen ableiten. Fiir Daten ohne klare Struktur existieren zahlreiche Methoden,
um diese zu interpretieren und daraus ein Datenschema abzuleiten. Anschlie3end konnen
diese, basierend auf gemeinsamen Eigenschaften, zu hierarchischen Strukturen aggregiert
und zusammengefasst werden.

In diesem Umfeld identifizieren wir vier Probleme, bezogen auf die Erkldrbarkeit der
entstehenden Strukturen. Zuerst werden formale Methoden bendtigt, um Wissen von
hierarchischen Strukturen, oder Teilen von ihnen, abzuleiten. Dariiber hinaus stellt sich
die Frage, was das abgeleitete Wissen iiber die zugrunde liegenden Daten aussagt. Ein
weiteres Problem ist die Grofle der entstehenden Strukturen. Diese ist nicht immer in einer
GroBenordnung, die sich von Analyst:innen iiberblicken lisst. Hierfiir werden Methoden
benotigt, um die GroBe in einer konsistenten und kontrollierten Art zu reduzieren. Fiir
Daten, deren Attribute keine klare Bedeutung haben, braucht es zusitzliche Methoden, um
Zusammenhinge mit Hilfe von interpretierbarem Hintergrundwissen zu erkldren.

In dieser Arbeit untersuchen wir diese Probleme im Bereich der Formalen Begriffsanalyse.
In dieser werden Datenelemente anhand von (uniren) symbolischen Eigenschaften, die sie
gemeinsam haben, zu Begriffen gruppiert. Der Vorgang, um symbolischen Eigenschaften
aus Daten abzuleiten, nennt sich Begriffliche Skalierung. Die resultierende Hierarchie von
Begriffen heiflt Begriffsverband.

Um Wissen von Begriffsverbinden abzuleiten, haben wir neue Methoden basierend auf
der Erkennung von Teil-Strukturen, die eine bestimmte Form haben, genannt Ordinal Motifs,
entwickelt. Diese erlauben uns, die Struktur, die zwischen Daten Elementen vorliegt, zu
erfassen und zu beschreiben. Zudem erldutern wir, wie wir aus Ordinal Motifs geometrische
Eigenschaften ableiten und damit Begriffsverbdnde erkldren konnen.

In unseren Analysen verwenden wir Datensitze, die aus den internen Représentationen
von State-of-the-Art Modellen des Maschinellen Lernens gewonnen wurden. In unseren
Analysen gehen wir besonders darauf ein, wie wir Erkenntnisse iiber die Modelle basierend
auf abgeleiteten Begriffsstrukturen gewinnen konnen. Manche Modelle benutzen numerische
Datenreprisentationen, dessen Werte keine klare Echt-Welt Bedeutung haben. Hierfiir stellen
wir Methoden vor, um Erkldrungen mit Hintergrundwissen zu finden.

Um die Komplexitit von Begriffsverbanden zu reduzieren, stellen wir eine neue Methode
vor, um kleinere Sichten zu generieren. Diese ermoglichen eine gezielte Betrachtung eines
Teils des Begriffsverbands. Zusitzlich stellen wir Operationen vor, um Sichten miteinander
zu verrechnen und fehlendes Wissen zu identifizieren.



Introduction

Animportant aspect of formal knowledge representations is that they should be understandable
and processable by humans and computers. In order to do so, they often incorporate findings
from psychology on mental knowledge representations and processing in their design [192].
This results in the definition of formal structures that allow for an organized and consistent
manner of storing and accessing information. The derived structures can get complex very
quickly, since they incorporate information in the form of relational, hierarchical and logical
representations [167]. Prominent knowledge structures implementing these concepts are
knowledge graphs [103] and ontologies [36].

Knowledge representations find application in many areas such as for automatic problem-
solving in artificial intelligence [187], the development of computer expert systems [111] or
to enrich modern large language models with (factual) background knowledge [225]. For
human users they are used for searching and accessing information. In addition to that,
knowledge structures are used as a means of navigation from one information unit (entry) to
another. This enables one to relate information to each other and put information into context.
During the navigation one may find more specific, more general or related information.
These actions support human understanding and the inference of new knowledge from data.

Another, well studied, class of knowledge representations is based on the human way of
thinking in abstract concepts. There are multiple definitions to what concepts are ranging
from mental representations to abstract objects [151]. These abstract concepts are organized
in a hierarchy with more general super-concepts and more specific sub-concepts. One
theoretical framework that formalizes such conceptual structures [82] are concept lattices
from Formal Concept Analysis [80, 223] (FCA). At first glance, a restriction to conceptual
structures may seem limiting compared to the expressiveness of knowledge graphs or
ontologies. Yet, their simplicity makes them possibly easier to comprehend by humans. On
top of that are most problems in FCA computationally feasible while problems of other
knowledge representation may not even be decidable.
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Conceptual Scaling/ Data
Data Interpretation Reduction
Raw Data Derived Data Scaled Data
(Many-Valued) (Formal Context) (Formal Context)
Inverse Data
Conceptual Scaling Compatibility

Figure 1.1: An overview of the four main problems in conceptual scaling.

1.1 Conceptual Data Scaling

A particular strength of Formal Concept Analysis is that it can process data from various
heterogeneous sources and derive conceptual structures from them. The attributes in a
data set can be measured on different scales, whose values allow for different means of
comparison. A well-known classification of scales are the levels of measurements [201].
These include four levels with increasing capabilities. The first is the nominal level which
includes all scales whose values can be compared for equality = and inequality #. All scales
of measurement are included in this category. The second is the ordinal level which contains
scales that are equipped with an order relation <, > on its values. From an order theoretic
point of view is the equality relation an order relation as well. Thus, we consider the nominal
level as a special case within the ordinal level and therefore, the ordinal level to be the lowest
level of measurement. The third level is the interval level which allows for a quantification
of difference between values. The fourth level is the ratio level and extends the interval level
by a notion of ratio between values. Decisive for the classification of a scale is not if we
are able to come up with a distance measure between values, but if the distance emerges
naturally from the scale values and their real-world semantics. For example, the numbers on
uniforms in sports are numbers, but their difference has no meaning.

Most machine learning techniques are defined using a vector space model and therefore
operate on the ratio level. They often achieve this by mapping scales from lower levels to a
numeric scale. Representational Theory of Measurement (RTM) [145, 168, 210] provides
a formalizing and understanding of this process. RTM relies on homomorphisms from
an (empirical) relational structure to a numerical relational structure, where the numerical
structure is often chosen to be the real line R or an n dimensional vector space on it. By
performing numeric calculations with the resulting representations, they implicitly define
operations on the data that — although they perform well in machine learning — have no real
world meaning. This leads to uninterpretable black-box models.

With respect to the levels of measurement, the RTM procedure can be understood as
an up-scaling of the data. This is in contrast to approaches from Formal Concept Analysis.
Here, we interpret data on the ordinal level by a process called conceptual data scaling.
Attributes that are measured on the interval and ratio level are down-scaled to the ordinal
level by omitting distance and ratio functions. Analysis of the resulting ordinal data sets can
be performed with algebraic methods that are interpretable by design. Thus, no artificial
operations are introduced which results in explainable (algebraic) models.

There are four main tasks that we identify in the realm of conceptual scaling for which
we provide an overview in the terminology of Formal Concept Analysis (see Figure 1.1).
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The first task is the data interpretation, in which we define for each data feature a scale
that is on the ordinal level. In FCA we distinguish scales within the ordinal level whose
order relations have a specific structure and meaning, called standard scales. These scales
allow for specialized interpretations of the values known as basic meanings [80, Figure
1.26]. One of them is the nominal scale which induces a partition of the scale values into
incomparable and — in terms of the order relation — unrelated parts. Other standard scales
are the (linear) ordinal scale, contranominal scale, interordinal scale and the crown scale.
The composition of the defined scales results in an ordinal data set called the formal context.

The by this process derived formal context may be too large and complex for some
application or human comprehension. The second task is concerned with data reduction
methods that reduce the size of the data set. We understand both, the data scaling and
reduction processes, as part of the conceptual data scaling problem. Essential here is that
the data reduction method is consistent to the original data. For this, we extend the notion of
conceptual views [221] to derive and characterize consistent data reductions. In particular,
we allow for any view that allow for continuous maps, which are foundational in many
machine learning methods.

The third task is data compatibility. Here, we verify the consistency of a data reduction and
identify introduced errors. Here we introduce methods for the characterization, identification
and quantification of errors.

The processes of data interpretation and reduction are often implicitly done and mixed.
However, to have a precise interpretation of the data and its contained patterns we argue that
it is important to separate these tasks. In Chapter 7 we elaborate on this is greater detail.

Conceptual views are not only great at capturing knowledge but also for (self-determined)
navigation between information using methods from order theory. We can identify more
narrow or abstract concepts following the order relation. In addition to that, we can compute
greater commons and least multiples of concepts and conceptual views on the data using the
meet and join operations. Besides these, we introduce new methods to navigate between
multiple conceptual views by adding and removing information, combining views or by
identifying missing information. On top of that, we present an exploration algorithm to
compute a users view.

The fourth task is concerned with the inversion of conceptual scaling. This is done by
identifying and extracting scales that are contained in a given formal context. Thereby, we
derive a description on how the original raw data set may have looked liked and allows us to
derive a possibly cleaner representation with removed noise. In addition to that, we present
a new method to describe and explain the concept lattice based on the identified standard
scales. We derive local explanations that characterize the interrelationship between objects
in the data and automatically generate human-centered textual explanations. On top of that,
we introduce new geometric properties that describe the shape and complexity of a concept
lattice on a global level.

Lastly, we introduce the theoretical framework to check for the compatibility of conceptual
data reductions. The method identifies parts of the conceptual structure of the scaled data
set that are not present in the original data set.

1.2 Conceptual Views in Machine Learning

Modern machine learning algorithms achieve astonishing results when solving optimization
problems. However, these excellent results are almost always achieved at the price of human
explainability. This problem is addressed in research and practice from different standpoints.
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There are calls to refrain from non-explainable models for important problems and to rely on
explainable methods, even if they give worse results in terms of accuracy [184]. The second
major direction is to develop methods for explaining black-box models. Such explanations
can be classified into local explanations, i.e., why a particular data point was treated in a
specific manner [178], and global explanations, i.e., approaches for explaining the whole
model. The latter can be achieved, e.g., by mapping the non-explainable model to an
explainable surrogate. A common approach for locally explaining models is to highlight
important inputs [70]. For flat data, e.g., images, this is a viable approach since an essential
explanatory component, the human, can be integrated into the process. This is not the case
in high-dimensional or complex data. Global approaches are more difficult, in particular
for high-dimension, and therefore less frequent. A typical idea is to find an (explainable)
surrogate for a model, e.g., symbolic regression [3].

In Part IIT we contribute to the still growing interest for global explanations procedures
by scaling internal data representations of machine learning models to conceptual views.
We study neural networks, tree ensembles and topic models, and derive scaling methods
that are specialized for them. We demonstrate how models can be represented by these
views and what implications can be drawn for the model from the conceptual view. We
further demonstrate how to compare models based on their views and extract a novel (global)
geometric structure for their interpretation. This allows us to assess the structure of the
models view on the data. Finally, we show how to enrich the conceptual views by interpretable
background knowledge in the form of human-comprehensible propositional statements.



Part I

Foundations






Data Structures

Data can be given in many different types or structures. These are often accompanied by
multiple relations between data (points) and allow for various operations to be used on the
data. In this chapter, we introduce (abstract) data structures in a language inspired from
model theory! [102], viewed as a combination of universal algebra and logic. This provides
an algebraic framework to characterize classes of (data) structures in a unified notation and
lets us introduce algebraic concepts that apply to all studied data structures. Another benefit
of this approach is that we can focus in the later chapters on specific structures as analytical
tools to analyze data and special properties of them.

Before we formally introduce a data structure, as studied within this thesis, we define
all components that they can entail. A relation R on sets U, Us, ..., U, withn € N,y is a
subset of Uy X Uy X - - - X U,,. The later is called the domain dom(R) of R and the number
n the arity of R. In case U = U; for all 1 <i < n we call R an n-ary relation on U and if
n =2 we call R a binary relation on U. The complement of R, denoted R, is the set of all
(uy,...,u,) € dom(R) with (uy,...,u,) € R, or short dom(R) \ R. For a binary relation
R the inverse or dual relation of R is defined as R~ = {(b, a) | (a,b) € R}. A relation
R C Uy x Uy X --- X Uy restricted to a subset S € dom(R) is defined as R|g := RN S.

The cartesian product of two relations R C A X B,S C C X D is definedas R X S C
(A x C) x (B x D) with ((a,c),(b,d)) € Rx S iff (a,b) € R and (c,d) € S. The
composition of a relation R € A X Band S € B X C is defined as Ro S € A x C with
(a,c) € (RoS) iff there exists a b € B with (a,b) € R and (b, c) € S.

A binary relation R on a set U is reflexive iff for all u € U we have (u,u) € R.

Moreover, R is symmetric iff for all u,w € U with (u, w) € R it follows that (w,u) € R

and R is transitive iff for all u, z, w € U with (u, z), (z,w) € R it follows that (u, w) € R.

Contrary, R is irreflexive iff R is reflexive, R is anti-symmetric iff R is symmetric and R
is anti-transitive iff (u,v), (v, w) € R implies that (u,w) ¢ R. For a set U we call the set

While we use the language of model theory to some extent, we do not pursue the study on how to classify
classes of models. We only introduce concepts from model theory that we use and extend it to fit the data structures
in our setting. For a complete introduction we refer the reader to the literature.

Relation

Composition and
product of relations

Properties of binary
relations
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of all reflexive pairs the diagonal of U and denote it by A(U) = {(u,u) | u € U}. The
transitive extension or transitive closure of R is the, with respect to set inclusion, smallest
super set R* C dom(R) of R for which R* o R* C R*. A relation that is reflexive, symmetric
and transitive is called an equivalence relation.

A function or map from U to Y, denoted f: U — Y, is arelation f C U X Y that is
left-total, i.e., for all u € U there exists a y € Y with (1, y) € f, and right-unique, i.e., for
allu € U and y1, yp € Y does (u, y1), (u,y2) € f imply that y; = y,. Throughout the rest of
this work, we write f(u) = y instead of (u,y) € f. The set U is called the domain dom( f)
and the set Y the co-domain co-dom( f) of f. In some cases, we omit to name a function
and denote by u — g(u) a function that maps inputs u to g(u).

The composition of two functions f : A — B, g : C — D with B C C is defined based
on the composition of relations, i.e., (g o f) : A — D with (g o f)(a) = f(g(a)).

The image of u € U in f is the output f(u). The image of f is the set of all
images, i.e., img(f) = {f(u) | u € U}. The pre-image of a y € Y in f is the set
Ny ={ueU] f(u) =y}

A function f is surjective iff for all y € Y there exists au € U with f(u) = y. We call
f injective iff for all u;,u; € U with f(u;) = f(up) it follows that u; = up. Moreover,
a function is bijective iff it is injective and surjective. For a function f, we define the
pre-image map of ftobe f~! : ¥ — P(U) with f~'(y) := {u € U | f(u) = y} (possibly
empty) where £ (U) denotes the powerset of U, i.e., the set of all subsets of U. In case f is
bijective, we write f~!(y) = u in short and call f~! the inverse function of f. A binary
function f on U, i.e., f : UX U — U, is associative iff f(f(a,b),c) = f(a, f(b,c)) for
all a, b, c € U. Moreover, f is commutative iff f(a,b) = f(b,a) forall a,b € U and f is
idempotent iff f(a,a) =aforalla € U.

Some structures include a set system ¥ of a (domain) U, i.e., ¥ C P(U). A set system
restricted to a set V C U is defined as ¥y, = {ANV | A € F}. Special cases of set
systems that we consider are set systems that are closed by intersection, i.e., for A, B € ¥ is
AN B € ¥ and undirected binary relations E C (3), where for n € N

(Z) ={AcU||Al=n}.

In the latter case we define the restriction to be E|y, == {ANV | A € E} N (g]) The
complement of an undirected binary relation is defined as E := (12]) \E.

For a function f : U — Y we define the lift of f to the powerset as f : P(U) — P(Y)
with f(A) := {f(a) | a € A}. The second lift of f is f : P(P(U)) — P(P(U)) with
f(A) = {f(A) | A € A}. For both lifts of f we use the same symbol but differentiate
them by the typographic style of the input or by specifying the employed lift in the text.

In case U C Y we identify by ¢ : U < Y the inclusion map ¢ : U — Y with «(u) = u.
The function f restricted to A C dom(f) is defined as f|4 : A — Y with f|4(a) = f(a).
In the later parts of this work we are often interested in structures of standard shape. For easy
readability we define them on sets of positive natural numbers up to some value k € N,
ie., [k] == {1,...,k}. A benefit of this notation is that it lets us directly infer the number of
elements in a structure. For relations on [k] we often use the symbols #, =, <, > to denote
the relation that includes all pairs numbers that are unequal, equal or comparable by <, >.
By abuse of notation we also employ these symbols for the undirected binary relation variant
of these relations. The type of relation is to be inferred from the surrounding text and often
specified by the employed structure.
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2.1 Data Structures

A (data) structure is a finite tuple composed of a finite sets U, . . ., U, called the universe
or domain sets, relations R, ..., Rx on the domains, set families ¥, ..., ¥, functions
fi, ..., fi from a combination of the domains to some set Y and constants cy, . . ., c,, which
are elements of the domains. This definition includes three adaptations from standard model
theory. The first is that we allow for multiple, possibly overlapping, universe sets. The
second is that we include set systems and the third is that the co-domain of functions may be
(partially) composed of domains from external structures.? Such configurations can also be
found in the definition of abstract data types in Ihringer [110].

Uts...sUn, Frooo s Fms Riso o RE, f1ooo 0 fis €1eoisCp) (structure)

The signature £ of a structure A is the tuple of all universe symbols Uy, ..., U,, set system
symbols 1, ..., F, relation symbols Ry, ..., Ry including their domain, all function
symbols and their domain and co-domain f; : X; — Yi,..., fi : X; — Y}, and all constant
symbols ¢y, ..., cp. The interpretation of the symbols from a signature’s definition, i.e.,
which elements are in relation or how inputs are mapped by a function is dependent on the
structure. For a structure A that is of signature £ we often write that A is a £-structure in
short. When two structures of the same signature are within scope, we indicate the structure
in which to interpret a symbol by an index. For example let K, S be two K-structures and / is
a relation symbol in K, then is Ik the relation / in structure K. If not specified otherwise is
the size of a structure K, denoted |K|, equal to the sum of all domain set, set system, relation
and function (in relation form) sizes.
A structure A is a sub-structure of B iff A and B are £ structures and

i) for all domain symbols U in £ we have U4 C Up,
ii) for all set system symbols ¥ in £ we have ¥4 C (Fgldom(ﬂ),
iii) forall relation symbols R in £ we have Ra C Rpljom(r,)
iv) for all function symbols f in L we have fa(u) = fg(u) for all u € dom(f4),
v) for all constant symbols ¢ in £ we have c4 = cp.

We denote the sub-structure relation between two structures A, B of signature £ by
A < B. A sub-structure A is an induced sub-structure of B, denoted A < B, iff A < B
and for all relations R and set systems  of L-structures it holds that Ra = Rg|gom(r,) and
Fa = FBlaom(#,)- An induced sub-structure is uniquely identified by its domain sets. Thus,
we often write B[U} 4, . .., U, 4] to denote the induced sub-structure given by the domain
sets Uy 4, . . ., Upa. For functional structures, both definitions are equivalent. For those we
simply refer to as sub-structures since this is more consistent to the literature (cf. lattices
and sub-lattices). A structure A is coarser than a structure B, denoted A < B, iff A < B
and A, B have equal domain sets U4 = Up for all domains U of L-structures. Dually, the
structure B is called finer than A, i.e., B > A.

A class or type of structures is a signature £ together with a set of axioms ®. A structure
A belongs to a class iff A is of signature £ and it satisfies all axioms in @, written A is a
model of ® or A = ®. More on the logic related notations can be found in Section 2.3.

2Unless stated otherwise, we employ for numerical values Y the usual arithmetic operations.
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Structures that, besides the domain sets, contain only (undirected binary) relations are also
called relational (data) structures. The inverse/dual and complement of a relational struc-
ture A := (Uy,...,Up, Ry,...,Ry) are defined to be A~ := (Uy,...,Un, RYY, ... R
and A := (Uy,...,U,, Ry, ..., Ry) respectively. In case the inverse/dual or complement
of a structure belongs to the same class of structures we also call them the inverse/dual
structure or complement structure. For some structure classes there are special versions of
complement or inverse relations which we introduce when needed.

2.2 Morphisms of (Data) Structures

In this section we introduce several types of maps from a structure A into a structure B
of the same signature £ that preserve or reflect algebraic properties of A. These maps
are called morphisms and can be used to interpret a structure A via a possibly smaller or
easier to comprehend structure B. Let (Uy, ..., U,) be the domain symbols of £ then is a
morphism from A to B a tuple of maps (@) : Uy — Ujp,...,a, : Uya — Uyp). In case
L has only one domain symbol U we refer to a morphism by the map a : Uy — Ugp directly
without the tuple notation. We say a morphism is injective/surjective iff all maps a; are
injective/surjective. The image of a morphism is the tuple of all image sets of the individual
maps a, i.e., img(ay, ..., a,) = (img(ay), ...,img(a,)). If the structure B belongs to the
same class C as A we also call a morphism from A to B a C-morphism. The same naming
convention applies to all morphism variants that we introduce in this section.

Let A, B be two structures of signature £ with domain symbols Uy, ..., U, and let R
be a relation symbol of £ with domain U;, X --- X U;;. A morphism from A to B is called
R-preserving iff

(ul,...,us) € RA - (ail (ul),...,ais(us)) € RB.

A morphism that is preserving for all relations is called relation preserving. Analogously, a
morphism is R-reflecting iff

(M],. . -»us) € RA — (ail(ul)" . '»ais(us)) € RB‘

A morphism that is reflecting for all relations is called relation reflecting. Set system
reflecting and set system preserving maps are defined analogously.

Let f be a function symbol of £ with dom(f) = U;, X - -- x U;, and co-dom(f) =7,
then is a morphism from A to B is called f-preserving iff

fui, .o oouiy) = f(ag, (uqy), ..., (u;,)) if f maps to an external structure,
cyj(f(uil, e, I/tis)) = f(ozil (uil), ces Qg (Mis)) lff maps to a U]' of .L

A morphism that is f-preserving for all functions is called function preserving.
Let ¢ be a constant symbol of £ with dom(c) = U;, then is a morphism from A to B
c-preserving iff
a;(cp) = cp.

A morphism that is c-preserving for all constants is called constant preserving.

A morphism that is relation preserving, preserving with respect to the set systems,
function preserving and constant preserving is called a homomorphism from A to B. If
there exists a homomorphism from A to B we call A homomorphic to B, denoted A < B.
Furthermore, is an injective homomorphism an embedding iff it is relation and set systems
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reflective. If there exists an embedding from A to B we call A embeddable into B, denoted
A 2 B. A surjective embedding is called an isomorphism and if additionally we have
A = B itis called an automorphism. We call A and B isomorphic, denoted A = B, iff
there exists an isomorphism between A and B. The inverse maps of an isomorphism from A
to B form an isomorphism from B to A. By restricting the structure B to the image of an
embedding we get an isomorphism.

2.3 Logic

In this section we introduce basic notions and terminology of logic that we use throughout
this work. A theory is a set of sentences, i.e., variable free formulas, from a formal
language of logical expressions F. By F[M, Q] we identify the formal language of all
well-formed (quantor-free) sentences over symbols M and logical operations €. For example
by F[M,{A, Vv, —}] we identify the formal language of all well formed logical expressions
from propositional logic. Another logic that we employ is a fragment of Horn logic [106,
148]. Horn logic is the formal language of all logical expressions from F[M, {V, —}] that
include at most one positive symbol. We employ the fragment H (M) that contains all horn
sentences that have exactly one positive symbol. In a later chapter we study an equivalent

theory to H (M) which includes all sentences of the form ¢ —  where ¢, € F[M,{A}].

For any set N C M we interpret m — T form € N and m — L form € M \ N, where
T denotes true and L denotes false. A set N C M is called a model of ¢ € F[M,{A,V,=}],
denoted by N = ¢, iff the interpretation of N satisfies ¢, i.e., ¢ evaluates to true given the
interpretation above.

A sentence ¢ € F is entailed in a theory 7' C F iff it logically follows from T (by
Armstrong rules [9]), denoted T + ¢. Analogously, T entails a set @ C F iff all ¢ € ® are
entailed in 7. The transitive closure of T is the set of all ¢ € F that are entailed in 7, i.e.,
T* ={¢ € F|TF ¢}. Atheoryis closed in F iff T = T*. A basis is an inclusion minimal
set B C T* such that B + T*. Two sentences or two theories are equivalent 7} = T, iff T} + T»
andT» + T}.

The theory of a structure A with respect to F is the set of all sentences that are true in A:

Thr(A) ={p € F | A E ¢}.

In case F can be inferred from the surrounding text we may simply write Th(A).

Logical theories

Formal logics

Model Relation

Logical basis

Theory of a structure
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Graphs

The first data structure that are relevant to this work are graphs [55]. They are commonly
applied in several research fields to model entities V and relations between them. Early
problems based on graph structures are routing problems in street networks. Well-known
instances are the Seven Bridges of Konigsberg problem [67] or the traveling salesman
problem. More modern applications of graphs can be found in social network analysis and
the study of social structures [71, 105] or knowledge graphs [103]. Graph theory is, besides
its use for analyzing data, well studied with respect to the computational complexity of
problems. The following notions are recalled from the literature.

3.1 Graph Data Structures

Throughout the remainder of this chapter, we formally introduce all notions from graph
theory [55] that are used in this thesis.

Definition 1 (Graph). A graph structure is a tuple (V, E) where V is the domain called
vertices or nodes and E an undirected binary relation on'V. A graph is complete iff E = (‘2/)

An example graph can be seen in Figure 3.1 which encodes the co-authorship relation of
the KDE! research group. This graph has nine authors as vertices which are in relation iff

they are co-authors in at least one research article. This results in a total of nineteen edges.

The graph is displayed as a line diagram which depicts each vertex of the graph by a node in
the diagram and connects two nodes by a line iff they are in relation in the graph. Graphs
that encode this type of relation are also known as collaboration network [163].

The neighborhood of a node n in a graph (V, E) is defined as the set of all nodes that
are in relation to n, i.e., N(n) := {a € V | {a,n} € E}. In the KDE example we find that the
two authors with the largest neighborhood are GS and TH which both have seven authors in

'The Knowledge and Data Engineering Research Group of the University of Kassel.
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Figure 3.1: A graph encoding the co-authorship network of the KDE research group.

their neighborhood. The other authors have a neighborhood size of three or four. Following
on from the concept of neighborhood is the connectivity of nodes in a graph by a series of
edges.

Definition 2 (Path). A path in a graph G = (V,E) is a sequence of edges (ey,...,ex)
such that for 1 <i < kise; € E and fori # 1 it holds that e; N e;—1 # 0.

A commonly investigated class of graph sub-structures are sub-graphs for which there is
a path between any two nodes.

Definition 3 (Connectedness in Graphs). Two nodes u,w of a graph G = (V,E) are
connected iff there exists a path (ey,...,ex) in G withu € e} and w € ey. A connected
component of G is an induced sub-graph G[C| < G such that C is an inclusion maximal
set for which all pairs of nodes are connected. A graph G is connected iff V is a connected
component in G.

One of the most well-known investigations of connectedness in graphs is the study of
Erdos numbers. This number is equal to the shortest path distance between an author and
the researcher Paul Erdds, who is a mathematician famous for having many collaborations
and research papers. In the KDE example we find that there are no two authors in this
example that have a larger path distance than two.

A special type of path is a cycle, i.e., a path from a node to itself that visits every node at
most once.

Definition 4 (Cycle). A path (ey, ..., ex) ina graph (V,E) is called a cycle iff ey Nex # 0
and forall 1 <i < j < kitholds that j # i+ 1and (i, j) # (1, k) impliese; Ne; =0. A
cycle is a Hamiltonian cycle if for all nodes n € V there isan 1 < i < k withn € e;. A
graph that contains no cycle is called acyclic.

The problem of finding cycles is an important problem for in the analysis of many types
of graphs. For example, in route planning they encode a round trip. Other examples can be
found in artificial intelligence and strategy planning of games. A cycles in a graph of all
possible game configurations may be used to determine draws.

Deciding for a graph if there exists a Hamiltonian cycle or a Hamiltonian path, i.e., a
path that visits every node exactly once, is a computational costly problem:

Problem 1: Hamiltonian Cycle Problem

Input: A graph G = (V,E)

Output: True iff there is a Hamiltonian cycle in G

Complexity: NP-complete
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Figure 3.2: The graph given in Figure 3.1 with a Hamiltonian cycle colored in cyan.
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@
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BS

Figure 3.3: The graph given in Figure 3.1 with a maximal clique colored in cyan.

Our example graph in Figure 3.1 does contain multiple Hamiltonian cycles. One of
them is highlighted in cyan in Figure 3.2. Further investigations on cycles can be found in
Chapters 9 and 14.

Other sub-structures of interest are cliques, i.e., complete sub-graphs.

Definition 5 (Clique). A clique of a graph G is an induced sub-graph S < G that is
complete. A maximal clique of G is a clique S such there is no cliqgue H # S of G with
S<HAZAG.

In a clique the neighborhoods of all nodes are highly overlapping. Due to this property
they are often used to model community structures [71]. Another useful property of cliques
is their heredity, i.e., all induced sub-graphs of cliques are cliques. Determining if a graph
contains a clique with k elements is known as the clique problem [112] and is a computational
costly task:

Problem 2: Clique Problem

Input: A graph G := (V,E)and k € N
Output: True iff ([k],#) € G
Complexity:

NP-complete

The co-authorship graph in Figure 3.1 contains three maximal cliques with four elements

and two with three elements. One of the cliques on four elements is highlighted in Figure 3.3.

The cliques with four elements overlap in two nodes which are 7H and GS. These authors
were the postdoc and professor and central to the group, since they often supervised the
published papers.

Hamiltonian cycle
example

Clique

Clique examples
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A more general instance of the sub-structure problem is the identification of arbitrary
sub-structures and induced sub-structure in a graphs [48].

Problem 3: Sub-Graph Isomorphism Problem

Input: Two graphs H and G
Output: True iff there existsa § < G with H = §
Complexity: NP-complete

Problem 4: Induced Sub-Graph Isomorphism Problem

Input: Two graphs H and G
Output: True iff there existsa S < G with H = S (i.e., H € G)
Complexity: NP-complete

The hardness of Problem 3 follows immediately from Problem 3.1, and Problem 4 from
Problem 2.

Deciding if the isomorphism [229] applies to the entire graphs, i.e., H = G, is known as
the graph isomorphism problem. This problem forms its own complexity class GI which
is in NP. It is unknown if GI is entailed in NP-complete or P, or neither.

Problem 5: Graph Isomorphism Problem

Input: Two graphs H and G
Output: True iff H = G
Complexity: Gl-complete

3.2 Hypergraphs

While graphs are great at modeling relational data as seen in Figure 3.1, they are limited to
binary relations. Modeling relations of arbitrary cardinality either requires reification, e.g.,
as used in the RDF 1.1 Semantics? standard, or relational data structures with relations of
higher arity. In this work, we use hypergraphs which use set systems to model relations
between data points of varying arity.

Definition 6 (Hypergraph). A hyperpgraph structure is a tuple (V,&) with & C P (V)
where V is a set of nodes and & is a set system on'V. An e € & is called a hyperedge.

With hypergraphs we are able to lift the KDE co-authorship example in Figure 3.1 to the
document level. Formally, we depict in Figure 3.1 (V, &), where V are the authors from the
example in the previous section and an e C V is a hyperedge in the graph iff there is a paper
with authors e. This modeling results in a hypergraph with eighteen hyperedges. We refrain
from drawing this hypergraph since we do not think that the resulting diagram would be
nicely readable with this many edges.

Another example based on the graph in Figure 3.1 can be given using the maximal
cliques as hyperedges. This results in a hypergraph on nine vertices with eight hyperedges.
There are many possibilities on how to visualize a hypergraph. In this section, we draw
hyperedges as colored boxes that surround the nodes they contain. From the resulting
diagram (see Figure 3.4) we can infer, again, that the authors TH and GS are central to

2https://www.w3.org/TR/rdf11-mt/, W3C Recommendation 25 February 2014
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Figure 3.4: A hypergraph modeling the co-authorship network on a document level.

the group, since they occur in almost all cliques. In addition to that, we can see how
cliques overlap. The structure of their intersections forms a hierarchy which may reveal
commonalities of (research) communities. In the next section, we investigate this structure
in more detail.

In the later parts of this work, we derive a principle on how to model more types of = Multirelational
sub-structures, other than cliques, of a graph simultaneously. The resulting structure is a  hypergraph
multi-relational hypergraph with one hyperedge relation per sub-structure type.

Definition 7 (Multirelational Hypergraph). A multirelational hypergraph structure is a
tuple (V,&1,...,Em) where (V,E&;) is a hypergraph forall 1 <i < m.
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Ordered Sets

A common type of relation in data structures are hierarchical relationships between elements
where one element is more, larger or higher than another [207]. Be it food chains, dominance
hierarchies or genealogies, hierarchies can be observed in all kinds of relationships. These,
however, are not limited to nature example. Everywhere objects are sorted, listed or ranked
we induce a successor/predecessor relation forming a hierarchical structure. These type of
relations are called order relations [23] and are the basis of the in this work employed data
analysis paradigm [80, 223]. The following notions are recalled from the literature.

4.1 Ordered Data Sets

Definition 8 (Ordered Set). An ordered set is a tuple (P, <) where P is a set and < is a
binary relation on P that is reflexive, anti-symmetric and transitive. Two elements x,y € P
are comparable if (x,y) € < or (y,x) € <. Otherwise x, y are incomparable. For (x,y) € <
we say that x is smaller than or equal to y or that y is an upper bound of x. Analogously,
we define greater or equal and lower bound.

Sometimes we refer to an ordered set as order or use the relation symbol in infix notation,
i.e., x < yinstead of (x,y) € <, for simplicity. Moreover, we use the symbol > for the
inverse/dual <!, ¢ for the complement < and < for < \ A(P). Fora A C P we define
by A= == {u € P | Va € A : a < u} the set of all upper bounds of A and analogously
A= :={l € P|Va € A :l < a} the set of all lower bounds of A.

We often switch between an order and its inverse. This often simplifies formal expressions
since many algebraic concepts in order theory are the dual of each other, e.g., smaller and
greater.

Theorem 1 (Duality Principle [23, Thm. 2]). The dual of an ordered set is an ordered set.

Ordered Sets

Naming conventions

Duality principle
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Figure 4.1: The ordered set of all intersections of cliques of Figure 3.4. The node color is
chosen in accordance to the colors in Figure 3.4.

The just recalled duality principle is not limited to ordered sets but extends to structures that
we analyze in the upcoming sections and chapters.

A diagram that displays all relations of < includes a lot of redundant information and
would become very complex even for smaller ordered sets. This is due to the transitive
property of order relations. This can be avoided by displaying only the direct neighbors of
an element. The remaining order can be followed using the transitive closure, i.e., paths in
the diagram.

Definition 9 (Cover Relation). For an ordered set (P, <), the cover relation is the inclusion
minimal subset < C < such that (< UA(P))* =<.

The cover relation < of an ordered set (P, <) is unique and contains all elements x < y
such that there exists no z withx < z < y.

Besides the examples given in the beginning of this chapter we have already seen a
couple of examples throughout this work. The fable of contents, content lattice or the layout
of a page are order structures. In Figure 4.1 we provide an example that builds on the graph
example from the previous chapter. We encode via an ordered set the hierarchy of the node
sets that form maximal cliques and their intersections in the diagram. The order relation is
the set inclusion.

We visualize ordered sets by a line diagram of the cover relation. The diagram follows
the convention that if x < y we depict y above x in the diagram. The converse does not
necessarily hold. Thus, for a line diagrams there is an underlying order preserving map from
the ordered set to the ordinate of the diagram. In our example order we have the special
case that the domain is a set system. For this we employ the shorthand notation which we
formally introduce in Chapter 5. For now, it is sufficient to know that a node encodes the set
of all elements that can be reached by following downward paths.

The order diagram (see Figure 4.1) depicts eleven nodes and sixteen edges. The ordered
set enables us, in contrast to the hypergraph, see the hierarchy and contained relations more
clearly. Elements that are of special interest in an ordered set are minimal and maximal
elements with respect to the order structure.

Definition 10 (Pareto Optima). For an ordered set (P, <), an element e € P is a pareto
optima or maximal element of (P, <) if (e,d) € < implies that e = d. The pareto front is
the set of all pareto optima. An element e is minimal in (P, <) iff it is maximal in (P, >).

The pareto front of our example is equal to the set of all maximal cliques of the underlying
graph.
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Besides these extreme elements we can study the set of their upper and lower bounds. In
our order example we find that all non-empty cliques bound from below either by {TH} or
{GS}. This observation is consistent with our considerations from the previous section.

Definition 11 (Filter and Ideal). The (order) filter of an element e € P in an ordered set
(P, <) is the set of elements that are bound by e from below:

Te ={o€eP|e<o}
The (order) filter of a set A C P is the set of elements that are bound by an e € A from below:

TA::{oeP|3eeA:eS0}=UTe
ecA

Analogously, is the (order) ideal of an element |e or set | A equal to the filter in the dual
order. Aninterval [a, b] is defined as the set of elements bound from above by b and from
below by a, i.e., [a,b] =Tan]b={ceP|a<c<b}.

Similar to cliques in graphs, there are ordered sets that are of standard structure. A chain
(or linear order) is an ordered set (P, <) in which every pair of elements is comparable.
A linear extension of an order relation < is a relation < with < C < and (P, <) is a linear
order. An anti-chain is an ordered set (P, <) in which no elements e,d € P with e # d
are comparable. More ordered sets of standard scale are introduced and analyzed more
thoroughly in the upcoming chapters.

4.2 Dimensions of Ordered Sets

There exist several notions of dimensions and quantities to measure structural properties of
an ordered set. The first are the height and width of an ordered set.

Definition 12 (Height and Width). The height of an ordered set P is the largest number
h € N such that there exists a chain C < P with h elements. The width of an ordered set P
is the largest number w € N such that there exists an anti-chain A < P with w elements.

A commonly applied measure of dimension to quantify the complexity of an ordered set
is the order dimension. The following definition uses the (cross-)product of ordered sets
(Pi, <i);cy Which is defined as

><(P,~, <) = (>< P;, S), with (x;)ieny < (yi)ien & x; <; y; foralli € N.
ieN ieN

Definition 13 (Order Dimension [80, Definition 82]). The order dimension odim(P) of
an ordered set P is equal to the smallest number d € N such that there is an order embedding
from P into the product of d chains.

Another common characterization of the order dimension of (P, <) is that it is equal to
the smallest number of chains (P, <;), ..., (P, <,) such that

ﬂ <i=%<.
1<i<n

Determining the order dimension of an ordered set is computational costly. In the following
we present the problem and complexity [226] of deciding upper bounds for the order
dimension.

Filter and ideal

Chain and anti-chain

Height and width

Order dimension
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Problem 6: Order Dimension Problem

Input: Anorderedset Pandd € N

Output: True iff odim(P) < d

Complexity: NP-complete

4.3 Lattices

A natural extension of the investigation of bounds is to find the greatest lower bound and
least upper bound of a set of elements. However, in arbitrary ordered sets there does not
need to exist for a set A C P an upper bound ¢ € P, i.e., A C |t. Even if such an element
exists there does not need to be a least element with that property.

Definition 14 (Semilattice). An ordered set (P, <) is a meet-semilattice iff for all two-
element subsets A € (123 ) the set of all lower bounds A= has a greatest element, called
the meet \ A of A. Dually, is (P, <) a join-semilattice iff for all A € (12)) the set of
all upper bounds A has a least element, called the join \/ A of A. The least element
in a meet-semilattice is also called the bottom element L and the greatest element in a
Jjoin-semilattice is called top T.

For the meet and join of two elements u, v € P we often use the infix notation, i.e., u A v.
The meet of a set A C P is equal to the meet of all its elements and the meet of the empty
setis T, if it exists. The dual applies to the join.

The example given in Figure 4.1 is a meet-semilattice. The meet of the nodes annotated
with DD and MK is the node annotated with GS. The meet of the THi and DD nodes is
bottom. However, the example ordered set is not a join-semilattice since the join of the
JH,BS and MF node does not exist.

A join-semilattice is a binary tree iff the graph (P, E) with E := {{d, e} | (d,e) € <}
is acyclic and for all e € P is the set of direct lower neighbors |[{p € P | p < e}| < 2.

Definition 15 (Lattice). A lattice is an ordered set that is a meet- and join-semilattice.

By extending our example in Figure 4.1 by a KDE node, i.e., the set of all authors, as
top element we do get a lattice order. As seen in Figure 4.2 is the KDE node the join of all
subsets for which the join was previously undefined. Also, the product of lattices or chains
as used in Definition 13 is lattice ordered. Another example is the content lattice presented
in the introductory part of this work. The content lattice carries, besides its order properties,
a special semantic on its elements which we discuss in more detail in the next chapter.

The duality principle of ordered sets extends naturally to lattices and semi-lattices.

Remark 1 (Duality Principle — Lattices). The dual of a meet-semilattice is a join-semilattice
and vise versa. The dual of a lattice order is a lattice order.

At this point we want to remind the reader that we consider data structures to be
finite. For (semi)lattices one usually differentiates between (semi)lattices and complete
(semi)lattices. In the finite case all (semi)lattices are complete. Therefore, we do not make
this differentiation and do not go further into this. Theorems and propositions that we recall
from the literature may include the completeness requirement.

Elements that are integral to a lattice order are those that can not be represented as the
meet or join of other elements.
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Figure 4.2: The lattice of all intersections of cliques Figure 3.4. The node color is chosen in
accordance to the colors in Figure 3.4.

Definition 16 (Irreducible Elements). An element v of a lattice order (L, <) is called
meet-irreducible iff there does not exist an A C L\ {v} with N A = v. By M(L) we
denote the set of all meet-irreducible elements. An element is called meet-reducible iff
it is not meet-irreducible. The dual is defined for the join operation where the set of all
Jjoin-irreducible elements is denoted J(L). An element that is meet- and join-irreducible and
called double-irreducible and double-reducible iff it is meet- and join-reducible.

We may note that \/{} = L which is therefore not join-irreducible. Analogously, the top
element is not meet-irreducible. The meet- and join-irreducible elements can be read directly
from an order diagram via the following characterization: An element is meet-irreducible iff
it has exactly one upper neighbor in the cover relation and an element is join-irreducible iff
it has exactly one lower neighbor in the cover relation.

A special type of lattices are those in which every element can be written as the meet or
join of the (besides L and T) top and bottom most elements.

Definition 17 (Atomistic and Co-Atomistic). An element a of a lattice L is called atom
iff L < a. The set of all atoms is denoted At(L). Moreover, L is called atomistic iff
At(L) = J(L). Analogously, is coAt(L) the set of all co-atoms, i.e., the elements ¢ of L with
¢ < T. A lattice L is co-atomistic iff coAt(L) = M(L).

There is a second (functional) definition for lattice structure using the signature (L, V, A).
Here, a (L, V)-structure is a join-semilattice iff V is a binary commutative and associative
function on L. Analogously, is a (L, A)-structure is a meet-semilattice iff A is a binary
commutative and associative function on L. A (L, V, A)-structure is a lattice iff for all
a, b € L the absorption law holds:

aV(aAb)=a,
aA(aVvb)=a.

Atoms and Co-atoms

Alternative lattice
definition



Sub-lattice

Dedekind-MacNeille
completion

26 CHAPTER 4. ORDERED SETS

Although both definitions can be used interchangeably, they do result in different notions
for morphisms and sub-structures. In this work, we use the definition based on ordered
sets since we find it to be easier to comprehend. However, the notions of morphisms and
sub-structures are derived from the (L, V, A) signature. Thus, for two lattices L, O an
embedding and lattice embedding are with respect to the (L, V, A)-structures and an order
embedding with respect to the (L, <)-structures. This combination is also common in the
literature [80], even though it may not be stated explicitly. The implication is that for a
lattice (L, <p) not every induced sub-structure (S, <g) that is lattice ordered is also an
induced sub-lattice. For this it is also required that the meets and joins are preserved, i.e.,
the inclusion S < L is a meet and join preserving morphism.

The join and meet operations are very useful for calculations with elements of an ordered
set and often carry a specific semantic with respect to the data domain, e.g., the greater
common of community structures as seen in Figure 4.1. For ordered sets it may be useful to
extend the structure to a lattice to enable such computations. This can be done by computing
the Dedekind-MacNeille completion, which we recall for finite data structures.

Definition 18 (Dedekind-MacNeille completion). For an ordered set P is the Dedekind-
MacNeille completion (DM completion) DM(P) the smallest lattice L (up to isomorphism)
such that P 2 L. The lattice L is isomorphic to the ordered set

({(A*) |AC P}, Q).

In the next chapter we analyze the DM completion more thoroughly by the means of
closure systems and will see that A — (A%)= is a closure operator on P.



Formal Concept Analysis

In this chapter we introduce a formalism for ordinal data analysis. This formalism is called
Formal Concept Analysis (FCA) [80, 223] and provides an expressive language to access
data objects as well as their properties, inherent ordinal structure and implicational theory. A
defining characteristic of FCA is that its notions were designed with human comprehensibility
in mind. All notions of this chapter are, unless stated otherwise, recalled form Ganter and
Wille [80].

5.1 Contextual Data Structure

The main data structure in which we represent data in Formal Concept Analysis are formal
contexts. They are relational structures that describe objects by attributes that they have.
We remind the reader that, in this work, data structures are finite.

Definition 19 (Formal Context). A formal context K is a tuple (G, M, I) where G is a
finite set called objects, M is a finite set called attributes and I C G X M is a binary relation
between them. The relation I is called the incidence relation of K.

We often write context instead of formal context for simplicity reasons and denote
contexts in blackboard bold typeface style, e.g, K or H. The interpretation of a pair
(g,m) € I is that “object g has attribute m”. This relation naturally extends to sets of
objects that have common attributes or sets of attributes that are shared by some objects.

Definition 20 (Derivation Operators). For a context K := (G, M, I) we define two deriva-
tion operators:
) :P(G) > PM)withA' ={meM| Vge A: (9,m) € I} (object derivation)
() :PM) > P(G) withB' :={g € G |VYm € B: (g9,m) € I} (attribute derivation)

In case there are multiple contexts present we identify the derivation operator of a context by
is incidence relation, i.e., () is the derivation operator of K.

Formal context

Formal context semantic
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13 Views on Neural Networks || X | X | X | X
14 Views on Topic Models X | X | X X

Figure 5.1: The formal context of all chapters of this thesis and their topics. The chapter
titles are shortened to improve readability.

Contexts are commonly visualized as cross-tables, where each object is a row and each
attribute is a column in the table. A cell at the intersection of row g and column m has a
cross X iff (g, m) € I. This way we can easily derive all attributes of an object or all objects
that have an attribute by looking at the corresponding row or column. The derivation of a set
of objects can be inferred by the crosses that are common to all rows of the objects.

In Figure 5.1 we have depicted an example context visualized as a cross-table. The
set of objects are the main chapters of this thesis and the attributes are topics that they are
about. In the table we can see that the context is composed of eight chapters and eight
topics with twenty-two incidences between them. The Conceptual View topic has the most
incidences followed by Conceptual Measurability with five and Machine Learning with four
incidences. The topics with the least number of incidences are Unsupervised Learning and
Deep Learning. The number of incidences reflects the number of chapters in which a topic
is present and can be used as a measure of relevance. The chapter Conceptual Views on
Neural Networks includes the largest number of topics. Therefor, we can interpret chapter
thirteen to be the most diverse. Chapter seven Conceptual Data Scaling has only a single
topic and is therefore more specialized.

Similar to the prior data structures there is a notion of duality for formal contexts. The
dual of a context K := (G, M, I) is defined as K9 = (M,G,1 ~1Y. For formal contexts we
use the term dual instead of inverse since it is more commonly used in the literature and also
switches the attribute and object set.

Remark 2 (Duality Principle — Contexts). The dual of a formal context is a formal context.

There are some properties of the derivation operators that we use in the next sections.

Proposition 1 (Derivation Operators). For a context (G, M,I) and A,C C G we find the
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following properties:
ACC = C CcA 5.1
A c A 5.2)
A = A" (5.3)

The analogue applies to the attribute derivation due to the principle of duality for contexts.

5.2 Conceptual Data Structures

Among all sets of objects and attributes there are some that form a closed sub-structure with
respect to the derivation operator. Those are called formal concepts.

Definition 21 (Formal Concept). A formal concept of a context K := (G, M, I) is a pair
(A, B) with A C G and B C M such that

A'=B and A=DPB.
The set A is called the extent and B the intent of the formal concept (A, B).

Analogue to contexts, we often write concept instead of formal concept for simplicity.
By Ext(K) we denote the set of all extents and by Int(K) the set of all intents of K. Given
Equation (5.3) from Proposition 1 we can infer that for an object g € G is the set {g}’ an
intent of K called the object intent of g. The second application of the derivation operator
yields that {g}"” is an extent of K which we call the object extent of g. Combining these
two observations we get that for an object g of K the tuple ({g}”’, {g}’) is a concept which is
called the object concept of g. The analogue is defined for attributes by the duality principle.

The set of extents and intents are set systems for which there is a natural ordering. By
Ext(K) = (Ext(K), €) and Int(K) := (Int(K), €) we identify the ordered sets of all extents
and intents respectively. Of special interest is the set of all formal concepts of K.

Definition 22 (Concept Lattice). For a context K we define by B(K) the set of all formal
concepts of K. A concept (A, B) € B(K) is a sub-concept of (C,D) € B(K), denoted
(A,B) < (C,D), iff A C C. The concept lattice B(K) of K is the ordered set (B(K), <).

An important result in FCA is The Basic Theorem on Concept Lattices. This theorem
proofs that the concept lattice of a formal context is a complete lattice. Another result of the
same theorem is that any complete lattice is isomorphic to a concept lattice. We recall this
theorem adapted to finite data structures in the language of this work.

Theorem 2 (The Basic Theorem on Concept Lattices [80, Theorem 3]). The concept lat-
tice B(G, M, 1) is a lattice order in which meet and join are given by:

N\ (A B)) =( A (UB))
teT teT

teT

\/(Ar.B) = (( UA,)N, M3 )
teT teT teT

Formal concept

Concept lattice

Basic Theorem
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Conceptual Data Scaling

Conceptual Data
Scaling
Conceptual/Views Scale Semantic Invexse Scaling
Navigating Ordinal Motifs
Conceptual Views in Lattices
Machine Learning
ConcCeptual Views
on Tree Classifiérs
Deep Learning
Conceptual Views Conceptual Views Conceptual Complexity of
on Neural Networks*s,_on Topic Models Scaling Error Conlceptual Views

Figure 5.2: The concept lattice of the context given in Figure 5.1.

A lattice L is isomorphic to B(G, M, I) if and only if there are maps « : G — L and
B:M — LsuchthatJ(L) € a(G), M(L) € S(M) and

(gym)el < Vge G,me M : a(g) < B(m)
holds. In particular, L = B(L, L, <r).

We visualize concept lattices by order diagrams, as seen in Figure 4.2. However,
annotating concepts to nodes would result in a very complex diagram with a lot of redundant
information. By double application of Proposition 1 (5.1) we can deduce for a context
K = (G,M,]I) and g € G that the object extent of g is the smallest extent that contains
g, i.e., for A C G with {g} € A” it holds that {g}"" € A””"” = A”. Thus, it is sufficient to
annotate g to its object extent in the order diagram. The dual applies to the attributes of
K. Per convention, we annotate objects below nodes and attributes above. The resulting
annotation style is known as shorthand notation. The reading rules are as follows:

i) An object is in all extents that can be reached by following upward paths.
ii) An attribute is in all intents that can be reached by following downward paths.

In Figure 5.2 we display the concept lattice of the context given in Figure 5.1 which is
equal to the content lattice of this work. A description of the content lattice can be found
alongside its introduction in the content section.
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We frequently use the relation between the set of extents of an induced sub-context
K[H, Mgk] and K. We provide this relation by the following proposition which follows
directly from i) in Proposition 3.2 [90] and 1) in Corollary 3.3 [90].

Proposition 2 (Extents of induced sub-contexts). For a context K := (G, M,I) and H C
G, the set of extents of K[H, M| is given by the following equality

Ext(K[H, M]) = {ANH | A € Ext(K)}.

In the last chapter we studied with the Dedekind-MacNeille completion (cf. Definition 18)
for an ordered set P, i.e., the smallest lattice L such that P £ L. A lattice that satisfies this
property can be given by the concept lattice of the general ordinal scale, i.e., (P, P, <p).

Theorem 3 (Dedekind’s Completion Theorem [80, Theorem 4]). For an order (P, <) is
the map x — ({x}z)S = |x an order embedding from (P, <) into Ext(P, P, <). Moreover,
DM(P, <) is isomorphic to B(P, P, <).

The size of a concept lattice can be exponential [4] in the number of attributes or objects.
For example the context ([k], [k], #) has 2% concepts. The algorithm with the best worst
case complexity has a computational cost of O (|G| - (|G| + |M])) per concept [165].

Problem 7: Concept Lattice Computation

Input: A formal context K := (G, M, I)

Output: B(K)

Complexity: O(IB(K)| -G - (IG| +|M]))

While this algorithm has the best worst case complexity we often use the next_closure
[76] in our theoretical investigations, since it lets us determine the order in which concepts
are computed. This algorithm has a runtime complexity of O(IGI2 - [M|) per concept.
For an arbitrary linear order < on the set of attributes the algorithm enumerates the set of
concepts in the lectic order, i.e., A C B iff the smallest m in the symmetric difference
AAB:=(A\B)U(B\A)isin A. An analogy that is often used for the lectic order is that
of enumerating words in {0, 1}!™! with the order relation for binary numbers.

The associated counting problem [130] is known to be # P-complete.

Problem 8: Concept Lattice Size Problem

Input: A formal context K
Output: |B(K)|
Complexity: #P-complete

Not every object or attribute is integral to the structure of the concept lattice. Some of
them can be removed without changing the order relation.

Definition 23 (Clarified Context). A formal context (G, M, 1) is called object clarified iff
Jor any two objects g, h € G the equality {g}’ = {h}’ implies that g = h. A context is called
attribute clarified iff K¢ is object clarified. A context that is object and attribute clarified is
called clarified.

By clarifying a context we address the problem of computing an induced sub-context
that is clarified with isomorphic concept lattice. This can be done polynomial in the size of
the context.

Extents of induced
sub-contexts

Dedekind completion

Concept lattice size

Counting concepts

Clarified context
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Problem 9: Clarify Context Problem

Input: A formal context K
Output: An induced sub-context S of K that is reduced with B(S) = B(K)

Complexity: O(IGI” - IM| +|G| - IM|*)

Other objects (attributes) that can be removed are those whose object (attribute) concepts
are join-reducible (meet-irreducible) in the concept lattice.

Definition 24 (Reduced Context). A clarified formal context (G, M, I) is object reduced
iff every object concept is join-irreducible in B(K). A context is attribute reduced iff its dual
context is object reduced. A context that is object and attribute reduced is called reduced.
An object or attribute that contradicts the reduced property is called reducible.

For a formal context there is up to context isomorphism a unique induced sub-context
that is reduced. This context can be computed by clarifying a context and then checking for
each object and attribute if it satisfies Proposition 13 from Ganter and Wille [80].

Problem 10: Reduce Context Problem

Input: A formal context K
Output: An induced sub-context S of K that is reduced with B(S) = B(K)

Complexity: 0(IG|* - |M)

The duality principle of formal contexts extends to the concept lattice.

Remark 3 (Duality Principle — Concept Lattice). For a formal context K is

IR

BEK!) = B(K)™" and Ext(K) = Int(K)™".

5.2.1 Closure Systems

The double application of the derivation operator, i.e., A — A", yields a closure operator
on the object set G and attribute set M respectively. For a set S is a map cl : P(S) — P(S)
a closure operator iff

X C c(X) (extensive)
XCY = cl(X) ccl(Y) (increasing)
c(X) = clocl(X) (idempotent)

By clg we refer to either the object or attribute closure operator of context K. At each
occurrence, we declare which of them is used. The set of all fixed points or closed sets, i.e.,
{cl(X) | X € S}, is the closure system of cl.

Definition 25 (Closure System). A set system A on a set S is a closure system iff it is
closed with respect to intersections (| B with B C A. The finer and coarser, and (induced)
sub-closure system definitions are given in accordance to (S, A)-structures.

The intersection of the empty subset (\{} is equal to S. Thus, S is in every closure
system on S. For finite sets S is the set system A a closure system iff S € A and A is closed
with respect to pairwise intersections. The set of extents Ext(K) as well as the set of intents
Int(K) are closure systems on G and M respectively.
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5.3 Context Products

Combining and joining data is an important aspect when deriving knowledge. In the realm
of FCA there are several context operations that we make use of.

The first operation that we consider is the semi-product of two formal contexts K :=
(G,M,I)and S = (H,N,J), where I o J := {((g, h), (m,n)) | (¢9,m) € I A (h,n) € J}:

KXS:=(GxH,MUN, IoJ) (Context semi-product)

The concepts of B(K X S) are given by the pairs (A X B, C U D) where (A, C) € B(K),
(B,D) € B(S) and A = Lg &= B = Lg . Thus, the concept lattice of the context
semi-product is isomorphic to the product of the individual concept lattices with a combined
bot element.

The next operation on contexts K, S that we recall are the union and disjoint union:

KuS=(GUH,MUN,IUJ) (Context Union)
KUS:=(GUH,MUN,IUJ) (Disjoint Context Union)

The operation U is the union of disjoint sets. Our theoretical investigations are not
concerned with the naming of objects therefore we often assume without loss of generality
that the operands are disjoint. Otherwise, they can be colored with some identifier i, i.e.,
Ay UAQ = {]} XAl U {2} X Aj.

The last operation that we use is the apposition of contexts K, S with G = H:

K|S:=(G,MUN,IUJ) (Context Apposition)

The subposition of two contexts % is equivalently defined by the disjoint union of the
object sets. The extents of context apposition K | S are known to be equal to the set of all
AN B where A € Ext(K) and B € Ext(S). We include a small proof for this statement, since
this is not explicitly stated in the literature.

Lemma 1 (Context Apposition). For two contexts K and S with G = Gx = Gg is a set
D C G an extent of K | S iff it can be written as A N B for A € Ext(K) and B € Ext(S).

Proof. We split the proof in the following to parts:

= Anextent D of K | S can be written as the intersection of all attribute derivations
{m}’ withm € D’. Let E, F be a bi-partition of D given by the context the attributes
are from, i.e., E = D’ N Mg and F = D’ N Ms. Concluding, D equals E’ N F’ with
E’ € Ext(K) and F’ € Ext(S).

& Foran A € Ext(K) is At € Mygs. Fora B C My is B¢ = B'®:. Following, is

Alels = ATele — A and thus A € Ext(K | S). The same applies to a B € Ext(S).

The remainder follows from the intersection property of closure systems. O

The semantics of the introduced context operations is discussed more thoroughly in
Chapter 7 with respect to data scalings.

Semi-product of
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5.4 Implicational Theory

Alongside formal concepts we often study the theory of the attribute closure system Int(K)
of a context K = (G, M, I) with respect to the Horn fragment

HM) ={p - ¢ | o.¢ € F[M,{A}]}.

To define the model relationship for set systems and logical expressions from H (M) we
identify the variable symbols of a sentence ¢ € F[M, {A}], denoted var(¢), with elements
from the attribute set M. Moreover, we often write A — B with A, B € M in short to
identify the implication ¢ — ¢ with var(¢) = A and var(y) = B.

Definition 26 (Model Relation — Formal Contexts). A set C C M is a model of an impli-
cation A - B e H(M) iff A L C or B C C. A set system A on M is a model of an
implication iff all elements of A are a model of the implication. A set system is a model of an
implicational H (M) theory T iff all elements of A are in model relation to all implications
of T.

A context K := (G, M, I) is amodel of A — B € H(M) iff int(K) £ A — B. An object
g€ Gisamodelof A— Be H(M) iff{g} A — B.

The model relationship between contexts and implications is often tested using the
following characterization

(GM,H)EA—-B = Al cB.

Per default we identify by the theory of a context Th(K) the theory on its attribute closure
system Thy, (K). The latter is defined as the set of all implications from H (My) for which
K is a model. Besides the theory based on the attributes, we also study the theory of object
implications H (Gx), i.e., Thg(K) := Thy, (K9).

Using the characterization of attribute implications from above, we are able to infer
implications A — B from the sub-concept relation of their generated concepts (A”, A”) <
(B’, B”). Thus, we can read attribute/object implications from concept lattice diagrams.
Namely, from upward/downward paths between concept annotations in the order diagram.
For example, we find that Machine Learning implies Conceptual Views. This indicates that
we study machine learning only with respect to their conceptual views. This implication is
true within the context of this thesis but does not need to be true in general.

There is a one-to-one relationship between closed H (M) theories and closure operators
on M. A closure system is uniquely defined by its implicational theory and for a closed
theory T C H (M) is the mapping A — clp(A) = J{Y | X - Y € T and A C X} aclosure
operator. Moreover, for two closed theories 7, S € H (M) does the equality cly = clg imply
that T = S. We use this connection to switch between representations.

The theory of a context is too large and includes a lot of redundant information. Therefor,
we study an implicational basis 8 € Th(K) with B + Th(K). There are many proposed
basis in the literature [220]. The Duquenne-Guigues base [85] or canonical base is known
to be the smallest base in size and is recursively defined using pseudo-intents.

Definition 27 (Pseudo-Intent). A set A C M of a context (G, M, I) is a pseudo-intent iff
1) P ¢ Int(K) and 2) Q" C P for every pseudo-intent Q C P with Q # P.

The canonical base is given as the set of all implications generated from pseudo-intents.
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Definition 28 (Canonical Base). The canonical base of a context K is the set of all impli-
cations
C(K) := {P — P" | Pis a pseudo-intent of K}.

Pseudo-intents are hard to recognize [13] due to the recursive definition. The associated
decision problem is given below.

Problem 11: Pseudo-Intent Problem

Input: A formal context K := (G,M,I)and A C M

Output: True iff A is a pseudo-intent in K

Complexity: co-NP-complete

The number of pseudo-intents and thereby the size of the canonical base can grow
exponential in the number of attributes [129]. The complexity of the counting problem [133]
is given below.

Table 5.1: Canonical base of the content lattice context.

Implication support
{} — Conceptual Data Scaling 1

Conceptual Data Scaling

Machine Learning —  Conceptual Views 0.5

Conceptual Data Scaling
Conceptual Views —  Machine Learning 0.125
Inverse Scaling

Conceptual Data Scaling Machine Learning
. — . 0.125
Deep Learning Conceptual Views
Conceptual Data Scaling
Scale Semantic —  Unsupervised Learning 0.125

Conceptual Views

Conceptual Data Scaling
Machine Learning

Deep Learning —  Scale Semantic 0.0
Conceptual Views
Inverse Scaling

Conceptual Data Scaling

Conceptual Views
Inverse Scaling —  Deep Learning 0.0

Machine Learning

Scale Semantic

Conceptual Data Scaling

Conceptual Views
Machine Learning —  Scale Semantic 0.0

Deep Learning

Scale Semantic

Complexity
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Problem 12: Canonical Base Size Problem

Input: A formal context K

Output: |C(K)|

Complexity: #P-complete

The list of all implications in the canonical base of the content lattice context is depicted
in Table 5.1. The base contains eight implications with varying premise and conclusion
size. The previously read implication from the diagram, i.e, Machine Learning implies
Conceptual Views can also be found in this list. In addition to that we find three implications
for which there are no chapters that satisfy the premise. These rules are a description for the
closure operator of attribute sets whose output is the entire set of attributes.

A quantity that describes this observation is the support of an implication in a context:

|(AU B)'|
supp(A — B) = T (support)
In Table 5.1 we report alongside each implication their support values. From the table we can
infer that Machine Learning — Conceptual Views has the highest support of all implications.
This observation is supported by the aim of this thesis to deepen the understanding of
conceptual measurement and apply it to machine learning data representations.

A more relaxed notion of implications among attribute sets are association rules which
are only partially in model relation with a context. The correctness of an association rule in
a context is described by the confidence:

’
conf(A — B) = % (confidence)

Analogously, to the implicational theory of a context there is a basis for the set of all
association rules that have a minimum confidence and the premise as well as conclusion
have a minimum support. The Luxenburg basis [146, 208] which contains all rules X — Y,
such that 1) X and Y satisfy the support and confidence criterion and 2) there are two
concepts (A, B), (C, D) € B(K) that are in cover relation (A, B) < (C,D),and X = D and

Table 5.2: Luxenburger basis of the content lattice context for minimum support of 0.2 and
minimum confidence of 0.5.

Association Rules support  confidence
Conceptual Data Scaling —  Conceptual Views 1.0 0.625
Conceptual Data
Scaling —  Machine Learning 0.625 0.8

Conceptual Views

Conceptual Data . .
Scaling  — Machine Learning 025 05

Inverse Scaling Conceptual Views

Conceptual Data
Scaling —  Scale Semantic 0.25 0.5
Inverse Scaling
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X UY = B. Thus, the rules in the Luxenburg basis can be read from downward lines in the
concept lattice diagram. The deduction rules are the usual where for two rules X — Y and
Y — Z the confidence conf(X — Z) is equal to conf(X — Y) - conf(Y — Z). In Table 5.2
we depict all association rules of the Luxenburg basis of the content lattice context.

5.5 Conceptual Scaling

Data is not always in a format that is compatible with the formal context structure. For this
we have to translate attributes with respect to some formal prescription on how to interpret
the data on the ordinal level. The process of defining such prescription and applying them to
derive a formal context is referred to as conceptual scaling [74]. In this section we recall
only the basic notions from conceptual scaling, since we discuss and contribute to this topic
more in the upcoming parts. The most common procedure applied to scale data sets is
known as plain scaling of many-valued contexts.

Definition 29 (Many-Valued Context). A many-valued contextis atupleD = (G, M, W,I)
where G is a set of objects, M a set of many-valued attributes, W a set of attribute values and
I € G XM xW arelation with (g, m,w), (g, m,v) € I implies w = v. A pair (g,m,w) € I
is interpreted as “object g has value v for attribute m”. A many-valued context is called
complete iff for all g € G,m € M there exists is a w € W with (g, m,w) € .

By mp(g) we denote the value w that g has for attribute m in D and the domain of m by
domp(m) ={weWp|3JgeG:(9,mw)€ Ip}.

The absence of values is allowed. By m(g) = L we indicate that a value is missing.
In plain scaling we define for each many-valued attribute m in D a scale context.

Definition 30 (Scale Context). A scale for the many-valued attribute m of a many-valued
context D is a context S,,, = (G, My, I,) where domp(m) C G,,,. The elements of G,
are called the scale values and M, are called the scale attributes.

By defining a scale for an attribute we provide an interpretation of the attribute’s domain
on the ordinal level with respect to the scale’s concept lattice. There are many ways on how
to define such a scale depending on the interpretation and perspective of the data analyst.
There are some standard interpretations of attribute domains via scales that reflect specific
semantics from the realm of measurability, e.g., linear ordered, incomparable, interval or
partitioning values.

The derived context with respect to plain scaling is defined as follows.

Definition 31 (Plain Scaling). Let D = (G, M, W, I) be a many-valued context and S, be
a scale context for each many-valued attribute. The derived context is defined as

(G, U {m} X My, J) with (g, (m,v)) € J :&= (mp(g),v) € L.

meM

Many-valued data

Many-valued context

Scale context

Defining scales

Plain scaling
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Metric Data and Similarity Measures

In Part I1I we focus on applying methods from conceptual measurability to analyze the inherent
data representations of machine learning models. Those are often numeric representation
on the ratio level of measurement. For those, we recall in this section basic structures and
operations from the literature.

The most commonly used structure for numeric data is the k-dimensional R-vector
space, i.e., a structure associated with the following operations:

+: R¥ x RF — R¥ with (X1s e xp)+ WY1y o yk) = (X1 + Y1, .o XK+ Uk),
(vector addition)

R xRF = RF with a(xi,...,xx) = (a-xy,...,a-xg),
(scalar multiplication)

G REXRF S R owith (xp, . x0) (U e Yk) =Xy Xk - Yk
(dot product)

Elements from R¥ are called vectors for which we use symbols X := (xq,...,xx). We
use for both the dot product and the scalar multiplication the - symbol. The present operation
can be inferred from the input type, the used operand symbols or the surrounding text. For
the absolute of a vector X exist several variants that are characterized as L-norms:

P!
%M, = ( Z |x,~|p) for p € N. (generalized L-norm)

1<i<k

For the special case of p = 1 we identify the L1-norm by |X| := |[X||,, and for p = 2 the
L2-norm by ||X|| := [|X]]2.
The dot product of vectors does naturally extend to products of matrices A of size m X n

Vector space on real
numbers

L-norms

Matrix operations
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and B of size n X p:

-

ay arby -+ aib,

by - b,|= : : (matrix product)

- — -

am amby -+ dmb,

Other spaces of vector like elements that we encounter explicitly and implicitly throughout
this work are the binary space using {0, 1}* where +, - 5 are the usual with the exception of
1 +5 1 = 1. In addition to that we use the Boolean space {_L, T}* with the standard logical
operations. Although these spaces are isomorphic, we use the Hamming cube for numeric
representations and the Boolean space in logical settings. We may note that the later two are
no vector spaces. Hence, we refer to them simply as space or coordinate system.

6.1 Quantitative Comparison

Besides comparing elements using order relations there are special data representations that

allow for a quantitative comparison of elements. These measures can not only be used to

interpret results but are also used as data representations in many machine learning models.
The first approach measures the distances between object representations.

Definition 32 (Pseudo Metric Space). A pseudo-metric space is a tuple (M, d) with d :
M x M — R where d satisfies the following properties for x,y,z € M:

d(x,x) =0
d(x,y) = d(y,x) (symmetry)
d(x,z) <d(x,y) +d(y,2) (triangle inequality)

In some settings we have multiple objects with the same numeric vector representation.
This leads to unequal elements that have zero distance between them. In case only equal
elements have a zero distance we get a metric space.

Definition 33 (Metric Space). A metric space is a pseudo-metric space (M, d) that satisfies
x#y = d(x,y) >0 (positivity)
for x,y € M. The function d is called a metric.

In case the function d satisfies the d(x,x) = 0, symmetry and positivity property, we
call the structure a distance space and the function d a distance function.

Metric spaces use a relaxed notion for embeddings that allows for some difference
between the distance functions. A map @ : A — B between two metric spaces is an
embedding with distortion C > 0 and constant ¢ > 0 iff

¢-da(x,y) < dp(a(x),a(y)) <c-C-dalx,y)

for all x, y € A. In case this inequality holds for ¢, C = 1 the embedding is called isometric.
For finite metric spaces there is for any injective map « a pair of ¢, C such that o can be



6.1. QUANTITATIVE COMPARISON 41

considered an embedding. Thus, the term embedding is often simply used for maps that aim
to preserve the distances.

For numeric data we employ a distance function based on the L-norms of the vector
difference:

dp(X,§) = 1IX = Jllp

The special case of p = 2 is called the Euclidean distance and Hamming distance for
p = 1. For sets and set systems we use the absolute of the symmetric difference A and for
connected graphs G the length of the shortest path d¢.

A second space to compare elements uses similarity functions.

Definition 34 (Similarity Space). A similarity space is a tuple (M, s) with s : M X M —
[0, 1]gr where s satisfies the following properties for x,y € M.:

d(x,x) =1

d(x,y) = d(y,x) (symmetry)

The map s is called a similarity measure.

A commonly applied similarity function for numeric data is the cosine similarity between
two non-zero vectors in the R-vector space:

N Xy T
cos(X,y) = q—yq (cosine similarity)
[1X1] - [zl

For sets or set systems we use the Jaccard index between two sets A, B:

|AN B
|AU B

J(A,B) = (Jaccard index)

Distance functions d and similarity functions s can be used interchangeably by the
following inversion and normalization:

ds(x,y) =1-  s(xy) (similarity to distance)
d(x, . D
sqlx,y) =1- & (distance to similarity)
max d(x,y)
x,ye

Other distance and similarity measures will be defined in the following parts when they
are needed. In some cases we will define non-symmetric distance and similarity functions.

Metric examples

Similarity Space

Similarity examples

From distance to
similarity
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Conceptual Data Scaling

In order to analyze heterogeneous data on the ordinal level, e.g., for (closed) pattern
mining [114], ontology learning [41] or machine learning [87, 98], conceptual scaling [74] is

a tool of choice. There are three stages that we identify in the scaling process (see Figure 7.1).

First, there is the original data set whose attributes can be given on any level of
measurement [201]. We describe this data set by a relational data structure, namely a
many-valued context D := (G, M, W, I). The next stage is a formal context K derived from
D by interpreting each attribute m € M on the ordinal level. This is done by defining scale
contexts S,,. There are many ways to do this, but not all methods are meaningful in every
situation. Often the data has an implicit structure that guides the scaling. For example, it is
natural to encode the order relation of attributes that are on the ordinal level in the defined
scales. We propose the notion of pre-scaling to encode implicit or background knowledge
and make them accessible to scaling.

The size of the derived context increases with the number of values w € W and their
scale attributes in the scales S,,,. Thus, even relatively small many-valued contexts may result

Conceptual Scaling/ Data
Data Interpretation Reduction
Raw Data Derived Data Scaled Data
(Many-Valued) (Formal Context) (Formal Context)
Inverse Data
Conceptual Scaling Compatibility

Figure 7.1: An overview of methods of scaling methods for conceptual structures.

Stages in data scaling

Stage: raw data

Stage: ordinal
interpretation

Stage: ordinal data
reduction
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in very large derived contexts and concept lattices. In a second step we apply data reduction
to compute a scaled context S from K with reduced complexity. In this work, we propose a
framework to characterize consistent conceptual data reductions that is based on continuous
maps. Within this framework we understand the scaled context S as a view of K that reflects
parts of interest from the conceptual structure of K. This framework is agnostic with respect
to the data reduction method and can therefore be applied to many different methods from
machine learning. In the following chapters. we present plenty of contributions in this area
that range from the computation, combination and interpretation of views S.

The process of data reduction is often integrated into the scaling process by defining
scales S,, whose values include some form of aggregation. We argue that for a clear and
precise interpretation of the data and resulting analytical findings it is important to separate
these tasks. We elaborate on this in greater detail in Section 7.3.

The introduced framework of views can also be used to verify whether the output of
a data reduction method is consistent with respect to its conceptual structure. This is the
case iff the reduction map is continuous. When using inconsistent data representations it
is crucial to identify the parts that cause the inconsistencies. By doing so, we can assess
the quality of individual concepts and implications in the scaled context S with respect to
the derived context K. We introduce foundation a notion of error in conceptual scaling in
Section 7.5. Methods on how to deal with this error are presented in Chapter 11 based on
Binary Matrix Factorization.

With inverse conceptual scaling we study from which scales S,, and data sets D a context
K can be derived from. We recall in Section 7.4 the state-of-the-art from the literature. In
the following chapters we have developed many new applications based on this theory. In
Chapter 10 we introduce a new notion of dimension and show how to find a representation
of D with fewer — possibly compressed — features. In Chapter 9 we introduce a new method
based on the identification of individual scales that allows us to automatically interpret the
concept lattice of K and generate textual explanations for them. This is, to the best of our
knowledge, the first method that is able to do this and opens a promising new line of research
to improve the interpretability of Formal Concept Analysis for untrained users.

7.1 Conceptual Scaling

We introduced in Section 5.5 the basics on how to scale a many-valued context with plain
scaling. In this section we introduce the standard scales from Ganter and Wille [74] that
we use to interpret data on the ordinal level. For each scale we provide formal definitions,
their basic meaning of interpretation [74, 80] and example data.

The first scale is the nominal scale and it is used to describe that attribute values are
incomparable and have nothing in common. Hence, the basic meaning of partition [80,
Figure 1.26]. The scale attributes induce a partition on the set of objects based on their

values. Let [n] := {1,...,n} be the set of natural numbers from one to n, the scale is defined
to be
N, = ([n], [n],=) (Scale)
and its object theory is equivalent to
The(N,) ={i,j=1,...n|1 <i<j<n} (Object Theory)

In Figure 7.2 we depict the scale as well as its concept lattice. This scale is commonly used
to scale categorical values such as categories, classes, names or clusters. A special variant of
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nominal scales are dichotomic scales. They are isomorphic to the N, scale and are defined
on the values True and False.

In machine learning a nominal interpretation of the data is also understood as OneHo-
tEncoding!, which is often used for all attributes that are not numeric.

N, i

é X 1 2 3 n-1 n

3 XX @ @ © - 0 O
1 2 3 n—1 n

n-1 X (

n X

Figure 7.2: This figure shows the formal context of the nominal scale N,, on n elements (left)
and its concept lattice (right).

The next two scales are for attributes whose domains are linearly ordered. Examples
are physical quantities, scores, rankings or food chains. The first of the two is the ordinal
scale. Its attributes values induce a linear order on the scale values and its basic meaning is
ranking [80, Figure 1.26]. The scale is defined to be

0y = ([n], [n],2) (Scale)
and its object theory is equivalent to
Thg(Op) 2 {i=i+1|1<i<n-2}U{0 = n}. (Object Theory)

In Figure 7.3 we depict the scale as well as its concept lattice.
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0, <] ?1

—Nen| . R 2
1 X C\>2
2 X | X
3 X | X | %X

X | X | x| én_l
n—1{|x[x|x|x|x n—1
n XX | X|X]|x|x é}”

Figure 7.3: This figure shows the formal context of the ordinal scale O,, on n elements (left)
and its concept lattice (right).

Sometimes we also consider ([n], [n + 1], >) to be an ordinal scale. This scale has
in addition to Ext([n], [n], >) the empty set as extent and its theory is equivalent to
{i =>i-1]|2 < i< n}. The ordinal scale can be used to analyze sets of objects that are
bound from below by some value. Upper bounds can be analyzed using the dual scale. To

Thttps://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
OneHotEncoder.html, 06.2023
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Ordinal scale

Interordinal scale


https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

General ordinal scale

Contranominal scale

Contranominal scales
and size

Crown scale

48 CHAPTER 7. CONCEPTUAL DATA SCALING

analyze upper and lower bounds at the same time, i.e., arbitrary intervals within a linear
order, we use the interordinal scale. The scale is defined to be

L = ([n], [n], <) | ([n], [n], 2), (Scale)
its object theory is equivalent to
Thg(L,) ={i,j=i....,j|1<i<j<n} (Object Theory)

and its basic meaning is betweenness relation [80, Figure 1.26]. It is used for linear ordered
domains in which we are interested in intervals, such as time periods in time data, spectral
colors in wavelengths or in tree classifiers. We discuss the later in more detail in Chapter 12.

VI Al
— —
In [ [
\4 |
.—\‘/‘ (\\l/l (‘4'\1/‘ 5 & v_/4\| Al té\l 5 é\
1 X | X | X [X]|X[X]|X
2 X[ X[ X| X [X]|X]|X
3 X | X[ X |[X|X]|X]|X
X| X [ X|X|X|X|[X
n—1 X [ X[ X|X]|X|X]|X
n X[ X[ X|X|X|X|x

Figure 7.4: This figure shows the formal context of the interordinal scale 1,, on n elements
(left) and its concept lattice for n = 4 (right).

For non-linear orders (P, <), e.g., hierarchies, the general ordinal scale (P, P, <) can
be used. In our work, we do not consider this scale to be a standard scale since general
ordinal scales can rarely be used for attributes other than the ordered set they are defined on.

The next scale is the contranominal scale, which is defined as

By = ([n], [n],#) (Scale)
and its object theory is equivalent to
Thg(B,) = {}. (Object Theory)

Its basic meaning is partition and independence [80, Figure 1.26]. The concept lattice of this
scale is isomorphic to the Boolean scale (P ([n]), P([n]), €). Both are used for attributes
for which we are interested in any combination of values. Examples are spices planners for
recipes or transactions in retail data sets.

The concept lattice (see Figure 7.5) of the contranominal scale on n elements has 2"
formal concepts (see Figure 7.5). Contexts that include contranominal scales as sub-context
are often considered to be very complex [4]. Many works deal with the problem of finding
and isolating such scales [63, 125].

The last scale that we consider as standard scale is the crown scale [116]. Forn > 3 is
this scale defined as

Cn = ([n], [n],J), where (a,b) € J ;&= a=bor(a,b)=(n,1)orb=a+1
(Scale)
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Figure 7.5: This figure shows the formal context of the contranominal scale B,, on n elements
(left) and its concept lattice for n = 3 elements (right).

and its object theory is equivalent to

Thg(Cy) ={i,j=1,...,n|1<i<j<nand2 < j—-i<n-1}. (Object Theory)

This scale is not among the scales considered by Ganter and Wille [80] and does thereby
not have a basic meaning. This scale has a strong connection to Hamiltonian cycles and
we often find it as sub-structure in concept lattices. We interpret this scale as a round trip
between values. In Figure 7.6 we depict its context and concept lattice.

C, | ‘(\
—||en . QR

n—ln
1 X | X .
2 x| x Jr,/f,,,, ‘
3 X | X
2
n—1 X [ X ; h 1
n X X O

Figure 7.6: This figure shows the formal context of the crown scale C,, on n elements (left)
and its concept lattice (right).

When a concept lattice L, or parts of it, are isomorphic to the concept lattice of a standard
scale we say that L is of standard scale. For example a concept lattice that is linearly ordered
is of ordinal scale.

7.1.1 Pre-Scalings

Some (many-valued) data sets are equipped with richer information, for which we introduce
additional definitions. A pre-scaling of a many-valued context D := (G, M, W, I) is a family
(W(m) | m € M) of sets W(m) C W such that W = | J,,,cps W(m) and

(gmw)el = weW(m)

for all g € G,m € M. We call W(m) the value domain of the many-valued attribute m.

The value domain is a super-set of the domain domp (m) and also includes values that m
accepts but are not supported in the data. A tuple (v,, | m € M) matches a pre-scaling

Lattices of standard
scale

Scaling with additional
information
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iff v,,, € W(m) U {L} holds for all m € M. (G,M,W(m)epr,J) is called a stratified
many-valued context.

It is also allowed that the value domains additionally carry a structure, e.g., are ordered.
This also falls under the definition of “pre-scaling”. We remain a little vague here, because
its seems premature to give a sharp definition. Prediger [171] suggests the notion of a
relational many-valued context. This may be formalized as a tuple

(G’ M7 (W(m)$ Rm)mEM, 1)7

where (G, M, W(m)mepm, I) is a stratified many valued-context as defined above, where on
each value domain W (m) a family R,,, of relations is given. Prediger and Stumme [170]
then discuss deriving one-valued attributes using expressions in a suitable logical language,
such as one of the OWL-variants. They call this logical scaling. Moreover, we can envision
that an extension to arbitrary data structures (cf. Chapter 2) is beneficial.

The special case where each Ry, is an order relation is also known as ordinal context [169,
202]. The kind of pre-scaling, as mentioned above, may suggest the scales to use. An ordinal
pre-scaling naturally leads to an interordinal interpretation of data, using only interordinal
scales.

Given the equivalence in Proposition 4, we find suggestions for scales based on structural
properties. Pollandt and Wille [169] suggest the use of contra-ordinal scaling for ordinal
contexts, i.e., for a given ordinal pre-scaling (W (m), <,,) is the contra-ordinal scale defined

as (W(m),W(m), #:= <! ). Such a scaling leads to a natural correspondence between
order preserving maps of ordinal pre-scalings and scale-measures between the derived
contexts. This is a useful connection for theoretic investigations. However, in practice the
choice for a scale should be made based on the analyst’s interpretation and the relations he
or she is interested in.

For data with unknown information Burmeister and Holzer [33] proposed incomplete
contexts (G, M, {x,?,—},J). The value + encodes that an object has an attribute, — that
an object does not have an attribute and ? encodes that it is not known if an objects has an
attribute. Suggested scalings either project the data only to either value, or use the — < 7 < X
or 7 < —, X ordinal scaling [68].

7.1.2 Dealing with Categorical Values

Categorical attributes are most often scaled nominally by which we do not measure any
relation between attribute values. However, this is often an oversimplification of the data. For
example consider a clothing retail data set with an attribute whose values are types of clothes
like shoes, sandals, trousers, shorts, sweater and hats. While these values are pairwise
unequal and none is greater than the other, there are some that are more similar than others.
For example, some of the clothes are footwear and some are shorts. As discussed in Stumme
[204], such information can be added to the scale based on background knowledge, e.g.,
from a taxonomy. The additional relations may be very beneficial for tasks like classification,
clustering or to derive more generalized implications using the more abstract scale attributes
Jootwear. The concept lattices of the described scales are displayed in Figure 7.7.

Other examples are fruits that can be measured into botanic classification hierarchies or
animals into their evolutionary genealogy.
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footwear pants

shoes~ sandals trousers shorts sweater - hats shogs sandals trousérs shorts sweater - hats

shoes - sandals trousers shorts sweater - hats shoes - sandals trousers shorts sweater - hats

Figure 7.7: Two scales for a categorical attribute. One is a nominal scale, the other is a
nominal scale enriched with background knowledge.

7.1.3 Other Scaling Methods

Many extensions to plain scaling can be found in the literature. First, there is logical scaling
which allows for the definition of scale attributes that are logical combinations of attributes
in the many-valued context D. The scale attributes can either be defined using an SQL
syntax to generate unary relations [172] or description logics [170].

Another extension is local scaling [206] which conditions the use of a scale for an
attribute m € M based on the values an object has in the scale for a different attribute
n € M\ {m}. The condition is meet for an object g € G iff the object extent of n(g) in S,, is
within a convex subset C € B(S,,). This procedure is designed for nested representations of
concept lattices as used in TOSCANA [123, 218] and allows to only visualize the scale S,
within a convex subset of B(S,,). A variation of local scaling is nested scaling [204] which
given a concept (A, B) in B(S,,) only applies a scale S,, ift S,, differentiates objects g € G
with n(g) € A, i.e., S,, restricted to the scale values m(A) has more than one concept. This
applies a scale only if it adds information with respect to nested diagrams.

Both scalings are proper extension to the baseline scaling procedure since attribute scales
in plain scaling are independent from each other.

The TOSCANA software also allows for the definition of objects in the scale context using
SQL expressions [206]. As long as this is only used within the domain of a single attribute,
this mainly provides more compact representations of scales. Equivalent scalings can be
provided by replacing a SQL expression for each value that satisfies the expression. When

multiple attributes are allowed, this procedure extends plain scaling similar to logical scaling.

Furthermore, there are scaling methods to derive other structures from a many-valued
context. For many-valued contexts that are not complete there is scaling into incomplete
contexts [33]. These are special many-valued contexts with value set {X, ?, —} to encode if
an object has an attribute, does not have an attribute or it is unknown. This context does also
come with additional derivation operators for each value. For fuzzy contexts, i.e., contexts
where incidences are quantified within the interval [0, 1], there is fuzzy scaling [18] and for
traidic formal contexts [224] there is triadic scaling [115]. Relational scaling [65, 173]
derives from one many-valued context a family of formal contexts (K;) ey with J C N
called a power context family. The object set G; of K; is defined as (Gp)’ and each
attribute set N € M encodes a j-ary relation on Gp by N Iy ¢ (Gp)’. These relations are
used to define a (directed) hypergraph on G called concept graph. Selection methods
based on SQL syntax [84] have been proposed to present only parts of the concept graph.

Logical scaling

Local scaling

Nested scaling

Logical scale values

Derive other structures
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7.2 Conceptual Data Reduction

We explain the notions for conceptual data reduction using the ice cream context (see
Figure 7.8). This context has seven ice cream flavors as objects and nine ingredients as
attributes. The incidence encodes that an ingredient is contained in an ice cream.

Butter (PB)

Peanut
Pieces (CP)
Dough

Brownie
Choco Ice
(D)

(B)
Ice (Cal)

Peanut
Ice (PI)
Caramel
(Ca)
Caramel
(CI)
Choco
Vanilla
V)

Fudge
Brownie (FB)
Cookie N « «
Dough (CD)

Half X X X X X
Baked (HB)

Caramel N < N N
Sutra (CS)

Caramel Chew N N N
Chew (CCC)

Peanut Butter % % N
Cup (PBC)

Salted Caramel % N N N
Brownie (SCB)

Figure 7.8: This Figure shows the ice cream context and its concept lattice. The incidence
describes if an ingredient (attribute) is contained in an ice cream flavor.

With the following formalism we understand conceptual data reduction as a morphism
into a conceptually simpler structure.

Definition 35 (Scale-Measure (cf. Definition 91, [80])). Let K and S be two formal con-
texts. The map o : Gx — Gg is called an S-measure of K into the scale S iff the pre-image
o1 (A) = {g € Gx | 0(g) € A} of every extent A € Ext(S) is an extent of K. An S-measure
o is full if every extent of K is the pre-image of an extent of S, i.e., o~ (Ext(S)) = Ext(K).
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Cookie x| %
Dough (CD)
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Baked (HB)
Caramel Sutra < | x
(CS)
Caramel Chew | x
Chew (CCC)
Peanut Butter N N
Cup (PBC)
Salted Caramel N < | x N
Brownie (SCB)

Figure 7.9: A scaled context of the ice cream data set (see Figure 7.8).

This definition corresponds to the notion for continuity between closure spaces (G, cy)
and (G, cp),1.e.,amap f : G| — G, is continuous iff

for all A € P(G2) we have ¢1(f 7' (A)) C £~ (ca(A)). (7.1)

This property is equivalent to the requirement in Definition 35 that the pre-image of closed
sets is closed, more formally,

for all A € P(G») with c2(A) = A we have £~ (A) = c1(f~'(A)). (7.2)

Conditions in (7.1) and (7.2) are known to be equivalent, since (7.1) = (7.2) follows from

c2(A)
)

rea(f1A) > xe feaa) 22 ke rl(A).

Also, from

X € cl(ffl(A)) =X € cl(ffl(cz(A))) g)x € fﬁl(cz(A))

results (7.2) = (7.1).

In the following we may address by o~ ! (Ext(S)) the set of all extents of K that are
reflected by the scale context, i.e., {1 (A) | A € Ext(S)}.

In case the map o is not the inclusion map, we understand the map o as an interpretation
of the objects from K in S. Thus, any object g € G is expressed in the (potentially limited)
language of the scale-context S.

Remark 4 (Surjective Scale-Measures). It is reasonable to consider only surjective maps
when using scale contexts for scale-measures. Since objects that are not contained in the
image of the scale-measure o do not contribute to the set of reflected extents.

In Figure 7.10 we depict a scale-measure, and the concept lattices of the ice cream
context and of the scaled context. This scale-measure uses the same object set as the original

Continuous conceptual

data reduction

Reflected conceptual
structure

Interpretation of o

Example scale-measure
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Figure 7.10: This figure depicts the concept lattice (right) of the scaled ice cream context
(Figure 7.9). The reflected extents o~ (Ext(S)) of the ¢ scale-measure are highlighted in
the concept lattice diagram of the ice cream context.
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context alongside the identity map on G. The attribute set consists of six elements, which
may reflect the taste, instead of the original nine attributes that indicated the used ingredients.
The specified scale-measure map allows for a human comprehensible interpretation of o~ !,
as indicated by the gray colored concepts in Figure 7.10. In this figure we observe that the
concept lattice of the scale-measure reflects ten out of the sixteen concepts in B (Kjcg). The
order dimension of B(Kjcg) is three whereas the order dimension of the concept lattice of
the scale-measure given in Figure 7.10 is two. Finding low dimensional scale-measures for
large and complex data sets is a natural approach towards comprehensible data analysis. In
Chapter 10 we will answer the question: Is the order dimension of scale-measures bound by
the order dimension of B(K)?

There is a close connection between scale-measures, embeddings and morphisms between
closure systems that we describe by the following propositions.

Proposition 3 (Scale-Measures and Order Morphisms). For contexts K, S and a surjec-
tive scale-measure o from K to S we find that

(Ext(S),C) = (o "(Ext(S)),C ) < (Ext(K),C) (7.3)
and in case o is full
(Ext(K),C) = (o(Ext(K)),C ) = (Ext(S),C) = (o '(Ext(S)), <) (7.4)

Proof. Equation (7.3): Since there is no g € Gs with o~ (g) = 0, for every E, E € Ext(S)
with E C E it is true that o~ '(E) € o~ '(E). The second morphism follows
directly from Proposition 118 in Ganter and Wille [80], which states that (A, A’S) —
(071(A), 071 (A)') defines a meet-preserving embedding of B(S) to B(K). Since
the order relation of any concept lattice is derived from the inclusion order on its
extents, we can infer that the A — o ~!(A) defines a meet-preserving map from
Ext(S) to Ext(K).

Equation (7.4): From the surjectivity of o we can deduce via [80, Proposition 118] that the
map o~ ! exists, which is injective. This also means that every extent E € Ext(S) is
mapped to a unique extent £ € Ext(K). Moreover, since o is a full scale-measure,
every extent of K is also a pre-image of an extent of S. From this it follows that o~!
bijectively maps the extents from S and K.

The last isomorphism follows from Equation (7.3). O

Proposition 4 (CS-morphism and scale-measures). For two formal contexts K, S and a
map o : Gg — Gg TFAE:

i) o is a S-measure of K,
ii) forall A C Gg and x € Gx: x € Al* — o (x) € clg(o(A)).

Proof. = Assume thereis a g € G and B C Gy with g € B but o(g) ¢ o (B)%s!s,
Thus, g ¢ o~ (c(B):E), but g € o~ (o(B)fs) M since B € o~ (o (B)%ks)
and g € B'®*, Concluding, there is a D € Ext(S), i.e., D = o~ (o (B)%%), with
o~ (D) ¢ Ext(K) and therefore is o not a scale-measure.

& Assume there is an extent A € Ext(S) with 0~ !(A) ¢ Ext(K). Thus, there is
ag e Gg with g € 071 (A) % but g ¢ 0~ '(A). From the later we follow that
o(g) ¢ o(07'(A)). Fromo (0~ (A)) = A and A5%s = A we result in a contradiction
to (ii), i.e., g € o~ (A) < but o (g) ¢ o (o' (A)) sl O
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Besides scale-measures there are other context morphisms in the literature whose
relations to each other have been studied [66, 126].

Throughout this work, we make use of the fact that o~! (Ext(S)) constitutes a closure
system.

Proposition 5 (Scale-Measure Closure System). For a context K and a scale-measure o
of Kinto S is o~ (Ext(S)) a closure system on Gx.

Proof. From Proposition 3 we can follow that o~!(A) A c~!(C) = o~'(A A C) for
A, C € Ext(S). From the Basic Theorem of FCA [80, Theorem 3] we know that the meet
of any set of extents is exactly their intersection. Thus, for any two extents A, C € Ext(S)
we find that =1 (A) N~ (C) = 0~ (A N C). Finally, c~'(A), 01 (C) € o~ (Ext(S))
implies that c~'(A) N o~ 1(C) € o~ ' (Ext(S)), and therefore o~ (Ext(S)) is a closure
system. O

Combining Propositions 3 and 5 we find that a scale-measure reflects a coarser closure
system of Ext(K).

Scale-measures can also be chained to describe relations across multiple data reductions.
This relation can be deduced from the continuity property above and will be used frequently
throughout our work.

Corollary 1 (Composition Scale-Measures). Let K be a formal context, o an S-measure
of Kand y a T-measure of S. Then o o is a T-measure of K.

We want to further nourish the understanding of scale-measures as consistent measure-
ments of the objects in some scale context. The following definition can be understood as an
extension of views in Wille [221].

Definition 36 (View). A view of a formal context (G, M, I) is a formal context (G, N, J),
where for each n € N there is a set A, € M such that for all g € G,

gJn = A, C {g}.

A contextual view of a many-valued context D is a view of a context K derived from D. The
concept lattice of such a contextual view is a conceptual view of D.

Based on the following proposition we understand the application of an S-measure o on
K as view

(G, Ms, J) with A, := o' ({m}®) and (g,m) € J :e= A,, C {g}'*
on the data.

Proposition 6 (Scale-Measures and Views). A formal context K| = (G,N,J) is a view
of K := (G, M, 1) if and only if the identity map is a K|-measure of K.

Proof. When (G, N, J) is a view of (G, M, I), then every extent E of (G, N, J) is of the
form E = B’ for some B C N. Then E also is an extent of (G, M, I), since E = (e An)'.
Conversely, if the identity map is a (G, N, J)-measure of (G, M, I), then for each n € N the
pre-image of its attribute extent n’ (which, of course, is equal to n/) must be an extent of
(G, M, I) and therefore be of the form Af, for some set A, C M. O
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7.2.1 Deciding Scale-Measures

A computationally important aspect of conceptual data reduction is to decide if a map is a
scale-measure. For this we first show that it is sufficient to check the scale-measure condition
for all attribute derivations. This equivalence has also been observed in an earlier work by
Erné in Lemma 3.1 [66].

Proposition 7 (Attribute Scale-Measures). Let K = (G,M,I) and S = (Gs, Ms, Is) be
two formal contexts and o : G — G, then TFAE:

i) o is an S-measure of K
i) oisa (Gs,{n},Is N (Gs X {n}))-measure of K for all n € Ms

=J
erenentente eetestesteate.
Proof. (i) = (ii) : Assume i € Mg s.t. o isnot a (Gg, {A}, Is N (Gs x {A}) )-measure of
K. Then the only non-trivial extent {7}’ has a pre-image o~ ({Ai}’) ¢ Ext(K). Since
{A}’ € Ext(S) we can conclude that ¢ is not an S-measure of K.

(ii) = (i) : From (ii) we can follow that for all n € Ms is o~ ({n}’*) € Ext(K). From
this and the fact that the set of meet-irreducible extents M(S) of S is entailed in
{{n}"s | n € Mg} we can follow that for all A € Ext(S) it holds that ~!(A) € Ext(K)
(cf. Proposition 5). Thus is o a S—measure of K. O

Thus, we do not have to compute the entire conceptual structure of K which enables us
to decide scale-measure in the size of the contexts.

Corollary 2 (Deciding the Scale-measure Problem). Given a formal context (G, M, 1),
a scale-context S = (Ggs, Ms, Is) and a map o : G — Gg, deciding if (0,S) is a
scale-measure of K is in P. More specifically, to answer this question does require
O(IG| - |M| - |Ms| - |Gs|) time.

The cost of applying the map o~ and o~! can be neglected since o and S can be substituted
by the identity map on Gx and a context S = (Gg, Ms, 0 o Is) in O(|G| - |G| - |[Ms]).

Problem 13: Deciding Scale-Measures Problem

Input: Formal contexts K, S and a map o : Gx — Gg
Qutput: True iff o is a scale-measure of K.
Complexity: O(|K| - |S])

For full scale-measures we have to check for each meet-irreducible extent A of K
that 0(A) € Ext(S) and o~'(0(A)) = A. However, this problem is dual to the original

scale-measure decision problem. Thus, verifying full scale-measures can be done in time
O(IK[ - IS]).

Problem 14: Deciding Full Scale-Measures Problem

Input: Formal contexts K, S and a map o : Gx — Gg
Output: True iff o is a full scale-measure of K.
Complexity: O(IK]| - [S])

Is a conceptual data
reduction continuous?

Complexity of deciding
scale-measures
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full scale-measures
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We may note that this result is favorable since the naive solution would be to compute
Ext(S), which is potentially exponential in the size of S, and checking all its elements in
K for their closure, which consumes O (|G| - |M]) for all A € Ext(S). In the special case
where both the formal context K as well as Gg and o are fixed, the computational cost for
deciding the scale-measure problem grows linearly in |Ms].

In Chapter 9 we investigate the identification of coarser closure systems in greater detail.
There we extend this problem to sub-contexts and the analysis of specific scales. In addition
to that, we provide a verification procedure that is based on their implicational theories.

7.3 Interpretation of Conceptual Scalings

In this section we discuss that (within plain scaling) a clear and precise interpretation of data
requires to separate the scaling and data reduction procedure. We call this notion separation
principle for conceptual scaling. This general idea is well-known in other branches of
computer science. For example, in the SOLID? principles of software development the single-
responsibility principle3 was created in the same spirit. With the following explanations
we claim that the separation principle should be applied to data analysis. We justify this
with the observation that there is a correspondence between defining data structures and
their function in formal language (cf. Chapter 2) with the implementation as data objects
and software functions. Furthermore, in the following text we will support our claim with a
real-world example. Applying the separation principle results in one formal structure for
scaling, i.e., the employed scales and the derived context, as well as a structure for the data
reduction, i.e., the map o and view S.

We support our claim based on the example provided in Figure 7.12. The example
depicts the commercial laser and their wavelengths* data set D. Alongside the data set, we
present two different scalings that we distinguish by index one for the first scaling and index
two for the second scaling. The first scaling (red) uses a nominal scale W; (wavelength
scale 1) to interpret the wavelengths by their perceived color.> The second approach (green)
interprets the values to be on an ordinal scale and defines an interordinal scale W;. After
that, the second scaling computes a view S, of the with W, derived context K,. This view
reflects the perceived colors based on intervals in the wavelength scale W, (see Figure 7.11).

While the end result of both scalings are equivalent contexts, i.e., K; and S, are equal,
they have different interpretations with respect to plain scaling. The interpretation of the
attribute ultraviolet in the first scaling K; is the set {157.0nm, 337.1nm}, i.e.,

{ultraviolet}™ = {157.0nm, 337.1nm},
while its interpretation in the view S is the interval [157.0nm, 337.1nm], i.e.,
(0'_1({ultmviolet}lsz))IKz ={> 157.0nm, < 337.1nm, . .., < 694.3nm}.

This seemingly subtle difference allows for reasoning and comparisons of objects in S, that
are not possible in K;. For example, consider the lasers Nitrogen and He-Ne. Both have no
common incidences in K; or S,. However, there are key differences when comparing the
interpretations of their attributes in the first and second scaling. In the first scaling, the values

2https://en.wikipedia.org/wiki/SOLID
3https://en.wikipedia.org/wiki/Single-responsibility_principle
4https://en.wikipedia.org/wiki/Laser#/media/File:Commercial_laser_lines.svg, 06.2023
Shttps://en.wikipedia.org/wiki/Visible_spectrum#Spectral_colors, 06.2023
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Figure 7.11: This figure depicts the combined scaling and data reduction of the example
provided in Figure 7.12.

{ultraviolet}™ and {green}’™ have no common scale attributes. In the second scaling,
we find that they share the scale attributes {< 543.5nm, ..., < 694.3nm, > 157.0nm, >
337.1nm}. In this example, the reader may be able to deduce the ordinal property of the
wavelength domain, however, this might not be as easy in other domains. For example
when the attribute values have a (non-linear) ordinal pre-scaling or are entailed in complex
taxonomies.

Besides that, there are other advantages of the second scaling. With the interordinal
scale we are able to classify new values that are within the present intervals. The first
scaling requires for such a classification that other lasers must have exactly the same emitted
wavelength 157.0nm or 337.1nm. One may argue that there are ways around this by defining a
scale W := (R, Mcolors, J) with all possible scale values. This does yield with {ultraviolet}'™
the set of all elements in the interval [157.0nm, 337.1nm]. However, such a scale is very
large and complex. On top of that, determining the incidences for all pairs R X Mcqors Can
be costly.

Another advantage of the second scaling is that the derived context K, has more views.

For example, one might combine the violet and ultraviolet attributes. Such an extension
of intervals in the ordinal interpretation does again yield a view on the data. The context
K derived from the first scaling allows only for trivial views which can be computed by
omitting attributes. This is especially advantages for non domain experts that are not able to
define new scales W.

7.4 Inverse Conceptual Data Scaling

In this section, we recall the inverse scaling procedure from the literature [74, 80]. We
expand on this in Chapters 9 and 10.

Inverse scaling deals with the task of deciding if a given formal context K is derived
from plain scaling (up to isomorphism). More precisely, one would like to decide whether K
can be derived using a given set scales S, e.g., from interordinal scaling. A key result here
is Proposition 122 of the FCA book [80]. This proposition provides a connection between
plain scaling and full scale-measure.
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Figure 7.12: Context of commercial laser and their wavelengths with two scalings.
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Proposition 8 (Inverse Scaling given D, Proposition 122 [80]). Ler D = (G,M,W,I)
be a complete many-valued context and let S,;, m € M, be scales for the attributes
of M. Furthermore, let K be the derived context with respect to plain scaling. Then, for
every many-valued attribute m € M is the map oy, : G — Gg,, with 0,,(g9) = m(g) a
Sm-measure of K, and K is isomorphic to the induced sub-context S[o-(Gp), Ms] of the
semi-product of the scales S, with 0(g) = (0 (9))mem-

A slight reformulation of this proposition can be used to answer the following question:
Given a formal context K and a family of scales S, does there exist some complete many-
valued context D such that K is equal to (up to isomorphism) the context derived from plain
scaling of D using only scales from S§? The inverse plain scaling procedure based on the
previous result is given by the following proposition.

Proposition 9 (Inverse Plain Scaling). Let K be a formal context, (S;);jc[n) be a family

of scales and o be a full scale-measure from K into the semi-product S = X jc[,1S; of all

scales with o(g) = (1(9), .. .,0n(g)). Furthermore, let K be the context derived from

D = (G, [n], (ng)je[n], 1) via plain scaling and scales (S;) je[n] where
(9.j,0v)€l: = 0oj(g) =v.

The attribute reduced contexts of K and K are isomorphic.

Proof. The attribute set of K is equal to | je[n] Ms; = Mg per definition. For an attribute
m € Ms, is (g,m) € Iy iff (o0(g),m) € Is;. Thus, the object g is in incidence with an
attribute m in K iff o(g) = (01(9), . . ., 0 (g)) is in incidence with m in S. Therefore is the
pair (o, t) a context isomorphism of K into and S[o"(G), Ms].

Since o is a full scale-measure of K into S we can follow that o=~! (Ext(S[o(G), Ms)))
is equal to Ext(K). Thus, the attribute reduced contexts of K and K are isomorphic. O

Theorem 55 of the FCA book also gives some simple characterizations for measurability
of lattices. This theorem uses the notion of pseudocomplements in a lattice L. An element
x € L has a meet-pseudocomplement iff there exists a greatest element y € L with
x Ay = Lr. We recall this theorem in the language of this work:

Theorem 4 (Conceptual Measurability Theorem of Lattices, Theorem 55 [80]). A lat-
tice L is isomorphic to the concept lattice of a scaled many-valued context D and a family of
scales by the following conditions:

Every lattice is isomorphic to the concept lattice of an ordinally

Ordinal
( ) scaled many-valued context.
. A lattice is isomorphic to the concept lattice of a nominally scaled
(Nominal) . . ..
many-valued context iff L is atomistic.
. A lattice is isomorphic to the concept lattice of an interordi-
(Interordinal/ norp Pt . f
. nally/contranominally scaled context iff L is atomistic and for each
Contranominal)

meet-irreducible element there exists a meet-pseudocomplement in L.

In the following, we provide a similar theorem based on contexts and results from
Proposition 9. While the property for ordinal and nominal scales can also be found in the
literature [74], our proof provides a construction for the employed full scale-measures. An
employed property of said theorem is that of afomistic contexts, i.e., a context is atomistic
iff {g}) € {h} = {g} ={h} forallg,h € G.

Inverse plain scaling
procedure

Lattices derived from
standard scales

Contexts derived from
standard scales
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Theorem 5 (Conceptual Measurability Theorem of Contexts). An object clarified con-
text is derivable from plain scaling from a complete many-valued context (up to attribute
reduction) and a family of scales by the following conditions:

(Ordinal) Every context is derivable from ordinal scaling.
(Nominal) A context is derivable from nominal scaling iff it is atomistic.
(Interordinal/ A context is derivable from interordinal/contranominal scaling iff it

Contranominal)  is atomistic and the complement of every attribute extent is an extent.

Proof. WLoG has K more at least two objects.

(Ordinal) For each extent A of K we define a scale S4 = (G, {A}, €). The scale S4 has

extents A and G. Based on Proposition 120 [80] is 0 : G — X scpx(x) G With
o(g) = (9,9,...,9) ascale-measure that reflects all extents that can be written as
the intersection of the extents of the individual scales. Due to the fact that for each
A € Ext(K) there is a scale S 4 that reflects A we can follow that o is full. For each
scale S4 is the map ¥4 : G — [2] with ¥,,(g) =2 if g € A else Y (g) = 1 a full
scale-measure into Q5.

The composition o o ¢ with ¢/ : G — X, pr, and ¥ (9) = (Ym)mem, yields a full
scale-measure (Corollary 1) of K into the semi-product O of ordinal scales. The
remainder follows directly from Proposition 9. Thus, K is (up to attribute reduction)
derivable from a complete many-valued context and ordinal plain scaling.

(Nominal) [=] For a context K that is derived from nominal scaling and a complete

many-valued context, there exists a full scale-measure into the semi-product N of
nominal scales and K is isomorphic to a sub-scale N[0 (G), My] [80, Proposition
122]. Since nominal scales are atomistic and the semi-product of atomistic scales is
again atomistic we can follow that K is atomistic.

[<] For each extent A of K we define ascale Sy := (G, {A}U{{g} | g€ G\ A}, €).
The extents of S are A, G, 0 and the sets {g} with g € G \ A. Since K is atomistic we
can follow that the sets {g} as well as the empty set are closed in K. The remainder
follows from an analogous construction as provided for the ordinal case.

(Interordinal/Contranominal) [=] A context K that is derived from interordinal scaling is

fully measurable into the semi-product I of interordinal scales. An interordinal scale
has the property that it is atomistic and the complement of every attribute extent is an
extent. Both properties are preserved by the semi-product of scales having the same
properties. For the case that the maps o; from K into the scales are not surjective
we may note that both properties also hold for sub-contexts that only restrict objects.
Objects are either removed from an extent A or its complement G \ A which results in
new complemented extents (cf. Proposition 2).

Given Proposition 122 [80] is K isomorphic to such an induced sub-context of I and
is therefor atomistic and the complement of every attribute extent is an extent. The
analogue applies to contranominal scales.

[«<] For each attribute extent A of K we define a scale S4 := (G, {A,G \ A}, €). The
set of extents of each scale is equal to G, A, G \ A and 0, all of which are closed in K
by definition.
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The rest follows from an analogous construction as in the ordinal case with the same
construction of ¢ but into the scale I,. This also applies to contranominal scales since
I, = Bs. O

With these theorems we are able to decide the inverse scaling of contexts and standard
scales. On top of that we find an order of expressiveness among the scales O > N > [ B
where every context is fully ordinally measurable and every interordinally measurable context
is also nominally measurable. Contranominal and interordinal scales are equally expressive.

7.5 Conceptual Data Compatibility

In this section we briefly introduce the basics on conceptual data compatibility to have a
broad overview of all scaling tasks in this chapter. In Chapter 11 we analyze this field
in greater detail. The basis of conceptual data reduction are extent continuous maps, i.e.,
scale-measures o between contexts. The condition here is that the pre-image of every extent
in the scaled context S is an extent in the context K. In Chapter 11 we introduce the set of
extents that contradict this property, i.e.,

the set of all A € Ext(S) with =" (A) ¢ Ext(K),

as the conceptual scaling error.

7.6 Related Work

Measurement is an important field of study in many (scientific) disciplines that involve the
collection, interpretation and analysis of data. According to Stevens [201] there are four
feature categories that can be measured, i.e., nominal, ordinal, interval and ratio features.
There are multiple extensions and re-categorizations of the original four categories, e.g.,
most recently Chrisman introduced additional levels [39] beyond the interval level.

Most machine learning techniques are defined using a vector space model on real numbers
and thus operate on the ratio level. They often achieve this by mapping scales from lower
levels to a numeric scale. Representational Theory of Measurement (RTM) [145, 168, 210]
provides a formalizing and understanding of this process based on homomorphisms. By
performing numeric calculations on the resulting numeric representations, they implicitly
define operations on the data that — although they perform well in machine learning — have
no real world meaning. This leads to uninterpretable black-box models. In our work, we
interpret data on the ordinal level through the use of ordinal scales. With this approach, we
derive a unified representation of heterogeneous data and do not artificially introduce metrics
or other properties. This results in explainable (algebraic) models. For the interpretation on
the ordinal level we use conceptual scaling [74, 79] for the ordinal interpretation.

To cope with large data sets, a multitude of methods were introduced to reduce the
dimensionality. Popular methods from machine learning are factorization methods like Latent
Semantic Analysis [46, 62], principle component analysis or binary matrix factorization [22,
155, 230], or other embedding techniques like multidimensional scaling [152, 157]. There
also is a large number of data reduction methods that originate from within FCA like the
selection of relevant attributes [93], pg-cores [90], TITANIC [208] or the use of generalized
attributes [134]. The framework of scale-measures allows us to characterize and compare
these data reductions based on the views of the data they provide. Relations of scale-measures
to other morphisms can be found in the literature [66, 126].
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The basics on inverse scaling and measurability of contexts and lattices are recalled from
Ganter and Wille [74, 80].

The relation to the plain scaling procedure to other scaling methods are discussed in
Section 7.1.3. While these methods allow for more complex scalings, it is so far not known
how these methods relate to the other scaling problems, i.e., inverse scaling, data reduction
data compatibility, or how these problems can be formalized for them in a meaningful way.
In Chapter 8 we define a hierarchical structure to browse between conceptual data reductions
(cf. Figure 7.1). This is related to the hierarchy of scales [204] or the implicitly used
hierarchy of conceptual scalings in conceptual data systems [193] like TOSCANA [123, 218].



Navigating Conceptual Views

In the last chapter we gave an overview on conceptual data scaling and its methods. One
of these dealt with continuous conceptual data reductions and how to identify them (cf.
data reduction Figure 7.1). In this chapter we broaden the understanding on meaningful
conceptual data reductions and how to derive them. For this, we first study the relation of
conceptual data reductions and the views they create on the data. We do so, by introducing a
refinement order relation on conceptual views. The resulting hierarchy allows us to compare
results of various data reductions and navigate between them to refine results. On top of that,
we are able to assess differences and the complexity of data reductions.

For more complex data operations to navigate the hierarchy of views, we propose ordinal
methods to combine, slice and aggregate views that respect their conceptual structures.
These operations are capable of combining the results of heterogeneous data reduction
methods since they operate on their generated conceptual views. Moreover, the introduced
(algebraic) methods do allow for rich interpretations of the results with respect to the input
views. We explain in greater detail on how they can be used to compute the greater common,
differences or missing information.

An important aspect in data analysis in general is the interpretation of the results. Unfor-
tunately, the features generated in data reductions often elude from human comprehension,
e.g., in case they are non-linear combinations of the original attributes. We present in
Section 8.3 an approach to compute equivalent views using logical expressions and the
original data attributes. Thereby, we preserve the structure of the data reduction while
substituting all non-interpretable attributes by human comprehensible logical expressions.

Not every analyst initially knows what view they want to compute or which data reduction
algorithm to use. By adapting the well known exploration [75] algorithm, we developed a
semi-automatic procedure that is able to recommend views by querying user preferences.
On top of that we investigate several structural properties and importance measures, and
show how they can be applied for future automatic recommendations of views.

We demonstrate the applicability of all presented methods on three real world data sets.
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8.1 The lattice of Conceptual Views

A notion for comparing scale-measures is provided by a natural order relation among
scales [80, Definition 92]). We may present in the following a more general definition within
the scope of scale-measures.

Definition 37 (Scale-Measure Refinement). Let the set of all scale-measures of a context
be denoted by S(K) = {(0,S) | o is an S-measure of K}. For (o,S), (¢, T) € S(K)
we say (o, S) is a coarser scale-measure of K than (¢, T), iff o~ (Ext(S))Cy ~ ! (Ext(T)).
Analogously we say (W, T) is finer than (o, S). If (o, S) is finer and coarser than (i, T) we
call them equivalent scale-measures and denote this by (o, S) ~ (¢, T).

We remark that both the finer relation and the coarser relation constitute a reflexive and
transitive relation. The transitivity follows from the continuity of the composition of scale
maps (Corollary 1). Binary relations with these properties are also known as preorder. For
the refinement preorder on S(K) we us the symbol <. The symmetric instances of this
preorder are given by the ~ relation.

By computing scale-measures having coarser scale contexts with respect to the refinement
preorder we can provide a more general or abstract conceptual view on a data set. This kind
of analytical approach, is exemplified by the ice cream flavors example in Figure 7.10.

Moreover, the set of all scale-measures for some formal context provides an abstract
analytical structure to navigate and explore the conceptual structure of a data set. Yet, despite
the supposed usefulness of the scale-measures, there are up until now no existing methods, to
the best of our knowledge, for the generation and evaluation of scale-measures, in particular
with respect to data science applications. To lay the foundation for the navigation methods
we start with analyzing the structure of all scale-measures.

Lemma 2 (Scale-Measure Equivalence). The scale-measure equivalence is an equiva-
lence relation on the set of scale-measures.

Proof. Let (o,S), (¥, T), (w,0) € S(K) be scale-measures of context K. Using Defi-
nition 37 we know from (o, S) ~ (¥, T) that o~ ' (Ext(S)) = ¢~ (Ext(T)), from which
the reflexivity and the symmetry of ~ can be inferred. Analogously we can infer from
(0,S) ~ (y,T) and (¢, T) ~ (w, O) that (o, S) ~ (w, 0). O

Note that for two given equivalent scale-measures does their scale-measure equivalence
not imply the existence of a bijective scale-measure between them. Yet, a minor requirement
to the scale-measure map leads to a useful link.

Lemma 3 (Equivalent Scale-Measures and Embeddings). Let (o, S), (4, T) € S(K) with
(0,S) ~ (W, T) and o, are surjective maps. Then is o~ oy an order isomorphism from
Ext(S) = (Ext(S), ©) 10 Ex(T) = (Ex(T), ©).

Proof. From [80, Proposition 118] we have that o~! is a injective A-preserving order
embedding of Ext(S) into Ext(K) and thereby a bijective A-preserving order embedding
into (o~'(Ext(S)), €). The analogue holds for ! from Ext(T) into ' (Ext(T)). Due
to (o, S) ~ (¢, T) we know that o~ (Ext(S)) = ¢~ (Ext(T)), which results in c~! being
a bijective A-preserving order embedding into ! (Ext(T)). Hence, when restricting
ooy : P(Gs) — P(Gr) to the respective extent set we obtain a bijective map. The fact
that all formal contexts are finite (throughout this work) and the monotonicity of the lifts
of o~ and i to their respective power sets imply the required order preserving property
follow. O
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We may stress that the required surjectivity is not constraining the application of scale-
measures, since any object g of a scale-context having an empty pre-image may just be
removed from the scale-context without consequences to the analysis (cf. Remark 4).

The just discussed equivalence relation together with the refinement order allow to cope
with the set of all scale-measures S(K) in a meaningful way.

Definition 38 (Scale-Hierarchy). For a given formal context K, its set of all scale-measures
S(K) and (0,S) € S(K) let [(0,9)]~ == {(W,T) | (o,S) ~ (¥, T)} be the equivalence
class of (o, S) and 8K)/~ == {[(0,S)]~ | (0,S) € S(K)} be the set of all equivalence
classes of ~. We call S(K) = (8®)/~, <) with [(o,S)]~ < [(¥, )]~ iff (7,S) < (¢, T)
the scale-hierarchy of K.

The order relation < on S(K)/. results naturally from the refinement order <, cf. Defi-
nition 37 and the paragraph thereafter. The order structure thus given represents all possible
consistent data reductions on a contextual data set. Yet, it seems hardly comprehensible, or
even applicable, in that form. For this, we present a characterization of said order structure
in terms of closure systems.

Lemma 4 (Context with Closure System A). Let G be a set and A C P(G) be a closure
system. Furthermore, let Ky = (G, A, €) be a formal context using the element relation as
incidence. The set of extents Ext(K #) is equal to the closure system A.

Proof. Foranyset D C Gand A € Awefind(x) D C A = A e D’. Since Aisa
closure system and D" = (| D’ we see that D"’ € A, hence, Ext(K4) € A. Conversely,
for A € A we can draw from (x) that A” = A, thus A € Ext(K #). |

We want to further motivate the constructed formal context K # and its particular utility
with respect to scale-measures. Since both contexts K and K # have the same set of objects,
we may study the utility of the identity map ¢ : G — G, g +— g as scale-measure map.

Lemma 5 (Canonical Construction). For a context K and any S-measure o the identity
map vis a K -1 (gy(s))-measure of K, i.e., (4, Ky -1 (gx(s))) € S(K).

Proof. Lemma4 gives that Ext(K -1 (g(s))) is equal to o~ 1(Ext(S)). Since (o, S) € S(K),
i.e., (0, S) is a scale-measure of K, we see that the pre-image o ~! (Ext(S)) C Ext(K), and
thus " ( Ext(K ;-1 (gxy(s)))) € Ext(K). o

Using this canonical construction we can facilitate the understanding of the scale-hierarchy
S(K).

Proposition 10 (Canonical Representation). Let K = (G, M, I) be a formal context with
scale-measure (0, S) € S(K), then (o,S) ~ (t, Ky1(px(s)))-

Proof. Lemma 5 states that ¢ is a K ;-1 gy (s))-measure of K. Furthermore, from Lemma 4
we know that the extent set of K, -1 (gy(s)) 18 o~ 1(Ext(S)), as required by Definition 37. 00

Equipped with this proposition we are now able to compare sets of scale-measures
for a given formal context K solely based on their respective attribute sets in canonical
representation. Furthermore, since these representation sets are coarser closure systems
of Ext(K), following from Definition 35, we may reformulate the problem for navigating
scale-measures using coarser closure systems and their relations. For this we want to nourish
the understanding of the correspondence of scale-measures and coarser closure systems. For
this let CS(G) denote the ordered set of all closure systems on a set G and CS(K) € CS(G)
the induced sub-order of all coarser closure systems of Ext(K).
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Figure 8.1: Scale-Hierarchy of K (right) and embedded in Boolean B¢

Proposition 11 (Scale-Hierarchy and Lattice of Closure Systems). For a formal context
K and the ordered set of all coarser closure systems CS(K) C CS(G), the following map is
an order isomorphism:

i:CS(K) — &(K), A i(A) = [(,Ka)]~

Proof. Let A,B C Ext(K) be two different closure systems on G. Then the images
of A respectively B under i are a scale-measures of K, according to Lemma 5, with
extents A and B, respectively. Since A # B8 = Ext(Kg) # Ext(Kg) we can
follow that (¢, Kg) # (¢, Kg), and that i is an injective map. For the surjectivity of i let
[(o,S)]~ € &(K), then (¢, K1 (px(s))) ~ (0, S), i.e., an equivalent representation having
extents o' (Ext(S)) € Ext(K) and i(o~ " (Ext(S))) = [(t, Ky (gxy(s)))]~- Finally, for
A C B we find that i(A) C i(B), since Ext(K#) € Ext(Kg), as required. O

In the following we identify equivalence classes of the scale-hierarchy S(K) with any
of the respective representatives. This choice of notation leads to a more comprehensible
presentation of the upcoming statements and considerations.

The order isomorphism i allows us to analyze the structure of the scale-hierarchy by
studying the related closure systems. For instance, the problem of computing |S(K)|, i.e.,
the size of the scale-hierarchy. In the case of the context Kp () this problem is equivalent to
calculating the number of closure systems on G, sometimes referred to as Moore families.
This number grows tremendously in |G| and is known up to |G| = 7, for which it is known [47,
86, 97] to be 14 087 648 235707 352 472. In the general case the size of the scale-hierarchy
S(K) is equal to the size of the order ideal | Ext(K) = CS(K) in CS(G). Hence, the
scale-hierarchy in its entirety may be computational intractable and therefore demands for
efficient navigation algorithms. In order to derive these, we must derive useful theoretical
properties that can be applied in scale-measures.

The fact that the set of all closure systems on G is again a closure system [34], which
is lattice ordered by set inclusion, and the isomorphism in Proposition 11 allow for the
following statement.

Proposition 12 (Scale-Hierarchy Order). For a formal context K is the scale-hierarchy
S(K) lattice ordered.
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We depicted this lattice order relation in the form of abstract visualizations in Figure 8.1.
In the bottom (right) we see the most simple scale which has only one attribute, G. The top
(right) element in this figure is then the scale which has all extents of K. On the left we see
the lattice ordered set of all closure systems on a set G, in which we find the embedding of
the hierarchy of scale-measures.

Equipped with this structure we have to recall a few notions and definitions for a
(complete) lattice (L, <). We want to remind the reader that by < we denote the cover
relation of <. Furthermore, we say L is 1) lower semi-modular if and only if Vx,y €
L:x<xVy = xAy<y,?2) join-semidistributive iff Vx,y,z e L:xVy=xVvz =
xVy=xV(yAz), 3) meet-distributive (lower locally distributive, cf [34]) iff L is
join-semidistributive and lower semi-modular, 4) join-pseudocomplemented iff for any
x € Ltheset{y € L | yvx = T} has aleast, 5) ranked iff there is a function p : L +— N with
x <y = p(x)+1=p(y), 6) atomistic iff every x € L can be written as the join of atoms
in L. In addition to the just introduced lattice properties, there are properties for elements in
L that we consider. An element x € L is 1) neutral iff every triple {x, y, z} C L generates a
distributive sub-lattice of L, 2) distributive iff the equalities x V (y A z) = (x Vy) A (x V 2)
andx A (yVz)=(xAy)V(xAz) forevery y,z € L hold.

We can derive from literature [34, Proposition 19] the following statement.

Corollary 3 (Scale-Hierarchy Cover Relation). Fora contextK = (G,M,I) and R, R’ €
CS(K) TFAE:

i) R <R,
ii) R" U{A} = R with A is meet-irreducible in R.

Of special interest in lattices are the (meet-) join-irreducibles, since every element of a
lattice can be represented as a (meet) join of these elements.

Proposition 13 (Scale-Hierarchy Join-Irreducibles). For a context K and R € CS(K):
R is join-irreducible in CS(K) < 3A € Ext(K) \ {G}: R ={G, A}

Proof. <: For A € Ext(K) \ {G} is {A, G} a closure system on G and thereby in CS(K).
Further, the set {A, G} is of cardinality two and thereby an atom of CS(K) and thus join-
irreducible. =: By contradiction assume that A € Ext(K) \ {G} : R = {G, A}, then for
every D € R\ {G}is {D, G} an atom of CS(K), hence, R = \/ peg\(g){D, G}, i.e., not
join-irreducible. O

Next, we investigate the meet-irreducibles of CS(K) using a similar approach as done
for CS(G) [34] (denoted K in Caspard and Monjardet [34]) based on propositional logic.
We recall, that an (object) implication for some context K is a pair (A, B) € P(G) X P(G),
shortly denoted by A — B. We say A — B is valid in K iff A” C B’ (cf. Section 5.4).

The set Fap = {D € G: A< DV B C D} is the set of all models of A — B.
Additionally, 74, BlExt(K) = Fa.p N Ext(K) is the set of all extents D € Ext(K) that are
models of A — B. The set 4 p is a closure system [34] and therefor 74, BiExt(K)’ too.

Furthermore, we can deduce that %4, B‘Ext(K) € CS(K).

Lemma 6 (Scale-Measures by Implications). For a context K and R € CS(K) with clo-
sure operator clg we find R = ﬂ{TA’B|Ext(K) | A,BC G ABCclg(A)}.

Proof. We know that R = ({Fa.p | A,B C G A B C clg(A)} [34, Proposition 22]. Since
R € Ext(K) it holds that R = ("{Fa.p | A,B € G A B C clg(A)} N Ext(K) and thus equal
0 N { Fa,8lgqe |4 B S G A B Cclg(A)}. .
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Note that for any R € CS(K) the set { ﬂ’BiExt(K) |A,B € G A BCclg(A)} contains
only closure systems in CS(K) and thus possibly meet-irreducible elements of CS(K).

Proposition 14 (Scale-Hierarchy Meet-Irreducibles). For a context K and R € CS(K)
TFAE: 1. R is meet-irreducible in CS(K) 2. 3A € Ext(K),i € G with A <gxx) (A U {i})”

such that R = 7:A,{i}|Ext(K)

Proof. [1. = 2.] Due to Lemma 6 we can represent R € CS(K) by the equation R =
Q{TA>B|Ext(K) | A,B C GAB Cclg(A)}. Moreover, since R is meet-irreducible in CS(K),

we can infer that R € {ﬂ’B|Ext(K) | A,B C G ABCclg(A)}. In particular there exist
A,B € G with B C clg(A) such that R = Fa gl > and thus R = Far sl o)
the fact that F4 ;3 N Fa (j} = Fa,i,j) We can infer that ﬂ,{i}|Ext(K) N ﬂ’{i}|Ext(K) =

.Using

TA,{,-J}|EX{(K). Therefore, there must exist A, {i} € G with R = ﬂ»{i}|Ext(K) (%).

In the case that A = (A U {i})” the set fAv{i}|Ext(K) = Ext(K) and R is thereby not
meet-irreducible. Assume that A £gxx) (A U {i})”, then there is a D € Ext(K) with
A <gxx) D S (AU {i})” andi ¢ D. Hence A, D | A — {i} (see *) and thus A, D ¢ R.
Using this, we construct two sets R U {A} and R U {D}. The set R U {D} is closed by
intersection, since an intersection of D with an element in R is a model of A — i, thus
R U{D} € CS(K). The same holds for R U {A} respectively. The intersection of R U {A}
and R U {D} is equal to R which is thereby not meet-irreducible, a contradiction.

[1. & 2.] Consider a closure system ¥ € CS(K) with ¥ covers R in CS(K). By
Corollary 3, we can represent F=RU {D} () with D ¢ R and D is meet-irreducible in Val
(and therefore D € Ext(K)). DuetoR C ¥ the set (AU {i})” is an element of  and thereby
the intersection (A U {i})”” N D € ¥. Since D ¢ R, we can deduce that D - A — i and
therefor A C D andi ¢ D. From A <gxx) (A U {i})”” we know that (A U {i})” n D = A.
Finally, D € F = Ac (}A-“ and using (x), we can infer that D = A. Hence, R U {A} is the
sole upper neighbor of R in CS(K) and thereby R is meet-irreducible. O

Propositions 13 and 14 provide a characterization of irreducible elements in CS(K) and
thereby in the scale-hierarchy of K. Those may be of particular interest, since any element
of CS(K) is representable by irreducible elements.

Proposition 15 (Scale-Hierarchy Maximum Meet-Irreducible Element). For a context
K= (G,M,]I), A, B € Ext(K) with A <gx(x) B and A is meet-irreducible in Ext(K), then
ﬂ*BiExt(K) is a maximum meet-irreducible element in CS(K) € CS(G).

Proof. For A <gxx) B, A is the only extent that is not a model of implication A — B, since
every other superset of A in Ext(K) is also a superset of B. Hence 74, BlExt(K) is equal to
Ext(K) \ {A}. The only superset in CS(K) is Ext(K), which is not meet-irreducible. O

Equipped with this characterization we look into counting the meet-irreducibles.

Proposition 16 (Number of Meet-Irreducibles in S(K)). For context K, the number of
meet-irreducible elements in the lattice CS(K) is equal to | <gxix |-

Proof. According to Proposition 14, an element R € CS(K) is meet-irreducible iff it can be
represented as Fu_ (i} |Ext(K) for some A € Ext(K) and some i € G with A <gxx) (AU{i})".
Hence, the number of meet-irreducible elements is bound from above by the number of
covering pairs A <gx(x) B in Ext(K). It remains to be shown that for R there is only one pair
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(A, B) €<gx(x) With B = (AU{i})"” forsomei € B\ A suchthat R = 7’,4,{[}|Ext(K). Assume

there are (A, B), (C, D) €<gxx) With (A,B) # (C,D) and TA,B|Ext(K) = TC»DlExt(K)'

First, consider the case A # C. Without loss of generality let A ¢ C, then we have
CEA —- B,butC [t C — D. Therefore C € ﬂﬂ'Ext(K) but C ¢ TC’D|Ext(K)’ In the
second case, A = C, we have B # D and thus B [ C — D, but B |= A — B. This implies
that B € ﬂJR'Ext(K) but B ¢ TC,D'Ext(K)’ Thus, ﬂ’B|Ext(K) # TC,D’Ext(K)' =

Next, we turn ourselves to other lattice properties of CS(K) and its elements.

Lemma 7 (Join Pseudocomplement). For a context K and R € CS(K), the set R =

\/AEM (Ext(K))\M(R) {A, G} is the inclusion minimum closure system with R V R = Ext(K).

Proof. A set A C Ext(K) is a generator of Ext(K) iff all meet-irreducible elements of
Ext(K) are in A. Hence, for every D € CS(K) with R v D = Ext(K), we have D is a
superset of M ( Ext(K)) \M(R) and thus of R, since R it is the closure of M ( Ext(K)) \M(R)
in CS(K). O

All the above results in the following statement about CS(K):

Proposition 17 (Lattice Properties of S(K)). For any context K, the lattice CS(K) is:

i) join-semidistributive iv) join-pseudocomplemented
ii) lower semi-modular v) ranked
iii) meet-distributive vi) atomistic

Proof. 1) According to [34, Corollary 30] CS(G) is join-semidistributive and therefor CS (K)
too, since the meet and join operations of CS(G) are closed in CS(K). ii) Analogue to i).
iii) Follows from i) and ii) (cf. Definition 15 (5) [34]). iv) The join-pseudocomplement of
any R € CS(K) is given by R according to Lemma 7. v) The lattice CS(G) is ranked by the
cardinality function [34, Corollary 30]. Since CS(K) is an order ideal in CS(G), it is ranked
by the same function. vi) Follows directly from the characterization of join-irreducibles in
Proposition 13. O

This result can be employed for the recommendation of scale-measures, in particular
with respect to Libkins decomposition theorem [141, Theorem 1]. This would allow for
a divide-and-conquer procedure within the scale-hierarchy, based on the fact: for context
K the lattice CS(K) € CS(G) is decomposable into the direct product of two lattices
CS(K) = Ly X Ly iff L} = (n], L, = (n] and n is neutral in CS(K). Here n indicates the
complement of n with respect to CS(K), which can be computed using Lemma 7. That this
approach is reasonable can be drawn from the fact that CS(K) fullfils all requirements of
Lemma 2 and Theorem 1 from Libkin’s work [140, 141] by considering Proposition 17.

In the rest of this section we investigate distributive and neutral elements in CS(K) more
deeply. For this, let cly,cl, € CL(L), i.e., the set of all closure operators on lattice L. We
say that clp <. cly iff forallx € L : clp(x) <¢ ¢l (x).

Lemma 8 (Coarser Closure Systems and Coarser Closure Operators). For any context
K, we find that i : CS(K) +— CL(Ext(K)) with i(A) — cla |ex(k) is a dual-isomorphism.

Lattice properties of the
scale-hierarchy

Decomposing the
scale-hierarchy

On identifing
decomposition



On computing
decompositions

Browsing between
views

Lattice based browsing

Meet and join of views

72 CHAPTER 8. NAVIGATING CONCEPTUAL VIEWS

Proof. For A,D € CS(K) with A € A, A ¢ Disi(A)(A) = Abuti(D)(A) # A. Thus
i(A) # i(D) and i injective. For cl € CL(Ext(K)) is cl(Ext(K)) < Ext(K) a closure
system with G € cl(Ext(K)) an therefor cl(Ext(K)) € CS(K) with i(cl(Ext(K))) = cl.
Hence, i is bijective. For A, D € CS(K) with A <csxk) D is AU {D} = D for D
meet-irreducible in D (Corollary 3). Thus for all A € Ext(K) is i(A)(A) = i(D)(A) except
for the pre-images of D, i.e., i(D)~ (D). For A € i(D)~ (D) is i(D)(A) = D C i(A)(A)
and thus (D) < i(A), as required. O

Proposition 18 (Neutral and Distributive Elements in S(K)). For any formal context K
and R € CS(K) TFAE: i) R is distributive in S(K) ii) R is neutral in S(K) iii) For
A, B, C € Ext(K) with C = AN B and A, B incomparable in Ext(K), we have A € R or
B e RorC € Rimplies A,B,C € R.

Proof. Using Lemma 8, i)<ii) due to Thm. 2 [161] and i)<iii) due to Thm. 1 [161]. O

An additional accompanying property is that the set of elements that are distributive
in CS(K) is a sub-lattice of CS(K) (Theorem 2 [160]). Thus, the iterative procedure that
results from Proposition 18, iii) yields a closure operator on CS(K) to compute the neutral
elements. To nourish our understanding of the neutral elements take the following example:
in the lattice CS(G) only the top and bottom elements are neutral [34, Proposition 33 (5)].
In contrast, for a chain C € P(G) with G € C is CS(K¢) € CS(G) a distributive lattice
and thus every element a neutral element.

8.2 Navigation Methods for Conceptual Views

Based on the just introduced scale-hierarchy, we provide in this section the means for
efficiently browsing this structure. Given a data set, the presented methods are able to
compute and combine arbitrary views using structural operations. In Section 8.3 we introduce
logical operations that can not only be used for the computation of views but also for their
explanation in a humanly comprehensible manner. Together, they ultimately resemble a
navigation through conceptual measurements.

8.2.1 Lattice based Navigation

The scale-hierarchy constitutes an ordered set which allows us to navigate between scale-
measures using the finer and coarser relation. This yields us conceptual views that are more
detailed (finer) and complex with more closed object sets or conceptual views that are more
general (coarser) with a less complex structure. Each step in the finer order relation adds
one element to the structure that becomes meet-irreducible (cf. Corollary 3) allowing for a
gradual increase in complexity. The dual applies to the coarser relation. Representations for
the resulting scale-measures are given by the canonical construction (Lemma 5).

From the isomorphism between the scale-hierarchy and an order ideal in the lattice of all
closure systems (cf. Proposition 11) we can infer that the scale-hierarchy is lattice ordered
(Proposition 12). With the following proposition we give constructions for the meet and join
of scale-measures in the scale-hierarchy.

Proposition 19 (Scale-Hierarchy Meet and Join Operations). Let A, V be the natural lat-
tice operations in S(K) and let [(o,S)]~, [(¥, T)]. € S(K). We then find that:

Meet : [(o,S)]~ A (¥, T) ]~ = [(t, Kot (Bxe(s))np— (Bxe(T))) ]~
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Join : [(0, )]~ v [(¥, T)]~ = [(t. K{ang|ac o (Bxt(s)), Bey ! (Ext(T))}) ]~

Proof. In the following, we write (o, S) instead of [(o, S)]. for better readability. 1. For
the pre-images i ~! (¢, S), i~ (, T) (Proposition 11) we can compute their meet [34], which
yields

i, S) Ai T (p, T) = o~ (Ext(S)) Ny~ (Ext(T)).

2. The join [34] of the scale-measure pre-images under i (Proposition 11) is equal to
{ANB| A co (Ext(S)), B € ¢y~ '(Ext(T))}, which results in the required expression by
applying the order isomorphism i. O

The join and meet of scale-measures can also be used for browsing the scale-hierarchy.
With the meet of two scale-measures we compute the greater common of their conceptual
views. Their join yields the smallest conceptual view such that both of them are entailed in
it. Conceptual views and their meet/join carry in some cases a special semantic and allow
for additional interpretation. We show this based on an example in Section 8.2.3.

Another useful property of the scale-hierarchy is that it is join-pseudocomplement (see
Lemma 7). This allows us to compute for a conceptual view the smallest view needed to
reconstruct the context K. We interpret the join-pseudocomplement as a scale-measure that
carries all missing information.

8.2.2 Combining Conceptual Views

Other methods to navigate in the scale-hierarchy combine or join views. The first operation
we transfer to the realm of scale-measures is the context apposition (cf. Lemma 1 and
surrounding text).

Definition 39 (Apposition of Scale-Measures). Let (o,S), (¥, T) be scale-measures of K.
Then the apposition of scale-measures (o, S) | (¢, T) is:

(0,8 | T) ifGs =Gr,0 =y

(.9) | (. T) = {(U, S)V (¢, T) else

In case both scale-measures are defined on the same set of objects and use the same
map, i.e., Gs = Gt and o = ¢, we define the scale-measure based on the apposition of their
scale contexts. The resulting scale-measure reflects the same extents as their join in the
scale-hierarchy. This can be derived from the following proposition and Proposition 19.

Proposition 20 (Apposition Scale-Measure). Let (0, S), (¢, T) be two scale-measures of
K. Thenis (o,S) | (¢,T) € S(K).

Proof. 1. 1In the first case we know that set of extents Ext(S | T) contains all intersections
AN B for A € Ext(S) and B € Ext(T) [80] (cf. Lemma 1). Furthermore, we know
that we can represent o~ '(A N B) = o~ (A) N~ (B) = o7'(A) Ny~ (B). Since
o~ (Ext(S)), ¥ ' (Ext(T)) C Ext(K), we can infer that the intersection ' (A) Ny ~!(B) €
Ext(K). 2. The second case follows from Proposition 19. O

The apposition operator combines two scale-measures of a data context to a new single
scale-measure. We may note that the special case of (o, S) = (1, K) was already discussed
by Ganter and Wille [80].

Other than using the coarser relation in the scale-hierarchy we present the following
operation to reduce the complexity of scale-measures.
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Figure 8.2: Concept Lattice of journalistic articles and their conventions.

Corollary 4 (Attribute Projection). Let K = (G, M, I) be a formal context, Ms € M, and
Is = 1N (G X Ms), then is 1 a (G, Ms, Is)-measure of K.

Proof. The map idg is a K-measure of K, hence idg is a (G, {n}, IN (G X {n}))-measure of
K for every n € M, and in particular n € Mg, by Proposition 7, leading to (LG, (G, Mg, Ig))
being a scale-measure of K, cf. Proposition 20. O

8.2.3 Contexts with special Semantics

The meet and join operation of views carry in some cases special semantics. An example is
the context of journalistic articles and their conventions [214] (Figure 8.2). The attributes in
this context are classifications based on the sociological theory economics of conventions [54,
199]. The theory states that within a conflict arguments can be traced back to a small set of
dimensions of justification, i.e., conventions. The context includes four of these conventions,
i.e., Governmental, Green, Market and Industry, including two signs +/- that indicate if an
article relates positively or negatively to a convention. The data set contains articles on the



8.3. EXPLAINING CONCEPTUAL DATA REDUCTIONS 75

conflict of electric mobility as objects and the incidence encodes how the arguments of an
article relate to a convention.

The meet in this concept lattice is of special interest since articles in the intersection of
conventions indicates that a compromise between perspectives may be formed. One such
compromise is encoded by compromise Government/Green in the concept lattice. Based
on the interpretation of the domain experts does the newly formed compromise become a
new dimension and does not need to coincide with its individual parts, i.e., Government and
Green.

8.3 Explaining Conceptual Data Reductions

Although the canonical representation of scale-measures is complete up to equivalence
(Proposition 10), this representation eludes human explanation to some degree. The use of
the extentional structure of K as attributes provides insights to the scale-hierarchy itself, but
it does not do so for the data, i.e., the objects, attributes, and their relation. A formulation
of scales using attributes from K, and their combinations, seems more natural and more
comprehensible. In order to facilitate such a formulation, we employ an approach similar to
logical scaling [170] where logical expressions are used to introduce new attributes. The
thereby newly introduced attributes have a real-world semantic in terms of the attributes and
the logic, which is an advantage with respect to (human-)comprehensibility.

In this work we use propositional logic on the attributes F[M,{V,A,=}]. We
identify the variables of the logic using attributes of K = (G,M,I). For example,
Choco Ice vV Choco Pieces is an expression of F[L,{A,V,—=}] for the ice-cream context
and {Choco Pieces, Caramel} |= Choco Ice V Choco Pieces. This leads to the following
problem description.

Problem 15.1 (Navigation Problem). For a formal context K, a scale-measure (o, S) €
S(K), compute an equivalent scale-measure (Y, T) € S(K) such that Gt = G, = 1 and
Mz C F[M,{V, A, =}] where (g, ¢) € It iff {g}' F ¢.

With this problem we are interested in computing for an S-measure o-, which may be in
canonical representation, an equivalent scale-measure with interpretable attributes that are
formed as logical expressions on M. For example, we can express the Choco taste attribute
of the example scale-measure in Figure 7.10 as the disjunction of the ingredients Choco Ice
and Choco Pieces, i.e. Choco := Choco Ice V Choco Pieces. For any scale-measure (o, S),
such an equivalent scale-measure, as searched for in Problem 15.1, is not necessarily unique,
and the problem statement does not favor any of the possible solutions. The decision which
logical expressions are meaningful depends on the contexts or the analyst [205].

To understand the semantics of the logical operations in terms of a context K, we first
investigate their contextual derivations.

Lemma 9 (Logical Derivations). Let K = (G, M, I) be a context, o5 € F[M,{A}], pv €
F[M,{V,}], ¢~ € F[M,{=}], with scale contexts (G,{¢},1,) having the incidence
(9.9) €1y = {g} F @ forg € {¢v, pr, ¢-}. Then we find

i) {@a}er = var(gn),
ii) {‘PV}IW = Umevar(g)v){m}l’

iii) {@-}Ye =G\ {n} with ¢ = -nforne M.
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Figure 8.3: Counter examples for which i is not a (G, {¢v}, Iy, )- or (G, {p-},1,.)-
measure of a K. The conflicting extents are marked in red.

Proof. i) For g € G if (g, ¢5) € I, then {g}! | ¢, and thereby var(¢,) C {g}'. Hence
g € var(pp)!. Incase (g, op) ¢ I,, itholds that var(¢,) € {g}! and thereby g ¢ var(¢,)’.
ii) For g € G if (g, ¢v) € I, we have {g}! [ ¢v. Hence, 3m € var(py) with g € m’ and
therefore ¢ is in the union. If (g, ¢v) € I, there does not exists such a m € var(¢,) and
9 ¢ Umevar(e) m!. iii) For any n € M we have ¢_, = =n. Hence, for g € G if (g, ¢-) € I,
we find g ¢ {n}!. Conversely, if (g, ¢-) ¢ I,_ it follows that g € {n}!. O

Naturally, the results from the lemma above generalizes to scale contexts with more
than one logical expression in the set of attributes. How this is done is demonstrated
in Section 8.2.2. Moreover, more complex formulas, i.e., ¢ € F[M,{V,A,=}], can be
recursively deconstructed and then treated with Lemma 9.

To decide if a logical expression yields a scale-measure we can use the result in
Proposition 7.

Proposition 21 (Logical Scale-Measure). Let K be a context and let ¢ € F[M,{V, A, =}],
then g is a (G,{¢}, 1,)-measure of K iff {o}e € Ext(K).

Proof. Since [{¢}| = 1 we find that (G, {¢}, I,) has at least one and at most two possible
extents, {{¢}!¢,G}. If the map (s is a scale-measure of K, then L&l({(p}I‘P) = {p}ls €
Ext(K). Conversely, if {¢}'¢ € Ext(K) sois LE;I ({¢}!¢), hence, g isa (G, {¢}, 1,)-measure
of K. O

This result raises the question for which formulas ¢ is (g a (G, {¢}, I,)-measure of
K and for which it is not. Counter examples for which i is not a (G, {¢v}, I, )- or
(G, {¢-}, 1, )-measure of a K are depicted in Figure 8.3.

Corollary 5 (Conjunctive Logical Scale-Measures). Let K = (G, M, I) be a formal con-
text and pp € F[M,{A}], then (1g, (G,{¢r},1,,)) € S(K).

Proof. According to Lemma 9 (,)%r = var(¢)’, hence, by Proposition 21 we know that
(LG’(G9{‘70/\}’I<PA)) € 6(K) O
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Combining our results on the scale-measure apposition (Proposition 20) with the logical
attributes (Proposition 21) we now tackle the navigation problem as stated in Problem 15.1.

When we look at this problem again, we find that in its generality it does not always permit
a solution. For example, consider the contranominal formal context B, := ([n], [n], #).
This context allows a scale-measure into the nominal scale N,, := ([n], [r], =), namely the
map ¢[,]. Restricted to any disjunctive combination of attributes, i.e., Mr € F[M, {V}], and
n > 3 does the afore mentioned scale-measure not have an equivalent logical scale-measure.
This is due to the fact that (1) in nominal contexts there exists for every object g an attribute
m such that {m}’ = {g} and |{m}’| = 1, (2) all attribute derivations in a contranominal
context B,, are of cardinality n — 1, (3) the derivation of a disjunctive formula (over [n])
is the union of the elemental attribute derivations (Lemma 9). Hence, the derivation of a
disjunctive formula is at least of cardinality n — 1 in T and therefore there must not exist an
m € My such that |{m}/T| = 1, and therefore Ext(N) # Ext(T).

Despite this result, we may also report positive answers for particular instances of Prob-
lem 15.1 that use conjunctive formulas for Mr.

Proposition 22 (Conjunctive Normalform of Scale-Measures). Let K be a context and
(0,8) € &(K). Then the scale-measure (Y, T) € S(K) given by

¥=1c and T :IAE(T’](EXt(S)) (G’ {90 =A AI}’ Itp)
is equivalent to (o, S) and is called conjunctive normalform of (o, S).

Proof. We know that every formal context (G, {¢ = AAT}, 1) together with ¢ is a scale-
measure (Corollary 5). Moreover, every apposition of scale-measures (for some formal
context K) is again a scale-measure (Proposition 20). Hence, the resulting pair (i, T) is a
scale-measure of K.

It remains to be shown that o' (Ext(S)) = ¢ (Ext(T)). Scale-measure equivalence
holds if (¢, T) reflects the same set of extents in Ext(K) as (o, S), thus if each context
(G, {¢ = AAT}, 1,) has the extent set {G, (AAT)!¢}. In this set we find that (AAT)T» = A
by Lemma 9. Due to the apposition property the resulting context has the intersections
of all subsets of o' (Ext(S)) as extents. This set is closed under intersection. Therefor,
o~ N (Ext(S)) = g (Ext(T)). O

We want to point out that the construction of the conjunctive normalform is very similar
to the construction of views (cf. Definition 50) in which we implicitly used attribute sets N
such that each n € N encodes a conjunction of the attributes A,,.

The conjunctive normalform (i, T) of a scale-measure (o, S) may constitute a more
human-accessible representation of a conceptual data reduction output. We demonstrate this
using a practical example in Section 8.5.

8.4 Recommending Conceptual Scale-Measures

Our theoretical findings unveil several possibilities to recommend scale-measures. First,
there are meet- and join-irreducible elements of the scale-hierarchy (Propositions 13 and 14).
These elements are a minimum representation from which every other scale-measure can
be retrieved. However, the number of meet- and join-irreducible elements is in the size of
the concept lattice B(K) (Proposition 13) and thereby potentially exponential large. Hence,
it is necessary to narrow down the set of join-irreducible scale-measures, for example, by
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without solutions

Conjunctive explanation
of scale-measures

Conjunctive explanation
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Algorithm 1: Scale-measure Exploration: A modified Exploration with Back-
ground Knowledge
Input : ContextK = (G,M,I)
Output : (¢, S) € S(K) and optionally £ = Thg(S)
Init Scale S = (G, 0, €)
L = €(K) = CanonicalBase(K) (or £ = {} for larger contexts)

if Further differentiate objects having A% by attributes in A™ \ A'slslz?
then

else
Enter B C A't \ Als’s!x that should be considered
Add (Al y By to Mg

return :(tg,S) and optionally £

constraining the selection to irreducible elements in B(K) or by applying some conceptual
importance measure.

Other scale-measures of interest can be depicted based on their structural placement
in the scale-hierarchy, i.e., element-wise modularity, distributivity, or neutrality. A further
advantage of the latter two selection criteria is that they allow a decomposition of the
scale-hierarchy using divide-and-conquer strategies. The existence of such neutral elements,
however, cannot be guarantied.

8.4.1 Exploration based Recommendation

For the task of efficiently determining a scale-measure, based on human preferences, we
propose the following approach. Motivated by the representation of meet-irreducible elements
in the scale-hierarchy through object implications of the context (see Proposition 14), we
employ the dual of the attribute exploration algorithm [75] by Ganter. We modified said
algorithm toward exploring scale-measures and present its pseudo-code in Algorithm 1.
In this depiction we highlighted our modifications with respect to the original exploration
algorithm [78, Algorithm 19] with darker print. This algorithm semi-automatically computes
a scale context S and an implicational base. In each iteration of the inner loop of our
exploring algorithm the query that is stated to the scaling expert is if an object implication
A = Bis true in the closure system of user preferences. If the implication holds, it is
added to the implicational base of S and the algorithm continues with the next implication
query. Otherwise a counter example in the form of a closed set C € Ext(K) with A C C but
B ¢ C has to be constructed. This closed set is then added as attribute to the scale context S
with the incidence given by €. If C ¢ Ext(K) the scale S would contradict the scale-measure
property (Proposition 7).

The object implicational theory Th (S) is initialized to the object canonical base of
K, which is an instance of the object exploration with background knowledge [75]. This
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initialization can be neglected for larger contexts, however it may reduce the number of
queries. The algorithm terminates when the implication premise of the query is equal
to G. The returned scale-measure is in canonical form, i.e., the canonical representation
(tG» (G,Ext(S), €)) (cf. Proposition 10). The motivation behind attribute exploration
queries is to determine if an implication holds in the unknown representational context of
the learning domain. In contrast, the exploration of scale-measures determines if a given
Ext(K) can be coarsened by implications A = B, resulting in a smaller and thus more
human comprehensible concept lattice B(S), adjusted to the preferences (or view) of the
scaling expert.

Querying object implications may be less intuitive compared to attribute implications,
hence, we suggest to rather not test for A = A5 for A C G but to test if the difference
of the intents A’ and (As/5) in K, is of relevance to the scaling expert. In doing so, only
extents of K, i.e., C = (B U Alslsle)lx ¢ Ext(K) are inserted preserves thereby the scale-
measure property. Finally, as a post-processing, one may apply the conjunctive normalform
(cf. Proposition 22) of scale-measures to further increase the human-comprehension.

The implications in Lx can be used to explain and reproduce the data reduction by
applying Lx to the closure system Ext(K).

8.4.2 Concept Importances based Recommendation

In addition to the semi-automatic exploration of the scale-hierarchy S(K), we outline an
automatic procedure using important concepts (A, B) € B(K). In Formal Concept Analysis,
there have been numerous importance measures introduced [132] that can be used to select
a set of concepts A. Some of the more well known measures are the support, concept
probability [122], concept separation-index [122], concept robustness [213] and concepts
stability [131]. For the selection A the canonical construction (Lemma 5) enables us
to compute the smallest scale-measure that reflects these concepts. Combined with the
conjunctive normalform (Proposition 22) we result in a human interpretable representation.

The scale-hierarchy S(K) is lattice ordered which allows us to apply the above men-
tioned importance measures to identify important scale-measures using the construction in
Theorem 2. Which importance measure is the most preferable by users and the problem of
efficiently computing the importance in S(K) are open problems.

8.5 Small Case Study

Accompanying our theoretical findings and to demonstrate the expressiveness of the scale-
measure navigation, we provide an example analysis using the Spices Planner [147] (see
also [90]) data set. This data set is comprised of 56 dishes, here understood as objects,
and 37 spices, which are considered to be attributes for the dishes. The incidence Ixgy..
indicates that a spice m is necessary to cook a dish g. The resulting context, in the following
denoted by Kspices, is comprised of 357 incidences, which corresponds to a density of
0.228. Additionally, all dishes in the data set bear exactly one of nine categories, such
as vegetable, meat, or fish. The resulting concept lattice of Kgpices has 532 concepts
and is therefore too large for a meaningful diagrammatic representation, and thus human
comprehension. Consequently, a data reduction that correctly reflects the data is necessary.
Using scale-measures, we are able to generate small-scaled views of readable size. In order
to discover “interesting” scale-measures, we need to find a starting point for navigating
the lattice of scale-measures. A natural approach for this is selecting a subset of extents
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Edessert

e desserts, cake, rice
pudding, marmelade, punch,
uit salat, christmas pastry

vegetab

red cabbage, sauerbraten, vension

sauel]

stew, dal

bay leaf

anise A~anilla A cinnamon

stew, dafk sauce

Figure 8.4: The lattices diagrams are views of the spices data set as computed in Section 8.5.
The concept lattices reflect a focused view on vegetable dishes that use similar spices (gray)
and one selected dessert dish (red). The top view is in canonical representation whereas the
bottom view is in conjunctive normalform and thus has speaking attributes.
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pepper bay lead

e A vanilla

tomato salad,\kohlrabi A clnnamon

ristmas buiscuits

O
beef, red gabbage,
sauerbraten, stew,
vension, dark sauce

Figure 8.5: The two presented concept lattices are views of the spices data set. The top view
is analogously built to the views in Figure 8.4 and reflect similar spiced meat dishes (gray)
and a selected desserts (red). The view at the bottom is the greater common of the meat view
(top in this figure) and the vegetable view (bot in Figure 8.4) using the meet (Proposition 19)
operator of the scale-hierarchy.
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of Kspices that are considered relevant by the data analyst. In our first example setting, we
construct a scale-measure on vegetable dishes:

Gy = {carrots, red cabbage, green salad, spinach, vegetable gratin,
broccoli, cauliflower, lentil soup, vegetable soup, cucumber salad,
stew, beans, sauerkraut, tomato salad, kohlrabi}.

Of course it suffices to restrict the corresponding extents by the set of meet-irreducible
concepts of Kgpices, i.€., meet-irreducibles in B(Gv, Mspices, Ispices N (Gv X Mspices)). To
fulfill the condition of Proposition 10 we compute their object-closures in Kgpices which
yields the set &y = {E}, E», E3, E4} with:

E| = {red cabbage, sauerbraten, shellfish, stew, venison, dark souce,
sauerkraut, kohlrabi},

E;, = {dip, beef, red cabbage, lamb, sauerbraten, mushrooms, roulades,
lentil soup, stew, vension, dark souce, tomato salad, kohlrabi},

E; = {beef, goulash, red cabbage, sauerbraten, vegetable soup, stew,
vensio, dark souce, sauerkraut},

E4 = {steamed fish, dip, roast potato, carrots, roasted fish, risotto,
green salad, omelette, white sauce, potato gratin, spinach, vegetable
gratin, hash, broccoli, grilled fish, mushrooms, potato soup, asian
rise, baked fish, oven potato, cauliflower, duck, lentil soup, vegetable
soup, cucumber, salad, veal, goose, stew, beans, pork, dark souce,
sauerkraut, chicken, tomato salad, kohlrabi}.

By applying Proposition 10 we can compute a scale-measure in canonical form reflecting
Ev, i.e., (Gspices» Sv, €). The concept lattice of this view consists of 15 concepts and is
depicted on in Figure 8.4 (top) and is indicated by the gray colored concepts. This lattice is
more readable due to a fewer number of concepts. This conceptual view could, for example,
be useful to compose, curate or refine instructions for a vegetable kitchen. The features of
this view are the chosen extents, which are, due to the constructive nature of this process, in
canonical representation. For more meaningful attributes, with respect to a human reader of
the diagram, we can employ the conjunctive normalform Corollary 5. The thus altered, but
equivalent, view is depicted on the bottom in Figure 8.4.

Starting with this data reduction, we can further navigate in the scale-hierarchy (Defini-
tion 38) to a finer or coarser view (Definition 37). In an envisioned setting of restaurants
it might be suitable to add a dessert extent. We selected the dessert extent using the
meet-irreducibles in Kgpices restricted to dessert objects.

Edessert = {punch,desserts,cake,rice pudding,marmelade,tea,fruit salad
,christmas buiscuits}

We can add Egegsert Using the context apposition (Proposition 20), i.e., the join operation
in the scale-hierarchy (Proposition 12). The result is highlighted in red in the respective
diagrams in Figure 8.4.

In the next step, we demonstrate how to browse within the scale-hierarchy using a second
conceptual view. For this, we analogously build a scale-measure on meat dishes. The
concept lattice diagram of this view is depicted Figure 8.5 (top). Using the meet operator
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(Proposition 12) of the scale-hierarchy we can compute the greater common of conceptual
views concerning meat and vegetables. The conjunctive normalform of their meet is depicted
on the bottom in Figure 8.5. Such a scale-measure might be useful to find meat dishes and
vegetable dishes that go well together or to build a menu that reflects a compromise between
the meat and vegetable menu, with respect to spices.

Given our theoretical findings, all operations and transformations used above are in
fact scale-measures and are thus consistent data reductions of Kspices. Of course, views of
interest could be derived using different criteria, apart from meet-irreducibles. Nonetheless,
as long as the data reduction process is based on selecting extents, the resulting views will
be scale-measures of the original data set.

With Figure 8.6, which is a scale-measure of the well-known Zoo! data set by R. S. Forsyth,

obtained from the UCI repository [60], we provide a second example for our scaling theory.

We proceeded analogously to the spices example. Initially, we compute a view based on five
logical animal taxons T (red in Figure 8.6) to classify the animals of the zoo data set with
respect to (G, T, It).

Their join (Proposition 12) can be computed using the apposition operator (Proposition 20)
within the scale-hierarchy. In addition to that, we added in our depiction six attributes that
were used in the taxons 7, such that the hierarchical connections among the taxons are
reflected. Hence, this view on the data enables the human reader to grasp how the selected
animal types can be classified and to identify similarities.

8.5.1 Explaining Existing Data Scalings

One ultimate application that we envision for the introduced scale-measures techniques in
the realm of data science is the possibility to extract, and therefore interpret, data reductions
that were derived through other methods, such as LSA or Boolean matrix factorization. This
can be done by computing for the consistent part of every data scaling an equivalent logical
scale-measure (see Proposition 21). Moreover, we may identify, and quantify, parts of a data
scaling that are inconsistent with respect to the original data. We elaborate on this in greater
detail in Chapter 11. To give the reader a hint for this, we revisit the example views of Kjcg
depicted in Figure 7.10. The conjunctive normalform leads to the following interpretations
of the view attributes:

My = {Choco = Choco IceV Choco Pieces, Brownie := Brownie,
Caramel = Caramel Ice V Caramel, Dough := Dough,
Peanut = Peanut Ice V Peanut Butter, Vanilla := Vanilla}

8.5.2 (Semi-)Automatic Large Data Set Scaling

To demonstrate the applicability of the presented exploring algorithm, we have implemented it
in the conexp-clj [88] software for Formal Concept Analysis. We apply the scale-measure

exploration (Algorithm 1) on the Living Beings and Water [80] context Ky (see Figure 8.7).

In Figure 8.8 (left) we depicted the evaluation steps of the algorithm. The first two columns
represent the object implication that is queried, the third column contains the query translated
in terms of attributes. For example, in row two the implication {} = {D,FL, Br, F} is
true in the so far generated contextual view S and is queried if it should hold. All objects
of the implication do have at least the attributes can move and needs water to live, as

'The objects girl,frogB were omitted.
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moGth, termite, hon-

eybee, flea, ladybird
not-fins A predator A feathers A airborne

eggs A two-legs A feathers

eggs A fins
backbone A not-eggs

airborne A six-legs

Bird

Fish

Insect
Mammal
Amphibian

Amphibian

slowworm, tu-
atara, pitviper

predator

OtherFishes={seahorse, sole, herring, piranha, pike, chub, haddock, stingray, carp, bass, dogfish, catfish,
tuna}

OtherMammals={reindeer, aardvark, polecat, wolf, mole, vole, hare, boar, cavy, antelope, goat, puma,
mongoose, pony, bear, pussycat, lynx, elephant, calf, mink, opossum, leopard, buffalo, lion, giraffe, cheetah,

oryx, deer, hamster, raccoon }

OtherBirds={gull, parakeet, crow, skua, swan, hawk, sparrow, lark, wren, dove, vulture, penguin, duck,
flamingo, pheasant, rhea, ostrich, skimmer, chicken, kiwi}

Figure 8.6: Conceptual view on the zoo context with 27 of the original 4579 concepts.
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Figure 8.7: This figure shows the Living Beings and Water [80] context in the top. Its
concept lattice is displayed at the bottom and contains nineteen concepts.

indicated in the third column (left). In the same column (right) we find attributes from
{1}« \ {2}/ C My that can be considered by the scaling expert to narrow the object
implication, i.e., to shrinken the size of the conclusion. The answer of the scaling expert
envisioned by us is given in column four, the attribute lives on land. Thus, the object counter
example is the attribute-derivation the union {M, W, LL}W = {D, F}. In our example of
the scale-measure exploration the algorithm terminates after the scaling expert provided
nine counter examples and four accepts. The output is a contextual view in canonical
representation with twelve concepts as depicted in Figure 8.8 (right).

The just demonstrated application of the scale-measure exploration can be supported in
every step by conceptual importance measures [132]. Furthermore, these measures can also
be used to automate the exploration algorithm by randomly selecting the counterexample
from the top-k of the list of outstanding concepts with respect to one or more of said
conceptual measures. We illustrate this idea for the spices planer data set Kgpices and depict
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of the exploration

Automatic exploration
setup
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Figure 8.8: Scale-measure exploration results (left) for the Living Beings and Water context,

the resulting context (bottom right) and its concept lattice (top right).
The employed object order is: Be > Co > D > WW > FL > Br > F >R
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the resulting scale-measure in Figure 8.9.

For this example of automatic scale-measure exploration, we considered the importance
measure separation index [122, 132] on the set of objects. We consider the maximum
number of concepts that are human readable to be thirty and therefore we restricted the
number of counter examples to be computed accordingly. We depicted the concept lattice of
the resulting scale-measure in Figure 8.9 using the conjunctive normalform. To improve
the readability, we only annotated meet-irreducible attribute concepts in the lattice diagram
and omitted redundant attribute conjunctions, e.g., for AnisAVanillaACinnamonAPastry we

annotate ... APastry, since AnisAVanillaACinnamon is already given by an upper neighbor.

The so given scale-measure concept lattice seems empirically more human readable and
displays extensive information with respect to the original data set Kgpices and the employed
importance measure. The exploring algorithm outputs 44 implications that can be used to
explain the scaling.

8.6 Navigation Methods in Conceptual Scaling

The navigation methods presented in this chapter combine, slice and aggregate views on
the data and are thereby related to OLAP [44] but on the conceptual level. The methods
themselves are inspired from relational algebra [45]. The computation of equivalent logical
terms are related to the field of symbolic regression [3, 42, 219]. To what extent this field
can contribute to solving Problem 15.1 is unexplored.

For conceptual scaling (see Figure 7.1, top left) with plain scaling and its extensions
(cf. Section 7.1.3) the TOSCANA framework [123, 218] provides an extensive tool-set. The
TOSCANA system provides several ways to define scales, add logical attribute combinations
[170, 172] or extend them to encode relations of higher arity [65, 173]. Given a many-valued
context D and a set of defined scales S,, for each m € Mp, the analyst explores the derived
context K of D on subsets of the many-valued attributes N € Mp. The concept lattice of
the sub-context K[Gp, U,,eny Ms,,] is investigated through nested drawing. To navigate
between different scalings, the analyst can define new scaling, logical attributes, or constrain
the use of a scale based on other attribute values of other attributes [206]. The navigation
procedure requires both, an analyst and a domain expert (cf. user and preparator [193]).

With this chapter, we present, a navigation paradigm for conceptual data reduction (see
Figure 7.1, top right) which takes place after the context K is derived from ID. In contrast to
conceptual scaling, the reduction process does not require additional knowledge of a domain
expert. The notion of scale-measures enables us to verify if a reduction is consistent to the
interpretation of the data by the expert. Although, the analyst is able to study K and its views

alone, the domain expert needs to be consulted to assess the meaningfulness of the reduction.

The results of selecting scales in TOSCANA, if defined with respect to plain scaling, can
be considered as views and navigation between views as given by Corollary 4. However,
this allows only for a very limited exploration of the scale-hierarchy. Moreover, does the
characterization of the hierarchy of views enable us to identify outstanding data reductions
(cf. Section 8.4), identify missing information in data reductions (cf. Lemma 7), the
introduction of conceptual scaling error (cf. Chapter 11), as well as, a (semi-)automatic
conceptual data reduction procedure (cf. Section 8.5.2).

On top of that, the navigation in the scale-hierarchy is independent from the scales
used to derive the context K. This allows us, for example, to express that the visual color
spectrum is in view relation to an (inter)ordinal interpretation of the wavelength feature (see
Figure 7.12).
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OLAP and logic based
views

Navigate scalings

Navigate conceptual
data reductions

Navigation Structure
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Figure 8.9: Automatically generated scale-measure of the spices context using the most
outstanding concepts by the separation index importance measure. The scale consists of 30
of the original 523 concepts and is in conjunctive normalform.
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Nonetheless, we believe that a combination of TOSCANA and a navigation of the scale-
hierarchy can be beneficial. An example application scenario could be that a domain
and scaling expert defines scales to interpret the data and provides the derived context
K. In a second step, users that are interested in K can use the scale-hierarchy to explore
different abstractions in a self-determined manner. The methods presented in this chapter
provide the guaranty that users remain consistent to K with respect to scale-measures. This
combination enables an end-to-end scaling and reduction framework for conceptual data
scaling (Figure 7.1, upper part).

Another hierarchy proposed in the realm of conceptual scaling is the hierarchy of
scales [204]. For a given conceptual scale S, the hierarchy includes all scales that generate
finer closure systems with respect to scaling. This hierarchy is used to add information to
conceptual scales for plain scaling, e.g., from taxonomy or other background knowledge.
This process is opposite to computing coarser closure systems in conceptual data reduction.

8.7 Discussion

The methods that were presented in this chapter are very useful to navigate between
conceptual views, to refine data reductions and to develop recommendation systems. For the
later we have shown how user preferences can be used for (semi-)automatic recommendations.
For automatic recommendations without prior knowledge on user preferences, further studies
are needed. A thorough investigation on this, including a user study, is outside the scope of
this work and deemed future work.

Following on from this, computations in the scale-hierarchy are costly due to the
incomprehensible size. It is not clear if the importance measures from FCA can be efficiently
computed for scale-measures in the scale-hierarchy. In addition to that we can envision that
methods like TITANIC [208] or the outlined decomposition at the end of Section 8.1 can
improve the efficiency of navigating conceptual views. Further research is needed on this
topic to increase the capabilities of recommending views.

With the computation of the conjunction normalform we provided a first solution to
Problem 15.1 using comprehensible features. This approach is very expressive, since it is
agnostic to the data reduction method which makes it applicable to many methods in the
realm of machine learning. In Chapter 11 we demonstrate this by explaining results from
Boolean matrix factorization. This method can be improved in future work by deriving
shorter or more comprehensible solutions. A promising line of research that may help here
is the field of symbolic regression [3, 42, 219].

Beyond the scope of navigation between conceptual views, we can envision an application
of our methods to identify structural similarities within a data set [57, 58]. Consider a
formal context K := (G, M, I) with A, H C G and a full scale-measure o from K[H, M] to
K[A, M]. We may interpret for o-(h) = a that h relates to H like a to A.
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Ordinal Motifs in Lattices

A fundamental principle of the formal analysis of data is the identification of unique and
meaningful sub-structures and properties. The realm of ordinal, lattice and conceptual
structures is no exemption to that. With this chapter, we provide theoretical foundations for
analyzing concept lattices by means of ordinal sub-structures. The resulting framework is

based on methods from conceptual data reduction and inverse data scaling (cf. Figure 7.1).

These allow us to study ordinal sub-structures of concept lattices independently from the
elements that generate them, i.e., attributes and incidences in a context K. On top of that,
the approach generalizes to any type of ordinal sub-structure due to the capabilities of
scale-measures.

We call this approach, in analogy to the notion established in network science [104, 105,
156], ordinal motifs. Another analogy can be drawn from feature engineering for graph
data from geometric deep learning [32]. They represent a graph based on the number of
homomorphisms into smaller graphs [28]. The resulting sequence is called homomorphism
numbers and can be used in deep learning [164]. However, in contrast to network science and
deep learning on graphs, where motifs are recurrent and statistically significant sub-graphs
(or patterns), we understand motifs as a user-defined set O of ordered sets, usually represented
as formal contexts [80]. The elements of this set can be of different sizes and (ordinal)
complexities. They shall allow us to analyze any lattice or conceptual structure, by means of
frequency and sizes of ordinal patterns. Thus, the set O can be considered as an ordinal
tool-set. In addition to the standard scales mentioned in Section 7.1, any pattern deemed
relevant by a user lends itself to be in O. However, we show in our work that already for
standard scales the recognition of these motifs is a computationally difficult problem.

In terms of theoretical results, we show the computational complexity of several decision
problems for recognizing and finding scale-measures. In particular, we show that for finding
a scale-measures for a given ordinal motif we have to solve an NP-complete problem.
Moreover, we show that motifs which have the special property of belonging to a hereditary
class of scales offer many advantages in computation.

An advantage of employing sets of standard scales is their well-known structural semantic
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(cf. basic meaning [80, Figure v1.26]). Based on these, we constructed textual templates for
every standard scale based on principles from human computer interaction. In detail, we
applied the five goodness criteria [149] for explainability in machine learning to ensure that
the textual templates are human comprehensible.

Combining the recognition of ordinal motifs and the textual explanations of them, we
yield an automatic procedure to generate textual explanations of concept lattices. To the
best of our knowledge, this is the first method that is able to do this. While this approach is
very expressive there may be exponentially many ordinal motifs. Therefore, we introduce an
importance measure of ordinal motifs based on the proportion of the conceptual structure
that they reflect. Based on this, our method can identify few ordinal motifs that cover most
of the concept lattice. To demonstrate the applicability of the ordinal motif method, we
demonstrate our findings based on standard scales in a medium-sized data set, the spice
planner data set [147].

9.1 Ordinal Motifs

The overall goal for ordinal motifs is to identify frequent recurring ordinal patterns of user
defined shape that allow for analyzing large and complex ordinal structures. The use of
scale-measures (o, S) is not limited to contexts and concept lattices, but can be extended to
ordered sets (P, <). This is done through the general ordinal scale (P, P, <) whose concept
lattice is isomorphic to the Dedekind-MacNeille completion of (P, <), i.e., the smallest
lattice in which (P, <) can be order-embedded (cf. Section 5.2).

The formal context S in scale-measures is not restriction on what can be used as a scale
context. Any scale and scale-measure in the scale-hierarchy S(K) can be applied here. An
important factor for the choice of S is its interpretation whith respect to its structure. As
long as S carries structural information that we are interested in, we can use S as ordinal
motif and analyze B(K) through the lens of scale-measures (o, S).

In doing so, we want to consider the following aspects: scope and coverage. We will
first give an informal explanation of the two properties and then derive the mathematical
tools and a precise problem definition. Starting from a given context K := (G, M, I) and an
ordinal motif S, the scope of the ordinal motif is

* global, if it covers the entire data, i.e., all objects G, or
¢ local, if it covers only parts of G.

The coverage of an ordinal motif concerns the portion of the ordinal structure that is
captured by the motif. We say an ordinal motif

* has full coverage, if every element of the concept lattice of K has a correspondence in
the ordinal structure of the motif, or

* has partial coverage, otherwise.

For example, the latter case exists if there are extents of K that are not the pre-image of an
extent of S.

In case there is a full scale-measure from a context K to a context S, we can infer that the
closure system of K on G is, except for relabeling, identical to that of S (see Proposition 3).
A scale-measure from K to S, on the other hand, only guarantees that the closure system of
K on G has at least all closed sets that the context S has, up to relabeling.
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Definition 40 (Local Scale-Measures). Let K and S be two formal contexts. The map
o : H — Gg is alocal scale-measure of K, iff

1. HC Gg and
2. o is a scale-measure from K[H, Mx] to S.

We say a local scale-measure is full, iff o is a full scale-measure from K[H, Mx] to S.

For local and full scale-measures the relation between the respective concept lattices is
captured by the following proposition.

Proposition 23 (local and full scale-measure). For contexts K, S, the closure operator
clg on Ext(K) and a surjective local scale-measure o : H — Gx, we find that

(Ext(S),c ) 2 (Ext(K[H, Mk]),C) = (clk (Ext(K[H, Mk])),C ).

Proof. The first morphism follows directly from Proposition 3 and the fact that o is a
scale-measure from K[H, Mg] to S. For the final isomorphism we can note that for
A € Ext(K[H, Mx]) the difference clg(A) \ A is in G \ H. This means, the closure of
A in Ext(K) adds only elements from G \ H. Thus, since clk is a closure operator we
find that for A,C € Ext(K[H, Mx]) with A c C we have clg(A) C clg(C). Hence,
clg : Ext(K[H, Mg]) — Ext(K) is an injective map and by restricting the co-domain we
find a bijective map clg : Ext(K[H, Mx]) — {clx(E) | E € Ext(K[H, Mx])}. O

Propositions 3 and 23 reveal the relations between a context K and an ordinal motif S.
Analyzing K via ordinal motifs in the full scale-measure setting would mean to simply speak
about K with different labels. For the local full case we find that scale-measures reflect a
sub-closure system, i.e., Ext(K) restricted to a subset H C Gg.

The following problem summarizes the technical observations so far and (finally) states
all notions for ordinal motif. For the surjective property we refer to Remark 4.

Problem 15.2 (Finding Ordinal Motifs). Given a formal context K and an ordinal motif
S find a surjective map from K into S that is a:

| global local
partial scale-measure local scale-measure
full full scale-measure local full scale-measure

The global and full case of this problem can be seen as a special instance of the inverse
scaling of a formal context K (Proposition 9). With inverse scaling of K we derive full
scale-measures into the semi-product of scale context. For both, the inverse scaling and
ordinal motifs we employ standard scales due to their explainability. We discuss this case in
greater detail in Chapter 10 together with a new notion of complexity.

9.1.1 Ordinal Motifs in Concept Lattices

In Figure 9.1 we present local full ordinal motifs for our example in Figure 8.7. The ordinal
motifs are highlighted in color and represent three common structures analyzed in Formal
Concept Analysis and order theory in general. The top diagram highlights a contranominal
scale context, i.e, an ordinal motif encoding a Boolean lattice. The diagram in the middle
highlights an ordinal scale context, i.e., a chain order. The bottom diagram highlights a
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Ordinal motif problem
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Example ordinal motifs
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Figure 9.1: The concept lattice of the water context (see Figure 8.7) and highlighted nominal,
ordinal and contranominal ordinal motifs.
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nominal scale context, i.e., an anti-chain order. Given Problem 15.2, we are able to identify
these sub-structures by local full scale-measures into the respective scale contexts, i.e., into
B3, O3 and N,. Applied to the set of attributes, the contranominal scale motif encodes that
the attributes lives in water, lives on land and needs chlorophyll are independent and any
combination of these attributes is closed. The ordinal scale motif encodes that there is a
ranking or increase in capability measured by the attributes can move around, has limbs and
suckles its offspring. From the nominal scale motif, we can infer that the attributes can move
around and needs chlorophyll are independent of each other, and, moreover, since their meet
is empty, they are mutually exclusive. We may note that these findings are true in the present
data, but do not need to be true in general.

9.2 Recognizing Ordinal Motifs

To recognize ordinal motifs, we have to decide if a given map is a local or local full
scale-measure. This problem can be dealt with analogously to Problems 7.2.1 and 14 with
the additional check that H C G and a restriction of K to K[H, Mk]. The resulting check
for local (full) scale-measures has the same complexity.

Problem 15: Deciding Local Scale-Measures Problem

Input: Formal contexts K, S and amap o : H — Gg
Output: True iff o is a local scale-measure of K.
Complexity: O(|K| - |S])

Problem 16: Deciding Local Full Scale-Measures Problem

Input: Formal contexts K, S and amap o : H — Gg
Output: True iff o is a local full scale-measure of K.
Complexity: O(IK|-|S])

Scale-Measures and Implicational Theories

Before we now turn to finding ordinal motifs in data, i.e., finding scale-measures, we want to
point out one more practical relevant observation with following proposition. In practice,
context like data sets are large, however, mostly only in one dimension. The usual case
is that the number of objects in a formal context is many times larger than the number of
attributes. The reverse case, of course, also occurs. The most expensive computation for
context and scales is the derivation, in particular in the direction of the larger dimension,
i.e., objects or attributes. We therefore want to present an alternative representation using
implications in contexts.

To syntactically link implications with scale-measures, we use the short-hand notation
o' (A - B) := 071(A) — o~!(B). For the theory Th(K) we define o~ (Thg,(S)) :=
{c7%(A > B) | A - B € Thg.(S)}.

Proposition 24 (Recognizing (full) Scale-Measures using Implications). For a context
K a scale S and a map o : Gg — Gs we find that

i) o is a scale-measure &= o~'(Thg,(S)) + Thg, (K)

ii) o is a full scale-measure <= Thg, (K) = o~!(Thg.(S)).

Recognize local
scale-measures

Decide scale-measures
with implications

Reflected implications
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Proof. First, we note that for two closed implicational theories Thy, Thy, i.e., transitive
closures of implication sets, it holds that Thy € Thy <= Th; + Th;. Secondly, we note
that there is a Galois connection between the lattice of all implicational theories and the
lattice of all closure systems [34, Theorem 57] to which the hierarchy of scale-measures is
isomorph (Proposition 10).

Next, we elaborate on the relation between Thg. (S) and o~ ! (Thg, (S)). (1) The closure
system Ext(S) is a model of A — B iff for all E € Ext(S) with A C E we have B C E. The
map o~! is monotone and for g;, g» € Gs it holds that =1 (g;) N o' (g2) = 0. Therefor
we find that: (2) A C E iff 07!(A) € o~!(E). Combining (1) and (2) we find that
Ext(S) E A — Biff o7 (Ext(S)) F o~!(4 — B).

i) The map o is a scale-measure iff the closure system o~ ! (Ext(S)) is a coarser closure
system of Ext(K) on Gx. Given our preliminary considerations this is the case if and only
if the theory of Thg, (K) is a model of o~ (Ext(S)), i.e., 0~ !(Thg, (S)) + Thg, (K).

ii) The map o is per definition a full scale-measure iff the closure system o~ (Ext(S)) is
equal to Ext(K). Given our preliminary considerations this is the case if and only if
their object theories are equal. O

With the help of Proposition 24 one may use already existent logical inference checkers
for the verification of (local) (full) scale-measures. Such a procedure is especially efficient
in case |G| < |H| and if we are looking for many ordinal motifs of K.

9.2.1 Ordinal Motif Problems

Starting from Problem 15.2, we now want to formulate a decision problem to investigate the
complexity of Problem 15.2. In the following we refer by RsSM to the decision problem, if
for two formal contexts K and S there exists a surjective scale-measure from K to S, i.e.,
the Recognizing Surjective Scale-Measures problem. Analogously, we refer by RfSM to the
decision problem, if for two formal contexts there exists a full scale-measure.

Theorem 6 (Ordinal Motif Problems). For two formal contexts K and S, RsSM and RfSM
are NP-complete.

Proof. To avoid any peculiarities, we consider in the following reductions graphs of size at
least three.

a) hardness: To show NP-hardness of the RsSM problem, we reduce the sub-graph
isomorphism (SI) problem to RsSM. For two Graphs G, H consider the formal context
G = (Vg U{L},Eg U {{v} | v € Vg} U {0}, €) and analogously constructed formal
context H. The set of extents of G is equal to {{v} | v € Vg} U Eg U{0,Vg U {L}}.
This reduction is polynomial in the size of G, H.

= Let o be asurjective scale-measure of G into H. Then o~ ! (Ext(H)) C o~ (Ext(G)).
In particular for every e € Ey we have o' (e) € Ext(G). Since o is surjective,
we can infer that 2 < |0~ !(e)| < |Vg|. The only extents with a cardinality in
that interval are the edge extents of G. Thus o~'(e) € Eg and all nodes of
e have a unique pre-image. Since Ey C Ext(H), all nodes with at least one
edge have a unique pre-image. WLOG we assume that the pre-image of all
v € Vg have a unique pre-image, otherwise change the map o for all but one
node to L. Hence the map o~! : Vi — Vg is edge preserving and an iso-
morphism of (H, Eg) into a sub-graph of G, i.e., into the sub-graph given by
(co-dom(c~ )\ o~ (L),{e € Eg |3l € Ey : 07 (I) = e}).
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& Let o be an isomorphism of H into a sub-graph of G, i.e., an edge preserving map
from H into G. Based on this consider the map 6 : Vg U {L} — Vg U {L} where
6(v) = o~ !(v) and L otherwise. The map @ is surjective by definition. For the
node extents, the empty extent and the top extent Vg U {L} of H we have that their
pre-images are in Ext(G). For an extent e in Ep; we have that 6~ (e) = o (e) € Eg,
since o is edge preserving. Thus 6 is a surjective scale-measure from G into H.

completeness: An algorithm for identifying if there is a surjective scale-measure for two
context O, K can be constructed by guessing non-deterministically a mapping o. The
check for a surjective scale-measure can be done deterministically in polynomial time in
the size of both contexts.

b) hardness: To show NP-hardness of the RfSM problem, we reduce the induced sub-graph
isomorphism (ISI) problem to the RfSM problem. For two graphs G, H consider the
contexts G = (Vg, Eg U {{v} | v € V} U {0}, €) and H analogously. The set of extents
of Gisequal to {{v} | v € Vg}UEg U{0,Vs}. This reduction is polynomial in the size
of G,H.

= Let o be a full scale-measure of H into G. Then for every v € Vg the extent
{v} € Ext(H) is the pre-image of an extent A of Ext(G). Since v € o' (A) we
have o(v) € A and from {v} = 0~ '(A) we can infer that there exists no other
w € Vg with w # v and o (w) = o (v). Thus o is injective.
For an edge e € Eg where ¢ C co-dom(c) we have o~ ! (e) € Ext(H) and since
o is injective we can infer |c~!(e)| = 2 and thus c~'(e) € Ep. For an edge
e € Ep there must be an A € Ext(G) with o~!(A) = e. Thus o(e¢) C A. Since
the only extents of G for which this applies are Vs extents of cardinality two, i.e.,
the edges of G. Thus, o (e) € Ext(G) and further o(e) € Eg. Concluding, o is an
isomorphism between H and o (H).

& Let o be an isomorphism between H and an induced sub-graph of G. Then for
every v € Vg is o~ ({v}) either in Vi or empty since o is injective. For edges
e € Eg where e C co-dom(c) we have that o~!(e) € Eg C Ext(H) since o
is an isomorphism restricted to co-dom(o). In case ¢ C co-dom(o) does not
hold, the pre-image is equal to a node or the empty set. Thus o~ (Eg) C Ext(H).
Furthermore, o~!(0) = 0 € Ext(H) and 0~ (Vs) = Vi € Ext(H). Thus o is a
scale-measure of H into G. For an edge e € Ey we have that o~ ({o(v) | v €
e}) =eand {o(v) | v € e} € Eg C Ext(G) since o is isomorphism restricted to
co-dom. Thus o is a full scale-measure.

completeness: An algorithm for identifying if there is a full scale-measure for two
context O, K can be constructed by guessing non-deterministically a mapping o. The
check for a full scale-measure can be done deterministically in polynomial time in the
size of both contexts.

With this theorem we have shown the complexities of the ordinal motif problem (cf.  Complexities
Problem 15.2) in general. Further algorithmic improvements are needed to deal with these
problems on large data sets. In the next subsection, we analyze these problems with respect
to specific classes of ordinal motifs.

Problem 17: Recognizing Surjective Scale-Measures Problem

Input: Formal contexts K, S
Output: True iff there exists a surjective scale-measure o from K to S
Complexity: NP-complete
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Problem 18: Recognizing Full Scale-Measures Problem

Input: Formal contexts K, S
Output: True iff there exists a full scale-measure o from K to S
Complexity: NP-complete

9.2.2 Recognizing Standard Scales

In practice we consider families of standard scales for ordinal motifs due to their inter-
pretability. In the following, we demonstrate the complexities for the problems above with
respect to families of standard scale contexts S.

Proposition 25 (Recognizing Full Standard Scales). Let K be a formal context. Deciding
whether there is a surjective full scale-measure into N,, with |G| = n is in P with respect to
the size of K. The analogue is true for Oy, I,,, C,, and B,,.

Proof. WLoG we assume that K is clarified. We first show the claim for B,,.

For a contranominal scale B,, := ([n], [n], #) every pair of bijective maps (« : [n] —
[n], B : [n] — [n]) is a context automorphism of B,,. Thus, we can select an arbitrary
bijective mapping from G into [n] and check if it is a full scale-measure from K into the
contranominal scale B,,. The verification of full scale-measures is in P [101]. The same
reasoning can be applied for N,,.

For ordinal scales we need to verify that for each pair of objects their object concepts
are comparable in the concept lattice. Hence, the recognition for ordinal scales is in P. For
an interordinal scale I, := ([n], [n], <)|([n], [n], =) we can infer from the extents of K of
cardinality 2 two candidate mappings o<, o> in the following way. For interordinal scales
the extents of cardinality two overlap on one object each and form a chain. From said chain
we can infer an order relations of the objects G given by position in which they occur in the
chain. From the total order on G we define the mapping o< : G — [n] where the objects
are mapped according to their position. The map o> is defined based on the dual order. All
maps other than o< and o> would violate the extent structure of the chain. For o< and
o> we can verify in P if either is a full scale-measure. Moreover, the extents of cardinality
two can be computed in polynomial time using TITANIC or next_closure. Hence, the
recognition for interordinal scales is in P.

For crown scales C,, = ([n], [n],J), where (a,b) € J & a = bor(a,b) =
(n,1) or b = a + 1, we can select an arbitrary object g € [n] and draw repeatedly without
putting back a different 4 € [n] with {g}’ N {h}’ # {}. Starting from g there is a (up to
duality) unique drawing order, i.e., 1,2,...,n and the dual 1,n,n—1,...,2. In order to find
a full scale-measure we have to find an isomorphic drawing order for the elements of G in
the same manner. From this we can derive a map G — [n] with respect to the drawing order
and verify if it is a full scale-measure. The computational cost of the drawing procedure as
well as the verification is in P. O

Problem 19: Recognizing Full Standard Scales

Input: A formal context K

Output: True iff there exists a full scale-measure from K into either N,,, O, I,,, C,
or B, with |G| =n

Complexity: P
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The polynomial recognition of full scale-measures into standard scales allows for an
efficient generation of full explanations. For partial explanations we provide the following
propositions.

Proposition 26 (Recognizing Standard Scales I). Ler K be a formal context. Deciding
whether there is a surjective scale-measure into N, with |G| = n is in P with respect to the
size of K. The analogue is true for B,,.

Proof. Since |Gx| = n, we can follow that a surjective scale-measure from K to N, is also
injective. For a nominal scale is any pair of bijective maps a context automorphism. Thus,
either no bijective map from Gy to [n] is a surjective scale-measure of K into N,,, or all
are. Concluding, it is sufficient to check one arbitrary bijective map for the scale-measure
property which can be done in polynomial time (see Problem 7.2.1). The analogue reasoning
can be applied to B,,. O

Problem 20: Recognizing Standard Scales (P)

Input: A formal context K

Output: True iff there exists a surjective scale-measure from K into either N,, or B,
with |Gx| =n

Complexity: P

Proposition 27 (Recognize Standard Scales II). Let K be a formal context. Deciding
whether there is a surjective scale-measure into O, with |Gx| = n is NP-complete. The
analogue is true for 1,, and C,,.

Proof. [Case O,] hardness: To show that this problem is NP-hard we reduce the Hamil-
tonian path problem for directed graphs (di-graph) to it. A directed graph is a pair
(V,E) where E C V x V. The notion of paths in directed graphs translates naturally
from graphs.

For a di-graph G = (V,E) let G = (V,V,E") be a formal context with E* =
E*\ A(V), where E* is the transitive extension of E and A(V) the diagonal of V.
Since |Gg| = |V| = n, we can follow that a surjective map into [n] is also injective.
This reduction is polynomial in the size of the input. WLoG is n > 3.

= Let (v1,...,v,) be a Hamiltonian path in G. Fori < jis (v;,v;) € E™* per
definition. For {vy,...,v;} with i < n, we find that the object derivation
{vi,...,0;}" 2 {vi+1,...vn}. Forall ¢ € {v1,...,v;} we find that g ¢
{v1,...,0 }E+, since E* excludes A(V) per definition. Thus, the object derivation
{v1,...,v;}E" is equal to {vj41, . ..vn}. Applying the analogue reasoning for the

attribute derivation yields {vy, ..., v;}2 £ = {vy,...,v;}. Thus, for an interval
[1,i] is {v1,...,v;} € Ext(K). For the ordinal scale O,, we find that the set of
extents is comprised of the intervals [, n]. Hence, the map o : V — [n] with
o(v;) =n— (i — 1) is a scale-measure from G into O,,.

& For a surjective scale-measure o from G into Oy, let e~ (n— (i — 1)) = v;, cf. &
is also injective. For an extent [n — (i — 1),n] of O, is o~ ([n = (i = 1),n]) =
{v1,...,v;} in Ext(G) and therefor {vy, ..., v,-}E+E+ = {v1,...,v;}. Thus, for
all intervals [1, 7] withi < nis {vy, ..., v;} an extent of G. On top of that is {}
an extent of G. This follows directly from the definition. Hence, (1) the interval
extents together with the emptyset form a chain order of n + 1 extents.

Full explanations with
standard scales
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For an extent {v1, . . ., v;} we can deduce that (2) {v1, . .., 0 }E~ C {vis1, ..., 00},
since E* excludes the diagonal per definition. Due to the antitone property of
the derivation operator (cf. 5.1 Proposition 1) we find that o ([i,n])E" C
o ([i + 1,n])E". Moreover, since o~ !([i,n]) # o ([i + 1,n]), and the
pre-images o~ ([i,n]), o' ([i + 1,n]) are in Ext(G), we can deduce that (3)
o ' ([i,n)E c o™ ([i + 1,n)E" and o~ ([i,n])E" # o' ([i + 1,n])E".
Combining (1), (2) and (3) we find that {v1, ..., v;}¥ = {0i41, ..., v }. Hence,
for i < j we find that (v;,v;) € E*. From the covering relation of E* we find
that for i,i + 1 is v, v;+1 € E. Concluding, (v, ..., v,) is a Hamiltonian path.

completeness: This problem can be decided by non-deterministically guessing a map
o and check for the scale-measure and surjective property. The checks can be done in
polynomial time (see Problem 7.2.1).

[Case I,] hardness: For the interordinal problem we present an analogue reduction to

the ordinal case where for a di-graph G = (V,E) we define a formal context
G := (V,V,E*) | (V,V,E")¥ and (V,V,EN? == (V,V == {5 | v € V},{(v;, 1)) |
(vj,v:) € E*}). In other words, G is the apposition of the context from the ordinal
case and its dual. This reduction is polynomial in the size of the input. WLoG is
n > 3.

= For a Hamiltonian path (vy,...,0,) in G let o : V — [n] be a map with
o(v;) = n— (i —1). Based on the ordinal case we can deduce that o is a
surjective scale-measure into Q,. Due to the apposition of the dual context
(V,V, E*)? we can deduce that o is a surjective scale-measure into (O)ff. From
the apposition of scale-measures (Proposition 20), we find that o is a surjective
scale-measure into O, | @5, which is equal to [,.

& For a surjective scale-measure o from G into I, let o~! (n — (i — 1)) = v;. Since
I, is equal to the apposition O, | O¢ and since the scale-measure property is
preserved when removing attributes (cf. Corollary 4), we can deduce that o is
a surjective scale-measure into Q,,. From the ordinal case we can deduce that
(v1,...,0,) is a Hamiltonian path.

completeness: This problem can be decided by non-deterministically guess a map o
and check for the scale-measure and surjective property. The checks can be done in
polynomial time (see Problem 7.2.1).

[Case C,,] hardness: To show the NP-hardness of this problem we reduce the Hamiltonian

cycle (HC) problem for undirected graphs to it, i.e., decide for a graph G if there
is a circle visiting every node of G exactly ones. This problem is known to be
NP-complete.

For the reduction, we map the graph G = (V, E) (WLoG |V| > 3) to a formal context
G := (V,VUE,¢€) where V := {{v} | v € V}. This map is polynomial in the size of
the input. The set of extents of G is equal to V U E U {V, {}}. The context G accepts
a surjective scale-measure into the crown scale of size |G| iff there is a sequence
of extents Ay, ..., A, € Ext(K) with |A;| = 2 such that (V,{A;,...,A,}) <Gisa
cycle visiting each object v € V exactly ones. This is the case iff G has a Hamilton
cycle.

completeness: This problem can be decided by non-deterministically guess a map o
and check for the scale-measure and surjective property. The checks can be done in
polynomial time (see Problem 7.2.1). O
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Problem 21: Recognizing Standard Scales (NP)

Input: A formal context K

Output: True iff there exists a surjective scale-measure from K into either O, I,, or
C, with |G| =n

Complexity: NP-complete

Given these complexity results there are some partial explanations based on standard
scales that are more difficult to generate than others. Despite these results, more research is
needed to derive efficient algorithms.

9.2.3 Ordinal Motifs and Implications

Within the set of ordinal motifs that a context accepts, there is a subset that is closely related
to implications in formal contexts.

Proposition 28 (Ordinal Motifs and Implications). For a K = (G,M,I) and g,h € G
with {g}’ # {h}’ TFAE:

i) o:{g, h} — {1,2} witho(g) = 1 and o-(h) = 2 is a Lf. scale-measure from K to Q,,
ii) g — hisvalid in K.

Proof. The implication ¢ — & is valid in K iff {g}’ € {h}’. Given the condition that
{g}’ # {h}’ the context K[{g, h}, M] has two extents, i.e., {h} and {g, h}. Thus, o is a full
scale-measure from K[{g, 1}, M] into Q,. In the reverse case we can follow from the full
scale-measure that {4} and {g, h} are the extents of K[{g, h}, M]. Thus, {¢} € {h}. O

This result opens the question on what notions and methods from rule mining can be
transferred to ordinal motifs. In particular a notion of confidence may allow the study
of ordinal motifs that are contained in K up to some degree. Further exploration of this
connection is deemed future work.

9.3 Heredity of Ordinal Motifs

Now that we understand the computational complexities for Problem 15.2, we want to present
an interesting property of scales that may help to reduce the computational efforts.

The families of standard scales have a special property, called heredity [80, Proposition
123], i.e., for every scale S of a family of scales S it holds that every sub-scale S[H, Ms] is
equivalent (up to attribute reduction) to a scale in S. In this section we will demonstrate
how the notion for heredity of scales impacts scale-measures.

Lemma 10 (Heredity of Scale-Measures). Let K be a formal context, S a scale from a
heredity scale family and o : Gg — Gg a surjective (full) scale-measure. For any H C Gx
is the map o |g a surjective (full) scale-measure from K[H, Mx] into S[o(H), Ms].

Proof. First we show that o | is a scale-measure from K[ H, Mk] into S[o(H), Ms]. Since
S[o(H), Ms] is an induced sub-context of S with equal attribute set, we can write every
extent A € Ext(S[o(H), Ms]) as the intersection A N o-(H) for some A € Ext(S). The
pre-image (o |ir) " (A N o (H)) is equal to (o |r) " (A) N (o |g) " (o (H)). Since A and
o (H) are entailed in the image of o on H we can follow that (o |i) ™' (A) = o~ !(A) and
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(o |g)™! (0(H)) = H. Moreover, since o is a scale-measure we can follow that o (A) is
an extent of K. Summarizing, the pre-image (o |z) ™! (A) is equal to the intersection of an
extent of K and H. Hence, (o |g) ™" (A) is an extent of K[H, Mx] and o~ | a scale-measure
of K[H, Mg] into S[o-(H), Ms].

In case o is a full scale-measure it remains to be shown that for every D € Ext(K[H, M])
there exists a C € S[o(H), Ms] with (o |i)~'(C) = D. We can write the extent D as the
intersection D N H where D € Ext(K). Since o is a full scale-measure we can follow for D
that there is a C € Ext(S) with o~ (C) = D. Since S[o"(H), Ms] is an induced sub-context
of S with equal attribute set we find that C N o-(H) is an extent of S[o-(H), Ms]. Thus,
for C := C N o (H) we find that (o |z) " (C N (H)) = (o |a) " (C) N (o |u) (o (H))
and furthermore that (o |¢)(C) N (o |g) ™' (o(H)) = D N H = D. Hence, o | is a full
scale-measure.

The map o | is surjective, since the object set of S[o-(H), Ms] is equal to the co-domain
of o |g. O

This property transfers naturally to ordinal motif of contexts.

Proposition 29 (Heredity of Ordinal Motifs). Let K be a formal context, S a scale from
a heredity scale family and o : Gg — Gg a surjective (full) scale-measure. Then for any
H C Gy is the map o |g a surjective (full) scale-measure from K[H, Mx] into an ordinal
motif of the same family as S.

Proof. This proposition follows directly from Lemma 10 and the definition of heredity
scales. O

This proposition is essential when applying ordinal motifs for the analysis of ordinal
data sets using heredity scales. When computing all candidates for (full) scale-measures this
statement allows us to discard a large proportion. Fortunately, many families of scales, such
as the nominal scales, ordinal scales, interordinal scales, contranominal scales, etc, have the
heredity property [80, Proposition 123]. Crown scales do not have this property.

9.4 Automatic Textual Explanations

The basis for the automatic generation of textual explanation for concept lattices are local
full explanations. For a given formal context we identify ordinal motifs through local (full)
scale-measures and template explanations. A template explanation for an ordinal motif on n
objects may look like this:

The elements g1, . ..,gn-1 and g, arein ... related to each other.

Given a context K and a local (full) scale-measure o of K into S we can replace every
instance of an object g; € Gy in a textual explanation template of the ordinal motif S by
its pre-image o~!(g) € G. This yields a textual explanation of K with respect to 0. An
example explanation for interordinal scales and the color spectrum in Figure 7.11 can be
seen in the following:

The elements violet, blue and red are in an interordinal relation to each other.

This explanation, however, is very technical and focuses on theoretical properties.
To generate textual explanations that are understandable to untrained users, we employ
human-centered explanations developed by Viktoria Horn [100, Section 5]. For this, we
summarize and reproduce section 5 of Hirth, Horn, Stumme, and Hanika [100] in the
following subsection faithfully.



9.5. ORDINAL MOTIF COVERING 103

9.4.1 Human-Centered Textual Explanations

To derive explanations of a concept lattice that are understandable to untrained users,
a human-centered approach is recommended. The explanation templates that we recall
in this subsection were developed with state-of-the-art principles from human-centered
explanations [37, 149] in mind, namely the five goodness criteria Mamun et al. [149] for
Explainable AI (XAI) [196]. These are the accuracy, scope, explanation form, simplicity
and knowledge base criterion. For a detailed discussion on these criteria and on how all
of them are met by the following explanation templates we refer the reader to Section 5 in
Hirth, Horn, Stumme, and Hanika [100].

Nominal Scale: “The elements ny, . ..,ng_1 and ng are incomparable, i.e., all elements
have at least one property that the other elements do not have.”

Ordinal Scale: “There is a ranking of elements ny, . . . ,ng_1 and ny such that an element
has all the properties its successors has.”

Interordinal Scale: “The elements ny,...,nx—1 and ny are ordered in such a way that
each interval of elements has a unique set of properties they have in common.”

Contranominal Scale: “Each combination of the elements ny,...,ng_1 and ny has a
unique set of properties they have in common.”

Crown Scale: “The elements ni,...,ng_1 and ny are incomparable. Furthermore, there
is a closed cycle from ny, over ny,...ng_1 and ny back to ny by pairwise shared
properties.”

The proposed textual explanations are designed to be domain independent. This allows us
to apply our method in a general setting. Though, some data domains may come with specific
terminology and requirements. In these cases it is advisable to develop dedicated explanation
templates. Moreover, the presented templates are meant to provide the theoretical foundation
for automatically generating human-centered explanations of concept lattices. A test of their
capability to be understandably by untrained users is deemed future work.

9.5 Ordinal Motif Covering

Due to the large number of ordinal motifs that a formal context accepts we present in the
following a method to select a small but meaningful subset of them. Our goal is to derive
partial explanations by covering large proportions of a concept lattice B(K) using a small
set of scale-measures S into a given set of ordinal motifs. We say a concept (A, B) € B(K)
is covered by (o, S) € S iff it is reflected by (o, S), i.e., there exists an extent D € Ext(S)
with o~1(D) = A or 0! (D)#* = A in the local case. This leads to the formulation of the
general ordinal motif covering problem.

Problem 22.1 (Ordinal Motif Covering Problem). For a context K, a family of ordinal
motifs O and k € N, what is the largest number ¢ € N such that there are surjective local
full scale-measures (01,01), ..., (0, Or) of Kwith Oy, ...,0, € O and

) U (clg oa-lfl)(Ext((O)i))| = c
1<i<k

where clg denotes the object closure operator of K. If K does not allow for any scale-measure
into an ordinal motif from O the value of c is 0.
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We remind the reader that the maps cl, o; are lifted to a family of sets (cf. Chapter 2).
We call the set {(o,0y), ..., (0%, Or)} an ordinal motif covering of K.

If one is able to find an ordinal motif covering that reflects all formal concepts of K we
can construct a formal context O which accepts a scale-measure (o, S) if and only if (o, S)
is a scale-measure of K.

Proposition 30 (Ordinal Motif Basis of K). Let K be a formal context with object closure
operator clg and ordinal motif covering {(o1,0y), ..., (o, Ok)} that covers all concepts
of K, ie, c = |B(K)|. Let

@ ::|15iSk (G’M®i?l®i,ClK)7 Wlth (g’m) € I@,‘,C]K — 9 € CIK(O-i_l({m}IOi))

where | is the context apposition. Then a pair (o, S) is a local full scale-measure from
K[H, M] to S iff o is a local full scale-measure from O[H, Mg] to S. In this case we call O
an ordinal motif basis of K.

Proof. We have to show that the identity map is a full scale-measure from K to O. Hence,
we need to prove that all attribute extents of O are extents in K Proposition 7 and each extent
of K is an extent of O. For an attribute m € Mg, is clg ({m}*) € Ext(K) per definition.
The second requirement follows from the fact that ¢ = |B(K)|. O

The just introduced basis is a useful tool when investigating scale-measures of a context
K given a set of ordinal motifs O. One can perceive O as a set of analytical tools and
the existence of O implies that a found ordinal motif covering {(o1, 01), ..., (0%, Of)} is
complete with respect to scale-measures of K.

9.5.1 Ordinal Motif Covering with Standard Scales

The ordinal motif covering problem is a combinatorial problem which is computationally
costly, even for standard scales. Thus, we propose in the following a greedy approach which
has two essential steps. First, we compute all local full scale-measures S for standard scales.
This step is computationally tame due to the heredity property of local full scale-measures
for standard scales, as discussed in Section 9.3. Our goal is now to identify, in a greedy
manner, elements of S that increase ¢ the most. Thus, we select k full scale-measures where
at each selection step i with 1 < i < k we select a scale-measure (o, O) € S that maximizes
Equation (9.1).

)(clK o ) (Ext(0)) \ | J (el oo; ) (Ext(0 ,-))| ©.1)
1<j<i
In the above equation (o7, Q;) denotes the scale-measure that was selected at step j < i.
The union is the covering number ¢ of the ordinal motif covering (o, ), ..., (0i-1,0;_1).
Overall, the computed cardinality is equal to the number of concepts reflected by (o, O) that
are not already reflected by (o1, 0y), ..., (0j-1,0;_1).

For obvious reasons this approach results in the selection of scale-measures that have
the largest number of (so far) uncovered concepts. A downside of this heuristic is that it
favors ordinal motifs that have in general more concepts, e.g., contranominal scales over
ordinal scales. To compensate for this we propose to normalize the heuristic by the number
of concepts of the ordinal motif, i.e., ‘(r‘l (Ext(0)) |

In the first step, the normalized heuristic does not account for the total size of the ordinal
motif. The first selected scale-measure covers at least the top extent, i.e., G, and thus the
scores for all following ordinal motifs are at most | Ext(S)|-1/| Ex¢(s)|.



9.6. APPLYING ORDINAL MOTIFS TO DATA SETS 105

Table 9.2: Results for ordinal motifs of the spices planner context. Every column represents
ordinal motifs of a particular standard scale family. Maximal If-sm is the number of local
full scale-measures for which there is no If-sm with a larger domain. Largest If-sm refers to
the largest domain size that occurs in the set of local full scale-measures.

nominal | ordinal | interordinal | contranominal \ CI‘OWII‘

local full sm 2342 37 4643 2910 2145
maximal If-sm 527 37 2550 1498 2145
largest If-sm 9 1 5 5 6

9.6 Applying Ordinal Motifs to Data Sets

We demonstrate the applicability of ordinal motifs on real-world data using a medium sized
formal context: the spices planner data set Kgpices. We conduct our experiment on the
dual context, i.e., K¢ := (M, G, I7"), to derive ordinal motifs within the spices and food
categories.

For our application we employ the standard scales from Section 7.1, as they are the most
commonly used. For the family of ordinal scales we include the additional ([n], [n+ 1], =)
scales whose concept lattice include the empty concept. For the rest of this chapter, we
focus on local explanations and discuss global explanations in Chapter 10 due to the close
connection to inverse conceptual scaling.

9.6.1 Ordinal Motifs

The number of identified local full scale-measure of the spices data set per standard scale
can be found in Table 9.2. In this table we distinguish between local and maximal local
(with respect to the heredity). We observe that the spices data set entails a large number of
ordinal motifs. The interordinal scale motifs are the most frequent in both cases, i.e., local
and maximal local. For crown scales both values are equally 2145, since crown scales do
not have the heredity property. All found ordinal scale motifs are trivial, i.e., all 37 found
motifs are of size 1. In the last row of Table 9.2 we printed the size of the largest ordinal
motif of the respective kind. Thus, the motif on the most objects is nominal and of size nine.
The largest crown is of size six. We depicted all largest motifs in Figures 9.5 to 9.8.

9.6.2 Basic Meanings

The discovered ordinal motifs allow us to interpret parts of the spices data set in terms of
their basic meaning of standard scales [74, 80]. In the following we provide basic meanings
of the largest local full scale-measure with respect to the found motifs.

Nominal: The food categories miscellaneous (group), fish (group), potato (group), vegeta-
bles (group), meat (group), sauce (group), poultry (group), rice (group) and pastries
(group) form a partition.

Ordinal: There are no non trivial local full ordinal scale-measures. If this motif would
exist in the spices data set, it would form a rank order.

Interordinal: The spices and food categories ginger, mugwort, meat (group), black pepper
and juniper berries form a linear betweenness relation.
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Contranominal: The spices Thyme, Sweet Paprika, Oregano, Caraway and Black Pepper
form a partition and are independent.

Crown: The literature, precisely Ganter and Wille [74] and Ganter and Wille [80], does not
provide a basic meaning for crowns.

With ordinal motifs we are able to automatically identify these relations in an unsupervised
setting. While some of the found ordinal motifs are not surprising, e.g., that the food categories
form a partition, no user had to define this scale or provide the background information that
within the set of attributes there are some that cluster the set of dishes. This relation was
solely extracted based on structural properties.

The explanations derived from the basic meanings are very limited in their given form
and very technical. For example the linear betweenness relation encodes that the spices and
food categories ginger (1), mugwort (2), meat (group) (3), black pepper (4) and juniper
berries (5) are ordered in such a way that every interval in this order relation is a closed
set, i.e., for the indices 1, ..., 5 every set given by the interval [7, j] with 1 <i < j <5is
closed. Such a relation is equivalent to interordinal scales or interval orders from conceptual
scaling [74].

As demonstrated in Section 9.1.1, do ordinal motifs allow for a far more complex and
meaningful explanation of the found sub-structures. With our method, we linked order
theory into the realm of measurement science [201]. In measurement theory a domain
expert defines scales that encode how data values are structured, how they are interpreted
and what operations can used within a scale. With ordinal motifs we identify these scales
in an underlying data set in an unsupervised manner. In case scales are of a standardized
structure, we can automatically apply their interpretation to the objects that are entailed in an
ordinal motif. In future work, we use this link to automatically derive textual explanations
for concept lattices.

9.6.3 Textual Explanations

Due to the large number of ordinal motifs, we first compute a small but meaningful selection
using the introduced greedy strategy. In Figure 9.3 we report the extent sizes of selected
ordinal motifs. In the left diagram we depict in the abscissa the steps of the greedy selection
and in the ordinate the number of newly covered concepts. We report the results for the
standard scales individually and combined. For the latter we also experimented with the
normalized heuristic. In the right diagram we depict the accumulated values, i.e., the value c.
First we observe that the normalized heuristic does not decrease monotonously in contrast to
all other results. From the right diagram we can infer that the crown, interordinal and nominal
motifs are unable to cover all extents. The contranominal and the combined scale family
took the fewest selection steps to achieve complete extent coverage. These are followed
by the normalized heuristic on the combined scale family which took about thirty percent
more steps. Out of the other scale families the crown scales achieved the highest coverage
followed by the interordinal and nominal scales.

With Figure 9.4 we investigate the influence of the normalization on the greedy selection
process. For this we depict the relative proportion of selected scale types up to a step i
(abscissa). The left diagram shows the proportions for the standard heuristic and the right
reports the proportions for the normalized heuristic. We count ordinal motifs that belong to
multiple standard scale families relatively. For example we count the contranominal scale of
size three half for the crown family. We see in the first diagram that a majority of the selected
ordinal motifs are of contranominal scales. This is not surprising since they have the most



9.6. APPLYING ORDINAL MOTIFS TO DATA SETS 107

30 \ —— Covered by Standard Scales @ 500 —
Coverage by Standard Scales (Normalized) E ,/’
25 Coverage by Nominal Scales 2 /"‘ _
g - Coverage by Interordinal Scales % 400 /" ST
g 20 - Coverage by Contranominal Scales 5 / /’/,-—. ______________ _
o -~ Coverage by Crown Scales € 300 / Dot
) =1 4 e
5 15 = / e
P
Qo o e
200 St
10 & [0 e
= E II /‘f" ——————————
5 5 100 /.,,‘/ _______________
3 | o
0 0 :
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Ordinal Motif Ordinal Motif

Figure 9.3: The extent coverage (left) for the ordinal motif covering computation for all
and each standard scale family individually. The right diagram displays the accumulated
coverage at each step in the ordinal motif covering computation. The legend of the left
diagram does also apply to the right diagram with the addition of the total number of extents
(pink) in the context.
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Figure 9.4: The ratio of each standard scale family in the ordinal motif covering computation
for the standard (left) and normalized heuristic.

concepts among all standard scales. The interordinal and crown scales are almost equally
represented and the nominal motifs are the least frequent. In contrast to this, the normalized
heuristic selects crown and interordinal motifs are more frequent (right diagram).

Overall, we argue that while the normalized heuristic produces slightly worse coverage
scores it provides a more diverse selection in terms of the standard scales. Therefore, the
normalized heuristic may result in potentially more insightful explanations.

We conclude by providing automatically generated textual explanations for the spices
planner context. For this we report the top ten selections for the standard and normalized
heuristic. First we depict the explanations for the standard heuristic which consist solely of
contranominal motifs. Thereafter we will turn to the normalized heuristic results.

1. Each combination of the elements Thyme, Sweet Paprika, Oregano, Caraway and Black
Pepper has a unique set of properties they have in common.

2. Each combination of the elements Curry, Garlic, White Pepper, Curcuma and Cayenne
Pepper has a unique set of properties they have in common.

3. Each combination of the elements Paprika Roses, Thyme, Sweet Paprika, White Pepper
and Cayenne Pepper has a unique set of properties they have in common.
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4. Each combination of the elements Paprika Roses, Thyme, Allspice, Curry and Curcuma
has a unique set of properties they have in common.

5. Each combination of the elements Thyme, Basil, Garlic, White Pepper and Cayenne
Pepper has a unique set of properties they have in common.

6. Each combination of the elements Tarragon, Thyme, Oregano, Curry, and Basil has a
unique set of properties they have in common.

7. Each combination of the elements Vegetables, Caraway, Bay Leef and Juniper Berries
has a unique set of properties they have in common.

8. Each combination of the elements Meat, Garlic, Mugwort and Cloves has a unique set of
properties they have in common.

9. Each combination of the elements Oregano, Caraway, Rosemary, White Pepper and
Black Pepper has a unique set of properties they have in common.

10. Each combination of the elements Curry, Ginger, Nutmeg and Garlic has a unique set
of properties they have in common.

These explanations cover a total of 195 concepts out of 532. An interesting observation
is that explanation number eight has only four objects compared to the five objects of
explanation number nine. Yet, explanation eight was selected first. The reason for this is
that number eight has more non-redundant concepts with respect to the previous selections.

The results for the normalized heuristic are very different compared to the standard
heuristic. The ten selected motifs cover a total of 125 concepts. They consist of one
interordinal motif, four contranominal, one nominal and four motifs that are crown and
contranominal at the same time. For the ordinal motifs that are of crown and contranominal
scale we report explanations for both.

1. The elements Thyme, Caraway and Poultry are ordered in such a way that each interval
of elements has a unique set of properties they have in common.

2. Each combination of the elements Curry, Garlic, White Pepper, Curcuma and Cayenne
Pepper has a unique set of properties they have in common.

3. Each combination of the elements Allspice, Ginger, Mugwort and Cloves has a unique set
of properties they have in common.

4. Each combination of the elements Sweet Paprika, Oregano, Rosemary and Black Pepper
has a unique set of properties they have in common.

5. Each combination of the elements Sauces, Basil and Mugwort has a unique set of
properties they have in common.
The elements Basil, Sauces and Mugwort are incomparable. Furthermore, there is a
closed cycle from Basil over Sauces and Mugwort back to Basil by pairwise shared
properties.

6. Each combination of the elements Paprika Roses, Meat and Bay Leef has a unique set of
properties they have in common.
The elements Paprika Roses, Meat and Bay Leef are incomparable. Furthermore, there is
a closed cycle from Paprika Roses over Meat and Bay Leef back to Paprika Roses by
pairwise shared properties.
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7. Each combination of the elements Saffron, Anisey and Rice has a unique set of properties
they have in common.
The elements Saffron, Anisey and Rice are incomparable. Furthermore, there is a closed
cycle from Saffron over Anisey and Rice back to Saffron by pairwise shared properties.

8. Each combination of the elements Vegetables, Savory and Cilantro has a unique set of
properties they have in common.
The elements Savory, Cilantro and Vegetables are incomparable. Furthermore, there is a
closed cycle from Savory over Cilantro and Vegetables back to Savory by pairwise shared
properties.

9. The elements Tarragon, Potatos and Majoram are incomparable, i.e., all elements have at
least one property that the other elements do not have.

10. Each combination of the elements Paprika Roses, Thyme, Sweet Paprika, White Pepper
and Cayenne Pepper has a unique set of properties they have in common.

9.7 Related Work

The foundation for ordinal motifs is the identification of unique and meaningful sub-structures
and properties. There are many approaches and notions for sub-structures within the realm
of FCA. These are either defined on the formal context [63, 90, 127] or within the resulting
concept lattice structure [15, 21, 132] and define specific types of sub-structures.

In contrast to those, our approach is based on methods from the realm of conceptual data
scaling. These allow us to study ordinal sub-structures of concept lattices independently of
the elements that generate them, i.e., attributes and incidences in the context. On top of that,
the approach generalizes to various types of ordinal sub-structure due to the capabilities
of scale-measures. A characterization of specific types of sub-structures with respect to
scale-measures would allow for comparing different types of sub-structures in a unified
language and may reveal new relations between them. Such an investigation is deemed
future work.

In general, the study of motifs in order structures is related to motifs in network
science [104, 105, 156] and homomorphism numbers for graph based geometric deep
learning [28, 32, 164]. However, in contrast to those, where motifs are recurrent and
statistically significant sub-graphs (or patterns), we understand motifs as user-defined set O
which allow for special interpretation of the objects, usually represented as formal contexts.

9.8 Discussion

With ordinal motifs we have developed a new approach for the analysis and interpretation of
ordinal data. The introduced notions provide a useful extension of notions from the realm of
conceptual data scaling and will find applications in Formal Concept Analysis and beyond,
independent of ordinal motifs.

On top of that, we presented, to the best of our knowledge the first approach for the
automatic generation of textual explanations of concept lattices. It is a first step towards
making Formal Concept Analysis accessible to users without prior training in mathematics.
Our contribution comprises the theoretical foundations as well as the preparation of human-
centered textual explanations for ordinal motifs of standard scale.
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As a next logical step, we envision a participatory user study. This will lead to improved
textual explanations for ordinal motifs that are easier to comprehend by humans. Moreover,
the development of domain specific textual explanations, or textual explanations that include
attributes, may increase the number of applications for our proposed methods.

While our approach is capable to extract preset frequent recurring ordinal patterns in order
structures, there is room for improvement. First, apart from our theoretical considerations on
the computational complexity, we did not address the development of specific algorithms. On
the one hand, it is certainly possible to find better algorithms than the naive implementations
we used in our experiments.

A new line of research would be an extension of the notion of ordinal motifs towards other
context-based patterns, such as clones [58], p-clones [57] or complements [180]. Fourth,
the new ability to identify standard scales may help a common conceptual data reduction
method which is based on nested representations of concept lattices [166].

Wille [222] discusses how full scale-measures of a K into R? and R3 can be used to
generate diagrams for concept lattices. We can envision that ordinal motifs can used to
compute partial solutions for contexts that do not allow for such scale-measures.

In Section 9.2.3 we have shown that there is a relation between the ordinal motif O, and
implications. Further investigations on this relation can provide useful insights. In particular,
an introduction of bases for the set of all ordinal motifs as well as a degree of confidence by
which a set of objects satisfies an ordinal motif can provide further applications and insights.
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light sauces, tomato based pasta sauces, dark sauces

sauces/(group)

carrots, red cabbage, leaf let|
cauliflower, pea/bean/lentil #
preserves, beans, sauerkrayf

miscellaneous (group)

punch, desserts, chegse/cookies, cakes, com-
pote/jam, punch/tea, fruit/salad, christmas cookies

pastries (group)

Figure 9.5: The largest local full nominal scale-measure of the spices data sets. We employed
the dual context to get conceptual explanations of the attributes (spices). The attributes that
induce the local full scale-measure are highlighted with bold font. The diagram was rotated
by 90 degrees counter clockwise to improve readability, i.e., the top concept is on the left.

carrots, light sauces, spinach,punch, cake,

Figure 9.6: The largest local full interordinal scale-measure of the spices data set. We
employed the dual context to get conceptual explanations of the attributes (spices). The
attributes that induce the local full scale-measure are highlighted with bold font.
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duck, pork, game minced meat, goose

hage, sauerbraten, veal

Figure 9.7: The largest local full crown scale-measure of the spices data set. We employed
the dual context to get conceptual explanations of the attributes (spices). The attributes that
induce the local full scale-measure are highlighted with bold font. The diagram was rotated
by 90 degrees counter clockwise to improve readability, i.e., the top concept is on the left.

Figure 9.8: The largest local full contranominal scale-measure of the spices data set. We
employed the dual context to get conceptual explanations of the attributes (spices). The
attributes that induce the local full scale-measure are highlighted with bold font.
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The Complexity of Conceptual Views

With this chapter, we provide measures to assess the complexity of conceptual data scalings.

A commonly used measure of dimensionality in FCA is the order dimension of the concept
lattice. We show in Section 10.1 that the order dimension of conceptual views is bound from
above by the order dimension of the derived context K.

A second task in the theory of conceptual scaling is to decide if a given formal context K
is derived (up to isomorphism) from plain scaling. More precisely, one would like to decide
whether K can be derived using a set of given scales, e.g., from interordinal scaling.

An important aspect of this procedure is the complexity of the derived many-valued
context D from inverse scaling. To assess this complexity, we introduce the scaling dimension
of a context K which is the smallest number of scales needed to derive K. We study this
notion more thoroughly for the special cases of ordinal and interordinal scaling and provide
characterizations for them. In addition to our theoretical findings, we demonstrate the
applicability of the scaling dimension based on the drive concepts data set.

This notion is not only relevant for inverse scaling but also in the study of ordinal motifs
(cf. Section 9.1). By a full scale-measure into the semi-product of standard scales, we derive
global full explanations of concept lattices.

10.1 Order dimension of conceptual views

The order dimension is a typical (objective) measure for the complexity of lattices. More
precisely, the order dimension of the related ordered structure (L, <). This quantity is
defined using chain relations, i.e., subsets of P which are totally ordered. In the following
we recall its definition from Section 4.2.

Definition (Order Dimension [80, Definition 82]). The order dimension odim(P) of an
ordered set P is equal to the smallest number d € N such that there is an order embedding
from P into the product of d chains.
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In our empirical study in Section 7.2 we observed a decrease in order dimension between
the context and one of its conceptual views (see Figure 7.10). These findings lead to question:
Is the order dimension of scale-measures bound by the order dimension of B(K)?.

To formally substantiate our experimental finding we investigate the correspondence
between order dimension and scale-hierarchies. For this we employ the Ferrers dimension
of a context K, which is equal to the order dimension of B(K) [80, Theorem 46]. A Ferrers
relation is a binary relation F C G X M such that for (g,m), (h,n) € F it holds that
(g,n) ¢ F = (h,m) € F. The Ferrers dimension of the formal context K is equal to the
minimum number of ferrers relations F; € G X M,t € T such that I = (", F;.

Proposition 31 (Order Dimension in the Scale-Hierarchy). For a context K and scale-
measures (o,S), (Y, T) € S(K) with (c,S) < (¢, T), where o and  are surjective, it
holds that odim(B(S)) < odim(B(T)).

Proof. We know that (o, S) has the canonical representation (¢G, K ;-1 (gx(s))), cf. Proposi-
tion 10, and the same is true for (i, T). Since (o, S) < (¥, T) it holds that o~ ! (Ext(S)) C
¢~ (Ext(T)) and the scale Ky-1(Exi(m)) restricted to the set o~ (Ext(S)) as attributes
is equal to K, -1 (gys))- Hence, a Ferrers set Fr such that (,cr F; is equal to the in-
cidence of K -1 (g (T)), can be restricted to the attribute set o~ '(Ext(S)) and is then
equal to the incidence of K, -1 gy s)). Thus, as required, odim (B(Kp-1(Ex(s)))) <
odim (B(Ky-1 (gx(t))))- 0

Building on this result we can provide an upper bound for the dimension of the apposition
of scale-measures for some formal context K. This also leads to a bound of the order
dimension of the join of two conceptual views in the scale-hierarchy.

Proposition 32 (Order Dimension of Scale-Measure Appositions). For a context K and
scale-measures (o, S), (Y, T) € S(K) with (o,S) | (¢, T) = (w,0). Then is the order
dimension of B(0) bound from above by odim (B(0)) < odim (B(S))+ odim (B(T)).

Proof. Without loss of generality we consider for all scale-measures their canonical repre-
sentation, only. Let Fr be a Ferrers set of the formal context T such that (.7 F; = It and
similarly (\yc5 Fs = Is. For any Ferrers relation F of S it follows that FU (G X M) is a Ferrers
relation of S | T. Hence, the intersection of (e Fs U (G X Mt) and (;er Fy U (G X Ms) is
a Ferrers set and is equal to /g |r. Since this construction does neither change the cardinality
of index set T nor the index set S, the required inequality follows. O

10.2 Scaling Dimension

In the following, we recall the three results needed for the inverse scaling of contexts from
Section 7.4. The first relevant property shows the connection between full scale-measures
and plain scaling.

Proposition (Inverse Scaling given D, Proposition 122 [80]). Let D = (G,M,W,I) be
a complete many-valued context and let S,,, m € M, be scales for the attributes of M.
Furthermore, let K be the derived context with respect to plain scaling. Then, for every
many-valued attribute m € M is the map o, : G — Gg,, with 0, (g) = m(g) a S,,-measure
of K, and K is isomorphic to the induced sub-context S[o0(Gp), Ms] of the semi-product of
the scales S, with 0(g) = (01 (9))mem-
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The second result is a characterization on when a context can be derived from families
of standard scales as given by Theorem 5. This result is based on Theorem 55 of the FCA
book [80].

Theorem (Conceptual Measurability Theorem of Contexts). A context is derivable from
plain scaling from a complete many-valued context (up to attribute reduction) and a family
of scales by the following conditions:

(Ordinal) Every context is derivable from ordinal scaling.
(Nominal) A context is derivable from nominal scaling iff it is atomistic.
(interordinal A context is derivable from interordinal/contranominal scaling iff it

contranominal)  is atomistic and the complement of every attribute extent is an extent.

Third, one needs to determine the many-valued context D based on the full scale-measure.
This result is given in Proposition 9.

Proposition (Inverse Plain Scaling). Let K be a formal context, (Sj);e[n| be a family
of scales and o is a full scale-measure from K into the semi-product S of all scales
with o(g9) = (01(9), . .., 0u(g)). Furthermore, let K be the context derived from D =
(G, [n], (GS.i)ie[n]’ 1) via plain scaling and scales (S;)je[n) where

(9.j,v)€el: = 0oj(g9) =v.
The attribute reduced contexts of K and K are isomorphic.

Equipped with these notions we introduce the scaling dimension.

Definition 41 (Scaling Dimension). Let K := (G, M, I) be a formal context and let S be a
Sfamily of scales. The scaling dimension of K with respect to S is the smallest number d
such that there exists a complete many-valued context D = (G, Mp, Wp, Ip) with |Mp| = d
and K has the same extents as the context derived from D when only scales from S are used.
If no such scaling exists, the dimension remains undefined.

For a full scale-measure every meet-irreducible element A € M(Ext(K)) has to be
reflected by at least one of the scale contexts. Thus, we can give an upper bound for the scaling
dimension, if it exists, by the number of meet-irreducible elements | M(Ext(K))| < |Mx]|.

The so-defined dimension is related to the feature compression problem. Even when it is
known that K can be derived from a particular many-valued context, it may be the case that
there is another, much simpler many-valued context from which one can also derive K (cf.
Figure 10.1 or Figure 10.5 for an example).

10.2.1 Deciding the Scaling Dimension

Determining the scaling dimension is a combinatorial problem whose related decision
problem is NP-complete, as can be seen in the following.

Theorem 7 (Scaling Dimension Complexity). Deciding for a context K and a family of
scales S if the scaling dimension is at most d € N is NP-complete.

Recall measurability
theorem

Recall inverse plain
scaling

Scaling dimension

Feature compression

Deciding upper bounds
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I

Figure 10.1: This figure displays the a and b feature of five data points and their respective
interordinal scales I, and I, (black). The interordinal scaling dimension of this data set
is one and the respective reduced interordinal scale Iy, is depicted in red. The reduction
would then remove the a and b many-valued attribute and substitute it for a new attribute
given by Ipew.

Proof. To show NP-hardness we reduce the recognizing full scale-measure problem
(RfSM) Theorem 6 to it. For two input contexts K and § of the RfSM let context
K := K. We map K to K and § to the set of ordinal motifs S := {S} and set 4 = 1. This
map is polynomial in the size of the input.

If there is a full scale-measure from K into § we can deduce that there is a full scale-
measure of K into the semi-product that has only one operand and is thus just one element of
S. Hence, this element is § and therefore the scaling dimension is at most one. The inverse
can be followed analogously.

The scaling dimension is bound from above by the number of attributes. Thus, the
scaling dimension problem can be decided in the following way: The scaling dimension is
bound from above by d in case d > |Mg|. Otherwise, we can non-deterministically guess d
scale contexts Sy, ..., S4 € S and d mappings from 0; = Gg — Gs,. These are polynomial
in the size of the input. The verification for full scale-measures in P Problem 14. O

10.2.2 Ordinal Scaling Dimension

A first result on the scaling dimension is easily obtained for the case of ordinal scaling.
It was already mentioned that every formal context is fully ordinally measurable, which
means that every context is (up to isomorphism) derivable from a many-valued context D
through plain ordinal scaling. With the next proposition we address the problem of how
many attributes D needs to have, i.e., determine the ordinal scaling dimension OSD(K) of a
context K. An equal result to this special case has been observed by the grid dimension [74]
or linear ordinal dimension [202].

Proposition 33 (Ordinal Scaling Dimension). The ordinal scaling dimension of a formal
context K equals the width of the ordered set of meet-irreducible concepts.
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Proof. The width is equal to the smallest number of chains C; covering the C-ordered set of
irreducible attribute extents. From these chains we can construct a complete many-valued
context D with one many-valued attribute m; per chain C;. The values of m; are the elements
of the chain C;, and the order of that chain is understood as an ordinal pre-scaling. The
derived context by means of ordinal scaling has exactly the set of all intersections of chain
extents as extents (Proposition 120 [80]), i.e., the set of all (| A where A C C; X - - - X Cy.
Those are exactly the extents of K. This implies that the scaling dimension is less or equal to
the width.

But the converse inequality holds as well. Suppose K has ordinal scaling dimension w.
Then by Proposition 8 every extent of K is the intersection of pre-images of extents of the
individual scales. For N-irreducible extents this means that they must each be a pre-image of
an extent from one of the scales. Incomparable extents cannot come from the same (ordinal)
scale, and thus the scaling must use at least w many ordinal scales. O

As a proposition we obtain that the ordinal scaling dimension must be at least as large as
the order dimension:

Proposition 34 (Ordinal Scaling Dimension and Order Dimension). For a context K is
the order dimension of the concept lattice B(K) a lower bound for the ordinal scaling
dimension of K.

Proof. It is well known that the order dimension of B(K) equals the Ferrers dimension of
K [80, Theorem 46], which remains the same when K is the standard context. The Ferrers
relation is the smallest number of staircase-shaped relations to fill the complement of the
incidence relation of K.

For a context with ordinal scaling dimension equal to w we can conclude that the
(irreducible) attributes can be partitioned into w parts, one for each chain, such that for each
part the incidence is staircase-shaped, and so are the non-incidences. Thus we can derive w
Ferrers relations to fill all non-incidences. m|

A simple example that order dimension and ordinal scaling dimension are not necessarily
equal is provided by the N3 context. Its Ferrers dimension is two, but there are three pairwise
incomparable irreducible attributes, which forces its ordinal scaling dimension to be three.

Similar investigations based on contra-ordinal scaling with scales (P, #) and P = G can
be found in Strahringer and Wille [202] and are related to a coloring problem in hypergraphs.

10.2.3 Nominal Scaling Dimension

The next scaling dimension variant in the order of measurability (see Theorem 5) is the
nominal scaling dimension. This dimension is closely related to coverings of set systems by
partitions, i.e., sets of disjoint sets.

Proposition 35 (Nominal Scaling Dimension). The nominal scaling dimension of K, if it
exists, is equal to the minimum number of partitions N1, . .., Ny € M(Ext(K)) the union of
which is equal to the set of meet-irreducible extents M(Ext(K)).

Proof. For a context K with defined nominal scaling dimension, we can infer the following:
K is atomistic (Theorem 5) and there exists a full scale-measure into the semi-product of
nominal scales Sy, ..., Sy (Proposition 9 and Proposition 8). WLoG, K and the scales S;
have more than two objects.

Ordinal scaling
dimension and order
dimension

Different dimensions

Contra-ordinal scales

Partition covering
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Let N; be the set of extents reflected by S; without the top and bottom elements, i.e.,
without G, 0. For all N; it holds that N; is a partition of G. Since o is a full scale-measure,
there is for every A € M(Ext(K)) a N; with A € N;. Thus, there are d subsets N; C Ext(K),
each forming a partition on G and | J; ;<4 N; 2 M(Ext(K)). The equality can be achieved
by omitting elements that are not in M(Ext(K)).

Conversely, suppose there are d sets of extents Ni, ..., Ng of K with U <;<4N; =
M(Ext(K)) and each N; is composed of pairwise disjoint sets. Such a covering exists for any
context, e.g., by the sets N; = {A;} for each A; € M(Ext(K)). For each N; := {Ay,..., Ar}
let B; be the set of objects not in Ny, i.e., B; :== G \ U;<j<x Ak By N; we define the set
N;U{{g} | g € B;}. Since the elements of N; = {Ay, ..., A\, } are disjoint is the following
amap: 0; : G — [|N;|]] witho(g) = jiff g € A ;. Moreover, since K is atomistic we can
follow that N; C Ext(K). Thus, o5 is a scale-measure of K into N5, (cf. Lemma 5). Due
to U1<i<a Ni = M(Ext(K)) we can follow that g — (071, ..., 0y) is a full scale-measure of
K into the semi-product of d nominal scales. O

By the following proposition, we provide an upper and lower bound for the interordinal
scaling dimension.

Proposition 36 (Nominal Scaling Dimension Bounds). For a context K = (G, M, 1) is
the nominal scaling dimension, if it exists, bounded from below by

maxge|{A € M(Ext(K)) | g € A}|
and from above by
max aem(exx)) [{B € M(Ext(K)) | AN B # 0}

Proof. Let K be a formal context for which the nominal scaling dimension is defined. We can
infer from Proposition 35 that the nominal scaling dimension of K is equal to the minimum
number of partitions NV, ..., Ny € M(Ext(K)) the union of which is equal to M(Ext(K)).

[>] : Distinct sets Ay, ..., A; € Ext(K) that have a common elementx € A; N --- N Ay
need to be in different partitions N;. Thus, there have to be at least maxyeg |{A €
M(Ext(K)) | x € A}| many partitions.

[<] : Inthefollowing, letord(M(Ext(K))):=maerM(Ext(K))|{B € M(Ext(K)) | AOB¢0}|.
For the upper bound, we first show that we can build a partition N such that the remain-
ing ord (M(Ext(K)) \ Ny) is less than or to ord ( M(Ext(K))) — 1. Let A; be a meet-
irreducible extent of K with [{B € M(Ext(K)) | A; N B # 0}| = ord (M(Ext(K))).
Now select elements A, . .., A; from M(Ext(K)) \ {A;} in an iterative manner, such
that (1) for each A; the equality |[{B € M(Ext(K)) | A; N B # 0}| = ord (M(Ext(K)))
holds and (2) for all 1 < j < i it holds that A; N A; = 0. We repeat this se-
lection until there is no D € M(Ext(K)) \ {Ay,..., Ar} left that satisfies (1) and
(2). In the case that there is no element D in M(Ext(K)) \ {Aj,..., Ay} with
{B € M(Ext(K)) | DN B # 0} = ord (M(Ext(K))) left, we have shown the
decrease of ord (M(Ext(K))) by at least 1. Suppose there is such an element
D, then there is at least one selected A; with (2) A; N D # (. Thus, the inequality
{B € M(Ext(K))\{Ay,...,Ax} | DNB # 0}| < {B € M(Ext(K)) | DNB # 0}|-1
holds. Per recursion follows that all elements of M(Ext(K)) are covered after at most
ord (M(Ext(K))) selection steps. ]



10.2. SCALING DIMENSION 119

10.2.4 Interordinal Scaling Dimension

A more challenging problem is to determine the interordinal scaling dimension of a context
K. We investigate this with the help of the following definition.

Definition 42. An extent ladder of K is a set R C Ext(K) of non-empty extents that satisfies:

i) the ordered set (R, C) has width < 2, i.e., R does not contain three mutually incompa-
rable extents, and

ii) R is closed under complementation, i.e., when A € R, then also G \ A € R.

Note that a (non-empty) extent ladder is the disjoint union of two chains of equal cardinality,
for the following reason: Consider a minimal extent E in the ladder. Any other extent must
either contain E or be contained in the complement of E, because otherwise there would be
three incomparable extents. The extents containing £ must form a chain, and so do their
complements, which are all contained in the complement of E.

Based on the definition of extent ladders, we are able to derive a characterization for the
interordinal scaling dimension ISD(K) of a context K.

Theorem 8 (Interordinal Scaling Dimension). The interordinal scaling dimension of a
formal context K, if it exists, is equal to the smallest number of extent ladders, the union of
which contains all meet-irreducible extents of K.

Proof. Let K be a formal context with interordinal scaling dimension d. WLoG we may
assume that K was derived by plain interordinal scaling from a complete many-valued
context D with d many-valued attributes. We have to show that the irreducible attribute
extents of K can be covered by d extent ladders, but not by fewer.

To show that d extent ladders suffice, note that the extents of an interordinal scale
form a ladder, and so do their pre-images under a scale-measure. Thus, Proposition 8
provides an extent ladder for each of the d scales, and every extent is an intersection of those.
Meet-irreducible extents cannot be obtained from a proper intersection and therefore must
all be contained in one of these ladders.

For the converse assume that K contains / ladders covering all meet-irreducible extents.
From each such ladder R; we define a formal context R;, the attribute extents of which are
precisely the extents of that ladder, and note that this context is an interordinal scale (up to
clarification). Define a many-valued context with / many-valued attributes m;. The attribute
values of m; are the minimal non-empty intersections of ladder extents, and the incidence is
declared by the rule that an object g has the value V for the attribute m; if g € V. The formal
context derived from this many-valued context by plain interordinal scaling with the scales
R; has the same meet-irreducible extents as K, and therefore the same interordinal scaling
dimension. Thus / > d. o

With Proposition 34 we found that the ordinal scaling dimension is equal to the width
of meet-irreducible elements. By the following proposition we show the relation of the
interordinal scaling dimension to this quantity.

Proposition 37 (Width and Interordinal Scaling Dimension). Let w denote the width of
the ordered set of meet-irreducible extents of the formal context K. The interordinal scaling
dimension of K, if defined, is bounded below by w/2 and bounded above by w.
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interordinal scales

Interordinal scaling
dimension

Ordinal and interordinal
scaling dimension
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(D [ m [ m2 ]
g1 I |d
Rl 2| c
g3 3 | b
94 4 a

Figure 10.2: Example many-valued context where the attribute values are ordinally pre-
scaledby 1 <2 <3 <4anda < b < ¢ < d. The interordinal scaling dimension of the
interordinally scaled context from D is one and the ordinal scaling dimension of the ordinally
scaled context from D is two.

Proof. An extent ladder consists of two chains, and w is the smallest number of chains
covering the meet-irreducible extents. So at least w/2 ladders are required.

Conversely from any covering of the irreducible extents by w chains a family of w ladders
is obtained by taking each of these chains together with the complements of its extents. O

The last inequality of this proposition, i.e., OSD(K) < 2 - ISD(K), results from using
each two chains of the extent ladders as ordinal scales, where OSD(K) denotes the ordinal
scaling dimension and ISD(K) the interordinal scaling dimension of K. This results in
an upper bound for the ordinal scaling dimension and a lower bound for the interordinal
scaling dimension. A context where OSD(K) # 2 - ISD(K) is depicted in the next section in
Figure 10.4.

Another inequality that can be found in terms of many-valued contexts. For a many-
valued context D and its ordinal scaled context O(D) and interordinal scaled context I(D)
is the ISD of I(D) is in general not equal to the OSD of O(D). Consider for this the
counter example given in Figure 10.2. The depicted many-valued context has two ordinally
pre-scaled attributes that form equivalent interordinal scales.

10.3 Small Case Study

To consolidate the understanding of the notions and statements on the (interordinal) scaling
dimension, we provide an explanation based on a small case example taken from the drive
concepts [80] data set. This data set is a many-valued context (see Figure 10.3) consisting of
five objects, which characterize different ways of arranging the engine and drive chain of a car,
and seven many-valued attributes that measure quality aspects for the driver, e.g., economy
of space. The data set is accompanied by a scaling that consists of a mixture of bi-ordinal
scalings of the quality (attribute) features, e.g., good < excellent and very poor < poor, and
a nominal scaling for categorical features, e.g., for the steering behavior. The concept lattice
of the scaled context consists of twenty-four formal concepts and is depicted in Figure 10.4.

First, we observe that the concept lattice of the example meets the requirements to be
derivable from interordinal scaling (Theorem 5). All objects are annotated to the atom
concepts and the complement of every attribute extent is an extent as well. The interordinal
scaling dimension of the scaled drive concept context is three which is much smaller than
the original seven many-valued attributes. Using the extent ladder characterization provided
in Theorem 8 we highlighted three extent ladders in color in the concept lattice diagram (see
Figure 10.4). The first and largest extent ladder (highlighted in red) can be inferred from
the outer most concepts and covers sixteen out of twenty-four concepts. The remaining two
extent ladders have only two elements and are of dichotomic scale.
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Figure 10.4: Concept lattice for the context of drive concepts (cf. Figure 1.13 and 1.14
in Ganter and Wille [80]). The extent ladders indicating the three interordinal scales are
highlighted in color. The ordinal scaling dimension of this context as well as the order
dimension of its concept lattice are four.

‘ D I ‘ )
Conventional || M++, DE- DI+ M+
R++, DI-,

Front-wheel E+ ; Cl " Gyl Bt M+

Rear-wheel ;. So, R- DI+ M+

Mid-engine R+ ; E- DI+ M-
All-wheel Cm ; De+ DI+ ; M-

D | I l Sy, [ | L | ]
Conventional || M++, DE- M++, DE~ X | X
Front-wheel E+ ; (l Cm ; De+ X | X | X
Rear-wheel ; So,R- E+ ; Cl X | X | X | X
Mid-engine R+ ; E- R+ ; E- X | X | XX
All-wheel Cm ; De+ ; So, R- X | X | X|X

Figure 10.5: Equivalent driving concepts data table (top) with compressed features and the
largest interordinal scale (bot).
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Figure 10.6: Conceptual view of the drive concepts data set on the largest scale with respect
to inverse scaling.

Based on the inverse scaling as given in Proposition 9 we are able to compute a complete
many-valued context D from which the drive concepts data set is derived. In our experiment,
we found that the interordinal scaling dimension equals three. Thus, there is a context D
with three many-valued attributes. This is in contrast to the original seven many-valued
attributes and provides a compressed representation of the data. In Figure 10.5 (top) we
provide such a context. The attribute values of this data set encode the derivation of an
object with respect to the two chains of the extent ladders. The elements of the tuple are
split by a 3 symbol instead of the tuple notation for a simpler visualization. The scales for
each many-valued attribute are the interordinal scales generated by the extent ladders as seen
in Figure 10.5 (bot).

The computed scales allows for a decomposition of K into conceptual components, i.e.,
scale contexts. This is similar in spirit to methods like principle component analysis. By
selecting the largest scales we result in a conceptual view with reduced complexity. We
depict in Figure 10.6 the reduction of the data on to the largest scale. Due to the given
analogy, we call this approach principle ordinal component analysis.

10.4 Discussion

The presented results on the scaling dimension have a number of interfaces and correspon-
dences to classical data science methods. A natural link to investigate would be comparing
the scaling dimension with standard correlation measures. Two features that correlate
perfectly, e.g., Figure 10.1, induce an equivalent conceptual scaling on the data. An analog
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of the scaling dimension in this setting would be the smallest number of independent features.
Or, less strict, the smallest number of features such that these features do not correlate
more than some parameter. This obvious similarity of both methods is breached by a key
advantage of our approach. In contrast to correlation measures, our method relies solely on
ordinal properties [201] and does not require the introduction of measurements for distances
or ratios.

Another application for of the scaling dimension and the inverse plain scaling are given
by our example for a conceptual principle component analysis in Section 10.3. While our
findings seem very promising for data reduction, it remains to be seen if they can be used in
other applications like machine learning.

Our contribution to inverse conceptual scaling extend our studies on ordinal motifs
and explanations of concept lattices (cf. Chapter 9). With a full scale-measure into the
semi-product of standard scales, we derive global full explanations of concept lattices. The
new introduced notion of dimensionality can be used to asses the complexity of concept
lattices with respect to their explainability.

Proposition 34 has already shown that there is a relationship between an aspect of the
scaling dimension of a formal context and the order dimension of its concept lattice. The
assumption that further such relationships may exist is therefore reasonable. An investigation
on how the scaling dimension relates to other measures of dimension within the realm of
FCA [94, 212] is therefore deemed future work.

Despite the complexity of deciding the scaling dimension, efficient algorithms for
real-world data that compute the scaling dimension and its specific versions, i.e., ordinal,
interordinal, nominal, etc, need to be developed. In addition to that, so far it is unknown if
an approximation of the scaling dimension, e.g., with respect to some degree of conceptual
scaling error Chapter 11 or other bounds, is tractable. If computationally feasible, such an
approximation could allow larger data sets to be handled.

Another line of research that can be pursued in future work is how the scaling dimension
can be utilized to derive more readable line diagrams. We can envision that diagrams of
concept lattices that are composed of fewer scales, i.e., have a lower scaling dimension, are
more readable even if they have slightly more concepts.
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Conceptual Scaling Error in Dimensionality
Reduction

The analysis of large and complex data sets is presently a challenge for many data driven
research fields. This is especially true when using sophisticated analysis and machine
learning methods due to their computational complexity. One aspect of largeness and
complexity is the explicit data dimension, e.g., number of features, of a data set. Therefore, a
variety of methods have been developed to reduce exactly this data dimension to a computable
size, such as Latent Semantic Analysis [46, 62], principle component analysis or binary
matrix factorization [22, 155, 230], or other embedding techniques like multidimensional
scaling [152, 157].

These methods are mainly developed to compute lower dimensional representations
that preserve a notion of distance/similarity of objects or allow for the reconstruction of
the original data set. This optimization criterion is often sufficient for numeric matrix
representations and statistic analysis methods. This however does not need to be the case
when analyzing patterns in the data such as formal concepts.

To assess the quality of data reduction methods with respect to conceptual data reduction
(Figure 7.1, bottom right), we introduce a new notion of error. This is called conceptual
scaling error and is based on our definition for consistent conceptual data reduction from
Chapter 8. The conceptual scaling error is the set of all closed object sets that contradict the
(conceptual) continuity of the underlying reduction.

In a small case study, we evaluate the newly introduced measure based on Boolean

factor analysis (BFA) [230] of formal contexts and compare it to standard evaluation scores.

BFA studies the factorization of binary matrices with values O (false L) or 1 (true T). For
example, given the binary data set matrix K, the application of a BFA yields two binary
data matrices S, H of lower dimension, such that S - H approximates K with respect to a
previously selected norm | - |. The product - is the usual matrix product with 1 +5 1 =1
(T vV T =T). The factor S can be considered as a lower dimensional representation of K,
i.e., a data reduction of K. The connection between the scaling features of S and the original

Numeric reduction
methods in FCA

Error in conceptual data
reduction

Experiment



Results

Conceptual scaling error

View of consistent
concepts

CHAPTER 11. CONCEPTUAL SCALING ERROR IN DIMENSIONALITY
128 REDUCTION

Ext(K) Ext(K)
~ o HEx(S)) ~ o (Ext(S))

\ \ -
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Figure 11.1: The conceptual scaling error and the consistent part of (o, S) in S(K) (left).
The right represents both parts as scale-measures of S.

data features of K is represented by H.

Our experiment shows that even for reductions with seemingly good matrix similari-
ties [53, 128], the conceptual scaling error can be quite high. This shows that —in FCA — one
should not solely rely on such evaluation measures but also compare the resulting concept
lattices. An advantage of our method is that it is agnostic to the used reduction method.
On top of that it is not limited to compare contexts of same size, i.e., equal set of objects
and attributes. The only requirement is that we have a map o from the objects from K to S.
Usually this map is equal to the identity map in numeric matrix reductions.

11.1 Conceptual Scaling Error

In Section 7.2 we characterized conceptual data reductions that respect the conceptual
structure of a context K with scale-measures. The context S satisfies this criterion iff its
extentional structure is entailed in K, i.e., o' (Ext(S)) C Ext(K). The extents in S give rise
to a natural notion of error in the data reduction.

Definition 43 (Conceptual Scaling Error). Let K, S be contexts and o : Gx — Gs. The
conceptual scaling error of (o, S) with respect to K is the set

CE, s =0 ' (Ext(S)) \ Ext(K).

The conceptual scaling error CSE’S consists of all pre-images of closed object sets in S that
are not closed in the context K, i.e., the object sets that contradict the scale-measure criterion.
Hence, CSES =0 iff (o,S) € S(K). By O-_I(EXt(S))lExt(K) = o~ (Bxt(S)) N Ext(K)
we denote the set of consistently reflected closed object sets of S by o. This set can be
represented as the intersection of two closure systems and is thereby a closure system as well.
Using this notation together with the canonical representation Proposition 10 we can provide
a scale-measure that reflects exactly the consistent part of a conceptual data reduction.
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Corollary 6 (View of Consistent Concepts). For K, S and o : Gx — Gg, there exists a
scale-measure (¢, T) € S(K) with = (Ext(T)) = o~! (Ext(S)gxe(x)-

The conceptual scaling error C 858 does not constitute a closure system on G, since it
lacks the top element G. Moreover, the meet of elements A, D € C 815_’8 can be closed in K
andthus AAD ¢ C 858. The relation between the data reduction (o, S) of a K and the
conceptual scaling error is visualized Figure 11.1 with respect to the scale-hierarchy of K
within the lattice of all closure systems on G. On the right we depicted by cl(CSE <) the
smallest closure system that entails the conceptual scaling error. The map cl is the closure
operator in &(S)

To pinpoint the cause of inconsistencies in conceptual data reduction we may investigate
the scale’s attributes using Proposition 7.

Proposition (Attribute Scale-Measures). Let K = (G, M, I) and S = (Gs, Ms, Is) be two
formal contexts and o : G — G, then TFAE:

i) o is an S-measure of K
i) oisa (Gs,{n},Is N (Gs X {n}))-measure of K for all n € Ms

Based on this result, we can decide if (o, S) is a scale-measure of K and thus if
ICSE s = 0'solely based on the attribute extents of S. In turn this enables us to determine
the particular attributes n that cause conceptual scaling errors, i.e. o' ({n}’) ¢ Ext(K).

Definition 44 (Attribute Scaling Error). Let K, S be contexts and o : Gg — Gs. The
attribute scaling error of (o, S) with respect to K is the set

AEE = {m e Ms | o™ ({m}") ¢ Ext(K)}.

An advantage of the attribute scaling error is that it is easier to compute compared to the
conceptual scaling error. The consistent part with respect to the attribute scaling error yields
the following scale-measure.

Corollary 7 (View of Consistent Attributes). For two formal contexts K, S and map o :
Gxg — Gg let the set N = {m € Ms | o~ '({m}’*) € Ext(K)}. Then is the pair
(o, S[Gs, N]) a scale-measure of K.

Proof. Follows directly from applying Proposition 7. O

The by Corollary 7 constructed scale-measure does not necessarily reflect all extents
in ! (Ext(S))|pxi(x)- For this, consider the example N3 := ({1,2,3},{1,2,3},=) with
Bs = ({1,2,3},{1,2,3},#) and the map ¢(; >3} from N3 to B3. The error set is equal
to 0858 = ({1’5’3}). Hence, none of the scale-attributes Mg = {1, 2, 3} fulfills the scale-
measure property. By omitting the whole set of attributes Ms, we result in the context
(G, {},{}) whose set of extents is equal to {G}. The set o~ (Ext(S))|gx(x) however is

equal to {{}, {1},{2},{3},{1,2,3}}.

11.1.1 Representation and Structure of Conceptual Scaling Errors

So far, we apprehended C 8]§ < as the set of erroneous pre-images. However, the conceptual
scaling error may be represented as a part of a scale-measure. In the following, we present
three approaches on how to deal with conceptual scaling error.
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i) The first approach is to analyze the extent structure of o~ ! (Ext(S)). The conceptual

scaling error C 815 < is a subset of the reflected extents of (¢, S) and can be highlighted
in the concept lattice diagram.

ii) The second approach is based on our result in Corollary 6. The conceptual scal-
ing error C8]§ g cannot be represented as scale-measure of K. However, since

C SE s € o~ 1(Ext(S)) there is a coarsest scale-measure of § that reflects CSH‘{T ¢ (right,
Figur’e 11.1). Such a scale-measure can be computed using the canonical repres}:ntation
of scale-measures as highlighted by cl(CSHfr’S) in Figure 11.1. Since the scale-hierarchy
is join-pseudocomplemented (see Proposition 17), we can compute smaller represen-
tations of o' (Ext(S)) Ext(x) and CSiKT’S. In detail, for any o~ ! (Ext(S)) lExe(x) there
exists a least element in S(S) whose join with o~ (Ext(S)) gk yields o (Ext(S)).
Due to its smaller size, the so computed join-pseudocomplement can be more human
comprehensible than C 858.

iii) The third option is based on splitting the scale context according to its consistent
attributes, see Corollary 7. Both split elements are then considered as scale-measures
of S. This results in two smaller, potentially more comprehensible, concept lattices.

In addition to that, all discussed scale-measures can be given in conjunctive normalform.

11.1.2 Computational Tractability

The first thing to note, with respect to the computational tractability, is that the size of the
concept lattice of S, as proposed in i) (above) is larger compared to the split approaches, as
proposed in ii) and iii). This difference results in potentially smaller order dimensions for the
split elements compared to B(S) (cf. Proposition 31). The approach in ii) splits the scale S
according to the conceptual scaling error CSHE’S, a potentially exponentially sized problem
with respect to S. The consecutive computation of the join-pseudocomplement involves
computing all meet-irreducibles in o~ ! (Ext(S)), another computationally expensive task. In
contrast, approach iii) splits S based on consistent attributes and takes therefore polynomial
time in the size of S. However, as shown in the example after Corollary 7, approach iii) may
lead to less accurate representations.

11.2 Small Case Study

To provide practical evidence for the applicability of the just introduced conceptual scaling
error, we conducted an experiment on eleven data sets. In those, we compared the classical
errors, such as Frobenius norm, to the conceptual scaling error. The data sets were, if not
otherwise specified, nominally scaled to a binary representation. Six of them are available
through the UCI! [60] data sets repository: i) Diagnosis [S0] with temperature scaled
in intervals of [35.0 37.5) [37.5 40.0) [40.0 42.0], ii) Hayes-Roth iii) Zoo iv) Mushroom

1i) https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations,
ii) https://archive.ics.uci.edu/ml/datasets/Hayes-Roth,
iii) https://archive.ics.uci.edu/ml/datasets/zoo,
iv) https://archive.ics.uci.edu/ml/datasets/mushroom,
v) https://archive.ics.uci.edu/ml/datasets/HIV-1l+protease+cleavage,
vi) https://archive.ics.uci.edu/ml/datasets/Plants and https://plants.sc.egov.usda.gov/java/,


https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations
https://archive.ics.uci.edu/ml/datasets/Hayes-Roth
https://archive.ics.uci.edu/ml/datasets/zoo
https://archive.ics.uci.edu/ml/datasets/mushroom
https://archive.ics.uci.edu/ml/datasets/HIV-1+protease+cleavage
https://archive.ics.uci.edu/ml/datasets/Plants
https://plants.sc.egov.usda.gov/java/
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Table 11.2: Quantifying the Conceptual Scaling Error for approximations K = SoH of

data sets K by Binary Matrix Factorization. Cells with ’-” where not computed due to

computational intractability. Density (D), Attribute Error (AE), Conceptual Scaling Error
(C&), Hemming distance between I and /5 relative to |G|-| M| (H%), Frobenius measure

between Ik and I.
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v) HIV-1ProteaseCleavage [181] and vi) Plant-Habitats four kaggle? data sets vii) Top-
Chess-Players with rating,rank,games,bith_year ordinally scaled, viii) neighbourhood data
from the Airbnb-Berlin data sets, ix) A_fighter and B_fighter from the UFC-Fights data
sets and x) Recipes [137]. The eleventh data set is generated from the Wikipedia list of
Domesticated Animals.? This data set is also used for a qualitative analysis. We summarized
all data sets in Figure 11.2, first and second major column.

As dimension reduction method, we employ the binary matrix factorization [230] of
the Nimfa [233] framework. Their algorithm is an adaption of the non-negative matrix
factorization (NMF). In addition to the regular NMF a penalty and a thresholding function
are applied to binarize the output. To apply BMF we use for a formal context K := (G, M, I)
the inverse scaling to K := (G, M, {0, 1},J) where m(g) = 1 iff (¢9,m) € I and m(g) =0
otherwise. The output of the BMF algorithm are two binary matrices S, H with K =~ S - H.
The product used here is that from binary spaces {0, 1}* and the usual operations with the
exception of 1 +, 1 =1 (cf. Chapter 6).

The resulting factors K = S - H are scaled to formal contexts S := (G, Mg, Ig) with
(9,n) € Isiff S, , = 1, H = (Mg, M, Iyy) with (n,m) € I iff H, ,, = 1and K := (G, M, T)
with (g, m) € I iff En,m = 1. We often write S o H due to the equality K=(G,M,Is o Iy).

The BMF factorization algorithm takes several parameters, such as convergence A, 4j,
which we left at their default value of 1.1. We increased the maximum number of iterations
to 500 to ensure convergence and conducted ten runs, of which we took the best fit. The
target number of attribute (features) in |Ms| was set approximately to /| Mx| to receive a
data dimension reduction of one magnitude.

We depicted the results, in particular the quality of the factorizations, in Figure 11.2
(major column three and four). Our investigation considers standard measures, such as
Frobenius norm (Frob) and relative Hamming distance (H%), as well as the proposed
conceptual scaling error (C&) and attribute scaling error (AE). For the large data sets,
i.e., the last four in Figure 11.2, we omitted computing the number of concepts due to its
computational intractability, indicated by ’-’. Therefor, we were not able to compute the
conceptual scaling errors of the approximate data sets K. However, the conceptual scaling
error of the related scales S is independent of the computational tractability of CE of K.

We observe that the values for Frob and for H% differ vastly among the different data sets.
For Example H% varies from 0.1 to 11.3. We find that for all data sets |B(K)]| is substantially
larger than |B(K)|, independently of the values of Frob and H%. Hence, BMF leads to a
considerable loss of concepts. When comparing the conceptual and attribute scaling error to
Frob and H%, we observe that the novel conceptual errors capture different aspects than the
classical matrix norm differences. For example, Domestic and Chess have similar values for
H%, however, their error values with respect to attributes and concepts differ significantly.
In detail, the ratio of |C&E|/ I%(K)I is 0.98 for Chess and 0.46 for Domestic, and the ratio for
|AE|/|M] is 0.36 for Chess and 0.25 for Domestic.

While we do not know the number of concepts for Airbnb-Berlin, we do know that

conceptual scaling error of the related K is 0 due to AE being 0 and Proposition 7. The
factorization of the UFC-Fights produced an empty context K. Therefore, all attribute
derivations in K are the empty set, whose pre-image is an extent of K, hence, A& is 0.
We suspect that BMF is unable to cope with data sets that exhibit a very low density. It is
noteworthy that we cannot elude this conclusion from the value of the Frob and H%. By

2vii) https://www.kaggle.com/odartey/top-chess-players and https://www.fide.com/,
viii)https://www.kaggle.com/brittabettendorf/berlin-airbnb-data/,
ix) https://www.kaggle.com/rajeevw/ufcdata,
X) https://www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions,

3xi) https://en.wikipedia.org/w/index.php?title=List_of_domesticated_animals, 25.02.2020


https://www.kaggle.com/odartey/top-chess-players
https://www.fide.com/
https://www.kaggle.com/brittabettendorf/berlin-airbnb-data/
https://www.kaggle.com/rajeevw/ufcdata
https://www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions
https://en.wikipedia.org/w/index.php?title=List_of_domesticated_animals
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Attributes of K
clearing land (CL), draft (Dr), dung (Du), education (Ed), eggs (Eg), feathers (Fe), fiber (F), fighting
(Fi), guarding (G), guiding (Gu), herding (He), horns (Ho), hunting (Hu), lawn mowing (LM), leather
(Le), manure (Ma), meat (Me), milk (Mi), mount (Mo), narcotics detection (ND), ornamental (O),
pack (Pa), pest control (PC), pets (Pe), plowing (P1), policing (Po), racing (Ra), rescuing (R), research
(Re), service (Se), show (Sh), skin (Sk), sport (Sp), therapy (Th), truffle harvesting (TH), vellum (V),
weed control (WC), working (W)

s [[o]t[2[3[4]5[6]7[8[9] [goldfish X

brahman cattle X X goose X

european cattle X X [ X | % guinea pig X[ X X
guppy X guineafowl X

alpaca X X | % hedgehog

bactrian camel X horse x| x| |x

bali cattle X X koi X

barbary dove % lama X X | X
canary X mink X

cat X X muscovy duck X

chicken X X pig x| x[x| [x
dog X x| x pigeon X
donkey x| x| |x rabbit X[ X X
dromedary X sheep x| [X|X|x]| [x
duck X silkmoth X

fancy mouse X silver fox X

fancy rat X society finch X

ferret X striped skunk X

fuegian dog X turkey X

gayal X water buffalo X x| %
goat X X x| x yak X x| X

Figure 11.3: Attributes of the Domestic data set (top) and a factor (bottom).

investigating the binary factor S using the conceptual scaling error and the attribute error,
we are able to detect the occurrence of this phenomenon. In detail, we see that 44 out of 44
attributes are inconsistent.

We can take from our investigation that low H% and Frob values do not guaranty good
factorizations with respect to preserving the conceptual structure of the original data set. In
contrast, we claim that the proposed scaling errors are capable of capturing such error to
some extent. On a final note, we may point out that the conceptual scaling errors enable a
quantifiable comparison of a conceptual data reduction S to the original data set K, despite
different dimensionality.

11.2.1 Qualitative Analysis

The domestic data set includes forty animals as objects and fifty-five purposes for their
domestication as attributes, such as pets, hunting, meat, etc. The resulting K has a total
of 2255 incidences and the corresponding concept lattice has 292 formal concepts. We
applied the BMF algorithm as before, which terminated after 69 iterations with the scale
depicted in Figure 11.3. The incidence relation of K has seventy-three wrong incidences, i.e.,
wrongfully present or absent pairs, which results in H% of 3.2. The corresponding concept
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Figure 11.4: Concept lattice of the Domestic scale context. CSK is indicated in red.
A={society finch, silkmoth, fancy mouse, mink, fancy rat, strlped skunk guppy, canary,
silver fox}

lattice of K has 148 concepts, which is nearly half of B(K). Furthermore, out of these 148
concepts there are only 80 correct, i.e., in Ext(K). This results in a conceptual scaling error
of 68, which is especially interesting in the light of the apparently low H% error.

To pinpoint the particular errors, we employ i)-iii) from Section 11.1.1. The result of the

first approach is visualized in Figure 11.4 and displays the concept lattice of o~ ! (Ext(S)) in
which the elements of CSK ¢ are highlighted in red. First, we notice in the lattice diagram

that the inconsistent extents CSK g are primarily in the upper part. Seven out of fifteen are
derivations from attribute comblnatlons of 9, 8, and 5. This indicates that the factorization
was espec1ally inaccurate for those attributes. The attribute extents of 6,4, and 2 are in

ce® o.5» however, many of their combinations with other attributes result in extents of Ext(K).

The resulting lattices of applying approach ii) are depicted in Figure 11.5, the consistent
lattice of o=~ (Ext(S)) |Ext() 18 at the top and its join-pseudocomplement is at the bottom. The
consistent part has nineteen concepts, all depicted attributes are in conjunctive normalform.
The join-pseudocomplement consists of twenty-two concepts are colored.

Based on this representation, we can see that twenty out of the forty-one objects have
no associated attributes. These include objects like lama, alpaca or barbary dove, which
we have also indirectly identified by i) as derivations of 5, 8,9. Furthermore, we see that
thirteen out of the fifty-five attributes of K are not present in any conjunctive attributes.
These attributes include domestication purposes like tusk, fur, or hair. Out of our expertise
we suppose that these could form a meaningful cluster in the specific data realm. In the
join-pseudocomplement, we can identify the attributes 5,8,9 as being highly inconsistently
scaled, as already observed in the paragraph above.
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V,Mi,LM,Me,
Sh,Ho,F,G

Me,Sh,Ma,
WC,Ra,Re,Pe

Figure 11.5: The concept lattice of all valid extents of the scale S (left, in conjunctive
normalform in &(K)) and its join-pseudocomplement (right) of the Domestic data set.
Extents in the lattice drawing of the join-pseudocomplement that are extents not in the
Domestic context are highlighted in red. dog’={Ed,TH,Pa,Gu,He,Dr,Sp,Me,Sh,Po,F,W Re,-
G,ND,Le,Ra,Hu,Se, Th,Pe,PC,Fi} A={society finch, silkmoth, fancy mouse, mink, fancy rat,
striped skunk, guppy, canary, silver fox}, T1={fuegian dog, lama, ferret, alpaca, society finch,
silkmoth, fancy mouse, koi, hedgehog, mink, fancy rat, striped skunk, goldfish, barbary
dove, guppy, canary, pigeon, silver fox, cat, gayal}, T2={dromedary, muscovy duck, bactrian
camel, goose, turkey, hedgehog, duck, guineafowl}
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The third approach results in a scale S[G, N] of four consistent attributes N and a scale
S[G, N of six non-consistent attributes N. The scale S[G, N] has seven concepts and the
scale S[G, N has twenty-two. We may note that the concept lattice of S[G, N1 is equivalent
to the join-pseudocomplement of the previous approach. In general this is not the case.
While B(S[G, N]) misses some of the consistent extents,we claim that the combination of
S[G, N] and S[G, N still provides a good overview of the factorization shortcomings.

european cattle, brah-
man cattle, bali cat-
tle, water buffalo

donkey, hogse, yak

Figure 11.6: The concept lattice of all valid (top) and invalid (bottom) attributes of the
Domestic scale-measure. Extents in the lattice drawing of the invalid attributes that are not
extents in the Domesticated Animals context are marked in red. A={society finch, silkmoth,
fancy mouse, mink, fancy rat, striped skunk, Guppy, canary, silver fox} T3= {fuegian dog,
lama, sheep, ferret, pig, alpaca, society finch, goat, silkmoth, fancy mouse, koi, guinea pig,
rabbit, hedgehog, mink, fancy rat, striped skunk, goldfish, barbary dove, Guppy, canary,
pigeon, silver fox, cat, gayal} T2={dromedary, muscovy duck, bactrian camel, goose, turkey,
hedgehog, duck, guineafowl}
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11.3 Related Work

To cope with large data sets, a multitude of methods were introduced to reduce the
dimensionality. With binary matrix factorization [230] we studied one of them with respect
to its capability of preserving formal concepts. A comparison of several BMF methods with
respect to their capability of preserving incidences can be found in Belohldvek, Outrata, and
Trnecka [20]. Identifying the best BMF method with respect to the conceptual scaling error
is outside the scope of this work, since it is neither limited to nor by BMF. A comprehensive
study of several state-of-the-art data reduction methods for conceptual data reduction across
different types of methods is deemed future work.

Other evaluations of BMF, besides |[K — S - H|, have been considered [128]. They
investigate the quality of implications in S o H for some classification task. Additionally, they
use different measures [53], e.g., fidelity and descriptive loss. Other statistical approaches

often find euclidean loss, Kullback-Leibler divergence, Residual Sum of Squares, adequate.

All previously mentioned evaluation criteria do not account for the complete conceptual
structure of the resulting data set. Moreover, they are not intrinsically able to pinpoint to
the main error portions of the computed data reduction. Furthermore, approaches based
on the computation of implications are infeasible for larger data set. An advantage of our
approach is the polynomial estimation of the conceptual error in the size of S and K through
the attribute scaling error.

11.4 Discussion

With this chapter, we have presented a new approach to evaluate conceptual data reduction
methods in particular and dimension reduction in general. The proposed conceptual scaling
error can be computed agnostic to reduction method, which makes it applicable in various
machine learning settings. Beyond the quantification of the conceptual error, we have
succeeded in presenting a method to explicitly represent the error generated by the dimension
reduction, and to visualize it with the help of conceptual lattices.

Our small case study showed that simple matrix similarity measures do not guarantee a
low conceptual scaling error. So far it is unclear which reduction methods are best suited for
conceptual data reduction. For this a comprehensive comparison of several state of the art
data reduction methods should be studied. Such an investigation would include reduction
methods of several types and possible recommendations for parameters.

A very useful result for BMF is Theorem 1 from Belohldvek and Vychodil [22]. It states
that the attributes in S and objects in H respectively can be replaced by formal concepts
such that for the new S A we find that So H = § o . An advantage of this substitution is
that Ext(§) C Ext(K) and thus the conceptual scaling error is equal to zero. This opens the
question if there is a method to repair arbitrary data reductions such that they are consistent
to the conceptual structure of K.

The notion of conceptual scaling error and the evaluation of consistency of extents is
discrete. There are concept lattices that seem very similar with a high conceptual scaling
error. We can envision that a more relaxed, possibly continuous, notion may be helpful
to express the similarity of closure systems. A promising notion for this is the accuracy
measure for approximately correct implicational basis [27, Defintion 1]. One can use the
connection between closure systems and implicational basis (cf. Section 5.4) to transfer this
measure to conceptual data reductions. Such an investigation is deemed future work.
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X 12

Conceptual Views on Tree Classifiers

Decision trees are among the most popular explainable machine learning models. That is

why they are often used as surrogates for other, less transparent machine learning models.

Even though they are very expressing [153], their training procedures often do not perform
as well as more contemporary classification procedures. Furthermore, decision trees cannot
naturally cope with missing data (without further help or data preparation).

A popular class of classifiers, tree ensembles, do remedy these disadvantages. They
employ multiple tree structures simultaneously (boosting) and make potentially use of

individual baggings of the data, e.g., Random Forests or Gradient Boosted Trees [29, 73].

While these methods are capable of high classification performance, they do not possess
the same interpretability as decision trees. This fact is due to the dispersion of information
into a large number of incomparable parallel branches from differently rooted trees. There
are many attempts to rectify this problem for explainability. One approach to explain tree
ensembles is to merge all trees into a single decision tree [203]. Even though the resulting
tree structure can be called (more) “explainable” (because it is a tree), it tends to grow
incomprehensibly large and also loses the ability to handle missing values.

With the present work we propose a novel method for translating tree ensembles into a
data structure that is interpretable by design, while allowing for parallelism to cope with
missing information. With conceptual scaling, we derive concept lattices (views) from a tree
ensemble instead of a single (surrogate) tree [217]. While in a tree there is always a unique
path from the root to a node, lattices allow for multiple (parallel) paths in a single structure,
leading to the same conclusion element. This results in a better handling of missing values.

One issue that is common to conceptual views and tree surrogates is their potentially
incomprehensible size. However, for concept lattices FCA is equipped with a lot of data
reduction methods [22, 90, 93, 134, 208] to achieve representations of human comprehensible
size. One class of methods is presented in Chapter 8 which computes conceptual views
reflecting specific pre-defined aspects of the classifier.

Our work is not the first to take the step from tree ensembles to concept lattices [61],
however, it drives this research in two aspects: first, we present established and novel views
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on tree classifiers in the language of conceptual views. Second, the newly proposed views
achieve an unprecedented expressiveness and thus explainability of tree ensemble classifiers.
Third, we provide a formal interpretation framework on how to understand a classifier
through the lens of conceptual views. This allows for both local and global explanations
with varying levels of detail, as we will demonstrate. In particular, the global scope of the
derived explanations for tree classifiers is new and of special importance for the research
field of explainable Al.

In our experimental study, we demonstrate our explanation method and its applicability
on a real world example from the openml CC18 [24] classification benchmark data set,
namely, car [60] (binary class version!). The analyzed Random Forest was trained with
realistic parameter assumptions, i.e., we used 100 trees and did not limit their individual
depths.

12.1 Tree Based Classifiers

In this section, we formally introduce decision trees as data structures (cf. Chapter 2). The
notions are illustrated based on a small example of a decision tree for the tennis play [158]
data set (see Figure 12.1).

A decision tree of a many-valued context is a data structure 7 = (7, P, <7, ¢7),
where: 1) (7, <¢) is an ordered set of at least three nodes that constitutes a proper binary
tree, i.e., a join-semilattice in which every node has either two or no direct lower neighbor
(children) and the order filter of every node is a linear order. The elements with no lower
neighbor are called leaves. For m < n we say that n lies on the unique path from m to the
root. 2) P is a set of predicates where for each P € P it holds that =P € Py. 3) o5
is a right-unique relation where every, but the root r (top element), node is annotated by
a predicate ¢(n) that splits the data, so that every data object either satisfies ¢(n) or its
negation —p(n). For three nodes [, r,t € 7 with [,r <t and [ # r we have p(I) = —¢(r).

The example in Figure 12.1 shows in its upper part a many-valued context with fourteen
data objects, numbered 0, . . ., 13. There are four attributes, overlook, temperature, humidity,
and windy. The last column play contains the classification outcome. Each attribute is
ordinally pre-scaled:

rainy < overcast < sunny,
cool < mild < hot,
normal < high, and
not windy < windy.

Although decision trees can work with any type of predicates, most decision tree
implementations require that the attributes have a linear ordinal pre-scaling (W (m), <,,,).
The resulting predicates compare values from W (m) to specified threshold values r € W (m)
with < and >. Thus, the decision tree has an interordinal interpretation of the data. We
represent the predicates in the form attribute<threshold and attribute>threshold where
wE ¢(n) withp(n) =m < tiffw e W(m) and w <, t.

For the classification, an object g € G is threaded through the tree from the root to a leaf
node b such that it satisfies all predicates along the path r, ..., b. We call b the decision leaf
and the path r, . .., b the decision path of g. Finally there is a second mapping, associating
to every leaf the classification outcome, usually yes or no.

thttps://www.openml.org/d/991
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| D || overlook | temperature | humidity | windy [| play |
0 sunny hot high False no
1 sunny hot high True no
2 overcast hot high False yes
3 rainy mild high False yes
4 rainy cool normal False yes
5 rainy cool normal True no
6 overcast cool normal True yes
7 sunny mild high False no
8 sunny cool normal False yes
9 rainy mild normal False yes
10 sunny mild normal True yes
11 || overcast mild high True yes
12 || overcast hot normal False yes
13 rainy mild high True no

[humidity < normalj humidity > high

[overlook < rainy] [overlook > overcast] [overlook < overcast] [Overlook > sunny]

yes no
[not Windy] [windy] [overlook < rainy] [overlook > overcast]
yes no yes
[not windy] [windy]
yes no

Figure 12.1: Decision tree for the tennis data set. Each data object follows the path from the
root (the top node) along the predicates it fulfills until it reaches a leaf node. The decision
for play is annotated in red.
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Figure 12.2: The interordinal scaling of the tennis data set (Figure 12.1). Each incidence

is indicated by a X in the cross-tables. The concept lattice of the derived context has 108

concepts.
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The context derived from the tennis many-valued context with interordinal scaling is
shown in Figure 14.3 and has 108 formal concepts, which is considerably larger than the
size of the decision tree in Figure 12.1. Attributes with empty and full incidences where
omitted for readability reasons.

12.1.1 Training a decision tree on many-valued contexts

In order to train a decision tree on a many-valued context D = (G, M, W, I), we need
to know the classification labels for all g € G. The tennis data set in Figure 12.1 shows
an example. The last column contains the classification labels, while the rest of the table
represents a many-valued context. However, this example is tiny compared to realistic

datasets from real life. For such one needs fast implementations like the C4.5 algorithm [176].

At each step the algorithm extends the tree at a node » that has no children. The algorithm
chooses the pair of predicates P, =P from P+ that separates the set of objects H C G, whose
values are model to all predicates along the path from z to the root, best with respect to some
measure of information entropy. After the selection of P, =P two nodes /, r are added below
n annotated with P and —P. The result is a decision tree 7, as described in Section 12.1.
For a given decision tree 7~ and its training data set D, two main explanatory tasks can
be formulated. The first addresses the question of how adequately 7~ represents the training
data, in particular the objects g € G, and which general explanations can be inferred from 7~
using G. These explanations range from local ones, i.e., why was an object g classified to a
particular class from C, and global ones, such as, which predicate combination describe a
class. The second task is to understand the view of 7~ on a so far unknown set of objects G
whose values match D (Section 7.1.1). Again, these views can be locally and globally.

12.2 Concept Lattices from Tree Classifiers

In the following we introduce different conceptual views on tree classifiers. All proposed

views are conceptual views of the underlying interordinal scaling of the data (cf. Figure 14.3).

We first revisit three approaches from the literature and derive a unified representation for
them in the language of Formal Concept Analysis and conceptual data scaling. We will
consider these methods as baselines for our two novel approaches in the next section.

12.2.1 Approaches from the literature

The first approach to investigate is given by the RandomTreesEmbedding from sklearn?
and simply reflects the clustering of the data objects induced by the leaf nodes of the decision
tree [26, 144, 159].

Definition 45 (Conceptual Leaf View on 7). Given a mv-contextD = (G,M,W,I) and
a decision tree T_that was trained on D, we define the contextual leaf view on 7_as

N(G,T) = (G, L(T).,J), where (g,1) € J iff g |= ¢(n) foralln 24 1.

The corresponding concept lattice B(N(G, 7)) is called the conceptual leaf view on 7. A
slight generalization allows to include not only the training data, but also other data objects

with the same attributes and attribute values, i.e., objects that match the D (cf. Section 7.1.1).

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomTreesEmbedding.html
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G may thus be replaced by G. The set L(T), which is used as set of attributes here, is the
set of leaves of the decision tree.

The conceptual leaf view on a set of objects G enables to view said objects through the
classification leaves of 7. This means, for any two objects g1, g2 € G that are classified by the
same leaf I, we have that {g;}’ = {g,}”, and therefore the object concepts ({g:}’7, {g1}”)
and ({g2}’7, {g2}’) are equal. Informally said, g; and g, are clustered in the same concepts.
We may note at this point, that this view is limited to this fact. Hence, objects that are
classified by different leaf nodes do not share any attributes and are therefore incomparable.
Figure 12.3 shows the contextual view for our running example.

More general, the conceptual leaf view is very simple. It is just an antichain plus a top
and a bottom element. This is due to the fact that §(N(GV,Z)) is of nominal scale, that
is, it has exactly one concept per leaf, and all these concepts are pairwise incomparable.
Altogether, this view is coarse and does not exhibit hierarchical information, i.e, there are
no concepts in sub-concept relation, apart from those involving the top (G, G”) or bottom
(L(T)’. L(T)) concepts.

The second baseline view accounts for the whole order structure of the decision tree
9 [26]. The corresponding concept lattice is an isomorphic representation to the one
proposed by previous work [61].

Definition 46 (Conceptual Tree View on 7). Given a mv-context D := (G, M, W,I) and
a decision tree T_that was trained on D, we define the contextual tree view on 7_ by taking
the tree nodes as attributes. A node is incident with a data object if and only if it was used
for classifying that object.

T(G,T) = (G,T,J), where (g,t) € J iff t is on the decision path of g in T .

The corresponding concept lattice B(T(G, 7)) is called the conceptual tree view on 7. As
in Definition 45 above, G may be replaced by a more general set G.

In contrast to the contextual leaf view on 7~ the contextual tree view accounts for all
nodes of 7. Hence, objects that are classified by different leaf nodes may have common
nodes in their decision paths. The more their respective decision paths overlap, the more
attributes they have in common.

The concept lattice B(T(G, 7)) is order-isomorphic to the decision tree with an added
smallest element, i.e., to (7 U {L}, <) where foralln € 7 : L < n. The conceptual tree
view on 7_ can thus be considered as an almost one-to-one translation of the decision tree
order relation into the realm of Formal Concept Analysis.

For a given arbitrary object sets G, only parts of the order structure (7 U {1}, <) are
reached. More precise, since for all elements of G there is an element of G having the same
decision path, we can conclude that there is a (unique up to context clarification) isomor-
phism from T(G,Z) into a sub-context of T(G, 7). Thus, Int(T(G,Z)) C Int(T(G, 7).
However, for the rest of our work, we will not explore this relationship further.

The third and last baseline is the view reflecting the complete interordinal scaling I(D).
It is the most expressive in terms of formal concepts and, in contrast to the other two views,
solely depends on the many-valued data set D.

All just introduced views have in common, that their respective concept lattices are
atomistic. Moreover, in all lattices are the atoms given by the set of all object concepts.
This observation depends on two assumptions, a) there are no missing values for any of the
objects viewed by a scaling (cf. complete many-valued context) and b) every leaf node is
supported by an object g € G.
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Figure 12.3: The contextual leaf view on 7 (right in Figure 12.1) for the running example
(left in Figure 12.1). Its concept lattice contains 55 concepts. The contextual predicate view
P(7") of 7 is shown on the right.
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12.2.2 Predicate Views

The so far presented approaches for views on tree-based classifiers do not use the predicates
as attribute sets. Yet, these predicates are essential for human interpretation. Hence, we
introduce in the following two novel conceptual views, i.e., conceptual scalings, that can
also be extracted from the decision tree. However, in contrast to Definitions 45 and 46, the
attribute set will be comprised of the predicates from P4 instead of the tree nodes.

In order to do this, we introduce an intermediate structure, in detail a formal context,
which takes the place of the annotation function ¢ of 7. This context is defined by
P(T) = (T, Py, J) where (n, P) € J iff there exists a h >g n with ¢(h) = P. That is, a
node n of the tree 7 is in incidence with a predicate P € Py if and only if P is annotated
to n, or a predecessor of n. In the following this context is called the predicate view of 7.
We want to hint why this structure enables a (formal) interpretation of 7~ by means of the
predicates. For any node n that is on the decision path of an object g, we have that g | {n}”,
i.e., g is a model for all predicates that are incident with n. Moreover, for the leaf node / on
the decision path of g, the set {{/}” is exactly the set of predicates that were used by 7_ to
classify the object g. Hence, we can interpret the classification for any object in terms of Py

Tree Predicate View

Definition 47 (Conceptual Tree Predicate View). For a mv-context D = (G, M, W, I)
and a decision tree T_(trained on D), we define the contextual tree predicate view on T_ by

Tp(G,T) = (G, Pr. ItG,7) © Ie(1))-

Analogously to Definition 45 we say conceptual tree predicate view on 7 to B(Tp(G,T)).
Likewise, this view can be applied to unknown data G.

This definition of a view differs slightly from the ones given in the last section. First of
all, the attribute set of the tree predicate view is comprised of the predicates of 7. Moreover,
the incidence relation of T (G, 77) is implicitly given by the relation product o of the
incidences from the tree view and the predicate view. Hence the name tree predicate view.
Our reasoning here is that we want to link objects to predicates via tree nodes. For example,
if g € G is incident with node n € 7, and again 7 is incident with some predicate P € P(7),
then g is incident with P in Iy 4 © Ip(7). Based on this construction, an object ¢ is in
incidence with a predicate P iff P is used to classify g.

In contrast to the tree view, objects that have a disjoint decision path may still have
predicates in common, and therefore common incidences in ITP (&7 The concept lattice of

the tree predicate view Tp (G, 7") is not necessarily tree shaped, since additional concepts
may emerge from the meet of predicates that were annotated multiple times. In particular
for the case where G = G, we find that

Ext(T(G. 7)) € Ext(Tp(G. 7). (12.1)
since for all n € 7~ we have that
nlrG.n = {e(m) | m > n}IT'P‘G@.

To see why this is true, we refer the reader to Proposition 38. Another useful property
we prove in Proposition 38 for T» (7)) is that its concept lattice is atomistic and its object
extents are equal to those of T(G, 7). A natural consequence of this fact is, that conceptual
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S0 2Svxuoukswn—oTe(GT)
X X X X X X X humidity<normal
X X X X overlook<overcast
X X X X X overlook<rainy
X X windy
X X X X X X X|| humidity>high
X X X || overlook>sunny
X X X X X X overlook>overcast
X X X not windy

Figure 12.4: The contextual and conceptual tree predicate view on 7 (right in Figure 12.1)
for the running example (left in Figure 12.1). The original decision tree 7_is highlighted in
red in the concept lattice diagram.
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Figure 12.5: The contextual interordinal predicate view on 7_ (right in Figure 12.1) for the
running example (left in Figure 12.1). Its concept lattice contains 55 concepts.

view’s concept lattice can classify every object g € G in the same way as the tree classifier
would. That is, for any g € G the closure of g in the tree predicate view is equal to the
closure in the leaf view, i.e., the set of objects that are classified by the same leaf. What is
more important, the tree predicate view exhibits concepts that are not related to a node of 7,
however, they explain how different nodes of 7~ are related in terms of common predicates.
This is the reason for the super set relation in Equation (12.1).

In the case that all predicates are annotated exactly once in the tree is the annotate
function injective. Here, we find that Ext(T(G,Z)) = Ext(Tp(é,Z)).

Interordinal Predicate View

The just introduced tree predicate view is capable of reflecting the predicates that are
important for the specific classification of an object g. However, the incidences of g are
limited to those predicates annotated to the decision path of g. In the view to be introduced in
a moment we want to lift this restriction by extending the incidence relation to all predicates
P € P4 for which g is a model, i.e., g E P.

Definition 48 (Conceptual Interordinal Predicate View). Foramany-valued contextD :=
(G,M,W,I) and a decision tree T (trained on D), we define the contextual interordinal
predicate view on 7_ by

Ip(G,T) = (G,Py,J), where (g,P) € J iffg = P.

Analogously to all previous definitions we say conceptual interordinal predicate view on 7~
to B(Ip(G,T)). Likewise, this view can be applied to previously unknown data G.

Since the interordinal predicate view is defined on the same set of objects and attributes
as the tree predicate views, both views are related. More precisely, we find that the
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incidence relation of the tree predicate view is a subset of the interordinal predicate view,
ie., ITP(G,I) c IHP(G,D' With the following proposition we show how the classical and our

novel views are related to each other with respect to their training data set, i.e., G = G. From
this we can infer how, or to which extent, the views can be employed for the explanation of
tree based classifiers.

Proposition 38 (Views on Tree Classifiers). Let D be a complete many-valued context
whose attribute domains are linearly ordered and let T_be a decision tree, which was trained
on D, such that every leaf node of T_is supported. Then the following statements hold:

i) ineveryviewN(G,7),T(G,7),Tp(G,T),Lp(G,T), and 1(D) we find that the object
concepts are the atoms of their respective concept lattice,

i) N(G,T) s T(G,T) s Tp(G,T) and
N(G,7) s T(G,7) s Ip(G,T) s I(D) where < is the is view of relation,

iii) Itp(G,7) € Ip(G.7)

iv) the object extents of N(G, 7)), T(G,T) and Tp(G,T") are equal.

Proof. 1) For nominal and interordinal scales it is a known fact the set of atoms is comprised
of object concepts. Since the introduced leaf view is of nominal scale we can infer the
statement to be true. In case of the tree view T(G, 7_) we know that {g}” is equal to the set
of nodes from 7 that are on the (complete) decision path of g. If we assume that there is a
formal concept below ({g}””, {g}’), then there must exist a 4 € G with {g}’ c {h}’ and
{g}’ # {h}’. However, this would imply that the decision path of g can be extended, which
is a contradiction. We may note that in case of an incomplete many-valued context D, this
argument does not hold. For the tree predicate view we can apply the same argument.

For the interordinal predicate view, assume there are two objects g,h € G with
{g} € {h} and {g} # {h}’, then {h} isnotan atom in B(Ix(G,T)). Note, the derivation
()" is taken with respect to Ip (G, 7°). Hence, there is a predicate P € {h}’ with h |= P and
g = P. Due to the completeness that arises from the complete mv-context, we can infer that
g |= —=P. Therefore, =P € {g}’, which contradicts the assumption.

ii) All contexts are defined on the same set of objects. Thus, it is to show that for
S1 < Sy itholds that Ext(S;) € Ext(S,). [Case N(G,7) < T(G, 7)] The set of leaf nodes
L(7) is a subset of all nodes in 7. From this fact we can infer that N(G, 7) is an attribute
induced sub-context of T(G,7") and thus Ext(N(G,7)) € Ext(T(G, 7)), see context
apposition [80]. [Case T(G,7) < Te (G, 7 )] For a nonempty extent A € G of T(G, 7))
we know its derivation in said view is a path in the decision tree from the root up to some
node n. For a decision tree, this path is uniquely identified by the annotated predicates, since
the predicates Q C Pq of the split in the root node cannot be annotated twice. Otherwise,
this would lead to an unsupported leaf, which contradicts the requirements of the proposition.
The derivation of Q in T (G, 7) is equal to A, since all objects that pass through node n are
exactly those that are a model of Q. It remains to be shown that the empty set is an extent
on both views, which follow from i) and the fact that the decision tree 7 has at least one
split.> Thus Ext(T(G, 7)) € Ext(Te(G,T)). [Case Tp(G,T) < Ip(G,T)] The same
arguments as in the tree predicate view case apply here.

For any path from the root node to some other node n € 7 let Q C P7) be the set
of annotated predicates. Then the derivation of Q in T (G, 7) is equal to the derivation

3We made this requirement for all decision trees that are considered in this work in Section 12.1.
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of Q in Ip(G,7). This is true since the set of objects that passes through the node
n, ie., QPGD s given by the set of objects that models Q, i.e., Q"»GD . Thus
Ext(T(G, 7)) <€ Ext(Ip(G,7)). [Case Ip(G,T ) < I(G)] This property follows directly
from the fact that Ip (G, 77) is an induced sub-context of I(G).

iii) Follows directly from their definitions.

iv) Any object extent A € G of N(G, 7)) has the property that there is a unique leaf
node / € 7 such that A is the set of objects that is classified by /.

From i) we can infer that the object extents of T» (G, 7°) are the atoms in the concept
lattice B(Tp (G, T)). For any object extent A of N(G, 7)), let g € G be a generator of A,
ie., {g}IN(G,DlN(G,D = A.

We can find the associated set of predicates in the tree predicate view by computing the
derivation of g in Tp (G, 7). In detail, we can compute { g} P 6D by projecting

{(g,n) | nis on the dec. path of g} o {(n,P) | 3m € 7 : n <5 m and ¢(m) = P}

on the second element. This set is equal to the set of predicates annotated to the decision
path of g. The second application of the derivation operation in Tp (G, 7°) yields the set of
objects that are model of {¢}"» (D . Hence, all elements of {g}™»(G-D e (G0 are classified
by the same leaf as g. Thus, the object extents of N(G, 7") and T (G, 7)) are equal. The
rest of the statements follows directly from ii).

O

From this proposition we can draw essential consequences for the conceptual interpre-
tation of (or view on) tree classifiers. From ii) we can infer that the extent structure of
the decision tree is entailed in both the tree predicate view and the interordinal predicate
view. Hence, the whole decision tree structure is captured by both views. To demonstrate
this within the scope of our running example, we depicted the decision tree within the tree
predicate view of the training data G in Figure 12.4 (right). In addition to the tree structure of
7, we can observe in Ty (G, 7)) multiple predicate combinations that span across different
tree branches. Moreover, are all but the tree predicate view in conceptual view relation with
the context derived from plain interordinal scaling. The tree predicate view is in general
not in said view relation. This can be seen from the following characterization of P’: An
object g € G is in incidence with P iff it is in model relation to the disjunction of all logical
expressions A, where A is the conjunction of all predicates along a path (n,...,r) in 7 with
@q(n) = P. The tree predicate view can be considered as a view of a context derived from
logical scaling based on the just described logical expressions. From iii) we can infer that
the tree predicate view is a sub-context of the interordinal predicate view. From iv) we can
follow that the views N(G, 7)), T(G, 7)) and Tp (G, 7°) have equivalent decision nodes in
their concept lattices.

In the next subsection we show how all introduced views lead to interesting insights into
and explanations of decision trees.

12.2.3 Explaining Decision Trees

The theoretical findings from the last section lead to several approaches for the interpretation
of decision trees. In particular we derive five methods that cover different explanation
aspects. We want to introduce and discuss these using the tennis example.

Alternative Leaf Descriptions: Our method can generate alternative descriptions for leaf
nodes in the predicate language of 7. For example, the leaf [ that classifies ob-
ject 13 in Figure 12.4 contains the predicates humidity>high, overlook<overcast,
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overlook<rainy, windy. This leaf has an upper neighbor within the concept lattice
of the tree predicate view having the attribute windy. There is no node within 7~
representing this concept. Despite that, we can use this concept to construct an
alternative combination of predicates that generates the concept of /. The leaf can
be represented by the meet A{windy, humidity>high}. This is in fact a minimal
generator for the intent of the concept associated to /.

In order to interpret a given decision tree 7, one can generate all minimal generators for
all leaf concepts, and use these as shorter descriptions to comprehend the classification
structure of the tree. The thereby obtained shorter explanations are potentially more
comprehensible. This is in particular useful, when decision trees are large, for example,
when trained on large data sets having a many attributes.

Explaining Leaf Sets: For any setof leafs L C 7, we can compute in the tree predicate view
their (conceptual) join (A, B) := \/ L. The formal concept (A, B) € B(Tx(G,T))
is not necessarily associated to a node of 7, for example, take the join of the leafs
having objects 13 and 5 in Figure 12.4. From this we learn that both leafs share the
predicate windy. When we follow the lattice towards the top concept, we find that
the leafs 13 and 5 also share the predicate overlook<rainy. In contrast, within 7, the
decision paths of both leafs have only the root node in common. Hence, our method
is capable of expressing commonalities of the set of leafs L, that are inexpressible
within the structure of 7.

Control for Missing Data: The alternate descriptions from the previous two items allow
for coping with missing attributes. For example, when classifying an object g € G
that has no value for the attribute overlook, the predicate tree view can map g to the
leaf having object 13 using the attributes windy and humidity, as discussed in the
previous items.

Global Influence of a Predicate: A common method for interpreting and explaining de-
cision trees is to identify attributes that are used first or second in the tree. Yet, as
the tree predicate view reveals, there are other structurally important predicates, e.g.,
overlook<rainy and overlook>overcast, as there is no upper neighbor for the associated
concepts besides the root node. We say a formal concept (A, B) is dominated by
another concept (C, D) iff (A, B) < (C, D). Based on this notion, we can say that
a predicate P is dominated by another predicate Q iff the attribute concept of P is a
lower neighbor of the attribute concept of Q, i.e., P/ € Q7.

Leaf Coverage of Predicates: Another measure of importance for a predicate P within a
decision tree 7_is the number of leafs that P is involved with. It is not surprising
that a predicate which is used first in the decision tree will be involved in many
leaves. However, as we can infer from the lattice diagram in Figure 12.4, the predicate
overlook<rainy is involved in four leaves while its predecessor in the tree is only
involved in three leaves. Hence, the conceptual view on 7_ allows for structurally
identifying important predicates. Moreover, one may easily select a subset of predicates
that covers all leafs of a tree 7.

The methodology just presented for the analysis and interpretation of decision trees can
be applied to the interordinal tree view in an analogous way, as Proposition 38 ii) points
out. In general, given the set inclusion on the extent sets, one can consider the views
N(G,T),T(G,T) as coarse, the views Tp (G, T),1p(G, T) as intermediate, and the view
I(D) as a fine scaling of 7.
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12.2.4 Tree Ensemble Views

In the last section, we introduced all tree views in a common language. This enables us to
compare their different views on a decision tree, as we have seen. This comparability provides
the cornerstone for a comprehensive approach to the interpretation of tree ensembles. In
particular, we present a principle approach for the interpretation of families of trees, as they
are used in common supervised machine learning procedures, such as Random Forests or
AdaBoost. In the following we will use the notation S(G, 7") as a general name for any of
the views introduced in the last sections.

Definition 49 (Forest View). For a many-valued context D := (G, M, W, I), a family of
decision trees T = (T ,)icF that were trained on D, and a conceptual view for each tree
S(G,T,), we define their forest view to be

S(G,X) = U S(G,T,), where S| US; = (Gy UGa, My UMy, I; U L).
ieF

Likewise, this view can be applied to previously unknown data G.

We want to elaborate on the reasoning behind this definition. First we may note, that for
our views the sets G, G, G are equal, hence, their union results in G. This is by design,
since we want our method to interpret a forest given a particular set of objects G, analogously
to the decision tree views. In contrast, the attribute sets and incidences can be different.
Hence, the ability of the forest view to provide an interpretation is directly connected to the
union of all attributes from the set of tree views. This definition preserves the relations ii)
and iii) presented in Proposition 38.

Random Forests are constructed using two essential techniques, bagging and an empirical
variant of boosting. The term bagging, also known as bootstrap aggregation, describes
the procedure to draw samples uniformly from the training data set, with replacement. The
common approach is to sample for any tree in an ensemble its own training data set [30].
In the language of our formal contexts, each tree is constructed using a random induced
many-valued sub-context H < D. This modeling does not take into account the possibility
that the same object can be drawn twice, however, this can obviously dealt with by creating
copies of objects.

12.2.5 Explaining Random Forests

The forest view enables us to apply the in Section 12.2.3 derived explanation approaches for
decision trees to Random Forests. In the following, we derive explanation approaches for
forest views based on each of the four introduced conceptual views on trees, i.e., leaf view,
tree view, tree predicate view and interordinal predicate view. The following descriptions
are abstract extensions to the explanation approaches proposed in Section 12.2.3. In
Section 12.4.2 we provide an in-depth analysis for a comprehensibly sized data set.

Leaf View: In this view the attribute set is comprised of the set of leafs L(7") for any tree
7_in the ensemble T. For any two trees 7, and 7, we consider their leaf sets £(7~,)
and L(7,) to be disjoint sets, i.e., L(7,) N L(7,) = 0.

This implies that any forest view on leaf scaled trees is equal to the context apposition
of the set of leaf views |;cr S(G,7T;) = U;er S(G, T ;). From the context apposition
we can deduce that the set of its extents, i.e., Ext(|;eF S(GV,Zi)), is equal to the
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set of intersections of all subsets of extents from all tree views, i.e., {1 A | A C
Uier Ext(S(G, 7))}

Tree View: Analogously to the modeling by the leaf view, we consider the nodes for any
two trees 7_’1,7_’2 to be disjoint, i.e., 71 N 7, = 0. Hence, the forest view is equal to
the apposition of all tree views, having the same consequence on its extents as shown
in the last item.

Tree Predicate View: Forest views that are based on the tree predicate view are more
complicated than the previous two. For example, given two trees 7, 7 ,, an object
g € G and a predicate P € Pg| N Py, the case may arise that (g, P) € ITp(G,L)
but (g, P) ¢ I, . 7)) Therefore, the tree predicate view based forest view is not
a simple apposition of its individual tree predicate views. Hence, it is possible that
this forest view can come up with extents that were not simple intersection of already
known extents. An advantage of employing tree predicate view based forest views is
that their resulting context representation is smaller. This is due to the fact that any
two trees might share predicates, i.e., Pq N Pgy # 0.

Interordinal Predicate View: In contrast to the last view, we can state for the interordinal
predicate view on Random Forests that given two trees 7_,, 7 ,, an object g € G and
a predicate P € Py N Py, we find (g, P) € IHP(G,L) iff (g, P) € IH¢>(G,IZ)' From
this we can infer that the forest view is almost the apposition of the set of interordinal
predicate views ]IP(GV,Z[.), with the exception that any predicate P that occurs in
more than one view is not duplicated by coloring. Since clarification of attributes,
i.e., the removal of duplicate attributes in a formal context, does not affect the set of
extents, we can apply the same reasoning as shown for the leaf and tree view.

The just introduced views allow for a variety of practical applications for the explainability
of tree ensembles. The main advantage of the different notions of views on trees is that they
integrate all trees of a Random Forest in a unified (lattice) structure. Their capability to explain
the Random Forest increases with respect to the chosen underlying view Proposition 38,
ii). At the same time we increase the capability, we also increase the complexity of the
necessary computations. We want to refer the reader for a detailed discussion of these
aspects to Section 12.4.2.

In the next section, we show how our approach for forest views can be applied to large
data sets. For this, we recall methods from the literature that deal with applying FCA to large
data sets. Moreover, we introduce two new methods specifically designed for, yet not limited
to, applying forest views to Random Forests. We demonstrate both on a comprehensibly
sized data set in Section 12.4.2.

12.3 Dealing with Large Conceptual Views

We discussed in Sections 12.2.2 and 12.2.4 the utility and applicability of the different
conceptual views. Yet, for many examples of real-world sized data these views are potentially
incomprehensibly large. Thus, in order to derive human-comprehensible selections and
aggregations of the conceptual views, we introduce the following methods. These methods
are based on common data reduction procedures for formal contexts, however, adapted for
conceptual views.

Applications

Notes on the view sizes

Dealing with large sizes
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Object or Attribute Selection The first class of methods are selection methods to compute
induced sub-context of contextual views. Selecting a subset of the object set will result in a
coarser closure system on the set of attributes. A selection of attributes of the contextual
view has the same effect on the objects (cf. Corollary 4). There are numerous ways on
how to select relevant attributes from formal contexts [19, 64, 93]. In our experiments
(Section 12.4), we employ the feature importance scores that are provided by the Random
Forest models. Furthermore, one may apply KMedoid [194, 195] clustering to identify
representative objects, which we call center objects. The advantage of KMedoid compared
to other popular methods, such as kmeans, is that the cluster centers are existing objects of
the data set. Thus, the clustering can be interpreted as computing an induced sub-context
with a subset of the original object set.

Structure based Object Selection A particular method for selecting objects can be based
on the structural position of an object within the concept lattice. For a given object g € G, a
natural approach would be to compute the order filter T{g}’s’s c B(S) for a contextual view
S. This results in a local conceptual view that allows for deriving explanations for individual
objects. A second approach additionally includes neighboring concepts of T{g}’’s. The
resulting local conceptual view enables more comprehensive explanations of the structural
position of ¢g within 7, and its dependence from different attribute values. In particular,
this allows for investigations that are comparable to partial dependence plots [95], i.e., it
enables the study of attribute value perturbations.

Neighboring concepts can be added using covering elements of the set T{g}%, i.e.,
{A e B(E)|A<BVB < AforB € T{g}*I*}. Those elements can be enumerated
recursively using the next_neighbor algorithm [143].

Concept Selection Methods To reduce the number of formal concepts, it is common to
apply different criteria for their importance. The FCA literature provides a multitude of
measures [132]. In our experimental work, we select concepts based on their support [208]
(TITANIC), i.e., the number of objects that are contained in an extent divided by the number
of all objects. This procedure results in a subset of the concepts of a conceptual view. This
set constitutes a join-semilattice, i.e., the iceberg concept lattice.

Composition Methods Another approach is to split a conceptual view into multiple parts
based on a given partition of the object or attribute set. The original concepts of a conceptual
view can be retrieved from the individual parts by combining them using the meet and joins
operations. Reasonable partitions of the object set can be derived using their class labels.
Hence, from this one can compute a drawing per class label. A meaningful choice for a
partition of the attributes is to draw on their semantics. For example, employing ontological
background knowledge. Furthermore, one may restrict a view to a particular order direction
of the threshold values, i.e., < and >. This procedure can be considered as an ordinal factors
with respect to the context apposition operation [80].

Attribute Aggregation A reason for why the number of concepts of a conceptual view
gets large is the number of different predicates derived during the training. Aggregating
different predicates by clustering them may lead to a significant reduction in the number
of concepts. For this, one should account for the different attribute value distributions on
which the predicates are based on. A clustering using grades as aggregated values, e.g.,
low<med<high, can be especially comprehensible to human readers.
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Figure 12.6: Visualization of distribution of the performance measures accuracy (ACC) and
generalization error, of trained Random Forest classifiers using the hyper parameters md and
nt. Mean values are reported.

12.4 Experimental Study

The following experiments shall support our theoretical findings with respect to two practical
research questions. First, is the size of conceptual views manageable with respect to human-
comprehensibility and to what extent depends its size on the choice of hyper parameters
of the tree training algorithm? Second, are explanations derived from conceptual views
meaningful for human-understanding ?

To answer these questions we conduct two experiments using Random Forests. As for a
data set, we choose the well-known car data set [69, ID:991], which is comprised of 1728
objects on seven (many-valued) attributes. This dataset presents a binary classification
problem, using the class labels positive and negative.

12.4.1 Sizes of Conceptual Views: a Parameter Study

We investigate the first research question by means of a parameter study. The two most
important hyperparameters of the Random Forest procedure are the number of trees (nt) and
their maximal depth (md). Other parameters, such as attributes per tree, purity, split criterion,
etc, also have a significant influence, however, not on the size of the resulting conceptual
view.

For our study, we trained different Random Forest classifiers using 2 < nt < 10 and
2 < md < 20. We completed ten runs for each parameter combination, using ten different
initial random seeds. In Figure 12.6 (left) we report the classification performance using the
average accuracy and in Figure 12.6 (right) the generalization error. The latter is comprised
of subtracting the accuracy on the test data set from the accuracy that was achieved on the
train data set, i.e., Errorgeneralization := ACCrrain — ACCrest. This value allows us to estimate
the amount to which our trained Random Forest classifier is prone to overfitting. In all our
experiments, we conducted four fold cross-validation, however, we observed stable results.

From a supervised-learning point of view, we notice that for the model accuracy the
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Figure 12.7: Distribution of the number of formal concepts for different hyperparameter
combinations and different conceptual views: Leaf view (top left), tree view (top right), tree
predicate view (bottom left), and interordinal predicate view (bottom right).

maximum depth md has a greater impact than the number of trees nt. However, based on the
generalization error (Figure 12.6, right), we find that the number of trees is instrumental
to prevent overfitting. At this point, we feel justified in stating that very good classifiers
exist for nt > 8 and md > 15. With that, we can turn to the conceptual views and their
capabilities of explaining the Random Forest classifiers.

For this, we first examine the influence of the parameters on the number of concepts of
each respective conceptual view. In this experiment, the Random Forest classifier are trained
on the entire data set where no cross-validation was applied. Afterwards, we computed the
different views S(G, ), also using the entire data set, and depicted the number of formal
concepts per view and parameter combination in Figure 12.7.

First, we notice that the visual shapes for three different conceptual views are similar
to some extent. The exception is the interordinal predicate view, which increases more
quickly with increasing md. This observation is expected, since the occurrence of split
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predicated increases with the depth of the trees, and, in contrast to the tree predicate view,

the object-predicate incidences are independent of the location of said predicates in the trees.
For all plots we can report that increasing the depth beyond ten has no noticeable impact.

The performance measurements in Figure 12.6 behaved analogously, yet, since we applied
different training sets, we should refrain from a direct comparison.

In terms of the absolute number of formal concepts, we find that the leaf view generates
the smallest amount (5,000), followed by the tree view (15,000), the tree predicate view
(80,000) and the interordinal predicate view (200,000). This observation is expected due to
our theoretical findings in Section 12.2. Obviously, due to the observed number of formal
concepts, all views elude from a direct human-comprehension. Hence, consecutive data
reduction methods, as proposed in Section 12.3, are required.

12.4.2 Deriving Meaningful Conceptual Explanations

For our final take on explaining Random Forest classifiers using conceptual views, we choose
extreme hyperparameters in order to show the viability of our approach. In detail, we set the
number of trees to 100, which is a commonly accepted default value [174]. For the maximum
depth of the trees we set no limitation, i.e., the training algorithm splits nodes until class
purity is achieved. The resulting conceptual views, more precisely their number of formal
concepts, naturally rises to the amount as seen in the last section and more. Although the
computation of such and larger sets of formal concepts is not a challenge for algorithms from
the field of Formal Concept Analysis, human comprehensibility now requires the application
of the selection and aggregation methods presented in Section 12.3.

We want to start with combining the composition method with object, attribute, and
concept selection procedures. For this, we first employ KMedoids clustering from sklearn
to select a smaller number of representative objects. We determine the parameter k, i.e.,
the number of medoids, to be nineteen, by trial and error and evaluating the silhouette
score [183] on the results within the range 2 < k < 50. In a second step, we restrict the
set of view attributes (i.e., predicates) in the following way. We computed for all seven
many-valued attributes of the car data set their significance for the classification using the

notion of permutation importance [6]. The result allows us to select the most important ones.

For the rest of our study, we stick to four. From these many-valued attributes, we can derive
a subset of important predicates, i.e., view attributes.

Starting from this state, we have applied various other methods for selection. In
Figure 12.8 we depict the result for the tree predicate view when additionally applying
a) composition, more specific, we partition the object set using the related class labels, and
b) the TITANIC algorithm [208].

The Tree Predicate View

The top diagram in Figure 12.8 is comprised of the objects bearing the positive class label,
and the bottom diagram is comprised of objects bearing the negative class label. The
respective values for minimum support are five and three, i.e., all concepts in the view
using the positive labels have an extent size of at least five, and analogously three for the
negative part. These values were chosen such that the resulting iceberg concept lattices is of
comprehensible size. The particular values three and five seem to reflect the imbalance of
the class labels to some extent, however, this observation is not essential. Both diagrams are
annotated in the usual way. In addition to that, we annotated on the right to each concept
node the class purity in this concept, i.e., the number of positive and negative labeled objects
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Figure 12.8: Tree predicate view scalings for the car data set. The centroid elements that
have the positive class are displayed top and the negative are bottom.
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of the data set.

First of all, we observe structural differences between the iceberg concept lattices of
the positive (PICL) and negative (NICL) center objects, although both have twenty-five
formal concepts. PICL has twelve co-atoms while NICL has four co-atoms. NICL has
a longest chain of five elements while PICL’s is three. We claim that PICL is easier to
comprehend than NICL due to its smaller depth. At the same time, NICL implies that the
description of the negative class is more difficult and demanding with respect to the number
of attributes, i.e., intent sizes. More generally, in both diagrams we can infer descriptions of
the positive and negative class from the concepts lowest in the diagrams. Even though there
are methods to explain the influence of single attributes on the classification, the iceberg

concept lattice allows to easily comprehend the influence of arbitrary attribute combinations.

For example, the concept with extent label 300, 490, 564, 541, 333 is a result of
the attribute combination buying > high and safety > med. Furthermore, the conceptual

structures allows to identify attributes with a high global influence on the classification.

For example, maint < high has five direct lower neighbors whereas persons < two has one
direct lower neighbor.

A particularly interesting observation in the NICL diagram is the presence of attributes
that support all objects. Hence, these are essential for classification of all objects with the
negative class label. This conclusion is especially easy to infer from the conceptual structure
compared with analyzing all hundred trees of the underlying Random Forest. Finally, the
iceberg concept lattice of NICL reveals redundant attributes. For example, the concept
annotated with the object extent 1393, 1397, 1444 has three annotated attributes of which
only one is needed to identify this concept.

A more general inference about the Random Forest is that the tree predicate view allows
for an identification of “costly” objects. By this we mean objects whose classification
required a large number of (potentially redundant) threshold value tests. For example, we
refer the reader to the concept bearing the objects 1393,1397, 1444 within NICL. On one
hand, all these objects required redundant testing of attributes, namely maint>med and
maint>high. On the other hand, the composition of the intent includes four many-valued
attributes, i.e., buying, safety,maint, and persons.

Ordinal Factors

Interordinal scalings are, in general, more complex for human readers. The reason for this is
that in interordinal scaling an interval of threshold values has to be considered instead of
only order ideals based on < thresholds. For example, in Figure 12.8 (bottom) we find the
concept ¢ with the extent 686, 1180, 1444 that is a lower neighbor to two concepts bearing
the attributes maint>med and maint<high respectively. Thus, the human reader has to
consider the interval [med, high] within the linear order of threshold values for maint, which
is low, med, high, vhigh. Moreover, ¢ has the attributes buying < high, persons > four, and
safety > med. Thus, a human reader has to comprehend different directions of order, i.e., >
and <, at the same time. With this in mind, we focused on the >-ordering in Figure 12.9. Of
course, this limits the expressiveness of possible explanations based on the views. However,
as illustrated above, the comprehensibility increases. Furthermore, this approach results in
fewer concepts in general. Hence, it allows us to use lower support values for the iceberg
concept lattice. We present in Figure 12.9 the iceberg concept lattice using the support values
of one for the negative class and three for the positive class. This approach altogether can be

considered as an ordinal factor approach with respect to the context operation apposition [80].

In addition to the advantages discussed above, one may apply all analysis deductions to
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Figure 12.9: Forest view based on individual tree predicate views. We restricted the
predicates to the ones using expressions with >. The diagram at the top shows the related
iceberg concept lattice for the center objects bearing the positive class label, whereas the
bottom diagram shows the analogue for the negative class labels.
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the diagrams in Figure 12.9 that were explained for Figure 12.8.

The Interordinal Predicate View

As for our last analysis example we present an ordinal factor of the interordinal predicate
view on the Random Forest. As in Figure 12.9, we choose > and the same parameter for
support. In contrast to the examples based on the tree predicate view, the lattices shown
in Figure 12.10 encode a different kind of information for explaining the Random Forest.
More precisely, the interordinal predicate view represents the model relationship between
objects and the predicates of the Random Forest.

A distinctive feature of the interordinal predicate view is that it reflects implications
between attribute thresholds values that are enforced by their order relation. For example, we
find in Figure 12.10 that vhigh—high—med for the buying attribute of the data. Moreover,
one can easily read the corresponding chains from the diagram.

Furthermore, one can infer from interordinal predicate view all valid attribute implications
between values of different attributes of the data. For example, one can find in Figure 12.10
that the attribute value safety > med implies maint > med. Although there are also
implications present in the iceberg concept lattice of the tree predicate view, we may note
that those are not necessarily implications within the data. This is due to the fact that the
tree predicate view is not guaranteed to be a view of the interordinally scaled context (cf.
Proposition 38).

We would like to conclude the analysis of the interordinal predicate view by emphasizing
two important facts. First, the particular attribute threshold values were derived by the
training procedure (i.e., Random Forest) and do therefore represent the view of the trained
classifier function on the data. Hence, when revealing threshold value implications by means
of the interordinal predicate view, we actually find implications that are valid within the
data when viewed through the scaling of the Random Forest. Second, the set of all valid
implications with respect to all data objects bearing the same class label is the implicational
theory of this class as “seen” by the Random Forest. Thus, by computing both implicational
theories, i.e., for both class labels, one can compare both theories for similarities and
differences.

12.5 Related Work

There are a multitude of classification methods using trees and tree-ensembles, e.g., decision
tree [31], Random Forest [29], or decision stumps [109], to name a few. The most important
property of a single decision tree classifier is its human interpretability. For example,
the visualization of such a tree provides insights to the classification process and, at the
same time, presents a scaled view on the data set. Unfortunately, the latter approach
received only very little research attention, so far. Methods that address these scalings
are RandomTreesEmbedding, as implemented in sklearn, and tree views [61]. The first
method extracts a partition of the data set objects depending on the tree leafs that classify
them. This partition view, however, is a very coarse scaling of the data set and makes very
little use of the hierarchical tree structures. The second method analyses the order structure
of the trees through a concept lattice. While the authors provide a novel translation of
the tree structures into the realm of Formal Concept Analysis, they do not elaborate how
those can be utilized for interpretation. Furthermore, they solely reflect the order structure
and its hierarchy induced on the data set. Proceeding in this manner does not account for
the used tree predicates, which are essential for human comprehension. Nonetheless, the
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Figure 12.10: Forest view based on individual interordinal predicate views. We restricted the
predicates to the ones using expressions with >. The diagram at shows the related iceberg
concept lattice for the center objects bearing the positive class label.

translation approach itself is fruitful since this enables the application of FCA based post
processing methods and therefor explanations. For example, scale-measures (cf. Chapter 8),
TITANIC [208], core structures [90] or importance measures [132].

Other methods that try to achieve a unified view on tree ensembles combine all trees
into a new tree through merging [203]. Yet, there are two main disadvantages of these
approaches. The first is that their output is again a tree, which in contrast to a lattice order
allows only for linear paths for each node. Thus, they loose the ability to cope with missing
information and do not cover the concurrency of tree ensemble. The second disadvantage
regards the interpretation of the output: the sole goal of the outputted merged tree is to
induce the same partition on the data set, as the ensemble would. This, however, omits the
internal representations of the trees.

A different, yet related line of research is the construction classifiers from concept
lattices [16, 175]. For example, one may compute the concept lattice in a top-to-bottom
fashion with class purity, used as stopping criterion [17], and then select a tree from the
generated partial ordered set. Although mathematically elegant, these approaches are
outperformed by methods like Random Forest.

12.6 Discussion

Obviously, our approach is capable of identifying important combinations of attribute
threshold values and their influence on the classification results. Certainly, there is a
wide range of combinatorial methods to identify interesting and meaningful combinations.
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However, the major advantage of the proposed conceptual method is that it provides a
structured mathematical way to directly and efficiently identify the important combinations
and, at the same time, their semantic interpretation [80].

At this point, we would like to conclude our study on tree based classifiers by pointing
out that the developed conceptual structures allow for the possibility for the application of
a variety of other conceptual methods. For example, as outlined in earlier in this section,
an analysis of implication structures between attribute threshold values within a class can
reveal new insights into a Random Forest. Likewise, the conceptual views allow to compare

different trained Random Forest classifiers for their implicational differences and similarities.

A detailed investigation of these questions is planned as future work.
In our work, we did not focus on technical details of the tree ensembles, especially
hyperparameter studies for computing trees and Random Forests, since our approach

emphasizes explaining a given forest with respect to known, and potentially unknown, data.

Nonetheless, a detailed study investigating the relationship between the hyperparameters
and the resulting forests and their different conceptual views could provide deeper insights
into the training process of Random Forests. Another closely related topic we did not
dive into is that the introduced views in combination with the classifier can be employed
for automatically scaling of many-valued data sets. Furthermore, we could also envision
applications for enumerating distinct decision trees, as they are lattice ordered [185]. Also,
surrogate-based approaches [121] for explaining black-box classifier functions may profit
from in-depth explanations based on our conceptual views. The same applies to bandit-based
approaches [5].
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Conceptual Views on Neural Networks

Neural networks (NN) are known for their great performance in solving machine learning
problems. However, these excellent results are almost always achieved at the price of
human explainability. This problem is addressed in research and practice from different
standpoints. There are calls to refrain from using NN for important problems and to rely on
explainable methods, even if they give worse results in terms of accuracy [184]. The second
major direction is to develop methods for explaining NN models. Such explanations can be
classified as local explanations, i.e., why a particular data point was treated in a specific

manner [178], and global explanations, i.e., approaches for explaining the whole NN model.

The latter can be achieved, e.g., by mapping the NN to an explainable surrogate. A common
approach for locally explaining NN models is to highlight activation at some hidden layer
[70] or, if possible, project this inversely. For flat data, e.g., images, this is a viable approach
since an essential explanatory component, the human, can be integrated into the process.
This is not the case for high-dimensional or complex data. Global approaches are more
difficult, in particular for high-dimensions, and therefore less frequent. A typical idea is to
find an (explainable) surrogate for a NN, e.g., symbolic regression [3].

We contribute to the growing interest in global explanations procedures for NN models
by extracting conceptual views from a neural network. We demonstrate how NN models can
be represented through views and how surrogate training, e.g., with decision trees, can profit
from this. We further demonstrate how to compare NN models, e.g., when derived from
diverse architectures, using Gromov-Wasserstein [154] distance within the views. Moreover,
we show by an application of subgroup discovery how human-comprehensible propositional
statements can be derived from NN models with the use of background knowledge and
conceptual views. This allows us to extract global rules in form of propositional statements
using the neurons of the NN.

Explain neural networks
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global explanations
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13.1 Related Work

Several approaches aim to provide insights or explanations into neural networks. Many
of them highlight parts of the input that were relevant for a particular prediction [178],
so called local explanations. Those however, rely on the user’s capability to comprehend
input data representations. Hence, this approach is infeasible for problems with higher
dimensional inputs. To overcome this limitation, the SOTA is to apply neuro—symbolic
[188] methods to derive explanations based on symbolic concepts, i.e., explainable (symbolic)
binary attributes. For example, Mao et al. [150], Asai and Fukunaga [11] and Fong and
Vedaldi [70] introduce methods which classify the inputs of a model to pre-defined concepts.
Hence, they require manually created input representations for all pre-defined concepts, in
contrast of extracting them automatically. Particularly successful is TCAV [120], which
predicts the importance of user-defined concepts. The above are complemented by methods
that automatically detect concepts for a given set of input/output pairs through identifying
similar patterns of input samples at a given layer, e.g., ACE [81]. So far these methods
do detect only particularly outstanding concepts. Recent works try to estimate to which
extent a detected set of concepts is capable to approximate the model [227]. This approach,
however, emphasizes classification performance and not explainability, i.e., concepts that
are important for explanations may be omitted. This is in general true for surrogate based
procedures that were not designed towards human comprehensibility [3].

Moreover, a recent study shows that the translation of initial layers does often correlate
with random layers or gradient detectors in the input [1]. The most crucial downside of the
automatic detection methods above is that although they provide symbolic concepts, they
do not have to be interpretable. The overall principle of our approach is based on the fact
that a substantial portion of the input data is aggregated and represented in the last hidden
layer [43, 124].

A global interpretation of the NN needs a decoding into a human comprehensible space.
We contribute towards this problem by deriving interpretable (cf. Proposition 22) conceptual
views (cf. Chapter 12).

13.2 The views of neural networks

First, we have to encode aspects of a neural network that we want to analyze in the form of
(pre-scaled) many-valued contexts. To derive them, we first introduce the structure of neural
networks (see Figure 13.1). We may note, that the following characterization may not be
applicable to all but most types of neural networks, including feedforward neural networks.

Let N be the set of neurons of the last hidden layer of a NN. We interpret an NN as a
function that maps input objects g € G, that are represented as g = (vy, ..., v,) € R, to
outputs in [0, 1]€! for classes C. The parameter m specifies the number of input features
(see Figure 13.1). Naturally, we can interpret each neuron n € N as a function by itself
from the input layer up to the activation of n, i.e., n : R™ — R. The output neurons can
be characterized analogously by a map ¢ : RNl — R. With w;,; we address the weights
connecting the output neuron ¢; € C with hidden neuronn; € N.

Definition 50 (Many-Valued Views of a NN). Let NN be a neural network, C its output
classesand N = {ny, ..., ny} the neurons of the last hidden layer. We define the many-valued
view as Vp = (Op, Wp), where Op = (G, N, R, O) is a many-valued context with n;(g;)
equal to the activation of neuron nj when NN receives g as input. The other many-valued
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Input Hidden Output
layer layer layer

Figure 13.1: The structure of (feedforward) neural networks with annotated notions.

view is defined as a many-valued context Wp := (C,N,R, W) where n;(c;) is equal to the
weight w; ; that connect neuron n; with the output for ¢;. We call Op the many-valued
object view and W, the many-valued class view of NN.

In some settings, we interpret these views to be numeric matrices, i.e., Wp € R
and Op € RIGIXINI,

ICIX|N|

To give a short motivation: With the many-valued object view Op, we want to study
the activation of the neurons N given an object g. Complementary, with the many-valued
class view Wp, we investigate the relation of the neurons N to the outputs ¢ € C by
their corresponding weights w; ;. In Figure 13.2 we depict example views for a neural
network. In this, we find that ng(o;) is greater than n;(o;), from which we infer that
the relation of o, to ny is greater than n;. We want to employ the just introduced views
to comprehend the complete classification that is captured by a NN model. We can
represent any object g as a row in the many-valued object view matrix, i.e., O(g) =
(n1(9),....nn(g)). Analogously, we can represent any class ¢; as a row in the many-
valued class view matrix, i.e., W(c;) = (wi.1, ..., w;n). The outputs of the NN for class
¢; follow from the term O(g) - W(c;) + b, where b is a bias. This can be rewritten as
|0(g)| - [W(c;)|cos(O(g), W(c;)) + b where cos(O(g), W(c;)) is the cosine value of the
angle between O (g) and W(c;). Thus, to understand the inner representation of the classes
C within the NN, it may be reasonable to grasp the objects and classes in the same space
and classify objects using similarity measures. Using this approach, we can introduce an
object-class distance map d : G X C = R, (g,c) — d(0(g), W(c)), where a sensible
choice for d is the cosine similarity or the Euclidean distance (see Chapter 6). We will
investigate both in Section 13.3.1. Hence, using d and similar distance maps for G x G
and C X C, one can derive a pseudo-metric space (cf. Definition 32) (G U C, cf(v). From
this representation of G and C one can infer a simple classification map, e.g., by applying
1-NN classification.

Conceptual views enable a direct comparison of NNs. One can employ the Gromov-
Wasserstein distance [154], as experimentally demonstrated in Section 13.3.2. We contrast
our results with a baseline of model fidelity. We may note two important facts. First,
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Figure 13.2: A simplified neural network drawing (left), its many-valued views (middle) and
its conceptual views (right).



13.3. EXPERIMENTAL STUDY 169

our approach for similarity is comparable to the recent idea of relating neural networks to
particular kernel spaces [136, 197]. This enables us to study how objects are hierarchically
clustered in such a space. We may stress that our notion does not consider how objects are
mapped into this (kernel) space, but rather investigates the space itself. Second, the used
GW distance is invariant with respect to permutations of the many-valued conceptual views.

13.2.1 (Symbolic) Conceptual Views

The next step is to derive conceptual views from the many-valued views, i.e., mapping
objects into a symbolic space. Given the ordinal pre-scaling of the many-valued views and
dichotomy of class assignments, we decided to use interordinal scales I,. These scales split
the value domains into two parts based on a single threshold value. In our approach, we
use two separate thresholds for the many-valued object view dg and the many-valued class
view ow (see Figure 13.2). As a final remark before we introduce the conceptual view on
NN we want to point out a simple but powerful observation. The to be employed relational
structure is invariant with respect to row- or column permutations in the related many-valued
conceptual view (Definition 50).

Definition 51 (Conceptual Views on Neural Networks). LetV = (0, W) the many-valued
conceptual view of a NN and let 6g, O be threshold values. We define the conceptual views
V =(0,W) by

0 = (G,NUN, Ip), with (g,n;) € Ip :<> n;(g) > 6o and (Object View)
(g,ﬁj) €lg = nj(g) < 0o
W = (C,NUN, Iy), with (¢;,n;) € Iy := w; ; > 6w and (Class View)

(ci,iij) € Iyy 1= w; j < Ow.

We introduced with N = {ii | n € N} a set of artificial symbols and use them as defined
above.

This definition enables investigations of the representation of a neural network with meth-
ods from formal concept analysis. Moreover, we are able to construct human comprehensible
explanations for a NN given a background ontology, e.g., in form of human annotations of the
objects or classes. We exemplify that in Figure 13.2 using a formal context S that employs
interpretable features S,,,, ..., S, as background knowledge to decode the symbols in the
conceptual views in Sy . We provide more details in Section 13.4. Suitable threshold values
ow, 0o depend on the architecture of the to be analyzed NN model. For example, if the
activation function is ReLu, the neuron’s co-domain is positive. Thus, it becomes difficult to
determine a reasonable § for negative symbols N, as studied in Section 13.3.3.

13.3 Experimental Study

We support our theoretical modeling of conceptual views, in particular the derived formal
contexts, through an experimental study using common and well known data sets and
NN models. First, we evaluate the suitability of the many-valued views through the in
Section 13.2 introduced pseudo-metric space and a classification task. Second, we show
how one may compare many-valued views, possibly from different NN models. Third, we
demonstrate how to derive a human comprehensible representation for a NN model, that we
can employ for explanations in Section 13.4.
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Table 13.1: The average weights w; ;, object values n;(g) and the number of neurons |N/|

and activation function f of the last hidden layer of tensorflow imagenet models.

| Model H W - values [ Bias H O - values H [N| [ f ‘
VGG16 -5.359¢-07 + 0.008 | 1.404e-06 + 0.191 0.679 + 1.514 || 4096 | ReLu
VGG19 -6.707e-07 £ 0.008 | -1.287e-05 £ 0.192 || 0.613 + 1.402 || 4096 | ReLu
IncV3 -3.808e-05 += 0.034 -0.0099 + 0.308 6.025 + 15.13 || 2048 | ReLu
DenseNet121 2.139¢-08 + 0.049 | -1.014e-07 + 0.012 1.731 +4.603 || 1024 | ReLu
DenseNet169 1.456e-08 + 0.039 | -1.038e-07 + 0.012 1.675 +5.529 || 1664 | ReLu
DenseNet201 1.019e-08 + 0.036 | -1.178e-07 = 0.011 1.146 + 4.167 1920 | ReLu
MobilNetV1 -0.0001 + 0.081 -0.005 + 0.744 0.435 +0.838 || 1024 | ReLu
MobilNetV2 -3.138e-05 + 0.041 0.0002 + 0.319 || 0.358 +0.747 || 1280 | ReLu
NasNetLarge -2.080e-07 = 0.026 | 4.424e-05 = 0.040 0.198 +£ 0.533 || 4032 | ReLu
NasNetMobile || -3.336e-07 + 0.039 0.0001 + 0.066 0.382 + 4.389 || 1056 | ReLu
ResNet50 3.774e-07 + 0.033 | -4.881e-08 + 0.009 || 0.546 + 0.871 || 2048 | ReLu
ResNet101V2 6.668e-06 + 0.027 0.0016 = 0.292 39.97 + 167.8 || 2048 | ReLu
ResNet152V2 1.038e-05 + 0.026 0.0016 + 0.287 94.08 + 187.4 || 2048 | ReLu
ResNet50V2 8.014e-07 + 0.028 0.0011 % 0.292 19.91 + 74.65 || 2048 | ReLu
IncResNetV2 -3.060e-05 + 0.037 -0.0012 = 0.230 106.8 + 124.9 || 1536 | ReLu
XCeption -3.246e-06 + 0.055 0.0008 + 0.281 2974 + 13.41 || 2048 | ReLu
EffBO -7.495e-05 + 0.068 | -5.143e-05 + 0.058 0.065 + 0.321 || 1280 | Swish
EffB1 -5.647e-05 + 0.063 | -4.343e-05 + 0.045 0.056 + 0.313 1280 | Swish
EffB2 -7.152e-05 + 0.059 | -4.153e-05 + 0.054 0.019 + 0.260 || 1408 | Swish
EffB3 -6.323e-05 + 0.054 | -3.547e-05 £ 0.046 || 0.010 + 0.252 || 1536 | Swish
EffB4 -3.106e-05 + 0.050 | -3.138e-05 + 0.057 || -0.039 + 0.194 || 1792 | Swish
EffB5 -2.043e-05 + 0.049 | -2.738e-05 + 0.055 || -0.036 + 0.170 || 2048 | Swish
EffB6 -8.656e-06 + 0.046 | -2.691e-05 + 0.071 || -0.043 + 0.135 || 2304 | Swish
EffB7 -9.562e-06 + 0.041 | -2.441e-05 + 0.060 || -0.041 + 0.136 || 2560 | Swish

Table 13.2: The fidelity between twenty-four neural networks and their many-valued

object/class view using 1-NN for classification.

l Model H Euclidean \ Cosine H Model H Euclidean \ Cosine ‘
VGGI16 0.945 0.841 ResNet101V2 0.995 0.466
VGG19 0.942 0.842 ResNet152V2 0.999 0.314
IncV3 0.990 0.753 IncResNetV2 0.999 0.983
DenseNet121 0.978 0.737 XCeption 0.977 0.792
DenseNet169 0.989 0.843 EffBO 0.944 0.933
DenseNet201 0.972 0.728 EftB1 0.960 0.946
MobilNetV1 0.575 0.449 EffB2 0.969 0.957
MobilNetV?2 0.947 0.925 EffB3 0.974 0.961
NasNetMobile 0.935 0.808 EffB4 0.981 0.972
NasNetLarge 0.880 0.831 EffB5 0.979 0.972
ResNet50 0.954 0.800 EffB6 0.982 0.976
ResNet50v2 0.995 0.734 EftB7 0.985 0.979
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13.3.1 Many-Valued Views on ImageNet

We demonstrate that many-valued views are capable of capturing a large share of a NN
model. For this, we use all twenty-four! NN models from tensorflow that are trained on the
ImageNet [52] data set. The object view is calculated using the test set, i.e., 100k images, of
ImageNet used in the ILSVRC [186] challenge. In Table 13.1 we compiled basic statistics
on these networks and our views. Although we report in columns two and four mean values
and their standard deviation, we may stress that we do not consider the individual values to
be normally distributed.

To evaluate the quality of our views, we compare a one-nearest-neighbor (1-NN) classifier
on the in Section 13.2 introduced pseudo-metric space (G U C, cf(yD) directly with the NN
classification function on all 100,000 test images. In detail, we use model fidelity, i.e., we
count the instances where the 1-NN outputs the same class label as the NN and normalize
this number by the cardinality of the test set. The results are depicted in Table 13.2. We
differentiate in our experiments between using cosine similarity and Euclidean distance
within dq,.

We find that the view model is capable of achieving high fidelity (see Table 13.2). The
MobilNetV1 model is the only exception. Moreover, we can state that using the Euclidean
distance is superior to the cosine similarity in all instances. This is in particular true for
the ResNet models, where the difference is up to 0.6. Furthermore, for the EfficientNets
we notice that there is an almost monotone relation between the number of neurons N (last
hidden layer) and the fidelity. All this together suggests that the many-valued conceptual
view is meaningful and that classification functions that are based on the resulting pseudo
metric space can be used as surrogates for the NN model.

13.3.2 Similarity of neural networks

Based on the many-valued views, we can derive for all NN models a pseudo-metric space as
introduced in Section 13.2. Hence, given the theory about metric spaces there are different
approaches for comparing them. For example, one could compute the Gromov-Hausdorff
distance [154]. However, due to the vast number of data points, any direct computation of
the GH distance is infeasible. A different approach, which is still costly, but can be performed
for a subset of the data, is the Gromov-Wasserstein [154] distance. In Figure 13.3 (right)
we depict the individual distances for all considered models with respect to the class and
object view. We employed ten percent of the test data set and applied a uniform probability
measure on the data points, i.e., a normalized counting measure. We compare our analysis
to a baseline that is derived from the fidelity measure (Figure 13.3, left).

From the pairwise fidelity diagram (Figure 13.3, left), we can infer that almost all models
are very distinct with the exception of VGG16, VGG19, ResNet50 and the EfficientNet
instances. In addition to that, we find that the later models become more similar with
increasing number of neurons. The similarity plots for the views are different from the
fidelity plot. We can visually identify clusters of models. These clusters do often correspond

with similar networks architectures. For example in the object view we observe two clusters.

In the class view this clustering is finer.
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Figure 13.3: The similarity of twenty-four neural networks trained on the ImageNet data
set. The base-line (left) is pair-wise fidelity between the employed models compared to a
similarity using Gromov-Wasserstein distance on the object (top right) and class (bottom
right) view.
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13.3.3 Symbolic Conceptual View

In this section we study thoroughly the activation functions and the number of neurons for
a reasonable determination of threshold values in order to compute meaningful symbolic
conceptual views.

To evaluate the influence of the choice of the activation function as well as the number

of neurons, we trained one NN architecture several times on the Fruits-360 [162] data set.

The used data set contains 67,692 images of 131 types of fruits or vegetables. The test
set contains an additional 22,688 images. We train the architecture from the Fruits-360
experiment? using all procedure parameters from Muregan and Oltean [162] and modified
the last two hidden layers. For the (last) hidden layer N we vary the size 2" between 2*
and 2° with powers of two. For the layer before that we follow the common approach for
smooth decrease in dimension, i.e., we chose ZL%J with 4 < n < 10 dependent on the
last hidden layer. For activation functions, we studied the impact of ReLu, Linear, Swish
and TanH in all layers. For each parameter setting we trained ten models and computed
their respective conceptual views for the test data set, see their distributions in Figures 13.4
and 13.5. Statistics on the quality of the computed views can be seen in Figure 13.7. We
tested these distributions against normalization of the column vectors in the views and can
report that the reported results are invariant.

In general, we observe that the distributions for the object views differ quite largely
among the different activation functions. From these we found that TanH causes the most
notable seperation of positive and negative values. We depicted the results for all activation
functions in Figures 13.4 and 13.5. Furthermore, we find that splitting with 69 = 0 seems to
be meaningful for all examples with respect to separation and symmetry. This split into two
set of almost equal size. The same is true for w. Apart from these values, we experimented
in this and all following experiments with different approaches to determine thresholds, such
as mean values, median values, median per neuron, as well as kernel-density estimation for
bi-variate Gaussians. However, the split at 0 was favorable with respect to the achieved model
fidelity. We report these scores for all activation functions in Figure 13.7. We conclude from
our ablation study that the use of TanH is suggested as well as dg, dw = 0. We acknowledge
that the used data set might influence this choice [14].

Based on the just found parameters we derive the conceptual views for the ImageNet
models via I, scaling. We report the results in Figure 13.6. We found that the classes are
uniquely represented (class separation equals 1), thus a perfection classification procedure is
theoretically possible using the symbolic view.

In the following, we apply methods designed for binary or numeric matrices to formal
contexts. For this, we employ inverse scaling to yield binary data tables with values 0 or
1. Such an inverse scale is reasonable due to the dichotomy of the contexts, i.e., since
(g,n) ¢ Ip = (g,n) € Ip and (c,n) ¢ Iy & (c,n) € Iy. The resulting data set
combines n, 71 into a single binary attribute.

2https://github.com/Horea94/Fruit-Images-Dataset

Influence of the
activation function
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Figure 13.4: These are the value distributions for the object (0) and class (W) view for ten
runs using the Fruits-360 data set and the swish and ReLu activation functions. The last
hidden layer of size 2* (first column) to 2° (last column).
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Figure 13.5: These are the value distributions for the object (O) and class (W) view for ten
runs using the Fruits-360 data set and the linear and TanH activation functions. The last

hidden layer of size 2* (first column) to 2° (last column).
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We observe that a direct application of 1-NN procedure using the binary vectors that arise
from the conceptual view does result in very poor classification performance for ReLu. In
contrast to that, the Swish based models achieved from mediocre to good results. Especially
the larger (EfficientNet) NN models resulted in better conceptual views. A reason for the
unfavorable results with ReLu might esteem from its positive co-domain, which hinders the
construction of negated attributes N in our approach. Some selected distributions can be
found in Figure 13.8.

The twenty-four models in ImageNet employ ReLLu and Swish activation functions only.
Thus, we want to complement our experimental study on conceptual views with results for
TanH activation, which we conduct again on the Fruits-360 data set. Hence, we trained five
models, namely the base-line model from Muresan and Oltean [162], VGG16, ResNet50,
IncV3, and EffBO, the latter initialized with the original ImageNet weights. With exception
of the baseline, we added to each model three dense layers (including dropout layers with
p=0.2) on top, that are sized 1024, 256, and 32. To all models we also added an additional
layer of size 16. This reduction in size added in order to enable human explainability.
The baseline model as well as all added layers employ the TanH activation. The output
(prediction) layer is a dense layer using softmax activation without bias. We used sparse
categorical crossentropy as the loss function. All other relevant parameters for reproducing
our results are drawn from the published baseline model. In the statistical experiments we

Table 13.6: The fidelity between twenty-four neural networks and their object/class view
using nearest neighbor and cosine similarity for classification.

] H INN \ Cos \ Class Sep \ Activation ‘
VGG16 0.552 0.552 1.0 ReLu
VGG19 0.5672 | 0.5672 1.0 ReLu
IncV3 0.000 0.000 1.0 ReLu
DenseNet121 0.000 0.000 1.0 ReLu
DenseNet169 0.001 0.001 1.0 ReLu
DenseNet201 0.000 0.000 1.0 ReLu
MobilNetV1 0.036 0.036 1.0 ReLu
MobilNetV2 0.305 0.305 1.0 ReLu
NasNetMobile 0.004 0.004 1.0 ReLu
NasNetLarge 0.009 | 0.009 1.0 ReLu
ResNet50 0.007 0.000 1.0 ReLu
ResNet50V2 0.001 0.003 1.0 ReLu
ResNet101V2 0.012 0.012 1.0 ReLu
ResNet152V2 0.000 0.000 1.0 ReLu
IncResNetV?2 0.000 0.000 1.0 ReLu
XCeption 0.220 | 0.220 1.0 ReLu
EffBO 0.758 0.758 1.0 Swish
EffB1 0.813 0.813 1.0 Swish
EffB2 0.869 0.869 1.0 Swish
EffB3 0.898 0.898 1.0 Swish
EffB4 0.929 0.929 1.0 Swish
EftB5 0.935 0.935 1.0 Swish
EffB6 0.951 0.951 1.0 Swish
EffB7 0.957 0.957 1.0 Swish
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compare the out analysis on the above described architecture to models trained without the
layer of size 16, i.e., only the three layers of size 1024, 256, and 32 were added.

The results in Figure 13.9 show that all models have high accuracy on the test data set,
while the four transfer learned models outperform the baseline. We want to stress that our
predictive results are only used to demonstrate that the model did fit to the classification
problem. We find that both, Euclidean and cosine based 1-NN did perform well on the
many-valued views as well as the conceptual views. In detail, we could not find significant
difference between the representations. Moreover, we cannot identify significant differences
in the classification performance with respect to the NN model. We also observed that an
additionally trained decision tree classifier was unable to learn within the many-valued view
representation. However, the same procedure applied to the conceptual view was capable of
producing competitive classification results, a surrogate for the NN with very high fidelity.

Besides the investigations of the derived views with respect to classification tasks,
we employ methods from FCA for their interpretation. This leads to concept based
explanations [188] of neural networks through formal concepts in the respective views. The
size of the concept lattices (see Section 13.3.3) serve as an upper bound for the number of
learned concepts.

We computed the concept lattices for Base, ResNet, VGG16, IncV3, and EffBO and
find, that their sizes vary between 126,487 (VGG16) and 134,100 (IncV3) for |N| = 16, and
between 3,498,829 (VGG16) and 3,803,799 (ResNet50) for |N| = 32. If we restrict our
computation to N, i.e., omitting the artificially introduced negations N, we find the concept
lattice sizes decrease by one magnitude. In detail, between 5,200 (VGG16) and 6,573
(EffBO) for |N| = 16, and 150,884 (EffB0) and 198,152 (IncV3) for |N| = 32. We compiled
all values in Section 13.3.3. Overall, we observe that all are similar in size and therefore
cannot be visualized using a line diagram. We note that formal concepts are composed
of combinations of features. The minimum number of encoded features is present by the
meet-irreducible elements. Hence, the number of meet-irreducible elements is bound by the
number of attributes in the context, which serves as a lower bound the concepts captured by
the NN model.

Independent of the size does this translation to the realm of FCA enable the application
of various knowledge-based methods, such as Description logic or Subgroup discovery, as
investigated in Section 13.4. Within FCA we might consider to analyze cuts of the lattice, in
particular those for which we suspect problems in the representation. As we discovered in
previous experiments, that Apple Red, Pink Lady, Plum and Cherry are indistinguishable by
some concept based representations (Figure 13.9), one might want to “zoom” into those.
We did this statistically with Figure 13.11 . In the former one can identify formal concept
based similarities among the selected fruits and the number of their shared concepts. For
example, the fruits Cherry and Plum are indistinguishable in the views of IncV3 and Pink
Lady and Apple Red in EffB0. From these and instances with high similarity, we can infer for
which instances it is difficult for a model to distinguish fruits. Contrary to that, are Cherry
and Plum in the ResNet model quite different due to the small number of shared concepts.
Moreover, do the similarity plots indicate that the models extract different properties from
the data.

From the concept lattice (see Figure 13.12) the reader can infer the hierarchical depen-
dencies between the different fruits (objects).

Observations

Analyze views with
FCA

View sizes

Shared concepts

Conceptual structure
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Table 13.7: Study on the influence of the activation function and number of neurons on
the quality of the computed views. The quality is measured in terms of fidelity of nearest
neighbor classification in the many-valued views (MV-Fid) and conceptual views (V-fid).

’ 24 ‘ 25 26 ‘ 27 ‘ 28 29 ‘
Swish
6o = 0 Split 57.1/62.9 | 52.8/47.2 | 49.2/50.8 | 44.5/55.5 | 45.6/54.4 | 45.0/55.0
ow =0 Split || 65.4/44.6 | 65.0/35.0 | 62.0/38.0 | 60.1/39.9 | 57.2/43.8 | 56.5/43.5
Model Acc 935+0.8 | 94.5+0.5 | 953+0.3 | 95.1+0.3 | 954+04 | 95.1+0.5
MV-Fid 99.5+ 04 | 999+ 0.0 | 99.9+ 0.0 | 99.9+ 0.0 | 99.9+ 0.0 | 99.9+ 0.0
V-Fid 77.1£9.2 | 88.8+1.3 | 89.6+1.6 | 88.8+1.4 | 88.4+0.9 | 86.7+ 1.6
ReLu
dp = 0 Split 55.1/449 | 55.1/44.9 | 54.7/45.3 | 53.3/46.7 | 55.3/44.7 | 54.1/45.9
ow =0 Split || 66.3/33.7 | 66.7/33.2 | 64.0/36.0 | 61.6/38.4 | 58.9/41.1 | 58.2/41.8
Model Acc 93704 | 945+05 | 949+0.5 | 949+£0.5 | 95.0£0.4 | 948+ 0.6
MV-Fid 99.7+ 0.0 | 99.8+0.0 | 99.9+ 0.0 | 99.9+ 0.0 | 99.9+ 0.0 | 99.9+ 0.0
V-Fid 799+ 37 | 89.0+1.2 | 90.0+ 1.2 | 89.5+ 1.1 | 89.0+ 1.5 | 88.2+ 1.5
Linear
dp = 0 Split 49.8/50.2 | 49.6/50.4 | 49.5/50.5 | 49.9/50.1 | 49.9/50.1 | 49.9/50.1
ow = 0 Split || 49.7/50.3 | 49.3/50.7 | 49.7/50.3 | 50.0/50.0 | 50.0/50.0 | 50.0/50.0
Model Acc 853+ 0.6 | 88.8+0.7 | 89.9+1.0 | 92.0+0.5 | 91.8£0.9 | 91.5+0.9
MV-Fid 99.9+ 0.0 | 99.9+0.0 | 999+ 0.0 | 99.9£0.0 | 99.9+ 0.0 | 99.9+ 0.0
V-Fid 555+19 | 64714 | 683+2.6 | 748+ 1.7 | 782+2.1 | 81.5«1.1
TanH
do = 0 Split 49.7/50.3 | 49.7/50.3 | 49.8/50.2 | 49.9/50.1 | 50.0/50.0 | 49.9/50.1
ow = 0 Split || 49.9/50.1 | 49.8/50.2 | 49.8/50.2 | 50.0/50.0 | 49.9/50.1 | 50.0/50.0
Model Acc 90.5+ 0.8 | 94.3+0.5 | 94.7+0.5 | 949+ 04 | 95.0£04 | 94.8+0.3
MV-Fid 98.3+0.5 | 99.5+0.1 | 99.7+0.0 | 99.7+0.0 | 99.8+0.0 | 99.8+ 0.0
V-Fid 943+ 14 | 97404 | 97.7£04 | 97.6x0.1 | 97.8+£0.2 | 97.6x 0.2
EffB7 VGG16
3 oo 3w 3w
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Figure 13.8: The value distributions for the object/class view for four models.
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Table 13.9: Five neural networks (using TanH activation) and their (symbolic) conceptual
views were captured by different surrogates (decision tree, 1-NN). We report their fidelity
and accuracy. In symbolic conceptual view: IncV3 was unable to distinguish Cherry I and
Plum; EffBO was unable to distinguish Apple Red 1 and Apple Pink Lady.

Model Model DTree Euclidean Cos
ACC ACC \ Fid ACC \ Fid ACC \ Fid Class Sep

N[=16
Baseline | 0.936 || 0.017 | 0.017 || 0.935 | 0.989 || 0.935 | 0.988
VGG16 | 0988 | 0.017 | 0.018 || 0.988 | 0.998 || 0.988 | 0.997
ResNet50 | 0.989 || 0.018 | 0.018 || 0.989 | 0.998 || 0.989 | 0.997

IncV3 0.983 || 0.013 | 0.013 || 0.983 | 0.999 || 0.984 | 0.999

EffBO 0.984 || 0.007 | 0.007 || 0.984 | 0.998 || 0.983 | 0.984

Symbolic

Baseline 0.936 || 0.857 | 0.879 || 0.927 | 0.964 || 0.927 | 0.964 1.0
VGG16 0.988 || 0.972 | 0.977 || 0.988 | 0.994 || 0.988 | 0.994 1.0
ResNet50 | 0.989 || 0.952 | 0.957 || 0.988 | 0.996 || 0.988 | 0.996 1.0
IncV3 0.983 || 0.975 | 0.988 || 0.984 | 0.997 || 0.984 | 0.997 0.992
EffBO 0.984 || 0.938 | 0.934 || 0.984 | 0.996 || 0.984 | 0.996 0.992
IN| =32

Baseline 0.954 || 0.021 | 0.019 || 0.953 | 0.996 || 0.953 | 0.994
VGG16 0.987 || 0.014 | 0.014 || 0.986 | 0.998 || 0.986 | 0.997
ResNet50 | 0.991 || 0.024 | 0.024 || 0.991 | 0.999 || 0.990 | 0.997

IncV3 0.989 || 0.010 | 0.010 || 0.989 | 0.999 || 0.989 | 0.999

EffBO 0.987 || 0.021 | 0.022 || 0.987 | 0.999 || 0.986 | 0.997
Symbolic

Baseline 0.954 || 0.837 | 0.845 || 0.949 | 0.983 || 0.949 | 0.983 1.0
VGG16 0.987 || 0.873 | 0.876 || 0.987 | 0.996 || 0.987 | 0.996 1.0
ResNet50 | 0.991 || 0.946 | 0.949 || 0.990 | 0.996 || 0.990 | 0.996 1.0
IncV3 0.989 || 0.976 | 0.983 || 0.989 | 0.998 || 0.989 | 0.998 1.0
EffBO 0.987 || 0.904 | 0.906 || 0.986 | 0.993 || 0.986 | 0.993 1.0

13.4 Abductive learning of partial explanations

Conceptual views enable the application of various logical methods to derive human-
comprehensible (partial) explanations. We draw from this correspondence and construct a
formal context C = (C, Spy, Ic), where Spr = {Sim,, . . ., Sy, } 1S a set of human-interpretable
features that are known about the classes C, i.e., background knowledge.

Definition 52 (Symbolic Interpretation of Views on Neural Networks). Given the con-
ceptual views V = (0, W) of a NN, background knowledge C, and a similarity relation ~
on the classes P(C). Then is the formal context S = (N, Spr, R) with (n,S,,) € R 1=
{n}¥ ~ {S,,}'¢ the symbolic interpretation of the NN with respect to C and ~.

We require ~ to be reflexive and symmetric but not necessarily transitive. The task for
symbolic interpreting a NN is to deduce or infer ~ using background knowledge, which is

Adding background
knowledge

Decode neuron
attributes



Background knowledge
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Table 13.10: The size of the concept lattices of the conceptual views in Figure 13.9 (see
|N| = 16) and for 32 neuron (see |N| = 32), for all (see All column) and only positive
attributes (see Pos column).

Model IN| =16 IN| =32
All Pos All Pos
Base 130969 | 6517 || 3192044 | 155416

ResNet50 || 133130 | 5872 || 3803799 | 165009
VGG16 126487 | 5200 || 3498829 | 193516
IncV3 134100 | 5670 || 3782226 | 198152
EffBO 132403 | 6573 || 3767964 | 150884

done in the next section. Given a symbolic interpretation for a NN we are able to express
neurons in terms of the human-interpretable features Sy, by applying the incidence relation in
S,i.e., for all n € N one can compute {n}R. Furthermore, if S is additionally equipped with
propositional logic F[Sas, {V, A, =}] then FCA [91] also provides the means for expressing
neurons in terms of propositional statements.

We want to motivate how symbolic interpretations can be used to interpret neurons in
terms of (human-comprehensible) features Sy, and vice versa. To demonstrate both cases,
we analyze the symbolic view of the Fruit-360. For the attributes Sy, we use visual features

VGG16 ResNet IncV3

10

Plum

0.0

Apple Red -
Apple Red -

Figure 13.11: FCA results for Apple Red, Pink Lady, Plum and Cherry using views on all
attributes N U N (top heatmaps) and only positive N attributes only (bottom heatmap). The
columns labels of each heatmap displays the number of formal concepts. The number within
a cell is the number of shared concepts between the related row/column fruits. Heat indicates
its fraction.
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131
Grapefruit White,
Apple/Red Yellow
2. Apple Golden I

Kaki

Kiwi, Papay
Dates, Peach Fl
Ginger Root, Peach,
Orange, Banand,

Banana Red

31
Redeurrant, Rasp-
berry, Mulberry

9
Apple Golden 3,
Cherry 1, Avoca

3
Apple Red Gious, Kumquats,

/ Cherry 2, Cherry
Rainier

‘Tomato Maroon,
Mangostan, Tomato
eart, Cocos

tahaya Red,
‘AppleBracburn,

 Cauliflower, Apple
Physalis with Husk, Pink Lady, Apple
Nectarine Flat, Pear R

Plum, Plum 2,
Corn, Huckleberry,
Cucumber Ripe.
Mandarine, Salak

Figure 13.12: Concept lattice representation of the selected fruits by the VGG16 model
(without attributes N). Formal concepts containing Apple Pink Lady and Apple Red 1 are
highlighted in Orange and Cherry 1 is highlighted in blue.

(1), such as shapes or colors, and the Scientific classification taxonomy (2) published in
Wikipedia3® for each fruit/vegetable. We combined the German and English Wikipedia
articles in order to derive a data set as complete as possible. We infer the similarity relation
in our experiment using subgroup detection [96], as implemented in pysubgroup.

We depict four example results in Figure 13.13, where the taxons are given in the
respective diagram titles, e.g., Apple, Orange. Diagrams on the left depict subgroups in
terms of neurons, and, vice versa, on the right in terms of interpretable features. For both
sides we find on the abscissa propositional statement combining the respective features.

From the high share (see ordinate) of the respective subgroups we can infer that the
propositional statements using the neurons or S, features describe the taxons from adequately
up to very good. In particular for the latter case (right) we see that the subgroups are pure,
yet, not complete. To give two concrete statements: 1) Fruits that are not brown, not stained,
not orange and not star shaped will use neuron 13 € N. 2) If the neuron 13, 14 and 9 are
used by the NN we can infer that the fruit is orange with confidence about 0.54. Using this
method one can infer the similarity relation ~ and provide an explanation framework.

3See for example https://en.wikipedia.org/wiki/Apple in the right box.
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Figure 13.13: Exemplary results of the subgroup detection. The width of the orange bar
indicates the size of the subgroup and the height the ratio of elements in the subgroup that
have the target attribute. The analogue applies to the complement of the subgroup in blue
color.

13.5 Discussion

With the presented chapter we have shown how conceptual views can be used to interpret
neural networks. Compared to other explanation methods, our approach is novel and different
to former ideas with respect to three properties: first, we do not employ further hardly
explainable methods, such as autoencoders. Second, our method is global by design. Third,
conceptual views, as introduced in our work, do not require pre-defined concepts and their
related input representations. We accomplished this by decoding both, the weights of all
output neurons and the activations of the last hidden layer. For future work, we can envision
that an investigation on the influence of regularization, e.g., sparsity of hidden neurons N,
may lead to smaller concept lattices and therefor more interpretable views.

Our approach is limited by the necessary existence of multiple outputs. However, there
are common approaches for splitting single outputs. Yet, a more significant limitation
concerns the restriction to non-recursive architectures. Adapting our approach to such
settings is probably possible, but requires a substantial adjustment to the definition of the
views. Finally, our method requires for human-comprehensible explanations the existence of
domain-specific background knowledge.

Apart from this we envision that the presented link of NN models to FCA using conceptual
views allows for both the explainability of NNs as well as increasing the performance of
NN surrogate learning procedures. Therefore, this beneficial research line should be further
investigated and tested.
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The Geometric Structure of Topic Models

Topic models are a popular tool for clustering and analyzing textual data. They discover
groups or hierarchies of topics in text corpora using various techniques. Using these topics
one may characterize new text samples within the space the topics span. However, this topic
space also makes it possible to better understand the original text corpus used to find the
topics. Thus, they are an excellent tool for organizing and structuring large text corpora
and for extracting knowledge about various entities that are contained in the text or can be
derived from it.

The number of application domains for topic models is vast. Prominent domains
are recommendation systems [38, 59, 113], sentiment analysis [216, 228, 232], and text
summarization [72, 118, 182, 200]. A particular interesting application for the present work
is analyzing and mapping entities from large text corpora [51, 189, 191, 211]. Besides
that, they have been shown to be very useful in feature-heterogeneous domains, e.g., social
network analysis combined with large corpora based topic spaces [139, 190].

The vast majority of topic models encode relationships between topics and the terms (i.e.,
word or n-grams of these words) of which they are composed. This property makes them
comparatively easy to interpret and allows for topic representations of individual documents
or term representations of individual topics. This is in particular true for the topic modeling
procedures non-negative matrix factorization (NMF) by Lee and Seung [135], as it enforces
all components of a topic to be additive. Methods that aim at explaining and interpreting the
relation between sets of documents, topics, and terms, do often rely on vector space models.
In order to derive human-readable visualizations, embeddings into two or three dimensional
real-valued Euclidean spaces are computed. However, the resulting diagrams are limited
(and might be) distorted by the employed maps. Since these maps are often non-linear in
nature, the resulting visualizations are difficult to interpret. In particular, it does not make
sense to relate proximity in the diagram to similarities between topics.

A fundamentally different line of research aims at explaining topic models with methods
rooted in ordinal data analysis [35, 40, 207, 209]. For this purpose, the natural term-
topic and document-topic relationships of a topic model are implicitly understood as
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(geometric) incidence structures. These relate multiple topics or documents to each other in
an interpretable manner.

With this chapter, we build on this view and make explicit use of the geometric character
of these relationships. In detail, we present how to derive geometric structures from the
topic-term and document-topic relationships. We show how these structures allows for rich
interpretations of the topic model and how to extract explainable patters from them. The
latter contribution is based on ordinal motifs (cf. Chapter 9). Moreover, we point out how to
comprehensively visualize the geometric character of a topic model based on said ordinal
motifs.

We demonstrate our approach based on a well researched topic model that was derived
from a large corpus of scientific works within the realm of machine learning [189]. We show
that our method is capable of capturing insights about authors and research venues extracted
from the corpus data and how our method can be used to track changes in their individual
topic distribution over time. Finally, we visually depict the interplay between terms and their
temporal dependency for topics.

14.1 Related Work

Several methods to interpret topic models have been proposed. Some of them represent the
document-topic relation through a vector space models [189, 191]. This allows the reader
to visually interpret this relation through proximity in two or three dimensional diagrams.
Common methods applied here are multidimensional scaling [152] or t-distributed stochastic
neighborhood embedding [215].

Other explanation approaches follow a more relational approach. A very simple method
is to compute a relation based on topic-topic correlation. This is, for example, computed
using cosine similarities between topics in a vector space model [189]. Some topic models,
like the Correlation Topic Model (CTM) [25], allow for directly inferring this relation
from the model and presented in a graph structure. These approaches allow for one-to-one
comparisons of topics. Extensions to allow for hierarchical interpretation of this relation has
been proposed based on clustering techniques [12].

With this chapter, we contribute to the explainability of topic models based on relations
that are defined on the data, i.e., documents-topics and term-topics relations. These are often
weighted [177] and are scaled to binary relations [74]. A basic investigation of the derived
(binary) relations are visualizations using bipartite graphs [49]. Based on these graphs,
simple (tree shaped) hierarchies can be inferred by applying hierarchical clustering methods
[2]. A benefit of hierarchical interpretations is that one can infer topic-topic relations of
higher arity from them. On top of that, they allow for assessing the overall global structure
of a data. However, tree structures are very limited (cf. Chapter 12) in their expressiveness.
For instance, there is only a single path connection two nodes.

A hierarchical structure that is not limited by this property can be computed using
Formal Concept Analysis [80] (FCA). With FCA, we compute from the bipartite graph the
set of all maximal bi-cliques. These exhibit a natural order relation which results in a lattice
structure, i.e., the concept lattice. An application of concept lattices on documents-topics
and term-topics relations has been shown to be useful for organizing discussion forums in
educational software [56]. We revisit this method after an introduction of incidence relations
in topic models (Section 14.3.2).

With our approach, we expand on FCA based methods by transferring new explanation
approaches for concept lattice (cf. Chapter 9) into the realm of topic modeling. These allow
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for a novel global interpretation of the topic model structure.

A different, yet related line of research is the computation of hierarchical topic models [40,
83, 138, 231]. Multiple visualization techniques have been proposed for their explanation
[198].

14.2 Topic Models and their Interpretations

Topic Models are statistical models that describe documents and words in terms of the

“topics” they cover. There are a variety of machine learning methods proposed for this task.

Starting with a set of textual documents D (corpus) a vector representation is computed.
The two most commonly applied representations are bag-of-words (BoW) and tf-idf. The
BoW model splits a textual document d € D into words called ferms and counts the number
of occurrences of each term in d. Formally, for the set of all terms § in the corpus D a
document d € D is mapped to NIS! where BoW(d) := (s1,...,sx) and s; is equal to the
number of occurrences of s; in d. The tf-idf model builds on this representation by including
a measure of importance based on the rarity of terms. The inverted document frequency
(idf) of term s € S in D equals the logarithm of the inverse of the document occurrences of
s, i.e., idf(s; D) = log(IPl/|{deD|sed}|). The term frequency (tf) of s in d is equal to the
normalized BoW representation of s in d, i.e., tf(s; d) := BoW(d)s/|Bow(d)| where BoW (d);
equals the value of BoW(d) for term s and | BoW(d)| equals the sum of all values. The
tf-idf is defined as tf-idf (d) := (tf—idf(sl; d,D), ... tf-idf (sg; d, D)) where is defined as
tf-idf (sy; d, D) = tf(s; d) - idf (s; D). Since we do not further elaborate on these mappings,
we assume that D is given in either vector representation for simplicity reasons.

A topic model TM is a machine learning model that maps d € D, usually in vector
representation, into a topic space R". Each dimension of this space represents a topic. For
easier comprehension the topic space is often [0, 1]" and document representations are
normalized to one. From this, one can derive ratios of membership for each document to the
topics. A key difference between topic models and regular embeddings, i.e., mappings into
lower dimensional spaces, is that the dimensions of the target space as well as the resulting
images TM(d) are interpretable. This is typically achieved by representing a topic ¢t € T by
a list of terms.

14.2.1 Topic Model Visualization

With our method, we contribute towards a richer interpretation of documents in the topic
space. We compare our method to three commonly used topic model visualizations based on
the SSH21 topic model from Schaefermeier, Stumme, and Hanika [189]. This topic model is
computed on machine learning research papers [7] and has twenty-two topics. The topic
model itself is discussed in more detail in Section 14.4.

The first visualization of SSH21 is given by a similarity heatmap in Figure 14.1. This
plot depicts in each cell the output of a similarity measure between two topics. In this case a

cosine similarity based on the in Section 14.4.1 discussed term-topic relations was used.

This plot is great at visualizing 1-to-1 relations between topics or possibly inferring small
clusters of topics. However, it is difficult to infer n-to-n relations. In addition to that, one is
not able to explain the similarity of topics in terms of term-topic or document-topic relations
solely based on this visualization.

Another commonly used visualization of topic models are embeddings into the R? or
(rarely) to R®. These visualizations aim at visualizing the proximity of topics. A popular
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Figure 14.1: Visualizations of the SSH21 topic model from the literature. The similarity
heatmap (top) is from Figure 4.1 in Schaefermeier, Stumme, and Hanika [189], the vector
space representation (bottom left) is from https://sci-rec.org/maps and Schifermeier,
Stumme, and Hanika [191] and the bottom right heatmap is from Figure 2 in [191].

method for this task is t-SNE [215] as depicted in Figure 14.1 (bottom left). The t-SNE
method computes a non-linear embedding that is, in theory, capable of computing good
visualizations [10]. However, methods like t-SNE are hard to explain due to their non-
linearity. However, in case of non-linear mappings it is very difficult to relate the distance
of topics in such a diagram with the distance of topics in the topic space. This makes it
difficult to assess topic-topic relations from the resulting diagrams. A similar problem arises
when interpreting cluster shapes which possibly are artifacts of the non-linear mappings. In
contrast to that, linear models often fail to separate classes [10] or lack performance for very
low dimensions [8].

The third visualization is dedicated to the topic representations of individual entities like
authors or venues that are in relation to a subset of the documents H € D. The depicted
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Figure 14.2: The weighted term-topic and document-topic relations.

heatmap displays for each year (column) the topic representation! of the author Wolfgang
Nejdl. From this visualization we can infer the topic distribution of an author at track
his/her development over time. Similar to the first diagram, this visualization fails to provide
document-topic or term-topic relations. Moreover, it is not clear how a column is distributed
over the documents in that year, e.g., it is not clear if there are documents on Semantic Web
and Planning & Reasoning or if these topics are unrelated.

With our approach, we use methods from (order-)relational data analysis which do
not rely on numerical embeddings. Instead, our methods extracts hierarchical (n-to-n)
document-topic and term-topic relations with well defined semantic meaning. The employed
method and related approaches are discussed in Section 14.3. In the following sections, we
provide further comparisons of our method to the visualizations in Figure 14.1.

14.3 Conceptual Views on Topic Models

In contrast to the methods in the last section, from now on, we want to discuss hierarchical
approaches based on FCA. For this, we require a proper definition of the incidences that
naturally result from topic models. Based on this we will review previous research on topic
modeling with FCA. We will extend some of these approaches in the next main section and
consecutively develop a novel theory for representing and visualizing topic models on a
global scale.

14.3.1 Incidence Relations in Topic Models

The goal of this section is to present a principled approach to extract relational structures
from topic models. Every topic model TM exhibits at least two fundamental relations, i.e.,
the topics for any document d € D and the terms for a given topic ¢ € T. Often the relations
of TM are weighted, e.g., a document might have topic #; with a weight of w € [0, 1]. We
depict these relations in Figure 14.2 via a document topic matrix (left) and a topic term

matrix (right). The first matrix represents the documents in a lower dimensional topic space.

The second matrix provides an interpretation of the topic space and is used for state-of-the-art
topic model evaluation measures [108, 119] like npmi [179].

The document topic matrix can be extracted by embedding each document d € D by the
topic model TM into the topic space, i.e., computing TM(d;) = (w; 1, ..., Ww; n). For the
computation of the term topic matrix there are multiple options depending on the used topic
model method. The first is to embed a document that is only composed of term ¢; into the
topic space. This results in a row in the term topic matrix. The second option is applicable
to methods that have an additional decoder map from the topic space to the document space,

!Each column depicts the mean topic representation of all documents published in a given year.
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e.g., auto-encoder or NMF. In this case we can map the vector (0,0, ...,1,...,0) that has a
zero for all topics but ¢; by the decoder. The result is a column in term topic matrix.

Based on both matrices, we can infer incidence relations, i.e., binary relations D € D XT
and S C S X T, in the following way. One natural approach is to apply threshold values to
the weights. We apply this to the document topic matrix by selecting a value ¢ € [0, 1].
This results in the document-topic-incidence Ds with (d, 1) € Dy iff the weight for (d, 1)
in the document topic matrix is greater than or equal to 6. We pursue a different path
for the term-topic-incidence S. We extract for each topic the top-n terms, i.e., the top n
entries in the respective column in the term topic matrix. For a term s € S and a topic
t € Tis (s,t) € S, iff the weight of (s,7) is among the top-n greatest weights in column ¢
in the term topic matrix. We denote the respective contexts by T(D)s = (D,T, D) and
T(S), = (S, T,S,).

14.3.2 Analyzing Topic Models with Formal Concept Analysis

The state-of-the-art on analyzing topic models with FCA is to derive a formal context
from the document-topic O and the term-topic relation S [56]. This is done by applying
thresholds to both relations as discussed in Section 14.4.1.

However, for the term-topic relation S, we use the top-n term relation. This relation is
used in evaluation measures, like npmi [179], which correlate with human interpretation of
topics [108, 119]. So far, the resulting concept lattices have mainly been used as a means to
navigate between forum entries.

14.4 Conceptual Views

We now extend the just introduced procedures by means of the novel ordinal motifs approach
(see Chapter 9). We want to introduce and demonstrate our novel approach based on an
already published and extensively discussed topic model [189] which we call in the following
SSH21.

It was build based on a document corpus on 35,200 scientific publications from the
realm of machine learning research. It was consecutively evaluated on a corpus of about
350,000 documents from the same domain. All documents were retrieved via the Semantic
Scholar Open Research Corpus (S20RC?) [7]. The employed topic modeling technique is
non-negative matrix factorization [135], a widely used procedure that has several advantages
with respect to explainability [189]. We may remark at this point that our notion is agnostic
with respect to the topic modeling technique. The topic model consists of twenty-two [189,
Table 4.1] topics which were manually assigned based on the top ten terms per topic. The
training corpus and therefore the resulting topic model has 14,828 terms.

14.4.1 Computing Incidence Relations

For computing the document-topic-incidence D we have to set a threshold §. Since the
respective document topic matrix is (or can be) row normalized we have to choose a value
from [0, 1]. The goal for any choice of d is to derive a sparse [142] document topic incidence.
Thereby documents are mainly represented by their most important topics. Moreover, this
leads to a comprehensibly sized concept lattice, which fosters the overall understanding of the
results. However, at the same time increasing the values for § to much may lead to loosing

2https://github.com/allenai/s2orc
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Sebastian Thrun 398 89 51 31 18 | 13
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Figure 14.3: The density of the document-topic relation for given thresholds (bottom) and
the concept lattice sizes for given entities and thresholds (top).

substantial parts of the concept lattice structure. We decided to determine ¢ based on the
resulting density of Ds. That is |D|s/|D x T|, which is depicted on the left in Figure 14.3.

We also want to propose a threshold estimation method tailored for investigating
particular entities of a document corpus, such as authors or publication venues. This requires
background knowledge about the topic corpus, e.g., which documents belong to a particular
author or which documents were published at a certain venue. To address the implicit
goal for achieving a comprehensible number of formal concepts in these cases, we also
computed their number for selected values of ¢ and four different authors as well as four
different venues, see Figure 14.3 top. Computing the number of concepts for a particular
scientist a or venue v means that we considered only documents that were co-authored by a
or published at v. The result is an induced sub-context of the T(D)s formal context. For the
set of venues we decided to look into ECML, RecSys, NeurIPS and Neural Networks as they
were extensively discussed for the SSH21 [189]. As for the set of authors we chose Thrun,
Scholkopf, Fox and Nejdl since their individual publication trajectories were extensively
discussed in a follow-up paper [191].

Based on the results that we achieved and reported in Figure 14.3, we decided for the
threshold 6 = 0.25. We acknowledge that the number of formal concepts is still high in
some cases. We depict the resulting number of concepts as well as the sizes of the induced
sub-contexts in the first four columns of Figure 14.4.

Formal Concept Analysis has a rich tool-set of data reduction methods. A particular

feature of these tools is that they allow for controlling the (conceptual) error (see Chapter 11).
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Table 14.4: The table displays the number of objects, attributes, the density and the number
of concepts of the context derived from D for four authors and four venues. The sixth
column depicts the number of concepts in the 2, 8-core and the last column the number of
concepts after applying TITANIC with a minimum support value of three percent.

H d?(f];ljgggs ‘ (attt?ipblﬁtseS) ‘density‘concepts‘ Coﬁgg%ts ‘ CO\I/llgé’il)ts ‘
Sebastian Thrun 266 22| 0.055 51 11 11
Bernhard Scholkopf 522 22| 0.059 80 50 22
Dieter Fox 244 22| 0.057 42 16 15
Wolfgang Nejdl 387 22| 0.059 58 28 21
ECML 639 22| 0.061 108 52 25
RecSys 856 22| 0.058 60 29 23
NeurIPS 6233 22| 0.060 212 202 25
Neural Networks 3521 22| 0.061 155 144 21

The threshold for the S relation will be discussed in Section 14.4.6.

14.4.2 Conceptual Data Reduction

In order to reduce the size of the just computed incidence relations we rely on two established
methods from FCA, TITANIC [208] and pg-cores [90]. The overall goal is to compute
hierarchical representations of comprehensible size. We consider diagrams of size up to
thirty or in some cases up to fifty concepts to have diagrams that are presentable in a human
comprehensible way.

pg-cores The technique pg-cores computes the densest part of T(P). That is, the
largest subset of documents H C D and topics S C T such that for each document d € H
has at least p topics and every topic ¢ € S has at least ¢ documents in 9. This method can
easily be restricted to a proper subset of the documents, such as all documents belonging
to an author a or a venue v. We then call the result the core fopics of an author or a venue
respectively. The pg-core of a formal context is an induced sub-context S < T(D). Thus,
the identity map ¢ on H yields a local scale-measure of T(D).

The proper choice of parameters p, g is supported by an importance measure. A
parameter pair is considered to be interesting with respect to the data if every increase in p
or g causes a large reduction in the number of formal concepts. In our study this lead to the
pair p =2 and g = 8.

TITANIC The TITANIC algorithm computes the hierarchy of formal concepts in a
top down fashion, with respect to a pre-defined importance parameter. For this parameter
one can choose the value of a monotonous function on the set of concept intents. That is
monotonous with respect to set inclusion. A commonly used function for this task is the
support function, i.e., suppg : Int(K) — [0, 1], where supp(B) = 18'l/|G|. In other words,
the support of an intent B reflects the relative number of objects that have all attributes from
B. Based on this, the TITANIC algorithm computes the hierarchy of all formal concepts that
satisfy a minimum threshold value ¢ € [0, 1]. The result is called iceberg concept lattice,
i.e., a join-semilattice. The main advantage of the TITANIC algorithm is that it computes
concept hierarchies of readable size. In our case study on the SSH21 topic model we found
the value ¢ = 0.03 to be sufficient for in Section 14.4.1 computed sub-contexts.

The reduction in terms of formal concepts by both methods are reported in the last two
columns of Figure 14.4.
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Figure 14.5: The concept lattice for Bernhard Scholkopf (top) and Wolfgang Nejdl (bottom).

14.4.3 The Resulting Conceptual View and Interpretation

In Figure 14.5 we depict the iceberg concept lattice for the researcher Bernhard Scholkopf?  Author views
B (top) and Wolfgang Nejdl* By, (bot). We employ order diagrams with in short-hand
notation. Due to the large quantity of documents, we annotated extent sizes below concepts,
e.g., |Support Vector Machines'| = 68.
As a first observation, we can read from By that only seven topics out of twenty-two ~ Wolfgang Nejdl view
were identified as core topics of Wolfgang Nejdl by the combined method. The most frequent
topic is Semantic Web which occurs in forty-five documents. Out of these, sixteen also have

3https://dblp.org/pid/97/119.html
4https://dblp.org/pid/n/WolfgangNejdl.html


https://dblp.org/pid/97/119.html
https://dblp.org/pid/n/WolfgangNejdl.html

The benefit of structure
based reductions

Bernhard Scholkopf
view

Comparison of views

Ordinal motifs

The studied motifs

The N3+ ordinal motif

Crowns in topic views

192 CHAPTER 14. THE GEOMETRIC STRUCTURE OF TOPIC MODELS

the Planning & Reasoning topic and fourteen are also associated to Search Engines. The
second most frequent topic is Planning & Reasoning, which occurs in thirty-six documents.
Overall, the Bwy iceberg concept lattice has twenty-one concepts.

This novel approach for a comprehensive analysis of a topic model with respect to an entity
allows for several new insights. By combining the core approach with TITANIC, we identified
those topics for an entity that are not only frequent but also strongly interconnected [90].
With this structural approach, we overcome the limitations of commonly used methods that
are based on filtering topics by frequency. For example, selecting the strongest signals in
Figure 14.1 would result in a total ordered ranking without structural insights. In particular,
one cannot infer how the topics are connected in terms of shared documents. Another
advantage of our approach is that infrequent and isolated topics are omitted.

We present the same analysis for B,¢. For Bernhard Schélkopf we can identify twenty-
two concepts comprised of eleven core topics. The most supported and structurally important
topics are Support Vector Machines with sixty-eight documents and Kernel Methods with
fifty-seven documents. The topics coincide in thirty-four documents. The large overlap of
these topics is not surprising due to the close connection between SVMs and kernel methods.

Apart from the individual analysis of an entity’s topic structure, our novel approach does
also enable an in-depth cross entity comparisons. Comparing B¢ and By, we observe that
both authors have two topics in common, namely Learning Knowledge Bases and Neural
Networks.

Despite that, these topics are completely differently interconnected within their respective
research. While Wolfgang Nejdl studies Learning Knowledge Bases in the context of Semantic
Web, Social Media and Planning & Reasoning, Bernhard Scholkopf studies Learning
Knowledge Bases in the context of Support Vector Machines. An analog differentiation can
be found for Neural Networks.

Ordinal Motifs in Lattices: The geometric aspects of our novel analysis method allow
the application of ordinal motifs. This method extracts sub-structures within the concept
hierarchy and provides visual geometric interpretations. We discuss the three types of ordinal
motifs that occurred in our data. It is quite possible that for other data sets other ordinal
motifs might occur. Nonetheless, our method can be applied analogously. Similar to our
experiment in Section 9.6, we study the ordinal motifs on the set of attributes, i.e., via
scale-measures on the dual contexts.

In Figure 14.6 we show in the first two columns the nominal ordinal motif on 3 + 1
elements, crown ordinal motif on 10 elements and contranominal ordinal motif on 3 elements
in context and concept lattice representation. For the contranominal ordinal motif we depict
additionally the inner concepts in a different layout. By inner concepts we refer to the
non-top and non-bottom concepts. We call this layout the tulip layout. This layout results
in more readable drawings for join-semilattices, since it is free of edge crossings. The last
column is discussed in greater detail in Section 14.5. In short, it employs a novel geometric
technique for drawing lattices.

The nominal ordinal motif is a simple structure that reflects the incomparability (Fig-
ure 14.6) of the related elements (topics). A slightly more expressive structure results by
adding an additional (artificial) + object as the meet of all elements of the motif. This motif
can be observed in real world data, for example, it occurs in Figure 14.12 (see concept with
the term learning). Equipped with the + version of the ordinal motif, we will demonstrate a
novel geometric drawing technique Section 14.5.

The crown motif can be identified by its zig-zag pattern and reflects that there is a
round-trip or a cycle along topics and documents (see Figure 14.6, second row). We were
able to identify many crown ordinal motifs in B and B, . The largest crown ordinal
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Figure 14.6: The nominal (top) crown (middle) and contranominal (bottom) ordinal motif in

context (left), concept lattice (middle) and geometric drawing style (right) representation.

The nominal context N3 has an optional + object and two different display styles based on
the existence of this element. The contranominal ordinal motif has an additional layout,
namely the tulip layout, for its inner concepts.

motif in EBS is a cycle over the topics (SVM, KM, BI, O, CLass, SVM). In §WN we find

many cycles on four elements. For example, one of them is (SemW, LKB, PR, SM, SemW).

The occurrence of such a motif may reflect a topic based cycle within the research history
of an author. Hence, these cycles constitute interesting candidates for a temporal topical
analysis. In any case, they are a useful tool to guide readers through an author’s research
documents.

Finally, the contranominal ordinal motif can be visually identified using the tulip layout
in the lattice diagrams. This motif reflects that there is a unique set of documents for any
combination of topics. Moreover, this type of motif represents a densely explored area

Contranominal ordinal
motifs in topic views
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within the topic space. By explored, we refer to the research activities of the respective entity,
e.g., an author. For example, within By, we find that Social Media, Semantic Web and
Learning Knowledge Base, or Semantic Web, Neural Networks and Search Engines constitute
a contranominal structure. Furthermore, we find within §BS the contranominal motifs
Support Vector Machines, Kernel Methods and Optimization, or Support Vector Machines,
Optimization, Classification. The involved topics are structurally important within @BS, i.e.,
within the research of Bernhard Scholkopf. Moreover, one may deduce from such structural
results that the occurring topics are highly related within the machine learning domain. At
least they represent a candidate for an important topic subset. Beyond the occurrence of
ordinal motifs, the absence of such substructures also carries information.

Particularly important are cases where a motif almost occurs, i.e., adding a few incidences
results in a motif. These may reflect missing lines of research for future investigations. In
the same way, almost occurring motifs may indicate that important data is missing or has
been filtered in the process. For example while processing the corpus data with pg-core and
TITANIC, we may have removed motifs with low support.

Concluding this analysis, we want to motivate our novel approach (Section 14.5) by
providing a different geometric interpretation of the motifs. For example, the crown ordinal
motifs reflect a cycle shape of objects (documents) in the topic space. Hence, one should
consider a drawing that reflects this shape directly. Analogously, the contranominal ordinal
motif reflects a hyperball of documents in the topic space. Their importance was addressed
in the text above. Yet, these structures cannot be (visually) recognized easily in the lattice
diagram. Therefore, we represent them in our novel geometric representation in a unique
shape, i.e., a filled n-polygon where n is the dimension of the hyperball.

Ordinal Motifs in Lattices — Venue Analysis: Analogous to the analysis above,
we present an ordinal motif analysis for the Recommender Systems (RecSys), NeurIPS and
Neural Network venues on the same reduction parameters. We depict their iceberg concept
lattices in Figure 14.7.

First, we observe, that the concept hierarchies differ in their ordinal structure. In
particular, we see that the diagram for RecSys is the only one where we attribute annotations
on sub-concepts: Classification, Mining, Learning, Knowledge Bases and Matrix Methods
only occur in concepts where Recommender Systems occurs. This may be interpreted
as Recommender Systems dominating the other topics. This relation constitutes a so far
not discussed ordinal motif, called ordinal ordinal motif [sic] (see Figure 14.16). We
acknowledge that the dominating role of the Recommender Systems topic is not surprising.
Yet, we may point out that this fact was discovered in an unsupervised fashion, without
background information. A majority of papers involve this topic, which is not surprising
given the title of the conference. Striking the same chord, we find that the Recommender
Systems topic occurs in the most number of documents. There are numerous nominal ordinal
motifs of size two. The Search Engines topic gives rise to nine nominal motifs without the +
element. We can conclude from this, that the topic Search Engines is isolated in this concept
lattice structure. All other nominal ordinal motifs are in relation to the Recommender Systems
topic, e.g., Social Media and Recommender Systems, or Semantic Web and Recommender
Systems. The latter, are in fact nominal + motifs within the lattice structure, since their meet
is present. We observe no (non-trivial) contranominal or crowns ordinal motifs.

We want to summarize the novelty of the ordinal approach with respect to the RecSys
data. Of course, the identification of Recommender Systems as the most important topic
is a simple question of counting documents and does not require the ordinal approach.
Schaefermeier, Stumme, and Hanika [189] enabled with their topic space trajectories (i.e.,
heatmaps of topic distributions over time) the identification of co-occurring topics. Yet,
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without the conceptual hierarchy the relation between different topics is unknown. For
example, is Search Engines either (1) dominated by, (2) incomparable to, or (3) coinciding
with the topic Recommender Systems? Given the lattice diagram (cf. Figure 14.7) we can
answer this question. The analytical building blocks ordinal motifs allow for a structured
approach to answering the question above. Moreover, they enable an automatic extraction of
dominating topics, incomparable topics, and incomparable and meet coinciding topics.

For the other two examples entities, i.e., NeurIPS and Neural Networks, we observe
different results. In short, different motifs occur, many non-coinciding topics and there are
no dominating topics. Remarkable is the occurrence of contranominal ordinal motifs. For
the NeurIPS entity, we find a contranominal ordinal motif of Optimization, Kernel Methods
and Bayesian Inference and for the Neural Networks entity, we find the contranominal ordinal
motif Neural Network, Neurons, Dynamic Networks and Optimization. Both indicate that
there is a strong connection within the respective topics, i.e., every subset combination of
topics occurs. However, all three contranominal topics do not occur at the same time.

A more global observation is that the conceptual structures of NeurIPS and Neural
Networks have a larger width compared to RecSys. In case of RecSys the width is nine while
Neural Networks has a width of thirteen and NeurIPS of sixteen.

While Neural Networks and NeurIPS have similar frequent topics, their conceptual
structure looks quite different. There are more frequent combinations that involve the topics
Neural Network or Neural Dynamic Networks within the view of the Neural Networks entity.
From this observation, we can infer that both entities have a different topic focus.

14.4.4 Conceptual Views on Topic Models over Time

A particular feature of the just introduced methods is that they enable an investigations over
time. We demonstrate this on two examples. First, we consider the conceptual structure of
Wolfgang Nejdl, as depicted in Figure 14.8. In this figure, we show the diagram for three
different time periods. These periods were chosen based on the following observation within
the heatmap in Figure 14.1. We empirically identified three main periods in Wolfgang Nejdls
research history. The first is from 1987-1999 where he researched mainly on Planning &
Reasoning. Second, the period from 2000 to 2008 which seems to be a transition phase
where both the Planning & Reasoning and Semantic Web topics are present. Lastly, there is
the period starting with 2009 where he focused primarily on Semantic Web.

For each period, we annotated at concepts their support value, i.e., the relative number
of research articles for the corresponding topics. We highlighted the supported concepts (or
toned down the non-supported concepts) to make the resemblance to the original structure
more clear. It is important to note that we encountered the case that a set of topics is
not closed for the period 1987-1999. Nonetheless, we stick to the common conceptual
representation, but highlighted non-closed topic sets in red (cf. Chapter 11).

Based on the support values, we see that Planning & Reasoning is the most important
topic in the first period. Even more, as we can infer from the non-red nodes, all topics
coincide with Planning & Reasoning. The second most frequent topics are Search Engines
and Reinforcement Learning. Another observation we can draw is that a majority of the
topic combinations are not supported or closed at this stage. In the second time period,
we see that almost all topic combinations are supported. The exception is the combination
of Social Media and Semantic Web. The Planning & Reasoning topic is less supported.
The Semantic Web topic has the highest support value. In the last period the activity on
Planning & Reasoning declines again. Five of eight topic combinations involve the Semantic
Web topic. Compared to the second diagram, fewer topic combinations (eight compared to
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sets that are not closed in a given time interval are highlighted in red.
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twelve) are supported. Overall we see a shift in activity from concepts depicted on right to
concepts on the left.

We approach RecSys in the same way (see Figure 14.9). Here halved the time lifespan of
the venue into the time periods 2007-2014 and 2015-2020. In contrast to Wolfgang Nejdl,
we do not observe notable conceptual differences over time. One may take this for evidence
that RecSys has a stable focus.

14.4.5 Association Rules in Conceptual Topic Views

The introduced conceptual structures allow for the extraction of rules between topics. In this
section, we study such rules via the Luxenburger basis [146] (see Section 5.4). That is, a
basis for the set of all rules that satisfy a minimum support n and a minimum confidence
v. For computing the Luxenburger basis for the entities of D (see Section 14.4.2) we
chose a minimum support of three percent. This is the same parameter as for the TITANIC
algorithm in Section 14.4.2. Hence, the computed rules are reflected by the iceberg concept
lattices diagrams (cf. Figures 14.5 and 14.7). For y we chose fifty percent in order to find

Information

Classification,

Recommej
Systems

Information

Figure 14.9: The iceberg concept lattice for the RecSys venue. The support of each concept
for the years 2007-2014 and 2015-2020 is annotated next to each concept. Attribute sets that
are not closed in a given time interval are highlighted in red.
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meaningful rules.

The resulting bases are depicted in Figure 14.10. In the following, we discuss the
results for the considered entities. For Bernhard Schélkopf the rules identify a strong
inter-dependence between Support Vector Machines and Kernel Methods. This is consistent
to our findings in Section 14.3. For Wolfgang Nejdl, we first note the overall importance
of the Semantice Web topic. Four out of five rules have Semantice Web in their head. Yet,
this topic never occurs in the body of a rule. This is in contrast to the topics of Bernhard
Scholkopf. For RecSys, the found rules confirm our results in Section 14.3, since all rules
have the topic Recommender Systems in their head. The same applies to Neural Networks,
where all rules have Neurons Dynamic Networks in their head. NeurIPS on the other hand
does not have any rules in the given basis for the given parameters. This may indicate that
the NeurIPS is a topic diverse venue within the field of machine learning.

We may note that the support values of the given topic combinations can also be read
directly from the concept diagrams (see Section 14.4.3). However, the computed rules allow
for a more comprehensive representation of the most confident topic dependencies.

Table 14.10: The luxenburger basis for the document topic relation and entities from
Section 14.4.2 for a minimum support of three percent and minimum confidence of fifty
percent.

Luxenburger Basis | Support| Confidence
Bernhard Scholkopf
Support Vector Machines — Kernel Methods 0.48 0.50
Kernel Methods — Support Vector Machines  |0.40 0.59
Wolfgang Nejdl
(0 — Semantic Web 1.00 0.61
Reinforcement Learning — Planning & Reasoning 0.10 0.62
Search Engines — Semantic Web 0.36 0.51
Reinforcement Learning — Semantic Web 0.10 0.50
Learning Knowledge Bases — Semantic Web 0.16 0.50
RecSys
0 — Recommender Systems 1.00 0.92
Information Retrieval — Recommender Systems 0.08 0.68
Planning & Reasoning — Recommender Systems 0.13 0.88
Semantic Web — Recommender Systems 0.09 0.77
Social Media — Recommender Systems 0.43 0.86
Graphs — Recommender Systems 0.05 0.81
Neural Networks

@ — Neurons Dynamic Networks | 1.00 0.60
Image Recognition — Neurons Dynamic Networks |0.12 0.73
Support Vector Machines — Neurons Dynamic Networks |0.10 0.61
Neural Networks — Neurons Dynamic Networks|0.44 0.54
Nonlinear Control — Neurons Dynamic Networks|0.10 0.67

NeurIPS ‘

Results
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14.4.6 The Conceptual Term-Topic Structure

The topic-term relation S (see Figure 14.2) entails important information on the SSH21
topic model. It allows us to explain the topics of SSH21 via terms s € S. As discussed in
Section 14.4.1, we derive an incidence structure S,, from S. This parameter is the number
of top-n terms per topic. Our choice for the n € N depends on the corresponding number of
formal concepts, as depicted in Figure 14.11. From the plot, we infer that the parameter
of n = 10 (see Syp Figure 14.15) is reasonable, as it results in about fifty formal concepts.
This parameter choice is common in the literature [56, 179, 189], independently of our
requirement on a low number of concepts.

We depict the concept lattice of Sj¢ in Figure 14.12. We omitted to present the bottom
concept, since it was not supported. An advantage of this structure is that we can explain
found topic dependencies in terms of their shared terms. For example, the topics Kernel
Methods and Support Vector Machines are connected via the term kernels. Analogously, the
topics Neural Networks and Graphs are connected via the term nodes.

We highlighted several contranominal and crown ordinal motifs using different colors.
For example, the topics Search Engines, Semantic Web and Social Media are of contranominal
structure. For this, the terms web, user and content are responsible (highlighted in orange).
Another example is the set of topics Planning & Reasoning, Matrix Methods and Leaning
Knowledge Bases, which are also of contranominal structure. For this motif, the terms
domain, learning and knowledge are responsible (highlighted in blue). Hence, these terms
are pair-wise differently used in the SSH21 topic model, yet they are very similar. One may
deduce from this observation that this is also true for the research corpus D. An example
crown motif is given by the sub-structure highlighted in red (right). This motif spans from
the topic Classification over the topics Neural Networks, Neurons and Dynamic Networks to
Reinforcement Learning and back to the Classification topic. A larger crown is depicted in
purple on the left in the diagram.

The proposed method allows for meaningful and structural investigations of the SSH21
topic model. This distinguishes our method from other approaches, such as those presented
in Figure 14.1 and Figure 14.15. In particular, our method is capable of identifying
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Figure 14.12: The concept lattice of the term-topic relation of the SSH21 topic model.
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dependencies in the topic space, such as the cycle between topics that emerges from the
crown motif. In summary, the conceptual structure of Sjo allows for a global and deep
investigation of the SSH21 topic model.

14.4.7 Zoom-In on topics

The limitation of n = 10 can be softened by focussing on particular topics of interest. We
call this zoom-in on topics. For example, in our experiment, we are interested in concepts
on Neural Networks. With the same reasoning as in the last section, i.e., small number of
concepts, we found n = 30 to be appropriate. The direct approach to compute all concepts
that contain Neural Networks is to first compute all concepts of S3p and consecutively filter
them for the topic in question. In Figure 14.13 we depicted the result. Again, we omitted the
unsupported bottom element. Out of 157 concepts do twenty-six include the Neural Network
topic.

We see in the diagram that some topics are drawn as lower neighbors of other topics.
Restricted to the zoom-in on Neural Networks, our method identifies several implications.
For example topic terms of Kernel Methods are also topic terms of Matrix Methods. Another
example is that topic terms of Optimization are also topic terms of Reinforcement Learning. At
this point we want to note two important points about the interpretation of these implications.
First, the computed implications are valid within the analyzed topic model. Hence, any
logical conflicts with respect to real world observations (or expert assessment) may indicate
flaws of the topic model. Second, for any implication the inverse is not necessarily true.

We can identify several ordinal motifs in the zoomed-in structure. For example, (1)
Classification, Matrix Methods and Optimization, and (2) Clustering, Learning Knowledge
Base and Optimization. Both are contranominal ordinal motifs.

Synonyms are important for training and applying topic models. Within the scope of
Neural Networks we can draw from the structure questions, such as: What differentiates
the terms algorithm and method? In which topics are they used as synonyms? The same
questions can be formulated for train and learn.

14.5 The Geometric Structure

Important aspects of data and their interpretation are captured through geometric properties.
This is in particular true for incidence geometries. The study of ordinal motifs allows for
further geometric interpretation of the sub-structures within the topic space. In the last
section, we analyzed the topic model with singular ordinal motifs at a time. The goal now
is to employ the comprehensive geometric structure, i.e., the set of all ordinal motifs. The
geometric structure of a (contextual) data set is a multi-relational hypergraph structure. In
this hypergraph every hyperedge relation encodes one type of ordinal motif Sy, ..., S;,.

Definition 53 (Geometric Structure). Fora contextK = (G, M, I) and families of ordinal
motifs Sy, ...,S, is the geometric structure of K with respect to Sy,...,S, a multi-
hypergraph (M, E, ..., E,) where

E; == {N C M | N is of ordinal motif type S; in K}.

In the present chapter, we study ordinal motifs with respect to attribute sets. Therefore,
all notions are translated to their dual counterparts with respect to the formal context. The
question “Is K[G, N] of ordinal motif type?” is a formal decision problem called the
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Figure 14.13: Zoom in on the Neural Network topic of the term-topic relation for the SSH21
topic model. The top term parameter is set to thirty.
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ordinal motif problem (see Problem 15.2). Formally, we employ the surjective local full
scale-measure ordinal motif problem. The corresponding computational complexities were
investigated in Chapter 9. All instances of the ordinal motif problem that we investigate in
this chapter are in P (see Proposition 25).

We may note that we do not impose any particular choice of S;. The selection of suitable
ordinal motifs [101] is up to the analyst.

14.5.1 Geometric Structure Diagram

To make the geometric structure human accessible, we decided for a diagrammatic presenta-
tion. We define a set of drawing rules for each ordinal motif type. After that, we apply our
method to the SSH21 topic model. We call the resulting figure the geometric drawing of K.
This method is inspired by the geometric representations introduced by Wille for drawing
concept lattices [222].

In this geometric drawing, every attribute m € M (i.e., topic for SSH21) is represented
by a node. The hyperedges of an ordinal motif type are drawn as connections between nodes.
Each ordinal motif type has its own drawing style to ensure that they can be distinguished.
The connection lines are annotated by the objects g € G (i.e., terms for SSH21) that induce
the respective ordinal motif. This allows for deriving explanations of ordinal motifs both in
terms of the attributes they connect and the objects they entail.

We present the drawing rules for each type of ordinal motifs in greater detail:

Nominal There are two cases of nominal ordinal motifs that we distinguish with respect to
the objects they entail. In case there is an object g € G that supports all attributes N,
i.e., g € N’, we draw an edge between all pairs of attributes n;,n, € N and annotate
the connecting lines by g. Otherwise, no edge is drawn. A prototypical example for
both cases is shown in Figure 14.6 (top right).

Crown Crown ordinal motifs do not require their own drawing rule. Instead, they can be
read from (closed) cycles of nominal ordinal motifs. Yet, two conditions need to be
satisfied: (1) Objects must not occur more than once along a cycle. (2) No other edges,
apart from the cycle edges connect cycle attributes. A prototypical example for the
crown ordinal motif on ten elements is depicted in Figure 14.6 (middle right).

Contranominal A contranominal ordinal motif encodes that any subset D C N is supported
by a unique set of objects H C G. Therefore, they reflect a densely connected part
within the conceptual structure. Our drawing shall reflect this by applying the drawing
rule: contranominal hyperedges of size n are drawn by a filled n-polygon that connects
the attributes N. The edge between two attributes nj,n, € N then annotated by all
objects that they have in common, i.e., by the objects {n;, ny}’. Prototypical examples
for contranominal ordinal motifs of size three and four can be found in Figure 14.6
(bot right) and Figure 14.16 (bot right).

Ordinal Ordinal motifs that are of ordinal> type encode rankings among the attributes. In
such a motif, the greatest element subsumes all the incidences of a smaller attribute.
We reflect this in the diagram by the drawing rule: an attribute (node) is drawn such
that it overlaps the next lower ranked attribute (node). For this kind of motif, objects
are annotated next to nodes. At each attribute (node) we annotate all objects such

SWe remind the reader that ordinal motif is a defined class of objects and ordinal type addresses a particular
sub-class.
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that there is no lower ranked attribute that is in incidence with this object. This
procedure is in accordance to the short-hand notation of concept lattice line diagrams.
A prototypical example is depicted in Figure 14.16 (top right).

Interordinal The interordinal ordinal motif encodes two ordinal motifs of ordinal type,
whose rankings on the attributes are complementary® to each other. We have depicted
an example on four elements in Figure 14.16 (middle right). To display an interordinal
ordinal motif one should draw an hyperedge that encloses the motif’s attributes. The
objects are annotated next to the attribute nodes based on the two rankings and the
ordinal drawing rule. Objects from the same ranking have to be drawn on the same
side of the hyperedge.

Figure 14.14: The geometric drawing of the SSH21 topic model for top-ten terms (cf.
Figure 14.11). Topic and term names are abbreviated for better readability. Their full length
names can be inferred from Figure 14.15.

SA natural occurring example for this are the “x is hotter than y” and “y is colder than x” relation.
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14.5.2 The Geometric Structure of SSH21

The resulting geometric drawing for SSH21 is depict in Figure 14.14. The drawing includes
nominal, contranominal and crown ordinal motifs. There are no non-trivial ordinal or
interordinal types in the topic model structure. This fact is, however, not surprising, since the
topics within a topic model are optimized to be independent of each other. For readability
reasons, we abbreviated the terms and topics. Their un-abbreviated versions are listed in
Figure 14.15.

In order to increase the readability and comparability to the last section (cf. Figure 14.11),
we have highlighted ordinal motifs in the same color. The representation of the relations
in the geometric drawing is fundamentally different to line diagrams. By design, in the
geometric drawing it is easier to identify ordinal motifs. For example, we can easily read
from the diagram that there are eight contranominal ordinal motifs. Out of the twenty-two
topics, Semantic Web (SW) occurs in five contranominal ordinal motifs and is therefore
structurally very important for within the topic model. This is followed by the Matrix
Methods (MM) topic which occurs in four contranominal ordinal motifs. In contrast to line
diagrams, this information is easy to infer from the geometric drawing. The Non-Linear
Control (NLC) topic is very isolated and does not exhibit any (non-trivial) connection to
other topics.

Crown ordinal motifs can easily be read from the structure as (closed) cycles. For
example, we find NN — Class — RL — NDN —NN (orange) and SW — IR — DR — SE — SW. Both
crowns identified in the line diagram Figure 14.11 are highlighted in the geometric drawing
in the same color.

We invite the reader to compare the geometric drawing to classical approaches such
as topic-topic heatmaps and t-SNE embeddings, as depicted in Figure 14.1. Based on this
comparison, we argue that geometric drawings of topic models allow for a non-flat analysis
of the inter-topic relation and their respective terms.

14.6 Limitations & Conclusion

In this chapter, we proposed a comprehensive approach for analyzing and visualizing high
dimensional topic models. In principle, this method is applicable to arbitrary matrix shaped
data sets. We have shown that our method is capable of capturing insights about researchers
and venues from the realm of machine learning research. Moreover, we demonstrated how
conceptual structures can be used to track the change in their topics. For our analysis, we
employed ordinal patterns which occurred frequently in the data. These sub-structures allow
for a rich interpretation of the topic model. In particular, the inter-topic and term-topic
relation.

This interpretability, of course, depends on the overall understanding of the terms of the
topic model. Hence, although our method is applicable to arbitrary matrix shaped data sets,
meaningful interpretations are limited by the available background knowledge. Another
limitation of our method is the number of concepts one can visualize in a readable fashion.
This number is dependent on the number of topics, documents and selected top terms per
topic. To compensate for this limitation, we proposed the use of (graph) core structures.

As the present chapter has established a robust link between topic models and their
conceptual analysis, we envision several directions for future work. First, the absence of
(non-trivial) ordinal and interordinal motifs within the analyzed topic model is not surprising.
This due to the fact that topic models optimize to compute independent (non-nesting) topics.
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Yet, this is not true in the case of hierarchical topic modeling. The logical next step is to
apply our methods to these models, e.g., HLDA or PAM [40, 83, 138, 231].

Second, within the research field of human-computer interaction, we propose to conduct
a user study in order to gather statistical evidence. Moreover, this may reveal new insights
into the developed geometric drawings and potentially their visual optimization. Third, in

order to conduct a study, as proposed above, a difficult algorithmic task has to be solved.

Although, the geometric drawings are well-defined, their algorithmic computation is an open
problem.

Human-centered design
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Outlook and Open Problems

With our work, we have expanded the capabilities of conceptual data scaling in more than
one way. In Part II, we have enhanced the understanding of the four scaling tasks, i.e.,
conceptual scaling, inverse conceptual scaling, conceptual data reduction and conceptual
data compatibility. In Part III, we have developed multiple scaling methods for data
representations in the realm of machine learning and showed how they contribute to the field
of explainable artificial intelligence. In the following we recall from this work three open
problems that we find to be the most important and promising ideas for future work.
Principle Ordinal Component Analysis Our contribution to the identification of standard
scales provide foundational methods that can be used for a new type of concept lattice
decomposition. This decomposition should extract for a given formal context K the minimum
number of standard scales S such that K can be fully measured by S. Such a principle
ordinal component analysis can be seen as generalization of existing decomposition and
factorization methods and may lead to fewer and more interpretable parts.

Ordinal Motifs as Tool for Data Interpretation We have shown in many applications
that ordinal motifs are very useful to interpret data and extract higher level relations on
the conceptual level. We can envision that ordinal motifs can establish themselves as
standard tool of analysis alongside implications and concept lattices. For this we provided
the theoretical and analytical framework and showed connections between ordinal motifs
and implications. Despite that, there is lots of room for improvement in terms of efficient
algorithms, user-friendly software, data visualizations and applications. In particular, the
study of textual explanations and the geometric structure may benefit from human-centered
approaches.

Topological data analysis With the geometric structure we have presented a new structure
to derive global explanations for (machine learning) data representations. Besides that, we
have shown that the set of hereditary ordinal motifs are simplicial complexes. These allow for
applications of methods from the realm of topological data analysis. This not only connects
two fields of research, but — in combination — can improve the overall state-of-the-art on
global data explanations.
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Conclusion

With this thesis, we have explored the use of conceptual structures as human comprehensible
knowledge representations in many applications. We focused on two core tasks within the
realm of conceptual data analysis. The first deals with the problem on how to represent and
interpret data through conceptual structures. This is done by a process called conceptual
scaling which defines (ordinal) conceptual scales that encode how the data is to be interpreted
on the ordinal level. Here we extended the state-of-the-art with several methods on how to
derive meaningful conceptual structures from machine learning data representations and how
to interpret them. The second task deals with the size of the derived conceptual structure
and how to compute data reductions that are explainable and consistent to the conceptual
interpretation of the data, i.e., the defined scales. Here, we introduced a theory on how
to identify consistent conceptual data reductions, how to derive them and how to explain
them. On top of that, we developed navigation methods to enable users a self-determined
exploration of the data and its relations.

For a more detailed overview on our contributions we recall the in Figure 16.1 derived
overview on the four problems within the realm of conceptual data scaling. These four

Conceptual Scaling/ Data
Data Interpretation Reduction
Raw Data Derived Data Scaled Data
(Many-Valued) (Formal Context) (Formal Context)
Inverse Data
Conceptual Scaling Compatibility

Figure 16.1: An overview of the four main problems in conceptual scaling.
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problems represent the two tasks given above, as well as their inverse. For scaling, we have
conceptual data scaling and inverse conceptual scaling, i.e., determining from what data set a
conceptual structure is derived from. For the second task we deal with consistent conceptual
data reduction and the identification of error introduced by dimensionality reduction methods.
In Chapter 7, we gave a detailed overview on the state-of-the-art methods. Open problems
and future work is outlined in Chapter 15.

Conceptual Scaling With Chapters 12 to 14, we contributed to the problem of conceptual
scaling by proposing and studying data scalings for representations in machine learning. In
particular, we derived scalings for tree based classifiers, e.g., Random Forest or Gradient
Boosted Trees, latent spaces of neural networks and topic models. We studied their
meaningfulness with respect to structural properties of the conceptual views, the machine
learning model and the classification task. In an experimental setting, we showed how the
resulting conceptual structures can be used to interpret and explain the underlying machine
learning model. Thereby we yield a new concept based explanation method for machine
learning models. Beyond explaining a single model, the derived conceptual structures can
be used to compare the representations of different model types.

Inverse Conceptual Scaling In Chapter 10, we studied how to invert conceptual scaling,
i.e., what data set is a conceptual structure derived from. This is achieved by extracting
conceptual scales that are contained in a conceptual structure. In this field, we introduced a
new notion of dimensionality, which addresses the size and complexity of the original data
set in terms of the scales needed to cover the conceptual structure. We studied this notion in
greater detail for two families of standard scales and showed how inverse conceptual scaling
can be used for feature compression. The latter is achieved when the scaling dimension of
the data is smaller than the number of features in the original data. Moreover, we described
a data reduction method that reduces the data features to only the largest scales resulting in a
principal ordinal component analysis method.

Conceptual Data Reduction In Chapter 7 we contributed to the problem of conceptual
data reduction. First, we introduced scale-measures, i.e., extent continuous maps, as a
formalism to characterize consistent data reductions. In Chapter 8, we introduced several
methods to derive conceptual data reductions including a semi-automatic recommendation
algorithm. On top of that, we introduced several methods to combine and navigate between
data reductions to derive finer and coarser views on the data. This enables users to exploration
the data and its relations in a self-determined fashion. Moreover, we showed how to explain
data reductions with respect to logical expressions. This explanation method is agnostic
to the reduction method which makes it applicable in many settings. This is especially
useful for black box models. In addition to that, showed how to capture information that is
neglected by the reduction procedure using the join-pseudocomplement in the hierarchy of
conceptual data reductions.

In Chapter 9, we introduced with ordinal motifs a new approach to derive explanations
on a local and global level. This allowed us to identify frequent recurring ordinal patterns for
the analysis of large and complex structures. We introduced a new method on how ordinal
motifs can be used to automatically derive textual explanations of conceptual structures in an
unsupervised setting. The derived explanations account for principles from human computer
interaction for explainable artificial intelligence. For global explanations we introduced in
Chapter 14 the geometric structure of concept lattices, which generates a global view on the
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data based on ordinal patterns contained in the data. We demonstrate the applicability of
this approach by providing explanations for a topic model on scientific documents.

Conceptual Data Compatibility With the conceptual scaling error, we introduced in
Chapter 11 a new notion to quantify inconsistencies in dimensionality reduction methods
with respect to the conceptual structure. This notion is agnostic to the reduction method
resulting in many possible applications. Moreover, does the conceptual scaling error solely
dependent on the conceptual structure and is thereby independent of the features that create
them. Thus, it can be applied to data representations of different dimensions, which is in
contrast to common matrix distance measures. In an experimental setting, we showed that
data reduction methods with seemingly good performance (reconstruction error) can have
high conceptual scaling error. This suggests that applications working with formal concepts
or similar patterns should consider this new notion. In addition to the quantification of error,
we provided methods to qualitatively study the conceptual scaling error through concept
lattices.
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Research Data

Throughout this work we have exclusively used pre-existing data sets for our analysis. Data sets
represented as formal contexts or concept lattices, including conceptual and contextual views,
can be inferred from the respective diagrams. Besides these, we used spices planner from
Mahn [147]; Diagnosis [50], Hayes-Roth, Zoo, Mushroom, HIV-1ProteaseCleavage [181]
and Plant-Habitats obtained from the UCI repository! [60]; Top-Chess-Players, Airbnb-
Berlin, A_fighter and B_fighter from the UFC-Fights and Recipes [137] from the kaggle?
repository; Domesticated Animals from Wikipedia3; the car data set from OpenML [69,
ID:991]; ImageNet [52] as well as all twenty-four* NN models from tensorflow that are
trained on ImageNet; Fruits-360 [162] and the Semantic Scholar Open Research Corpus [7]
data set obtained on January 31st, 2019. From the latter, we used the subset given by
thirty-two machine learning conferences [117] as also used in Schaefermeier, Stumme,
and Hanika [189]. A detailed index on where we used each data set can be found in an
accompanied index.

All methods proposed in Chapters 7 to 10 are implemented in conexp-clj [88], a
research framework for FCA. The code for our experiments in Chapter 11,5 Chapter 12,6
Chapter 147 and Chapter 138 are published in public repositories.

1i) https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations,

ii) https://archive.ics.uci.edu/ml/datasets/Hayes-Roth,

iii) https://archive.ics.uci.edu/ml/datasets/zoo,

iv) https://archive.ics.uci.edu/ml/datasets/mushroom,

v) https://archive.ics.uci.edu/ml/datasets/HIV-1l+protease+cleavage,

vi) https://archive.ics.uci.edu/ml/datasets/Plants and https://plants.sc.egov.usda.gov/java/,
2vii) https://www.kaggle.com/odartey/top-chess-players and https://www.fide.com/,

viii)https://www.kaggle.com/brittabettendorf/berlin-airbnb-data/,

ix) https://www.kaggle.com/rajeevw/ufcdata,

Xx) https://www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions,
3xi) https://en.wikipedia.org/w/index.php?title=List_of_domesticated_animals 25.02.2020
4https://www.tensorflow.org/api_docs/python/tf/keras/applications/, July 2022
Shttps://github.com/hirthjo/Conceptual-Scaling-Error
Shttps://github.com/hirthjo/conceptual-views-on-tree-classifiers
7https://github.com/hirthjo/The-Geometric-Structure-of-Topic-Models
Shttps://github.com/FCA-Research/Formal-Conceptual-Views-in-Neural-Networks
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