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Abstract
Structural vibrations pose significant challenges in various engineering applica-
tions and require effective damping strategies to improve the overall performance
and longevity of systems. While some oscillations can significantly reduce the
longevity of systems, others might contribute positively to the overall system
performance. Thus, this contribution presents a novel method of an inductive
damping concept, that targets only specific vibrational modes based on their
mode shapes. By analyzing the used inductive damping element in the context of
a single degree of freedom oscillator, it is shown, that it functions as an ideal vis-
cous damper only if the dynamics of the electric part of the system are neglected.
The concept of mode selective damping is presented, using two of these damping
elements in an oscillator chain with three masses. By altering the wiring con-
figurations connecting the two damping elements in the electrical domain, the
damping behavior can be manipulated to selectively damp only specific modes
according to their mode shapes.

1 INTRODUCTION

Reducing resonant amplitudes of machinery and buildings presents a significant challenge in engineering mechanics.
In addition to classical fluid dampers, friction dampers, particle dampers and tuned mass dampers, inductive damping
methods are a well established concept and have been analyzed by numerous research groups [1–4]. Beside the classical
approaches also combinations of different methods have been established, such asmagnetorhelogical fluid dampers [5] or
recently Alhams et al. [6] investigated a combination of eddy current damping with a conventional automotive hydraulic
damper. Since not all vibrations occurring in engineering applications are undesired – some may contribute positively
to overall system dynamics, such as enhancing comfort or reducing fundamental forces – damping systems designed to
specifically attenuate amplitudes of certain modes offer a potential solution to address this conflict of objectives. One
way of realizing such damping systems is to use inductive dampers, where the individual damping elements interconnect
with each other. For this purpose, inductive damping elements are preferable, as they can interchange information in
the electric domain via wires, that can be readily integrated into systems. To the best of our knowledge, such a system
has not been analyzed before. Therefore, the aim of this work is to highlight the concept of the inductive mode selective
damping.
This paper begins by establishing a simplified mathematical model for the inductive damping element. The funda-

mental behavior of this damping element is demonstrated by applying it to a single degree of freedom (DoF) oscillator.
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F IGURE 1 Model of the inductive damping element and its components (grey - plunger, green/red - permanent magnet, blue - housing,
yellow - coils) with all geometric quantities and the loop Γ (dashed purple line) to calculate the magnetic flux density using Ampére’s law.

Subsequently, multiple such elements are integrated into an oscillator chain and variousmethods of interconnecting these
elements are presented and analyzed.

2 THE INDUCTIVE DAMPING ELEMENT

The inductive damping element under analysis is illustrated in Figure 1 and has been analyzed for example, by Palomera-
Arias [1]. It consist of a plunger (grey), with an attached permanent magnet (green/red), moving inside a housing (blue)
containing two coils (yellow). The relative motion between the permanent magnet and the coils induces an electromotive
force in the coils. Closing the electric circuit of the coils induces a current, leading to the conversion of energy into heat
due to the ohmic resistance of the coils or additional resistors, and thereby dissipating energy from the system.

2.1 Modeling of the damping element

The derivation of the governing equations of motion will be proceeded bymeans of Lagrange’s equations of second kind
for electromechanical systems [7]. Therefore the Lagrangian is given by

 = 𝑇∗ − 𝑈 +𝑊∗
𝑚 −𝑊𝑒, (1)

where𝑇∗ is the kinetic co-energy,𝑈 is the (mechanical) energy,𝑊∗
𝑚 is themagnetic co-energy and𝑊𝑒 is the electric energy.

Since no lumped capacities will be included in the model and the capacities of the coils are negligible it is assumed that
the the electric energy is negligible, and thus

𝑊𝑒 = 0. (2)

The main task to include the inductive damping element into the Lagrangian is to calculate the magnetic co-energy. In
the proposed damping model this can be expressed as

𝑊∗
𝑚 = ∫ Ψ d𝐼, (3)

where, Ψ is the flux linkage of the coils and 𝐼 is the current flowing through the coils. Considering the self inductance as
a fixed parameter 𝐿, the flux linkage reads

Ψ = 𝐿𝐼 +

𝑁∑
𝑖=1

∫
𝐴(𝑖)

𝐵𝑥,𝑖 d𝑎, (4)
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F IGURE 2 Distribution of the relative magnetic flux Φ𝑥(𝑥)∕Φ𝑥(0) through the inside of the housing for a centered plunger.

where 𝐵𝑥,𝑖 is the magnetic flux density in 𝑥-direction at the 𝑖-th winding of the coil with cross section 𝐴𝑖 and 𝑁 is the
number of turns of the coil. To overcome the sum, a winding density 𝜌𝑤 is introduced. With this, the flux density can be
written as

Ψ = 𝐿𝐼 + ∫
𝓁
∫
𝐴(𝑥)

𝐵𝑥(𝑥) d𝑎𝜌𝑤 d𝑥, (5)

where 𝓁 is the length of the coil. Since all cross sections of the coil are equal this further simplifies to

Ψ = 𝐿𝐼 + 𝐴𝜌𝑤 ∫
𝓁

𝐵𝑥(𝑥) d𝑥. (6)

Thus, it is left, to calculate the magnetic flux density. This can be done by applying Ampére’s law to the loop Γ illustrated
in Figure 1.
If flux leakage is neglected and it is assumed, that all the flux follows the considered path and is only radially orientated

in the airgap – respectively at the coils – and furthermore all iron parts are considered to have infinite permeability,1 the
magnetic flux due to the permanent magnet is given by

𝐵0 = 𝐵𝑟
1

1 +
𝑟2𝑚

𝓁𝑝𝓁𝑚
(ln(𝑟𝑔) − ln(𝑟𝑝))

. (7)

Herein 𝐵𝑟 is the remanent flux of the permanent magnet, 𝑟𝑚 is its radius and 𝓁𝑚 is its length. Furthermore 𝑟𝑔 is the radius
of the housing, 𝑟𝑝 is the radius of the pole shoes and 𝓁𝑝 is the length of the pole shoes. All the geometric quantities are
visualized in Figure 1. Assuming a piecewise linear magnetic flux in 𝑥-direction in the inside of the coils, as shown in
Figure 2, the flux linkage, depending on the displacement 𝑢 of the plunger, reads

Ψ = 𝐿𝐼 − 𝐾𝑢 with 𝐾 = 2𝜋𝑟2𝑚𝐵0𝜌𝑤 . (8)

3 APPLICATION TO SINGLE DEGREE OF FREEDOMOSCILLATOR

In the following the inductive damping element is analyzed in the context of a single DoF oscillator, as shown in Figure 3.
The equations of motion are derived by means of Lagrange’s equations of second kind for electromechanical systems. A

1 These simplifications are necessary to keep the size of the model small. Since flux leakage and saturation and so forth. lead to a reduced magnetic flux
density, the model overestimates the coupling coefficient 𝐾. However, only a qualitative analysis is performed in this work, so the simplified model is
sufficient. For quantitative results a more detailed model must be used.
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F IGURE 3 Single DoF Oscillator with inductive damping element. DoF, degree of freedom.

parameter reduction is performed and the reduced system is investigated. Finally, the influence of the different parameters
is discussed.

3.1 Derivation of equations of motion for single DoF oscillator

The kinetic co-energy and potential energy of the system are given by

𝑇∗ =
1

2
𝑚�̇�2 and 𝑈 =

1

2
𝑐𝑢2. (9)

With the flux linkage derived in the previous section, the magnetic co-energy yields

𝑊∗
𝑚 =

1

2
𝐿𝐼2 − 𝐾𝑢𝐼 (10)

and therefore the Lagrangian is given by

 = 1

2
𝑚�̇�2 −

1

2
𝑐𝑢2 +

1

2
𝐿𝐼2 − 𝐾𝑢𝐼 (11)

with the independent variables 𝐼 and 𝑢 and the non-conservative forces read

𝑄𝐼 = −𝑅𝐼 and 𝑄𝑢 = 𝐹(Ω𝑡) (12)

where 𝑅 is the ohmic resistance of each coil and 𝐹(Ω𝑡) is a harmonic excitation force. Applying Lagrange’s equations of
second kind and substituting the electric current by the electric charge, that is,

𝐼 =
d𝑞
d𝑡
, (13)

the equations of motion are found as

[
𝑚 0

0 𝐿

] [
�̈�

𝑞

]
+

[
0 𝐾

−𝐾 𝑅

] [
�̇�

�̇�

]
+

[
𝑐 0

0 0

] [
𝑢

𝑞

]
=

[
𝐹(Ω𝑡)

0

]
. (14)

Since this investigation focuses on the conceptional side, the equations of motion are transferred into non-dimensional
form. Therefore, the parameters

𝜔0 =

√
𝑐

𝑚
𝑓 =

𝐹

𝑐𝓁
𝜉 =

𝑢

𝓁
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F IGURE 4 Frequency response function of single DoF Oscillator with inductive damping element for different values of 𝜅 and a value of
𝜈 = 0. DoF, degree of freedom.

𝑇0 =
𝐿

𝑅
𝐼0 =

𝑚𝓁2

𝐿𝑇20
𝜁 =

𝑞

𝑇0𝐼0
(15)

𝜅 =
𝐾𝐼0𝑇0
𝑚𝓁𝜔0

𝜈 = 𝑇0𝜔0 𝜏 = 𝜔0𝑡

are introduced, where 𝓁 is some arbitrary reference length. Due to the substitution of the time, derivatives with respect to
𝑡 are substituted by derivatives with respect to 𝜏, which are denoted by (⋅)′. With this, the non-dimensional equations of
motion read [

1 0

0 𝜈

] [
𝜉′′

𝜁′′

]
+

[
0 𝜅

−𝜅 1

] [
𝜉′

𝜁′

]
+

[
1 0

0 0

] [
𝜉

𝜁

]
=

[
𝑓(𝜂𝑡)

0

]
. (16)

The finalmathematicalmodel (Equation 16) contains only the two dimensionless parameters 𝜅 and 𝜈. The coefficient 𝜅 can
be interpreted as the strength of the coupling between themechanical and the electrical system. It depends for example, on
the remanent flux of the permanent magnet, the coil parameters and the geometric properties of the damping model. The
parameter 𝜈 is the ratio of the mechanical eigenfrequency of the system and the electric time constant. Therefore, it can
be seen as a relative self inductance and depends on the coil parameters – a value of 𝜈 = 0means, that the self inductance
of the coil is neglected, whereas an increase of 𝜈means, that the electric time constant increases, and therefore either the
self inductance was increased or the resistance of the coil was reduced.

3.2 Dynamic analysis of single DoF oscillator

Since the resulting equations of motion form a linear system, a dynamic analysis is straight forward. The frequency
response functions for different parameters are found in Figures 4 and 5.
In Figure 4, the frequency responses of the single DoF oscillator are shown for different values of the electromagnetic

coupling 𝜅 and a value of 𝜈 = 0, and thus neglecting the inductance of the electric network. For 𝜅 = 0 the system is identical
to anundamped oscillator. Increasing the coupling coefficient, the systembehaves like a viscous damped oscillator. Critical
damping occurs for 𝜅 =

√
2. If however, the inductance 𝜈 is raised, the frequency response differs, which is shown in

Figure 5. Depending on the value of 𝜈 the resonance frequency shifts and in order to achieve the lowest maximum in the
frequency response, an optimum exists. The different behavior can be explained by looking at the force-velocity-plot in
Figure 6. For values of 𝜈 > 0 the inductive damping element no longer behaves as an ideal viscous damper – whichmeans,
that the electromagnetic force is directly proportional to the velocity. Instead, the phase of the damping force shifts with
respect to the velocity due to the electric time constant. This behavior was also found in ref. [1].
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F IGURE 5 Frequency response function of single DoF Oscillator with inductive damping element for different values of 𝜈 and a value of
𝜅 = 1. DoF, degree of freedom.

F IGURE 6 Damping force over velocity for different values of 𝜈 for an excitation frequency of 𝜂 = 3 and 𝜅 = 1.

4 CONCEPT OF INDUCTIVEMODE SELECTIVE DAMPING

To establish the concept of the mode selective damping, a three mass oscillator is investigated, see Figure 7. The oscillator
chain features two inductive damping elements, which are attached between the masses. The inductive elements can be
interconnected in different ways, which are shown in Figure 8.

F IGURE 7 Oscillator chain with three masses and inductive damping elements.
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F IGURE 8 Overview of the different wiring options for the two inductive damping elements.

4.1 Equations of motion of oscillator chain

Depending on the respectivewiring of the inductive dampers, the equations ofmotion differ. Using the same abbreviations
as for the single DoF oscillator, they read in non-dimensional form for the individual dampers (configuration 1)

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 𝜈 0

0 0 0 0 𝜈

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝜉′′1
𝜉′′2
𝜉′′3
𝜁′′1
𝜁′′2

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

0 0 0 −𝜅 0

0 0 0 𝜅 −𝜅

0 0 0 0 𝜅

𝜅 −𝜅 0 1 0

0 𝜅 −𝜅 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝜉′1
𝜉′1
𝜉3
𝜁′1
𝜁2

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 0 0

0 0 0 0 0

0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝜉1
𝜉2
𝜉3
𝜁1
𝜁2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

𝑓(𝜂𝜏)

0

0

0

0

⎤⎥⎥⎥⎥⎥⎦
. (17)

The system has three mechanical DoFs and two electrical DoFs. For the linking in series (configuration 2), the governing
equations are given by

⎡⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2𝜈

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝜉′′
1
𝜉′′2
𝜉′′3
𝜁′′

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

0 0 0 −𝜅

0 0 0 0

0 0 0 𝜅

𝜅 0 −𝜅 2

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝜉′
1
𝜉′1
𝜉3
𝜁′

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

2 −1 0 0

−1 2 −1 0

0 −1 2 0

0 0 0 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝜉1
𝜉2
𝜉3
𝜁

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝑓(𝜂𝜏)

0

0

0

⎤⎥⎥⎥⎥⎦
(18)

and for the linking in opposite phase (configuration 3), they read

⎡⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2𝜈

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝜉′′1
𝜉′′2
𝜉′′3
𝜁′′

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

0 0 0 −𝜅

0 0 0 2𝜅

0 0 0 −𝜅

𝜅 −2𝜅 𝜅 2

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝜉′1
𝜉′1
𝜉3
𝜁′

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

2 −1 0 0

−1 2 −1 0

0 −1 2 0

0 0 0 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝜉1
𝜉2
𝜉3
𝜁

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝑓(𝜂𝜏)

0

0

0

⎤⎥⎥⎥⎥⎦
. (19)

Since the two damping elements are linked, there is only one electric DoF for the configurations two and three, and thus
the number of DoFs of the system reduces by one compared to configuration one.
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F IGURE 9 Modeshapes of the mechanical oscillator chain and frequency response of the third mass.

4.2 Dynamic analysis of the oscillator chain with mode selective damping

To start the investigations the well known case of the undamped system is briefly discussed – this coincides with open
electric circuits or no electromechanical coupling and thus 𝜅 = 0. In Figure 9, the mode shapes as well as the frequency
response for the undamped scenario are shown.
In the first mode all three masses move together, but the middle mass has a slightly higher amplitude. In the second

mode, the centered mass does not move at all, the adjacent masses move in opposite directions. And in the third mode,
the centered mass moves in opposite direction to the outer masses. For all three modes, the change in length of the two
electromagnetic damping elements is equal in magnitude, but the signs differ in the first and thirdmode. In the frequency
response function of the third mass (see right hand side of Figure 9), three resonant frequencies occur.
For the three configurations shown in Figure 8 additional electrical DoFs exist and thus, the system has additional

modes. But since the electric system on itself is not capable of vibrating, the electrical DoFs do not add any additional
resonance frequencies to the system. Instead, the additional modes describe a transient decay as well as an arbitrary addi-
tion of charges in the electric domain – which can be interpreted as an analogy to a rigid body motion in the mechanical
domain. Due to the symmetrical structure of the model, the characteristics of the mode shapes of the mechanical part
are retained.
In Figure 10, the damping ratios of the different configurations 𝑖 are compared for each mode 𝑗. For the results the

electromagnetic coupling coefficient is set to 𝜅 = 1 and the inductance term is set to 𝜈 = 0.25. For all configurations the

F IGURE 10 Comparison of the damping ratios for the different modes of the oscillator chain.
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F IGURE 11 Frequency response of third mass for the different configurations as well as the undamped reference model.

first mode is almost undamped, since there is only little movement between the masses, as all masses move together –
though the amplitudes of the centered mass are slightly higher. In the second configuration, the first mode is not damped
at all, as the voltage induced in the first damper is opposite to the voltage induced in the second damper and therefore no
current flows in this case. The secondmode is damped only for the configurations one and two. In the third configuration
no damping is obtained for this mode. While the induced voltages add up in the second configuration, they cancel each
other out in the third configuration in this case. The third mode shows the opposite behavior. Here, in configuration
two the induced voltages cancel each other out, while in configuration three they add up. The effect of the different
configurations on the frequency response can be seen in Figure 11. While in configuration one, the second and the third
mode are damped effectively, the configurations 2 and 3 only damp one of the modes and therefore, the system is capable
of only damping specific modes.

5 CONCLUSION

This paper provided a first look at the concept of an inductive mode selective damping system. Therefore, at first the
dynamic behavior of the inductive damping element was illustrated bymeans of a single DoF oscillator. It could be shown,
that the damper acts as an ideal viscous damper only if the inductance of the coil is negligible. Otherwise, the electrical
system has its own dynamic, which leads to a phase shift, of the electromagnetic force and the velocity. Through imple-
menting two of such damping elements in an oscillator chain and varying the wiring configurations, it was observed, that
the damping characteristics altered. The damping of specific modes could individually be switched on and of by changing
the wiring of the damping elements. Since the change between the different configurations requires only adjustments in
the electrical domain, it can be done easily – even during operation – because only switches have to be flipped. In thiswork,
the method has only been applicated to a symmetric model, where the displacements of the masses in different modes are
equal in magnitude. In future research, the method will also be applicated to asymmteric models. It is assumed, that the
concept of mode selective damping will also perform well in this scenario, provided that the coil parameters, such as the
number of turns, are appropriately adapted.
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