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ABSTRACT
Remote sensing and deep learning-based methods can be
combined to obtain location information automatically on a
large scale. This paper introduces an approach for enhancing
the geo-coordinate accuracy of existing wind turbines. By
employing a RetinaNet-based method for regressive object
localization, turbines can be precisely located in images in
addition to being identified. Utilizing semi-automatically
processed and manually filtered high-resolution image data,
a model is trained with an average precision of 96 %. Sub-
sequently, the model is applied to Germany’s MaStR wind
turbine dataset. The application illustrates the advantageous
implementation of the method and emphasizes its consider-
able potential for improving the accuracy of geo-coordinates.
While 73.72 % of existing coordinates can be confirmed as
correct with a deviation of less than 10 meter, for more than
15 % of the turbine locations coordinates between 10 and 100
meters can be corrected, and for 5.6 % locations a deviation
of more than 100 meter can be determined. This showcases
the real-world application of the proposed methodology and
underscores its significant potential for enhancing the quality
of geo-coordinates.

Index Terms— wind turbines, renewable energy systems,
object regression, geo-coordinate validation

1. INTRODUCTION

The future of energy supply faces a pivotal challenge, neces-
sitating a substantial expansion of renewable energy sources.
This shift towards renewable energy often occurs at the local
level, characterized by a strong decentralization trend. This
development is evident in the spatial fragmentation of renew-
able energy expansion. Accurate representation of existing
producers and consumers is crucial, particularly in grid op-
erations but also for forecasting wind potentials. Effective
planning, considering priority areas and land availability for
further wind turbine installations, becomes feasible through
this detailed depiction. Ensuring the reliability of wind tur-
bine facilities requires precise predictions.
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Looking at datasets of existing renewable energy sys-
tems on a global scale, different approaches to providing
such datasets can be found. For example, datasets derived
from aggregated and digitally processed information on the
locations and performance of wind and solar farms have
already been published by Dunnet et al. [1]. In contrast,
Zhang et al. [2] created a global dataset of offshore wind
turbines using Sentinel-1 Synthetic Aperture Radar time se-
ries images. Hoeser et al. [3] also used Sentinel-1 Synthetic
Aperture Radar data for the automatic derivation of offshore
wind turbine locations. Other published studies perform seg-
mentation of onshore wind turbines in high-resolution aerial
imagery [4, 5] and wind turbine detection using Sentinel-2
RGB imagery [6]. An improvement in detection accuracy was
achieved through multiple acquisition times with Sentinel-2,
as shown in a multimodal approach [7]. According to our re-
search, it has not yet been achieved to derive a precise data set
of existing energy facilities such as wind turbines, especially
onshore, on a large scale based solely on remote sensing data
and machine learning methods.

In Germany, the Core Energy Market Data Register pro-
vides an overview of existing energy facilities. Location in-
formation, performance values or specific plant characteris-
tics are provided for wind turbines, solar photovoltaic sys-
tems, and other plant types [8]. However, certain coordinates
given here are very inaccurate. Studies have consequently
made several revisions to improve data quality [9, 10].

Our approach aims to enhance the accuracy of existing
wind turbine location data through an deep learning-based
object detection approach using aerial images. There are a
variety of DL techniques and methods for object detection,
starting with early approaches of the Single Shot MultiBox
Detector [11], a variety of real-time object detection variants
based on YOLO [12], or RetinaNet [13], which combines the
ResNet [14] with an FPN [15]. After studies have already
shown high accuracy [16, 17], RetinaNet will be trained with
semi-automatically processed and manually filtered high-
resolution imagery and then applied to all wind turbines in
Germany. This case study is designed to demonstrate the po-
tential for improving the location accuracy of wind turbines.
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2. MATERIALS

The Core Energy Market Data Register (German: Markt-
stammdatenregister, MaStR), administered by the Federal
Network Agency for the German electricity and gas mar-
ket, serves as a comprehensive database for energy market.
Commencing operations in 2019, the register undergoes daily
updates and encompasses detailed information on entities
and facilities within the grid-bound energy supply market.
Alongside registered electricity generation units, the register
also includes extensive listings of large-scale consumers. On
the producer side, the MaStR provides location information,
performance values, and specific plant characteristics for var-
ious energy sources, such as wind turbines, solar photovoltaic
systems, biomass plants, hydro power plants, and conven-
tional plants. The register offers a wealth of information
specifically tailored to wind turbines like registration date,
commissioning date, rated power, remote controllability, cur-
rent operating status, manufacturer, type designation, hub
height, and rotor diameter. Publicly accessible address data is
available at the zip code level, while detailed coordinates are
provided for the majority of the turbines. As of November 21,
2023, out of the 32,788 listed turbines in operation, 31,892
include coordinate information [8].

The Digital Orthophotos (DOP) of Germany, as docu-
mented by the Federal Agency for Cartography and Geodesy
[18], constitute georeferenced and differentially rectified
aerial imagery, sourced from the surveying administrations
of Germany’s federal states. These images faithfully repre-
sent the Earth’s surface, within the confines of the Federal
Republic of Germany, employing a ground resolution of 0.2
meter for the purposes of this investigation. The dataset en-
compasses both color images in the RGB spectrum. The
images maintain a positional accuracy of 0.4 meter standard
deviation. The entire dataset covers Germany and is pre-
sented in tiles measuring 1,000 × 1,000 meters, equivalent
to 5,000 × 5,000 pixels each. Each tile is accompanied by a
file containing meta-information, notably the timestamp indi-
cating when the respective image was captured. The image
data is updated cyclically, usually available every 3 years in
site-specific overflight intervals.

3. METHODS

3.1. Data preprocessing

The preparation of training data comprises multiple steps. Ini-
tially, all wind turbines registered in the MaStR are loaded.
A pre-filtering process is then applied, focusing exclusively
on wind turbines with operational status labeled as ”in op-
eration”. Additionally, the turbines must be categorized as
”onshore”, and only systems with available geo-coordinates
are considered. Finally, turbines situated outside the German
federal border are excluded under the assumption that their

location data is inaccurate. Existing coordinates of the tur-
bines are provided with a static buffer of 30 meter radius in
order to obtain an area-like imprint of the point coordinates.
These are required for the subsequent regressive localization
method. To generate training and application image data, the
wind turbine location data is integrated with DOPs. To align
with the requirements of RetinaNet, DOP tiles, each measur-
ing 5,000 × 5,000 pixels, are further divided into 1,000 ×
1,000 pixel tiles. A methodical differentiation is applied to
training and application images. For training, the cut edges
are statically selected to generate 15 tiles from each original
tile, as illustrated on the left side in Figure 1.

Fig. 1. The two methods of processing the DOPs are shown
in comparison. The left-hand side shows an example of static
cutting of the training images, while the right-hand side shows
cutting using the coordinates of the wind turbines as a cen-
troid. The black lines represent the cutting edges, the blue
dots the coordinates of the wind turbines.

This approach ensures that wind turbines are not consis-
tently positioned at the center of the image sections. Con-
versely, for application images, the wind turbine location is
designated as the centroid of the image, as depicted on the
right side in Figure 1. Approximately 12,000 images are pro-
duced, each containing at least one wind turbine.

Fig. 2. Samples based on their suitability for training. The
images marked in red are unsuitable due to incorrect position
or poor image resolution, the images marked in yellow con-
tain wind turbines that are clearly visible but were rejected
for fine-tuning due to their inaccurate position. The images
marked in green contain turbines whose tower base is located
directly in the center of the respective boxes.

This dataset is utilized for the initial training. To en-



sure the utilization of highly suitable image data in the subse-
quent, second training, samples generated automatically un-
dergo manual inspection. This process identifies and removes
instances with incorrect coordinates stored in MaStR, impre-
cise coordinates, and image scenes with insufficient resolu-
tion. The re-selection leads to the reduction of a further 5,000
unsuitable images, yielding a dataset of 7,000 images for the
second training. The primary emphasis is on the precise lo-
calization of wind turbines, ensuring that the center of the re-
gression boxes accurately represents the tower’s exact ground
location. As illustrated in Figure 2, several samples are de-
picted to exemplify their suitability. The training is divided
into two parts. First, all 12,000 samples automatically de-
rived from the data preprocessing are used, whereas in the
second training, the number of samples is reduced to 7,000
highly suitable samples by manual filtering. All other param-
eters remained the same for both the first and second training:
100 epochs, 100 steps, 80 % training and 10 % independent
validation and test data set each. Further parameter configu-
rations are the default settings defined in the package [19].

3.2. Deep learning approach

The machine learning method used in the work is called Reti-
naNet. The network combines several common variants of
deep learning into a classification and regression network.
One key feature is the ResNet architecture, including Con-
volutional Neural Network (CNN) [13]. Furthermore, adding
skip connections between the layers enables residual learning
as a a widely used basis for deep learning [14]. A Feature
Pyramid Net is also used. It consists of a top-down architec-
ture with horizontal connections to create high-level semantic
feature maps at all scales [15]. The classification task is per-
formed at the output of the backbone network using Focal
Loss, which was developed to train extremely unevenly dis-
tributed foreground and background classes [13]. The regres-
sion task, on the other hand, is implemented for the regressive
delineation of the objects. The regression targets are output as
rectangles that are located entirely within the images shown
and have predefined aspect ratios of 1:2, 1:1, 2:1 [13]. The re-
gression loss uses the Smooth L1 Loss, which was originally
developed as part of the Fast R-CNN [20]. Average Precision
(AP) is used to measure the performance of the model. The
sum of correctly detected objects in relation to all detected
objects is considered. RetinaNet uses the COCO detection
evaluation metric under the AP, whereby the overlap of the ar-
eas from the regression and the ground truths must be greater
than 50 %, in order to be considered a correctly detected ob-
ject. The keras-retinanet [19] package is used, which was spe-
cially developed for the use of RetinaNet. To quickly achieve
good generalization of the network, pre-trained weights on
500 classes from the Open Image Dataset where used [21].

4. RESULTS

As Training Progress Summary, the progression of the two
losses from the classification and regression networks, as well
as the AP, were validated to determine the networks’ perfor-
mance. Figure 3 shows the losses on the left-hand and the AP
on the right-hand side.

Fig. 3. The illustrations depict the losses and the AP.

The training is terminated by early stopping after 17
epochs in each case, indicating no further progress in train-
ing. The trend in losses exhibits a nearly constant decrease
for both the initial and subsequent training. This is observed
for both the focal loss in classification and the Smooth L1
loss in regression. The total loss represents the cumulative
sum of the individual losses. A consistent upward trend can
be observed in the AP. Finally, the AP is 85 % for the first
training and 96 % for the second training with post-filtered
samples. Overall, the loss and AP’s curves clearly show the
strong generalization of the network based on the training
examples. Incorrect recognition are shown in Figure 4.

Fig. 4. False positive and false negative examples from the
application are summarized in the following. The top line
represents incorrectly identified wind turbine, false positives.
The bottom line shows turbines that have not been detected.

This includes a construction site, a biogas plant and two
churches. Secondly, some of the poorly represented turbines
are not recognized by the network. This applies to different
backgrounds, so that turbines in open fields, in the forest and
also in the settlement are not recognized. However, they are
also hard to identify during a visual inspection. Examples of
correctly recognized wind turbines, conversely, are shown in
Figure 5. In addition to turbines with good resolution, poorly
resolved turbines can also be identified in the images. All



images show that the regression locates the towers of the tur-
bines exactly in the centers of the bounding boxes. In other
words, the centers of the regression boxes can be interpreted
as exact geo-coordinates of the wind turbines.

Fig. 5. True positive examples from the application are pre-
sented as follows. The upper row displays instances featuring
clearly visible and accurately identified wind turbines, where
the centroid of the regression boxes serves as the base of the
tower. The bottom row, shows correctly detected wind tur-
bines, with less clear representation in the images.

The results of the geo-location site correction for onshore
wind turbines are described below. The dataset comprised a
total of 30,326 operational onshore wind turbines. Through
geographical selection, it was revealed that 55 wind turbine
(0.18 %) coordinates were situated outside the country’s bor-
ders. Additionally, 1,397 turbines (4.61 %) were flagged for
having outdated aerial images captured before their commis-
sioning. The validation methodology was applied to identify
1,699 instances (5.60 %) of incorrect location data, where a
deviation of at least 100 meter from the coordinates in the
MaStR was observed. Consequently, 27,130 wind turbine lo-
cation data points (89.46 %) were identified within 100 meter
accuracy and are treated with sensitivity in subsequent analy-
ses due to their deviation characteristics. Table 1 visually de-
picts the dispersion of wind turbines across various distance
ranges, offering crucial insights into the efficacy of the ap-
plied coordinate corrections. The categorization of turbines
based on deviation ranges in meter provides a detailed view.
Notably, a substantial percentage (73.72 %) of turbines ex-
hibits a deviation of less than 10 meter, underscoring the high
precision of their coordinates. In contrast, 7.66 % of turbines
deviate between 10 and 20 meter, while more than 8 % show
deviations exceeding 20 meter.

5. DISCUSSION

Comparing the results of the first and second training reveals
a significant increase in recognition accuracy due to the man-
ual post-filtering of the training samples. The high accuracy
of the second model suggests a strong generalization of the
network based on the validation data. This can also be illus-
trated by Figure 5. It should be noted, however, that the data
used in the validation is very homogeneous due to the exper-

Range in meter wind turbines wind turbines in %

< 10 22,357 73.72
10 - 20 2,323 7.66
20 - 30 872 2.88
30 - 40 514 1.70
40 - 50 319 1.05
> 50 745 2.46

Table 1. Distances between MaStR and validated coordi-
nates.

imental setup. A large-scale application would result in a re-
duction with regard to the AP. Nevertheless, the misidentified
objects observed in the test application, as shown in Figure 4,
provide insights into two important considerations. Several
objects are incorrectly recognized as wind turbines. Facing
this issue, an improvement in recognition accuracy could be
achieved by including misidentified objects as part of the neg-
ative class during training. However, the unrecognized wind
turbines also illustrate the limitations of the application based
on DOPs. Moreover, Figure 4 demonstrates that turbines that
lack consistent representation in the images may go unnoticed
by the network during the application. Supplementing the im-
age data with additional acquisition times could address this
issue. The application shows a strong variance in the accuracy
of the geo-coordinates. The locations of almost three quarters
of the wind turbines can be confirmed. However, nearly 8 %
of the locations deviate between 10 and 20 meter, and more
than 8 % deviate by more than 20 meter. With 5.6 % of the
completely incorrectly stored coordinate locations, a consid-
erable proportion of the wind turbines are incorrectly located
by more than 100 meter. Due to outdated aerial images, the
4.61 % of turbines with outdated aerial images could not be
validated. Expanding the methodology to regularly updated
image datasets, such as the utilization of Sentinel-2 imagery,
is conceivable. Nevertheless, the adoption of Sentinel-2 im-
agery, characterized by considerably lower resolution, may
result in a substantial decline in accuracy during facility iden-
tification.

6. CONCLUSIONS

This paper introduces an approach for enhancing the geo-
coordinate accuracy of existing wind turbines. Employing a
RetinaNet-based approach for regressive object localization,
wind turbines can be precisely located in images in addition to
being identified. The validation results demonstrate the net-
work’s high generalization capability. The exemplified appli-
cation, focusing on enhancing wind turbine location accuracy
through MaStR data, illustrates the practical implementation
of the method and emphasizes its considerable potential for
improving the accuracy of geo-coordinates.
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