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and show that all the three classical orthogonal polynomial families as well as three finite orthogonal
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nomial sequence. Some general properties of this sequence are also given.
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1. Introduction
Let us consider the differential equation

o (X)Ya (X) +7(X) Y5 (X) = 4,¥,(x) =0 (1.1)

and search for its polynomial solutions in form P, (x) =k, x" +k, X" +....

We will often consider the monic case k, =1. Substituting this form in (1.1) for n =1 shows
that 7(x) = dx+e must be a polynomial of degree 1, and substitution for n =2 shows that
o(x) = ax’ +bx +c is a polynomial of degree at most 2. Finally equating the coefficients of
x" yields 2, =n(n—1)a+nd as the eigenvalue parameter depending on n=012,....

We denote the polynomial solution of (1.1) by P[ d e
"la b ¢
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Extensive research has been done on equation (1.1) and its polynomial solutions up to now. In
1929 Bochner [3] classified the polynomial solutions of (1.1). He showed that the only poly-
nomial systems up to a linear change of variable arising as eigenfunctions of the differential
equation (1.1) are

(i) Jacobi polynomials {P“” (x)}", , (a.p.a+p+1e{-1-2.3})
(i) Laguerre polynomials {L' (x)}-, ., (xe{-1-2..})

(iii) Hermite polynomials {H, (x)}._,

(iv) Bessel polynomials {B“” (x)}", , (ae{0,-1-2,..}and g =0).

It turns out that for certain parameter constellations («, # > —1) the first three classes are or-

thogonal families in a real interval, whereas the fourth class is orthogonal on the unit circle.
Nevertheless, for certain parameter instances, there are finite orthogonal families in a real in-
terval also in the Bessel case.

Then, in 1988, Nikiforov and Uvarov [11] gave some general properties of p [
b c

], such

as a generating function for the polynomials, a Cauchy integral representation etc. in terms of
given o(x) = ax” +bx+c and r(x) = dx +e. Their approach is based on the Rodrigues repre-

sentation of the polynomials and is not expressed in an explicit form.
Before deriving a generic solution for (1.1), we give an algebraic identity which is easy to
prove but important.

1.1. An identity
If a,b and C, (k=01,...,n) are real numbers then

Zn:Ck(ax+b)" :i(i[”;ijb"‘cn_i](%)k -y [i( 'ka ic, ](ax)”". (1.2)
M (P2) i (P3) (P

(A (@2 (A )i K!
denotes the Pochhammer symbol, then we get

For instance, if we set C, =

such that (r), =r(r+1)..(r+k-1)

1(_n| p21 eney pm |ax+bj
TR PRI P
b )y (N k-n, 1-q,-n,..1-q,,—
- £ P, ZU ( 1 T j( e
(ql) (qz) (qml k=0 k 1- p; —N, 1- Pz —N, - Py —N b

_ ()" (Pp) g (Pm)a <1 -k, 1-g¢-n..1-Q,,-n 1
CANCEN (qm_l)n Z(k] m‘l(l—pz—n, 1-p,=n, ... 1-p, —n|bJ( )




a, 3y, ....,8, (@) (@)y-(a,)i x*
where F | X |= — denotes the generalized hypergeo-
P “(bly by, ..., by J kZ?(b) (b)(bg), K!

metric function of order (p, q) (see e.g. [4], Chapter 2). The coefficient of a hypergeometric
function is called a hypergeometric term.
Note that for computing the relations (1.3) we have generally used the two identities

I(r+k) =I(r)(r),

_ (=D'(n,
( k) — r(r)( 1) = (r)n—i

=~V - rcR : knieZ" . (1.4)
(I-r—n),
@-r),

An interesting case takes place for (1.3) when m=2,a=Db=1 is considered. In this case we

have
- k—n 1-q. -
ZF{ " |x+1j CV(pa)y Z[ ]2 1( noT n|1Jxk
Gy (@), = 1-p,—n
(=X)"(P,)a U ( k 1-g,-n ] &
= |1(x
(ql) kZ(; 2 1- p, —N
which according to Gauss’ identity (see e.g. [4], p. 31)

2 Fl(a b| 1J _T(rc-a-b) (L6)
C I'(c-a)'(c—b)

ZF{_H IOZ|x+1) (0= P)y )ZF{ G |—xj
0, ( l)n 1_q1+ p, —nN

_"(py), F{—n ql—pzl_l}
@), 1-p,—n X

(1.5)

simplifies to

(1.7)

The first identity of (1.7) can be found in [1], (15.3.6) and the second identity in (1.7) is a
special case of [1], (15.3.7) for integer upper parameter.

Now we are in a good position to state the main theorem of finding a generic polynomial solu-
tion for equation (1.1).

. . . —(d e . . .
2. Theorem: The monic polynomial solution Pn[ b | x] of the differential equation
abec

(@x® +bx+c)y’(x)+ (dx+e)y' (x)-n((n-Da+d)y, (x)=0 ; neZ' (2.1)

is given by the formula



En[d e|x]=2n:@ G (ab,c,d,e)x* 2.2)

k=0
where G(”’—[ 2a jk_n e [k=n %H—i—n 24/b? —4ac
‘ b++/b? —4ac 2 2a29d_/ga_(:2n b++/b% —4ac

For a =0 the equality can be adapted by limit considerations and give (2.2) with

cd —be )
Gé”)(o’b’cyd'e)=|imG§“’(a,b,c,d,e):(9)"*”2F0 k—n, ——+1-n b_
a—0 C ) Cd
which is valid for c,d # 0, leading to
5(d e b,, eb-cd -N 4 cd
P X|=)"(—=— Fleb—cd|-Zx—=21.
n[o b C| ] (d) ( bz )n 1 1[ b2 b bz}

For a=b=0 and d = 0 we finally get

_(d _(d _h _n-d
P, e|X =limP, e|X =(X+E)n Fo| 27 2 2cd 2 |"
00c a0 Tlabec d _ (dx+e)

Proof: Consider the differential equation (2.1) and suppose that x = pt+q. Therefore (2.1)
changes to

d?y

2
+2aq+bt+aq +bg+c "

ap ap? )

(t’

e8I N n—na)y 0. (2.3)
a pa “dt a

Now if in (2.3) ag”®+bg+c=0 and (2aq+b)/ap=—1 are assumed, then

2 _ 2
pzjt\/b 4ac and g= bt+b 4ac. (2.4)
a 2a
Thus (2.3) is simplified as
2 2
-9 Y Gy, 2eesbdzdib Zdac,dy Ny gyayy o, (2.5)
dt® a T 2avb? —4ac dt a



Equation (2.5) is a special case of the Gauss hypergeometric differential equation (see e.g. [4],
p. 26):

d?y

t(t-1
-1

+((a+ﬂ+l)t—;/)%+aﬂy:0 (2.6)

_ 2ae—bd +dvb® —4ac

for a=-n, f=n-1+d/a and y= respectively. Hence, by
¥ 2a/b? —4ac

considering P[d exj as a pre-assigned solution to equation (2.1) and comparing the rela-
"labc

tions (2.5) and (2.6), we must have

P d el
"abeclt

or written in terms of the variable x

-n n-1+d/a

/ 2_ _ / 2_

b —dac,  —bxb 4&ICJ:KZFl 2ae —bd +d+b* —4ac |t 2.7
+2a+/b? —4ac

a 2a

-n n-1+d/a

d e
P”(a X C|xj =K ,F,| 2ae —bd +d+b? —4ac
+2a+b’® - 4ac

From (2.8) the following sub-cases are obtained

= ax +b¢\/b2—4ac
Jb?—4ac  24/b? —4ac

) 1. (2.8)

-n n-1+d/a

—(d e . ~ N
(i) Pn(a b C|XJ:K ,Fi| 2ae—bd +d+/b* —4ac \/zi—b \/Mc ,
2 b®—4ac  24b° —4ac
2a/b? — dac (2.9)

ax +b+\/b2—4ac

Jb?—4ac  2+b?—4ac

d e -n n-1+d/a
(ii) E(a X c|X]: K™,F| —(2ae—bd)+d+b*-4ac
2avb? —4ac

Note that both above relations only differ by a minus sign in the argument of the second for-
mula (ii) which does not affect on the differential equation (2.1).

In other words, if in the first formula (i) we consider the case |:>n[ -4 -¢ XJ, then we will

-a -b -c
reach the second formula of (2.9). Therefore, only the formula (ii) must be considered as the
main solution. To compute K™, it is sufficient to obtain the leading coefficient of , Fl(...| )

corresponding to formula (ii), which is given by



= (Wb? —4ac)" ((bd — 2ae + d+/b? — 4ac) /(2ab® — 4ac)),

(2.10)
a"(-n),(n-1+d/a),
On the other hand, according to identity (1.3), it can be concluded in general that
- k-n 1-
ZFl( " p|rx+5j D), Z( ] -« 1( ! 1 n|1j(rx) (2.11)
q @, i 1-p-n
So by considering the main solution (2.9) and
p—n—1+9 q_bd—2ae+d\/b2—4ac
a ’ 2a+/b? —4ac (2.12)
;. a S_b+\/b2—4ac
Jb? —dac 2+/b? —4ac
then (2.11) becomes
-n n-1+d/a 9
> ax b+\/b2 —4ac (l)( +n-1),
,F| bd—2ae+dvb* —4ac =
> 4ac 24/b? —4ac  bd- 2ae+d\/b2 4ac
2avb” —4ac (
2a\/b* —4ac
3 (nj (b+\/b2 A (2.13)
k0 2\b® —4ac Vb? —4ac
2
- Ken 2ae—bd—(d +(2n-2)a)vb 4ac| Zm g
2 .
- 24b? ~dac p+b? —dac

—d/a-2n+2
Simplifying this relation and substituting K™ by (2.10) finally gives the monic polynomial
solution of equation (2.1) in the form (2.2). Hence the first part of the theorem is proved.
To deduce the limiting case when a — 0, we have used Iirrg a' (—9+ 2—-2n), =(-d)"and the
a—> a

following identity

_n Il-p-n)< [J [k—n 1-p-n 1J row
F |rx+s |[—=(=x)". (2.14)
1 ( p j T Ak . s)'s
which is a special case of identity (1.2) for C, = ((;)n);;l O
K!



We would like to mention that the general formula G{" (a,b,c,d,e) is a suitable tool to com-

pute the coefficients of x* for fixed degree k and arbitrary a. If for example the coefficient of

x"* is needed in the generic polynomial Pn[ d e XJ then it is sufficient to calculate the term
abec

2ae—bd —(d +(2n-2)a)A

-1
2a 2A
G™(ab,c,d,e) = (-2)" ,F 2aA | =
AT d+(2n-2)a
=(bJrA)(1+2ae—bd—(d+(2n—2)a)A>< 2A 8 a _ e+(n=-1b
2a 2aA b+A d+(2n-2)a" d+(2n-2)a

in which A=+b?—-4ac. Note that in the above simplified relation, all parameters
a,b,c,d and e are free and can adopt any value including zero since it is easy to show that
neither both values a and d nor both values b and e in (2.2) can vanish together. After simpli-
fying G{” (a,b,c,d,e) for k =n—-1,n-2,... we eventually have

Pn(ad b ec‘ Xj o _{nj e+(n-Db o _{n) (e+(n=Db)(e+(n—2)b)+c(d +(2n—2)a) 2

1)d+(2n-2)a 2 (d+(2n-2)a)(d +(2n—23)a)
2ae—bd —(d +(2n-2)a)\b® —4ac (2.16)
n\ b++b%*—4ac,, -n Jo? —4ac 24/b? —4ac
ot |————)",F 2avb*® —4ac | ———|.
n 2a _(d +(2n—2)a) b-++/b? —4ac
a
The above relation implies that
(2.16.1)

2ae—bd —(d + (2n — 2)a)vb? —4ac
fi.2 —Nn f1-2

) )", F .
abec 2a 2t _(d +(2n—2)a) b++/b? —4ac

a

Also (2.16) shows, for example, that if n=0,1,2,3 then



_(d e
\a b c|X =1
_(d e e
) | X |=x+=
abec d
_(d
[ & Clx|=xzrp ttR  Cdr2a) re(erh) 216
abc d+2a (d+2a)(d +a)
—(d e|X =X3+3e+2bX2+3c(d+4a)+(e+b)(e+2b)x
*labec d +4a (d + 4a)(d +3a)
, 2c(d +3a)(e +2b) +ce(d + 4a) +e(e + b)(e + 2b)
(d + 4a)(d + 3a)(d + 2a)

3. A special case of the generic polynomials (2.2)
In the sequel, we would like to apply Gauss’ identity, expressed in relation (1.6). So let us as-

2+/b?% — 4ac
b++/b? —4ac

following special case for the generic polynomial (2.2) is derived:

2ae —hd d
=(d e S (M) 8y ken k-=n ————+1-—-n
F’n[a X o|szz[kj(5)k ZF{ 2ab 2a  |1[x

sume that =1 in (2.2), which implies ac=0. If ¢ =0 is supposed, then the

k=0 2—-d/a-2n

_(n (E)k*n r'2-2n-d/a)f(l—k—e/b) N b"T'(2-2n-d/a)l'(L—e/b)
s\k)b” T'(2-n-k-d/a)ll-n-e/b) a"'T'(2-n-d/a)l(l-n-e/b)

a
——X|.

b ]
On the other hand, let us review the Nikiforov and Uvarov approach and consider the differ-
ential equation (2.1) again. If this equation is written in self-adjoint form, then the weight

(3.1)

k=l
-n n-1+d/a
x, Fy
el/b

function W(x) satisfies Pearson’s differential equation %(U(X)W(X))Z (X)W (x), and there-

fore

d e ) (d-2a)x+(e—h)
W(ab C|XJ_equ ax® +bx+c ) (3.2)

is obtained. Hence the Rodrigues representation of pn( d . ¢ XJ is given by
a c



n

d
d"((ax® +bx+c)"w| ¢ °

ab c|xj)
b - 5 X - . (3.3)
abc (Hd+(n+k—2)a)w[a bec|x] o

If we put ¢ =0 in this relation and use (3.1), we get

(d-2a)x+(e—h)
exp(—_[ ax® + bx ax

qTd+(n+k-2)a) ox”

) 4" (@ +bx)" exp([ (d- i";‘()f:bie =) 1)

(3.4)

_I'(2-2n-d/a)& (N (g)k_n I'l-k—e/b) N
'd-n-e/b) &= (k) b" T(2-n-k-d/a)

4. Some general properties of the main polynomials (2.2)

4.1. A linear change of variables

Using (3.3) one can derive a linear change of variables for pn( d A ¢ Xj explicitly. Assuming
a c

X = wt + v, then the relation (3.3) changes to

w" d" ((aw’t? + (2awv + bw)t + (av® + bv +¢))"W d e |wt+v )
d e a b
[ |Wt+vj: - - [(4.1.1)
(]d +(n+k—2)a)W(a 0 c|Wt+VJ dt”

k=1

On the other hand W( d ] € | wt +V) is simplified as
a C

d - _
W e Wy =exp(j : Ed 2a)(wt+v)+(e2 b) wa)
abc awt” +(2av+b)wt+av” +bv+c

[ dw?, (dv+e)w | tJ (4.12)

aw’, (2av+b)w, av’ +bv+c

Therefore (4.1.1) becomes eventually

_(d _ 2
ol ¢ Clwtav|=wep[ MW vrew (4.1.3)
abec aw<, (2av+b)w, av: +bv+c



showing the effect of a linear change of variables for the polynomials (2.2). For instance, if
w=-1and v=0 are considered, then we have

_(d ,=(d, —e
P (a X C|—tj (-1 Pn(a’ b C|tJ. (4.1.4)

4.2. A three-term recurrence equation

The second formula of (2.9) is a proper relation to compute the recurrence equation for the
generic polynomials (2.2). In order to reach this goal, one can use various identities of the
Gauss hypergeometric function. For example, the following identity is valid for

,F(p,a,r;t) [2],

(p-a)((p-a-1)(p-a+Dt+2pg+rld-p-q)),F(p.q,r;t)+

(4.2.1)
q(r-p)(p-aq+D),F(p-Lg+Lr;t)+p(r-a)(p-9q-1),F(p+Lg-1r;t)=0.

Now using relation (ii) in (2.9) and its coefficient in (2.10) let us suppose in (4.2.1) that

d bd —2ae+dvb? —4ac a b+\/b2

=-Nn, g=—+n-1, r= and t= 4211
P 2o —dac o ol 2
After some computations, one finally gets
5 ()= (X L 2n(n+Dab+(d —2a)(e + 2nb)J 5 ()

(d +2na)(d +(2n—2)a) (4.2.2)

n(d +(n- 2)a)(c(d +(2n-2)a)®> —nb*(d + (n—2)a) + (e —b)(a(e + b) — bd)) )

(d +(2n—3)a)(d + (2n - 2)a)2(d + (2n —1)a)

. . — _(d, e N — =
in which P (x)= P"{a b ¢ | xj and the initial values P,(x) =1 and P,(x) = x+§ are
given. For other approaches to deduce (4.2.2), see [7] and [5].

4.3. The norm square value
Let [L,U] be the predetermined orthogonality interval which (besides for finite families, see

Section 5) of course consists of the zeros of o(x) = ax* +bx+cor +oo. Then, by using the
Rodrigues representation (3.3) of the polynomials (2.2) we have

10



U
szﬁz[dbe|xjw(dbe|xjdx: - !
L \abc abc [[d+(n+k-2)a
k=1

(4.3.1)
) . d d
xJ.Pn( e|x](d”((ax2+bx+c)”W( e|x])/dx”)dx.
1 labec abec
Integration by parts from right hand side of (4.3.1) yields eventually
— | n
P, 1) J'(ax +bx+c)" (expf (d- 2a)x+ (e—b) dx) dx.. (4.3.2)
ax® +bx+c

Hd+(n+k 2)at

5. Six special cases of the generic polynomials (2.2) as classical orthogonal polynomials

From the main equation (1.1) one can extract six special sequences of orthogonal polynomials
on the real line. Jacobi, Laguerre and Hermite polynomials are three of them, which nowadays
are called the classical orthogonal polynomials. Furthermore, there are three other sequences
that are finitely orthogonal for some restricted values of n (see e.g. [12], [8], [9]). In this sec-
tion we use the previous generic formulas to detect the properties of each of these six se-
quences.

5.1. Jacobi orthogonal polynomials

Ifa=-1,b=0,c=1,d=-a-f-2,e=—-a+ f areselected in (2.2) then

Ph) (x) = (N+a+pB+1), 5(_a_’3_2’ -a+p | Xj:
" 2"n! " -1, 0,1
) (5.1.2)
(n+a+p4+1), ken -N-N—-«a K
-1 2
2! Z( "Rl ons e g2
are the Jacobi orthogonal polynomials with weight function
—a-p-2, —a+p —(a+p)X+p -« «
w( o1 |x]=exp(j ma dx) = (1— X)“ L+ x)” (5.1.2)
and orthogonality relation
1 a+p+1
[@="@+x” P& ()P (b = ——2 Linta+DIM++D) 5 (513

ni2n+a+pf+1) T(h+a+pf+])

-1

11



0 if n#m . .
where 6, = { . . The mentioned polynomials can also be represented as

1 if n=m
—(—a-p-2, —a+p . . -n—a-n| 2
P, | x|=(D"-%",F, —
-1, 01 —a—-f-2n|1-x
which is one of the known hypergeometric representations for the Jacobi polynomials (see
e.g. [1], [13]).
Since the Gegenbauer (ultraspherical), Legendre and Chebyshev polynomials of the first and

second kind are all special cases of the Jacobi polynomials, we get the following representa-
tions straightforwardly.

Gegenbauer polynomials:

2" (/1) 24-1 0 2"(4) -nl/2-A-n 2
ce — n—_D)"(1=x)". E 5131
()= (101| o CT0TR o o [k )
Legendre polynomials:
1 (-2 0 —n,—n
P00 = p, x| =B cara-nrr| 1, (5132
(nH“2" (-1 0 1 (nh=2" -2n |1-
Chebyshev polynomials of first kind:
-1 0 -nl/2-n| 2
T.(x)=2""P x|=2""(-)"(1-x)",F ' — 1, 5133
(0= [101'] (-1 )Z{Hn HJ (5.133)
Chebyshev polynomials of second kind:
U (x)=2"P =30 |x |=2"(-1)"(1-x)",F —nolf2-m 2 (5.1.3.4)
-101"7) 2 -1-2n |1-x)
5.2. Laguerre orthogonal polynomials
Ifa=0,b=1,c=0,d=-1,e=a+1 areconsidered in (2.2) then
-n" (-1 1 -n
L&a)(x)z( 1) P a+ |X =(a+1)n F X (5.2.1)
n! 010 n! a+1

are the Laguerre orthogonal polynomials with weight function

12



w X |=ex dx) = x%e™* 5.2.2
( 010 | j p([— — ) (5.22)

and orthogonality relation

(n+a)!

j x“e ™ L (X)L (x) dx = Som - (5.2.3)
0

5.3. Hermite orthogonal polynomials

Ifa=0,b=0,c=1,d=-2,e=0 areselected in (2.2) then

-2 0 n n-1 1
H,(x)=2"P, X|=2x)",F| 27 - 5.3.1
2 (X) n(001|]()202_2 2 (5.3.1)
are the Hermite orthogonal polynomials with weight function
w2 O|x = ex (j( 2X) dx) = exp(—x?) (5.3.2)
0,01 "7 - ~
and orthogonality relation
j exp(-x2)H, ()H, () dx =n2"Vz &, . . (5.3.3)
q
5.4. Finite classical orthogonal polynomials with weight function W, (x, p,q) :(lxm
+ X

on [0, )

Wi (x) _ —px+q
W (x)  x*+X
ential equation or accordingly by (3.2) the main parameters are given as

First let us compute the logarithmic derivative . Hence, by Pearson’s differ-

a=1,b=1,c=0,d=-p+2,e=q+1. (5.4.1)

Note that in [8] the family of polynomials of this type are called Romanovski-Jacobi polyno-
mials, see also [12]. In [9] the related polynomials are denoted by M ("% (x), for which we
get

13



-p+2 gq+1
110

-n,n+1-p

D (y) — (_T\" _ P
MP9 ()= ()" (n+1 p)nP{ 0ol

‘ Xj:(—l)”(q +1), 2F1£

—g.(54a

Also, in [9] it is shown that the finite set {M ("?(x)}"=) is orthogonal with respect to the

weight function W, (x, p,q) on [0,) if and only if g>-1 and p >2N +1. To compute the

norm square value of the polynomials we can use the general relation (4.3.2). According to
this relation we have

¢ “ 0 _,(-p+2 1 1(—1)" 2 q
IX—MPnZ( p1+1 g+ |dex=nr]¢j(x2+x)”x—p+qu. (5.4.3)
o 1+X) H(—p+n+k)° 1+x)
k=1
Then, using (5.4.2) yields
© q I(p—n-=1)! I
[ MOy o= PO .44
o (@+x) (p-2n-)(p+g—n-1!
Hence the complete orthogonality relation is given by
° q I(p—=n-=1)! I
I X - Mﬁp“”(x)M,ﬁp'q’(x)dx: n(p n 1)-(q+n)- 5n‘m (5.4.5)
o (@+x) (p=2n-D(p+g—n-1)!

which is valid if and only if m,n=012,...,N <pT_1 ,q>-1.

1
5.5. Finite classical orthogonal polynomials with weight function W,(x, p) =x""e * on

[0,0)
W, (x) B +1

If we consider the fraction 5
W, (x) X

, then the main parameters become

a=1,b=0,c=0,d=-p+2,e=1. (5.5.1)

In [8], the polynomials of this type are called Romanovski-Bessel polynomials. In [9] these
polynomials are denoted by N (”(x), for which we have

(- —nl-
Né°><x)=(—1>“(n+1—p)npn[ lpgzoﬂx}(-wo[ S

- xj. (5.5.2)
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Also in [9] it is shown that the finite set {N{”(x)}=) is orthogonal with respect to the

weight function W, (X, p) on [0,) if and only if p>2N +1. Using the general relation
(4.3.2) helps us to compute the norm square value of these polynomials as follows

A (pt2 1 I-D)" ¢ -
J X Pe xan( lp; . |dex: - ni(=1) Ixz"x‘pe x dx. (5.5.3)
0 [TCp+n+k)©

k=1

Consequently the complete orthogonality relation is

2 - I(p— I _
Ix’peX NP (x)N P (x) dx = n(p—(n+D)! 5, for m,n:0,1,2,...,N<p—1. (5.5.4)
0 p—(2n+1) ' 2

5.6. Finite classical orthogonal polynomials with weight function

WP (x; A, B,C,D) = ((Ax + B)® + (Cx + D)*) " exp(q arctan éx i B) on (-0, )
X

+D

- . . W/ (x
Similar to the two previous cases, by computing 2 (X)

we get the parameters
3

a=A>+C?, b=2(AB+CD) , c=B?*+D?,

(5.6.1)
d=2(1-p)(A*+C?) , e=q(AD-BC)+2(1- p)(AB+CD).

In [8], the polynomials of this type are called Romanovski-Pseudo-Jacobi polynomials. In
[10] the related polynomials are denoted by J (" (x; A, B,C, D), for which we have

(5.6.2)
JPD(x: A B,C,D)=(-1)"(n+1-2p),(A* +C?)"

P 2(1- p)(A* +C?), q(AD-BC)+2(1— p)(AB+CD)|X _
" A*+C?, 2(AB+CD), B?+D?

(-1)"(n+1-2p),(AB +CD + (AD - BC)i + x(A’ +C?))’

q.
<, F, -n,—n+ p—zl
2p-2n

(A—Ci)(B + Di+ x(A+Ci))

2i(AD - BC) }

According to [10] these polynomials are finitely orthogonal with respect to the weight func-
tion WSP¥ (x; A, B,C, D) on (~o,) and satisfy the following orthogonality relation
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[W{P?(x; AB,C,D) J{"(x;A,B,C,D)J"?(x; A B,C,D) dx

—00

I 2 2\n _ 7l2
_[ DA +Ef)2 E(Zp ) I (Acosd—C sing)** ™" e*dd | 5,, (56.3)
(AD-BC)* T (2p-2n) J,, |

validif and only if mn=0,12,...,.N<p-1/2 and AD-BC>0, geR.

6. How to find the parameters if a special case of the weight function (3.2) is given?
By referring to the previous sections, it is easy to see that the best way for finding a,b,c,d ,e

is to compute the logarithmic derivative W '(x) /W (x) and match the pattern in relation (3.2).
Let us clarify this approach by some examples given below.

Example 1. Consider the weight function: W (x) = (—=x* +3x—2)" ; 1<x<2. If the loga-
rithmic derivative of this weight function is computed, then we get

W'(x) -20x+30 (d-2a)x+(e—h) N

=— = > a=-1,b=3,c=-2,d=-22,e=33.
W(x) —x"+3x-2 ax” +bx+c

-22, 33
1, 3 -2

these polynomials are orthogonal with respect to the given weight function on [1,2] for every
value n. Also note that it is not necessary to know that these polynomials are the shifted
Jacobi polynomials on the interval [1,2] since they can explicitly and independently be ex-
pressed by the generic polynomials (2.2).

Consequently the related monic orthogonal polynomials are 5“( |x) Note that

Example 2. If the weight function W (x) = (2x* +2x+1)™° ; —wo < x <o isgiven, then

W'(x) —40x-20

=— = (a,b,c,d,e) =(2,2,1,-38,-18).
W(x) 2x°+2x+1

_ (38,
Hence the related monic orthogonal polynomials are Pn( )

-18
| X |. These polynomials
2, 1
are finitely orthogonal for n<9, because according to (5.6.3) we must have
N = max{n} <10—(1/2). Hence, the finite set {5”(_238’2 _18|xJ}:=3 is orthogonal with
respect to the weight function (2x* +2x+1)"° on (—o, ).

Example 3. Consider the weight function W (x) =exp(x(@—-x)) ; —o<Xx<wo , 6HeR.
Then we have

W) _ Hyt0 = (ab,cd,e) = (001-2,6).
W (x)
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Hence the related monic orthogonal polynomials are 5{0 0

A
(x+2)°

of the second kind of the Beta distribution, we have

0
L |XJ for every value n.

Example 4. For the weight function W (x) = 7 0<x<oo, which is a special case

W'(x) —15x+2
W(X) 2x*+4x

= (a,b,c,d,e) =(2,4,0,-11,6)

-11,

that gives the monic orthogonal polynomials 5{2 | x) for n <3, because according

to (5.4.5) 2n+1<8-—(1/2). This means that the finite set {F_)"(z_lla’, 60 |xj}g=g is or-

thogonal with respect to the weight function &/(x +2)® on [0,0).

6. Classical orthogonal polynomial solutions of three-term recurrence equations

In [6] this problem was solved in detail. In particular, it was shown, how to transform a given
three-term recurrence equation into an equivalent three-term recurrence equation for the cor-
responding monic solution family. Hence in the sequel we may assume that the solutions of a
given three-term recurrence equation are monic and use the formula (4.2.2) derived in this
paper.

There are two ways to solve the problem to determine the classical orthogonal polynomial
solutions of a given three-term recurrence equation. The first way is to compare the given re-
currence equation with (4.2.2). This leads to a system of polynomial equations for the five
parameters a,b,c,d,e . This procedure was investigated in [6], and a Maple package was de-

veloped to perform this task. The second way is to equate the first five terms of each two re-
currence equations together, which leads to a polynomial system with 5 equations and 5 un-
knowns a,b,c,d and e. Let us give an example.

Example 5. If the recurrence equation

DB 00 1 R=1 and B()=x+3

Pui(¥) = (x+n+3)P, (x) -

is given, then find the explicit form of the polynomials, their differential equation, their
weight function and finally their orthogonality relation.

Solution: If the above recurrence equation is compared with the main equation (4.2.2) di-
rectly, then one can reach the values (a,b,c,d,e) =(0,1,2,2,6) . Therefore, the explicit form of

(2, 6 . . .
the polynomials are given by P, (0 L 2 |x] and consequently their differential equation
is found as:
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(x+2)y'(xX)+(2x+6)y,(x)—2n y,(x)=0 ; neZ".
The above computations are automatically done by the Maple package retode.mpl [6]

>read "retode.mpl’’;
Package "REtoDE", Maple V - Maple 8

Copyright 2000-2002, Wolfram Koepf, University of Kassel
>RE:=P(n+1)-(x+n+3)*P(n)+n*(n+1)/4*P(n-1)=0

RE ;= P(n+1)—(x+n+3)P(n)+%n(n+1)P(n—1):0
>REtoDE(subs(n=n+1,RE),P(n),X);
{(x+ 2) (86:2 P(n, x)] +2(x+3) (aax P(n, x)j— 2nP(n,x)=0,

kn+1
[1=[-2, ], p(x) = e (x+2)] 1}

n

Also the weight function of these polynomials takes the form

2, 6 2X+5 .
W(O, L2 J xp(J' dx) C(x+2)e

with a constant C. Note that the weight function is zero at x=-2 and x =-o. So the or-
thogonality interval must be (—o0,—2]. On the other hand, since the weight function must be
positive on this interval, C=-1, hence the weight function is in fact given by
W (x) =—(x+2)e*; —o<x<-2. (Note that the retode program is not set up to decide
about the constant C correctly, and hence wrongly assumed the interval (—2,].) Now substi-
tuting this weight function in (4.3.2) yields

n+l -2
”Pn”? _&J‘(X_}_Z)nu 2y —M.

22n+2

Finally the orthogonality relation for the related polynomials will be

2 _( 2 6 _( 2 6 “n1 !
I(—(x+2)e2X)Pn | x|P, | x |dx = w Som: NEZ.
J 0, 1 2 0, 1 2 2 '

Second method: If the given recurrence equation is expanded for n = 1, 2, 3 and compared
with (2.16.2), then the following system follows
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= e e
PR(X)=Xx+3=X+—=—=3
109 d d

= = 1- 23 _(d e
Pz(x):(x+4)Pl(x)—EP0(x):xz+7x+7: Pz(a A c|Xj

e+b 7 c(d+2a)+e(e+b) 23
= ——=— and =—
d+2a 2 (d +2a)(d +a) 2

_ _ _ _(d
P,(x) = (x+5)P2(x)—§P1(x) = x* +12x? + 45x + 53 = P{a X ec| xj

N e+2b _ 4 and c(d +4a) + (e+b)(e+2b)
d +4a (d +4a)(d +3a)
2c(d + 3a)(e + 2b) + ce(d + 4a) +e(e + b)(e + 2b)
(d +4a)(d +3a)(d + 2a)

=15 and

=53

Solving this system eventually yields again that (a,b,c,d,e) =(0,1,2,2,6).
Conclusion

We have computed a generic formula for the polynomial solution families of the differential
equation of hypergeometric type. In particular, our formula gives a unified representation of
the classical orthogonal polynomials of Jacobi (including Gegenbauer, Chebyshev and Leg-
endre), Laguerre, Bessel and Hermite. Furthermore, some applications were given. Using
computer algebra, we expect further applications of our result.

The Maple software used in this paper (hsum, retode) can be downloaded from the web site
http://www.mathematik.uni-kassel.de/~koepf/Publikationen.
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