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1. Introduction  
Let us consider the differential equation 
 
                                   0)()()()()( =−′+′′ xyxyxxyx nnnn λτσ                                        (1.1) 
 
and search for its polynomial solutions in form ...)( 1

1 ++= −
−

n
n

n
nn xkxkxP . 

We will often consider the monic case .1=nk  Substituting this form in (1.1) for 1=n  shows 
that edxx +=)(τ  must be a polynomial of degree 1, and substitution for 2=n  shows that 

cbxaxx ++= 2)(σ  is a polynomial of degree at most 2. Finally equating the coefficients of 
nx  yields ndannn +−= )1(λ  as the eigenvalue parameter depending on ,...2,1,0=n .  

We denote the polynomial solution of (1.1) by 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
x

cba
ed

Pn
.  
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Extensive research has been done on equation (1.1) and its polynomial solutions up to now. In 
1929 Bochner [3] classified the polynomial solutions of (1.1). He showed that the only poly-
nomial systems up to a linear change of variable arising as eigenfunctions of the differential 
equation (1.1) are  
         

(i)             Jacobi polynomials ( ),...}2,1{1,,,)}({ 0
),( −−∉++∞

= βαβαβα
nn xP  

(ii)             Laguerre polynomials ( ),...}2,1{,)}({ 0
)( −−∉∞

= αα
nn xL  

(iii)            Hermite polynomials ∞
=0)}({ nn xH  

(iv)             Bessel polynomials ( ). 0and,...}2,1,0{,)}({ 0
),( ≠−−∉∞

= βαβα
nn xB  

 
It turns out that for certain parameter constellations )1,( −>βα  the first three classes are or-
thogonal families in a real interval, whereas the fourth class is orthogonal on the unit circle. 
Nevertheless, for certain parameter instances, there are finite orthogonal families in a real in-
terval also in the Bessel case. 
Then, in 1988, Nikiforov and Uvarov [11] gave some general properties of 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
x

cba
ed

Pn
, such 

as a generating function for the polynomials, a Cauchy integral representation etc. in terms of 
given cbxaxx ++= 2)(σ  and edxx +=)(τ . Their approach is based on the Rodrigues repre-
sentation of the polynomials and is not expressed in an explicit form.  
Before deriving a generic solution for (1.1), we give an algebraic identity which is easy to 
prove but important. 
   
1.1. An identity  
If ba,  and ),...,1,0( nkCk =  are real numbers then 
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For instance, if we set 
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denotes the Pochhammer symbol, then we get 
 

k
n

k m

m
mm

nmnn

nmn
n

k
n

k m

m
mm

nmnn

nmn
n

m

m
mm

ax
b

bnpnpnp
nqnqk

F
k
n

qqq
ppax

b
ax

bnpnpnp
nqnqnk

F
k
n

qqq
ppb

bax
qqq
ppn

F

)(1|
1,....,1,1

1,....,1,
)...()()(
)...()()(

)(1|
1,....,1,1

1,....,1,
)...()()(
)...()()(

|
,....,,
,....,,

0 32

11
1

121

2

0 32

11
1

121

2

121

2
1

∑

∑

=

−
−

−

=

−
−

−

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−−−
−−−−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−−−
−−−−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

     (1.3) 

 



 
3

where 
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 denotes the generalized hypergeo-

metric function of order (p, q) (see e.g. [4], Chapter 2). The coefficient of a hypergeometric 
function is called a hypergeometric term.  
Note that for computing the relations (1.3) we have generally used the two identities 
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An interesting case takes place for (1.3) when  1,2 === bam  is considered. In this case we 
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which according to Gauss’ identity (see e.g. [4], p. 31) 
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                     (1.7) 

The first identity of (1.7) can be found in [1], (15.3.6) and the second identity in (1.7) is a 
special case of [1], (15.3.7) for integer upper parameter. 
 
Now we are in a good position to state the main theorem of finding a generic polynomial solu-
tion for equation (1.1). 

2. Theorem: The monic polynomial solution ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
x

cba
ed

Pn  of the differential equation 
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is given by the formula 
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For 0=a  the equality can be adapted by limit considerations and give (2.2) with 
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Proof: Consider the differential equation (2.1) and suppose that qptx += . Therefore (2.1) 
changes to 
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Now if in (2.3)  1/)2(and02 −=+=++ apbaqcbqaq  are assumed, then  
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Equation (2.5) is a special case of the Gauss hypergeometric differential equation (see e.g. [4], 
p. 26): 
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or written in terms of the variable x 
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From (2.8) the following sub-cases are obtained  
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Note that both above relations only differ by a minus sign in the argument of the second for-
mula (ii) which does not affect on the differential equation (2.1).  
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Simplifying this relation and substituting **K  by (2.10) finally gives the monic polynomial 
solution of equation (2.1) in the form (2.2). Hence the first part of the theorem is proved.  
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We would like to mention that the general formula ),,,,()( edcbaG n
k  is a suitable tool to com-

pute the coefficients of kx  for fixed degree k and arbitrary a. If for example the coefficient of 
1−nx  is needed in the generic polynomial 
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in which acb 42 −=Δ . Note that in the above simplified relation, all parameters 
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Also (2.16) shows, for example, that if  n = 0,1,2,3  then                                   
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3. A special case of the generic polynomials (2.2) 
In the sequel, we would like to apply Gauss’ identity, expressed in relation (1.6). So let us as-
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On the other hand, let us review the Nikiforov and Uvarov approach and consider the differ-
ential equation (2.1) again. If this equation is written in self-adjoint form, then the weight 

function W(x) satisfies Pearson’s differential equation ( ) )()()()( xWxxWx
dx
d τσ = , and there-

fore 
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If we put 0=c  in this relation and use (3.1), we get 
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4. Some general properties of the main polynomials (2.2) 
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showing the effect of a linear change of variables for the polynomials (2.2). For instance, if 
0and1 =−= vw  are considered, then we have 
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4.2. A three-term recurrence equation 
The second formula of (2.9) is a proper relation to compute the recurrence equation for the 
generic polynomials (2.2). In order to reach this goal, one can use various identities of the 
Gauss hypergeometric function. For example, the following identity is valid for 
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Now using relation (ii) in (2.9) and its coefficient in (2.10) let us suppose in (4.2.1) that 
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After some computations, one finally gets                                                                                                               
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given. For other approaches to deduce (4.2.2), see [7] and [5]. 
 
4.3. The norm square value  
Let ],[ UL  be the predetermined orthogonality interval which (besides for finite families, see 
Section 5) of course consists of the zeros of cbxaxx ++= 2)(σ or ∞± . Then, by using the 
Rodrigues representation (3.3) of the polynomials (2.2) we have 
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Integration by parts from right hand side of (4.3.1) yields eventually 
 

. ))()2((exp)(
)2(

)1(!
2

2

1

2

∫ ∫
∏ ++

−+−
++

−++

−
=

=

U

L

n
n

k

n

n dxdx
cbxax

bexadcbxax
aknd

nP                (4.3.2) 

 
5. Six special cases of the generic polynomials (2.2) as classical orthogonal polynomials 
 
From the main equation (1.1) one can extract six special sequences of orthogonal polynomials 
on the real line. Jacobi, Laguerre and Hermite polynomials are three of them, which nowadays 
are called the classical orthogonal polynomials. Furthermore, there are three other sequences 
that are finitely orthogonal for some restricted values of n (see e.g. [12], [8], [9]). In this sec-
tion we use the previous generic formulas to detect the properties of each of these six se-
quences. 
 
5.1. Jacobi orthogonal polynomials 
 
If βαβα +−=−−−===−= edcba ,2,1,0,1  are selected in (2.2) then  
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are the Jacobi orthogonal polynomials with weight function 
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where 
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⎨
⎧

=
≠
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mn

mn if1
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,δ .  The mentioned polynomials can also be represented as 
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which is one of the known hypergeometric representations for the Jacobi polynomials (see 
e.g. [1], [13]). 
Since the Gegenbauer (ultraspherical), Legendre and Chebyshev polynomials of the first and 
second kind are all special cases of the Jacobi polynomials, we get the following representa-
tions straightforwardly. 
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Legendre polynomials: 
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Chebyshev polynomials of first kind: 
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Chebyshev polynomials of second kind: 
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5.2. Laguerre orthogonal polynomials 
 
If 1,1,0,1,0 +=−==== αedcba  are considered in (2.2) then  
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are the Laguerre orthogonal polynomials with weight function 
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5.3. Hermite orthogonal polynomials 
 
If 0,2,1,0,0 =−==== edcba  are selected in (2.2) then  
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are the Hermite orthogonal polynomials with weight function 
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5.4. Finite classical orthogonal polynomials with weight function qp
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First let us compute the logarithmic derivative 
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. Hence, by Pearson’s differ-

ential equation or accordingly by (3.2) the main parameters are given as  
 

. 1,2,0,1,1 +=+−==== qepdcba                                                                       (5.4.1) 
 
Note that in [8] the family of polynomials of this type are called Romanovski-Jacobi polyno-
mials, see also [12]. In [9] the related polynomials are denoted by )(),( xM qp

n , for which we 
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Also, in [9] it is shown that the finite set Nn

n
qp

n xM =
=0

),( )}({  is orthogonal with respect to the 
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Hence the complete orthogonality relation is given by 
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Also in [9] it is shown that the finite set Nn
n

p
n xN =

=0
)( )}({  is orthogonal with respect to the 

weight function ),(2 pxW  on ),0[ ∞  if and only if 12 +> Np . Using the general relation 
(4.3.2) helps us to compute the norm square value of these polynomials as follows 
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Consequently the complete orthogonality relation is 
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5.6. Finite classical orthogonal polynomials with weight function 
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In [8], the polynomials of this type are called Romanovski-Pseudo-Jacobi polynomials. In 
[10] the related polynomials are denoted by ),,,;(),( DCBAxJ qp

n , for which we have 
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According to [10] these polynomials are finitely orthogonal with respect to the weight func-
tion ),,,;(),(

3 DCBAxW qp  on ),( ∞−∞  and satisfy the following orthogonality relation         
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   (5.6.3) 

                                     
6. How to find the parameters if a special case of the weight function (3.2) is given? 
By referring to the previous sections, it is easy to see that the best way for finding edcba ,,,,  
is to compute the logarithmic derivative )(/)( xWxW ′  and match the pattern in relation (3.2). 
Let us clarify this approach by some examples given below. 
Example 1. Consider the weight function: 21;)23()( 102 <<−+−= xxxxW . If the loga-
rithmic derivative of this weight function is computed, then we get  
 

        . 33,22,2,3,1)()2(
23

3020
)(
)(

22 =−=−==−=⇒
++

−+−
=

−+−
+−

=
′

edcba
cbxax

bexad
xx

x
xW
xW  

 

Consequently the related monic orthogonal polynomials are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
xPn 2,3,1

33,22
. Note that 

these polynomials are orthogonal with respect to the given weight function on [1,2] for every 
value n. Also note that it is not necessary to know that these polynomials are the shifted 
Jacobi polynomials on the interval [1,2] since they can explicitly and independently be ex-
pressed by the generic polynomials (2.2).      
 
Example 2. If the weight function  ∞<<∞−++= − xxxxW ;)122()( 102   is given, then  
 

            . )18,38,1,2,2(),,,,(
122

2040
)(
)(

2 −−=⇒
++

−−
=

′
edcba

xx
x

xW
xW  

Hence the related monic orthogonal polynomials are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
xPn 1,2,2

18,38
. These polynomials 

are finitely orthogonal for 9≤n , because according to (5.6.3) we must have 

)2/1(10}max{ −<= nN . Hence, the finite set 9
0}

1,2,2
18,38

{ =
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −− n
nn xP  is orthogonal with 

respect to the weight function 102 )122( −++ xx  on ),( ∞−∞ .        
 
Example 3. Consider the weight function ( ) exp( ( )) ; ,W x x x xθ θ= − −∞ < < ∞ ∈R . 
Then we have   
 

                    . ),2,1,0,0(),,,,(2
)(
)( θθ −=⇒+−=

′
edcbax

xW
xW  
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Hence the related monic orthogonal polynomials are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
xPn 1,0,0

,2 θ
 for every value n.  

Example 4. For the weight function ∞<<
+

= x
x

xxW 0;
)2(

)( 8 , which is a special case 

of the second kind of the Beta distribution, we have 
 

            )6,11,0,4,2(),,,,(
42

215
)(
)(

2 −=⇒
+

+−
=

′
edcba

xx
x

xW
xW  

that gives the monic orthogonal polynomials ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
xPn 0,4,2

6,11
 for 3≤n , because according 

to (5.4.5) )2/1(812 −<+n . This means that the finite set 3
0}

0,4,2
6,11

{ =
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ − n
nn xP  is or-

thogonal with respect to the weight function 8)2/( +xx  on ),0[ ∞ .        
 
6. Classical orthogonal polynomial solutions of three-term recurrence equations 
In [6] this problem was solved in detail. In particular, it was shown, how to transform a given 
three-term recurrence equation into an equivalent three-term recurrence equation for the cor-
responding monic solution family. Hence in the sequel we may assume that the solutions of a 
given three-term recurrence equation are monic and use the formula (4.2.2) derived in this 
paper. 
There are two ways to solve the problem to determine the classical orthogonal polynomial 
solutions of a given three-term recurrence equation. The first way is to compare the given re-
currence equation with (4.2.2). This leads to a system of polynomial equations for the five 
parameters edcba ,,,, . This procedure was investigated in [6], and a Maple package was de-
veloped to perform this task. The second way is to equate the first five terms of each two re-
currence equations together, which leads to a polynomial system with 5 equations and 5 un-
knowns edcba and,,, . Let us give an example. 
 
Example 5. If the recurrence equation 
 

      3)(and1)(;)(
4

)1()()3()( 1011 +==
+

−++= −+ xxPxPxPnnxPnxxP nnn  

 
is given, then find the explicit form of the polynomials, their differential equation, their  
weight function and finally their orthogonality relation. 
    
Solution:  If the above recurrence equation is compared with the main equation (4.2.2) di-
rectly, then one can reach the values )6,2,2,1,0(),,,,( =edcba . Therefore, the explicit form of 

the polynomials are given by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
xPn 2,1,0

6,2
 and consequently their differential equation 

is found as:  
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                        ( 2) ( ) (2 6) ( ) 2 ( ) 0 ;  .n n nx y x x y x n y x n +′′ ′+ + + − = ∈Z  
The above computations are automatically done by the Maple package retode.mpl [6] 
> read "retode.mpl"; 

Package "REtoDE", Maple V - Maple 8  
Copyright 2000-2002, Wolfram Koepf, University of Kassel  

> RE:=P(n+1)-(x+n+3)*P(n)+n*(n+1)/4*P(n-1)=0; 

 := RE  =  −  + ( )P  + n 1 ( ) +  + x n 3 ( )P n
1
4 n ( ) + n 1 ( )P  − n 1 0  

> REtoDE(subs(n=n+1,RE),P(n),x); 
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⎜⎜⎜
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⎟⎟∂

∂
x ( )P ,n x 2 n ( )P ,n x 0,

⎡

⎣
⎢⎢⎢

[ ], = I [ ],-2 ∞  = ( )ρ x e
( )2 x

( ) + x 2  = 
k  + n 1

kn
1,

⎤

⎦
⎥⎥⎥

 
Also the weight function of these polynomials takes the form 
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x
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with a constant C. Note that the weight function is zero at −∞=−= xx and2 . So the or-
thogonality interval must be ]2,( −−∞ . On the other hand, since the weight function must be 
positive on this interval, ,1−=C  hence the weight function is in fact given by 

2;)2()( 2 −<<∞−+−= xexxW x . (Note that the retode program is not set up to decide 
about the constant C correctly, and hence wrongly assumed the interval ],2( ∞− .) Now substi-
tuting this weight function in (4.3.2) yields 
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Finally the orthogonality relation for the related polynomials will be 
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Second method: If the given recurrence equation is expanded for n = 1, 2, 3 and compared 
with (2.16.2), then the following system follows 
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Solving this system eventually yields again that )6,2,2,1,0(),,,,( =edcba . 
 
Conclusion 
 
We have computed a generic formula for the polynomial solution families of the differential 
equation of hypergeometric type. In particular, our formula gives a unified representation of 
the classical orthogonal polynomials of Jacobi (including Gegenbauer, Chebyshev and Leg-
endre), Laguerre, Bessel and Hermite. Furthermore, some applications were given. Using 
computer algebra, we expect further applications of our result.  
The Maple software used in this paper (hsum, retode) can be downloaded from the web site 
http://www.mathematik.uni-kassel.de/~koepf/Publikationen. 
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