
Learning Analysis by Reduction from Positive Data?

Frantǐsek Mráz1, Friedrich Otto1, and Martin Plátek2

1 Fachbereich Mathematik/Informatik, Universität Kassel
34109 Kassel, Germany

{mraz,otto}@theory.informatik.uni-kassel.de

2 Charles University, Faculty of Mathematics and Physics
Department of Computer Science, Malostranské nám. 25

118 00 PRAHA 1, Czech Republic
Martin.Platek@mff.cuni.cz

Abstract. Analysis by reduction is a linguistically motivated method for checking
correctness of a sentence. It can be modelled by restarting automata. In this paper we
propose a method for learning restarting automata which are strictly locally testable
(SLT-R-automata). The method is based on the concept of identification in the limit
from positive examples only. Also we characterize the class of languages accepted by
SLT-R-automata with respect to the Chomsky hierarchy.

1 Introduction

Analysis by reduction [7, 8, 11] consists in stepwise simplifications (reductions) of
a given (lexically disambiguated) extended sentence until we get a correct simple
sentence and accept or until an error is found and the input is rejected. Each simpli-
fication replaces a small part of the sentence by a shorter one. Analysis by reduction
can be modelled by restarting automata, which have been studied for several years
[6, 10]. On the other hand only few tools have been developed that support the design
of restarting automata. In this paper we propose a method for learning restarting
automata (analysis by reduction) from positive examples. Obviously, each restarting
automaton learnt can also be used for language recognition. Moreover, analysis by
reduction enables nice error localization in rejected words/sentences (see, e.g. [7]).

Several attempts for learning restarting automata by genetic algorithms were
already made [2, 5]. The results are far from being applicable. Here we propose
another method based on the concept of identification in the limit from positive
data. Our proposed method uses positive samples of simplifications (reductions)
and positive samples of so-called simple words (sentences) of the language to be
learnt. The new algorithm could substantially improve applicability of restarting
automata/analysis by reduction.

In this paper we describe the learning protocol for learning a subclass of restart-
ing automata called strictly locally testable restarting automata. Their definition as
well as their learning is based on the notion of strictly locally testable languages [12].
Further we compare the class of languages learnable in this way to the Chomsky
hierarchy.

? The work of the first two authors was supported by a grant from the Deutsche Forschungs-
gemeinschaft. The third author was partially supported by the Grant Agency of the Czech
Republic under Grant-No. 201/04/2102 and by the program ‘Information Society’ under
project 1ET100300517.

2 F. Mráz, F. Otto, M. Plátek

2 Definitions and notations

In order to define the analysis by reduction, we introduce syntactic reduction sys-
tems.

Definition 1. A syntactic reduction system is a tuple R = (Σ,Γ,`R, LS), where
Σ is a finite nonempty input alphabet, Γ is a finite nonempty working alphabet,
Γ ⊇ Σ, `R ⊆ Γ ∗ × Γ ∗ is the reduction relation, and LS ⊆ Γ ∗ is the set of simple
sentential forms. Any string from Γ ∗ is called a sentential form. The reflexive and
transitive closure of `R is denoted by `∗

R.
For each syntactic reduction system R = (Σ,Γ,`R, LS) we define two languages:

– the input language of R : L(R) = {u ∈ Σ∗ | ∃ v ∈ LS : u `∗

R v}, and
– the characteristic language of R : LC(R) = {u ∈ Γ ∗ | ∃ v ∈ LS : u `∗

R v}.

That is, a word u ∈ Σ∗ (a sentential form u ∈ Γ ∗) is in the input language (in
the characteristic language) of R iff u can be reduced to some simple sentential form
v ∈ LS. Trivially, L(R) = LC(R) ∩ Σ∗.

Definition 2. A syntactic reduction system R = (Σ,Γ,`R, LS) is called:

– length-reducing if, for each u, v ∈ Γ ∗, u `R v implies |u| > |v|;
– locally-reducing if there exists a constant k > 0 such that, for each u, v ∈ Γ ∗,

u `R v implies that there exist words u1, u2, x, y ∈ Γ ∗ for which u = u1xu2 and
v = u1yu2, and |x| ≤ k.

Length- and locally-reducing syntactic reduction systems are a formalization of
the analysis by reduction of the type we are interested in. In the case of a natural
language, the relation `R corresponds to a stepwise simplification of (extended) sen-
tences, and LS corresponds to (correct) simple sentences. The analysis by reduction
is nondeterministic in the sense that:

– one word (sentential form) can be reduced in several different ways to different
sentential forms;

– for a word u ∈ L(R) there can exist two or more simple sentential forms to which
u can be reduced;

– even if u ∈ LC(R), there can exist a sentential form v such that u `∗

R v, but
v 6∈ LC(R).

The analysis by reduction has the so-called error preserving property:

if u `∗

R v, and u 6∈ LC(R), then v 6∈ LC(R).

Up-to now, the analysis by reduction has been modelled by several classes of
restarting automata [10]. One of them is the RRWW-automaton ([7]). Instead of its
formal definition we will use its alternative representation adapted from [9].

Definition 3. A restaring automaton is a system M = (Σ,Γ, I), where Σ is an in-
put alphabet, Γ (⊇ Σ) is a working alphabet, and I is a finite set of meta-instructions
of the following two forms:

Learning Analysis by Reduction from Positive Data 3

(1) rewriting meta-instruction: (El, x → y,Er), where x, y ∈ Γ ∗ such that |x| > |y|
and El, Er ⊆ Γ ∗ are regular languages called left and right constraints, or

(2) accepting meta-instruction: (E,Accept), where E ⊆ Γ ∗ is a regular language.

Each restarting automaton M = (Σ,Γ, I) induces the following length- and
locally-reducing syntactic reduction system R(M) = (Σ,Γ,` c

M , S(M)), where:

a) for each u, v ∈ Γ ∗, u ` c
M v iff u = u1xu2, v = u1yu2 for some words u1, u2, x, y ∈

Γ ∗ such that there exists an instruction i = (El, x → y,Er) in I for which u1 ∈ El

and u2 ∈ Er; and
b) S(M) =

⋃
(E,Accept)∈I E.

By ` c∗

M we denote the reflexive and transitive closure of ` c
M . A restarting au-

tomaton M = (Σ,Γ, I) defines two languages:

– the input language of M : L(M) = {w ∈ Σ∗ | ∃z ∈ S(M) : w ` c∗

M z}, and
– the characteristic language of M : LC(M) = {w ∈ Γ ∗ | ∃z ∈ S(M) : w ` c∗

M z}.

That is, an input word (a sentential form) w is accepted by M iff w can be
reduced to some simple sentential form z ∈ S(M).

The problem of learning analysis by reduction/a restarting automaton consists in
learning the reduction relation ` c

M and the set of simple sentential forms S(M). For
simplicity, we will suppose a helpful teacher, which splits the problem of learning a
restarting automaton into learning individual meta-instructions. Even knowing that
abababa ` c

M ababa by some meta-instruction, we do not know whether a subword
ab was replaced by the empty word λ, or a subword ba was replaced by λ, or some
aba was rewritten to a, or some other rewriting was applied. Therefore, we suppose
an even more helpful teacher which marks the rewritten part of such a word. In
this way we reduce the problem of learning one meta-instruction to the learning of
regular languages of constraints in meta-instructions. For this we can use one of the
oldest models for language learning — the identification in the limit [4].

For a language L, a positive presentation of L is an infinite sequence {wi}
∞

i=1 of
words from L such that every w ∈ L occurs at least once in the sequence. Let M be
a class of automata. Let A be an algorithm which, on input {w1, . . . , wi} (for any
i ≥ 1), returns a conjecture automaton Mi ∈ M. An algorithm A is said to learn
(or identify) a language L in the limit from positive data using M if for any positive
presentation of L, the infinite sequence of automata {Mi}

∞

i=1 in M produced by A
satisfies the property that there exists an automaton M in M such that L(M) = L,
and for all sufficiently large i, Mi is identical to M . A class of languages L is learnable
in the limit from positive data (using M) if there exists an algorithm A that, given
an L ∈ L, learns L in the limit from positive data using M.

Gold [4] showed that any class of languages containing all finite sets and at least
one infinite set is not learnable in the limit from positive data only. This fact implies
that even the class of regular languages is not learnable in the limit from positive
data. One of the well-known language classes which are learnable in the limit from
positive data are the strictly locally testable languages [12].

In what follows, |w| denotes the length of the word w, and ⊂ denotes the proper
subset relation. Reg, CFL, CSL denote the class of regular, context-free, and context-
sensitive languages, respectively. Let Pk(w) and Sk(w) be the prefix and the suffix

4 F. Mráz, F. Otto, M. Plátek

of a word w of length k, resp. Further, let Ik(w) be the set of all substrings of w of
length k except the prefix and suffix of w of length k:

Ik(w) = {u | |u| = k and w = xuy, for some nonempty words x, y}.

These are defined only if |w| ≥ k. If |w| = k, then Pk(w) = Sk(w) = w, while Ik(w)
is empty, if k ≤ |w| ≤ k + 1. For example P2(aababab) = aa, S2(aababab) = ab, and
I2(aababab) = {ab, ba}.

Definition 4. Let k be a positive integer. A language L ⊆ Σ∗ is strictly k-testable
if there exist finite sets A,B,C ⊆ Σk such that, for all w ∈ L with |w| ≥ k:

w ∈ L iff Pk(w) ∈ A, Sk(w) ∈ B, and Ik(w) ⊆ C.

In this case, (A,B,C) is called a triple for L.
We will say that L is strictly locally testable if it is strictly k-testable for some

k > 0.

Note, that the definition of “strictly k-testable” says nothing about the strings of
length k− 1 or less. Hence, L is strictly k-testable if and only if (see [12] for details)

L ∩ ΣkΣ∗ = (AΣ∗ ∩ Σ∗B) − Σ+(Σk − C)Σ+. (1)

For example, the language (a + b)∗ is strictly 1-testable, as (a + b)+ can be
expressed as (1) by (A,B,C) = ({a, b}, {a, b}, {a, b}), and the language a(baa)+ is
strictly 3-testable, as it can be expressed in the form (1) by the triple (A,B,C) =
({aba}, {baa}, {aba, baa, aab}).

We will denote the family of strictly k-testable languages by k-SLT and the class
of strictly locally testable languages by SLT. It is easy to see that SLT ⊂ Reg (E.g.
the language (aa)∗ is not strictly locally testable). It is also known that

k-SLT ⊂ (k + 1)-SLT.

Let us briefly recall a learning algorithm for strictly k-testable languages from
[12]. First, we will present a construction which, for a given triple S = (A,B,C),
where A,B,C ⊆ Σk, constructs a deterministic finite state automaton (DFA) MS =
(Q,Σ, δ, q0, F) such that L(MS) = (AΣ∗ ∩ Σ∗B) − Σ+(Σk − C)Σ+:

Q :=

{
QI ∪ {[x̂] | x ∈ A ∩ B ∩ (Σk − C)} if A ∩ B ∩ (Σk − C) 6= ∅,

QI otherwise

where

QI := {[λ], [a1], [a1a2], . . . , [a1 . . . ak−1] | a1 . . . ak ∈ A, a1, . . . , ak ∈ Σ}
∪ {[x] | x ∈ A ∪ B ∪ C}.

Further,

q0 := [λ],

F :=

{
{[β] | β ∈ B} ∪ {[x̂] | x ∈ A ∩ B ∩ (Σk − C)} if A ∩ B ∩ (Σk − C) 6= ∅,

{[β] | β ∈ B} otherwise,

and δ is defined as follows:

Learning Analysis by Reduction from Positive Data 5

(i) for each α = a1 . . . ak ∈ A, (a1, . . . , ak ∈ Σ):

δ(q0, a1) := [a1],

δ([wi], ai+1] := [wiai+1] where wi = a1 . . . ai(1 ≤ i ≤ k − 2),

δ([wk−1], ak) :=

{
[α̂] if α ∈ B ∩ (Σk − C),

[α] otherwise
where wk−1 = a1 . . . ak−1;

(ii) for each [ax], [xb] ∈ Q such that |x| = k − 1, ax ∈ A, xb ∈ B ∪ C

δ([âx], b) := [xb] if ax ∈ B ∩ (Σk − C),

δ([ax], b) := [xb] otherwise;

(iii) for each [ax], [xb] ∈ Q such that |x| = k − 1, ax ∈ C, xb ∈ B ∪ C

δ([ax], b) := [xb].

We say that the constructed automaton MS is associated to the triple S =
(A,B,C). The constructed DFA is in general not the minimal finite state automaton
recognizing L = L(MS).

Now we present the learning algorithm LA (adapted from [12]).

Input: an integer k > 0 and a positive presentation of a target strictly k-testable
language U .

Output: a sequence of DFAs accepting strictly k-testable languages.
Procedure:

initialize E0 := ∅;
let SE0

= (∅, ∅, ∅) be the initial triple;
construct DFA ME0

accepting E0(= ∅);
repeat (forever)

let MEi
= (QEi

, Σ, δEi
, q0, FEi

) be the current DFA;
read the next positive example wi+1;
if wi+1 ∈ L(MEi

) then
Ei+1 := Ei;
MEi+1

:= MEi
;

else
Ei+1 := Ei ∪ {wi+1};
construct the DFA MEi+1

associated with the triple

SEi+1
= (AEi+1

, BEi+1
, CEi+1

),

where AEi+1
= AEi

∪ Pk(wi+1),
BEi+1

= BEi
∪ Sk(wi+1),

CEi+1
= CEi

∪ Ik(wi+1).
output Mi+1.

Yokomori and Kobayashi have shown that LA learns in the limit a DFA ME such
that U = L(ME).

6 F. Mráz, F. Otto, M. Plátek

Fact 5 ([12]) Let ME0
,ME1

, . . . ,MEi
, . . . be the sequence of DFAs produced by LA.

Then

1. for each i ≥ 0, L(MEi
) ⊆ MEi+1

⊆ U , and
2. there exists r > 0 such that, for each i ≥ 0, MEr

= MEr+i
, and L(MEr

) = U .

We now define a restricted version of restarting automata, which uses strictly
k-testable languages only.

Definition 6. Let k be a positive integer and Γ be an alphabet.

– We say that a rewriting meta-instruction (El, x → y,Er), where El, Er ⊆ Γ ∗

and x, y ∈ Γ ∗, is strictly k-testable, if the languages El, Er are strictly k-testable
and k ≥ |x| > |y|.

– We say that an accepting meta-instruction (E,Accept), where R ⊆ Γ ∗, is strictly
k-testable if E is strictly k-testable.

– We say that a restarting automaton M is strictly k-testable if all its meta-
instructions are strictly k-testable.

– We say that a restarting automaton is strictly locally testable, if it is strictly
k-testable for some k ≥ 1.

Let k-SLT-R denote the class of all strictly k-testable restarting automata, and
let SLT-R denote the class of all strictly locally testable restarting automata. For
any class of restarting automata A, L(A) denotes the class of all input languages
recognized by automata from A.

Let us give a sample SLT-R-automaton.

Example 1. The restarting automaton M = ({a, b}, {a, b}, I), with the following
three meta-instructions in I:

1. (a + b,Accept)
2. (a∗, aa → b, b∗)
3. (b∗, bb → a, a∗)

accepts the language

L(M) = {a2ibj | i, j ≥ 0, i + j = 2n for some n ≥ 0} ∪
{b2iaj | i, j ≥ 0, i + j = 2n for some n ≥ 0}.

It is easy to check that all the constraints in the above instructions are strictly
2-testable languages. Hence, M is a strictly 2-testable restarting automaton.

So all SLT-R-automata can be learnt in the above proposed way. In the next
section we will characterize the class of languages, which can be learnt in this way.

Note that according to [4] the class of strictly locally testable languages (SLT)
as a whole is not learnable in the limit from only positive data. However, the in-
ference algorithm can be effectively used to identify any language from this class in
the limit through a complete (both positive and negative) presentation sequence of
the language [3]. This can be accomplished by starting with k = 2 and using suc-
cessive positive samples to infer progressively larger (less restricted) 2-SLT’s until a

Learning Analysis by Reduction from Positive Data 7

negative sample, which is incompatible with the current language, appears. Then k

is increased by one, and the process continues in the same way with the successive
samples. Eventually, the correct value of k will be reached and then no other negative
sample will ever be incompatible. The inferred language will then grow progressively
with the successive positive samples until the target k-SLT is identified.

The above learning protocol can be used also for learning strictly locally testable
rewriting meta-instructions, but it requires a helpful teacher as follows. Suppose a
learner is being taught a rewriting meta-instruction of the form (El, aba → b,Er).
Knowing that aba cannot be rewritten into b in the word aabaaaa, it is possible that:

– either, a 6∈ El, and aaa ∈ Er or
– a ∈ El, and aaa 6∈ Er, or
– a 6∈ El, and aaa 6∈ Er.

Hence, this information must be supplied by a teacher.

3 Characterization of the class of SLT-R-languages

SLT-R-automata are quite powerful. They can accept all growing context-sensitive
languages (GCSL) as input languages. Growing context-sensitive languages are the
languages generated by growing context-sensitive grammars. A Chomsky grammar
G = (VN , VT , S, P) with a set of nonterminals VN , a set of terminals VT , an initial
nonterminal S ∈ VN and a set of rules P is a growing context-sensitive grammar if
the start symbol S does not appear on the right-hand side of any production of G,
and if |α| < |β| holds for all productions (α → β) ∈ P satisfying α 6= S.

Theorem 1. GCSL ⊂ L(SLT-R) ⊆ CSL.

Proof: Let G = (VN , VT , S, P) be a growing context-sensitive grammar. Let us
construct an SLT-R-automaton M = (Σ,Γ, I) recognizing L(M) = L(G). We take
Σ := VT , Γ := (VN r {S}) ∪ VT and

I := {({β | S → β ∈ P},Accept)} ∪ {(Γ ∗, β → α, Γ ∗) | α 6= S, and α → β ∈ P}.

Trivially, M works as an analytical version of the grammar G without the rules
with the initial nonterminal S, but M directly accepts (without any reduction) all
right-hand sides of production with the left-hand side S. Hence L(M) = L(G). This
implies that GCSL ⊆ L(SLT-R).

Moreover, the language Lcopy = {w#w | w ∈ {a, b}∗} which is not even grow-
ing context-sensitive (see [1]), can be accepted by the following SLT-R-automaton
Mcopy = (Σ,Γ, Icopy), where Σ = {a, b,#}, Γ = Σ ∪ {Axy | x, y ∈ {a, b}} and Icopy

consists of the following meta-instructions:

(1) (xy(a + b)∗#, xy → Axy, (a + b)∗), for each x, y ∈ {a, b};
(2) (λ, xy → Axy, (a + b + #Axy)

∗), for each x, y ∈ {a, b};
(3) (Axy(a + b)∗#, Axy → λ, (a + b)∗), for each x, y ∈ {a, b};
(4) (λ,Axy → λ, (a + b + #)∗), for each x, y ∈ {a, b};
(5) (# + a#a + b#b, Accept).

8 F. Mráz, F. Otto, M. Plátek

Each meta-instruction of Mcopy preserves the number of occurrences of the symbol
in the current word. All words accepted by Mcopy using the single accepting meta-
instruction (5) contain exactly one occurrence of #. Hence, each word accepted by
Mcopy contains exactly one occurrence of #. For an input word w of the length at
least 4 and of the form (a + b)∗#(a + b)∗ the only applicable meta-instruction is a
meta-instruction of the form (1). In the resulting word, # is followed by a working
symbol Axy, where x, y ∈ {a, b} are the first two symbols of the word. Such a word
can be reduced only by a meta-instruction of the form (2). Further, Mcopy must
use appropriate meta-instructions of the form (3) and (4). This is possible only if
the word is of the form w = xyu#xyv for some x, y ∈ {a, b}, u, v ∈ {a, b}∗. After
executing 4 meta-instructions, Mcopy gets the word u#v. Now it is easy to see, that
Mcopy accepts exactly the language Lcopy. Moreover, all meta-instructions in Icopy

are strictly 2-testable. Thus, GCSL ⊂ L(SLT-R).
On the other hand, each restarting automaton can be simulated by a linear

bounded automaton, from which it follows that L(SLT-R) ⊆ CSL. ut

For a restarting automaton M = (Σ,Γ, I), the symbols from Γ − Σ are called
auxiliary symbols. From the practical point of view, the reduction analysis without
auxiliary symbols enables the most transparent analysis with the best error local-
ization.

Theorem 2. Each regular language can be accepted by an SLT-R-automaton without
auxiliary symbols.

Proof: For each regular language L ⊆ Σ∗ there exists a finite state automaton
A recognizing L. Let k denote the number of states of A. Reading a prefix of a word
from Σ∗ of length at least k− 1 the automaton A must pass some state at least two
times. Hence, for each word z of length k − 1 there exist words u, v,w ∈ Σ∗ such
that z = uvw, v 6= λ and the automaton A is in the same state after reading both
prefixes u and uv. Hence, for each word x ∈ Σ∗ it holds: uvwx ∈ L iff uwx ∈ L.
Then we can construct a (k−1)-SLT restarting automaton M = (Σ,Σ, I) accepting
L in the following way. M will have one accepting meta-instruction

(L ∩ Σ<k−1,Accept),

which is (k − 1)-SLT. For each z ∈ Σk−1, the automaton M will have a rewriting
meta-instruction

({λ}, z → uw,Σ∗), where z = uvw and u, v,w are the words from above,

which is also (k − 1)-SLT.
It is easy to see that

– if |x| < k − 1 then x ∈ L iff x ∈ L(M),
– if |x| ≥ k − 1 then there exists a word x′ ∈ Σ∗, |x′| < |x| such that x ` c

M x′ and
(x ∈ L iff x′ ∈ L).

From this it follows, that L(M) = L.
ut

Learning Analysis by Reduction from Positive Data 9

Note, that the SLT-R-automaton M constructed in the above proof uses only a fi-
nite language in its single accepting meta-instruction and all its rewriting instruction
enable only the language {λ} in their left constraints.

The above theorem shows that Reg ⊆ L(SLT-R). This inclusion is proper even if
we consider SLT-R-automata without auxiliary symbols (or recognizing characteris-
tic languages). Such automata can accept even some non-context-free languages (see
the automaton M from Example 1). Theorem 1 implies that each context-free lan-
guage can be accepted by an SLT-R-automaton. Unfortunately, restarting automata
without auxiliary symbols cannot accept all context-free languages. In [7] it is shown
that the context-free language

L = {anbn | n ≥ 0} ∪ {anbm | m > 2n ≥ 0}

cannot be accepted by any restarting automaton without auxiliary symbols. Hence
we get the following theorem.

Theorem 3. CFL ⊂ L(SLT-R), but there exist context-free languages which cannot
be accepted by any SLT-R-automaton without auxiliary symbols.

4 Conclusions

There are many possible approaches for learning analysis by reduction/restarting
automata. Our proposed method which reduces it to learning the corresponding set
of meta-instructions has several advantages:

1. The whole task of learning a restarting automaton can be split into smaller
tasks of learning one meta-instruction at a time. Learning several simpler meta-
instructions should be computationally simpler than learning the whole language
at once.

2. For learning different meta-instructions we can use different models and algo-
rithms for learning regular languages.

3. The learning can be done in an incremental way. First we can learn some basic
meta-instructions which define only a subset of the target language. Then we
can continue to learn new meta-instructions to improve our approximation of
the target language.

4. A rewriting meta-instruction of a restarting automaton M is called correctness
preserving if, for each rewriting u `c

M v according to this meta-instruction, it
holds that u ∈ LC(M) iff v ∈ LC(M). If we succeed to learn correctness preserv-
ing meta-instructions, then it is possible to learn the target language in parallel.
That is, two or more (correctness preserving) meta-instructions can be learned
separately and finally put together in one automaton.

The proposed approach can use any known algorithm for learning regular lan-
guages. Accordingly, we plan to also consider other learning protocols like learning
from positive and negative examples, learning using membership and equivalence
queries, etc.

10 F. Mráz, F. Otto, M. Plátek

References

1. G. Buntrock and F. Otto. Growing context-sensitive languages and Church-Rosser languages.
Information and Computation, 141(1):1–36, 1998.

2. J. Čejka. Learning correctness preserving reduction analysis. BSc. project, Faculty of mathe-
matics and physics, Charles university, 2003. In Czech.

3. P. Garcia and E. Vidal. Inference of k-testable languages in the strict sense and application
to syntactic pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 12(9):920–925, 1990.
4. E. M. Gold. Language identification in the limit. Inf. and Control, 10(1967), 447–474.
5. P. Hoffmann. Learning restarting automata by genetic algorithms. In M. Bieliková, ed., SOF-

SEM 2002: Student research forum, Milovy, Czech Republic, 2002, 15–20.
6. P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata. In H. Reichel, ed., FCT’95,

Proc., LNCS 965, Springer 1995, 283–292.
7. P. Jančar, F. Mráz, M. Plátek, and J. Vogel. On monotonic automata with a restart operation.

Journal of Automata, Languages and Combinatorics, 4(1999), 287–311.
8. M. Lopatková, M. Plátek, and V. Kuboň. Modeling syntax of free word-order languages:

Dependency analysis by reduction. In V. Matoušek, P. Mautner , and T. Pavelka, eds, TSD

2005, Proc., LNCS 3658, Springer, 2005, 140–147.
9. G. Niemann and F. Otto. On the power of RRWW-automata. In M. Ito, G. Pǎun, and S. Yu,

eds., Words, Semigroups, and Transductions. World Scientific, Singapore, 2001, 341–355.
10. F. Otto. Restarting automata and their relation to the Chomsky hierarchy. In Z. Ésik and

Z. Fülöp, eds., DLT 2003, Proc., LNCS 2710, Springer, 2003, 55–74.
11. M. Plátek, M. Lopatková, and K. Oliva. Restarting automata: motivations and applications. In:

M. Holzer (ed.), Workshop ‘Petrinetze’ and 13. Theorietag ‘Formale Sprachen und Automaten’,

Proc., Institut für Informatik, Technische Universität München, 2003, 90–96.
12. T. Yokomori, and S. Kobayashi. Learning local languages and their application to DNA se-

quence analysis. IEEE Trans. on Pattern Anal. and Machine Intell., 20(1998), 1067–1079.

