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Singularities of elastic and electric �elds are investigated at the tip of a crack on the interface of two
anisotropic piezo-electric media under various boundary conditions on the crack surfaces. The Gri�th formulae
are obtained for increments of energy functionals due to growth of the crack and the notion of the energy release
matrix is introduced. Normalization conditions for bases of singular solution are proposed to adapt them to the
energy, stress, and deformation fracture criteria. Connections between these bases are determined and additional
properties of the deformation basis related to the notion of electric surface enthalpy are established.

1 Formulation of the problem.

Let us consider a two-dimensional composite piezo-electric body Ω = Ω+ ∪ Ω− with the selvage
crack Λ on the straight interface Υ = ∂Ω+ ∩ ∂Ω−. The tensors of elastic strains εM and stresses
σM and the vectors of electric strain εE = E and induction σE = D are related by the law

σM = AMMεM −AMEεE , σE = AEMεM + AEEεE (1.1)

where AMM and AEE are the 4-rank tensors of elastic moduli and dielectric permabilities, respec-
tively, they are subjected to the usual symmetry and positivity conditions [13, 24, 10]. It is not
necessary to impose the condition AME

jk,p = AEM
p,kj on the piezo-electric moduli. If uM = (u1, u2, u3)

is the displacement vector and uE = ϕ the electric potential depending on the two variables
x = (x1, x2) ∈ Ω, then u = (uM , uE) denotes the vector of generalized displacements. We have
the relations

εM
jk =

1
2

(∂uj

∂xk
+

∂uk

∂xj

)
, εM

3j = εM
3j =

1
2

∂u3

∂xj
, εM

33 = 0 (j, k = 1, 2)

εE
p = − ∂ϕ

∂xp
, εE

3 = 0 (p = 1, 2)
(1.2)

The moduli AMM
jk,pq, AEE

j,g and AME
jk,p are piecewise constant and the restrictions of the �elds on

the homogeneous bodies Ω± are denoted σM±, σE± and so on.
The equilibrium equations and the electrostatic equation take the form

− ∂

∂xj
AMM ±

jk,pq

∂u±p
∂xq

− ∂

∂xj
AME±

jk,q

∂ϕ±

∂xq
= 0 (k = 1, 2, 3) (1.3)

− ∂

∂xj
AEM ±

j,pq

∂u±p
∂xq

+
∂

∂xj
AEE±

j,q

∂ϕ±

∂xq
= 0 (1.4)

Here summation over repeated indices j, q = 1, 2 and p = 1, 2, 3 is assumed. We consider the
following variants of boundary and contact conditions

njσ
M
jk = gM

k on ΣM , uk = 0 on ΓM (k = 1, 2, 3) (1.5)
njσ

E
j = 0 on ΣE , ϕ = GE on ΓE (1.6)
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σM +
2k = σM −

2k , u+ = u−k on ΥM (k = 1, 2, 3) (1.7)
σE +

2 = σE−
2 , ϕ+ = ϕ− on ΥE . (1.8)

Here n = (n1, n2) is the outward normal unit vector to the boundary ∂Ω while n = (0, 1) on Υ.
In all the cases the mechanical contact of the crack surfaces Λ± is excluded, and the surfaces are
free of traction, i.e. Λ± ⊂ ΣM and gM = 0 on Λ±. The ideal contact conditions (1.7), (1.8) are
imposed on the set Υ \Λ ⊂ ΥM ∩ΥE . The electric �eld satis�es one of the following conditions
on the crack:

i) There is no electric contact of the surfaces and they are free of electric charge, i.e., Λ± ⊂ ΣE ;

ii) The crack surfaces are grounded, i.e. Λ± ⊂ ΓE and GE = 0 on Λ±;

iii) The crack surfaces are in the electric contact, i.e., Λ± ⊂ ΥM ;

iv) One surface is grounded and the other one is free of electric load, for example, Λ+ ⊂ ΓE

and Λ− ⊂ ΣE .

We mainly pay attention to cases i and ii, while cases iii and iv are commented shortly.
For many purposes, it is mainly important to study the homogeneous model problem (i.e.

gM = 0, gE = 0 and G = 0) on the composite plane with semi-in�nite crack :

Ω± = R2
± = {x : ±x2 > 0}, Υ = {x : x2 = 0}, Λ = {x : x1 < 0, x2 = 0} (1.9)

On the surfaces of the semi-in�nite crack we formulate the boundary conditions corresponding
to cases i�iv and on the extension of the crack Υ \ Λ the ideal contact condition (1.7), (1.8). In
the sequel this problem is recognized as (1.3)�(1.9).

The fracture mechanics requires detailed information on non-trivial solutions of the model
problem of the form

U(x) = rλΞ(θ, ln r) (1.10)

we call such solutions power logarithmic with exponent λ. Here U is the vector of generalized dis-
placements including the electric potential as the forth component, (r, θ) is the polar coordinate
system, r = |x| and θ ∈ (−π, π), the exponent λ ∈ C is a complex number and the vector �eld
Ξ is a polynomial in the variable ln r with piecewise smooth coe�cients in θ ∈ [−π, 0] ∪ [0, π].
If this polynomial is of degree zero, i.e. Ξ = ξ(θ), then we call the solution (1.10) a power
solution. Starting from a nontrivial power logarithmic solution, the vector �eld rλΞ′(θ, ln r),
where the prime stands for di�erentiation in the second argument, remains a power-logarithmic
solution and, hence, there always exists a nontrivial power solution with the exponent λ, too.
In the theory of elliptic problems in domains with piecewise smooth boundaries λ and Ξ(θ) are
interpreted as eigenvalue and eigenvector of a certain polynomial pencil A(λ) associated to an
operator of problem (1.3)�(1.9) (see, e.g., the introductory chapters in book [20]). We denote
by S the spectrum of the pencil, i.e S contains all λ for which non-trivial power solutions (1.10)
exist. Since problem (1.1)�(1.9) is formally self-adjoint and coe�cients of di�erential operators
are real, the set S ⊂ C possesses the central symmetry

λ ∈ S ⇒ λ ∈ S, −λ ∈ S (1.11)

Based on the formula (1.11), other general properties of pencil spectra and certain algebraic
facts we discover in sections 2 and 3 the structure of the set S for the boundary conditions
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corresponding to cases i�vi. Moreover, we de�ne the hermitian matrix M which �gures in the
Gri�th formulae (section 4) and relations between bases of singular solutions adapted to fracture
criteria of various physical nature (section 5). For functionals composed of the internal energy or
the electrical enthalpy and the work of external loadings, we can calculate the asymptotic rate of
changeing under small prolongations of the crack as quadratic forms of the intensity vectors. It
turns out that always only one of these forms is generated by the matrix M and coincides with
the invariant J-integral. For other functionals the rate is expressed in terms of intensity factors
which correspond separately to mechanical and electrical loadings and therefore are not local
characteristics of the physical �elds in the crack mouth. In section 6 we introduce the notion of
the surface electric enthalpy and state additional properties of the deformation basis determined
by normalization conditions for jumps of the generalized displacements on the crack surfaces.

2 Singularities of the elastic and electric �elds.

Since the system (1.3), (1.4) of di�erential equations possesses the polynomial property (cf.
Example 1.13 [18]), Proposition 6.12 in [20] establishes that for an integer m the intersection
of the set S with the line l(m) = {λ ∈ C : Reλ = m} consists of the only point {m}. To
the exponent λ = m 6= 0 there correspond four linearly independent power solutions and, as
m > 0, the Cartesian components of these solutions are polynomials in the variables x1 and x2.
In case i there exist four power solutions with the exponent λ = 0, which are constants, and four
power-logarithmic solutions, which linearly depend on ln r. The constant electric potential does
not meet the condition ϕ = 0 on Λ±, thus in case ii only three constant solution occur and also
three solutions (1.10) where λ = 0 and degΞ = 1.

In case i the power solutions U(x) with the exponent λ = 1 take the form

U±(x) = (b1x1 + 2c±1 x2, 2b2x1 + c±2 x2, 2b3x1 + 2c±3 x2, b
4x1 + c±4 x2) (2.1)

The coe�cients b1, . . . , b4 are arbitrary but c±1 , . . . , c±4 can be found from the following system
of eight algebraic equations arising from the boundary conditions σM± = 0, σE± = 0 on Λ± and
the transmission conditions on Υ \ Λ.

AMM ±
2k,2p c±p + AME±

2k,2 c±4 = −AMM ±
2k,1p bp −AAE±

2k,1 b4 (k = 1, 2, 3) (2.2)

AEM ±
2,2p c±p −AEE±

2,2 c±4 = −AEM ±
2,1p bp + AEE±

2,1 b4 (2.3)
Due to the posivity properties of the tensors A······ this system is uniquely solvable. In case ii we
put b4 = 0 in (2.1), take b1, b2, b3 and c+

4 arbitrary, and determine c±1 , c±2 , c±3 and c−4 from the
system of seven algebraic equations (2.2) and

AEM+
2,1p bp + AEM+

2,2p c+
p −AEE+

2,2 c+
4 = AEM−

2,1p bp + AEM−
2,2p c−p −AEE−

2,2 c−4

The derivative along the crack

∂U

∂x1
(x) = rλ−1Θ(θ, ln r) (2.4)

of a non-trivial solution (1.10) to the model problem remains a power-logarithmic solution and
becomes trivial if and only if U is a function of the only variable x2. In case ii solution (2.1)
with bp = b4 = 0 and c+

4 = 1 depends only on x2 and is eliminated by the di�erentiation ∂/∂x1;
that is why the exponent λ = 0 has three, not four, linearly independent power solutions.
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The above-mention property of the derivative (2.4) and relation (1.11) show that the set
S 3 0 is invariant with respect to the shifts in ±1 along the real axis

λ ∈ S ⇒ λ± 1 ∈ S (2.5)

Thus, S is a periodic set and it is su�cient to investigate the structure of S inside the strip Π+;
here Π± = {λ ∈ C : ±Reλ ∈ (0, 1)}. With continuous change of the tensors AMM ±, AEE± and
AEM ±, the model problem on the composite anisotropic plane can be reduced to the problem on
the homogeneous isotropic plane, for which the mechanical and electrical �elds do not interact
and system (1.3), (1.4) of di�erential equations decouples into the two-dimensional Lam�e system
for the vector (u1, u2) and two Laplace equations for the scalars u3 and ϕ. In both the cases i
and ii the isotropic model problem has four linear independent power solutions (1.10) with the
exponent λ = 1/2. Other power solutions with exponents λ ∈ Π+ do not exist. The eigenvalues
λ ∈ Π+ of the polynomial pencil A(λ), generated by the model problem (1.3)�(1.9), depend
continuously on the tensors of physical moduli (see [9]). They cannot stay on the boundary
of the strip Π+ since according to the previous result, in particular, formulae (2.1)�(2.3), the
geometric and algebraic multiplicities of the eigenvalues λ = 0 and λ = 1 on the lines l(0) and
l(1) are the same for any AMM ±, AEE± and AEM ±.

c
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b d
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Figure 1: possible distribution of exponents λ in Π+

Thus, using the theorem on preserving the total multiplicity [9], the model problem on the
composite anisotropic plane also has just four linear independent power-logarithmic solutions
(1.10) with exponents λ ∈ Π+. Taking into account the symmetry property (1.11) and invariance
(2.5) of the set S, four con�gurations of eigenvalues in the strip Π+ are possible (see Figure 1
(a-d)).

The couples λ, λ and λ, 1− λ can glue to form a multiple eigenvalue. If the piezo-electric
plane is homogeneous, then the geometric multiplicity of the eigenvalue λ = 1/2 is equal to 4
(see [6]), i.e., all power solutions with exponents λ ∈ Π+ give rise to square-root singularities
of the stress tensor and the electricity induction vector. Calculations in [3, 4] show that cases i
and ii lead to the con�gurations a and b respectively while the angular parts of solutions (1.10)
with non-integer exponents do not depend on logarithms, since four linear independent power
solutions with exponents λ ∈ Π+ have been constructed in [3, 4].

3 Quadratic forms and the invariant integral.

For GE = 0, the solution u = (uM , uE) of problem (1.3)�(1.8) on the bounded piezo-electric body
Ω is a stationary point of the functional F = W −RM −RE , where W is the electric enthalpy
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and RM and RE are the works of external mechanical and electrical loadings respectively,

W(u; Ω) =
1
2

∫

Ω

(
σM

jk (u)εM
jk(uM )− σE

j (u)εE
j (uE)

)
dx (3.1)

RM =
∫

ΣM

gM
j uj dsx, RE =

∫

ΓE

njσ
E
j (u)GE dsx (3.2)

The functional (3.1) is not positive, however problem (1.3)�(1.8) possesses a unique weak solution
in the case ΓM ,ΓE 6= ∅ (see Example 1.13 in [18]). Owing to (1.2) and (1.3) the following
symmetric Green's formula is valid

∫

Ω

(
vM
k

∂

∂xj
σM

kj (u) + vE
∂

∂xj
σE

j (v)− uM
k

∂

∂xj
σM

kj (u)− uE ∂

∂xj
σE

j (v)
)

dx =

= q(u, v; ∂Ω) :=
∫

∂Ω

nj

(
σM

kj (u)vM
k + σE

j (u)vE − σM
kj (v)uM

k − σE
j (v)uE

)
dsx

(3.3)

Here bar means the complex conjugation (2.4) because power solutions can be complex.
Let the path T begin on one surface, end on the other surface and encircle the crack tip.

With solutions U and V of the homogeneous model problem (1.3)�(1.9), the integral q(U, V ; T )
is invariant of T , moreover

q(U, V ; T ) = −q(V, U ; T ) (3.4)

The following formula which looks like integration by parts has been proved in [16, 17]

q
( ∂U

∂x1
, V ; T

)
= −q

(
U,

∂V

∂x1
;T

)
(3.5)

Due to general results for any non-trivial power-logarithmic solution (2.3), one can �nd a power-
logarithmic solution V with exponent −λ such that the equality q(U, V ; T ) = 1 is valid (see [15]
and also [20, Chapter 3]). Let X1, . . . , X4 be linear independent power solutions with exponents
λj ∈ Π+ and Y 1, . . . , Y 4 the so called dual power solutions with exponents −λj ∈ Π+ subject to
the bi-orthogonality conditions

q(Xj , Y k;T ) = δj,k (j, k = 1, . . . , 4) (3.6)

Linear combinations of power (logarithmic) solutions are again solutions to the homogeneous
problem (1.1)�(1.9), we call such combinations power law solutions. Since the derivatives (2.4)
of the solutions Xj are power solutions with exponents λj − 1 ∈ Π− and hence, they can be
decomposed in terms of the linear independent power solutions {Y 1, . . . , Y k} related to the
exponents from the strip Π−:

∂Xj

∂x1
(x) = −

4∑

k=1

MjkY
k(x) (3.7)

Since a power solution with a non-integer exponent λ cannot depend only on the variable x2,
the derivatives ∂X1/∂x1, . . . , ∂X4/∂x1 preserve linear independence. Thus, the 4 × 4-matrix
M = (Mjk) is non-degenerate. With the help of formulae (3.4)�(3.6) we conclude that M is an
hermitian matrix, indeed

Mjp = q
(
Xp,

∑4
k=1 MjkY

k; T
)

= −q
(
Xp, ∂Xj

∂x1
; T

)

= q
(

∂Xp

∂x1
, Xj ; T

)
= −q

(
Xj , ∂Xp

∂x1
; T

)
= Mpj

(3.8)
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Let us consider the sesquilinear form M(C, C) = C
>
MC de�ned on columns C = (C1, . . . , C4)> ∈

C4; here > stands for transposition. As it is well known the form can be diagonalized, namely,
there exists a non-degenerate matrix 4× 4-matrix D 1 such that

K = (K1, . . .K4)> = D−1C, D
>
MD = diag{m1 . . . , m4}

M(C, C) =
4∑

j,k=1

CjMjkCk =
4∑

j=1

mj |Kj |2
(3.9)

The matrix D and the real numbers m1, . . . , m4 are not uniquely determined, however, due
to Sylvester's theorem the index of positivity, i.e., the number of positive values in the set
{m1, . . . , m4}, is an invariant of the form M(C, C). Since M is a non-degenerate matrix, values
m1, . . . ,m4 do not vanish. The index of positivity is preserved under a continuous variation of the
tensors AMM±, AEE± and AEM±, in particular, under transition from a composite anisotropic
plane to the homogeneous isotropic one.

For the isotropic model problem the power solutions Xj and Y k, subject to conditions
(3.6) are known (see, e.g., [22]). In case i the non-trivial components of these vectors take the
form (we use either cylindrical components or cartesian components)

X1
r (r, θ) =

1
t1

r1/2
(
− cos

3
2
θ + (5− 8ν) cos

θ

2

)
,

X1
θ (r, θ) =

1
t1

r1/2
(

sin
3θ

2
− (7− 8ν) sin

θ

2

)
,

X2
r (rθ) =

1
t2

r1/2
(
3 sin

3
2
θ − (5− 8ν) sin

θ

2

)
,

X2
θ (r, θ) =

1
t2

r1/2
(
3 cos

3
2
θ − (7− 8ν) cos

θ

2

)
,

Y 1
r (r, θ) =

1
T1

r−1/2
(
3 cos

θ

2
− (7− 8ν) cos

3
2
θ
)
,

Y 1
θ (r, θ) =

1
T1

r−1/2
(
− 3 sin

θ

2
+ (5− 8ν) sin

3
2
θ
)
,

Y 2
r (r, θ) =

1
T2

r−1/2
(
− sin

θ

2
+ (7− 8ν) sin

3
2
θ
)
,

Y 2
θ (r, θ) =

1
T2

r−1/2
(
− cos

θ

2
+ (5− 8ν) cos

3
2
θ
)
,

X3
3 (r, θ) =

1
t3

r1/2 sin
θ

2
, Y 3

3 (r, θ) =
1
T3

r−1/2 sin
θ

2
, (3.10)

X4
4 (r, θ) = − 1

t4
r1/2 sin

θ

2
, Y 4

4 (r, θ) =
1
T4

r−1/2 sin
θ

2
(3.11)

t1 = t2 = 4(2π)1/2µ, T1 = T2 = 8(2π)1/2(1− ν),

t3 =
1
2
(2π)1/2µ, t4 =

1
2
(2π)1/2β, T3 = T4 = (2π)1/2. (3.12)

Here µ is the shear modulus, ν the Poisson ratio, and β the dielectric permeability. The minus in
the �rst formula (3.11) is caused by the relation σE

2 (ϕ) = −β∂ϕ/∂x2. Inserting the expressions
for Xj and Y k into formula (3.7), we �nd that M is a diagonal matrix with the elements

M11 = M22 = µ−1(1− ν), M33 = µ−1, M44 = −β−1 (3.13)
1D can be even chosen as unitary matrix, then the mj are the eigenvalues of M
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Thus in case i the index of positivity of the sesquilinear form M(C, C) equals 3.
In case ii the function sin replaces the function cos in formulae (3.11) and thus the last

equality in (3.13) turns into M44 = β−1. Hence, the index of positivity of the form M(C, C)
becomes 4 and the matrix M is positive de�nite.

Let the exponents λ1, . . . , λ4 of the power solutions X1, . . . , X4 be mutually di�erent.
Since the integral q(Xj , ∂Xk/∂x1; T ) = −Mjk is path-independent and its integrand is equal to
O(rλj+λk−2), the elements of the matrix M , corresponding to inconsistent exponents λj + λk 6=
1, vanish. Figure 1 shows four variants for the distribution of the exponents λp ∈ Π+, the
corresponding matrices M are outlined in �gure 2, where bullets stand for non-trivial elements.
The latter can stay on the main diagonal only in the case Reλ = 1/2. In �gure 2 also the index
of positivity, κ, of the form M(C, C) is indicated. Thus, in case i only the con�guration a is
possible and in case ii the con�guration b only.




• ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ ◦ •
◦ ◦ • ◦




a)κ = 3 or κ = 1




• ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ • ◦
◦ ◦ ◦ •




b)κ = 4 or κ = 0




◦ • ◦ ◦
• ◦ ◦ ◦
◦ ◦ ◦ •
◦ ◦ • ◦




c),d)κ = 2
Figure 2

The number n of linear independent power solutions with exponents λ ∈ Π+ does not need
to coincide with the number of equations in system (1.3), (1.4), it rather depends on the type of
boundary conditions. For example, n = 3 in case iii and n = 5 in case iv; �gure 3 shows possible
con�gurations of the exponents λ and the index of positivity.

BC iv), κ = 4

s

s
s

s

s s ss- -
0 1/2 1 0 1/2 1

BC iii), κ = 3

Figure 3: possible distribution of the exponents λ in Π+

For the corresponding isotropic model problems in the �rst case M is a diagonal matrix
composed of the three �rst numbers in (3.13), and in the second case 5 × 5-matrix M has the
following non-trivial elements

M11 = M22 = µ−1(1− ν), M33 = µ−1, M45 = M54 = 2β−1

Apart from four positive eigenvalues this matrix has the negative eigenvalue −2β−1. Moreover,
in case iv the pair of power solutions (3.11) is replaced by the pair

X4
4 (r, θ) = − 1

t4
r1/4 sin

1
4
(θ − π), Y 4

4 (r, θ) =
1
T4

r−1/4 sin
1
4
(θ − π)
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X5
4 (r, θ) = − 1

t5
r3/4 sin

3
4
(θ − π), Y 5

4 (r, θ) =
1
T5

r−3/4 sin
3
4
(θ − π)

t4 =
1
4

π1/2β, t5 =
3
4

π1/2β, T4 = T5 = 2π1/2

4 The energy release matrix.

By Legendre transformation we change the functionals W and F into the functionals E and V:

E =
1
2

∫

Ω

(
σM

jk (u) εM
jk(uM ) + σE

j (u) εE
j (uE)

)
dx (4.1)

V = E −RM +RE (4.2)
Here E is the interior energy of the piezo-electric body Ω. After integration by parts and using
equations (1.3)�(1.6) and (3.2), we obtain

V =
1
2

∫

∂Ω

nj

(
σM

jk (u)uk − σE
j (u)uE

)
ds−RM +RE = −1

2
RM +

1
2
RE (4.3)

By u0 and uh we denote the solutions of problem (1.3)�(1.8) for the body Ω with the initial crack
Λ0 and with the elongated crack Λh, respectively, under the same external loading. By rescaling,
we reduce a characteristic size of Ω to 1 and the length h > 0 of the crack shoot Λh \Λ0 becomes
a dimensionless parameter. In view of formulae (4.2) and (4.3) the increment of the functional
V due to the growth of the crack takes the form

∆V = Vh − V0 = −1
2

∫

ΣM

gj

(
Uh

j − u0
j

)
ds +

1
2

∫

ΓE

njσ
E
j (uh − u0)GEds (4.4)

To construct the asymptotics of the generalized displacement vector uh = (uMh, uEh), we
apply the method of matched asymptotic expansions [7, 11]. General asymptotic structures were
adapted to problems of crack theory in papers [22, 17] and the necessary estimates of asymptotic
remainders follow from general results in chapters 4,6 of [14].

Near the tip O of the crack Λ0 we have the expansion

u0(x) = u0(0) +
4∑

j=1

CjX
j(x) + O(r), r → 0 (4.5)

where the coe�cients Cj are calculated by the formula

Cj =
∫

ΣM

gM
p (x) ζj

p(x) dx−
∫

ΓE

npσE
p (ζj) GE dsx (4.6)

Here ζj = (ζMj , ζEj) denote the weight functions, i.e., non-energetic solutions of the homoge-
neous problem (1.3)�(1.8) on the body Ω \ L that satisfy the condition (see [5, 15])

ζj(x) = Y j(x) + O(1), r → 0. (4.7)

Note that the integral representations (4.6) are a consequence of the normalization conditions
(3.6). A detailed exposition of the method of weight functions developed in [15] for applications
to problems in crack theory is given in paper [17].
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According to the asymptotic formula (4.5) the inner (near the crack tip) expansion of the
solution uh takes the form

uh(x) = u0(0) +
4∑

j=1

Cjh
λjwj(ξ) + . . . (4.8)

Here ξ = h−1x are stretched coordinates, λj is the exponent of the power solution Xj . The �eld
wj is the solution of the model problem on the composite plane with the crack Λ1 = {ξ : ξ1 6
1, ξ2 = 0} which admits the following decomposition at in�nity

wj(ξ) = Xj(ξ) + O(1), |ξ| → ∞. (4.9)

We emphasize that relation (4.9) provides matching expansions (4.5) and (4.8) and the change
of variables x 7→ ξ transfers the tip Oh of the crack Λhinto the tip O1 of the crack Λ1 (see [11]).
We rewrite the vector function wj in the system of the Cartesian coordinates (ξ1−1, ξ2) centered
at O1

wj(ξ) = Xj(ξ1 − 1, ξ2) = |ξ|λjXj(|ξ|−1ξ1 − |ξ|−1, |ξ|−1ξ2). (4.10)

By equalities (3.7) and the Taylor formula with respect to the variable |ξ| = (ξ2
1 +ξ2

2)
1/2, we have

wj(ξ) = |ξ|λj

(
Xj

(
ξ

|ξ|
)
− 1
|ξ|

∂Xj

∂ξ1

(
ξ

|ξ|
)

+ O

(
1
|ξ|2

))
=

= Xj(ξ)− ∂Xj

∂ξ1
(ξ) + O(|ξ|λj−2) = Xj(ξ) +

4∑

k=1

MjkY
k(ξ) + O(|ξ|λj−2)

(4.11)

Formula (4.11), �rstly, con�rms representation (4.9) and, secondly, shows that

uh(x) = u0(0) +
4∑

j=1

Cjh
λj

(
Xj(ξ) +

4∑

k=1

MjkY
k(ξ)

)
+ . . . =

= u0(0) +
4∑

j=1

CjX
j(ξ) + h

4∑

j,k=1

CjMjkY
k(ξ) + . . .

(4.12)

Comparing relations (4.5), (4.7) and (4.12), we can specify the outer expansion (at a distance
from the crack tip)

uh(x) = u0(x) + hu′(x) + . . . (4.13)

u′(x) =
4∑

j=1

CjMjkY
k =

∂uh

∂h

∣∣∣∣
h=0

(4.14)

Note that equality (4.14) extends the Rice formula [25] for weight functions in piezo-electric
bodies.

We insert decomposition (4.13) into formula (4.4) and we process it with the help of (4.14)
and (4.6)

∆V = −h

2

4∑

j,k=1

CjMjk




∫

ΣM

gpζ
k
p dsx −

∫

ΓE

npσ
E(ζk)GE dsx


 + O(h2) =

(4.15)
= −h

2

4∑

j,k=1

CjMjkCk + O(h2) = −h

2
M(C,C) + O(h2)

9



Here M(C,C) is the sesquilinear form (3.9) again, and the precision O(h2) of the asymptotic
formula (4.15) is provided by general results in [14] and the information on the spectrum S
obtained in section 2.

Consider the invariant integral

J(u;T ) =
∫

T

{
1
2

(
σM

jk (u)εM
jk(uM )− σE

j (u)εE
j (uE)

)
n1 − nj

(
σM

jk (u)
∂uk

∂x1
+ σE

j (u)
∂uE

∂x1

)}
dsx

(4.16)

Let us verify the equalities

J(u; T ) = −1
2
q

(
u,

∂u

∂x1
; T

)
=

1
2
M(C,C) (4.17)

The second one follows from relations (3.6), (3.7) and (4.5). Since the crack surfaces are free
of external loading, the derivative ∂1u = ∂u/∂x1 satis�es equations (1.3), (1.4) and conditions
(1.5)�(1.8) inside the domain ω surrounded by the contour T . Denote by L the matrix di�erential
operator of system (1.3), (1.4) and by χ a smooth cut-o� function, which equals zero near the
crack tip and equals one near a neighborhood of the arc T . Thus, the product v = χu is free of
singularities. The following calculation proves the �rst equality in (4.17):

q(u, ∂1u; T ) = q(v, ∂1v; T ) = −
∫

ω

(∂1v
>Lv − v>L∂1v) dx−

∑
±

q(v, ∂1v; Λ±0 ∩ ω)

= −2
∫

ω

∂1v
>Lv dx− 2

∑
±

∫

Λ±∩ω

nj(σM
jk (v)∂1vk + σE

j (v)∂1v
E) dx1 =

= −
∫

ω

∂

∂x1

(
σM

jk (v)εM
jk(vM )− σE

j (v)εE(vE)
)

dx

+2
∫

>
nj

(
σM

jk (u)∂1uk + σE
j (u)∂1u

E
)

dsx = −2J(u;T ).

Thus, by virtue of (4.15) and (4.17) there holds the formula

−dVh

dh

∣∣∣∣
h=0

=
1
2
M(C,C) = J(u0;T ) (4.18)

Usually (cf. [26, 3] and others) the invariant integral J(u0; Γ) is related to the energy release rate
due to moving of a crack tip. Consequently and analogous to the pure elastic problem (see [2])
we call the hermitian matrix M , which is composed of coe�cients of decompositions (3.7) and
gives rise to the sesquilinear form (3.10), the matrix of the piezo-electric energy release. Formulae
(4.15) and (4.18) remain the same for any type of boundary conditions under consideration, but
the size and the index of positivity of the matrix M can vary (cf. �gures 1�3).

The integrand in (4.16) contains the enthalpy density (3.1) but the increments of the
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functionals W and F are not related with the invariant integral J(u0; T ), indeed

−∆W = ∆F = −1
2

∫

ΣM

gM
p

(
uh

p − u0
p

)
dsx − 1

2

∫

ΓE

npσ
E
p (uh − u0)GE dsx

= −h

2

4∑

j,k=1

CjMjk

{ ∫

ΣM

gM
p ζk

p dsx +
∫

ΓE

npσ
E
p (ζk) GE dsx

}
+ O(h2)

= −h

2

4∑

j,k=1

(cM
j + CE

j )Mjk(CM
k − CE

k ) + O(h2)

= −h

2

(
M(CM , CM )−M(CE , CE)

)
+ O(h2) (4.19)

Here Cj = CM
j + CE

j , where CM
j and CE

j are the coe�cients of decomposition (4.5) generated
by the mechanical and electrical external loads, respectively. According to the integral represen-
tations (4.6) we have the representation

CM
j =

∫

ΣM

gM
p (x)ζj

p(x) dsx, CE
j = −

∫

ΓE

np σE
p (ζj) GE dsx (4.20)

Formulae (4.15) and (4.19) di�er crucially: in the �rst one the factor on h is a local characteristics
of the physical �elds but in the second one it is a global characteristics, since in contrast to the
coe�cients Cj the coe�cients CM

j and CE
j cannot be recognized by an analysis of the �elds in

the crack mouth. Moreover, the change of the polarization of the electric load the di�erence
M(CM , CM )−M(CE , CE) does not change; however, the values M(CM +CE , CM +CE) and
M(CM − CE , CM − CE) coincide only in the case M(CM , CE) = 0 (cf. [23, 8] and others).

Functional (4.2) is the only one, for which the release rate due to growth of the crack is a
local characteristics. For example, owing to formulae (4.3), (3.2), (4.14) and (4.20) we obtain

∆U = ∆E −∆RM −∆RE = −1
2
∆RM − 3

2
∆RE

= −h

2

(
M(CM , CM )− 3M(CE , CE)

)
+ O(h2)

The properties of the energy functionals under discussion depend on the character of the electric
loading. For instance, let the normal component of the electric induction be given on the surface
ΣE \Λ instead of the electric potential GE on the surface ΓE . Then formulae (1.6) and (3.2) are
replaced by the following:

njσ
E
j = gE on ΣE , ϕ = 0 on ΓE (4.21)

RM =
∫

ΣM

gMuM
j dsx, RE = −

∫

ΣE

gEuE dsx (4.22)

Note that the minus at the second integral in (4.22) is provided by relation (1.2) of the electric
stress vector and the potential. In paper [12] a mistake on pp. 315-316 [24] in the calculation
of the increment of the potential energy was corrected and furthermore it was shown that for
problem (1.3)�(1.5), (4.21), (1.7), (1.8) there holds

∆W −∆RM + ∆RE = −h

2
M(C, C) + O(h2), (4.23)
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∆E −∆RM −∆RE = −h

2

(
M(CM , CM )−M(CE , CE)

)
+ O(h2). (4.24)

Note that the changes W 7→ E and E 7→ W turn equations (4.23) and (4.24) into the formulae
(4.15) and (4.19), respectively.

5 Bases of power solutions.

For the pure elastic problem, in [17, 19] basesfor power law solutions related to exponents in Π+

were constructed that are adapted for fracture criteria of various physical nature: the energy,
stress, and deformation ones. An analogous classi�cation is available for the piezoelectric problem
as well.

The energy basis {X1e, . . . , Xe4} exists for any con�guration of the exponents λj ∈ Π+

and is to be chosen in such a way that the matrix M is diagonal and the �elds Xje are real. We
emphasize that the latter property implies that the elements of the matrix M are real as well.
Let us consider the most interesting case i (�gure 1 (a)) where

λ1 =
1
2

+ iτ1, λ2 =
1
2
− iτ1, λ3 =

1
2
− τ2, λ4 =

1
2

+ τ2 (τ1, τ2 > 0)

There exists a basis for the power solutions where X3 and X4 have real angular parts Φq but
the solutions X1, X2 remain complex Φq; however, and Φ1 = Φ2 is possible. The elements
M11 = M22 > 0, M34 = M43 6= 0 of the matrix M (�gure 2 (a)) are real. Let L be a characteristic
size of the body Ω. We set

X1e(x) =
1√
2

r1/2
(
ReΦ1(θ) cos

(
τ1 ln

r

L

)
− ImΦ1(θ) sin

(
τ1 ln

r

L

))

X2e(x) =
1√
2

r1/2
(
ReΦ1(θ) sin

(
τ1 ln

r

L

)
+ ImΦ1(θ) cos

(
τ1 ln

r

L

))

X3e(x) =
1√
2

r1/2

(( r

L

)−τ2
Φ3(θ) +

( r

L

)τ2
Φ4(θ)

)

X4e(x) =
1√
2

r1/2
(( r

L

)τ2
Φ3(θ)−

( r

L

)τ2
Φ4(θ)

)

As a result, we get M e = diag{M11,M22,M34,−M34}.
The stress and deformation bases can be introduced in case i under the condition that all

power solutions X1, . . . , X4 have the same exponent λ = 1/2. The stress basis {X1σ, . . . , X4σ}
is subject to the conditions:

σM
2p (Xjσ; r, 0) = (2πr)−1/2δp,j , p = 1, 2, 3, (5.1)

σE
2 (Xjσ; r, 0) = (2πr)−1/2δ4,j , j = 1, . . . , 4. (5.2)

The deformation basis {X1ε, . . . , X4ε} is de�ned by conditions on the jumps of the displacements
and the electric potential over the crack

r−1[Xjε
p ](−r) = 2(2πr)−1/2δp,j , p = 1, 2, 3, (5.3)

r−1[XjεE ](−r) = 2(2πr)−1/2δ4,j , j = 1, . . . , 4. (5.4)
The existence of the two bases verifying the requirements (5.1), (5.2) and (5.3), (5.4), can be
proved following a scheme in [17]. For example, if conditions (5.1), (5.2) cannot be satis�ed, one
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�nds a non-trivial power solution X(x) = r1/2Φ(θ) such that σM±
21 (X) = σM±

22 (X) = σM±
23 (X) =

0, σE±
2 (X) = 0 on the extension of the crack. Hence, X is a solution of the Neumann problem

for the elliptic system (1.3), (1.4) in the upper half-plane. It is known [1] that locally bounded
solutions of this boundary-value problem are smooth and therefore X cannot take the form (1.10)
with the exponent λ = 1/2, which gives a contradiction.

To each of the two bases there correspond the base of the singular power solutions (1.10)
with the exponents λ = −1/2 which are subject to the normalization conditions (3.6). Relations
(3.7) give rise to the hermitian matrices Mσ and M ε, while the asymptotic expansion (4.5) takes
the form

u0(x) = u0(0) +
4∑

j=1

Kσ
j Xjσ(x) + O(r) =

4∑

k=1

Kε
kX

kε(x) + O(r), r → 0 (5.5)

The generalized stress intensity factors Kσ
j (GSIFs) and deformation intensity factors Kε

j (GDIFs)
are related by

Kσ
j =

4∑

k=1

NkjK
ε
k, Xkε =

4∑

j=1

NkjX
jσ (5.6)

Here Nkj are elements of the non-degenerate 4× 4-matrix N . By virtue of formulae (4.15), (4.4)
and (3.3), we have

∆V = −h

2

4∑

j,k=1

Kε
j M

ε
jkK

ε
k + O(h2) =

1
2

∑
±
∓

∫

Λ±h \Λ±

(
σM

2p (u0)uh
p + σE

2 (u0)uhE
)

ds

= −1
2

h∫

0

(
σM

2p (u0;x1, 0) [uh
p ](x1) + σE

2 (u0; x1, 0) [uhE ](x1)
)

dx1 (5.7)

Recalling the normalization conditions (5.1)�(5.4) and the inner asymptotic expansion (4.8),
(4.9) of the �eld uh, we obtain

σM
2p (u0; x1, 0) = (2πr)−1/2Kσ

p + O(1), p = 1, 2, 3,

σE
2 (u0; x1, 0) = (2πr)−1/2Kσ

4 + O(1)
[uh

p ](x1) = 2 (2π)−1/2 (h− r)1/2 Kε
p + O(h + r), p = 1, 2, 3,

[uhE ](x1) = 2 (2π)−1/2 (h− r)1/2 Kε
4 + O(h + r) (5.8)

Inserting these expressions into the last integral in (5.7), we derive the relation

−h

2

4∑

j,k=1

Kσ
j Mσ

jkK
σ
k + O(h2) = −h

2

4∑

j,k=1

KεjM
ε
jkK

ε
k + O(h2)

= − h

2π

4∑

j=1

Kε
j K

σ
j

1∫

0

ρ−1/2(1− ρ)1/2 dρ + o(h) = −h

4

4∑

j,k=1

Kε
j NkjK

ε
k + o(h).

Thus, we obtain the relation
N = 2M ε
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for the matrix N which realizes transition (5.6) from the stress basis to the deformation basis.
Moreover, the formula Mσ = (4M ε)−1 is valid.

In case iii there exist the stress {X1σ, X2σ, X3σ} and deformation {X1ε, X2ε, X3ε} bases,
subject to the normalization conditions (5.1) and (5.3), respectively; here j = 1, 2, 3. The
relations

Kε
p = lim

r→+0

( π

2r

)1/2
[u0

p](−r) (p = 1, 2, 3) (5.9)

de�ne three SIFs. Since the electric induction vector also has a singularity on the extension of
the crack, one may determine [27] four GSIFs according to formulae (5.8). However, it is correct
to operate only with the three SIFs Kσ

1 , Kσ
2 , Kσ

3 because Kσ
4 = a1K

σ
1 + a2K

σ
2 + a3K

σ
3 and the

coe�cients aq depend on the tensors AMM , AME and AEE but are independent of the external
loads gM and GE . Finally, we mention that a repetition of the previous calculation gives relations
of the same kind as in case i.

In case ii there also exist the two bases {X1σ, . . . , X4σ} and {X1ε, . . . , X4ε}. The �rst
one is de�ned with the help of conditions on the extension of the crack, but the second one
on the crack itself. Equations (5.1) and (5.3) keep their validity, but formulae (5.2) and (5.4),
respectively, have to be replaced by

XjσE(r, 0) = −(2π)−1/2r1/2δ4,j (j = 1, . . . , 4) (5.10)
[
σE

2 (Xjε)
]
(−r) = −2 (2πr)−1/2δ4,j (j = 1, . . . , 4) (5.11)

The existence of the bases, verifying requirements (5.1), (5.10) or (5.3), (5.11), can be
checked up following the scheme [17]. The bases are mixed: the �rst one give rise to three SIFs
and one GDIF, and the second one three DIFs (5.9) and one GSIF. However, the above-stated
relations between the basis remain valid.

The authors do not know an appropriate normalization conditions for bases in case iv.

7 The surface electric enthalpy.

We introduce the columns of generalized stresses and strains

ε = (εM
11 ,

√
2 εM

13 , −εM
1 ,

√
2 εM

12 ,
√

2 εM
32 , −εE

2 )>,

σ = (σM
11 ,

√
2σM

13 , σM
1 ,

√
2σM

12 , σM
22 ,

√
2σM

32 , σE
2 )>.

(7.1)

The factors
√

2 equalize the intrinsic norms of the columns and the corresponding tensors. The
values εM

33 , εE
3 and σM

33 , σE
3 are not included into columns (7.1) because the �rst couple vanishes

due to (1.2) and the second couple does not enter problem (1.3)�(1.8).
By partial Legendre transformation, we obtain two other columns

η = (εM
11 ,

√
2 εM

13 , −εE
1 , −√2σM

12 , −σM
22 , −√2σM

32 , −σE
2 )>,

ξ = (σM
11 ,

√
2σM

13 , σE
1 ,
√

2 εM
12 , εM

22 ,
√

2 εM
32 , −εE

2 )>.
(7.2)

According to relations (1.1) the couples (7.1) and (7.2) of columns meet the equalities

σ = Aε, ξ = Bη (7.3)

Here A and B are symmetric invertible matrices of size 7 × 7. The quadratic form 2−1ε>σ =
2−1ε>Aε de�nes the density of the electric enthalpy (3.1). Since in case i the requirements on
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the jumps of the generalized displacements restrict all components of the column η, the form
P (ξ) = 2−1ξ>η can be called the density of the surface enthalpy.

Let Tρ be a circle with radius ρ > 0 and center at the crack tip. According to the Green's
formula (3.3), any two power solutions U and V with exponents λ = 1/2 ful�ll the relation

0 = q

(
U,

∂V

∂x2
;Tρ2

)
− q

(
U,

∂V

∂x2
; Tρ1

)
=

=
∑
±
±

ρ2∫

ρ1

(
Upσ

M
2p

(
∂V

∂x2

)
+ UEσE

2

(
∂V

∂x2

)) ∣∣∣∣
x2=±0

dx1

(7.4)

Note that we di�erentiate V across the crack, i.e., in general, q(U, ∂V/∂x2; Tρ) is not an invariant
integral; however, this integral does not depend on the radius ρ since the integrand equals O(ρ−1).
Taking into account equations (1.3), (1.4) and the order of the integrand, we process the integral
I± from the left-hand side of (7.4)

I± =

ρ2∫

ρ1

(
Up

∂

∂x1
σM

1p (V ) + UE ∂

∂x1
σE

1 (V )
) ∣∣∣∣

x2=±0

dx1 =

=

ρ2∫

ρ1

(
∂Up

∂x1
σM

1p (V ) +
∂UE

∂x1
σE

1 (V )
) ∣∣∣∣

x2=±0

dx1 =

ρ2∫

ρ1

ξ±(V )>η±(U) dx1.

Since the numbers ρ1 and ρ2 are arbitrary, from the latter it follows that the jump of the surface
enthalpy on the crack vanishes. This conclusion remains valid for a composite plane in the case
when the basis consists of power solutions with the exponent λ = 1/2.

In view of the normalization conditions (5.3), (5.4) we have
[
εM
11(X

jε)
]
(−r) = −(2πr)−1/2δ1,j ,

[
εE
1 (Xjε)

]
(−r) = −(2πr)−1/2δ4,j ,

2
[
εM
31(X

jε)
]
(−r) = −(2πr)−1/2δ3,j , j = 1, . . . , 4.

(7.5)

Thus, the jump η+(X2ε)− η−(X2ε) vanishes and the following formula is valid for j = 1, 3, 4

ξ+(Xjε)>η+(X2ε)− ξ−(Xjε)>η−(X2ε)

=
(
η+(Xjε)− η−(Xjε)

)>
B

(
η+(X2ε) + η−(X2ε)

)
= 0. (7.6)

Equalities (7.5) and (7.6) show that the column η(X2ε) and, by (7.3), also the column ξ(X2ε)
vanish on the crack surfaces. In particular, σM

11 (X2ε) = σM
13 (X2ε) = 0, σE

2 (X2ε) = 0 and, owing
to equations (1.3), (1.4), the following relations hold on the crack surfaces:

σM
2p

(
∂X2ε

∂x2

)
= − ∂

∂x1
σM

1p (X2ε) = 0, σE
2

(
∂X2ε

∂x2

)
= − ∂

∂x1
σE

1 (X2ε) = 0

Thus, while di�erentiating across the crack, the derivative ∂X2ε/∂x2 is still a power solution of
the model problem (1.3)�(1.9). Finally, according to the normalization conditions (5.3), (5.4) we
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obtain
[
∂X2ε

∂x2

]
(−r) = 2[ε12(X2ε)](−r)− ∂

∂x1
[X2ε

2 ](−r) =
∂

∂r

(
2

r

π

)1/2

[
∂X2ε

∂x2

]
(−r) = [ε22(X2ε)](−r) = 0

[
∂X2ε

3

∂x2

]
(−r) = 2[ε23(X2ε)](−r) = 0,

[
∂X2εE

∂x2

]
(−r) = [εE(X2ε)](−r) = 0

The jumps on the crack of the �elds ∂X2ε/∂x2 and −∂X1ε/∂x1 coincide each with other and,
hence,

∂X2ε

∂x2
= −∂X1ε

∂x1
=

4∑

k=1

M ε
1kY

kε

For the isotropic model problem, the aforementioned properties of the �eld X2ε, corre-
sponding to the stress-strain state of the �rst mode, follow from the explicit formulae (3.10),
(3.11). In [21, 19], these properties have allowed to investigate the problem on the deviation of
a crack in a purely elastic medium.

The above considerations can be adapted to cases ii and iii. For instance, in the �rst one
the boundary conditions on the crack surfaces annul the third, fourth, �fth and sixth components
of the column η and the normalization conditions (5.3), (5.11) �x the jumps of the �rst, second
and seventh components. Other calculations also do not need a serious modi�cation.

The authors thanks professors E. L. Aero, R. V. Goldstein and H.-G. R�uck for helpful
discussions on the subject of the paper.
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