A Generalization of Student's \boldsymbol{t}-distribution from the Viewpoint of Special Functions

WOLFRAM KOEPF ${ }^{1}$ and MOHAMMAD MASJED-JAMEI ${ }^{2}$
1 Department of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany 2 Department of Mathematics, K.N.Toosi University of Technology, Sayed Khandan, Jolfa Av., Tehran, Iran (Received ...)

Abstract

Student's t-distribution has found various applications in mathematical statistics. One of the main properties of the t-distribution is to converge to the normal distribution as the number of samples tends to infinity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution function with four free parameters and show that it converges to the normal distribution again. We provide a comprehensive treatment of mathematical properties of this new distribution. Moreover, since the Fisher F distribution has a close relationship with the t-distribution, we also introduce a generalization of the F distribution and prove that it converges to the chi-square distribution as the number of samples tends to infinity. Finally some particular sub-cases of these distributions are considered.

Keywords: Probability distributions, Cauchy integral, Dominated convergence theorem, Pearson distribution family, Student's t-distribution, Fisher F-distribution, Normal distribution, Gamma distribution, ChiSquare distribution

MSC 2000: 60E05, 62E20, 33C45

1. Introduction

Let us start our discussion with the Pearson differential equation

$$
\begin{equation*}
\frac{d W}{d x}=\frac{d x+e}{a x^{2}+b x+c} W(x), \tag{1}
\end{equation*}
$$

which is intimately connected with classical orthogonal polynomials and defines their weight functions $W(x)$, see e.g. [6], and its solution

$$
W(x)=W\left(\left.\begin{array}{cc}
d & e \tag{2}\\
a & b \\
c
\end{array} \right\rvert\, x\right)=\exp \left(\int \frac{d x+e}{a x^{2}+b x+c} d x\right)
$$

where a, b, c, d, e are all real parameters. There are several special sub-cases of (2). One of them is the Beta distribution, which is usually represented by the integral [7]

[^0]\[

$$
\begin{equation*}
\int_{C}\left(L_{1}(t)\right)^{a}\left(L_{2}(t)\right)^{b} d t, \tag{3}
\end{equation*}
$$

\]

where $L_{1}(t)$ and $L_{2}(t)$ are linear functions, a, b are complex numbers and C is an appropriate contour. The Euler and Cauchy integrals [1] are two important sub-classes of Beta type integrals which are often used in applied mathematics. The Euler integral is given by

$$
\begin{equation*}
\int_{a}^{b}(t-a)^{c-1}(t-b)^{d-1} d t=\frac{\Gamma(c) \Gamma(d)}{\Gamma(c+d)}(a+b)^{c+d-1} \quad(\operatorname{Re} c>0, \operatorname{Re} d>0, a>0, b>0), \tag{4}
\end{equation*}
$$

while the Cauchy integral is represented by the formula

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{d t}{(a+i t)^{c}(b-i t)^{d}}=\frac{\Gamma(c+d-1)}{\Gamma(c) \Gamma(d)}(a+b)^{1-(c+d)}, \tag{5}
\end{equation*}
$$

in which $i=\sqrt{-1}, \operatorname{Re}(c+d)>1, \operatorname{Re} a>0$ and $\operatorname{Re} b>0$. Note that in both relations (4) and (5) $\Gamma(a)=\int_{0}^{\infty} x^{a-1} e^{-x} d x$ denotes the Gamma function.
The relation (5) is a suitable tool to compute some different looking definite integrals. For this purpose, we use the relation

$$
\begin{equation*}
\left(\frac{a-i b}{a+i b}\right)^{i q}=\exp \left(2 q \arctan \frac{b}{a}\right) \quad(a, b, q \in \mathbb{R}) \tag{6}
\end{equation*}
$$

which rewrites the complex left hand side in terms of the real right hand side. Consequently

$$
\begin{equation*}
(b-i t)^{p+i q}(b+i t)^{p-i q}=\left(b^{2}+t^{2}\right)^{p} \exp \left(2 q \arctan \frac{t}{b}\right) \tag{7}
\end{equation*}
$$

Now if (7) is substituted, then the integral (5) changes towards

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(b^{2}+t^{2}\right)^{p} \exp \left(2 q \arctan \frac{t}{b}\right) d t=\frac{\Gamma(-2 p-1)}{\Gamma(-p+i q) \Gamma(-p-i q)}(2 b)^{2 p+1} \tag{8}
\end{equation*}
$$

The above integral plays a key role to introduce a generalization of the t-distribution.

2. A generalization of the t-distribution

The Student t-distribution [8,9] having the probability density function (pdf)

$$
\begin{equation*}
T(t, m)=\frac{\Gamma((m+1) / 2)}{\sqrt{m \pi} \Gamma(m / 2)}\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)} \quad(-\infty<t<\infty, \quad m \in \mathbb{N}) \tag{9}
\end{equation*}
$$

is perhaps one of the most important distributions in the sampling problems of normal populations. According to a theorem in mathematical statistics, if \bar{X} and S^{2} are respectively the mean value and variance of a stochastic sample with the size m of a normal population having the expected value μ and variance σ^{2}, then the random variable $T=\frac{\bar{X}-\mu}{S / \sqrt{m}}$ has the probability density function (9) with ($m-1$) degrees of freedom [9]. This theorem is used in the test of hypotheses and interval estimation theory when the size of the sample is small, for instance less than 30 .
Now, by using (8) one can extend the pdf of the t-distribution. To meet this goal, we substitute $t \rightarrow \frac{t}{\sqrt{m}}, \quad b=1, \quad p=-\frac{m+1}{2}$ and $q \rightarrow \frac{q}{2}$ in (8). This yields

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right) d t=\frac{\sqrt{m} 2^{1-m} \Gamma(m) \pi}{\Gamma\left(\frac{1+m+i q}{2}\right) \Gamma\left(\frac{1+m-i q}{2}\right)} . \tag{10}
\end{equation*}
$$

Since the right hand side of (10) is an even function with respect to the variable q, we take a linear combination and get accordingly

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)}\left(\lambda_{1} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right)+\lambda_{2} \exp \left(-q \arctan \frac{t}{\sqrt{m}}\right)\right) d t=\frac{\left(\lambda_{1}+\lambda_{2}\right) \sqrt{m} 2^{1-m} \Gamma(m) \pi}{\Gamma\left(\frac{1+m+i q}{2}\right) \Gamma\left(\frac{1+m-i q}{2}\right)} . \tag{11}
\end{equation*}
$$

Therefore, the above integral can be used to generalize (9) by
$T\left(t, m, q, \lambda_{1}, \lambda_{2}\right)=\frac{\Gamma\left(\frac{1+m+i q}{2}\right) \Gamma\left(\frac{1+m-i q}{2}\right)}{\left(\lambda_{1}+\lambda_{2}\right) \sqrt{m} 2^{1-m} \Gamma(m) \pi}\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)}\left(\lambda_{1} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right)+\lambda_{2} \exp \left(-q \arctan \frac{t}{\sqrt{m}}\right)\right)$
where $-\infty<t<\infty, \quad m \in \mathbb{N}, q$ is a complex number and $\lambda_{1}, \lambda_{2} \geq 0$.
Note that $\lambda_{1}, \lambda_{2} \geq 0$ is a necessary condition, because the probability density function must always be positive. Also note that the normalization constant

$$
\frac{\Gamma\left(\frac{1+m+i q}{2}\right) \Gamma\left(\frac{1+m-i q}{2}\right)}{\left(\lambda_{1}+\lambda_{2}\right) \sqrt{m} 2^{1-m} \Gamma(m) \pi}
$$

of (12) is real, because the corresponding integrand is a real function on $(-\infty, \infty)$. It is clear that for $q=0$ in (12) the usual t-distribution is derived. Moreover, for $q=0$ the normalization constant of distribution (12) is equal to the normalization constant of the t-distribution. This fact can be proved by applying Legendre's duplication formula [1], i.e.

$$
\begin{equation*}
\Gamma\left(\frac{z}{2}\right) \Gamma\left(\frac{z+1}{2}\right)=\frac{\sqrt{\pi}}{2^{z-1}} \Gamma(z) . \tag{13}
\end{equation*}
$$

But, according to one of the basic theorems in sampling theory, $T(t, m)$ converges to the pdf of the standard normal distribution $N(t, 0,1)$ as $m \rightarrow \infty[7,9]$, that is

$$
\begin{equation*}
\lim _{m \rightarrow \infty} T(t, m)=N(t, 0,1) . \tag{14}
\end{equation*}
$$

Here we intend to show that this matter is also valid for the generalized distribution $T\left(t, m, q, \lambda_{1}, \lambda_{2}\right)$. To prove this claim, we use the dominated convergence theorem (DCT) [2] to the real sequence of functions

$$
\begin{equation*}
S_{m}^{(1)}\left(t, q, \lambda_{1}, \lambda_{2}\right)=\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)}\left(\lambda_{1} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right)+\lambda_{2} \exp \left(-q \arctan \frac{t}{\sqrt{m}}\right)\right) \tag{15}
\end{equation*}
$$

For every $m \in \mathbb{N}$ it is not difficult to see that

$$
\begin{equation*}
\left|S_{m}^{(1)}\left(t, q, \lambda_{1}, \lambda_{2}\right)\right| \leq\left(\lambda_{1}+\lambda_{2}\right) \exp \left(|q| \frac{\pi}{2}\right) \quad(t \in \mathbb{R}) \tag{16}
\end{equation*}
$$

On the other hand, we have
$\lim _{m \rightarrow \infty}\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)}\left(\lambda_{1} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right)+\lambda_{2} \exp \left(-q \arctan \frac{t}{\sqrt{m}}\right)\right)=\left(\lambda_{1}+\lambda_{2}\right) \exp \left(-\frac{t^{2}}{2}\right)$.
Since the dominated convergence theorem states that if for a continuous and integrable function $g(x)$ we have $\left|f_{m}(x)\right| \leq g(x)$, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{a}^{b} f_{m}(x) d x=\int_{a}^{b} \lim _{m \rightarrow \infty} f_{m}(x) d x, \tag{18}
\end{equation*}
$$

considering the limit relation (17) we obtain

$$
\begin{align*}
\lim _{m \rightarrow \infty} T\left(t, m, q, \lambda_{1}, \lambda_{2}\right)= & \frac{\lim _{m \rightarrow \infty}\left(1+t^{2} / m\right)^{-\left(\frac{m+1}{2}\right)}\left(\lambda_{1} \exp (q \arctan (t / \sqrt{m}))+\lambda_{2} \exp (-q \arctan (t / \sqrt{m}))\right)}{\int_{-\infty}^{\infty} \lim _{m \rightarrow \infty}\left(1+t^{2} / m\right)^{-\left(\frac{m+1}{2}\right)}\left(\lambda_{1} \exp (q \arctan (t / \sqrt{m}))+\lambda_{2} \exp (-q \arctan (t / \sqrt{m}))\right) d t} \tag{19}\\
= & \frac{\left(\lambda_{1}+\lambda_{2}\right) \exp \left(-t^{2} / 2\right)}{\int_{-\infty}^{\infty}\left(\lambda_{1}+\lambda_{2}\right) \exp \left(-t^{2} / 2\right) d t}=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} t^{2}\right)=N(t, 0,1) .
\end{align*}
$$

Remark 1. Taking the limit on both sides of (11) as $m \rightarrow \infty$, the following asymptotic relation is obtained for the Gamma function

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\Gamma(x+i y) \Gamma(x-i y)}{2^{-(2 x-1)} \sqrt{2 x-1} \Gamma(2 x-1)}=\frac{2}{\sqrt{2 \pi}} . \tag{20}
\end{equation*}
$$

To compute the expected value of the distribution given by the pdf (12) it is sufficient to consider the definite integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} t\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right) d t=\frac{\sqrt{m} 2^{1-m} \Gamma(m) \pi}{\Gamma\left(\frac{1+m+i q}{2}\right) \Gamma\left(\frac{1+m-i q}{2}\right)}\left(\frac{q \sqrt{m}}{m-1}\right), \tag{21}
\end{equation*}
$$

which gives the expected value of (12) as

$$
\begin{equation*}
E[T]=\left(\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right) \frac{q \sqrt{m}}{m-1} . \tag{22}
\end{equation*}
$$

On the other hand, since $E\left[1+T^{2} / \mathrm{m}\right]$ can be easily computed, after some calculations, we get for the variance measure of (12)

$$
\begin{equation*}
\operatorname{Var}[T]=E\left[T^{2}\right]-E^{2}[T]=\frac{m\left(q^{2}+m-1\right)}{(m-2)(m-1)}-\left(\frac{\lambda_{1}-\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{2}\left(\frac{m q^{2}}{(m-1)^{2}}\right) . \tag{23}
\end{equation*}
$$

It is valuable to point out that as expected $q=0$ in (22) and (23) gives the expected value and variance of the usual t-distribution, respectively.
It is known that the t-distribution has a close relationship with the Fisher F-distribution [6], defined by its pdf

$$
\begin{equation*}
F(x, m, k)=\frac{\Gamma((m+k) / 2)(k / m)^{k / 2}}{\Gamma(k / 2) \Gamma(m / 2)} x^{\frac{k}{2}-1}\left(1+\frac{k}{m} x\right)^{-\left(\frac{m+k}{2}\right)} \quad(m, k \in \mathbb{N}, \quad 0<x<\infty), \tag{24}
\end{equation*}
$$

where $x=t^{2}$ and $k=1$ in (24). In other words we have

$$
\begin{equation*}
T(t, m)=F\left(t^{2}, m, 1\right) . \tag{25}
\end{equation*}
$$

By referring to the above relation and the fact that the t-distribution was generalized by relation (12), it is now natural to generalize the pdf of the F-distribution (24) as follows

$$
\begin{equation*}
F\left(x, m, k, q, \lambda_{1}, \lambda_{2}\right)=B x^{\frac{k}{2}-1}\left(1+\frac{k}{m} x\right)^{-\left(\frac{m+k}{2}\right)}\left(\lambda_{1} \exp \left(q \arctan \sqrt{\frac{k}{m}} x\right)+\lambda_{2} \exp \left(-q \arctan \sqrt{\frac{k}{m}} x\right)\right), \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{B}=\int_{0}^{\infty} x^{\frac{k}{2}-1}\left(1+\frac{k}{m} x\right)^{-\left(\frac{m+k}{2}\right)}\left(\lambda_{1} \exp \left(q \arctan \sqrt{\frac{k}{m}} x\right)+\lambda_{2} \exp \left(-q \arctan \sqrt{\frac{k}{m}} x\right)\right) d x \tag{26.1}
\end{equation*}
$$

For $q=0$, (26) is the usual F-distribution defined in (24).
According to the following theorem, the generalized function (26) converges to a special case of the Gamma distribution [9], defined by

$$
\begin{equation*}
G(x, \alpha, \beta)=\frac{\beta^{-\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp \left(\frac{-x}{\beta}\right) \quad(\alpha, \beta>0, \quad 0<x<\infty) . \tag{27}
\end{equation*}
$$

Theorem 1. If the Gamma distribution is given by (27), then we have

$$
\lim _{m \rightarrow \infty} F\left(x, m, k, q, \lambda_{1}, \lambda_{2}\right)=G\left(x, \alpha=\frac{k}{2}, \beta=2\right)=\chi_{k}^{2}
$$

where χ_{k}^{2} denotes the pdf of the chi-square distribution.
Proof. Let us define the sequence

$$
S_{m}^{(2)}\left(x, k, q, \lambda_{1}, \lambda_{2}\right)=x^{\frac{k}{2}-1}\left(1+\frac{k}{m} x\right)^{-\left(\frac{m+k}{2}\right)}\left(\lambda_{1} \exp \left(q \arctan \sqrt{\frac{k}{m} x}\right)+\lambda_{2} \exp \left(-q \arctan \sqrt{\left.\frac{k}{m} x\right)}\right) .\right.
$$

It is easy to show that

$$
\begin{equation*}
\left|S_{m}^{(2)}\left(x, k, q, \lambda_{1}, \lambda_{2}\right)\right| \leq\left(\lambda_{1}+\lambda_{2}\right) x^{\frac{k}{2}-1} \exp \left(|q| \frac{\pi}{2}\right) \quad(x \in[0, \infty), \quad k \in \mathbb{N}), \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} S_{m}^{(2)}\left(x, k, q, \lambda_{1}, \lambda_{2}\right)=\left(\lambda_{1}+\lambda_{2}\right) x^{\frac{k}{2}-1} \exp (-x / 2) \tag{29}
\end{equation*}
$$

Therefore, according to the DCT we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} F\left(x, m, k, q, \lambda_{1}, \lambda_{2}\right)=\frac{\lim _{m \rightarrow \infty} S_{m}^{(2)}\left(x, k, q, \lambda_{1}, \lambda_{2}\right)}{\int_{0}^{\infty} \lim _{m \rightarrow \infty} S_{m}^{(2)}\left(x, k, q, \lambda_{1}, \lambda_{2}\right) d x}=\frac{x^{(k / 2)-1} \exp (-x / 2)}{\int_{0}^{\infty} x^{(k / 2)-1} \exp (-x / 2) d x}=G\left(x, \frac{k}{2}, 2\right) \tag{30}
\end{equation*}
$$

Moreover, it is not difficult to show that

$$
\begin{equation*}
F\left(t^{2}, m, 1, q, \lambda_{1}, \lambda_{2}\right)=T\left(t, m, q, \lambda_{1}, \lambda_{2}\right) \tag{31}
\end{equation*}
$$

3. Some particular sub-cases of the generalized t (and F) distribution

In this section, we are going to study some symmetric and asymmetric sub-cases of the generalized distributions (12) and (26).
3.1. A symmetric generalization of the \boldsymbol{t}-distribution, the case $q=i b$ and $\lambda_{1}=\lambda_{2}=1 / 2$

If the special case $q=i b$ and $\lambda_{1}=\lambda_{2}=1 / 2$ is considered in (12), then
$T\left(t, m, i b, \frac{1}{2}, \frac{1}{2}\right)=T_{S}(t, m, b)=\frac{\Gamma\left(\frac{1+m+b}{2}\right) \Gamma\left(\frac{1+m-b}{2}\right)}{\sqrt{m} 2^{1-m} \Gamma(m) \pi}\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)} \cos \left(b \arctan \frac{t}{\sqrt{m}}\right)$
is a symmetric generalization of the ordinary t-distribution in which $-1 \leq b \leq 1$.
The usual pdf of the t-distribution is obviously derived by $b=0$ in (32). Note that according to the Legendre duplication formula we reach the normalization constant of the t-distribution if $b=0$ is considered in (32). In other words, we have

$$
\begin{equation*}
b=0 \Rightarrow \frac{\Gamma^{2}((1+m) / 2)}{\sqrt{m} 2^{1-m} \Gamma(m) \pi}=\frac{\Gamma((1+m) / 2)}{\sqrt{m \pi} \Gamma(m / 2)} . \tag{33}
\end{equation*}
$$

Also note that the parameter b in the generalized distribution (32) must belong to [-1,1], because the probability density function must always be positive and therefore we ought to have $\cos (b \arctan (t / \sqrt{m})) \geq 0$. On the other hand, since for $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$ we have $\cos \theta \geq 0$, therefore to prove $\cos (b \arctan (t / \sqrt{m})) \geq 0$ it is sufficient to prove that

$$
\begin{equation*}
-1 \leq b \leq 1 \Leftrightarrow b \arctan \frac{t}{\sqrt{m}} \subseteq\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad(t \in \mathbb{R}, \quad m \in \mathbb{N}) . \tag{34}
\end{equation*}
$$

For this purpose, let us consider the sequence $U_{m}(t)=\arctan \frac{t}{\sqrt{m}}$. We have
$U_{m}^{\prime}(t)=\left(\frac{1}{\sqrt{m}}\right) /\left(1+\frac{t^{2}}{m}\right)>0 \Rightarrow\left[\min U_{m}(t), \max U_{m}(t)\right]=\left[U_{m}(-\infty), U_{m}(\infty)\right]=\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Now if we demand the sequence $b U_{m}(t)=b \arctan \frac{t}{\sqrt{m}}$ to belong to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, it is clear that we must have $|b| \leq 1$, which proves (34). The following figures clarify this matter for $b \in[-1,1]$ and $b \notin[-1,1]$ in the interval $(-10,10)$.

Figure 1: $b=1 / 2, m=4$

Figure 2: $b=3, m=4$

Fig. 1 shows the pdf $T_{S}(t, 4,1 / 2)$ with normalization constant $35 \sqrt{2} / 128$ and Fig. 2 shows the non-positive function $T_{S}(t, 4,3)=(4 / \pi)\left(1+t^{2} / 4\right)^{-5 / 2} \cos (3 \arctan (t / 2))$ in the interval $(-10,10)$. As the above figures show, the generalized distribution (32) is symmetric, i.e.

$$
\begin{equation*}
T_{S}(-t, m, b)=T_{S}(t, m, b) \quad(t \in \mathbb{R}) \tag{36}
\end{equation*}
$$

Moreover, according to (22) and (23) the expected value and variance of distribution (32) take the forms

$$
\begin{equation*}
E[t]=0 \quad, \quad \operatorname{Var}[t]=\frac{m\left(m-1-b^{2}\right)}{(m-1)(m-2)} . \tag{37}
\end{equation*}
$$

Clearly $b=0$ in these relations gives the expected value and variance of the t-distribution.
Theorem 2. $T_{S}(t, m, q)$ converges to $N(t, 0,1)$ as $m \rightarrow \infty$.
Proof. If the sequence $S_{m}^{(3)}(t, b)=\cos \left(b \arctan \frac{t}{\sqrt{m}}\right)\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)}$ is considered, then one can show that

$$
\begin{equation*}
\left|S_{m}^{(3)}(t, b)\right|=\left|\cos \left(b \arctan \frac{t}{\sqrt{m}}\right)\right| \cdot\left|\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)}\right| \leq 1 \quad(t \in \mathbb{R}) . \tag{38}
\end{equation*}
$$

Consequently we have

$$
\begin{align*}
& \lim _{m \rightarrow \infty} T_{S}(t, m, b)=\lim _{m \rightarrow \infty} \frac{\cos (b \arctan (t / \sqrt{m}))\left(1+t^{2} / m\right)^{-\left(\frac{m+1}{2}\right)}}{\int_{-\infty}^{\infty} \cos (b \arctan (t / \sqrt{m}))\left(1+t^{2} / m\right)^{-\left(\frac{m+1}{2}\right)} d t} \\
& =\frac{\lim _{m \rightarrow \infty} \cos (b \arctan (t / \sqrt{m}))\left(1+t^{2} / m\right)^{-\left(\frac{m+1}{2}\right)}}{\int_{-\infty}^{\infty} \lim _{m \rightarrow \infty} \cos (b \arctan (t / \sqrt{m}))\left(1+t^{2} / m\right)^{-\left(\frac{m+1}{2}\right)} d t}=\frac{\exp \left(-t^{2} / 2\right)}{\int_{-\infty}^{\infty} \exp \left(-t^{2} / 2\right) d t}=N(t, 0,1) . \tag{39}
\end{align*}
$$

By referring to (26), we can now define the generalized F-distribution corresponding to the first given sub-case as follows

$$
\begin{equation*}
F\left(x, m, k, i b, \frac{1}{2}, \frac{1}{2}\right)=F_{1}(x, m, k, b)=B x^{\frac{k}{2}-1}\left(1+\frac{k}{m} x\right)^{-\left(\frac{m+k}{2}\right)} \cos \left(b \arctan \sqrt{\frac{k}{m} x}\right) \quad(-1 \leq b \leq 1) \tag{40}
\end{equation*}
$$

where

$$
\begin{align*}
\frac{1}{B} & =\int_{0}^{\infty} x^{\frac{k}{2}-1}\left(1+\frac{k}{m} x\right)^{-\left(\frac{m+k}{2}\right)} \cos \left(b \arctan \sqrt{\frac{k}{m}} x\right) d x \tag{40.1}\\
& =2\left(\frac{m}{k}\right)^{k / 2} \int_{0}^{\pi / 2} \sin ^{(k-1)} \theta \cos ^{(m-1)} \theta \cos (b \theta) d \theta
\end{align*}
$$

Theorem 3. $\mathrm{F}_{1}(x, m, k, b)$ converges to the chi-square distribution as $m \rightarrow \infty$.
Proof. We define the sequence $S_{m}^{(4)}(x, k, q)=x^{\frac{k}{2-1}}\left(1+\frac{k}{m} x\right)^{-\left(\frac{m+k}{2}\right)} \cos \left(b \arctan \sqrt{\frac{k}{m} x}\right)$ to get

$$
\begin{equation*}
\left|S_{m}^{(4)}(x, k, b)\right| \leq x^{\frac{k}{2}-1} \quad(x \in[0, \infty), \quad k \in \mathbb{N},|b|<1) . \tag{41}
\end{equation*}
$$

Hence, according to DCT we find out that

It is not difficult to verify that the generalized distributions $T_{S}(t, m, b)$ and $F_{1}(x, m, k, b)$ are related with each other as follows

$$
\begin{equation*}
F_{1}\left(t^{2}, m, 1, b\right)=T_{S}(t, m, b) . \tag{43}
\end{equation*}
$$

Remark 2: Here is a good position to mention that in [4] a class of orthogonal polynomials is studied, whose weight function [3] corresponds to the ordinary t-distribution. The related polynomials are defined as

$$
\begin{equation*}
I_{n}^{(p)}(x)=n!\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{p-1}{n-k}\binom{n-k}{k}(2 x)^{n-2 k} . \tag{44}
\end{equation*}
$$

and satisfy the orthogonality relation

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(1+x^{2}\right)^{-\left(p-\frac{1}{2}\right)} I_{n}^{(p)}(x) I_{m}^{(p)}(x) d x=\left(\frac{n!2^{2 n-1} \sqrt{\pi} \Gamma^{2}(p) \Gamma(2 p-2 n)}{(p-n-1) \Gamma(p-n) \Gamma(p-n+1 / 2) \Gamma(2 p-n-1)}\right) \delta_{n, m} \tag{44.1}
\end{equation*}
$$

where $m, n=0,1,2, \ldots, N<p-1$ and $\delta_{n, m}=\left\{\begin{array}{lll}0 & \text { if } & n \neq m \\ 1 & \text { if } & n=m\end{array}\right.$.

For $n=m=0$ in (44.1) an integral is derived that corresponds to the t-distribution. Furthermore, the mentioned comment holds for the F-distribution. In [4], a sequence of orthogonal polynomials is studied which is defined by

$$
\begin{equation*}
M_{n}^{(p, q)}(x)=(-1)^{n} n!\sum_{k=0}^{n}\binom{p-(n+1)}{k}\binom{q+n}{n-k}(-x)^{k}, \tag{45}
\end{equation*}
$$

and satisfies the orthogonality relation

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{q}}{(1+x)^{p+q}} M_{n}^{(p, q)}(x) M_{m}^{(p, q)}(x) d x=\left(\frac{n!(p-(n+1))!(q+n)!}{(p-(2 n+1))(p+q-(n+1))!}\right) \delta_{n, m} \tag{46}
\end{equation*}
$$

where $m, n=0,1,2, \ldots, N<\frac{p-1}{2}, q>-1$.
Clearly the weight function of integral (46) corresponds to the usual F-distribution in the case $n=m=0$.

3.2. An asymmetric generalization of the \boldsymbol{t}-distribution, the case $\lambda_{2}=0$

From the orthogonality relations (44.1) and (46) it can be concluded that the category of Pearson distributions should have a related class of orthogonal polynomials. In [5], a class of orthogonal polynomials is studied, whose weight function is a specific case of (2) and is represented by

$$
\begin{equation*}
W_{n}^{(p, q)}(x ; a, b, c, d)=\left((a x+b)^{2}+(c x+d)^{2}\right)^{-p} \exp \left(q \arctan \frac{a x+b}{c x+d}\right) \quad(-\infty<x<\infty), \tag{47}
\end{equation*}
$$

where a, b, c, d, p, q are all real parameters. This function is a sub-case of the Pearson distribution (2), because the logarithmic derivative of (47) is a rational function. Hence, (47) is a special case of the Pearson distribution family. For convenience, we chose a particular subcase of (47) in [5] to generalize the usual t-distribution.

If $a=\frac{1}{\sqrt{m}}, b=0, \quad c=0, \quad d=1$ and $p=-\frac{m+1}{2} \quad(m \in \mathbb{N})$ is selected in (47) one gets

$$
\begin{equation*}
W^{-\left(-\frac{m+1}{2}, q\right)}\left(t ; \frac{1}{\sqrt{m}}, 0,0,1\right)=\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right) \quad(m \in \mathbb{N}, \quad q \in \mathbb{R}) . \tag{48}
\end{equation*}
$$

Since

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right) d t=\sqrt{m} \int_{-\pi / 2}^{\pi / 2} e^{q \theta} \cos ^{(m-1)} \theta d \theta \tag{49}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{-\pi / 2}^{\pi / 2} e^{q \theta} \cos ^{(m-1)} \theta d \theta=\frac{(m-1)!\left(q-\left(\frac{1+(-1)^{m}}{2}\right)(q-1)\right)\left(e^{\frac{q \pi}{2}}+(-1)^{m} e^{\frac{-q \pi}{2}}\right)}{\prod_{k=0}^{\lfloor(m-1) / 2\rfloor}\left(q^{2}+(m-2 k-1)^{2}\right)}, \tag{50}
\end{equation*}
$$

hence an asymmetric generalization of the t-distribution may be defined as

$$
\begin{equation*}
T_{A}(t, m, q)=K \quad\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right) \quad(-\infty<t<\infty, \quad m \in \mathbb{N}, \quad q \in \mathbb{R}) \tag{51}
\end{equation*}
$$

such that

$$
\begin{equation*}
K=\frac{\prod_{k=0}^{\lfloor(m-1) / 2\rfloor}\left(q^{2}+(m-2 k-1)^{2}\right)}{\sqrt{m}(m-1)!\left(q-\left(\frac{1+(-1)^{m}}{2}\right)(q-1)\right)\left(e^{\frac{q \pi}{2}}+(-1)^{m} e^{\frac{-q \pi}{2}}\right)} . \tag{51.1}
\end{equation*}
$$

The distribution (51) with normalization constant given by (51.1) was defined in [5] based on this particular approach. But here we can modify and simplify it. For this task, we set $\lambda_{2}=0$ in (12), and get

$$
\begin{equation*}
T_{A}(t, m, q)=\frac{\Gamma\left(\frac{1+m+i q}{2}\right) \Gamma\left(\frac{1+m-i q}{2}\right)}{\sqrt{m} 2^{1-m} \Gamma(m) \pi}\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)} \exp \left(q \arctan \frac{t}{\sqrt{m}}\right) . \tag{52}
\end{equation*}
$$

This is in fact an explicit representation of the asymmetric generalization of the t-distribution. For this distribution, we clearly have

$$
\begin{equation*}
T_{A}(-t, m, q)=T_{A}(t, m,-q) . \tag{52.1}
\end{equation*}
$$

The asymmetry is also shown by Fig. 3 and 4.

Figure 3: $q=1, \quad m=4$

Figure 4: $q=1, m=3$

According to (51) and (51.1), the explicit definitions of the two mentioned figures have respectively the forms

Fig. 3: $T_{A}(t, 4,1)=\frac{5}{6 \cosh (\pi / 2)}\left(1+\frac{t^{2}}{4}\right)^{\frac{-5}{2}} e^{\arctan \frac{t}{2}}$
Fig. 4: $T_{A}(t, 3,1)=\frac{5 \sqrt{3}}{12 \sinh (\pi / 2)}\left(1+\frac{t^{2}}{3}\right)^{-2} e^{\arctan \frac{t}{\sqrt{3}}}$
The following statements (A1 to A5) collect the properties of the asymmetric distribution (52).

A1) The expected value and variance of (52) are respectively represented by

$$
\begin{equation*}
E[t]=\frac{q \sqrt{m}}{m-1} \quad, \quad \operatorname{Var}[t]=\frac{m\left(q^{2}+(m-1)^{2}\right)}{(m-2)(m-1)^{2}}, \tag{53}
\end{equation*}
$$

$q=0$ in these relations gives the expected value and variance of the t-distribution.
A2) $T_{A}(t, m, q)$ converges to $N(t, 0,1)$ as $m \rightarrow \infty$.
The proof is similar to the first case if one chooses $\lambda_{2}=0$ and $\lambda_{1}=1$ in the defined sequence $S_{m}^{(1)}\left(t, q, \lambda_{1}, \lambda_{2}\right)$.

A3) By the definition (26) and considering the case $\lambda_{2}=0$ we can define

$$
\begin{gather*}
F\left(x, m, k, q, \lambda_{1}, 0\right)=F_{2}(x, m, k, q)=D \quad x^{\frac{k}{2}-1}\left(1+\frac{k}{m} x\right)^{-\left(\frac{m+k}{2}\right)} \exp \left(q \arctan \sqrt{\left.\frac{k}{m} x\right)}\right. \tag{54}\\
(q \in \mathbb{R}, \quad m, k \in \mathbb{N}, \quad 0<x<\infty),
\end{gather*}
$$

where
$\frac{1}{D}=\int_{0}^{\infty} x^{\frac{k}{2}-1}\left(1+\frac{k}{m} x\right)^{-\left(\frac{m+k}{2}\right)} \exp \left(q \arctan \sqrt{\frac{k}{m}} x\right) \quad d x=2\left(\frac{m}{k}\right)^{k / 2} \int_{0}^{\pi / 2} \sin ^{(k-1)} \theta \cos ^{(m-1)} \theta e^{q \theta} d \theta$.
A4) $F_{2}(x, m, k, q)$ converges to the chi-square distribution as $m \rightarrow \infty$.
The proof is similar to the proof of Theorem 1 when $\lambda_{2}=0$ and $\lambda_{1}=1$.
A5) The distributions $F_{2}(x, m, k, q)$ and $T_{A}(t, m, q)$ are related to each other by

$$
\begin{equation*}
F_{2}\left(t^{2}, m, 1, q\right)=T_{A}(t, m, q) . \tag{55}
\end{equation*}
$$

Remark 3: There is another symmetric generalization of the t-distribution when we set $\lambda_{1}=\lambda_{2}$ in (12). Its pdf is given as
$T\left(-t, m, q, \lambda_{1}, \lambda_{1}\right)=T\left(t, m, q, \lambda_{1}, \lambda_{1}\right)=\frac{\Gamma\left(\frac{1+m+i q}{2}\right) \Gamma\left(\frac{1+m-i q}{2}\right)}{\sqrt{m} 2^{1-m} \Gamma(m) \pi}\left(1+\frac{t^{2}}{m}\right)^{-\left(\frac{m+1}{2}\right)} \cosh \left(q \arctan \frac{t}{\sqrt{m}}\right)$.
Therefore, to summarize the last section we in fact considered the three following particular sub-cases of the general distribution (12),
a) $q=i b$ and $\lambda_{1}=\lambda_{2}=1 / 2$; symmetric case
b) $\quad \lambda_{2}=0$; asymmetric case
c) $\quad \lambda_{1}=\lambda_{2} ;$ symmetric case

References

[1] Arfken, G., 1985, Mathematical Methods for Physicists. (New York: Academic Press)
[2] de Barra, G., 1981, Measure Theory and Integration. (New York: Ellis Horwood)
[3] Chihara, S. A., 1978, An Introduction to Orthogonal Polynomials. (New York: Gordon and Breach)
[4] Masjed-Jamei, M., 2002, Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation, J. Integral Transforms and Special Functions, 13, 169-190.
[5] Masjed-Jamei, M., 2004, Classical orthogonal polynomials with weight function $\left((a x+b)^{2}+(c x+d)^{2}\right)^{-p} \exp \left(q \arctan \frac{a x+b}{c x+d}\right) ; x \in(-\infty, \infty) \quad$ and a generalization of T and F distributions, J. Integral Transforms and Special Functions, 15, 137-153.
[6] Nikiforov, A. F. and Uvarov, V. B., 1988, Special Functions of Mathematical Physics (Basel-Boston: Birkhäuser)
[7] Press, W. H., Flannery, B. P., Teukolsky S. A. and Vetterling, W. T., 1992, Beta Function, T Student distribution and F-Distribution. In: Numerical Recipes in Fortran: The Art of Scientific Computing. (Cambridge: Cambridge University Press), Second edition, Section 6.2, 219223
[8] Student, 1908, The probable error of a mean. Biometrika, 6, 1-25
[9] Walpole, R. E. and Freund, J. E., 1980, Mathematical Statistics. (Englewood Cliffs, NJ: Prentice Hall)

[^0]: ${ }^{1}$ E-mail: koepf@mathematik.uni-kassel.de
 ${ }^{2}$ E-mail: mmjamei@yahoo.com

