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Student’s t-distribution has found various applications in mathematical statistics. One of the main proper-
ties of the t-distribution is to converge to the normal distribution as the number of samples tends to infin-
ity. In this paper, by using a Cauchy integral we introduce a generalization of the t-distribution function 
with four free parameters and show that it converges to the normal distribution again. We provide a com-
prehensive treatment of mathematical properties of this new distribution. Moreover, since the Fisher F-
distribution has a close relationship with the t-distribution, we also introduce a generalization of the F-
distribution and prove that it converges to the chi-square distribution as the number of samples tends to 
infinity. Finally some particular sub-cases of these distributions are considered.   
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1. Introduction 
Let us start our discussion with the Pearson differential equation  
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which is intimately connected with classical orthogonal polynomials and defines their weight 
functions ( )W x , see e.g. [6], and its solution 
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where edcba ,,,,  are all real parameters. There are several special sub-cases of (2). One of 
them is the Beta distribution, which is usually represented by the integral [7] 
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where 1( )L t  and 2 ( )L t  are linear functions, ba ,  are complex numbers and C  is an appropri-
ate contour. The Euler and Cauchy integrals [1] are two important sub-classes of Beta type 
integrals which are often used in applied mathematics. The Euler integral is given by 
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while the Cauchy integral is represented by the formula 
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in which 1 , Re( ) 1 , Re 0i c d a= − + > >  and Re 0b > . Note that in both relations (4) 

and (5) ∫
∞

−−=Γ
0

1)( dxexa xa  denotes the Gamma function.  

The relation (5) is a suitable tool to compute some different looking definite integrals. For this 
purpose, we use the relation 
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which rewrites the complex left hand side in terms of the real right hand side. Consequently 
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Now if (7) is substituted, then the integral (5) changes towards 
 

                          2 2 2 11 ( 2 1)( ) exp(2 arctan ) (2 )
2 ( ) ( )

p pt pb t q dt b
b p iq p iqπ

∞
+

−∞

Γ − −
+ =

Γ − + Γ − −∫ .            (8) 

 
The above integral plays a key role to introduce a generalization of the t-distribution. 
 
2. A generalization of the t-distribution 
The Student t-distribution [8,9]  having the probability density function (pdf) 
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is perhaps one of the most important distributions in the sampling problems of normal popula-
tions. According to a theorem in mathematical statistics, if X  and 2S  are respectively the 
mean value and variance of a stochastic sample with the size m  of a normal population hav-

ing the expected value μ  and variance 2σ , then the random variable 
/

XT
S m

μ−
=  has the 

probability density function (9) with )1( −m  degrees of freedom  [9]. This theorem is used in 
the test of hypotheses and interval estimation theory when the size of the sample is small, for 
instance less than 30.  
Now, by using (8) one can extend the pdf of the t-distribution. To meet this goal, we substi-

tute  
1, 1 ,

2
t mt b p
m

+
→ = = −  and 

2
qq →  in (8). This yields 
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Since the right hand side of (10) is an even function with respect to the variable q , we take a 
linear combination and get accordingly 
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Therefore, the above integral can be used to generalize (9) by  
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where , ,t m−∞ < < ∞ ∈N q  is a complex number and 1 2, 0λ λ ≥ .  
Note that 0, 21 ≥λλ  is a necessary condition, because the probability density function must 
always be positive. Also note that the normalization constant  
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of (12) is real, because the corresponding integrand is a real function on ),( ∞−∞ . It is clear 
that for 0=q  in (12) the usual t-distribution is derived. Moreover, for 0=q  the normaliza-
tion constant of distribution (12) is equal to the normalization constant of the t-distribution. 
This fact can be proved by applying Legendre’s duplication formula [1], i.e. 
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But, according to one of the basic theorems in sampling theory, ),( mtT converges to the pdf 
of the standard normal distribution )1,0,(tN  as ∞→m [7,9], that is 
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Here we intend to show that this matter is also valid for the generalized distribution 
),,,,( 21 λλqmtT . To prove this claim, we use the dominated convergence theorem (DCT) [2] 

to the real sequence of functions 
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For every m ∈N  it is not difficult to see that 
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Since the dominated convergence theorem states that if for a continuous and integrable func-
tion )(xg  we have | ( ) | ( )mf x g x≤ , then  
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considering the limit relation (17) we obtain     
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Remark 1. Taking the limit on both sides of (11) as ∞→m , the following asymptotic rela-
tion is obtained for the Gamma function  
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To compute the expected value of the distribution given by the pdf (12) it is sufficient to con-
sider the definite integral 
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which gives the expected value of (12) as 
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On the other hand, since 2 [1 / ]E T m+  can be easily computed, after some calculations, we 
get for the variance measure of (12) 
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It is valuable to point out that as expected 0=q  in (22) and (23) gives the expected value and 
variance of the usual t-distribution, respectively.  
It is known that the t-distribution has a close relationship with the Fisher F-distribution [6], 
defined by its pdf 
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where 2x t= and 1k =  in (24). In other words we have  
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By referring to the above relation and the fact that the t-distribution was generalized by rela-
tion (12), it is now natural to generalize the pdf of the F-distribution (24) as follows                                            
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For 0=q , (26) is the usual F-distribution defined in (24). 
According to the following theorem, the generalized function (26) converges to a special case 
of the Gamma distribution [9], defined by 
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Theorem 1. If the Gamma distribution is given by (27), then we have 
 

2
1 2lim ( , , , , , ) ( , , 2)

2 km

kF x m k q G xλ λ α β χ
→∞

= = = =  

 
where 2

kχ denotes the pdf of the chi-square distribution.  
 
Proof. Let us define the sequence 
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Moreover, it is not difficult to show that  
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3. Some particular sub-cases of the generalized t (and F) distribution 
In this section, we are going to study some symmetric and asymmetric sub-cases of the gener-
alized distributions (12) and (26). 
 
3.1. A symmetric generalization of the t-distribution, the case q ib=  and 1 2 1/ 2λ λ= =  
If the special case 1 2and 1/ 2q ib λ λ= = =  is considered in (12), then 
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is a symmetric generalization of the ordinary t-distribution in which 11 ≤≤− b .  
The usual pdf of the t-distribution is obviously derived by 0=b  in (32). Note that according 
to the Legendre duplication formula we reach the normalization constant of the t-distribution 
if 0=b  is considered in (32). In other words, we have  
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Also note that the parameter b in the generalized distribution (32) must belong to [-1,1], be-
cause the probability density function must always be positive and therefore we ought to have 
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                   Figure 1: 4,2/1 == mb                                     Figure 2: 4,3 == mb  
 
Fig. 1 shows the pdf )2/1,4,(tTS  with normalization constant 128/235  and Fig. 2 shows 
the non-positive function ( , 4,3)ST t =  2 5/ 2(4 / )(1 / 4) cos(3arctan( / 2))t tπ −+  in the interval 
( 10,10).−  As the above figures show, the generalized distribution (32) is symmetric, i.e. 
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Moreover, according to (22) and (23) the expected value and variance of distribution (32) take 
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By referring to (26), we can now define the generalized F-distribution corresponding to the 
first given sub-case as follows                                                                                                                 
 

1 ( )
2 2

1
1 1( , , , , , ) ( , , , ) (1 ) cos( arctan )  ( 1 1)
2 2

k m kk kF x m k ib F x m k b Bx x b x b
m m

+
− −

= = + − ≤ ≤  (40) 

where 

                                     

1 ( )
2 2

0
/ 2

/ 2 ( 1) ( 1)

0

1 (1 ) cos( arctan ) 

   2( ) sin cos cos( )  .

k m k

k k m

k kx x b x dx
B m m

m b d
k

π

θ θ θ θ

∞ +
− −

− −

= +

=

∫

∫
                          (40.1) 

 
Theorem 3. ),,,(F1 bkmx  converges to the chi-square distribution as ∞→m .                                                    
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It is not difficult to verify that the generalized distributions ),,( bmtTS  and ),,,(1 bkmxF  are 
related with each other as follows 
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For 0== mn  in (44.1) an integral is derived that corresponds to the t-distribution. Further-
more, the mentioned comment holds for the F-distribution. In [4], a sequence of orthogonal 
polynomials is studied which is defined by 
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2
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Clearly the weight function of integral (46) corresponds to the usual F-distribution in the case 

0== mn . 
 
3.2. An asymmetric generalization of the t-distribution, the case 02 =λ   
From the orthogonality relations (44.1) and (46) it can be concluded that the category of Pear-
son distributions should have a related class of orthogonal polynomials. In [5], a class of or-
thogonal polynomials is studied, whose weight function is a specific case of  (2) and is repre-
sented by 
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where a, b, c, d, p, q are all real parameters. This function is a sub-case of the Pearson distri-
bution (2), because the logarithmic derivative of (47) is a rational function. Hence, (47) is a 
special case of the Pearson distribution family. For convenience, we chose a particular sub-
case of (47) in [5] to generalize the usual t-distribution.  
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m q q e e
e d

q m k

π π

π
θ

π

θ θ

−

−
−⎢ ⎥⎣ ⎦

−

=

+ −− − − + −
=

+ − −
∫

∏
,           (50) 

 
hence an asymmetric generalization of the t-distribution may be defined as 
 

           
12 ( )

2( , , ) (1 ) exp( arctan ) ( , , )
m

A
t tT t m q K q t m q
m m

+
−

= + −∞ < < ∞ ∈ ∈N R       (51) 

such that 

                           

( 1) / 2
2 2

0

2 2

( ( 2 1) )

1 ( 1)( 1)!( ( )( 1)) ( ( 1) )
2

m

k
q qm

m

q m k
K

m m q q e e
π π

−⎢ ⎥⎣ ⎦

=
−

+ − −
=

+ −− − − + −

∏
.                     (51.1) 

 
The distribution (51) with normalization constant given by (51.1) was defined in [5] based on 
this particular approach. But here we can modify and simplify it. For this task, we set 02 =λ  
in (12), and get 

                   
12 ( )

2
1

1 1( ) ( )
2 2( , , ) (1 ) exp( arctan ) .

2 ( )

m

A m

m iq m iq
t tT t m q q
mm m mπ

+
−

−

+ + + −
Γ Γ

= +
Γ

              (52)   

 
This is in fact an explicit representation of the asymmetric generalization of the t-distribution. 
For this distribution, we clearly have  
                                                           ( , , ) ( , , ) .A AT t m q T t m q− = −                                        (52.1) 
 
The asymmetry is also shown by Fig. 3 and 4.  

          
                      Figure 3: 4,1 == mq                                      Figure 4: 3,1 == mq  
 
According to (51) and (51.1), the explicit definitions of the two mentioned figures have re-
spectively the forms 
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Fig. 3:  
52 arctan

2 25( , 4,1) (1 )
6 cosh( / 2) 4

t

A
tT t e

π

−

= +  

Fig. 4:  
2 arctan

2 35 3( ,3,1) (1 )
12 sinh( / 2) 3

t

A
tT t e

π
−= +  

 
The following statements (A1 to A5) collect the properties of the asymmetric distribution 
(52). 
 
A1) The expected value and variance of (52) are respectively represented by 
 

                          2

22

)1)(2(
))1((][,

1
][

−−
−+

=
−

=
mm
mqmtVar

m
mqtE ,                                    (53) 

 
0=q  in these relations gives the expected value and variance of the t-distribution. 

 
A2) ),,( qmtTA  converges to )1,0,(tN  as ∞→m . 
 
The proof is similar to the first case if one chooses 02 =λ  and 11 =λ  in the defined sequence 

),,,( 21
)1( λλqtSm . 

 
A3) By the definition (26) and considering the case 02 =λ  we can define 
                                                                                                                                             

       
1 ( )

2 2
1 2( , , , , ,0) ( , , , ) (1 ) exp( arctan )

( , , , 0 ) ,

k m kk kF x m k q F x m k q D x x q x
m m

q m k x

λ
+

− −
= = +

∈ ∈ < < ∞R N
          (54) 

where                                                                                                                             
 

/ 2
1 ( ) / 2 ( 1) ( 1)2 2

0 0

1 (1 ) exp( arctan ) 2( ) sin cos
k m k

k k m qk k mx x q x dx e d
D m m k

π
θθ θ θ

∞ +
− − − −= + =∫ ∫ .  (54.1)      

 
A4) ),,,(2 qkmxF  converges to the chi-square distribution as ∞→m . 
 
The proof is similar to the proof of Theorem 1 when 02 =λ  and 11 =λ . 
 
A5) The distributions ),,,(2 qkmxF  and ),,( qmtTA are related to each other by 
 
                                             ),,(),1,,( 2

2 qmtTqmtF A= .                                                        (55) 
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Remark 3: There is another symmetric generalization of the t-distribution when we set 
21 λλ =  in (12). Its pdf  is given as 

                                                                                                                                                 

12 ( )
2

1 1 1 1 1

1 1( ) ( )
2 2( , , , , ) ( , , , , ) (1 ) cosh( arctan ) .

2 ( )

m

m

m iq m iq
t tT t m q T t m q q
mm m m

λ λ λ λ
π

+
−

−

+ + + −
Γ Γ

− = = +
Γ

 (56) 

 
Therefore, to summarize the last section we in fact considered the three following particular 
sub-cases of the general distribution (12), 
 
                                     a)          1 2 1/ 2 ;q ib and symmetric caseλ λ= = =    
                                     b)          2 0 ; asymmetric caseλ =  
                                     c)          1 2 ; symmetric caseλ λ=  
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