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ABSTRACT. A finitely generated group is called a Church-Rosser group (growing context-
sensitive group) if it admits a finitely generated presentation for which the word prob-
lem is a Church-Rosser (growing context-sensitive) language. Although the Church-
Rosser languages are incomparable to the context-free languages under set inclusion,
they strictly contain the class of deterministic context-free languages. As each context-
free group language is actually deterministic context-free, it follows that all context-free
groups are Church-Rosser groups. As the free abelian group of rank 2 is a non-context-
free Church-Rosser group, this inclusion is proper. On the other hand, we show that
there are co-context-free groups that are not growing context-sensitive. Also some closure
and non-closure properties are established for the classes of Church-Rosser and growing
context-sensitive groups. More generally, we also establish some new characterizations
and closure properties for the classes of Church-Rosser and growing context-sensitive
languages.

1. INTRODUCTION

Let (3; R) be a presentation of a group G, that is, 3 is a finite set of generators and
R C ¥* is a set of defining relators, where ¥ is a set of formal inverses that is in one-to-one
correspondence to ¥, and ¥ = Y UX. With this presentation we can associate the language
WP(G, Y), which consists of all words over ¥ that represent the identity element of the
group G. Accordingly, this language is known as the word problem of G with respect to
the generating set . As WP(G, X)) is a formal language in the sense of formal language
theory, it is quite natural to classify group presentations (and groups) with respect to the
form of this language. If L is a class of languages that is closed under inverse morphisms,
then the word problem WP(G, X) belongs to L if and only if WP(G,X') belongs to L,
that is, this property is independent of the chosen finite generating set.

It is known that the word problem of a finitely generated group is a regular language if
and only if this group is finite [1]. Further, it has been established that the word problem
of a finitely generated group is context-free if and only if this group is a finitely generated
virtually free group [8, 15].

Here we are interested in groups for which the word problem is a Church-Rosser lan-
guage [14] or a growing context-sensitive language [7]. It is known that the class CRL of
Church-Rosser languages and the class CFL of context-free languages are incomparable
under set inclusion [6]. Further, CRL can be seen as the deterministic variant of the class
GCSL of growing context-sensitive languages [16, 17], which in turn contains CFL prop-
erly. A finitely generated group G is called Church-Rosser (growing context-sensitive),
if G admits a finitely generated presentation for which the word problem is a Church-
Rosser (growing context-sensitive) language. As these language classes are closed under
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inverse morphisms, these properties do not depend on the choice of the finitely generated
presentation, that is, they are actually properties of groups.

It is known that the word problem of a finitely generated group is in fact determin-
istic context-free, if it is context-free (see, e.g., [2]). As CRL contains the class DCFL of
deterministic context-free languages [14], we see that we have the following sequence of
inclusions, where CFG, CRG, and GCSG denote the classes of finitely generated groups that
are context-free, Church-Rosser, or growing context-sensitive, respectively:

CFG C CRG C GCSG.

A finitely generated group G is called co-context-free [11], if G admits a finitely gen-
erated presentation (3; R) for which the complement of the word problem, that is, the
set co-WP(G, Y) := ¥* ~ WP(G, ), is context-free, and analogously, we obtain the co-
Church-Rosser groups and the co-growing context-sensitive groups. Again these properties
are independent of the chosen finitely generated presentation. The corresponding classes
of groups are denoted by co-CFG, co-CRG, and co-GCSG, respectively. However, as CRL is
closed under complement, we see that co-CRG = CRG holds. Thus, we have the inclusions

CRG C GCSG N co-GCSG and co-CFG C co-GCSG.

Here we are concerned with the problem of which of the above inclusions are proper.
As the membership problem for each growing context-sensitive language can be solved
in polynomial time, the word problem for each (co-)growing context-sensitive group is
solvable in polynomial time. Are there other interesting decision problems that can be
solved efficiently, that is in polynomial time, for these groups?

This paper is structured as follows. In Section 2 we restate in short the definitions of
the Church-Rosser and the growing context-sensitive languages, and we describe charac-
terizations of these language classes in terms of a particular machine model. Further, some
new closure properties of these language classes are stated. In Section 3 Goodman’s and
Shapiro’s notions of generalized Dehn algorithms are described, and it is shown that these
algorithms can be interpreted as descriptions of special types of Church-Rosser languages.
Finally, in Section 4 we introduce the necessary notions on groups, and in Sections 5
and 6 we present our results on Church-Rosser groups, growing context-sensitive groups
and co-growing context-sensitive groups. The paper closes with a discussion of various
open problems.

2. CHURCH-ROSSER LANGUAGES AND GROWING CONTEXT-SENSITIVE LANGUAGES

Let ¥ be a finite alphabet. Then ¥* denotes the set of strings over ¥ including the
empty string &, and X7 := ¥*\ {e}. A function ¢ : ¥ — N is called a weight-function. Its
extension to X*, which we will also denote by ¢, is defined inductively through ¢(g) := 0
and p(wa) := p(w) + p(a) for all w € ¥* and a € ¥. A particular weight-function is the
length-function | .| : ¥ — N, , which assigns each letter the weight (length) 1.

A string-rewriting system R on X is a subset of ¥* x ¥*. An element (¢,7) € R is called
a rewrite rule or simply a rule, and it will usually be written as (¢ — r). In this paper we
will only be dealing with finite string-rewriting systems.

The string-rewriting system R induces several binary relations on >*, the simplest of
which is the single-step reduction relation — g:= {(wlv,urv) | u,v € ¥*,({ — r) € R}.
Its reflexive and transitive closure is the reduction relation —7% induced by R, and its
reflexive, symmetric, and transitive closure <% is the Thue congruence generated by R.
If w =% v, then w is an ancestor of v, and v is a descendant of u. By A% (u) we denote
the set of all descendants of u, and for a set S C X*, AL(S) = U,cg A%(u). If there is
no v € ¥* such that u —pr v holds, then the string u is called irreducible (mod R). By
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IRR(R) we denote the set of all irreducible strings. If R is finite, then IRR(R) is obviously
a regular language. The string-rewriting system R is called
— length-reducing if |¢| > |r| holds for each rule (¢{ — r) € R,
— weight-reducing if there exists a weight-function ¢ such that ¢(¢) > ¢(r) holds for
each rule (¢ — r) € R,
— confluent if, for all u,v,w € ¥*, u —% v and u —% w imply that v and w have a
common descendant.

If a string-rewriting system R is weight-reducing, then reduction sequences mod R are
linearly bounded in length, that is, if wg —r w1 —g -+ —Rr Wy, then m < p(wg). If,
in addition, R is confluent, then each string w € ¥* has a unique irreducible descendant
w € IRR(R). Actually, in this situation v <% v if and only if & = 0. Since 4 can be
determined from u in linear time, this shows that the Thue congruence <7 is decidable
in linear time for each finite, weight-reducing, and confluent string-rewriting system.

Definition 2.1. A language L C ¥* is a Church-Rosser language (CRL) if there exist an
alphabet T'properly containing X, a finite, length-reducing, and confluent string-rewriting
system R on T', two strings t1,te € (I' N X)* NIRR(R), and a letter Y € (I' < X) NIRR(R)
such that, for all w € ¥*, tywty =% Y if and only if w € L.

Instead of using length-reducing string-rewriting systems, one can also use weight-
reducing string-rewriting systems in the definition above [17]. By CRL we denote the
class of Church-Rosser languages.

Definition 2.2. A language L C ¥* is growing context-sensitive if it is generated by a
phrase-structure grammar G = (N, %, S, P) that satisfies the following restrictions:

(1) The initial nonterminal S does not occur on the right-hand side of any production
of G.
(2) For each production (¢,r) € P, if £ # S, then |€] < |r|.

As shown in [7], the membership problem for a growing context-sensitive language is
solvable in deterministic polynomial time. By GCSL we denote the class of growing context-
sensitive languages. It is shown in [5] that GCSL is an abstract family of languages, that
is, it is closed under union, product, Kleene plus, intersection with regular languages,
inverse morphisms, and e-free morphisms. However, the class GCSL is not closed under
projections or complement.

Next we introduce a machine model that yields characterizations for the language classes
CRL and GCSL.

Definition 2.3. A two-pushdown automaton (TPDA) with pushdown windows of size k
is a nondeterministic automaton with two pushdown stores. Formally, it is defined as a
9-tuple M = (Q, 2,1, 9, qo, L, t1,t2, F'), where
— @ is a finite set of states,
— X is a finite input alphabet,
— T is a finite tape alphabet withT 2 X and TNQ = 0,
— qo € Q s an initial state,
— L e I' \ X is the bottom marker of the pushdown stores,
t1,to € (I' N X)* are preassigned contents of the left/right pushdown store, respec-
tively,
— F CQ is a set of final (or halting) states, and
—5:Qx TsFx I‘Ek — Ppin(Q x I X T'*) is a transition relation, where TSR =
TRU{Lu|lul <k -1}, TTF:=TFU{vLl||v] <k—1}, and P (Q x * x I'*)
denotes the set of finite subsets of QQ x I'* x I'*.
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The automaton M is a deterministic two-pushdown automaton (DTPDA), if § is a (partial)
function from Q x | T=F x I‘Ek into Q x I' x I'*.

A configuration of a (D)TPDA is described as uqu, where ¢ € @ is the actual state,
u € I'* is the contents of the first pushdown store with the first letter of u at the bottom,
and v € I'* is the contents of the second pushdown store with the first letter of v at the
top. For an input string w € X*, the corresponding initial configuration is Ltjqowts L.
The (D)TPDA M induces a computation relation -}, on the set of configurations, which
is the reflexive transitive closure of the single-step computation relation s (see, e.g.,
[12]). The (D)TPDA M accepts with empty pushdown stores, that is, the language N (M)
accepted by M is defined as N(M) := {w € ¥* | Ltigowta L 3}, ¢ for some ¢ € F' }.

Definition 2.4. A (D)TPDA is shrinking if there exists a weight function ¢ : QUT — N
such that, for all ¢ € Q, v € | T<F, and v € FJS_k, (p,u/,v") € §(q,u,v) implies that
e(u'pv’) < @(uqu). By sTPDA and sDTPDA we denote the corresponding classes of
shrinking automata.

A (D)TPDA is length-reducing if, for all g € Q, u € | T=F, and v € ka, (p,u',0") €
5(q,u,v) implies |u'v'| < |uv|. We denote the corresponding classes of length-reducing
automata by IrTPDA and IrDTPDA, respectively.

Thus, if M is a shrinking TPDA with weight-function ¢, then p(uiqiv1) > p(u2gave)
holds for all configurations u1qiv1 and uagove of M that satisfy wiqivr Far uegove. If M is
a length-reducing TPDA, then |ujqiv1| > |u2gave| holds for all configurations w;giv; and
uoqovy of M that satisfy uiqivi Fayr usgove. Obviously, the length-reducing TPDA is a
special case of the shrinking TPDA.

Observe that the input is provided to a TPDA as the initial contents of its second
pushdown store, and that in order to accept a TPDA is required to empty its pushdown
stores. Thus, it is forced to consume its input completely. The main results of [6] and [17]
state the following. Here we use the notation L(A) to denote the class of languages that
are accepted by automata from class A.

Theorem 2.5. (a) CRL = L(IrDTPDA) = L(sDTPDA).
(b) GCSL = L(IFTPDA) = L(sTPDA).

Theorem 2.6.

(a) The class CRL is closed under reversal, intersection with reqular languages, com-
plement, and inverse morphisms.

(b) The class CRL is not closed under union, intersection, product, Kleene plus, or
(e-free) morphisms.

In particular, DCFL ¢ CRL C GCSL, while CRL is incomparable under inclusion to the
class CFL of context-free languages.

Next we observe that the requirement that the string-rewriting system used in specifying
a Church-Rosser language must be confluent can be relaxed somewhat. We say that a
string-rewriting system R on I' is confluent on a set S C I'*, if R is confluent on A%} (),
that is, for all w € AR(S), if w =% v and w —} v, then u and v have a common
descendant mod R.

Theorem 2.7. Let L C ¥* be a language, and suppose that there exist a finite, length-
reducing string-rewriting system R on some alphabet T' properly containing %, two strings

t1,ta € (CNX)*NIRR(R) and a letter Y € ('~ X) NIRR(R) such that

(1) R is confluent on the set t; - L -to; and
(2) w e L if and only if tywty =5 Y.
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Then L is a Church-Rosser language.

Proof. A string-rewriting system R’ is called normalized (or interreduced) if r € IRR(R’)
and ¢ € IRR(R' \ {¢ — r}) hold for each rule ¢ — r of R'. First, we construct from R a
normalized string-rewriting system R’ as follows. If the right-hand side of a production in
R is reducible, then we replace it with one of its irreducible descendants. If two or more
productions in R have the same left-hand side, then we discard (arbitrarily) all but one of
them. If two productions are such that the left-hand side of one is a factor of the left-hand
side of the other, then we discard the one with the longer left-hand side.

Clearly, R’ is length-reducing and normalized, and the reduction relation —7, is con-
tained in the reduction relation of R. Thus, for any word w € I'*, if w —7%, Y, then also
w —% Y holds. Further, a word is reducible mod R’ if and only if it is reducible mod R,
that is, the sets of irreducible words IRR(R’) and IRR(R) coincide. Confluence of R on the
set t1 - L - to ensures that Y is the only irreducible descendant for each word from the set
A%L(ty - L-tp). It follows that, for all w € ¥*, w € L if and only if t;wty —7, Y holds.

The proofs of [6, Theorems 4.5 and 4.6] now show that the language L is accepted by
an sDTPDA. Tt follows by Theorem 2.5 (a) that L is a Church-Rosser language. O

Below we will need some additional closure properties of CRL and GCSL. A generalized
sequential machine (GSM) is a deterministic finite-state automaton that is equipped with
an output. With a GSM A with input alphabet I' and output alphabet €2, we associate
the GSM-mapping ¥4 : I'* — Q* that assigns, to each word w € I'*, the output string
14 (w) that A produces when processing the input w. By w;l we denote the corresponding
inverse mapping.

Proposition 2.8.

(a) The class CRL is closed under union with regular languages.

(b) CRL and GCSL are closed under inverse GSM-mappings.

Proof. (a) Let L be a Church-Rosser language over ¥, and let F be a regular language
over . From a sDTPDA M with weight function ¢ for L we construct a sDTPDA M’
with weight function ¢’ for the language L' := LU E. The machine M’ has the same input
alphabet X as M, but its tape alphabet contains two additional copies S and ¥ of ¥. The
weight function ¢’ is defined by taking ¢'(a) := ¢(a) + 2, ¢'(a) := p(a) + 1, ¢'(a) := p(a)
for all a € ¥ and ¢'(b) := (b) for all non-input symbols of M. On input w € ¥*, M’
shifts w from the right-hand pushdown to the left-hand pushdown, replacing each symbol
a € X by the corresponding symbol a. While doing so it checks whether w € E holds. In
the affirmative, it halts and accepts, otherwise it shifts the string w back to the right-hand
pushdown, replacing each symbol a by the corresponding symbol a. Then it simulates the
computation of M on input w. It follows that L(M') = L', and it is obvious that M’ is
shrinking with respect to the weight function ¢’.

(b) Let L be a Church-Rosser language over X, and let A be a GSM with input alphabet
I" and output alphabet Y. From a sDTPDA M with weight function ¢ for the language
L and the GSM A we construct a sSDTPDA M’ with weight function ¢’ for the language
YiH(L) = {w € T* | Y4(w) € L}. Without loss of generality we can assume that ¥ and T
are disjoint. The machine M’ has input alphabet I', and its tape alphabet is the union of
the tape alphabet of M with the input alphabet I' and a copy S of ¥. The weight function
¢’ assigns to each symbol of the tape alphabet of M the same weight as the function ¢,
to each symbol a € S it assigns the weight ¢(a) + 1, and to each symbol b € T' it assigns
the weight ¢(1a()) + [¢a(b)] + 1.

Given an input w € I'*; M’ replaces w by the string ¢ 4(w) as follows. First it reads
w from the right-hand pushdown, replacing each symbol b € I' by the string u € ok
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corresponding to u := 14(b). Then it shifts the contents of the left-hand pushdown to
the right-hand pushdown, replacing each symbol a by the symbol a € ¥. Now M’ is in
the start configuration of M for input 1 4(w), that is, M’ can now simulate M on this
input. It follows that M’ accepts the language ;' (L), and it is verified easily that M’ is
shrinking with respect to the weight function ¢’.

The proof for GCSL is completely analogous. O

3. GENERALIZED DEHN ALGORITHMS

In [10] Goodman and Shapiro study generalized Dehn algorithms for the word problem
of finitely generated groups. These are reduction algorithms of a special form. As their
definition does not refer to groups at all, we can describe them in general language theoretic
terms. In the following we assume that, for each rewriting system considered, no two rules
have the same left-hand side, that is, each rule is determined by its left-hand side.

Let T" be a finite alphabet, let ¢ and $ be two symbols not in I', let R;, be a finite
string-rewriting system over I', and let Ry C (¢ -I't) X (¢ -I'*) be another finite rewriting
system of prefiz rules. We assume that in the combined system R := R;, U R each rule
is length-reducing. The incremental reduction relation —, . induced by R is the reflexive
transitive closure of the single-step reduction —;,. on ¢ - I'* that is defined as follows:

¢ U —ine ¢ -
if and only if
¢ -u=ualyand ¢ -v=uaxry for some z € ¢ - I'"U{e}, yeT* ({,r) € R
such that |z¢| is minimal, and |¢| is maximal with these properties.

Essentially this reduction relation coincides with the leftmost reductions considered in [3],
the only difference being that here prefix-rules are considered as well. As the left-hand side
uniquely determines the rule according to the assumptions above, the reduction relation
—ine 18 deterministic. Accordingly, we can associate with the system R a function Rj. :
I'* — I'* that associates with a word w € I'* the word w such that ¢ - @ is the unique
irreducible descendant of ¢ -w mod — .. From the definition of — . it follows immediately
that Rjne(uv) = Ripe(Rinc(u)v) holds for all words u,v € I'*.

Definition 3.1. A language L C ¥* admits a generalized Dehn algorithm if there exist
an alphabet I containing ¥ and a rewriting system R over I' of the form described above
such that L = {w € ¥* | Rinc(w) =¢}. By GDL we denote the class of all languages that
admit a generalized Dehn algorithm.

From the incremental property of R;,. we obtain the following property of languages
that admit generalized Dehn algorithms.

Lemma 3.2. Let L C X* admit a generalized Dehn algorithm.

(1) If u,v € L, then also uv € L.

(2) If u,v € L satisfying u = vw, then also w € L.
Proof. Let R be the rewriting system on which the generalized Dehn algorithm for L is
based.
1. By the observation above, Rip.(uv) = Ripe(Rine(u)v) = Rine(v) = ¢, if u,v € L. Hence,
also uv € L.
2. If u = vw, then Rjpc(u) = Ripc(vw) = Rine(Rinc(v)w). As u,v € L, Ripc(u) = e =
Rinc(v), which implies that Rinc(w) = Rine(Rinc(v)w) = Rine(u) = e. Thus, w € L. O

It follows that a non-empty language that admits a generalized Dehn algorithm is nec-
essarily infinite.
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Proposition 3.3. If L admits a generalized Dehn algorithm, then L is a Church-Rosser
language.

Proof. 1t follows immediately from the definition of —;,. that the relation R;,. can be
computed by a DTPDA (see, e.g., the proof of Theorem 2.2.9 (p. 44) of [3]). As each
rule of the system R is length-reducing, the DTPDA can be realized in a weight-reducing
fashion. The result now follows from Theorem 2.5. 0

Theorem 3.4.

(1) There exists an infinite reqular language L, for which there is no generalized Dehn
algorithm.
(2) There ezists a language Lg € GDL that is not context-free.

Proof. 1. The infinite regular language L, := a - b™ does not satisfy the properties of
Lemma 3.2. Hence, L, ¢ GDL.

2. Consider the language Lq := {a®"" ba®"b---a®"*b | n1,ne,...,np > 0,k > 0}. As
L4 is not semilinear, it is not context-free. On the other hand, L; admits a generalized

Dehn algorithm which is specified by the following rewriting system on the alphabet I' :=
{a,b, A}: aab — Ab, AAb — ab, aaA — AA, AAa — aa, ¢Ab — ¢, ¢ab — ¢. O

These results have the following consequences.

Corollary 3.5.

(1) The class of languages GDL that admit a generalized Dehn algorithm is incompa-
rable to REG as well as to CFL.
(2) GDL c CRL.

Goodman and Shapiro also introduce a second variant of generalized Dehn algorithms.
Let Ry, and Ry be as above, let Ry, r C (I'M-$) x (I'*-$) be another finite rewriting system,
and let Ry, C (¢-T'F-8) x (¢ -T*-$) be a forth finite rewriting system. Again we assume
that each rule of the combined system R := R;, U Rye U Rgyp U Ry, is length-reducing.

The non-incremental reduction relation —,,,, induced by R is the reflexive transitive
closure of the single-step reduction —,, on ¢ - I'* - § that is defined as follows:

U —non U
if and only if
u=xly and v = zry for some x € ¢ - I*U{e},yeT* - $U{e}, (¢,r) €R

such that |z| is minimal, and |z/| is maximal with respect to these conditions.

Also this reduction relation is deterministic. Accordingly, we can associate with the
system R a function R, : ' — I'* that associates with a word w € I'* the word w such
that ¢ - @ - $ is the unique irreducible descendant of ¢ - w - $§ mod —,0n.

Definition 3.6. A language L C ¥* admits a non-incremental Dehn algorithm if there
exist an alphabet I' containing X and a rewriting system R over I' of the form described
above such that L = {w € ¥* | Ryon(w) =€ }.

The following result, which is the main result of this section, relates non-incremental
Dehn algorithms to Church-Rosser languages.

Theorem 3.7. A language L admits a non-incremental Dehn algorithm if and only if L
is a Church-Rosser language.

Proof. As in the case of the reduction relation —;,. it is easily seen that the relation — .y,
can be computed by a shrinking DTPDA. Thus, if L admits a non-incremental Dehn
algorithm, then it is a Church-Rosser language.
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Conversely, assume that L C ¥* is a Church-Rosser language. Then there exists a
' DTPDA M = (Q,%,T,0,qo, L,t1,te, F) that accepts the language L. Hence, if a word
w € X* belongs to L, then Lgowl }, gy for some final state gy, and if w does not
belong to L, then Lgowl 3, Lgy for some final state q;. As M cannot execute any
transition steps once a pushdown store is empty, we see that the removal of the bottom
marker from one or both pushdowns must be done in the last step of the corresponding
computation. Accordingly, we can even assume that M has a single final state gy only,
and that M contains certain final transitions that remove bottom markers and enter this
final state. By Lemma 3.4 of [17] we can assume that ¢t; = to = . Further, according
to Lemma 3.2.8 of [16] we can assume that each step of M that does not yet yield a
halting configuration reduces the combined length of the contents of the two pushdowns
by at least 2. In addition, we may assume that the initial state gg is not entered by any
transition of M.

With M we now associate a string-rewriting system Rj;. Let k be a constant such that,
for each word w € L of length exceeding k, M executes at least 3 transition steps. We
take

Ry:={lul -1l |weL,|lw<k}

Next we introduce rules for simulating the DTPDA M in the standard way, using a copy
alphabet T' for describing the contents of the lefthand pushdown, and prolonging those
rules that involve the initial state qq sufficiently to make sure that the left-hand side Lgyu
(u € T'*) of each of these rules has length at least k + 3. The system Ry is finite and
length-reducing. It simulates M until one of the final transitions (see above) becomes
applicable. Further, |¢| > |r| + 2 for each rule of Rjs involving the initial state go. As
Rjys does not have any critical pairs, it is confluent. Finally, for all w € ¥* satisfying
|w| >k, Lgow L —>EM Lagul for some words u,v € I'* and some state ¢ such that in the
configuration luqu Ll a final transition of M is applicable. Now we take

R:=RyURy U {Llu— Llv|(Lgu— Lv)€ Ry}
U {Llagvl — L1 | Lugul Far gy}

Then R is length-reducing and confluent. Further, for all w € ¥*, Lwl —h 11 if
and only if w € L. As R is confluent, and as a word is reducible mod —pg if and only
if it is reducible mod —,.y,, it follows that we can restrict —pr to —,o, in the above
characterization, implying that L = {w € ¥* | Ryon(w) = €}. Thus, L admits a non-
incremental Dehn algorithm. O

4. GROUPS

Let ¥ be a finite alphabet, let ¥ be a set of formal inverses that is in one-to-one
correspondence to ¥, where this correspondence is expressed by the mapping ~ : ¥ — X,
and let X := X UX. A group presentation (¥; R) defines the group G that is given through
the string-rewriting system S(R) := {u — ¢ | v € R} U{aa — ¢,aa — ¢ | a € ¥ }.
Thus, G is isomorphic to the quotient of the free monoid generated by ¥ modulo the Thue
congruence <—>g( R)" For simplicity we will write u =g v for u <—>’§( R) V> and we use 1 for
the group identity (which is obviously presented by ¢).

A group G is called finitely generated if G has a group presentation with a finite gener-
ating set, and G is called finitely presented if it has a finite group presentation. With the
group presentation (3; R) we associate the following languages:

(1) the word problem WP(G,X) :={w e X" |w=g 1}, and
(2) the co-word problem co-WP(G,X) := X* \ WP(G, X).
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A group G is called contezt-free if it admits a finitely generated group presentation such
that the corresponding language WP(G, X)) is context-free, and it is called co-context-free
if it admits a finitely generated group presentation such that co-WP(G,Y) is context-
free. Analogously, context-sensitive and co-context-sensitive groups are defined. By
CFG, co-CFG, and CSG we denote the class of context-free, co-context-free, and context-
sensitive groups, respectively. Observe that WP(G, X)) is context-sensitive if and only if
co-WP(G, ) is, as the class CSL of context-sensitive languages is closed under comple-
ment [13]. Thus, we will not talk about co-context-sensitive groups anymore.

As the classes of context-free and context-sensitive languages are closed under inverse
morphisms, it follows that the properties of being a context-free group, a co-context-
free group, or a context-sensitive group are independent of the chosen finitely generated
presentation. In combination with the results of [8], the main result of [15] shows that a
group is context-free if and only if it is a finitely generated virtually free group. Further, it
turned out that the language WP (G, X)) of a context-free group is in fact an NTS-language,
and so it is a congruential language that is deterministic context-free [2].

Concerning co-context-free groups it has been shown that the class co-CFG is closed
under the operations of passing to finitely generated subgroups, of passing to finite index
overgroups and under finite direct products. Further, a finitely generated nilpotent group,
a Baumslag-Solitar group or a polycyclic group is co-context-free if and only if it is virtually
abelian. Finally, every co-context-free group has a solvable order problem [11]. We see in
particular that the proper inclusion CFG C co-CFG holds.

5. CHURCH-ROSSER GROUPS

A group G is called a Church-Rosser group (growing contezt-sensitive group) if it admits
a finitely generated group presentation such that the corresponding language WP (G, X)
is Church-Rosser (growing context-sensitive). As CRL and GCSL are both closed under
inverse morphisms, the properties of being Church-Rosser and of being growing context-
sensitive are independent of the chosen finitely generated presentation. By GCSG and CRG
we denote the corresponding classes of groups. A group G is co-Church-Rosser (co-growing
context-sensitive) if it admits a finitely generated presentation such that the language
co-WP(G,X) is Church-Rosser (growing context-sensitive). Again these properties are
independent of the chosen finitely generated presentation (see [11] Lemma 1). By co-CRG
and co-GCSG we denote the corresponding classes of groups. From the results above we
immediately obtain the following inclusions.

Proposition 5.1. (a) CFG C CRG = co-CRG C GCSG.
(b) co-CFG U CRG C co-GCSG.

Next we present an example that will imply that the first of these inclusions is proper.
Let Ao be the free abelian group of rank 2, that is, As is given through the presentation
(32; ab = ba), where X9 := {a,b}. Thus,

WP(Az, %) = {w € X5 | [w]a = |wla and [w], = |wlg }.

As WP(Ag,32) Na* - b* - a* - b* = {a™b™a™™ | n,m > 0}, it follows that WP(Asz, )
is not context-free, that is, Ag is not a context-free group. However, co-WP(Ag, ¥») is
context-free, implying that As is a co-context-free group. The following proposition is
actually a special case of a much more general result (see Theorem 5.9), but we present it
here including a proof to illustrate the workings of the length-reducing DTPDA.

Proposition 5.2. As is a Church-Rosser group.
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Proof. We will present a IFDTPDA M for the language WP(A3,39). Its tape alphabet
is X,, and its window size is k := 4. Alternatingly it will shift the contents of the right-
hand pushdown to the left-hand pushdown and back, shortening the combined contents
in each step. Internally it will use four binary indicators that store the parities p, := |w|,
mod 2, pg := |w|zg mod 2, pp := |w|p mod 2, and p; := |w|; mod 2. If at the end of a
round the parities p, and p; do not coincide, or if the parities p, and p; do not coincide,
then M halts and rejects; otherwise the next round is executed. M accepts if it reaches a
configuration in which the combined contents of the pushdowns is a word from WP (A3, ¥9)
of length at most eight. Below we give a detailed description for those transition steps that
shift the contents from the right-hand to the left-hand pushdown store; the description of
the converse shift is completely symmetric to this one. The current state of M is described
as a 4-tuple giving the values of the indicators (pq, pa, pp, p;). Here is the description of the
transition function of M, where u € \T=F, p; € {0,1}, pi:=1—p; (1 <i<4), ' ==¢,
cli:=cforall c € {a,b}, and pu,v € {1,-1};

(1) ((plap23p37p4)a ’LL,CCCC) - ((p17p25p3ap4)’ucca 5) for all c € 227

(2) ((plap27p37p4)a U,U) - ((p17p2ap37p4)7uaubl/7€) for all v € ;%
satisfying |v|gn = 2 and |v|p = 2,

(3) ((p1’p27p37p4)5 U)U) - ((pl,p25p3up4))u75) for all v € Z%
satisfying |v|, = 2 and |v|z = 2,

(4) ((plap27p37p4)a U,U) - (<p17p2ap37p4)7u>5) for all v € ;ZQL
satisfying |v|, = 2 and |v|; = 2,

(5) ((p17p27p37p4)7 ’LL,U) - ((PLPZ;P&IM),%E) for all v € Z%
satisfying |v|, = |v]|a = |v]p = || = 1,

(6) ((p17p27p37p4)a U,U) - ((p17p2ap37p4)7uau75) for all v € 2121
satisfying |v|er = 2 and |v], = |v|; =1,

(7) ((p17p27p37p4)7 U,’U) - ((p17p27p37p4))UbV7€) for all v S Z%
satisfying |v|pw = 2 and |v|, = |v|z =1,

(8) ((p17p27p37p4)a U,U) - ((p17p25p37p4)7uauvg) for all v € Z%
satisfying |v|qe = 3 and |v|,-» =1,

(9) ((p17p27p37p4)7 "LL,'U) - ((p17p27p37p4)7Uby75) fOI' all v S Z%

satisfying |v|pr = 3 and |v|y-» = 1,

(10) ((plap27p37p4)a U,U) - ((ﬁl?p%ﬁ?npﬁl)?uag_plbl_p3>€) for all v € ZZQL
satisfying |v], = 3 and |v[, = 1,

(11) ((p17p27p37p4)7 "LL,'U) - ((p17p27p37ﬁ4)7ua2_plb1_p47€) fOI' all v S E%
satisfying |v|, = 3 and |v|; = 1,

(12) ((plap27p37p4)a U7U) - ((plvaaﬁi’npﬁl),ua2_q2b1_p3>€) for all v € Z%
satisfying |v]z = 3 and |v[, = 1,

(13) ((pl,p27p37p4), ’LL,’U) - ((p17ﬁ2ap37134)7ua27p2b17p47€) for all v S Z%
satisfying |v|z = 3 and |v|; = 1,

(14) ((plap23p37p4)a U,U) - ((1517])2,]7&]74)7Ual_ple_pgag) for all v S Z%
satisfying |v|, = 3 and |v|, = 1,

(15.)  ((p1,p2,P3,P4),u,) —  ((p1,D2, D3, pa), ua*"P2b27P3 ) for all v € 2%
satisfying |v[y = 3 and |v]z = 1,

(16) ((plap27p37p4)a U,U) - ((1317]72,]73434)7ual_plb2_p475) fOI‘ aH v E Z%
satisfying |v]; = 3 and [v], = 1,

(17) ((p17p27p37p4)7 U7U> - ((p17ﬁ27p37]54)7ua17p2b27p476) fOI' all v S 2%
satisfying |v|; = 3 and |v|g = 1,

Starting from a configuration of the form 1(0,0,0,0)wLl, M will eventually reach a
configuration of the form Lu(py,p2,ps,ps)L. From the form of the transition steps it
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follows that there exist nonnegative integers j, and j; such that u satisfies the following
conditions:

2 |U‘a +p1tja = ’w|aa
2. |u‘d +p2tja = ]w|@,
2-|ulp+p3s+ip = |wly,
2-lulg+pa+gp = |wl;

Here j, is the number of cancellations a*a™* that took place during the above transitions,
and jp is the corresponding number of cancellations b¥b~". Thus, w € WP(Ag, o) if and
only if p1 = pa, p3 = p4, and u € WP(Ag, 3o). It follows that the '[DTPDA M accepts the
language WP( Ay, ¥9), which implies that As is indeed a Church-Rosser group. U

As As is not a context-free group, this yields the following consequence.

Corollary 5.3. CFG C CRG.

The proof of Proposition 5.2 easily extends to free abelian groups of any finite rank.
Because of Proposition 2.8, Lemma 5 of [11] implies the following closure property for CRG.

Proposition 5.4. The class CRG of Church-Rosser groups is closed under the operation
of passing to finite index overgroups.

As a consequence we see that the class CRG of all Church-Rosser groups contains all
finitely generated virtually abelian groups. On the other hand, Lemma 2 of [11] implies
the following closure property for CRG, as CRL is closed under inverse morphisms and
under intersection with regular languages.

Proposition 5.5. The class CRG of Church-Rosser groups is closed under the operation
of passing to finitely generated subgroups.

Next we establish a non-closure property for the class of Church-Rosser groups.
Theorem 5.6. The class CRG of Church-Rosser groups is not closed under direct products.

Proof. The free group F5 of rank 2 is context-free, and therewith a Church-Rosser group.
We now consider the direct product Gao of two copies of the group Fb, that is, G2 is
given through the presentation (a,b,c,d;ac = ca,ad = da,bc = ¢cb,bd = db).

We claim that the language L := WP(G32,34), which is the shuffle product of the
languages WP (F3, {a,b}) and WP(F3, {c,d}), is not a Church-Rosser language. Actually,
we will establish the following stronger result.

Claim. The language L is not accepted by any one-way auxiliary pushdown automaton
(OW-auxPDA) with a sublinear space bound.

Proof. According to [4], the language Lp = {wi#we#Hwi#wl | w € {0,1}*} is not
accepted by any OW-auxPDA with a sublinear space bound. Now assume that the language
L is accepted by a OW-auxPDA A with space bound s(n). From A we obtain a OW-auxPDA
A’ with space bound s(n) for the language L' := L N {a,b}* - {c,d}* - {a,b}* - {¢,d}* by
running A and a finite-state acceptor for the regular language {a, b}*-{c,d}*-{a,b}*-{¢, d}*
in parallel. Define a mapping ¢ : {a,b,c,d}* — {a,b, & d}* through t(¢) := ¢ and +(w-x) :=
Z - v(w) for all w € {a,b,c,d}* and = € {a,b, c,d}. It is easily checked that a word w € X}
belongs to the language L’ if and only if w can be factored as w = u-v-i(u) - t(v) for some
words u € {a,b}* and v € {c,d}*.

Now let ¢ : {0,1}* — {a,b}* be the morphism that is given through 0 +— a and
1 +— b, let ¢2 : {0,1}* — {c,d}* be the morphism that is given through 0 — ¢ and
1+ d, let ¢3 : {0,1}* — {a,b}* be the morphism that is given through 0 ~— @ and

1+ b, and let ¢4 : {0,1}* — {& d}* be the morphism that is given through 0 + ¢



12 CHURCH-ROSSER AND GROWING CONTEXT-SENSITIVE GROUPS

and 1 +— d. Then wy#ws#ws#w, € Lp, where wy,wo, w3, ws € {0,1}*, if and only if

$1(w1) - p2(w2) - P3(ws3) - Pa(ws) € L.
We can easily define a GSM that computes the mapping

wiHFWrFWsHW4 — P1(w1) - Pa(w2) - P3(w3) - Pa(wa) (w1, w2, w3, ws € {0,1}7),

and we can combine this GSM with A’ into a OW-auxPDA B for the language L. As B
will have space bound s(n), it follows that s(n) is not sublinear. O

As each growing context-sensitive language is accepted by a OW-auxPDA with logarith-
mic space bound [6], it follows that WP (G2, ¥4) is not even a growing context-sensitive
language. Thus, the class CRG of Church-Rosser groups is not closed under direct prod-
ucts. Il

An application of Theorem 2.7 shows that the word problem of a hyperbolic group is a
Church-Rosser language. Actually, we have a much stronger result. A finitely generated
group G is said to admit a generalized Dehn algorithm if G has a finite set of semigroup
generators ¥ such that the language WP (G, X) belongs to the class GDL. As an immediate
consequence of Proposition 3.3 we obtain the following implication.

Theorem 5.7. If a finitely generated group admits a generalized Dehn algorithm, then it
is a Church-Rosser group.

Concerning groups that admit generalized Dehn algorithms, Goodman and Shapiro have
established the following positive results.

Proposition 5.8. [10]

(1) The property of admitting a generalized Dehn algorithm is independent of the cho-
sen finite set of generators, that is, it is a property of finitely generated groups.

(2) The class of groups that admit a generalized Dehn algorithm is closed under the
operations of passing to finitely generated subgroups and of passing to finite index
overgroups.

(3) The class of groups admitting a generalized Dehn algorithm is closed under free
products.

Theorem 5.9. [10]

(1) If G is a finitely generated group that is virtually nilpotent, then G admits a gen-
eralized Dehn algorithm.

(2) If G is a geometrically finite hyperbolic group, then G admits a generalized Dehn
algorithm.

(3) If M is a graph manifold each of whose pieces is hyperbolic, then its fundamental
group w1 (M) admits a generalized Dehn algorithm.

Thus, all these groups are Church-Rosser groups. Goodman and Shapiro also present
the following negative results. Recall from Theorem 3.7 that the word problem WP(G, X)
of a group G admits a non-incremental Dehn algorithm if and only if G is a Church-Rosser
group.

Theorem 5.10. [10]

(1) If a group G has exponential growth and the center of G contains an infinite cyclic
group, then G does not admit a non-incremental Dehn algorithm.

(2) The group Fy x Fy does not admit a non-incremental Dehn algorithm.

(3) If G is a braid group of 3 or more strands, then G does not admit a non-incremental
Dehn algorithm.

(4) Thompson’s group F does not admit a non-incremental Dehn algorithm.
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(5) If G contains an abelian subgroup which has exponential growth, then G does not
admit a non-incremental Dehn algorithm.

(6) If G is a Baumslag-Solitar group {(a,t;taPt™! = a?) with p # +q, then G does not
admit a non-incremental Dehn algorithm.

Thus, none of these groups is Church-Rosser.

6. GROWING CONTEXT-SENSITIVE GROUPS

Finally we turn to the classes GCSG and co-GCSG of growing context-sensitive and
co-growing context-sensitive groups.

Proposition 6.1.

(1) The classes GCSG and co-GCSG are closed under the operation of passing to finite
index overgroups and under the operation of passing to finitely generated subgroups.

(2) The class co-GCSG is closed under direct products.

(3) The class GCSG is not closed under direct products.

Proof. 1. As GCSL is closed under inverse morphisms and under intersections with regular
languages, Lemma 2 of [11] applies, showing that GCSG as well as co-GCSG are closed
under taking finitely generated subgroups. Further, as GCSL is closed under union and
under inverse GSM-mappings (Proposition 2.8), Lemma 5 of [11] applies, showing that
GCSG and co-GCSG are closed under the operation of passing to finite index overgroups.

2. As GCSL is closed under union and under shuffle with regular languages, Lemma 3 of
[11] applies, showing that co-GCSG is closed under direct products.

3. This is an immediate consequence of the proof of Theorem 5.6. U

Actually, the proof of Theorem 5.6 shows that Go2 € co-CFG \ GCSG, which implies
the following results.

Corollary 6.2. CRG C co-GCSG, and co-CFG € GCSG.

Let G1 = (¥1; R;1) and Gy = (X9; Re) be two finitely generated groups. Without loss of
generality we may assume that the alphabets ¥, and X, are disjoint. Then the group G

presented by the group presentation (3; U X9; Ry U Ry) is the free product of G and G,
denoted by G = Gy * Gs.

Proposition 6.3. The class GCSG is closed under free products.

Proof. Let G1 = (31; R1) and G = (X2; Ry), where X, N Xy =), and let G = G x Gy =
(31 UX9; R1 URy). If Gy and G are growing context-sensitive, then there exist sTPDAs
M and My such that L(M;) = WP(G;,%;) (i = 1,2). From M; and My we now construct
a sTPDA M for the language L := WP(G, ¥; U X).

Let w = wjwows - - - wy,, where all factors w; are non-empty, and w; and w;y; are in
different factors for all 1 < ¢ < n. Then w =g 1 if and only if there exists an index
J €{1,...,n} such that w; =g, 1 and wy - - - wj_1wj41 - wy, =g 1, where G; denotes the
factor containing w; (that is, G; = G if w; € ZT, and G; = Go if w; € Z;r) Given w
as input, M will proceed as follows. It first guesses the smallest index j with the above
properties, shifting the prefix w; ---w;_1 to the left-hand pushdown store using a copy
alphabet, and simulates the computation of the machine M; on input w;. Should the
computation of M; being simulated not lead to acceptance, then M simply halts without
accepting. Otherwise, M has successfully verified that w; =¢; 1 holds. It then erases the
remains of this syllable from its pushdown stores, and guesses the next index j' with the
above properties. Observe that now w;_jwj41 forms a single syllable, and that j' > j —1
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FIGURE 1. Inclusion relations between various classes of groups.

holds due to the choice of j as the minimal index with the required property. If j/ > j —1,
then M simply shifts the preceding syllables to its left-hand pushdown, and if j/ = j — 1,
then M shifts the syllable w;_; back to its right-hand pushdown (using a second copy
alphabet). In each case M then simulates the computation of the corresponding machine
M, on input wjs. This process continues until either M rejects or until all syllables have
been processed successfully. In the latter case w =g 1 has been verified. It follows that
L(M) = L, and it is seen easily that M can be designed to be shrinking. O

Observe that in the proof above nondeterminism is used in an essential way. It is
currently not clear whether the corresponding result also holds for the class CRG of Church-
Rosser groups. The reason being that it is not clear how to construct a SDTPDA M for the
free product G * Go from sDTPDAs M; and Ms for the groups G; and Go, respectively.

7. CONCLUDING REMARKS

According to Theorem 5.10 the group F x F; does not admit a (non-incremental)
Dehn algorithm, and hence, it is not a Church-Rosser group by Theorem 3.7. Is F5 x I} a
growing-context-sensitive group? Observe that by Proposition 6.1 it is co-growing context-
sensitive. Further, it is easily seen that the language WP(Fy x Fi, {a, b, c}) corresponding
to the presentation (a,b, c;ac = ca,bc = ¢b) is accepted by a OW-auxPDA in polynomial
time and logarithmic space. Thus, if F» x F} is not growing context-sensitive, then this
would show that the inclusion of the language class GCSL in L(OW-auxPDA(poly, log))
established in [6] is proper. On the other hand, if F5» x F} is growing context-sensitive,
then this would imply that CRG is properly contained in GCSG.

In [18] it is shown that each finitely generated subgroup of an automatic group has a
deterministic context-sensitive word problem. Thus, each automatic group is (determinis-
tic) context-sensitive. As Fy x Fy is automatic, we see from the proof of Theorem 5.6 that
in general automatic groups are not growing context-sensitive. Is each automatic group
co-growing context-sensitive? Observe that each automatic group is necessarily finitely
presented [9], while it is known that there are even co-context-free groups that are not
finitely presented [11].

The diagram in Figure 1 summarizes the inclusion relations between the various classes
of groups considered in this paper. Here GDG denotes the class of groups that admit a
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generalized Dehn algorithm, §; ——= G5 denotes a proper inclusion, G; > Gg denotes
an inclusion for which it is not known whether it is proper, and G; —— G5 denotes
equality.
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