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Abstract

This article is concerned with the numerical simulation of flows at low Mach numbers
which are subject to the gravitational force and strong heat sources. As a specific
example for such flows, a fire event in a car tunnel will be considered in detail. The
low Mach flow is treated with a preconditioning technique allowing the computation
of unsteady flows, while the source terms for gravitation and heat are incorporated
via operator splitting. It is shown that a first order discretization in space is not able
to compute the buoyancy forces properly on reasonable grids. The feasibility of the
method is demonstrated on several test cases.

Keywords: Preconditioning, Low Mach number flow, Asymptotic analysis, Finite volume
method, Conservation laws

1 Introduction

In recent years there were a number of tragic and deadly incidents in car tunnels, for
example in the Mont-Blanc tunnel 1999, the Tauern tunnel 1999 or the Kaprun tunnel
2000. This demonstrates the need for more efficient safety measures. There exists a variety
of codes designed to provide information on smoke and heat development in buildings, see
for example the survey [21].

In praxis, often so called zonal models like the Multi Room Fire Code of Max [14] are
applied, which use extremely coarse grids, a division of each cell in hot and cold zones
and conservation of mass and energy. These methods are fast and thus allow parameter
studies. However, they cannot deal with complicated geometries and provide results that are
nonlocal. Furthermore, they are designed for buildings and, due to the missing momentum
equation, cannot simulate buoyancy driven flows as those in sloped tunnels.

The alternative to zonal models are so called field models, which correspond to much more
accurate tools provided by computational fluid dynamics (CFD). Those can in principal
deal with complicated geometries and buoyancy driven flows. The increase in computer
power makes the use of these methods applicable to these problems, however there is still
need for faster algorithms and faster computers.

The arising flows can be characterized by characteristic speeds of one meter per second and
thus a low Mach number (M = 10~3) and by high temperature gradients. They are driven
by buoyancy and the strong heat sources. Caused by these effects, parts of the flow become
compressible, although the general situation is nearly compressible. This is similar to a lot
of applications, where the Mach number or the compressibility properties vary in time or
space. Some examples are nozzle flow, chemically reacting flows or laminar combustion.

In the CFD community, the efficient simulation of low Mach number flows is a subject of
ongoing discussion. It is well known that purely compressible flow solvers which were de-
veloped for transonic flow fields produce wrong results at low Mach numbers on reasonable



grids and need an unacceptable fine mesh width to provide correct results. This was demon-
strated in detail by Volpe [28]. On the other hand, standard incompressible flow solvers
cannot deal with strong temperature or strong density gradients. Consequently, there are
two main approaches to the design of numerical methods for the above mentioned flows:
use either the compressible or the incompressible Euler or Navier-Stokes equations as the
basic model and improve upon the existing methods. One important idea in this context
was the artificial compressibility method by Chorin [4] that inspired the preconditioner of
Turkel [25] for the compressible equations. These methods incorporate a preconditioning of
the time derivative of the PDE, thus allowing faster convergence to steady state but sacri-
ficing time accuracy. Along these lines, other preconditioners were proposed [27, 3]. The
crucial idea is, that as the Mach number tends to zero, the original system develops a large
disparity in wave speeds, as some of the eigenvalues grow to infinity while others remain
O(1). The preconditioner changes all the wave speeds to O(1), thus greatly improving the
condition number of the system.

In this article, we will concentrate on flow solvers which are based on compressible flow.
Here, three main techniques to obtain time accuracy can be distinguished. First of all,
there is the technique to use the above mentioned preconditioning methods for steady
state flows in a pseudo time stepping scheme [24, 26, 29]. Furthermore, there is the flux
correction approach, where an approximation to the Euler or Navier-Stokes equations is
solved and then corrected via elliptic correction equations [10, 12, 22]. Finally, there is
the flux preconditioning approach, where only the dissipation within the numerical flux
function of the flow solver is changed by low Mach number preconditioning [9, 18]. This
has several advantages. An important one is that the implementation is quite simple. The
only part of the flow solver that needs to be changed is the flux function. The other one
is that compared to the flux correction approach, the computational effort per time step is
smaller.

The addition of source terms is possible in an algorithmically straightforward way using
operator splittings. However it turns out, that the new scheme has surprising properties
requiring special care in its application.

Besides the low Mach number, the other characterizing property for the tunnel fire problem
is the gravitational force, which is responsible for the transport of hot air to the ceiling
of the tunnel. A correct computation of the effect of gravitation is thus mandatory for a
successful simulation of a tunnel fire event.

Especially in meteorology, flows are considered that are near the hydrostatic balance, mean-
ing that 95,p — pg = O(€). Several numerical methods exist for these flows, see for example
the textbook of Durran [5]. Botta, Klein, Langenberg and Liitzenkirchen point out in [2]
that some of these methods have problems. If we assume that the solution is near hydro-
static balance, then when discretizing this with mesh width Az = h using a method that
is r-th order consistent, we obtain a discretization error of

(Opsp — PG)h — Ozyp + pg = O(R").



If € tends to zero while h remains fixed, the discretization error O(h") completely domi-
nates the solution. Thus as we come nearer the hydrostatic equilibrium the quality of the
solution does not increase: it is unbalanced. If we know beforehand the correct hydrostatic
equilibrium p” and p, we have a decomposition p = dp + p and p = 6p + p* satisfying
Oz,p™ — pflg = 0. Then the discretization error for fixed h tends to zero if € tends to
zero. However, when using the original discretization without a decomposition, it is not
clear from this analysis, how small € can become for a given mesh width and a particular
problem, before the discretization error dominates the solution. As a remedy, a reconstruc-
tion procedure is suggested in [2], that uses a ”discrete Archimedes buoyancy principle” to
obtain a well-balanced scheme.

Nguyen-Bui, Dubroca and Maire [20] applied a low Mach preconditioned method to a free
convection problem, where air was cooled and heated between plates and, being subject to
buoyancy, started to circulate. There they observed errors in their numerical calculations.
They tried a similar decomposition of the pressure and could improve their results, though
no explanation was given.

The outline of this paper is as follows: In section two, we briefly introduce the model
for fire incidents, which consists of the Euler equations of gas dynamics with source terms.
Thereafter in section three, a finite volume approximation of the governing equations using a
Lax-Friedrichs type scheme is presented whereby we curtly discuss the asymptotic behavior
as the Mach number tends to zero. We will then proceed to look closely at the source terms.
Here we will use an operator splitting, as this is the simplest thing to do. As the correct
resolution of the buoyancy force is crucial, we will first integrate the gravitational source
term only. After having examined this by both analysis and numerical experiments we will
add heat sources. These are constant in time and space and affect the solution only locally
and not globally, as the gravitational term does. Therefore it is much easier to simulate.
Finally, we will demonstrate the feasibility of the method by means of several test problems.

2 The governing equations

The Euler equations consist of the conservation laws of mass, momentum and energy, closed
by an equation of state. Given an open domain D C R?, the dimensional form can be
expressed as

2
du+> 0pfi(u)=g inD xR, (1)

=1
where u = (p, m1, mo, pE)T represents the vector of conserved variables. The flux functions

f; and the source term g are given by
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with §;; denoting the Kronecker symbol. The quantities p, v = (v1,v2)”, m = (mq, m2)7,
Fand H=F + % describe the density, velocity, momentum per unit volume, total energy
per unit mass and total enthalpy per unit mass, respectively. The pressure is defined by
the equation of state for a perfect gas p = (y — 1)p(E — &|v|?), where v denotes the ratio
of specific heats, taken as 1.4 for air.

This form of the Euler equations is obtained by introducing the usual reference values for the
length Z;f, the density p,.; and the velocity ©,.¢. Thus, the non-dimensional characteristic
number M appearing in the energy equation is defined as

M= 2)
Cref

where o = \/Pref/pres denotes the reference value for the speed of sound ¢. This reference
parameter is related to the Mach number Ma via M = ,/yMa. Thus, M = Ogs(Ma)
and consequently, regarding the asymptotic behaviour with respect to a vanishing Mach

number Ma it is of no importance whether Ma or M is used. The other non-dimensional
'Uref

xrefgref

characteristic numbers are the Froude number Fr = and the number responsible

for the strength of the heatsource Q) = %J;%ﬁf.

3 Preconditioned Finite Volume Method

Smooth solutions of the Euler equations exist in general only for short times and thus one
usually introduces the concept of weak solutions. By means of integrating the system (1)
over a control volume 2 and applying Gauss’ integral theorem one obtains

2
[t ; /{m £ (u)ng ds = /Q g(u)dx, 3)

where n = (n1,n2)" represents the outer unit normal vector on 9. A mapping u is called
a weak solution of the equations (1) if u satisfies the integral form of the Euler equations
(3) on every bounded set Q C D which allows to utilize Gauss’ integral theorem.

)T

Introducing the cell average u;(t) = |Q | fQ (x,t) dx, the integral form with respect to a
polygonally bounded control volume Q; can be written as

d /. o
—u;(t) = fy(u(x,t))ng ds + u)dx,
dt ‘Q' Z Z e\ ¢ |Qi| o, g(u)

€ij COY ¥ i =1

where e;; denotes the edge between the adjacent control volumes 2; and €2;.

The convective parts f and the source terms g, like gravity and heat, will be treated seper-
ately via fractional step or operator splitting methods. These allow an easy implementation,
as they split the solution process in two parts, for both of which well known methods are
available. A first order approximation (for smooth solutions u) to this problem is given by



the simple Godunov splitting [8], where we require each ”solve” to be at least first order
accurate:

1. Solve the Euler equations (1) without the source terms

%u,-(mﬁ > / RCCORTED (4)

€;; COQ; ¥ ™
with timestep At and initial data u” to obtain intermediate data u*.

2. Solve the ordinary differential equation for heat and gravity

%ui(t) = ﬁ /Ql g(x,t,u(x,t)) dx, (5)

with the same timestep, but inital data u* to obtain u™*t!.

In order to evaluate the boundary integral in (4), we employ a numerical flux function of
Lax-Friedrichs type

2
H(u;,uj,n) = % (Z (fe(ui) + fo(u;)) ne — D(us; uj,m)(u; — u,-)) : (6)

=1

Numerical methods of this type differ only in the dissipation term D. Hu and Shu [11]
defined D € R to be the largest absolute eigenvalue of the corresponding Jacobi matrix

Similar to the formulation of Shu and Osher [23] we prefer a matrix-valued term D which was
proposed by Friedrich [6] and afterwards used in [17, 18, 19]. It is proved in [15, 16] that the
use of this Lax-Friedrichs-type flux function leads to an unphysical pressure distribution in
relevant cases. In particular, variations of the first order pressure field are generated on the
space scale x. To extend the validity of the numerical method we utilize a preconditioning
technique originally proposed by Guillard and Viozat [9] for the Roe scheme and later on
derived in the context of the Lax-Friedrichs method in [18]. Therefore, the dissipation
matrix is defined in the sense of D = P! |PF|. In particular, we employ

Dl wom) = P ()R (0] Al w R (B )

Herein, R(u,n) represents the matrix of the right eigenvectors of the corresponding pre-
conditioned Jacobian
FP(u,n) = P(u)F(u,n)

and |A|(u;, uj,n) denotes the diagonal matrix defined by
|Al(u;, uj,n) = diag max |[Ai(u,mn)|,..., max |A(u,mn)| 7,

u;+u; u;+u;
uE{ui,u]',lTl} ue{ui,uj-,l—ZL}



where \;(u,n), i = 1,...,4 are chosen to be the eigenvalues of the matrix F¥(u,n). The
properties of the derived method strongly depend on the preconditioning matrix used. Ar-
ranging P(u, n) to be the identity yields the Lax-Friedrichs-type scheme including a matrix-
valued local dissipation term proposed by Friedrich [6]. In order to overcome the failure
of the standard Lax-Friedrichs scheme with respect to the pressure distribution in the low
Mach number regime it is quite natural to multiply the pressure by a factor associated with
the Mach number. Therefore, we extract the pressure by consideration of the so-called en-
tropy variables w = (p, vy, v9, s)T, whereby s denotes the entropy determined as s = In p%.
Following Turkel [25] we introduce

P (u) = (UQW) (u), (7)
where U = 22 W = 2¥ and
B2 000
Q=| o o 00| withs=0s(m), M 0. (8)
0 001

To ensure that the matrix is always nonsingular we additionally require that 8 # 0 for all
M > 0. Simple but time-consuming calculations give

% —U1 —v2 1
Y 2 ol v —v}  —vvy v
P = I+ =D Wby, _
% —V102 —U5 ()]
\v\2H —HUl —H’UQ H
and
Agz(u,n) = wvy:=v-n,
1
Na(wn) = 5[+ B)ont VT + 2205 — 20387 + 45%2)

It was recently proven in [15] that utilizing the preconditioned Lax-Friedrichs flux (6) for
the choice (8), within the finite volume method associated with (4) yields a pressure distri-
bution satisfying the asymptotic properties of the continuous equations in a discrete sense.
Furthermore, a discrete divergence constraint corresponding to the results known for the
continuous equations is shown for this scheme in [19] in the absence of compression and
expansion over the boundary of the computational domain.

As was shown in [1], the preconditioned method combined with an explicit time integration

has unfavorable stability properties. More precise, the time step has to go to zero with
O(M?) as the Mach number tends to zero. Therefore, implicit methods are to be favored.

4 A First Test Case

To analyze the behavior of our methods for flows subject to a buoyant force, we consider
a two dimensional longitudal section of a tunnel of five meter height with the bottom of



the tunnel being at zero altitude. For the velocity we use the initial data v; = const =1
and v9 = const = 0. We choose a pressure and density distribution which varies only in
horizontal direction, such that the gravitational force term is balanced out by the pressure
gradient. Thus we choose p(z2) and p(z2) according to the hydrostatic pressure:

rx2>%/R_ o)

plax) =pr (1- 7

Thus, the pressure decays at a very small rate due to the height of a tunnel and is nearly
linear in z9. The density distribution is also a function of height:

pr P.’E2 Cp/R*l

For the discrete initial data, we use the above formula to determine pressure and density
in the cell centers, which results in no variations in z;-direction. For a reference pressure
of 101325 Pa, we obtain an exact pressure difference from top to bottom of 63,4 Pa and
a Mach number of Ma = 0.0036. Thus, the initial data corresponds approximately to a
steady state. Approximately only, because the discrete equations have a slightly different
steady state than the continuous equations. Nevertheless, the physical flux of the flow
should balance with the gravitational force and there should be almost no energy flux in
zo-direction. The e from the introduction is in this example zero, because we are exactly
in hydrostatic balance. Thus the discretization error can be seen very well. We will use a
cartesian grid with quadratic cells, where we employ twenty cells in zo-direction.

4.1 Numerical Experiments

Tom compute the steady state, we use a first order discretization in space and the explicit
Euler method in time, despite the bad stability properties to eliminate possible influences
from errors of the inner iterations. At the tunnel ends, Neumann boundary conditions are
used.

For the first run, we use the unpreconditioned Lax-Friedrichs flux and a CFL number of
0.9. The solution after 5000 time steps is already a steady state. A correct nearly linear
distribution of the density is obtained and the pressure distribution changes slightly, while
preserving the pressure difference of 63,4 Pa. This is probably due to the coarse grid and
the fact that the discretization is only of first order.

The second run is done using the low Mach preconditioned Lax-Friedrichs flux. Here, also a
nearly linear distribution of the density is obtained, but the pressure difference from top to
bottom reduces to three Pascal after 5000 time steps with a CFL number of 0.0036. Then
it increases slowly. After 100.000 time steps, a pressure difference of 54 Pa is obtained.



The unpreconditioned method thus produces a physically reasonable result, while the pre-
conditioned method does not. To illustrate the problem, we repeat the experiment, but this
time, only one time step of the flow solver without source terms is performed in both cases.
For a cell in the middle of the tunnel, we obtain the following conservative fluxes:

‘ Component ‘ Preconditioned ‘ Unpreconditioned ‘

P 1.58499 - 10E — 10 | 1.88016 - 10F — 8
pU1 1.58499 - 10E — 10 | 1.88016 - 10E — 8
pU2 -0.324404 -0.324404
pE -1.83711 -0.0034101

The physical flux update in the first step is f = (0,0, Ap,0)?". The energy flux in both cases
is thus too big, but much worse so in the preconditioned case.

4.2 Analysis of the Energy Flux

To understand this phenomenon, we look at the flux updates in an interior cell in the first
step. The fluxes in zi-direction cancel out, but along horizontal borders they differ and
therefore the reason for the above demonstrated behavior must lie in the horizontal flux.
We have for the preconditioned flux function with n = (0,1)7":

0 Ap
1 1 0 Ap-v

£ (ug, up;m) = (L +fr —DAu) = o |~ D po "D
0 AFE

The unpreconditioned flux is the same, though with a different dissipation matrix D. The
energy component we are interested in depends only on the dissipation term and we obtain

for the preconditioned case, using the abbreviations &1 = \3 — f%v,, & = A\ — B%v, and

_ Aa—A3.
53_ 42 3.

-1
2

v|? —1)|v|? -1
DjAu = |/\1|% {(1 - w)AP + 70—201(APUQ) +7 v2A(pv2)

2c2

-1
_762 A(PE)}
—|Xa|ve[veAp + n2A(pv1) — niA(pv2)]
1 2
om0, {P\zl(H +&1vn) [(52(7 - 1)% + B2u,) Ap

—(&(y — Dvy + B2n1) Apvr) — (E2(y — 1)vz + B7n2) Apvz)



+(y - 1)£2A(pE)]

v 2
HAIH + o) | - @ar - DI 4 2009
+(&1(y — v + B2?n1) A(pv1) + (E1(y — vz + B°Pna) A(pus)

—(v - 1)£1A(pE)] }

In this testcase, we have v, = vo = 0 and thus, Ay = Ay = 0, as well as A(pve) = 0.
Thus, using that we furthermore have |A\4| = |A3| = Bc and & — & = 23, straightforward
computations lead to

e (%Alﬂr v (pvn) + A(pE)) - (11)

In the unpreconditioned case 8 = 1 the formula for the flux simplifies to:

2
4LF = f)4Au = y (%Ap—i— ’UlA(pvl) + A(pE)) . (12)
Thus, the vertical fluxes differ by a factor of 1/5. The update of a nonboundary cell is
formed by the difference between the flux from the top of the cell and the flux from the
bottom of the cell, as the numerical solution does not vary in z;-direction. The update
is though even in this simple testcase a complicated nonlinear function of the initial data.
Nevertheless, we can deduct an asymptotic behavior. The total energy per unit volume E
and the total enthalpy per unit volume H are O(M~—2). Thus, for a given initial pressure
and density distribution in z,-direction, we expect the update in the preconditioned case to
increase of fourth order with the Mach number going to zero and in the unpreconditioned
of third order. This can indeed be confirmed by numerical results. The tables show the
energy flux update in an interior cell for the test problem at different Mach numbers.

| Mach number | 0.1 | 001 [ 0.001 | 0.0001 | 0.00001 \

Prec. flux 0.001270 | 122.9158 | 1229132 | 12291317684 | 1.2291317658 - 10F'14
Unprec. flux | 0.001270 | 1.267485 | 1267.459 | 1267458.88783 1267458885.15
Vertical energy flux using a first order discretization at different Mach numbers

The flux behaves as predicted for Mach numbers smaller than 0.1, for higher Mach numbers
the O(1) terms influence the flux. This effect of increasing flux can lead to steady states
where the balance between the preconditioned flux and the gravitational source term is
achieved at a very small and unphysical pressure difference. There are two ways to remedy
this, as can be seen from (11). We can decrease the last factor and thereby the flux by
decreasing the differences in the data either by refining the mesh or by using a method of
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higher order in space. In the same test case as above but using MUSCLE interpolation, the
energy flux can be significantly decreased. This is demonstrated in the following tabular.

| Mach number | 0.1 | 0.01 | 0.001 ] 0.0001 [ 0.00001

Prec. flux 7.88449 - 10E — 9 0.000854110 8.54112 85411.2 | 854111161

Unprec. flux | 7.88449 - 10E — 9 | 8.80744 - 10E — 6 | 0.00880745 | 8.80745 | 8807.44

Vertical energy flux using a higher order discretization at different Mach numbers

The dependence on the Mach number is as in the first case and as predicted by the analysis,
but the size of the flux is decreased by a factor of 108, which allows to compute the correct
pressure distribution up to an error of a few Pascal for moderately small Mach numbers.
For M = 10 a refinement of the grid is necessary, despite the higher order. Nevertheless,
the results show that a pressure splitting as suggested in the introduction is not necessary
to compute a correct pressure distribution.

The reason for this is probably, that a linear pressure distribution is globally a very good
approximation for the pressure field in a tunnel of five or ten meter height where one cell
corresponds to about 25 cm. Thus the higher order method, which uses a linear represen-
tation in every cell has a very small discretization error in comparison to the first order
method. For the meteorological problems considered by Botta, Klein, Langenberg and
Liitzenkirchen, where the height is on a scale of several kilometers and one cell is of the
scale of dozens of meters, the pressure is truly nonlinear and this statement is no longer
true.

Recently, Lee [13] demonstrated that for the here employed low Mach preconditioning tech-
niques, the convergence rate towards the steady state is slowest in the energy equation
and gets worse the smaller the Mach number. More, the convergence rate in the mass and
momentum equations was not affected by the preconditioning. We believe that the above
results are a pointer to why this is so.

5 Gravitation and a Heat Source

Having demonstrated that the preconditioned method is able to solve problems with gravi-
tation, we now look at both gravitation and a heat source together. We skip the case where
only the heat source is active, as this does not lead to interesting test cases.

First we compute the steady state in a short tunnel with two sharp bends. It starts level
for six meters, then proceeds for 14 meters with a three % slope and continues again flat
for another six meters. For the initial data, we use hydrostatic pressure and and a Mach
number of 0.01. In the initial velocity field, the vertical component is set to zero. Then we
compute the steady state. Finally, a circular package of heat is placed near the entrance
of the tunnel. The initial temperature in the hot zone is up to 450 Kelvin, as can be seen

11
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Figure 2: Temperature distribution after 1.9 seconds
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Figure 3: Temperature distribution after 3.7 seconds

in figure 5. After 1.9 seconds, the package has moved with the flow about seven meters to
the beginning of the slope and a bit upwards. The heat is distributed over a larger area
with a temperature of 290 Kelvin in the hottest cell. Figure 1 shows that the package is no
longer circular, but drawn out to the ceiling. After 3.7 seconds, the package has reached
the second bend, which can be seen in figure 2. It is now more boomerang shaped, because
the hottest air with a peak temperature of 285 Kelvin is in the center and flows toward the
ceiling faster than the cooler parts of the package. This is what was expected to happen
and thus we move on to fire events.
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5.1 Simulation of a Fire Event

The final test case is similar to a fire event with a burning vehicle in the middle of a tunnel.
We use a rectangular heat source of the size 3m x bm, thus ranging from bottom to top of
the tunnel. It is placed in the middle of a tunnel which is one kilometer long and has no
slope. At the boundary, we prescribe the hydrostatic pressure (9). The initial conditions
are obtained by first computing the steady state if the heat source is not active.

We will perform two runs with different fires with a total power of ten MW and one MW. If
we assume that the tunnel is ten meters wide, the heat source is distributed over a volume
of 150m? and we have to divide the total power by this to obtain the proper g,e ¢- With an
inflow Mach number of Ma = 0.01 this leads to a nondimensional parameter () of 32350 and
3235, respectively, and the Froud number for a reference length of Z,.; = 5m is F'r = 0.488.
The grid we use is cartesian with 32 x 464 cells. These are smallest and quadratic in the
middle of the tunnel and become thinner towards the exit, up to an aspect ratio of 1:16.
This setting is similar to that described in [7], however there the fire is distributed over a
volume of 400m? and thus the power per unit volume is smaller.

The simulations run until five seconds of realtime are reached. For the time integration
of the Euler equations we use the implicit midpoint rule. Up to three Newton steps are
performed in every time step. Fewer steps are performed, if the euclidian norm of the
relative nonlinear residual has dropped by a factor of 100 before. If this nonlinear tolerance
was set to a factor of 10, divergence could happen. We start with a CFL number of 0.01,
which is increased if fewer than three Newton steps were needed, up to a CFL number of
1.5. As for the linear equation systems, they are solved until the euclidian norm of the
relative linear residual has dropped by a factor of 10°.

5.2 Description of the Results for the Fire Events

The pictures 4 up to 12 show the middle part of the tunnel at different times during the fire
event. It can be clearly seen that the heat concentrates on the ceiling, due to the buoyancy.
Furthermore, it slowly drifts downstream, at about the rate of 3.6 m/s. A circulation of the
flow, generated by hot air moving upwards can be seen in all cases in the velocity profiles
or the Mach number distribution. Looking at the flow to the left and right of the fire, we
see that the fire acts as a sort of wall for the flow. Downstream, the flow velocity decreases,
but increases upstream. Another observation is that the speed of sound increases locally.
This can be explained by the heat source: Additional heat leads to a boost in the internal
energy, which is connected to the pressure, but not the total mass, and thus the speed of
sound ¢ = \/77% is increased. This is bad for the time integration, because for a constant

CFL number, an increase in the speed of sound leads to smaller time steps. In the case of
the ten megawatt fire, this leads to a time step at five seconds, which is nearly ten times
smaller than the time step at the beginning.

After five seconds of the one MW fire event, the temperature has increased by about 30
Kelvin. To the left of the fire, the temperature isolines are almost vertical, to the right the
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Figure 4: Mach number for 1 MW after 5 seconds

Figure 6: Temperature for 1 MW after 5 seconds

heat propagation concentrates near the cealing. An effect of the fire can be observed up to
twenty meters downstream, which coincides with the flow velocity.

For the ten MW fire, the increase in temperature is immense, actually several thousand
Kelvin, in one single cell it is up to 14.000 Kelvin. However, this extreme heat is only in the
top layer of cells. In the cells in the line next to the top, the temperature is between seven
and eight tousand Kelvin and two meters away from the ceiling, directly in the area of the
heat source, the temperature is less than one tousand Kelvin. Near the ceiling, there is a
propagation of heat in upstream direction which leads to a strong shock. This is probably
due to the extreme temperature gradients which leads to large pressure gradients which
cause the air to move upstreams. Thus it can be observed, that the flow is absolutely not
incompressible. To the right, the hot air has propagated up to 40 m.

The linear equation systems are hard to solve. Already for CFL numbers around 0.5, a
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100 GMRES iterations and more are needed. The computation takes about three days on
a one GHz Pentium to compute one second of realtime. This is due to the large number
of GMRES iterations: if three Newton steps are needed, as was usually the case, about
300 GMRES iterations are performed. The problem is thus significantly more difficult to
solve than for the scenarios with less powerful fires, both for the nonlinear and the linear
equations systems. It is also quite clear that the method is much too slow to be applied in
practice, where the goal is to perform parameter studies on a PC.

Figure 7: Mach number for 10 MW after 5 seconds
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Figure 8: Horizontal velocity for 10 MW after 5 seconds
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Figure 9: Temperature for 10 MW after 5 seconds

A computation on a longer time scale is shown in figures 10 to 12. The one MW tunnel
fire was computed beyond the five seconds, up to sixty seconds real time. The heat does
not increase significantly anymore, and the propagation of heat downstream is according
to the basic flow velocity. The air circulates between bottom and ceiling, but in a steady
way. This can also be seen in the nonlinear equation systems, where now one or at most
two Newton steps are sufficient.
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Figure 11: Horizontal velocity for 1 MW after 60 seconds

Figure 12: Temperature for 1 MW after 60 seconds

6 Conclusions

It was shown that a first order discretization in space is not able to resolve buoyancy on
reasonable grids. A higher order method combined with a low Mach number preconditioned
finite volume method produces results that are in agreement with physics as far as we can
tell. In all cases the heat gets transported to the ceiling and propagates fastest down-
stream, where the additional kinetic energy through the fire leads to a significantly faster
propagation for the stronger heat source. The pressure field is in line with the expectations.
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