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Abstract

We study several extensions of the notion of alternation from context-free grammars to
context-sensitive and arbitrary phrase-structure grammars. Thereby new grammatical
characterizations are obtained for the class of languages that are accepted by alternating
pushdown automata.

1 Introduction

Alternation is a powerful concept that was first introduced by Chandra and Stockmeyer
[ChSt76, CKS81] for general Turing machines and then by Ladner, Lipton, and Stockmeyer
[LLS78, LLS84] for pushdown automata. Thereafter the notion of alternation has been stud-
ied for a variety of other devices. In particular, in [Mor89] one of the authors introduced
the concept of alternation for context-free grammars (ACFG for short) by distinguishing
between ezistential and universal variables (nonterminals) with the aim of deriving a gram-
matical characterization for the class of languages that are accepted by alternating pushdown
automata (APDA for short).

As no such characterization was obtained in [Mor89], further studies of the notion of
alternation for context-free grammars and pushdown automata followed (see, e.g., [[JW92,
MoNa97, MHHO, MoOt07]). In [IJW92] such a characterization was finally reached through
linear-erasing ACFGs. Further, with the definition of the state-alternating context-free gram-
mar (sACFG for short) in [MHHO], a new way of introducing alternation into context-free
grammars was proposed that was inspired by the notion of context-free grammar with states

*Major parts of this work were done while Etsuro Moriya was visiting at the Fachbereich Elektrotech-
nik/Informatik, Universitiat Kassel.



of Kasai [Kas70]. A context-free grammar with states is a context-free grammar that is
equipped with a finite set of states. Each production of the grammar is combined with a
change of state, and accordingly a sentential form of such a grammar is a pair consisting
of a state and a string (the proper sentential form). A production is then applicable to a
sentential form only if the state of the production is identical to the state of the sentential
form. Now by distinguishing between existential and universal states the SACFG is obtained.
Thus, while in an ACFG the variable on the lefthand side of a production determines whether
this production is to be used in an existential or a universal fashion, it is the states that make
this distinction in an SACFG. For each ACFG G, an sACFG G’ can be constructed such that
G and G’ generate the same language, but it is still open whether or not the converse is true.
At least for linear context-free grammars, and therewith in particular for right-linear (that
is, regular) grammars, it has been shown that the two notions of alternation yield the same
expressive power. Actually, both types of alternating right-linear grammars just generate the
regular languages. Further, it turned out that sACFGs working in leftmost derivation mode
generate exactly those languages that are accepted by APDAs [MHHO)]. In this way another
grammatical characterization for this class of languages was obtained.

In [MoOt07] the authors proposed and studied a different way of defining the notion of
alternation for pushdown automata. Instead of distinguishing between existential and univer-
sal states as in the original definition [LLS78, LLS84], here the pushdown symbols are used
for this purpose. As it turned out these so-called stack-alternating pushdown automata are
equivalent in expressive power to the original variant of the alternating pushdown automaton.
However, the stateless variant of the stack-alternating pushdown automaton accepts exactly
the languages that are generated by ACFGs in leftmost derivation mode [MoOt07].

It is known that the class of languages accepted by APDAs coincides with the determin-
istic time complexity class ETIME = .. DTIME(c") as well as with the alternating space
complexity class ALINSPACE, that is, the class of languages that are accepted by alternating
linear bounded automata (ALBA) [CKS81, LLS84]. As in the classical (non-alternating) set-
ting pushdown automata correspond to context-free grammars and linear bounded automata
correspond to context-sensitive (or monotone) grammars, the above results raise the question
about the expressive power of alternating non-context-free grammars.

In this paper we carry the notion of alternation over to general phrase structure and
context-sensitive grammars. In fact, we consider both types of alternation for grammars men-
tioned above. By distinguishing between existential and universal variables we obtain the al-
ternating phrase-structure grammars (APSG) and the alternating contezt-sensitive grammars
(ACSG). By considering grammars with states, for which we distingush between existential
and universal states, we obtain the state-alternating phrase-structure grammars (sAPSG)
and the state-alternating context-sensitive grammars (sSACSG). For state-alternating gram-
mars it is rather straightforward to define the notion of derivation. However, for the other
type of alternating grammars there are various different ways of defining the corresponding
derivation relation. We will consider two such definitions, and we will prove that they are in
fact equivalent in a weak sense, that is, for a fixed alternating grammar the two definitions
yield different languages, but to each alternating grammar working with the one notion of
derivation there is another grammar of the same type that is working with the other notion of
derivation, and that generates the same language. In addition, we will consider two derivation
strategies or modes: leftmost derivations and unrestricted derivations.

Actually, it will turn out that for phrase-structure grammars as well as for context-
sensitive grammars, the state-alternating variant is equivalent to the alternating variant.
Actually, this equivalence is valid for the leftmost derivation mode and for the unrestricted



derivation mode. With respect to the unrestricted derivation mode the APSGs just give
another characterization for the class RE of recursively enumerable languages. However, with
respect to the leftmost derivation mode, they have the same generative power as SACFGs.
This can be interpreted as the counterpart to the corresponding result for non-alternating
grammars, which states that in leftmost mode general phrase-structure grammars can only
generate context-free languages [Mat64]. Our second main result states that with respect to
the unrestricted derivation mode ACSGs generate exactly those languages that are accepted
by alternating linear-bounded automata. As ALBAs and APDAs accept the same languages,
APSGs (working in leftmost mode) and ACSGs (working in unrestricted mode) give new
grammatical characterizations for the class of languages that are accepted by APDAs.

Finally, our results show that, when working in leftmost mode, ACSGs generate a subclass
of this class of languages. It remains open, however, whether this is a proper subclass. These
facts should be compared to the fact that no inclusion relation is known between the class
of languages generated by sACFGs (or ACFGs) in leftmost mode and the class of languages
generated by SACFGs (or ACFGs) in unrestricted mode.

This paper is structured as follows. In Section 2 the basic definitions of alternating
grammars and state-alternating grammars are given. Also we discuss various ways of defining
the notion of derivation for these grammars. One option consists in using a specific variable
occurring in a sentential form « to determine whether « itself is existential or universal.
Another option consists in using a distinguished occurrence of a variable in the lefthand
side of a production to declare that production itself to be existential or universal. We will
show that both these options yield the same generative power for the classes of alternating
grammars considered, if in both approaches we use the leftmost variable occurrence for this
choice.

Then in Section 3 we study the relationship of alternating grammars to state-alternating
grammars working in leftmost mode. The main result of this section states that, with respect
to leftmost derivations, APSGs (and therewith also SAPSGs) have the same expressive power
as sSACFGs. In Section 4 we compare alternating grammars to state-alternating grammars
working in unrestricted mode. Finally, Section 5 is devoted to the study of the relationship
between ACSGs on the one hand and the ALBAs on the other hand. The paper closes with
Section 6, where some open problems are presented.

2 Alternating Grammars

As defined in [Mor89] an alternating context-free grammar is a grammar G = (V, U, %, P, S),
where V' is a set of variables (or nonterminals), U C V is a set of universal variables, while
the variables in V' ~\ U are called existential, 3 is a set of terminals, S is the start symbol,
and P is a set of context-free productions. In the derivation process an existential variable is
rewritten as usual, but a universal variable is rewritten by applying all productions with that
variable as left-hand side simultaneously, thus giving a finite number of successor sentential
forms. In this way a derivation is not a linear chain, but it has the form of a tree. A terminal
word w can be derived from G, if there exists a finite derivation tree in the above sense such
that the root is labelled with the start symbol and all leaves are labelled with w. By ACFG
we denote the class of alternating context-free grammars.

An alternating phrase-structure grammar is a general phrase-structure grammar G =
(V,U, %, P,S), where V is a set of variables (or nonterminals), U C V is a set of universal
variables, while the variables in V' \ U are called ezistential, ¥ is a set of terminals, S is the



start symbol, and P is a set of productions, where (¢, ) € P implies that ¢, € (VUX)*, and ¢
contains at least one variable. If |¢| < |r| holds for all productions (¢,7) € P, then G is called
an alternating context-sensitive grammar. By APSG we denote the class of all alternating
phrase-structure grammars, while ACSG denotes the class of all alternating context-sensitive
grammars.

It remains to specify the way in which derivations are performed by an alternating gram-
mar G. In particular, we must determine a way to distinguish between existential and univer-
sal derivation steps. There are various options. First of all we can use a specific nonterminal
occurring in a sentential form o to determine whether « itself is existential or universal. For
example, we could use the leftmost variable occurring in « for that, that is, if « = zAS, where
xeX, AeV, and g € (VUX)* then we call « an existential sentential form if A € VU,
and we call a a universal sentential form if A € U. To apply a derivation step to «, we nonde-
terministically choose a substring ¢ of a that occurs as the left-hand side of one or more rules
of P. Now if « is existential, then one of these rules is chosen, and a = v£d is rewritten into
~rd, where (¢,r) € P is the rule chosen. If « is universal, then let (¢,71),..., (¢,7,) be those
rules of P with left-hand side £. Now all these productions are applied simultaneously, thus
giving a finite number of successor sentential forms vr14, ...,yr,d. In this way a derivation
is not a linear chain, but it has the form of a tree. A terminal word w can be derived from
G, if there exists a finite derivation tree in the above sense such that the root is labelled with
the start symbol S and all leaves are labelled with w. Observe that in this way the rules
themselves are neither existential nor universal, but that it purely depends on the type of the
leftmost variable in the actual sentential form whether the next derivation step is existential
or universal. Below we will use the notation =¢ to denote this derivation relation. By L°(G)
we denote the language that is generated by G using this derivation relation.

As an alternative we can use a distinguished occurrence of a variable in the left-hand
side of a rule to declare that rule as being existential or universal. Of course, this must be
done in a consistent way, that is, for all rules with the same left-hand side, the same variable
occurrence must be chosen. Then for a = 49, if ¢ is existential, then « is rewritten into
~rd, where (¢,7) € P is one of the rules with left-hand side ¢, and if ¢ is universal, then « is
rewritten simultaneously into yr10,...,yr,d, where (¢,71),...,(¢,ry) are all the rules in P
with left-hand side ¢. For example, we could always use the leftmost variable occurrence in ¢
for this. We will use the notation = to denote this derivation relation. By L(G) we denote
the language that is generated by G using this derivation relation.

The following example demonstrates that the derivation relations =¢ and = will in
general yield different languages.

Example 2.1. Let G = ({S, 4, B},{B},{a,b,c}, P,S) with P = {S — AB,A — a,A —
ab,B — ¢,B — bc}. Then with respect to =¢&, G generates the language L°(G) =
{ac, abc, abbc}, while with respect to =, we only obtain the language L(G) = {abc}. The
reason is the fact that with respect to =, the rules with left-hand side B can be applied in
existential fashion as long as the variable A is still present in the actual sentential form.

However we have the following result.

Proposition 2.2. For each alternating phrase-structure grammar G, there exists an alter-
nating phrase-structure grammar G' such that L(G") = L¢(QG).

Proof. Let G = (V,U, %, P,S) be an alternating phrase-structure grammar. Then G’ :=



(V',U', %, P',S) is defined as follows:

Vo= {A,Ae,Au,Au’Aw,Af,A|A€V}U{(_Le,6_1u|GEE}U{F},
U = {A,|AcV}U{A, Ar|Ac U},

and P’ consists of the following rules, where A,B,C € V, a € X, z,y € ¥*, and o, 3,7 €
(Vux)*

(1) zAeax — 1 if (rAa,r) € P,
(2) zd,a — 1 if (rAa,r) € P,
(3) A — A, forall AeV,
(4) A — Ay for all A€V,
(5) zAya — yBﬂ if (rAa,yBp) € P,
6) zAra — yBp if (xAa,yBf) € P,
(7) zAya — yF if (xAa,y) € P,
(8) zAja — y if (rAa,y) € P,
(9) Fa — aF,

(10) FA — A,

(11) AB — AB. ifAecV~U,
(12) AB — AB, ifAeUl,

(13) AB — AB, ifAeUl,

(14) Aa  — Aa. ifAcV~U,
(15) Aa  — Aa, ifAel,

(16) B.C — BC,,

(17) B,C — BC,,

(18) B,C — BC,,

(19) Be.a  — Bae,

(20) Bya  — Bay,

(21) aC — aC.,

(22) a,C — aCy,

(23) @, C — aCy,

(24) acb —  abe,

(25) ayb  — ab,.

The leftmost variable within a sentential form is marked by the dot. Using indices e and u
the information about the type of this variable (existential or universal) is sent from left to
right using the existential variables Be, By, Ge, a4y (B € V,a € X). In the universal case at
the proper place a universal variable of the form B, is generated. Then a variant of a rule
of P of type (1) (in the existential case) or (2) (in the universal case) is applied to simulate
the corresponding =¢-step. If a rule is applied that involves the leftmost variable within the
current sentential form, then the variants with indices w or f are used to nondeterministically
distinguish between the case that further variables occur in the sentential form further to the
right (case w) or that no further variables occur (case f). In the former case the dot is moved
right to the leftmost variable in the next sentential form, using the variable F' to cover the
case that the rule used in the actual derivation step has no variable occurrences in its right-
hand side. By induction on the number of steps in a =-¢-derivation it can now be shown
that L¢(G) C L(G"), and analogously the converse inclusion can be established. O

Observe that in the above construction the rules of type (10) are the only ones that are
not monotone if the rules of G are monotone. In this case, however, we can use new variables



of the form @ instead of F, as in a monotone grammar no e-rules occur. Thus, we also have
the following result.

Proposition 2.3. For each alternating context-sensitive grammar G, there exists an alter-
nating context-sensitive grammar G’ such that L(G') = L¢(G).

Further, we have the following converse of Proposition 2.2.

Proposition 2.4. For each alternating phrase-structure grammar G, there exists an alter-
nating phrase-structure grammar G' such that L°(G') = L(QG).

Proof. Let G = (V,U, %, P,S) be an alternating phrase-structure grammar. Then G’ :=
(VI U, %, P, S,) is defined as follows:

V, = {A)AE;AuaAevA’LHAE?AU’AuaA{u,aAEW)aAgf)aASLw)aASLf) ‘ A 6 V}U
{F,F H,H} U {ade,a, | a € 2},
U = {A, A AP (aeuy,

and P’ contains the following rules, where A, B € V,a,b € ¥, x,y € ¥*, and «, 3,7 € (VUX)*:

(1) Ae - Au,

(2) A.B — A.B.,

(3) Aea — A,

(4) A,B — A B,,

(5) AB — AL HB,,

(6) Aga — Ala,,

(7) A.B — AB.,

(8) AyB — AB,,

(9) AB — AHB,,

(10) a.B — aB.,

(11) a.b — abe,

(12) ayB — aBy,

(13) a,B — aHB,,

(14) aub — aby,

(15) rA.a — Fp if (rAa,B)e P, AcV \U,
(16) zHA,0 — Ff if (xAa,B) € P, AU,
(17) CF — FC for all C € VU X,

(18) CH — HC for all C € VU X,

(19) HC — CH for all C € VU,

(20) AF — A,

(21) AP — A,

(22) A H — AH,

(23) A, — AW,

(24) A, — AV,

(25) A, — AW,

(26) Au — Agf),

(27) 2AWa - yB.[3 if (xAa,yBf) € Pand A€V \ U,
(28) 2APa — yB.f3 if (rAa,yBf) € Pand A€V \ U,



(29) zAWa - yB.3 if (xAa,yBB) € P and A € U,
30) 24’ — yB.8 if (vAa,yBB) € P and A€ U,
(31) 2 AMa - yF f(rAa,y) € Pand A€V \ U,
(32) 2APa - y if (rAa,y) € Pand A€V \ U,
(33) 2 AWa - yF f (rAa,y) € Pand A €U,
(34) zADa - y f (rAa,y) € Pand A€ U,
(35) FB — B,

(36) Fa — aF

Consider a derivation step yAyxBad =g yAvyrd, where z,y € 3*, A, B €V, and «a,~,d,r €
(VUX)* and (zBa — r) € P is the production being applied. This step is simulated by a
sequence of =¢,-steps as follows.

Before the simulation begins the sentential form yAyzBad is encoded as yA.yzBad, that
is, the leftmost variable in a sentential form is marked by a dot. If the G-step to be simulated
is universal, that is, if B € U, then the variable A, is rewritten to A, by production (1).
Observe that Ae and Au are both existential variables of G’. Next the index e or u is moved
to the right using productions (2) to (14). In this process the variable A, or A, is replaced
by the variable A, or A, respectwely, which are both existential. In this way the sentential
form yAe’}/:UB ad or yAu'ny Byad is reached. In the former case production (15) can now
be used to simulate the corresponding existential step of G, which yields the sentential form
yfle’y]:" rd.

The universal case is more complicated. In this case the variable H is moved left by using
production (18), and then the substring A’ H is rewritten into A, H by production (22), which
yields the sentential form yA, HyzB,ad. Observe that the variable A, is universal, that is,
as long as this variable is the leftmost variable of the actual sentential form, all derivation
steps are universal. However, to the sentential form yA, HyzB,ad only production (19) is
applicable, which shifts the symbol H to the right until the sentential form yA,vzH Byad is
obtained. Now production (16) becomes applicable, that is, the universal step of G is being
simulated, which yields the sentential forms of the form y/luyﬁré.

In both cases only production (17) is now applicable, which moves the symbol F to
the left until it meets the symbol A, or flu, respectively, which it then converts into A,
by productions (20) or (21). In this way the sentential form yA.yrd is obtained, and the
simulation of the next derivation step of G starts.

Productions (23) to (36) are used whenever a G-derivation step must be simulated that
involves the leftmost variable occurring in the actual sentential form. This is similar to the
situation in the proof of Proposition 2.2. It follows that L¢(G’) = L(G) holds. O

Again it is possible to adjust the construction in the proof of Proposition 2.4 to the case
of context-sensitive grammars, which yields the following result.

Proposition 2.5. For each alternating contexrt-sensitive grammar G, there exists an alter-
nating context-sensitive grammar G' such that L°(G') = L(G).

Thus, we see that for context-sensitive as well as for general phrase-structure grammars,
both definitions of alternation yield the same expressive power. Therefore we restrict our
attention in the rest of this paper to alternating grammars for which the leftmost variable
occurring in the lefthand side of a production determines whether the production itself is
existential or universal.



In addition to the unrestricted derivation mode, we are also interested in the so-called
leftmost derivation mode. A derivation step a = V4§ =g yrd, respectively a = ) =¢
(Y716, ..., yrmd), is called leftmost if v € ¥*, that is, this step involves the leftmost variable
occurrence in «. By Ljn(G) we denote the language consisting of all terminal words that G
generates by leftmost derivations. It is obvious that with respect to leftmost derivations the
above two definitions of the derivation process of an alternating grammar coincide, if in both
definitions the leftmost variable occurrence is chosen.

The following example illustrates the behaviour of leftmost derivations in non-context-free
grammars.

Example 2.6. Let G = (V, X, S, P) be the context-sensitive grammar that is given through
V .={S,B}, ¥ :={a,b,c}, and P :={S — aSBe¢,S — aBc,aB — ab,bB — bb,cB — Bc}.
Consider the following leftmost derivation mod G:

S =q aSBc = aaSBcBc =¢ aaaBcBcBce
=g aaabcBcBce =g aaabBccBe =g aaabbccBe
=a aaabbcBce =g aaabbBcce =  aaabbbecce.

Actually, it can be shown that in leftmost mode G generates the non-context-free language
Lin(G) ={a™"c" | n>1} = L(G).

Let G' = (V',%,S, P’) be the context-sensitive grammar that is given through V' :=
{S,A,B}, ¥ = {a,b,c}, and P' := {S — ASBc¢,S — ABc¢,AB — Ab,bB — bb,cB —
Be, A — a}. Consider the following leftmost derivation mod G”:

S = ASBc =g aSBc =qa aASBcBc
=qo aaSBcBc =g aaABcBcBe.

To the sentential form aaABcBcBc the rules A — a and AB — Ab both apply in leftmost
mode. The first one yields the sentential form aaaBcBcBc, to which no further leftmost
derivation step is applicable, while the second one yields the sentential form aaAbcBcBe,
from which we can continue with the following leftmost derivation:

aaAbcBcBe = aaabcBcBe =7, aaabbbcce.

Thus, even in leftmost derivation mode rules with non-identical lefthand sides may both be
applicable to the same sentential form.

X Finally, let G = (V,Z,S, ]5) be the context-sensitive grammar that is given through
V:={S,A,B,B C}, ¥:={a,b,c}, and P := {S — ASBC,S — ABC,AB — AB',B'B —
B'B',CB — BC,A — a,B’ — b,C — c}. Consider the following leftmost derivation mod G:

S =4 ASBC =4 aSBC =5 aASBCBC
=& waSBCBC =4 aaABCBCBC =4 aaAB'CBCBC
=& waaB'CBCOBC =4 aaabCBCBC =4 aaabBCCBC,

to which no further leftmost derivation step applies. In fact, Lim(G) = {abc}, while L(G) =
{a™"c" |n>1}.

Thus, although the grammars G, G’, and G all generate the same language in unrestricted
derivation mode, they behave very differently when restricted to leftmost mode.



In [Mat64] it is shown that the language Lim(G) is context-free if G = (V, X, 5, P) is a
phrase-structure grammar such that each rule (¢ — r) € P has the structure

= xgA121 - Tp_1Anxy — 0172 - - Tp—1BpTy =71

for some n > 1, where zg,2; € ¥*, 4, € V, and §; € (VUX)* for all 1 < i < n (see,
e.g., [MaSa97], p. 198).

Below we will see that a corresponding result also holds in the setting of alternating
grammars. To simplify the discussion we will assume in the following that, for an alternating
phrase-structure grammar G = (V,U, %, P,S), each rule (¢{ — r) € P has the form ¢ =
xAa — zf8 = r, where x € ¥*, A € V, and o, € (V UX)*. Obviously, this restriction
contains the above restriction as a special case. Also it is trivially satisfied by all grammars
for which the lefthand side of each production begins with a nonterminal (or consists solely
of nonterminals). Observe that neither the grammar G nor the grammar G’ of Example 2.6
meet this restriction, but that the grammar G satisfies it.

We denote the class of languages generated by grammars of type X with respect to the
leftmost derivation mode by Lj,(X), while £(X) is used to denote the class of languages
generated by grammars of type X in the unrestricted derivation mode.

In [MHHO)] also a different type of alternating context-free grammars was introduced and
studied. These are the so-called state-alternating context-free grammars (SACFG), which are
obtained by combining the notion of grammars with states of Kasai [Kas70] with the notion of
alternation. Analogously, we define the state-alternating phrase-structure grammar as an 8-
tuple G = (Q,U,V, X, P, S, qo, F'), where @ is a finite set of states, U C Q is a set of universal
states, while the states in @ \ U are called existential states, V is a finite set of variables, X
is a set of terminals, S € V is the start symbol, qg € @ is the initial state, and F' C @ is a
set of final states. Finally, P is a finite set of productions of the form (p,¢) — (q,r), where
p,geR,Le (VUL V. (VUX)* and r € (VUX)™

The derivation relation =7 is defined on the set @ x (V U X)* of extended sentential
forms. Let p € Q and « € (V UX)*. If p is an existential state, that is, p € @ ~\ U, then
(p, @) =¢ (g, a1raz), if @ = ajlasg, and there exists a production of the form (p, ) — (g,r).
If p is a universal state, o has the factorization o = alag, and (p,¢) — (g, 1) (1 < i < k)
are all the productions with lefthand side (p, £), then

(p, @) =¢ ((q1,1r102), . . ., (G, 1TR2)),

that is, all these productions are applied in parallel to the chosen occurrence of the substring ¢,
and following this step all these sentential forms are rewritten further, independently of each
other. In this way a derivation tree is obtained.

The language L(G) that is generated by G consists of all words w € ¥* for which there
exists a derivation tree such that the root is labelled with (go,S) and all leaves are labelled
with pairs of the form (p,w) with p € F. Note that the labels of different leaves may differ
in their first components.

If |¢] < |r| holds for all productions (p,¢) — (g, r) of P, then G is called a state-alternating
context-sensitive grammar, and if £ € V for all productions (p,¢) — (g,r) of P, then G is a
state-alternating context-free grammar. By sACFG, sACSG, and sAPSG we denote the classes
of state-alternating context-free, context-sensitive, and general phrase-structure grammars,
respectively. As before we are interested in the expressive power of these grammars with
respect to the leftmost and the unrestricted derivation modes. It is known that the class



Lim(sACFG) of languages that are generated by state-alternating context-free grammars in
leftmost mode coincides with the class of languages that are accepted by alternating pushdown
automata ([MHHO| Theorem 6.4).

3 On Alternating Grammars Working in Leftmost Mode

Here we will consider the generative power of alternating grammars with respect to the
leftmost derivation mode. From the discussion on the leftmost derivation mode above we
recall that we require in this section that each production of an alternating grammar is of the
form (zAa — zf), where x € ¥*, A € V, and o,0 € (V UX)*. For state-alternating
grammars, we require correspondingly that each production is of the form ((p,zAa) —
(¢,xf3)), where p and ¢ are states.

Lemma 3.1. £;,(ACSG) C L}, (sACSG).

Proof. Let G = (V,U, %, P, S) be an ACSG that satisfies the above condition. We construct
an sACSG G’ = (Q,Q",V, %, P, S, qo, F) satisfying Lim(G") = Lim(G). To this end we choose

Q = {[A[AeV}u{[?}, Q" = {[A]|AeU},
q ‘= [?}7 F {[?]}7

and define P’ as follows:

(17, 4) — ([4],4) forall AeV,
([A],zAa) — ([?],zB) for all (rAa — z3) € P.

Let wA~y be a sentential form of G, where w € ¥*, A € V, and v € (VUZX)*. Assume further
that G contains the production (rAa — x3), and that w = wox and v = ad hold. Then
with respect to G, we have the leftmost derivation step wAvy = worAad =g wezFs. From
the definition above we see that G’ can execute the following leftmost derivation:

(17, wAy) = ([4], wAY) = ([A], worAas) = ([7], wox3o).

Here the first step is existential, and the second step is existential if and only if the above
step of G is existential. Thus, it follows immediately that the leftmost derivations mod G are
in one-to-one correspondence to the leftmost derivations mod G’. Thus, Lin(G') = Linm(G).

O

By the same proof we obtain an analogous result for alternating phrase-structure gram-
mars.

Lemma 3.2. £;,(APSG) C £, (sAPSG).
However, for APSGs we even have the following result.
Lemma 3.3. £,(APSG) C £, (sACFG).

Proof. Let G = (V,U,%, P,S) be an APSG, let k := max{|{| | ({ — r) € P}, and let
Y :={a|a € X} be a set of new variables that are in one-to-one correspondence to . By
~: (VUX)* — (VUX)* we denote the morphism that is defined through A +— A for all A € V
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and a — a for all a € 3. We define an sACFG G = (Q U V' 5, PS5 q) F') as follows,
where S’,$, ¢ are new variables, and V := {yza | x,y € X%, |yz| < k, a € (VUXR)*, |a] <k }:

Q = {[yzal. [y#tza] | yaa € V'), V= VUS US54}
U = {[y#za] |yza eV, a e U - (VUI)*}, F' = {[e]},
a0 = [e],

and P’ consists of the following productions, where a € ¥, X € V, A € VU, and a €
(Vux)*

0) ([e], 5') — (€], 5¢)-

1) (a) (o), X) — ([aX],e), ®) ([a,X) — ([aX],$) forall |o| < 2k.
() ([o],a) — ([aal,e), (d) ([o),a) — ([aa],$) for all || < 2k.

[aa], A) — ([a],aA) for all |o| < 2k.
[y#xAal,$) — ([yz], B) for all yx € X*, |yx| < k, if (rAa — 3) € P.

[l ¢) — ([e],€)-
[yzal,$) — ([y#za],$) for all yza € V.

The states of G’ of the form [yxa| and [y#za] are introduced to hold information on
the portion zAa of a G-sentential form yxAa-y such that A« can be the lefthand side of a
G-production, where y,x € ¥*, A € V, and «,y € (VUX)*. The first step of a G’-derivation
is ([e], S") = ([g], S¢), and the ¢-symbol will remain unchanged until the sentential form
contains this symbol as the only variable left.

Let zAa — x0 be a production in P. Consider a leftmost G-derivation step zyxAay =
2yx By, where zy € X* |y| < k —|z|, and v € (V U X)*. Assume that in G’ we have already
derived the sentential form ([yz], zAa7¢). Then we can execute the leftmost G'-derivation

(lyl, zAav¢) = ([yzd], za7¢) =" ([yrAa], 2$7¢)
= (ly#zdal, 285¢) = (lyz], 207¢).

Productions of type (1) choose nondeterministically either to further expand the substring
« of the current sentential form zay obtained so far as a candidate for the lefthand side of a
production to be applied to the sentential form or to terminate this process.

Note that zAa is a universal (existential, resp.) string for G if and only if A € U
(A € VN U, resp.) if and only if [y#xAa] is a universal (existential, resp.) state of G’
for all y € ¥* satisfying |y| < k — |z|, and that by the definition of the productions of
group (3), exactly one production xAa — (3 of G corresponds to the productions of the form
([y#xAa),$) — ([yz],3) of G'. Thus, the above simulation of a G-derivation step by G’
remains valid also if the G-derivation step is universal.

Next the derivation can proceed according to one of the following two cases.

Case 1: If yxBy = uwvBd withuv € ¥*, B € V,and § € (VUX)*, then there is a G'-derivation
([yx], 287¢) =* ([v], 2uBé&¢) by using productions of type (1), (2), and (4), which enables
the application of a production for the next derivation step, whose lefthand side is of the
form v’ By for some suffix v’ of v and a prefix §; of 4.
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Case 2: If 3v is a terminal string, G’ can complete the derivation by using productions of
type (2) and (4) followed by production (5) to terminate the derivation: ([yx], z37%¢) =*
(e], zyxpre) =~ ([e], zyxpr¢) = ([e], zyzB7).

By induction it follows that G’ generates all the strings in Lj,(G) with respect to the
leftmost derivation mode.

The converse inclusion can be proved similarly. The crucial points to note are the follow-
ing:
1. The only universal states of G’ are of the form [y#xA«], where A € U, and so x A« is
a universal string for G if and only if [y#x A« is a universal state of G’ for each y € X*
satisfying |y| < k — |z|.

2. The G'-productions ([y#zAa],$) — ([yx], B) of type (3), which are the only productions
that rewrite sentential forms, correspond to the G-production zAa — . O

Next we see that also the converse of Lemma 3.1 holds.
Lemma 3.4. £, (sACSG) C L, (ACSG).

Proof. Let G = (Q,U,V, %, P,qo, S, F) be an sSACSG. We now construct an ACSG G’ =
(V',U',%, P',S") that generates the same language as G in leftmode mode. Let ¥ := {a | a €
¥ } be a set of new variables in one-to-one correspondence to %, and let ~ : (VUX)* — (VUX)*
be the corresponding morphism. We choose

V' = g, Ale [0, Al |g€Q, Ae VUSIUVUY,
U = {lq,A] |qeU, AV},
S o= [QO7S]7

and we define P’ to consist of the following productions, where p,q € Q, A,B €V, a,be %,
z,y € ¥* and a,f € (VUX)™

(1) [¢,A]e — g, A for all g € @ and all A €V,

(2) z[p,Ala — wxylg, Bl.S for all ((p,rAa) — (¢,2yBp)) € P,
(3) =z[p,Ala — z[q,al.y for all ((p, zAa) — (q,zay)) € P,
(4) [g,aleb  —  alg,ble for all a,b € X,

(5) lg,aleB — alg, Ble for alla € ¥ and all B €V,

(6) [q,ale — a forallg € F and all a € 2.

As G is a context-sensitive grammar, G’ is context-sensitive as well. Further, as G does not
contain any e-rules, the productions of G’ of type (2) and (3) are in one-to-one correspondence
to the productions of G. Actually, this correspondence respects the type of the productions
of being existential or universal.

The basic idea of the simulation of G by G’ is the following. The actual state of G is
combined with the leftmost variable in the current sentential form. Thus, a sentential form
(p,uxAary) of G, where p € Q, u,z € ¥*, A € V, and «a,7 € (V UX)*, is encoded by
the sentential form ux[p, Alcay of G'. Using the production (p,zAa) — (¢, zyBf), we can
execute the leftmost derivation step (p,urAavy) =¢ (q,uxyBpfy). In G’ this is simulated
by uzlp, Al.ay = uxp, Ay =g uxylq, B].37. If a production of the form (p,rAa) —
(¢, zay) is used, then we obtain the leftmost derivation step (p, uzAay) =¢ (g, uzayy), which
is simulated in G’ as follows:

Ul‘[pa A]e@’7 el ’U,LU[ ,A]O?’? = Uﬁ[q, d]egfiy :>*G” U$be2’[q, B]657
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provided that v = zBd for some z € ¥* and B € V.

Note that in both cases, (p,zAxa) — (q,zyBp) (or (p,zAa) — (g,xay)) is a universal
G-production if and only if x[p, AJa — zy[q, Bl.B (or z[p, AJa — x[q,al.y) is a universal
G’-production Thus, the above G’-simulation of a leftmost G-derivation step is also valid, if
the latter one is universal.

A successful leftmost derivation of G ends with a sentential form (¢, w) for some ¢ € F
and w € X7, where in the last step the last occurring variable is replaced by a terminal
string. In G’ the corresponding leftmost derivation will yield a sentential form wz|q, al.gb,
where w = uxzayb. However, using productions of type (4) and (6) we can complete the
corresponding leftmost derivation of G’ by uz|q,al.yb =ty uzaylq,b] = uzrayb = w. It
follows that Ljm(G') = Lim(G) holds. ]

Combining Lemmas 3.1 and 3.4 we obtain the following equivalence.
Theorem 3.5. £;,,(ACSG) = £ (sACSG).

The above proof of Lemma 3.4 can also be adapted to the case of alternating phrase-
structure grammars. If G contains a production of the form (p,xrAa) — (g, z), then we add
a new variable [¢, ?]. to V' and the following non-monotone productions to P’:

z[p, Ala — (g, e,
q,7]ea — [q,ale for all a € X,
lq,?7leB — [¢,B]e forall BeV.

Further, if ¢ is a final state of G, then we also add the production [g,?]. — . With these
modifications we obtain the following result.

Lemma 3.6. L, (sAPSG) C L (APSG).

Combining Lemmas 3.3 and 3.6 with the trivial fact that £m(sACFG) C L, (sAPSG) and
the fact that £, (sACFG) = L(APDA) [MHHO], we have the following equivalence.

Theorem 3.7. L (APSG) = Lin(sAPSG) = Lin(sACFG) = L(APDA).
As Lin(ACSG) C Lin(APSG) holds, Theorem 3.5 and Theorem 3.7 yield the following

consequence.
Corollary 3.8. Lin(ACSG) = Lin(sACSG) C Lim(sACFG) = L(APDA).

Note that the grammar G’ in the proof of Lemma 3.4 is not context-sensitive. At this
moment we do not know whether or not the converse inclusion of Corollary 3.8 holds.
4 On Alternating Grammars Working in Unrestricted Mode

Above we have seen that with respect to the leftmost derivation mode ACSG and sACSG
are equivalent, and also APSGand sAPSG are equivalent. Here we will prove that these
equivalences also hold for the unrestricted derivation mode.

Lemma 4.1. £(ACSG) C L(sACSG).
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Proof. Let G = (V,U, %, P,S) be an ACSG. Similar to the proof of Lemma 3.1 we construct
an sACSG G’ = (Q,Q",V',%, P, S, qo, F) satisfying L(G’) = L(G). However, here we do
not make any assumptions on the form of the productions of G. We take

Q = {[A[AeViu{l7}, Q" = {[A]AecU},
@0 = [7, o= {7}
Vo=V, S' =5,

and define P’ as follows, where x € ¥*, A€V, and o, € (V UX)*:

(7], 4)
([A], 2Aa)

([A],A) forall AeV,
([71,8)  for all (xAa — fB) € P.

—
—

Let wA~ be a sentential form of G, where A € V, and w,y € (VUX)*. Assume further that G
contains the production (rAa — f3), and that w = wjx and v = @d hold. Then with respect
to G, we have the derivation step wAvy = wizAad =g w1 6. From the definition above we
see that G’ can execute the following derivation:

(7, wAY) = e ([A],wAy) = ([A], wizAad) =a ([7], w159).

Here the first step is existential, and the second step is existential if and only if the above step
of GG is existential. Thus, it follows immediately that the derivations mod G are in one-to-one
correspondence to the derivations mod G’. Thus, L(G’) = L(G). O

The same proof applies to alternating phrase-structure grammars, that is, we also have
the following inclusion.

Lemma 4.2. L(APSG) C L(sAPSG).
For establishing the converse inclusions we modify the proof of Lemma 3.4.
Lemma 4.3. £(sACSG) C L(ACSG).

Proof. Let G = (Q,U,V,X%, P, qy, S, F) be an sACSG. From G we construct an ACSG G’ =
(VU %, P’ S’) that generates the same language as G. We choose

V' o= {04l [0, 4] | €Q A€ VUS}UV US,
U = {lq,A] |qeU, AV},
S o= [QO7S]7

and we define P’ to consist of the following productions, where p,q € Q, A € V, x € ¥*,
XeVUuX and a,8 € (VU™

(1) g, 4] — g, A] forallg € Q and all A€V,

(2) zlp,Ala — g, X]ep  forall (p,zAa) — (¢,X)) € P,
3) ¢, X]Y — Xlg,Y]e forall XY e VUYL,

4) X|[q,Y]e — [q,X]Y forall XY e VUZ,

(5)

lq, ale — a forallg € F and all a € X.

As G is a context-sensitive grammar, G’ is context-sensitive as well. Further, as G does not
contain any e-rules, the productions of G’ of type (2) are in one-to-one correspondence to
the productions of G. Actually, this correspondence respects the type of the productions of
being existential or universal.
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The basic idea of the simulation of G by G’ is the following. The actual state of G is
combined with a variable in the current sentential form. Thus, a sentential form (p,wzxAay)
of G, wherepe Q,z € ¥*, Ac V,and w,a,y € (VUX)*, is encoded by the sentential form
wz[p, Aleay of G'. Using the production (p, zAa) — (¢, X[3), we can execute the derivation
step (p,wrAay) =¢ (¢,wX[7y). In G’ this is simulated as follows:

wzlp, Aleay =¢ wxlp, Alay =¢ wlgq, X]e[7.

By the productions of type (3) and (4) the new state symbol ¢ can then be moved to the
occurrence of the leftmost variable in the lefthand side of the rule that is to be applied next.
A successful derivation of G ends with a sentential form (g, w) for some ¢ € F and w € 7T,
where in the last step the last occurring variable is replaced by a terminal string. In G’
the corresponding derivation will yield a sentential form u[q, a]cy, where w = uay. However,
using a production of type (5) we can complete the corresponding derivation of G'. It follows
that L(G') = L(G) holds. O

In the proof above, if G contains e-rules, then we can modify the construction of G’
accordingly to derive the following result.

Lemma 4.4. L(sAPSG) C L(APSG).

Thus, we have the following equalities, where RE denotes the class of recursively enu-
merable languages. Observe that each phrase-structure grammar can be interpreted as an
alternating phrase-structure grammar without universal states. On the other hand, it is
obvious that the derivation process of an alternating phrase-structure grammar can be sim-
ulated by an alternating Turing machine. Hence, we see that in unrestricted mode alternat-
ing phrase-structure grammars have exactly the same expressive power as (non-alternating)
phrase-structure grammars.

Corollary 4.5. (a) L(ACSG) = L(sACSG).
(b) L(APSG) = L(sAPSG) = RE.

5 ACSGs and Alternating Linear Bounded Automata

An alternating linear bounded automaton, ALBA for short, M is given through a 9-tuple
M= (Q,Q",%,T,¢,$,0,q0, F), where @ is a finite set of states, Q¥ C @ is a set of universal
states, X is a finite input alphabet, I' is a finite tape alphabet that includes ¥, the symbols
¢,$ & T are the left and right delimiters for the work space, respectively, gy € @ is the initial
state, F' C @ is a set of accepting (or final) states, and

0:Qx (TU{¢,8}) — P(Qx (MU{¢,8}) x {-1,0,1})

is a transition relation.

A configuration of M is given through a string of the form ¢ugav$, where ¢ € Q, a € T,
and u,v € I'*. Here ¢ is the current state of M, uav is the current tape inscription, and the
head of M is currently scanning the tape cell containing the distinguished occurrence of the
letter a.

Assume that §(q,a) = {(q1,b1, 1), - - -, (Gn, b, in) }. It is required that b; € T (1 < i < n),
if a € T, and that b; = a (1 < i < n), if a = ¢ or a = $. Further, for all i = 1,...,n,
wi # —1,if a = ¢, and p; # 1, if @ = $. Thus, M’s head does never leave the section of
the tape containing the content ¢uav$, and the delimiters can neither be erased nor can new
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occurrences of them be created. If state ¢ is existential, that is, ¢ € Q ~ Q, then a triple
(i, bi, i) is chosen nondeterministically, and M executes the corresponding transformation.
If state ¢ is universal, then M applies all transformation steps given by (g;, b;, i1i) , 1 < i <mn,
simultaneously, which yields n successor configurations. In this way, a computation of M can
be seen as a tree the nodes of which are labelled by configurations.

The initial configuration for an input w € ¥* has the form gp¢w$, that is, M is in its
initial state, scanning the left delimiter ¢, with tape inscription w. The word w is accepted
by M, if there exists a finite computation tree of M the root of which is labelled with the
initial configuration go¢w$, and all leaves are labelled with accepting configurations, that is,
with configurations in which M is in an accepting state. By L(M) we denote the language
consisting of all words that are accepted by M.

It is known that L(ALBA) = L(APDA) = (J..,DTIME(c") [CKS81, LLS84], and that
L(ALBA) = Ljm(sACFG) [MHHO]. Here we will show that £(ALBA) also coincides with
the class of languages that are generated by ACSGs working in the unrestricted derivation
mode. The next lemma shows that ACSGs are of sufficient expressive power to generate all
languages that are accepted by alternating linear bounded automata.

Lemma 5.1. £L(ALBA) C L(sACSG).
Proof. Let M = (Q,Q",%,T,¢,$,6,q0, F) be an ALBA. Obviously we can assume that M

halts immediately when it enters an accepting state, that is, M has no transitions that it
could apply when it is in an accepting state.

We will now construct an sACSG G = (Q\9),U,V, %, P, S, q(()G),F () that generates the
language L(M). In order to simplify the construction we assume that |w| > 2 holds for each
word w € L(M). The finitely many short words excluded by this assumption can be handled
by introducing corresponding additional start rules into G.

The idea of the construction of GG is the same as that underlying the classical construction
of a monotone grammar for simulating a linear bounded automaton (see, e.g., [HoUI79]
Theorem 9.6). Accordingly, we choose

QY = QU {Start,Fin},
U = Q"
Vv = {S,T}uU{]a,b],[¢a,¢b],[a$,b8] |a€e X, beT}
U {la, qb], [¢a, q¢b], [¢a, ¢qb], [a3, bS], [a8,bqS] |a € X, beT, g€ Q},
q(G) = Start
0 9
F(© = {Fin}.

Here the variables of the form [a,b] will be used to describe a tape cell that contained the
letter a at the start of M, but that now contains the letter b, the variables of the form
[a, gb] will be used analogously with the additional information that M is currently in state
g scanning the symbol b. The variables of the form [¢a,¢b] and [a$, b$] are used to describe
the left and the right end of the tape inscription, respectively, and the variables of the form
[¢a,q¢b], [¢a,¢qb], [a$, gb3], [a$, bg$] include in addition information on the current state and
head position.
It remains to describe the productions P of G. They consist of several groups:

(I) The productions of this group are used to generate an encoding of an initial configura-
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tion of M:

(1) (Start,S) — (Start,[¢a,qo¢a]T) foralla e X,
(2) (Start,T) — (Start,|a,a]|T) for all a € 3,
(3) (Start,T) — (qo,[a$,a$]) for all a € 2.

Using these productions GG can generate a pair of the form

(g0, ) == (qo, [¢ a1, go¢ar][az, a2] - - - [an$, a,9])

for any n > 2 and a4, ...,a, € ¥. Observe that qo¢a; - - - a,$ is just the initial configu-
ration of M for the input w :=aq - - - ay.

This group of rules will be used to simulate a computation of M starting from the
initial configuration encoded by the string ag, where ai,as € 3, by,b2,c € I', p,q € Q,
anda€XU((¢-%),BcTU(¢-I),ye(2-$)ux,de(l-$)UT:

(1) (p[ar, balaz, pbo][v,0]) — (¢, [a1,gbrllaz, c][v,d])  if (q,c,—1) € 6(p, b2),
(2) (p; [¢a1,¢bi]az, pba][y,0]) — (g, [¢a1,¢qbi]laz, c][y,4]) if (q,c,—1) € 6(p, b2),
) (p o Bllaz, pbo][v,0]) — (¢ [ev, Bllaz, qc][v, d]) f(g,¢,0) € 6(p, b2),
4)  (p o, Blaz, pbo][v,0]) — (¢ e, Bllaz, ][y, qd]) f(g,¢,1) € 6(p,b2),
(5) (p7 [¢a17¢pb1”77 5]) - (Qa [¢a17q¢ H ]) f(q7 ¢, — 1) S (p, bl)
(6) (p: [¢ar, ¢pbr][v,0]) — (g, [¢a1, ¢qc][y,d]) f(g,¢,0) € 6(p, b1),
(7) (p: [¢ar, ¢pbi][v,0]) — (q,[¢a1, ¢c][y,qd]) f(g,c.1) € 6(p, b1),
(8) (. [¢ar,pebr]) — (g [¢ar, q¢bi]) if (¢,¢4,0) € d(p, ¢),
(9) (p.[¢ar, p¢br]) — (g [¢ar, ¢qbi]) if (¢,¢.1) € 6(p. ¢),
(10)  (p,[a1, bal[az$, pba8]) — (g, [a1, qbi][as28, c§)) f(g,c,—1) € 6(p, b2),
(11)  (p, [¢a1,¢b1][az8, pboS]) — (¢, [¢a1, ¢gbr][a8, c8])  if (q,c,—1) € 6(p, b2),
(12) (a1, b1][a28, pba8]) — (g, [a1, bi][a28, qc8]) f (¢,¢,0) € 6(p, b2),
(13)  (p[ar, ba][a8, pbo8]) — (g, [a1,b1][a28, cg8]) f(g,¢c,1) € 6(p,b2),
(14) (p, [a18,01p8]) — (g, [a18, qb13]) f(q,%,—1) €(p.9),
(15) (p: [a18,b1p8]) — (g, [a1$, b143]) f(g,$,0) € 4(p, $).
On the second components of the symbols in the string [¢ a1, go¢ai][az, az] - - - [an$, an$]

the above productions of G simulate a computation of M starting from the initial con-
figuration go¢a; - - - a,$. Let ¢uapbv$ (u,v € T*, a,b € T', p € Q) be a configuration of
M during that computation, and assume that d(p,b) = {(q1,c1,11), - -+ (Im, Cms o) }-
If p is an existential state, and if alternative 7 is chosen, then

tugiaciv$  if p; = —1,
¢uapbv$ Fyr ¢ ¢uagiciv$ if p; =0,
tuac;qiv$  if p; = 1.
Corresponding to the configuration ¢uapbv$ of M, we have the string

= [¢ar, ¢u1] - (@15 al[@ju)r2, PO) [y 13, V1] - - [@n$, v}y 8],
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where u; is the first letter of u, and v1 and v}, are the first and the last letter of v,
respectively. From the definition of the productions of G we see that

(¢, [¢ar, ¢ur] -~ [ap 1, gial[auyro, cillagy 13, v1] - - - [an$, v 8]) if gy = -1,
(p, ) = § (¢;[¢ar, ¢wa] - [aju)y1, al[aju) 2, @il [ajurs: v1] - - - [an$, v 8]) if 1 =0,
(¢,[¢ar, ¢ua] - [alu\—i-l’a] [a’|u|+2a cil [a\uH-?)a qiv1] - - [an$av|v|$]) if p; = 1.

If p is a universal state, then the transititons (p,b) — (g, ci, pi), 1 < i < m, are all
applied simultaneously. From the definition of G, we see that the corresponding rules
are included in P, and as the state p is also universal for G, all these rules are applied
simultaneously as well. It follows by induction that corresponding to each accepting
computation tree of M on input w, G generates a derivation tree the leaves of which are
labelled with pairs of the form (g, [¢a1, ¢bi]az, ba] - [aj, ¢b;] - - - [an$, b, 8]) with g € F.

Finally we need some productions that allow us to convert an encoding of a pair of the
form above into the string w. For that we introduce the following productions:

(1) (q,la,qb]) — (Finya) forallae X, bel, and q € F,
(2) (q,[¢a,¢qb])) — (Finya) forallae X, beTl, and g € F,
(3) (¢, [¢a,q¢b]) — (Finja) forallae ¥, beT, and g € F,
(4) (q,[a$,qb%]) — (Finja) forallae X, beT, and g € F,
(5) (q,]a%,bg%])) — (Fin,a) forallae X, bel, and g€ F,
(6) (Fin,c[a,b]) — (Fin,ca) forall a,ce X, and beT,
(7) (Fin,c[a$,b8]) — (Fin,ca) foralla,c€e X, andbeT,
(8) (Fin,[a,b]c) — (Finyac) foralla,ce X, andbeTl,
(9) (Fin,[¢a,¢ble) —  (Finyac) for all a,c€ ¥, and beT.

As M halts immediately on reaching an accepting state, we see that there are no
productions in group (II) that G might apply when it has reached an accepting state.
Thus, in this situation G can only continue by applying the corresponding production
from group (III). But from then on, no productions from group (I) or group (II) can ever
be applied again during this derivation, and we see from the form of the productions of
group (III) that each pair of the form (g, [¢a1, ¢b1][ag, ba] - - - [aj, qbj] - - - [an$, bp$]) with
q € F derives the pair (Fin,a; - - ay).

From the discussion above it follows that L(M) C L(G) holds. On the other hand, each
successful derivation of G must be of the form described above, and so it generates a string
that is accepted by M. Hence, we see that L(G) = L(M) holds. O

Also we have the converse of Lemma 5.1.

Lemma 5.2. L(sACSG) C L(ALBA).

Proof. Let G = (Q,U,V, %, P, S, qo, F') be an sSACSG. We can construct an ALBA M as fol-

lows.

This construction is similar to the standard construction of a linear bounded automaton

from a monotone grammar (see, e.g., [HoUI79)]).
First M divides its tape into two tracks. The given input is retained on the first track,
while on the second track a GG-derivation is being simulated. During this simulation M keeps
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the current state of G as part of its own state. For simulating a step (p,alf3) =¢ (¢, arp),
M first guesses the factor ¢ and an occurrence of ¢ that is to be replaced. Assume that
(P, 0) — (q1,71)s---, (P, €) = (Gm,m) are all the productions of G with lefthand side (p,¢).
If p is an existential state, then M nondeterministically chooses an index ¢ € {1,...,m} and
replaces the chosen occurrence of ¢ by the string r;, changing the state of G that it stores
in its finite control from p to ¢;. If p is a universal state, then M executes a universal step,
replacing the chosen occurrence of ¢ by all strings rq, ..., r,;, simultaneously, for each value
of ¢ changing the state of GG it stores internally to the corresponding state g;. Of course, M
halts and rejects if any of the derivation steps of G being simulated tries to exceed the space
marked by the given input.

Whenever a branch of the derivation of G being simulated finishes with a pair of the form
(p,u) such that p € F and u € ¥*, then M compares u to the input w stored on the first
track. If w and w coincide, then this branch of M’s computation halts and accepts; otherwise,
it halts but rejects.

Now w € L(G), if and only if there is a finite derivation tree of G' such that the root is
labelled with the pair (qo, S), and each leaf is labelled with a pair of the form (g, w) for some
g € F. From the above description of M we see that this is the case if and only if there
exists a finite computation tree of M that, starting from the initial configuration on input w,
accepts on all its branches. Hence, we see that L(M) = L(G) holds. O

Thus, we obtain the following theorem.
Theorem 5.3. L£(sACSG) = L(ALBA).

Because of Corollary 4.5 (a) and the fact that £L(ALBA) = L(APDA) = L (sACFG), this
yields the following consequence.

Corollary 5.4. L(ACSG) = L(sACSG) = L(ALBA) = L(APDA) = L (sACFG).
From Corollaries 3.8 and 5.4, the following inclusion follows.

Corollary 5.5. Lin(ACSG) C L(ACSG).

It remains to consider the converse of the above inclusion. By Corollary 5.4 this is
equivalent to the question of whether the inclusion £, (sACFG) C L, (ACSG) holds. As each
e-free SACFG is context-sensitive, we have at least the following special case.

Corollary 5.6. L, (e-free SACFG) C £ (ACSG).

Let k£ be a positive integer. We say that an sACFG G is k-e-bounded if, for each w €
Lim(G), there exists a leftmost G-derivation tree for w such that the number of applications
of e-productions on each path of this derivation tree is bounded from above by the number
k-|w|. G is e-bounded if there exists a constant k such that G is k-e-bounded. Can the above
result be extended to e-bounded sACFGs?

Conjecture. L (e-bounded sACFG) C £;,(ACSG).

6 Concluding Remarks

We have generalized the notion of alternation from context-free to non-context-free gram-
mars. In fact, we have considered two different types of alternation, namely alternation
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 RE L(APSG) == L(sAPSG)
" ETIME = L(APDA) == £(ALBA)
| |
L‘(sAACFG) Lim(sACFG) == L(ACSG) L(SACSG) == Lim(APSG) = Lim(sAPSG)
| | Lin(ACSG) == Lin(sACSG)

L(ACFG) _ Lim(ACFG)  Lim(e-free SACFG)

Sy

CFL

Figure 1: Inclusions relations between language classes defined by various types of alternating
grammars. An arrow denotes a proper inclusion, while a dotted arrow denotes an inclusion
that is not known to be proper.

based on distinguishing between existential and universal variables, and alternation based on
states. In contrast to the situation for context-free grammars we have been able to show that,
for general phrase-structure grammars as well as for context-sensitive grammars, both types
of alternation are equivalent. This holds for the leftmost derivation mode as well as for the
unrestricted derivation mode. Our main result shows that with respect to the leftmost deriva-
tion mode alternating phrase-structure grammars are just as expressive as state-alternating
context-free grammars, and that alternating context-sensitive grammars working in the unre-
stricted derivation mode have the same expressive power, too. In this way we have obtained
new grammar-based characterizations for the class of languages that are accepted by alternat-
ing pushdown automata. The diagram in Figure 1 summarizes the inclusion relations among
the classes of languages we have discussed here. However, an important relation concerning
alternating context-sensitive grammars remains open.

Open Problem 1. Does Lim(ACSG) = L(ACSG) hold?

Observe that the corresponding problem is also still open for alternating context-free
grammars. In the light of our results this problem can be expressed as follows.

Open Problem 2. Does Lim(ACFG) = L (APSG) hold?

This can be seen as the counterpart for alternating grammars to Matthews’ result that
in leftmost mode phrase-structure grammars only generate context-free languages [Mat64].
Another obvious problem is the following.

Open Problem 3. Is £, (ACFG) contained in Li,(ACSG)?

Finally, there are other derivation modes like the leftish mode that we have not considered
in this paper. A derivation with respect to a context-free grammar is called leftish if in
each step the leftmost occurrence of a lefthand side in the current sentential form is being
rewritten. With respect to this mode state-alternating context-free grammars can generate all
recursively enumerable languages, while for (variable-)alternating context-free grammars the
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leftish derivation mode is just as expressive as the leftmost mode [MHHO]. How to define the
leftish derivation mode for (state-) alternating context-sensitive and general phrase-structure
grammars? What is the expressive power of these types of grammars under this mode?

Also it remains to study alternating versions of growing context-sensitive (that is, strictly
monotone) grammars [DaWa86, BuOt98] and their relationship to the shrinking alternating
two-pushdown automaton studied by the authors in [OtMo04].
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