Web Service Composition Systems for the Web
Service Challenge — A Detailed Review

Thomas Weise, Steffen Bleul, Kurt Geihs
University of Kassel
Wilhelmshoher Allee 73
34121 Kassel, Germany
weise|bleul|geihs@vs.uni-kassel.de

November 2, 2007

Abstract

This report gives a detailed discussion on the system, algorithms,
and techniques that we have applied in order to solve the Web Ser-
vice Challenges (WSC) of the years 2006 and 2007. These international
contests are focused on semantic web service composition. In each chal-
lenge of the contests, a repository of web services is given. The input and
output parameters of the services in the repository are annotated with
semantic concepts. A query to a semantic composition engine contains
a set of available input concepts and a set of wanted output concepts.
In order to employ an offered service for a requested role, the concepts
of the input parameters of the offered operations must be more general
than requested (contravariance). In contrast, the concepts of the output
parameters of the offered service must be more specific than requested
(covariance). The engine should respond to a query by providing a valid
composition as fast as possible. We discuss three different methods for
web service composition: an uninformed search in form of an IDDFS
algorithm, a greedy informed search based on heuristic functions, and
a multi-objective genetic algorithm.

1 Introduction

1.1 Web Service Composition

The necessity for fast service composition systems and the overall idea of the
WS-Challenge is directly connected with the emergence of Service-Oriented
Architetures (SOA). Today, companies rely on IT-architectures which are as
flexible as their business strategy. The software of an enterprise must be
able to adapt to changes in the business processes, regarding for instance
accounting, billing, the workflows, and even in the office software. If external

weise | bleul | geihs@vs.uni-kassel.de

vendors, suppliers, or customers change, interfaces to their IT systems must
be created or modified. Hence, the architecture of this software has to be
built with the anticipation of changes and updates [1, 2, 3].

A SOA is the ideal architecture for such systems [4, 5]. Service oriented
architectures allow us to modularize business logic and implement in the form
of services accessible in a network. Services are building blocks for service
processes which represent the workflows of an enterprise. Services can be
added, removed, and updated at runtime without interfering with the ongoing
business. A SOA can be seen as a complex system with manifold services as
well as n:m dependencies between services and applications:

e An application may need various service functionalities.
e Different applications may need the same service functionality.
e A certain functionality may be provided by multiple services.

Business now depends on the availability of service functionality, which is
ensured by service management. Manual service management becomes more
and more cumbersome and ineffective with a rising count of relations between
services and applications. Self-organization promises a solution for finding
services that offer a specific functionality automatically.

Such self-organizing approaches need a combination of syntactic and se-
mantic service descriptions in order to decide whether a service provides a
wanted functionality or not. Common syntactic definitions like WSDL [6]
specify the order and types of service parameters and return values. Semantic
interface description languages like OWL-S [7] or WSMO [8, 9] annotate these
parameters with a meaning. Where WSDL can be used to define a parame-
ter myisbn of the typestring, with OWL-S we can define that myisbn expects a
string which actually contains an 1sBN. Via an taxonomy we can now deduce
that a values which are annotated as either 1sBN-10 or IsBN-13" can be passed
to this service.

A wanted functionality is defined by a set of required output and available
input parameters. A service offers this functionality if it can be executed with
these available input parameters and its return values contain the needed
output values. In order to find such services, the semantic concepts of their
parameters are matched rather than their syntactic data types.

Many service management approaches employ this semantic service dis-
covery [10, 11, 12, 13, 8, 9, 14, 15]. Still there is a substantial lack of research
on algorithms and system design for fast response service discovery. This is
especially the case in service composition where service functionality is not
necessarily provided by a single service. Instead, combinations of services
(compositions) are discovered. The sequential execution of these services pro-
vides the requested functionality.

IThere are two formats for International Standard Book Numbers (ISBNs), ISBN-10
and ISBN-13, see also http://en.wikipedia.org/wiki/Isbn [accessed 2007-09-02].

http://en.wikipedia.org/wiki/Isbn

1.2 The Web Service Challenge

Figure 1: The logo of the Web Service Challenge.

Since 2005 the annual Web Service Challenge? (WS-Challenge, WSC) pro-
vides a platform for researchers in the area of web service composition to
compare their systems and exchange experiences [16, 17, 18]. It is co-located
with the IEEE Conference on Electronic Commerce (CEC) and the IEEE In-
ternational Conference on e-Technology, e-Commerce, and e-Service (EEE).

Fach team participating in this challenge has to provide a software sys-
tem. A jury then uses these systems to solve different, complicated web service
discovery and composition tasks. The major evaluation criterion for the com-
position systems is the speed with which the problems are solved. Another
criterion is the completeness of the solution. Additionally, there is also a prize
for the best overall system architecture.

1.3 The 2006/2007 Semantic Challenge

We have participated both in the web service 2006 and 2007 challenges [19, 20].
We managed to achieve a first place in 2006 and a second place in 2007.
Here we present our system, algorithms and data structures for semantic web
service composition.

The tasks of the 2006 Web Service Challenge in San Francisco, USA and
the 2007 WSC in Tokyo, Japan are quite similar and only deviate in the way
in which the solutions have to be provided by the software systems. Hence, we
will discuss the two challenges together in this single report. Furthermore, we

2see http://www.ws-challenge.org/ [accessed 2007-09-02]

http://www.ws-challenge.org/

only consider the semantic challenges, since they are more demanding than
mere syntactic matching.

2 Semantic Service Composition

In order to discuss the idea of semantic service composition properly, we need
some prerequisites. Therefore, let us initially define the set of all semantic
concepts M. M is a set of trees (taxonomies) of semantic concepts and all
concepts that exist in the knowledge base are members of M.

Definition 1 (subsumes) Two concepts A, B € M can be related in one of
three possible ways. We define the predicate subsumes(X,Y) : X, Y € M to
express this relation as follows:

1. subsumes(A, B) holds if and only if A is a generalization of B (B is
then a specialization of A).

2. subsumes(B,A) holds if and only if A is a specialization of B (B is
then a generalization of A).

3. If neither subsumes(A, B) nor subsumes(B, A) holds, A and B are not
related to each other.

4. subsumes(A, B) and subsumes(B, A) is true if and only if A= B.

If a parameter = of a service is annotated with A and a value y anno-
tated with B is available, we can set x = y and call the service only if
subsumes(A, B) holds (contravariance). This means that x expects less or
equal information than given in y. The hierarchy defined here is pretty much
the same as in object-oriented programming languages. If we imagine A and B
to be classes in Java, subsumes(A, B) can be considered to be equivalent to
the expression .classA.class.isAssignableFromB. If it evaluates to true, a value
y of type B can be assigned to a variable x of type A since y instanceof A will
hold.

From the viewpoint of a composition algorithm, there is no need for a dis-
tinction between parameters and the annotated concepts. The set of services
S contains all the services s known to the service registry. Each service s € §
has a set of required input concepts s.in C M which it expects when being ex-
ecuted and a set of output concepts s.out C M which it will deliver on return.
We can trigger a service if we can provide all of its input parameters. After
its completion, the service will return a set of output parameters as defined
in its interface description.

Similar, a composition request R always consists of a set of available input
concepts R.in C M and a set of requested output concepts R.out C M.

A composition algorithm discovers a (partially®) ordered set of n services
S ={s1,82,...,8) : S1,..., 8, € S that can successively be executed with the

3The set S is only partially ordered since, in principle, some services may be executed
in parallel if they do not depend on each other.

i IR BN V- B SR

accumulated input parameters so that output parameters produced by these
services are treated as available input parameters in the next execution step.
S can be executed with the available input parameters defined in R.in. If it
is executed, it produces outputs that are either annotated with exactly the
requested concepts R.out or with more specific ones (covariance). This is the
case if they can be brought into an order (s1, $2,...,$,) in a way that

isGoal(S) &V A € s1.in A B € R.in : subsumes(A, B) A
VAEs;in,i€{2.n}IB € RinUs;_j.outU...Usy.out : subsumes(A, B) A

VA€ Rout 3B € sj.outU...Usy,.out : subsumes(A, B) (1)

assuming that R.in N R.out = () in the last line of the equation. With
equation 1 we have defined the goal predicate which we can use in any form
of informed or uninformed state space search.

3 The Problem Definition

In the 2006 and 2007 WSC, the composition software is provided with three
parameters:

1. A concept taxonomy to be loaded into the knowledge base of the system.
This taxonomy was stored in a file of the XML Schema format [21].

2. A directory containing the specifications of the service to be loaded into
the service registry. For each service, there was a single file given in
WSDL format [6].

3. A query file containing multiple service composition requests Ry, Ro, . ..
in a made-up XML [22] format.

These formats are very common and allow the contestants to apply the
solutions in real world applications later, or to customize their already existing
applications so they can be used as contribution in the competition.

3.1 Semantic Concepts and Taxonomies

In Section 2 we have discussed that the subsumes relation between two seman-
tic concepts can be compared to the subclass relationship in object-oriented
programming. In the WSC, exactly this analogue is used: Concepts are
treated as data types and taxonomies can be encoded as hierarchies of such
data types in XSD schemas.

<complexType name="Address">
<sequence >
<element name="name" type="string" minOccurs="0"/>
<element name="street" type="string"/>
<element name="city" type="string"/>
</sequence>
</complexType >

8

9
10
11
12
13
14
15
16
17
18

© 0 N O U A W N e

= e
N R O

<complexType name="US-Address">
<complexContent >
<extension base="Address">
<sequence >
<element name="state" type="US-State"/>
<element name="zip" type="positivelnteger"/>
</sequence >
</extension>
</complexContent >
</complexType >

Listing 1: Example for an XSD schema definition.

Listing 1 shows a sample XSD schema defining the data types Address and
US-Address inheriting from Address. In the context of the WSC, this schema
would be interpreted as a taxonomy introducing the concepts Address and
US-Address with subsumes(Address,US-Address).

3.2 Interface Specifications

The interfaces of web services are specified with WSDL in the Web Service
Challenge. The input and output messages of the services may contain multi-
ple parameters. Each parameter is annotated with a semantic concept stored
in the attribute type.

<message name="InputName">

<part name="part0" type="Name"/>

</message>
<message name="OutputAddress">
<part name="partO" type="US-Address"/>
</message>
<portType name="AdressConverter">
<operation name="Convert">
<input message="InputName"/>
<output message="OutputAddress"/>
</operation>
</portType>

Listing 2: Example for a WSDL service interface description.

In listing 2, the service AddressConverter defines one operation named
Convert. It can be invoked with an input message (input-tag) and produces
a response message (output). The value of the attribute message represents
a reference to a message element. Each message has a set of part elements as
children which represent the service parameters, annotated with concepts ref-
erenced by the type-attribute. The convert operation in this example requires
a parameter of the type Name and returns an instance of Us-Address.

3.3 Result Format

The expected result to be returned by the software was also a stream of data in
a proprietary XML dialect containing all possible service compositions that

solved the queries according to equation 1. We will not discuss the data
formats used in this challenge any further since they are replaceable and do
not contribute to the way the composition queries are solved. It was possible
that a request R; was resolved by multiple service compositions. In the 2006
challenge, the communication between the jury and the programs was via
command line or other interfaces provided by the software, in 2007 a web
service interface was obligatory.

Remarkably are furthermore some of the restrictions in the challenge tasks:

e There exists at least one solution for each query.

e The services in the solutions are represented as a sequence of sets. Each
set contains equivalent services. Executing one service from each set
forms a valid composition S. This representation does not allow for any
notation of parallelization.

These restrictions sure will be removed in future WSCs.

Before we elaborate on the solution itself, let us define the operation
get PromisingServices which obtains the set V' C S of services s € S that
produce an output parameter annotated with the concept A (regardless of
their inputs).

Vs € getPromisingServices(A) 3 B € s.out : subsumes(A, B) (2)

The composition system that we have applied in the 2007 WSC consists
of three types of composition algorithms. The search space X that they
investigate is basically the set of all possible permutations of all possible sets
of services. The power set P(S) includes all possible subsets of S. X is then
the set of all possible permutations of the elements in such subsets, in other
words X C {Vperm(€) : € € P(S)}.

4 An (Uninformed) Algorithm Based on ID-
DFS

Our first solution approach is based on an uninformed search. Therefore, we
first discuss uninformed searches before specifying the composition algorithm.

4.1 Uninformed Search

The simplest form of search algorithm is the uninformed search?. It does not
rely on any information about the structure of a possible solution. Generally,
only two operations must be defined in such search algorithms: one that tells
us if we have found what we are looking for (isGoal) and one that helps
enumerating the search space (expand) [23].

4http://en.wikipedia.org/wiki/Uninformed_search [accessed 2007-08-07]

http://en.wikipedia.org/wiki/Uninformed_search

Definition 2 (isGoal) The function isGoal(x) € {true, false} is the target
predicate of state space search algorithms that tells us whether a given state
x € X is a valid solution (by returning true), i. e. the goal state, or not (by
returning false).

Definition 3 (expand) The operator expand(z) computes a set of solution
candidates (states) Xpew from a given state x. It is the exploration operation
of state space search algorithms. Different from the mutation operator of evo-
lutionary algorithms (see Section 6.1.2 on page 18), it is strictly deterministic
and returns a set instead of single individual. Applying it to the same x values
will always yield the same set Xy ey -

Uninformed search algorithms are very general and can be applied to a
wide variety of problems. Their common drawback is that search spaces are
often very large. Without the incorporation of information, for example in
form of heuristic functions, the search may take very long and quickly becomes
infeasible [24, 25, 26].

4.1.1 Depth-limited Search

The depth-limited search® [24] is a depth-first search (DFS) that only proceeds
up to a given maximum depth d. In other words, it does not examine solution
candidates that are more than d expand-operations away from the root state
r, as outlined in algorithm 1. Analogously to the plain depth first search, the
time complexity is b? and the memory complexity is in O(b* d). Of course,
the depth-limited search can neither be complete nor optimal. If a maximum
depth of the possible solutions however known, it may be sufficient.

4.1.2 Iterative deepening depth-first search

The iterative deepening depth-first search® (IDDFS, [24]), defined in
algorithm 2, iteratively runs a depth-limited DFS with stepwise increasing
maximum depths d. In each iteration, it visits the states in the state space
according to the depth-first search. Since the maximum depth is always in-
cremented by one, one new level (in terms means of distance in expand oper-
ations from the root) is explored in each iteration. This effectively leads to a
breadth-first search.

IDDEFS thus unites the advantages of breadth-first search and death-first
search: It is complete and optimal, but only has a linearly rising memory
consumption in O(d * b). The time consumption, of course, is still in O(b%).
IDDFS is the best uninformed search strategy and can be applied to large
search spaces with unknown depth of the solution.

Shttp://en.wikipedia.org/wiki/Depth-limited_search [accessed 2007-08-07]
Shttp://en.wikipedia.org/wiki/IDDFS [accessed 2007-08-08]

http://en.wikipedia.org/wiki/Depth-limited_search
http://en.wikipedia.org/wiki/IDDFS

Algorithm 1: S = di_dfs(r,d)

Input: r € X the node to be explored

Input: d € N the maximum depth

Input: Implicit: expand the expansion operator

Input: Implicit: isGoal an operator that checks whether a state is a
goal state or not

Data: z € X the state currently processed

Data: X € X set of “expanded” states

Output: S € X the solution state found, or 0

begin
if isGoal(r) then return {r}
if d > 0 then
foreach x € expand(r) do
X «— dl_dfs(x,d — 1)
L if X # () then return X

return ()
end

Algorithm 2: S = iddfs(r)

® N o ook w

Input: r € X the node to be explored

Input: Implicit: expand the expansion operator

Input: Implicit: isGoal an operator that checks whether a state is a
goal state or not

Data: d € N the (current) maximum depth

Output: S € X the solution state found, or 0

begin

d«—20

/* This algorithm is for infinitely large search spaces. In
real systems, there is a maximum d after which the whole
space would be explored and the algorithm should return ()
if no solution was found. x/

repeat
S «—— dl_dfs(r,d)
d«—d+1

until S # ()

return S

end

4.2 The IDDFS Composition Algorithm

Our first composition algorithm uses such an iterative deepening depth-first
search. It is only fast in finding solutions for small service repositories but
optimal if the problem requires an exhaustive search. Thus, it may be used
by the strategic planner in conjunction with another algorithm that runs in
parallel if the size of the repository is reasonable small.

Algorithm 3 (webServiceCompositionI DDF'S) builds a valid web service
composition starting from the back. In each recursion, its internal helper
method dl_dfs.wsc tests all elements A of the set wanted of yet unknown
parameters. It then iterates over the set all services s that can provide A.
For every single s wanted is recomputed. If it becomes the empty set (),
we have found a valid composition and can return it. If di_dfs.wsc is not
able to find a solution within the maximum depth limit (which denotes the
maximum number of services in the composition), it returns §). The loop in
webServiceComposition] DDF' S iteratively invokes dl_dfs_wsc by increasing
the depth limit step by step, until a valid solution is found.

5 An (Informed) Heuristic Approach

The IDDFS-algorithm just discussed performs an uninformed search in the
space of possible service compositions. It is slow and memory consuming for
bigger repositories since it does not utilize any additional information about
the search space. If we use such information, we can increase the efficiency of
the search remarkably.

5.1 Informed Search

In an informed search”, a heuristic function helps to decide which nodes are
to be expanded next. If the heuristic is good, informed search algorithms may
dramatically outperform uninformed strategies [27, 28, 29, 23].

Heuristic functions are problem domain dependent. In the context of an
informed search, a heuristic function A : X — Rt maps the states in the
state space X to the positive real numbers Rt. The value h(s) should be
some form of estimate on how likely expanding or testing the state s will
lead to a correct solution or how many expansion steps a correct solution is
away. Here we focus on the latter notation which makes heuristics subject to
minimization. This also means that all heuristics become zero if s already is
a valid solution.

Vs e X :isGoal(s) = h(s) = 0V heuristics h : X — RF (3)

Since the value of a heuristic function h(s) for a state s is the higher, the
more expand-steps s is probably (or approzimately) away from a valid solution,
it represents the distance of an individual to a solution in solution space.

"http://en.wikipedia.org/wiki/Search_algorithms#Informed_search [accessed 2007-08-
08]

10

http://en.wikipedia.org/wiki/Search_algorithms#Informed_search

Algorithm 3: S = webServiceComposition] DDFS(R)

I = T BN - I VR

© w

10
11
12
13
14

15
16

17
18
19
20
21

22

23
24

Input: R the composition request

Data: maxDepth, depth the maximum and the current search depth

Data: in, out current parameter sets

Data: composition,comp the current compositions
Data: A,B,C,D,E some concepts

Output: S a valid service composition solving R

begin

maxDepth «— 2

repeat

S «—— dl_dfs.wsc(R.in, R.out,(, 1)
maxDepth «— maxDepth + 1
until S # ()

end

dl_dfs_wsc(in, out, composition, depth)

begin
return ()
end

foreach A € out do

foreach s € get PromisingServices(A) do
wanted «— out

foreach B € wanted do

if 3C € s.out : subsumes(B, () then
wanted «— wanted \ {B}

foreach D € s.in do

if AF €in: subsumes(D, E) then
wanted «—— wanted U {D}

comp «—— s @ composition
if wanted = () then

return comp

else

if depth < maxDepth then
comp — dl_dfs_wsc(in, wanted, comp, depth + 1)
if comp # 0 then return comp

11

A best-first search® is a search algorithm that incorporates such an es-
timation function v in a way that promising solution candidates s with low
estimation values v(s) are evaluated before other states ¢ that receive a higher
values v(t) > v(s). For estimation functions, the same constraints are valid
as for heuristic functions. Matter of fact, an estimation may be a heuristic
function itself (as in greedy search) or be based on a heuristic function (as in
A* search).

5.1.1 Greedy Search

A greedy search? is a best-first search where the currently known solution
candidate with the lowest heuristic value is investigated next. Here, the esti-
mation function is the heuristic function itself.

The greedy algorithm internal sorts the list of currently known states in
descending order according to a comparator function cp(x1,z2) € R. As a
comparator function, ¢, will be below zero if x; should be preferred instead
of xo (h(x1) < h(zs2)) and higher then zero for all h(xy) > h(xs), which
indicate that x5 is more a more prospective solution candidate. Thus, the
elements with the best heuristic value will be at the end of the list, which
then can be used as a stack.

cn(w1,22) = h(z1) — h(w2) (4)

The greedy search as specified in algorithm 4 now works like a depth-first
search on this stack. It thus also shares most of the properties of the DFS. It is
neither complete nor optimal and its worst case time consumption is . On
the other hand, like breadth-first search, its worst-case memory consumption
is also b™.

Notice that we can replace ¢, with any other valid comparator function.
In principle, we could even apply objective functions and Pareto-based com-
parisons (which are discussed in detail in Section 6.1.1 on page 17).

5.2 The Greedy Composition Algorithm

We can easily derive heuristic functions for the area of web service composi-
tion. Therefore, we will again need some further definitions. Notice that the
set functions specified in the following does not need to be evaluated every
time they are queried, since we can maintain their information as meta-data
along with the composition and thus save runtime.

Let us first define the set of unsatisfied parameters wanted(S) C M in a
candidate composition S as

A cwanted(S) < (Is€S:Ae€sinVAe Rout)A (5)
A& R.in Uiill $i ...(s:€09)

Shttp://en.wikipedia.org/wiki/Best-first_search [accessed 2007-09-25]
9http://en.wikipedia.org/wiki/Greedy_search [accessed 2007-08-08]

12

http://en.wikipedia.org/wiki/Best-first_search
http://en.wikipedia.org/wiki/Greedy_search

Algorithm 4: S = greadySearch(r)

Input: 7 € X the root node to start the expansion at

Input: Implicit: & : X — R the heuristic function

Input: Implicit: expand the expansion operator

Input: Implicit: isGoal an operator that checks whether a state is a
goal state or not

Data: z € X the state currently processed

Data: X € X the sorted list of states to explore

Output: S € X the solution state found, or 0

1 begin

2 X — (r)

3 while X # () do

4 X — sortq(X,cp)

5 x «— deleteListItem(X,|X| — 1)
6 if isGoal(x) then return x

7 X «— appendList(X, expand(x))

return ()
end

©

In other words, a wanted parameter is either an output concept of the com-
position query or an input concept of any of the services in the composition
candidate that hasn’t been satisfied by neither an input parameter of the
query nor by an output parameter of any service. Here we assume that the
concept A wanted by service s is not also an output parameter of s. This
is done for simplification purposes — the implementation has to keep track of
this possibility.

The set of eliminated parameters of a service composition contains all
input parameters of the services of the composition and queried output pa-
rameters of the composition request that already have been satisfied.

S|
eliminated(S) = | R.out U U sian | |\ wanted(S) (6)

=1

Finally, the set of known concepts is the union of the input parameters
defined in the composition request and the output parameters of all services
in the composition candidate.

5]
known(S) = R.in U U s;.out (7)
i=1

Instead of using these sets to build a heuristic, we can derive a compara-
tor function c,s. directly (see Section 5.1.1 on the preceding page). This

13

Algorithm 5: 7 = ¢y5.(51, 52)

17

Input: S;,S, € X two composition candidates

Data: i1,12, €1, e3 some variables

Output: R € Z indicating whether Sy (r < 0) or Sz (r > 0) should be
expanded next

begin

i1 «— |wanted(S1)|
io «— |wanted(S2)|
if 71 <0 then
| if i, <0 then return [S)|— [S| return —1

if io <0 then return 1
e1 < |eliminated(Sy)|
eg «— |eliminated(Ss)|
if e; > ey then return —1
else
L if e; < e; then return 1
if i1 > iy then return —1
else
L if i1 < iy then return 1
if |S1] # |S2| then return |S;| — |Ss|
return |known(Sy)| — |known(Ss)|
end

14

comparator function has the advantage that we also can apply randomized
optimization methods like evolutionary algorithms based on it.

Algorithm 5 defines ¢,,s. which compares two composition candidates Sy
and S. This function can be used by a greedy search algorithm in order to
decide which of the two possible solutions is more prospective. ¢, will return
a negative value if S; seems to be closer to a solution than S5, a positive value
if S5 looks as if it should be examined before S, and zero if both seem to be
equally good.

The first thing it does is comparing the number of wanted parameters. If
a composition has no such unsatisfied concepts, it is a valid solution. If both,
S1 and Ss are valid, the solution involving fewer services wins. If only one of
them is complete, it also wins. If the comparator has not returned a value
yet, it means that both candidates still have wanted concepts. For us, it was
surprising that it is better to use the number of already satisfied concepts
as next comparison criterion instead of the number of remaining unsatisfied
concepts. However, if we do so, the search algorithms perform significantly
faster. Only if both composition candidates have the same number of satisfied
parameters, we again compare the wanted concepts. If their numbers are also
equal, we prefer the shorter composition candidate. If the compositions are
even of the same length, we finally base the decision of the total number of
known concepts.

The form of this interesting comparator function is maybe caused by the
special requirements of the WSC data. Nevertheless, it shows which sorts of
information about a composition can be incorporated into the search.

The interesting thing that we experienced in our experiments is that it is
not a good idea to decide on the utility of a solution candidate with

In order to apply pure greed search, we still need to specify the expand
operator computing the set of possible offspring that can be derived from a
given individual. In algorithm 3, we have realized it implicitly. Additionally,
we can also define the isGoal predicate on basis of the wanted function:

expand(S) = s®SVs,A: s e getPromisingServices(A)A (8)
A € wanted(S)

isGoal(S) = wanted(S) =10 (9)

With these definitions, we can now employ plain greedy search as defined
in algorithm 4 on page 13.

6 A Genetic Approach

6.1 Evolutionary Algorithms

Evolutionary algorithms (EA) [30, 31, 32, 23] are generic, population-based
meta-heuristic optimization algorithms that use biology-inspired mechanisms
like mutation, crossover, natural selection and survival of the fittest.

15

Initial Population Evaluation Fitness Assignment

create an initial compute the objective use the objective values
population of random values of the to determine fitness
individuals individuals values

Reproduction Selection

create new individuals select the fittest indi-

from the selected ones by viduals for reproduction

crossover and mutation

Figure 2: The basic cycle of evolutionary algorithms.

The family of evolutionary algorithms encompasses genetic algorithms (see
Section 6.1.2), genetic programming, evolution strategy, evolutionary pro-
gramming, and learning classifier systems.

The advantage of evolutionary algorithms compared to other optimization
methods is that they make only few assumptions about the underlying fitness
landscape and therefore perform consistently well in many different problem
categories.

All evolutionary algorithms proceed in principle according to the scheme
illustrated in Figure 2:

1. Initially, a population of individuals with a totally random genome is
created.

2. All individuals of the population are tested. This evaluation may incor-
porate complicated simulation and calculations.

3. With the tests, we have determined the utility of the different features
of the solution candidates and can now assign a fitness value to each of
them.

4. A subsequent selection process filters out the individuals with low fitness
and allows those with good fitness to enter the mating pool with a higher
probability.

5. In the reproduction phase, offspring is created by varying or combining
these solution candidates and integrated it into the population.

6. If the termination criterion is met, the evolution stops here. Otherwise,
it continues at step 2.

In the context of this report, especially genetic algorithms are of interest.

16

6.1.1 Multi-Objective Optimization

We can furthermore distinguish between single-objective and multi-objective
evolutionary algorithms (MOEA), where the latter means that we try to op-
timize multiple, possible conflicting criteria. Our following elaborations will
be based on MOEAs. The general area of evolutionary computation that
deals with multi-objective optimization is called EMOOQO, evolutionary multi-
objective optimization.

Definition 4 (MOEA) A multi-objective evolutionary algorithm (MOFEA)
1s able to perform an optimization of multiple criteria on the basis of artificial
evolution [33, 34, 35, 36, 37, 38, 89].

Multi-objective optimization is applied whenever there are different, con-
flicting goals to be achieved with the optimization process. Our web service
composition for example should on one hand be short and on the other hand
complete.

Pareto Optimization Pareto efficiency'?, or Pareto optimality, is an im-
portant notion in neoclassical economics with broad applications in game
theory, engineering and the social sciences [40, 41].

It defines the front of solutions that can be reached by trading-off conflict-
ing objectives in an optimal manner. From this front, a decision maker (be it
a human or another algorithm) can finally choose the configuration that, in
his opinion, suits best [42, 43, 44, 45, 46].

The notation of Pareto optimal is strongly based on the definition of dom-
ination:

Definition 5 (Domination) An element x1 dominates (is preferred to) an
element xo (x1 b x2) if w1 is better than xs in at least one objective function
and not worse with respect to all other objective functions f € F.

T ae Vi:0<i<n= wifi(xl) > wifi(l‘g) A
3] -0 <j <n: wjfj(:rl) > w]‘fj(l’z)

| =1 if fi should be minimized

L 1 if f; should be mazimized

(10)

(11)

The Pareto domination relation defines a partial order on the set of possible
objective values.

6.1.2 Genetic Algorithms

Genetic algorithms are a subclass of evolutionary algorithms that employs
two different representations for each solution candidate. The genotype is
used in the reproduction operations whereas the phenotype is the form of the
individual which can be used for the determining its fitness [47, 48, 49, 50,
51, 23].

O0http://en.wikipedia.org/wiki/Pareto_efficiency [accessed 2007-07-03]

17

http://en.wikipedia.org/wiki/Pareto_efficiency

Mutation Mutation is an important method of preserving individual di-
versity. In fixed-length string chromosomes it can be achieved by modifying
the value of one element of the genotype, as illustrated in Figure 3. More
generally, a mutation may change 0 < n < |g| locations in the string. In bi-
nary coded chromosomes for example, the elements are bits which are simply
toggled. If the genetic algorithm consists of genes that for example identify a
service, such a modification would lead to replacing this service with another
one.

> >

Change One Locus Change n Loci

Figure 3: Bit-toggling mutation of string chromosomes.

If the string chromosomes are of variable length, the set of mutation oper-
ations can be extended by two additional methods. On one hand, one could
insert a couple of elements at any given position into a chromosome. One
the other hand, this operation can be reversed by deleting elements from the
string. It should be noted that both, insertion and deletion, are also implicitly
performed by crossover. Recombining two identical strings with each other
can for example lead to deletion of genes. The crossover of different strings
may turn out as an insertion of new genes into an individual.

b

Insert Delete

Figure 4: Mutation of variable-length string chromosomes.

Crossover Figure 5 outlines the recombination of two string chromosomes.
This operation is called crossover and is done by swapping parts of the geno-
types between the parents.

When performing crossover, both parental chromosomes are split at ran-
domly determined crossover points. Subsequently, a new child chromosome is
created by appending the first part of the first parent with the second part
of the second parent. This method is called one-point crossover. In two-point

18

crossover, both parental genotypes are split at two points, constructing a new
offspring by using parts number one and three from the first, and the mid-
dle part from the second ancestor. The generalized form of this technique is

n-point crossover.
Efjlﬂ EFJW

Cut and Splice

Figure 5: Crossover (recombination) of variable-length string chromosomes.

6.2 A Genetic Composition Algorithm

In order to use a genetic algorithm to breed web service compositions, we first
need to define a proper genome able to represent service sequences. A straight-
forward yet efficient way is to use (variable-length) strings of service identifiers
which can be processed by standard genetic algorithms (see Section 6.1.2 on
page 17). Because of this well-known string form, we also could apply stan-
dard creation, mutation, and crossover operators.

However, by specifying a specialized mutation operation we can make the
search more efficient. This new operation either deletes the first service in .S
(via mutate;) or adds a promising service to S (as done in mutates). Using
the adjustable variable ¢ as a threshold we can tell the search whether it
should prefer growing or shrinking the solution candidates.

- {52752,...,5‘51} Zf‘S|>1
mutater(S) = { S otherwise (12)
mutates(S) = s@®S: s € getPromisingServices(A)A (13)

A € wanted(S)

mutater (S) if random,() > o

mutates(S) otherwise (14)

mutate(S) = {

A new create operation for building the initial random configurations can

be defined as a sequence of mutates invocations of random length. Initially,

mutates () is invoked an will return a composition consisting of a single

service that satisfies at least one parameter in R.out. We iteratively apply

mutates to its previous result a random number of times, in order to a new
individual.

19

6.2.1 The Comparator Function and Pareto Optimization

As driving force for the evolutionary process we can reuse the comparator
function ¢, as specified as for the greedy search in algorithm 5 on page 14.
It combines multiple objectives, putting pressure towards the direction of

e compositions which are complete,

e small compositions,

e compositions that resolve many unknown parameters, and
e compositions that provide many parameters.

On the other hand, we could as well separate these single aspects into
different objective functions and apply direct Pareto optimization. This has
the drawback that it spreads the pressure of the optimization process over the
complete Pareto frontier.

wanted(S)

& generation 0

generation 5

Pareto
frontiers shifting
during the Evolution

correct compositions (i.e. wanted(S)=0) composition size (|S))

Figure 6: A sketch of the Pareto front in the genetic composition algorithm.

Figure 6 visualizes the multi-objective optimization problem “web service
composition” by sketching a characteristic example for Pareto frontiers of
several generations of an evolutionary algorithm. We concentrate on the two
dimension composition size and number of wanted (unsatisfied) parameters.
Obviously, we need to find compositions which are correct, i. e. where the
latter objective is zero. On the other hand, an evolution guided only by this
objective can (and will) produce compositions containing additional, useless
invocations of services not related to the problem at all. The first objective
is thus also required. In Figure 6, the first five or so generations are not
able to produce good compositions yet. We just can observe that longer
compositions tend to provide more parameters (and have thus a lower number
of wanted parameters). In generation 20, the Pareto frontier is pushed farther

20

forward and touches the abscissa — the first correct solution is found. In the
generations to come, this solution is improved and useless service calls are
successively removed, so the composition size decreases. There will be a limit,
illustrated as generation 50, where the shortest compositions for all possible
values of wanted are found. From now on, the Pareto front cannot progress
any further and the optimization process has come to a rest.

As you can see, pure Pareto optimization does not only seek for the best
correct solution but also looks for the best possible composition consisting of
only one service, for the best one with two service, with three services, and so
on. This spreading of the population of course slows down the progress into
the specific direction where wanted(S) decreases.

The comparator function ¢, 5. has proven to be more efficient in focusing
the evolution on this part of the search space. It plays the role of the external
decision maker in the multi-objective optimization scheme defined by Fonseca
and Fleming [52, 38, 53, 54, 55, 23]. The genetic algorithm based on this
function is superior in performance and hence, is used in our experiments.

7 Experimental Results

In Table 1 we illustrate the times that the different algorithms introduced
in this report needed to perform composition tasks of different complexity!!.
We have repeated the experiments multiple times on an off-the-shelf PC'? and
noted the mean values. The times themselves are not so important, rather
are the proportions and relations between them.

The IDDFS approach can only solve smaller problems and becomes infea-
sible very fast. When building simpler compositions though, it is about as
fast as the heuristic approach, which was clearly dominating in all categories.
Because a heuristic may be misleading and (although it didn’t happen in our
experiments) could lead to a very long computation time in the worst case.
Thus we decided to keep the IDDFS and heuristic approach in our system
and run them in parallel on each task if sufficient CPUs are available.

The genetic algorithm (population site 1024) was able to resolve all com-
position requests correctly for all knowledge base and all registry sizes. It was
able to build good solutions regardless how many services had to be involved
in a valid solution (solution depth). In spite of this correctness, it always was
a magnitude slower than the greedy search which provided the same level of
correctness.

Despite of this, the idea of applying a genetic algorithm to web service
composition is maybe not so bad. If the compositions would become more
complicated or would involve quality of service (QoS) aspects, it is not clear

11 The test sets used here are available at http://www.it-weise.de/documents/files/
BWG2007WSC_software.zip [accessed November 2, 2007]. Well, at least partly, I’'ve accidentally
deleted set 12 and 13. Sorry.

129 GHz, Pentium IV single core with Hyper-Threading, 1 GiB RAM, Windows XP, Java
1.6.0..03-b05

21

http://www.it-weise.de/documents/files/BWG2007WSC_software.zip
http://www.it-weise.de/documents/files/BWG2007WSC_software.zip

Table 1: Experimental results for the web service composers.

Test Depth of No. of No. of IDDFS Greedy GA
Solution Concepts Services (ms) (ms) (ms)

1) 56210 1000 241 34 376

2 12 56210 1000 - 51 1011

3 10 582564 10000 - 46 1069

4 15 58254 2000 - 36 974

) 30 58254 4000 - 70 6870

6 40 58254 8000 - 63 24117

7 1 1590 118 <16 <16 290
8.1 2 15540 4480 <16 <16 164
8.2 2 15540 4480 <16 <16 164
8.3 2 15540 4480 <16 <16 164
8.4 2 15540 4480 <16 <16 234
8.5 3 15540 4480 <16 <16 224
8.6 3 15540 4480 <16 <16 297
8.7 4 15540 4480 18 24 283
8.8 3 15540 4480 <16 <16 229
8.9 2 15540 4480 <16 <16 167
11.1 8 10890 4000 - 31 625
11.3 2 10890 4000 - 21 167
11.5 4 10890 4000 22021 <16 281
12.1 5 43680 2000 200320 <16 500
12.3 7 43680 2000 99 31 375
13 6 43680 2000 250 32 422

22

if these can be resolved with a simple heuristic with the same efficiency that
we could observe in our greedy search approach.

8 Architectural Considerations

In 2007, we introduced a more refined version [20] of our 2006 semantic compo-
sition system [19]. The architecture of this composer, as illustrated in Figure 7,
is designed in a very general way, making it not only a challenge contribu-
tion but also part of the ADDO web service brokering system [12, 10, 11]:
In order to provide the functionality of the composition algorithms to other
software components, it was made accessible as a web service shortly after
WSC’06. The web service composer is available for any system where seman-
tic service discovery with the Ontology Web Language for Services (OWL-S)
[7] or similar languages is used. Hence, this contest application is indeed also
a real-world application.

Client
e (a Application - (@2)»
WSC’07 Challenge (b) OWL-S
Documents ‘ Documents
/WSC’07 Composition Web Service \
System Interface |
ﬁ(d ‘
()

Strategy SAX-based <LC)
Planer Input Parser

Knowledge Service SAX-based
Base Register Output Writer
(e)
IDDFS Heuristic A(I;geor:(ietgfn
Composer Composer Composer ®

/

Figure 7: The WSC 2007 Composition System of Bleul and Weise.

An application accesses the composition system by submitting a service

23

request (illustrated by (b)) through its Web Service Interface. It furthermore
provides the services descriptions and their semantic annotations. Therefore,
WSDL and XSD formatted files as used in the WSC challenge or OWL-S de-
scriptions have to be passed in ((al) and (a2)). These documents are parsed
by a fast SAX-based Input Parser (¢). The composition process itself is started
by the Strategy Planer (d). The Strategy Planer chooses an appropriate com-
position algorithm and instructs it with the composition challenge document
(e).

The software modules containing the basic algorithms all have direct access
to the Knowledge Base and to the Service Register. Although every algorithm
and composition strategy is unique, they all work on the same data structures.
One or more composition algorithm modules solve the composition requests
and pass the solution to a SAX-based Output Writer, an XML document
generating module (f) faster than DOM serialization. Here it is also possible
to transform it to, for example, BPELAWS [56] descriptions. The result is
afterwards returned through the web service Interface (g).

One of the most important implementation details is the realization of
the operation get PromisingSeruvices since it is used by all composition algo-
rithms in each iteration step. Therefore, we transparently internally merge the
knowledge base and the service registry. This step is described here because
it is very crucial for the overall system performance.

KnowledgeBase

@ concepts: Conceptl |

@ services: Servicell

@ Constructor()
@ getConcept(String)
O getService(String)

AVA AVA
Service Concept
& name: String == =28 nanme String
& in: Conceptl | @ promisingServices: Servicel]
@& out: Conceptl | @ specializations: Conceptl]
- @ generalization: Concept

@ Constructor(String,Conceptl e = = =
& gotin®: Conceptl] & Constructor(String)

g :

aetOUt(: Concepl] @ getPromisingServices(): List
. @ subsumes(Concept)

Figure 8: The Knowledge Base and Service Registry of our Composition Sys-
tem.

A semantic concept is represented by an instance of the class concept. Each
instance of Concept holds a list of services that directly produce a parameter

24

annotated with it as output. The method getPromisingServices(A) of Concept,
illustrated in Figure 8, additionally returns all the Services that provide a
specialization of the concept A as output. In order to determine this set, all the
specializations of the concept have to be traversed and their promising services
have to be accumulated. The crux of the routine is that this costly traversal
is only performed once per concept. Our experiments substantiated that the
resource memory, even for largest service repositories, is not a bottleneck.
Hence, getPromisingServices caches its results.

This caching is done in a way that is thread-safe on one hand and does
not need any synchronization on the other. FEach instance x of Concept
holds an internal variable promisingServices which is initially nu11. If x
.getPromisingServices() iS invoked, it first looks up if X.promisingServices iS null.
If so, the list of promising services is computed, stored in X.promisingServices,
and returned. Otherwise, X.promisingServices is returned directly. Since we
do not synchronize this method, it may be possible that the list is com-
puted concurrently multiple times. Each of these computations will produce
the same result. Although all parallel invocations of x.getPromisingServices()
will return other lists, their content is the same. The result of the computa-
tion finishing last will remain x.promisingServices whereas the other lists will
get lost and eventually be freed by the garbage collector. Further calls to x
.getPromisingServices() always will yield the same, lastly stored, result. This
way, we can perform caching which is very important for the performance
and spare costly synchronization while still granting a maximum degree of
parallelization.

9 Related Work

9.1 Indexing and Efficient Parsing

As we mentioned in our architectural considerations section, efficient parsing,
indexing, and data representation are vital for being competitive in the WSC.
Other contestants made similar efforts in order to tune the performance of
their systems.

9.1.1 VitaLab

The VitaLab [57] approach for instances uses the Streaming API for XML,
StAX'? which is something like a pull-parsing variant of SAX. For each con-
cept, indexing is done by creating lists of services that consume or produce
in VitaLab. In our approach, only the lists providing services are needed and
they are created on demand rather than building it on bootstrap. In the 2007
extension of this work a greedy search approach was used [58]. Here, the de-
gree to which the input parameters of the query match the already available
ones found by the composition algorithm serves as heuristic function.

13http://www.xml.com/pub/a/2003/09/17/stax.html [accessed 2007-10-25]

25

http://www.xml.com/pub/a/2003/09/17/stax.html

9.1.2 SWSDS

Another index-based approach is the 4 composition system [59]. It can be
used for both, syntactic and semantic matching by simply switching the search
index. SWSDS uses a composition algorithm similar to our uninformed ID-
DFS variant (see algorithm 3 on page 11) but extended with the constraint
that each service is only considered one time to be part of a composition. In
their 2007 contribution, the authors did some fine tuning in code level and
re-implemented the system in C++ (2006 it was written in C#) in order to
improve the performance [60].

9.1.3 Zhang, Yu, et al.

In their composition system Zhang, Yu, et al. utilize hash tables that map the
service to their output and to their input parameters. Using these tables, they
can perform backward and forward service composition based on breadth-first
search. A backwards search (like in our own approach) successively finds ser-
vices that provide unknown parameters until all wanted outputs are satisfied.
Forward searching in this context means that services that can be invoked
with the known parameters are iteratively added to the composition until all
wanted outputs can be generated. Zhang, Yue, et al. outline that backward
searching outperforms forward search and thus, adopt it in their final solu-
tion. However, from the same department another contribution using forward
search has also been handed in [61]. Another similarity to our system is that
they also prefer SAX-based input parsing since it is more efficient than pro-
cessing trees [62]. In 2007, Zhang, Raman, et al. extended their approach by
using heuristic functions based on the number of branches and parameters of
service compositions [63].

9.2 Interfacing Multi-Purpose Systems

We initially created our composition system for the challenge and later found it
efficient and variable enough to integrate it into real systems like the ADDO
project. Other contestants did this the other way round, i. e. modified an
existing multi-purpose composition system for the contest. Such applications
can thus be applied more broadly than specialized solutions, but on the other
hand, trade in some performance.

9.2.1 Using USDL

The composition engine of Kona, Ajay, et al. for instance is based on the
Universal Service-Semantics Description Language (USDL). In order to take
part in the competition, they transformed the files in the service repository
and the composition requests to USDL. After the transformation, a composer

HMSWSDS = SEWSIP Web Service Discovery System, SEWIP = Semantic Web Services
Integration Platform

26

written in Prolog could process and solve them [64]. In their 2007 contribution
[65], the authors use a first-order logic approach based on Constraint Logic
Programming over finite domains (CLP(FD)).

9.2.2 Interfacing with MOVE

In [66], another contribution interfacing with the MOVE framework for design
and execution of business processes in virtual enterprises is discussed. This
solution is interesting because it allows the service repositories to be managed
by different handlers. It is now possible to load small sets of services into
the repository instantly while reading larger sets on demand. Its composer is
based on a planning system.

9.2.3 Interfacing with jUDDI+

JUDDI+ is an extended version of the open source UDDI [67] implementation
by the Apache Software Foundation. jJUDDI+ does not focus on pure seman-
tic matching, but is also able to cope with non-exact matching and effects
duplication. Therefore, it uses the description logics based reasoner MaMaS-
tng!®. In order to apply this approach in the WSC, a mapping to the internal
data formats was required. [68]

9.2.4 The SCE

The Multiagent Web Service Composition Engine (SCE) [69] consist of two
primary architectural components: the Java Agent Development Framework!6
(JADE) and a service description repository. Here, services as well as com-
position requests are represented by agents. These agents communicate with
each other and solve the requests cooperatively.

9.2.5 Interfacing WSPR

The Web Service Planner (WSPR) offers a highly specified forward compo-
sition algorithm. It is accessed via JSP and web services running on a web
application server [70]. Such sophisticated interfaces are beneficial in real-
world applications, in the context of the purely performance-related contest
they may bias the results negatively.

10 Conclusions

In order to solve the 2006 and 2007 Web Service Challenges we utilized three
different approaches, an uninformed search, an informed search, and a ge-
netic algorithm. The uninformed search proofed generally unfeasible for large

15http ://sisinflab.poliba.it/MAMAS-tng/ [accessed 2007-10-25]
16nttp://jade.tilab.com/ [accessed 2007-10-25]

27

http://sisinflab.poliba.it/MAMAS-tng/
http://jade.tilab.com/

service repositories. It can only provide a good performance if the resulting
compositions are very short.

However, in the domain of web service composition, the maximum number
of services in a composition is only limited by the number of services in the
repositories and cannot be approximated by any heuristic. Therefore, any
heuristic or meta-heuristic search cannot be better than the uninformed search
in the case that a request is sent to the composer which cannot be satisfied.
This is one reason why the uninformed approach was kept in our system,
along with its reliability for short compositions.

Superior performance for all test sets could be obtained by utilizing
problem-specific information encapsulated in a fine-tuned heuristic function
to guide a greedy search. This approach is more efficient than the other two
tested variants by a magnitude.

Genetic algorithms are much slower, but were also always able to provide
correct results to all requests. To put it simple, the problem of semantic
composition as defined in the context of the WSC is not complicated enough
to fully unleash the potential of genetic algorithms. They cannot cope with
the highly efficient heuristic used in the greedy search. We anticipate how-
ever, that, especially in practical applications, additional requirements will be
imposed onto a service composition engine. Such requirements could include
quality of service (QoS), the question for optimal parallelization, or the gener-
ation of complete BPEL [71] processes. In this case, heuristic search will most
probably become insufficient but genetic algorithms and genetic programming
[72, 23] will still be able to deliver good results.

In this report, we have discussed semantic composition in general way. The
algorithms introduced here are not limited to semantic web service composi-
tion. Other applications, like the composition of program modules are also
interesting. From general specifications what functionality is needed, a com-
piler could (in certain limits, of course) deduce the correct modules and code
to be linked, using the same methods we use for building service processes.

List of Figures

1 The logo of the Web Service Challenge. 3
2 The basic cycle of evolutionary algorithms. 16
3 Bit-toggling mutation of string chromosomes. 18
4 Mutation of variable-length string chromosomes. 18
5 Crossover (recombination) of variable-length string chromosomes. 19
6 A sketch of the Pareto front in the genetic composition algorithm. 20
7 The WSC 2007 Composition System of Bleul and Weise. 23
8 The Knowledge Base and Service Registry of our Composition
System. 24

28

List of Tables

1

Experimental results for the web service composers. 22

List of Algorithms

1 S=dldfs(r,d) 9

2 S=uddfs(r) ..o 9

3 S =webServiceCompositionI DDFS(R) 11

4 S=greadySearch(r) 13

5 r= cwsc(Sl, SQ) 14
References

[1] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of

Software Engineering. Pearson Education, Prentice Hall, second edition,
ISBN: 9780133056990, September 19, 2002.

Jabir and J. W. Moore. A search for fundamental principles of
software engineering. Computer Standards € Interfaces, 19:155—
160, March 1998. Online available at http://dx.doi.org/10.
1016/50920-5489(98)00009-9 and http://www.gelog.etsmtl.ca/
publications/pdf/249.pdf (accessed 2007-09-02].

Ingrid Wetzel. Information systems development with anticipa-
tion of change: Focussing on professional bureaucracies. In
Proceedings of Hawaii International Conference on Systems Sci-
ences, HICSS 34. IEEE Computer Society, Maui, Hawaii, USA,
January 2001. Online available at http://citeseer.ist.psu.
edu/532081.html and http://swt-www.informatik.uni-hamburg.
de/publications/download.php?id=177 [accessed 2007-09-02].

Eric A. Marks and Michael Bell. FEzecutive’s Guide to Service oriented
architecture (SOA): A Planning and Implementation Guide for Business
and Technology. John Wiley & Sons, Inc., Hoboken, NJ, ISBN: 978-0-
470-03614-3, April 2006.

Thomas Erl. Service-Oriented Architecture (SOA): Concepts, Technol-
ogy, and Design. The Prentice Hall Service-Oriented Computing Series
from Thomas Erl. Prentice Hall PTR, ISBN: 978-0131858589, August 2,
2005.

David Booth and Canyang Kevin Liu. Web Services Description Lan-
guage (WSDL) Version 2.0 Part 0: Primer. World Wide Web Con-
sortium (W3C), June 26, 2007. W3C Recommendation. Online available
at http://www.w3.org/TR/2007/REC-wsd120-primer-20070626 [accessed

2007-09-02].

29

http://dx.doi.org/10.1016/S0920-5489(98)00009-9
http://dx.doi.org/10.1016/S0920-5489(98)00009-9
http://www.gelog.etsmtl.ca/publications/pdf/249.pdf
http://www.gelog.etsmtl.ca/publications/pdf/249.pdf
http://citeseer.ist.psu.edu/532081.html
http://citeseer.ist.psu.edu/532081.html
http://swt-www.informatik.uni-hamburg.de/publications/download.php?id=177
http://swt-www.informatik.uni-hamburg.de/publications/download.php?id=177
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626

7]

[10]

[11]

Anupriya Ankolekar, Mark Burstein, Grit Denker, Daniel Elenius, Jerry
Hobbs, Lalana Kagal, Ora Lassila, Drew McDermott, Deborah McGuin-
ness, Sheila Mcllraith, Massimo Paolucci, Bijan Parsia, Terry Payne,
Marta Sabou, Craig Schlenoff, Evren Sirin, Monika Solanki, Naveen
Srinivasan, Katia Sycara, and Randy Washington. OWL-S 1.1 Release,
OWL-based Web Service Ontology. Web-Ontology Working Group at the
World Wide Web Consortium, 2004. Online available at http://www.
daml.org/services/owl-s/1.1/ [accessed 2007-09-02].

Dumitru Roman, Uwe Keller, and Holger Lausen. WSMO — Web Ser-
vice Modeling Ontology. Digital Enterprise Research Institute (DERI),
February 2004. Online available at http://www.wsmo.org/2004/d2/v0.
1/20040214/ (accessed 2007-00-02]. See also http: //WWW.wsmo. org/ laccessed 2007-
09-02] and [9]

Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Ruben Lara,
Michael Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and
Dieter Fensel. Web service modeling ontology. Applied Ontology, 1:77—
106, 2005. See also http://www.wsmo.org/ (accessed 2007-09-021 and [8].

Steffen Bleul and Thomas Weise. An ontology for quality-aware service
discovery. In C. Zirpins, G. Ortiz, W. Lamerdorf, ; and W. Emmerich, ed-
itors, Engineering Service Compositions: First International Workshop,
WESC05, volume RC23821 of IBM Research Report. Yorktown Heights:
IBM Research Devision, Vrije Universiteit Amsterdam, The Netherlands,
December 12, 2005. See also [11]. Online available at http://www.
it-weise.de/documents/files/BW2005QASD. pdf [accessed 2007-11-2].

Steffen Bleul, Thomas Weise, and Kurt Geihs. An ontology for quality-
aware service discovery. Computer Systems Science Engineering, 21(4),
July 2006. See also [10]. Special issue on “Engineering Design and Com-
position of Service-Oriented Applications”. Online available at http://
www.it-weise.de/documents/files/BWG2006QASD. pdf (accessed 2007-11-2].

Steffen Bleul and Kurt Geihs. Addo: Automatic service brokering in
service oriented architectures, project homepage. Online available at
http://www.vs.uni-kassel.de/ADDO/ (accessed 2007-09-02].

LSDIS Lab (Large Scale Distributed Information Systems), Department
of Computer Science, University of Georgia. METEOR-S: Semantic Web
Services and Processes, 2004. Online available at http://1sdis.cs.uga.
edu/projects/meteor-s/ (accessed 2007-09-02].

Asuncién Gémez-Pérez, Rafael Gonzélez-Cabero, and Manuel Lama. Ode
sws: A framework for designing and composing semantic web services.
IEEE Intelligent Systems, 19:24-31, July-August 2004. Online avail-
able at http://iswc2004.semanticweb.org/demos/14/paper.pdf f|ac
cessed 2007-09-02]. See also [15]

30

http://www.daml.org/services/owl-s/1.1/
http://www.daml.org/services/owl-s/1.1/
http://www.wsmo.org/2004/d2/v0.1/20040214/
http://www.wsmo.org/2004/d2/v0.1/20040214/
http://www.wsmo.org/
http://www.wsmo.org/
http://www.it-weise.de/documents/files/BW2005QASD.pdf
http://www.it-weise.de/documents/files/BW2005QASD.pdf
http://www.it-weise.de/documents/files/BWG2006QASD.pdf
http://www.it-weise.de/documents/files/BWG2006QASD.pdf
http://www.vs.uni-kassel.de/ADDO/
http://lsdis.cs.uga.edu/projects/meteor-s/
http://lsdis.cs.uga.edu/projects/meteor-s/
http://iswc2004.semanticweb.org/demos/14/paper.pdf

[15]

[17]

[18]

[19]

[20]

Asuncién Gémez-Pérez, Rafael Gonzalez-Cabero, and Manuel Lama. A
framework for designing and composing semantic web services. In Seman-
tic Web Services, First International Semantic Web Services Symposium,
Proceedings of 2004 AAAI Spring Symposium Series, History Corner,
main quad (Building 200), Stanford University, CA, USA, March 22-
24, 2004. Online available at http://www.daml.ecs.soton.ac.uk/
SSS—SWSO4/44.pdf [accessed 2007-09-02]. See also [14]

M. Brian Blake, Kwok Ching Tsui, and Andreas Wombacher. The
eee-05 challenge: a new web service discovery and composition com-
petition. In Proceedings of the 2005 IEEE International Conference
on e-Technology, e-Commerce, and e-Service, EEE’05, pages 780-783,
March 29-April 1, 2005. Online available at http://ws-challenge.
georgetown.edu/ws-challenge/The)20EEE. htm [accessed 2007-09-02].

M. Brian Blake, William K.W. Cheung, Michael C. Jaeger, and Andreas
Wombacher. Wsc-06: The web service challenge. In Proceedings of 2006
IEEE Joint Conference on E-Commerce Technology (CEC’06) and En-
terprise Computing, E-Commerce and E-Services (EEE’06), pages 505
508, 2006. See proceedings [73].

M. Brian Blake, William K.W. Cheung, Michael C. Jaeger, and Andreas
Wombacher. Wsc-07: Evolving the web service challenge. In Proceedings
of IEEE Joint Conference (CEC/EEE 2007) on E-Commerce Technology
(9th CEC’07) and Enterprise Computing, E-Commerce and E-Services
(4th EEE’07), pages 422-423, 2006. See proceedings [74].

Steffen Bleul, Thomas Weise, and Kurt Geihs. Large-scale service com-
position in semantic service discovery. In Ws-Challenge Part: M. Brian
Blake, Andreas Wombacher, Michel C. Jaeger, and William K. Cheung,
editors, Proceedings of 2006 IEEE Joint Conference on E-Commerce
Technology (CEC’06) and Enterprise Computing, E-Commerce and E-
Services (EEE’06), pages 427429, 2006. See proceedings [73]. 1st place
in 2006 WSC. Online available at BWG2006WSC.pdf [accessed 2007-11-2]. See
2007 WSC [20].

Steffen Bleul, Thomas Weise, and Kurt Geihs. Making a fast semantic ser-
vice composition system faster. In Proceedings of IEEE Joint Conference
(CEC/EEE 2007) on E-Commerce Technology (9th CEC’07) and En-
terprise Computing, E-Commerce and E-Services (4th EEE’07), pages
517-520, 2007. See proceedings [74]. 2nd place in 2007 WSC. Online
available at http://www.it-weise.de/documents/files/BWG2007WSC.
PAf (accessed 2007-11-2]. See 2006 WSC [19}

David C. Fallside and Priscilla Walmsley. XML Schema Part 0: Primer
Second Edition. World Wide Web Consortium (W3C), second edition,
October 28, 2004. W3C Recommendation. Online available at http://
www.w3.org/TR/2004/REC-xmlschema-0-20041028/ (accessed 2007-09-02].

31

http://www.daml.ecs.soton.ac.uk/SSS-SWS04/44.pdf
http://www.daml.ecs.soton.ac.uk/SSS-SWS04/44.pdf
http://ws-challenge.georgetown.edu/ws-challenge/The%20EEE.htm
http://ws-challenge.georgetown.edu/ws-challenge/The%20EEE.htm
BWG2006WSC.pdf
http://www.it-weise.de/documents/files/BWG2007WSC.pdf
http://www.it-weise.de/documents/files/BWG2007WSC.pdf
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and
Francois Yergeau. Euxtensible Markup Language (XML) 1.0 (Fourth
Edition). World Wide Web Consortium (W3C), September 29, 2007.
W3C Recommendation. Online available at http://www.w3.org/TR/
2006/REC—X1111—20060816 [accessed 2007-09-02].

Thomas Weise. Global Optimization Algorithms — Theory and Applica-
tion. Thomas Weise, 2007-11-2 edition, 2007. Online available at http://
www.it-weise.de/ |accessed 2007-11-2).

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, second edition, ISBN: 0137903952, December
2002.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-
duction to Algorithms. MIT Electrical Engineering and Computer Sci-
ence. The MIT Press and McGraw-Hill, second edition, ISBN: 0-2625-
3196-8, first edition: 978-0262031417, August 2001. First edition June
1990.

Werner Dilger. FEinfihrung in die Kinstliche Intelligenz. Chemnitz
University of Technology, Faculty of Computer Science, Chair of Ar-
tificial Intelligence (Kiinstliche Intelligenz), April 2006. Lecture notes
for the lectures artificial intelligence. Online available at http://www.
tu-chemnitz.de/informatik/KI/skripte.php |accessed 2007-08-06].

Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern
Heuristics. Springer, second, revised and extended edition, ISBN: 978-
3540224945, December 2004.

V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D. Smith,
editors. Modern Heuristic Search Methods. Wiley, ISBN: 978-0471962809,
December 1996.

Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Prob-
lem Solving. The Addison-Wesley series in artificial intelligence. Addison-
Wesley Pub (Sd), ISBN: 978-0201055948, April 1984.

Thomas Béack. Evolutionary Algorithms in Theory and Practice: Evolu-
tion Strategies, Evolutionary Programming, Genetic Algorithms. Oxford
University Press, ISBN: 0195099710, January 1996.

Thomas Back, David B. Fogel, and Zbigniew Michalewicz, editors. Hand-
book of Evolutionary Computation. Computational Intelligence Library.
Oxford University Press in cooperation with the Institute of Physics Pub-
lishing, Bristol, New York, ringbound edition, ISBN: 0750303921, April
1997.

32

http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.it-weise.de/
http://www.it-weise.de/
http://www.tu-chemnitz.de/informatik/KI/skripte.php
http://www.tu-chemnitz.de/informatik/KI/skripte.php

32]

[35]

[36]

[37]

Thomas Back, Ulrich Hammel, and Hans-Paul Schwefel. Evolu-
tionary computation: comments on the history and current state.
IEEE Transactions on FEvolutionary Computation, 1:3-17, April
1997. Online available at http://sci2s.ugr.es/docencia/doctobio/
EC-History-IEEETEC-1-1-1997.pdf and http://citeseer.ist.psu.
edu/601414 . html [accessed 2007-08-24].

Carlos Artemio Ceollo Coello. A comprehensive survey of evolutionary-
based multiobjective optimization techniques. Knowledge and Informa-
tion Systems, 1(3):269-308, August 1999. Online available at http://
www.lania.mx/~ccoello/EMO0/informationfinal.ps.gz and http://
citeseer.ist.psu.edu/coello98comprehensive.html (accessed 2007-08-25).

Carlos Artemio Ceollo Coello. An updated survey of evolutionary mul-
tiobjective optimization techniques: State of the art and future trends.
In 7999 Congress on Evolutionary Computation, pages 3-13, 1999. See
proceedings [75]. Ounline available at http://citeseer.ist.psu.edu/
coellocoello99updated.html jaccessed 2007-08-25].

David A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Clas-
sifications, Analyses, and New Innovations. PhD thesis, Air Force In-
stitute of Technology, Air University, Wright-Patterson Air Force Base,
Ohio, May 1999. AFIT/DS/ENG/99-01. Online available at http://
handle.dtic.mil/100.2/ADA364478 and http://citeseer.ist.psu.
edu/vanveldhuizen99multiobjective.html [accessed 2007-08-17].

Kalyanmoy Deb. Evolutionary algorithms for multi-criterion opti-
mization in engineering design. In Kaisa Miettinen, Marko M.
Makeld, Pekka Neittaanmaéaki, and Jacques Periaux, editors, FEwvolu-
tionary Algorithms in Engineering and Computer Science, pages 135—
161. John Wiley & Sons, Ltd, Chichester, UK, 1999. Online avail-
able at http://citeseer.ist.psu.edu/deb99evolutionary.html and
http://www.lania.mx/~ccoello/EM00/deb99.ps.g2Z [accessed 2007-08-25].

Kalyanmoy Deb. Multi-Objective Optimization Using FEvolutionary Al-
gorithms. Wiley Interscience Series in Systems and Optimization. John
Wiley & Sons, Inc., New York, NY, USA, ISBN: 978-0471873396, May
2001.

Carlos M. Fonseca and Peter J. Fleming. Multiobjective optimization
and multiple constraint handling with evolutionary algorithms — part i:
A unified formulation. IEEE Transactions on Systems, Man, and Cyber-
netics, Part A: Systems and Humans, 28(1):26-37, 1998. Online avail-
able at http://citeseer.ist.psu.edu/fonseca98multiobjective.
html (accessed 2007-07-20]. See also [76]

Sanaz Mostaghim. Multi-objective Evolutionary Algorithms: Data
structures, Convergence and, Diversity. PhD thesis, Fakultat fir

33

http://sci2s.ugr.es/docencia/doctobio/EC-History-IEEETEC-1-1-1997.pdf
http://sci2s.ugr.es/docencia/doctobio/EC-History-IEEETEC-1-1-1997.pdf
http://citeseer.ist.psu.edu/601414.html
http://citeseer.ist.psu.edu/601414.html
http://www.lania.mx/~ccoello/EMOO/informationfinal.ps.gz
http://www.lania.mx/~ccoello/EMOO/informationfinal.ps.gz
http://citeseer.ist.psu.edu/coello98comprehensive.html
http://citeseer.ist.psu.edu/coello98comprehensive.html
http://citeseer.ist.psu.edu/coellocoello99updated.html
http://citeseer.ist.psu.edu/coellocoello99updated.html
http://handle.dtic.mil/100.2/ADA364478
http://handle.dtic.mil/100.2/ADA364478
http://citeseer.ist.psu.edu/vanveldhuizen99multiobjective.html
http://citeseer.ist.psu.edu/vanveldhuizen99multiobjective.html
http://citeseer.ist.psu.edu/deb99evolutionary.html
http://www.lania.mx/~ccoello/EMOO/deb99.ps.gz
http://citeseer.ist.psu.edu/fonseca98multiobjective.html
http://citeseer.ist.psu.edu/fonseca98multiobjective.html

[45]

Elektrotechnik, Informatik und Mathematik, Universitat Paderborn,
Deutschland (Germany), 2004. Online available at http://deposit.
ddb.de/cgi-bin/dokserv?idn=974405604 and http://ubdata.
uni-paderborn.de/ediss/14/2004/mostaghi/disserta.pdf (accessed

2007-08-17].

Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory.
The MIT Press, ISBN: 0-2626-5040-1, July 1994.

Drew Fudenberg and Jean Tirole. Game Theory. The MIT Press, ISBN:
0-2620-6141-4, 978-0-262-06141-4, August 1991.

Vira Chankong and Yacov Y. Haimes. Multiobjective Decision Making
Theory and Methodology. North-Holland, Elsevier, Dover Publications,
New York, ISBN: 978-0444007100, 978-0486462899, January 1983.

Ralph E. Steuer. Multiple Criteria Optimization: Theory, Computation
and Application. Krieger Pub Co, reprint edition, ISBN: 978-0894643934,
August 1989.

Yacov Y. Haimes and Ralph E. Steuer, editors. Proceedings of the 14th In-
ternational Conference on Multiple Criteria Decision Making: Research
and Practice in Multi Criteria Decision Making (MCDM’1998), volume
487 of Lecture Notes in Economics and Mathematical Systems, ISBN:
978-3540672661. Springer, University of Virginia, Charlottesville, Vir-
ginia, USA, June 12-18, 1998. See http://www.virginia.edu/~risk/
mcdm98.html [accessed 2007-00-10]. Published June 15, 2000.

E. A. Galperin. Pareto analysis vis-a-vis balance space approach
in multiobjective global optimization. Journal of Optimization The-
ory and Applications, 93(3):533-545, June 1997. Online avail-
able at http://www.springerlink.com/content/m71638106736h581/
fulltext.pdf and http://dx.doi.org/10.1023/A:1022639028824 [ac-

cessed 2007-09-10].

Aharon Ben-Tal. Characterization of pareto and lexicographic optimal
solutions. In Proceedings of the Third Conference on Multiple Criteria
Decision Making: Theory and Application, pages 1-11, 1979. See pro-
ceedings [77].

John Henry Holland. Outline for a logical theory of adaptive systems.
Journal of the ACM, 9(3):297-314, 1962. Online available at http://
portal.acm.org/citation.cfm?id=321128 [accessed 2007-07-25].

John Henry Holland. Adaptation in Natural and Artificial Systems. The
University of Michigan Press, Ann Arbor, ISBN: 978-026258111, 1975.
Reprinted by MIT Press, April 1992.

Jack L. Crosby. Computer Simulation in Genetics. John Wiley and Sons
Ltd, ISBN: 0-4711-8880-8, January 1973.

34

http://deposit.ddb.de/cgi-bin/dokserv?idn=974405604
http://deposit.ddb.de/cgi-bin/dokserv?idn=974405604
http://ubdata.uni-paderborn.de/ediss/14/2004/mostaghi/disserta.pdf
http://ubdata.uni-paderborn.de/ediss/14/2004/mostaghi/disserta.pdf
http://www.virginia.edu/~risk/mcdm98.html
http://www.virginia.edu/~risk/mcdm98.html
http://www.springerlink.com/content/m71638106736h581/fulltext.pdf
http://www.springerlink.com/content/m71638106736h581/fulltext.pdf
http://dx.doi.org/10.1023/A:1022639028824
http://portal.acm.org/citation.cfm?id=321128
http://portal.acm.org/citation.cfm?id=321128

[50]

[51]

[52]

[53]

[54]

[55]

David E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, first edition, ISBN: 0201157675, January 1989.

Jorg Heitkotter and David Beasley, editors. Hitch-Hiker’s Guide to Evo-
lutionary Computation: A List of Frequently Asked Questions (FAQ).
ENCORE (The EvolutioNary Computation REpository Network), 1998.
USENET: comp.ai.genetic. Online available at http://www.cse.dmu.
ac.uk/~rij/gafaq/top.htm and http://alife.santafe.edu/~joke/
encore/www/ [accessed 2007-07-03].

Carlos M. Fonseca and Peter J. Fleming. An overview of evolutionary
algorithms in multiobjective optimization. Fvolutionary Computation,
3(1):1-16, 1995. Online available at http://citeseer.ist.psu.edu/
108172.html [accessed 2007-07-29].

Carlos M. Fonseca and Peter J. Fleming. Multiobjective optimization
and multiple constraint handling with evolutionary algorithms. In Prac-
tical Approaches to Multi-Objective Optimization, 2004. See proceedings
[78]. Online available at http://drops.dagstuhl.de/opus/volltexte/
2005/237/ [accessed 2007-09-19].

Carlos M. Fonseca. Decision making in evolutionary optimization (ab-
stract of invited talk). In /th International Conference on Evolutionary
Multi-Criterion Optimization, 2007. See proceedings [79)].

Carlos M. Fonseca. Preference articulation in evolutionary multiobjective
optimisation — plenary talk. In Proceedings of the Seventh International
Conference on Hybrid Intelligent Systems, HIS 2007, 2007. See proceed-
ings [80].

IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. BPELJWS,
Business Process Execution Language for Web Services Version 1.1,
May 2003. Online available at http://www.ibm.com/developerworks/
library/specification/ws—bpel/ [accessed 2007-09-03).

Marco Aiello, Christian Platzer, Florian Rosenberg, Huy Tran, Martin
Vasko, and Schahram Dustdar. Web service indexing for efficient re-
trieval and composition. In Proceedings of 2006 IEEE Joint Confer-
ence on E-Commerce Technology (CEC’06) and Enterprise Computing,
E-Commerce and E-Services (EEE’06), pages 424-426, 2006. See pro-
ceedings [73]. Online available at https://berlin.vitalab.tuwien.ac.
at/~florian/papers/cec2006.pdf (accessed 2007-10-25].

Lukasz Juszcyk, Anton Michlmayer, and Christian Platzer. Large scale
web service discovery and composition using high performance in-memory
indexing. In Proceedings of IEEE Joint Conference (CEC/EEE 2007)
on E-Commerce Technology (9th CEC’07) and Enterprise Computing,
E-Commerce and E-Services (4th EEE’07), pages 509-512, 2007. See

35

http://www.cse.dmu.ac.uk/~rij/gafaq/top.htm
http://www.cse.dmu.ac.uk/~rij/gafaq/top.htm
http://alife.santafe.edu/~joke/encore/www/
http://alife.santafe.edu/~joke/encore/www/
http://citeseer.ist.psu.edu/108172.html
http://citeseer.ist.psu.edu/108172.html
http://drops.dagstuhl.de/opus/volltexte/2005/237/
http://drops.dagstuhl.de/opus/volltexte/2005/237/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
https://berlin.vitalab.tuwien.ac.at/~florian/papers/cec2006.pdf
https://berlin.vitalab.tuwien.ac.at/~florian/papers/cec2006.pdf

[61]

[62]

proceedings [74]. Online available at https://berlin.vitalab.tuwien.
ac.at/~florian/papers/cec2007.pdf (accessed 2007-10-24].

Bin Xu, Tao Li, Zhifeng Gu, and Gang Wu. SWSDS: Quick web service
discovery and composition in SEWSIP. In Proceedings of 2006 IEEE
Joint Conference on E-Commerce Technology (CEC’06) and Enterprise
Computing, E-Commerce and E-Services (EEE’06), pages 429-451, 2006.
See proceedings [73].

Zhifeng Gu, Bin Xu, and Juanzi Li. Inheritance-aware document-
driven service composition. In Proceedings of IEEE Joint Conference
(CEC/EEE 2007) on E-Commerce Technology (9th CEC’07) and En-
terprise Computing, E-Commerce and E-Services (4th EEE’07), pages
513-516, 2007. See proceedings [74].

Mohammad A. Makhzan and Kwei-Jay Lin. Solution to a complete web
service discovery and composition. In Proceedings of 2006 IEEE Joint
Conference on E-Commerce Technology (CEC’06) and Enterprise Com-
puting, E-Commerce and E-Services (EEE’06), pages 455—457, 2006. See
proceedings [73].

Yue Zhang, Tao Yu, Krishna Raman, and Kwei-Jay Lin. Strategies for ef-
ficient syntactical and semantic web services discovery and composition.
In Proceedings of 2006 IEEE Joint Conference on E-Commerce Technol-
ogy (CEC’06) and Enterprise Computing, E-Commerce and E-Services
(EEE’06), pages 452—454, 2006. See proceedings [73].

Yue Zhang, Krishna Raman, Mark Panahi, and Kwei-Jay Lin. Heuristic-
based service composition for business processes with branching and
merging. In Proceedings of IEEE Joint Conference (CEC/EEE 2007)
on E-Commerce Technology (9th CEC’07) and Enterprise Computing,
E-Commerce and E-Services (4th EEE’07), pages 525-528, 2007. See
proceedings [74].

Srividya Kona, Ajay Bansal, Gopal Gupta, and Thomas D. Hite. Web ser-
vice discovery and compositing using usdl. In Proceedings of 2006 IEEE
Joint Conference on E-Commerce Technology (CEC’06) and Enterprise
Computing, E-Commerce and E-Services (EEE’06), pages 430-432, 2006.
See proceedings [73].

Srividya Kona, Ajay Bansal, Gopal Gupta, and Thomas D. Hite.
Semantics-based web service composition engine. In Proceedings of IEEE
Joint Conference (CEC/EEE 2007) on E-Commerce Technology (9th
CEC’07) and Enterprise Computing, E-Commerce and E-Services (4th
EEE’07), pages 521-524, 2007. See proceedings [74]. Online available
at http://www.utd.edu/~sxk038200/research/wsc07.pdf (accessed 2007-

10-25].

36

https://berlin.vitalab.tuwien.ac.at/~florian/papers/cec2007.pdf
https://berlin.vitalab.tuwien.ac.at/~florian/papers/cec2007.pdf
http://www.utd.edu/~sxk038200/research/wsc07.pdf

[66]

[68]

[71]

[72]

Jiirgen Dorn, Albert Rainer, and Peter Hrastnik. Toward semantic com-
position of web services with MOVE. 1In Proceedings of 2006 IEEFE
Joint Conference on E-Commerce Technology (CEC’06) and Enterprise
Computing, E-Commerce and E-Services (EEE’06), pages 437438, 2006.
See proceedings [73]. Online available at http://move.ec3.at/Papers/
WSCO6 . pdf [accessed 2007-10-25].

Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers.
UDDI Version 3.0.2 — UDDI Spec Technical Committee Draft, Dated
20041019. Organization for the Advancement of Structured In-
formation Standards (OASIS), October 19, 2004. Online avail-
able at http://www.oasis-open.org/committees/uddi-spec/doc/
spec/vB/uddi—vS.O.2—20041019.htm [accessed 2007-10-25].

Francesco Colasuonno, Sefano Coppi, Azzurra Ragone, and Luca L. Scor-
cia. jUDDI+4: A semantic web services registry enabling semantic dis-
covery and composition. In Proceedings of 2006 IEEE Joint Confer-
ence on E-Commerce Technology (CEC’06) and Enterprise Computing,
E-Commerce and E-Services (EEE’06), pages 442-444, 2006. See pro-
ceedings [73].

Paul A. Buhler, Dominic Greenwood, and George Weichhart. A mul-
tiagent web service composition engine, revisited. In Proceedings of
IEEE Joint Conference (CEC/EEE 2007) on E-Commerce Technology
(9th CEC’07) and Enterprise Computing, E-Commerce and E-Services
(4th EEE’07), pages 529-532, 2007. See proceedings [74].

Seog-Chan Oh, Jung-Woon Yoo, Hyunyoung Kil, Dongwon Lee, and
Soundar R. T. Kumara. Semantic web-service discovery and composi-
tion using flexible parameter matching. In Proceedings of IEEE Joint
Conference (CEC/EEE 2007) on E-Commerce Technology (9th CEC’07)
and Enterprise Computing, E-Commerce and E-Services (4th EEE’07),
pages 533-536, 2007. See proceedings [74].

Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary,
Charlton Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron
Goland, Alejandro Guizar, Neelakantan Kartha, Canyang Kevin Liu, Ra-
nia Khalaf, Dieter Konig, Mike Marin, Vinkesh Mehta, Satish Thatte,
Danny van der Rijn, Prasad Yendluri, and Alex Yiu. Web Services
Business Process Fxecution Language Version 2.0. Organization for the
Advancement of Structured Information Standards (OASIS), April 11,
2007. Online available at http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.pdf [accessed 2007-10-25). Technical Committee: OASIS Web
Services Business Process Execution Language (WSBPEL) TC.

John R. Koza. Genetic Programming, On the Programming of Comput-
ers by Means of Natural Selection. A Bradford Book, The MIT Press,

37

http://move.ec3.at/Papers/WSC06.pdf
http://move.ec3.at/Papers/WSC06.pdf
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[76]

[77]

Cambridge, Massachusetts, 1992 first edition, 1993 second edition, ISBN:
0262111705, 1992.

Proceedings of 2006 IEEE Joint Conference on E-Commerce Technol-
ogy (CEC’06) and Enterprise Computing, E-Commerce and E-Services
(EEE’06), ISBN: 978-0-7695-2511-2. IEEE Computer Society, Los Alami-
tos, California, Washington, Tokyo, The Westin San Francisco Airport,
1 Old Bayshore Highway, Millbrae, United States, June 26-29, 2006.

IEEE Computer Society. Proceedings of IEEE Joint Conference
(CEC/EEE 2007) on E-Commerce Technology (9th CEC’07) and En-
terprise Computing, E-Commerce and E-Services (4th EEE’07), ISBN:
978-0-7695-2913-4. IEEE Computer Society, National Center of Sciences,
Tokyo, Japan, July 23-26, 2007.

Peter John Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin Yao,
and Ali Zalzala, editors. Proceedings of the IEEE Congress on Evolu-
tionary Computation, CEC99, volume 1-3, ISBN: 0-7803-5536-9, 0-7803-
5537-7, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA,
Mayflower Hotel, Washington D.C., USA, July 6-9, 1999. IEEE Press.
CEC-99 - A joint meeting of the IEEE, Evolutionary Programming So-
ciety, Galesia, and the IEE. Library of Congress Number: 99-61143.

Carlos M. Fonseca and Peter J. Fleming. Multiobjective optimization
and multiple constraint handling with evolutionary algorithms — part ii:
Application example. IEEE Transactions on Systems, Man, and Cyber-
netics, Part A, 28(1):38-47, 1998. Online available at http://citeseer.
ist.psu.edu/27937 . html (accessed 2007-00-19]. See also [38].

Joel N. Morse, editor. Proceedings of the 4th International Conference on
Multiple Criteria Decision Making: Organizations, Multiple Agents With
Multiple Criteria (MCDM’1980), Lecture Notes in Economics and Math-
ematical Systems, ISBN: 978-0387108216. Springer, Newark, Delaware,
USA, 1980. Published in July 1981.

Jiirgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Ralph E. Steuer,
editors. Practical Approaches to Multi-Objective Optimization, num-
ber 04461 in Dagstuhl Seminar Proceedings, ISSN: 1862-4405. Inter-
nationales Begegnungs- und Forschungszentrum fiir Informatik (IBFI),
Schloss Dagstuhl, Germany IBFI, Dagstuhl, Germany, November 7-12,
2004. Published in 2005. Online available at http://drops.dagstuhl.
de/portals/index.php?semnr=04461 and http://www.dagstuhl.de/
de/programm/kalender/semhp/?semnr=04461 [accessed 2007-09-19].

Shigeru Obayashi, Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroy-
asu, and Tadahiko Murata, editors. Proceedings of the Fourth In-
ternational Conference on Ewvolutionary Multi-Criterion Optimization
(EMO’2007), volume 4403/2007 of Lecture Notes in Computer Science

38

http://citeseer.ist.psu.edu/27937.html
http://citeseer.ist.psu.edu/27937.html
http://drops.dagstuhl.de/portals/index.php?semnr=04461
http://drops.dagstuhl.de/portals/index.php?semnr=04461
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=04461
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=04461

(LNCS), ISBN: 978-3-540-70927-5, ISSN: 0302-9743 (Print) 1611-3349
(Online). Springer-Verlag, Berlin, Matsushima/Sendai, Japan, March 5-
8, 2007. See http://www.is.doshisha.ac. jp/emo2007/ [accessed 2007-09-11].

Andreas Konig, Mario Koppen, Ajith Abraham, Christian Igel, and
Nikola Kasabov, editors. 7th International Conference on Hybrid Intelli-
gent Systems (HIS 2007), ISBN: 0-7695-2946-1. IEEE Computer Society,
Fraunhofer-Center, University of Kaiserslautern, Kaiserslautern, Ger-
many, September 17-19, 2007. Library of Congress Number 2007936727,
Product Number E2946. see http://his07 .hybridsystem.com/ [accessed

2007-09-01].

39

http://www.is.doshisha.ac.jp/emo2007/
http://his07.hybridsystem.com/

Index

ADDO, 23, 26 Quality of Service, 28
Architecture
service oriented, 1 SAX, 25, 26
SCE, 27
Best-First Search, 12 Search
BPEL, 28 best-first, 12
BPEL4WS, 24 depth-first
iterative deepenining, 8
Contravariance, 4 depth-limited, 8
Covariance, 5 greedy, 12

uninformed, 7

Depth-First Search Service Oriented Architecture, 1

iterative deepenining, 8 SOA, 1, 2

Depth-limited Search, 8 StAX, 25

DFS, 8 SWSDS, 26

DOM, 26

Domination, 17 Uninformed Search, 7
USDL, 26

EMOO, 17

Evolutionary Algorithm VitaLab, 25

multi-objective, 17

expand, 8 Web Service Challenge, 3

Exploration, 8 WS-Challenge, 3
WSC, 1, 3, 25, 28

Greedy Search, 12 WSDL, 2, 6
WSPR, 27

IDDFS, 8

isGoal, 8 XML, 25
XSD, 5, 6

JADE, 27

jUDDI+, 27

MOEA, 17

MOVE, 27

Multi-objective, 17
Mutation, 18

Order
partial, 17
OWL-S, 2

Pareto, 17
optimal, 17
Partial order, 17

QoS, 28

40

	Introduction
	Web Service Composition
	The Web Service Challenge
	The 2006/2007 Semantic Challenge

	Semantic Service Composition
	The Problem Definition
	Semantic Concepts and Taxonomies
	Interface Specifications
	Result Format

	An (Uninformed) Algorithm Based on IDDFS
	Uninformed Search
	Depth-limited Search
	Iterative deepening depth-first search

	The IDDFS Composition Algorithm

	An (Informed) Heuristic Approach
	Informed Search
	Greedy Search

	The Greedy Composition Algorithm

	A Genetic Approach
	Evolutionary Algorithms
	Multi-Objective Optimization
	Genetic Algorithms

	A Genetic Composition Algorithm
	The Comparator Function and Pareto Optimization

	Experimental Results
	Architectural Considerations
	Related Work
	Indexing and Efficient Parsing
	VitaLab
	SWSDS
	Zhang, Yu, et al.

	Interfacing Multi-Purpose Systems
	Using USDL
	Interfacing with MOVE
	Interfacing with jUDDI+
	The SCE
	Interfacing WSPR

	Conclusions
	List of Figures
	List of Tables
	List of Algorithms
	References
	Index

