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Summary

The process of developing software that takes advantage of multiple processors is com-
monly referred to as parallel programming. For various reasons, this process is much
harder than the sequential case. For decades, parallel programming has been a problem
for a small niche only: engineers working on parallelizing mostly numerical applications
in High Performance Computing. This has changed with the advent of multi-core proces-
sors in mainstream computer architectures. Parallel programming in our days becomes a
problem for a much larger group of developers.

The main objective of this thesis was to find ways to make parallel programming easier
for them. Different aims were identified in order to reach the objective: research the state
of the art of parallel programming today, improve the education of software developers
about the topic, and provide programmers with powerful abstractions to make their work
easier.

To reach these aims, several key steps were taken. To start with, a survey was conducted
among parallel programmers to find out about the state of the art. More than 250 people
participated, yielding results about the parallel programming systems and languages in
use, as well as about common problems with these systems. Furthermore, a study was
conducted in university classes on parallel programming. It resulted in a list of frequently
made mistakes that were analyzed and used to create a programmers’ checklist to avoid
them in the future.

For programmers’ education, an online resource was setup to collect experiences and
knowledge in the field of parallel programming – called the Parawiki. Another key step in
this direction was the creation of the Thinking Parallel weblog, where more than 50.000
readers to date have read essays on the topic.

For the third aim (powerful abstractions), it was decided to concentrate on one par-
allel programming system: OpenMP. Its ease of use and high level of abstraction were
the most important reasons for this decision. Two different research directions were pur-
sued. The first one resulted in a parallel library called AthenaMP. It contains so-called
generic components, derived from design patterns for parallel programming. These in-
clude functionality to enhance the locks provided by OpenMP, to perform operations on
large amounts of data (data-parallel programming), and to enable the implementation of
irregular algorithms using task pools. AthenaMP itself serves a triple role: the compo-
nents are well-documented and can be used directly in programs, it enables developers to
study the source code and learn from it, and it is possible for compiler writers to use it as
a testing ground for their OpenMP compilers.

The second research direction was targeted at changing the OpenMP specification to
make the system more powerful. The main contributions here were a proposal to enable
thread-cancellation and a proposal to avoid busy waiting. Both were implemented in
a research compiler, shown to be useful in example applications, and proposed to the
OpenMP Language Committee.





Zusammenfassung

Der Software-Entwicklungsprozess für Programme, die mehrere Prozessoren ausnutzen
wird üblicherweise als parallele Programmierung bezeichnet. Aus mehreren Gründen
ist parallele deutlich schwieriger als sequentielle Programmierung. Während der letzten
Jahrzehnte war von diesem Problem nur eine schmale Randgruppe betroffen: Ingenieure,
die an der Parallelisierung von hauptsächlich numerischen Anwendungen im Hochleis-
tungsrechnen arbeiteten. Seit Multi-Core Computerarchitekturen weite Verbreitung ge-
funden haben, hat sich das geändert. Heutzutage ist die parallele Programmierung ein
Problem für eine bedeutend größere Gruppe von Entwicklern.

Ziel dieser Arbeit war das Erkunden von Wegen, um die parallele Programmierung
für diese Gruppe einfacher zu gestalten. Dazu wurden verschiedene Teilziele verfolgt:
den Stand der Technik zu erfassen, die Kenntnisse der Entwickler über dieses Thema
zu verbessern und den Programmierern mächtige Abstraktionen zur Erleichterung ihrer
Arbeit an die Hand zu geben.

Zunächst wurde eine Umfrage unter parallelen Programmierern durchgeführt. Aus
den Antworten von über 250 Teilnehmern konnten Erkenntnisse über die verwendeten
Systeme, Sprachen und deren Probleme gewonnen werden. Weiterhin wurde auf Basis
von Lehrveranstaltungen zum Thema Parallelverarbeitung an der Universität Kassel eine
Studie zu häufigen Fehlern durchgeführt. Daraus konnte später eine Checkliste für Pro-
grammierer erstellt werden, damit die Fehler in Zukunft vermieden werden können.

Um die Kenntnisse der Programmierer auszubauen und Erfahrungen und Wissen auf
dem Gebiet der parallelen Programmierung an einer Stelle zu vereinen, wurde im Internet
eine Ressource erstellt – das Parawiki. Ein weiterer wichtiger Schritt in diese Richtung
war der Aufbau des Thinking Parallel Weblogs, in dem bereits mehr als 50.000 Inter-
essierte Aufsätze zum Thema gelesen haben.

Bezüglich des dritten Ziels (mächtige Abstraktionen) konzentriert sich die Arbeit auf
ein einziges paralleles Programmiersystem: OpenMP. Die Hauptgründe für diese Ent-
scheidung waren seine leichte Bedienbarkeit und seine hohe Abstraktionsebene. Auch
hier wurden zwei unterschiedliche Forschungsansätze verfolgt. Aus dem Ersten ging die
parallele Bibliothek AthenaMP hervor. Sie enthält so genannte generische Komponenten,
welche von Entwurfsmustern der parallelen Programmierung abgeleitet wurden und stellt
Funktionalität zur Verfügung, um z.B. die von OpenMP bereit gestellten Locks zu erweit-
ern, Operationen auf großen Datenmengen auszuführen (datenparallele Programmierung)
und die Implementierung irregulärer Algorithmen mit Hilfe von Taskpools zu erleichtern.
AthenaMP ermöglicht den direkten Einsatz der Komponenten in Programmen und unter-
stützt dies durch gute Dokumentation. Darüber hinaus können Entwickler die Quellen
einsehen und daraus lernen und Compilerhersteller sind in der Lage, die Bibliothek als
Testfall für ihre OpenMP-Compiler einzusetzen.

Der zweite Ansatz war die Erweiterung der OpenMP-Spezifikation. Die wichtigsten
Beiträge sind Erweiterungen zum Abbruch von Threads und zum Vermeiden aktiven
Wartens. Beide wurden in einem Compiler implementiert, ihr Nutzen wurde anhand von
Anwendungen belegt und sie wurden dem OpenMP-Sprachausschuss vorgeschlagen.
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Chapter 1

Introduction

The density of transistors on chips doubles every 24 months.

(Gordon Moore, 1965)

1.1 Motivation

The world of computer hardware and architectures is going through a revolution today.
For the past decades, Moore’s Law has been translated into faster processors by the chip-
industry. As a side-effect, the performance of sequential programs has increased without
additional effort on the side of the programmers, as well. When a program did not show
a satisfactory performance, it was often sufficient to wait for six months and the next
generation of hardware to make its performance acceptable.

The situation is different today. Heat-problems have forced the chip-makers to aban-
don the MHz-race. Yet Moore’s Law still holds, providing the industry with an increase
of approximately 100 percent in available transistors per chip every 24 months. Since
they cannot use these transistors to increase execution speeds (because of excess heat),
they have decided to use them differently. Multiple processors have been put on a sin-
gle chip side-by-side (called multi-core processors) and sometimes each of these proces-
sors is even able to run more than one thread simultaneously – commonly referred to as
Chip-Multithreading (CMT). An example of this is the Sun T1 processor, which
has eight cores, each of which is able to run four threads at the same time. While this
approach has great potential for performance increases, it also has a big problem: existing
programs will not run any faster on these architectures, except if they are parallelized.

Parallelizing Programs (often referred to as parallel programming) is still a difficult
task. Great expectations have been raised for automatic parallelization in the past, yet
today these efforts are not up to par with what can be achieved by the experienced pro-
grammer. In addition to all the problems encountered by the developers of sequential pro-
grams, a parallel programmer has to face concurrency and synchronization issues, data
distribution and task mapping difficulties, as well as timing and debugging problems, to
name just a few (a more thorough discussion can be found in Section 2.2). Dealing with
them requires great care and skill.

1
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In the past, the main emphasis when developing languages and other systems for paral-
lel programming has been performance. Performance is defined in this context by terms
like execution speed or throughput. This seems natural, because one of the main reasons
to develop parallel programs is speeding them up. From the world of sequential pro-
gramming and software engineering, different topics are slowly making their way into the
parallel processing community. Topics like readability of code, ease of use, or decreasing
the possibility of programming mistakes are examples. In High Performance Comput-
ing (HPC), these have not been as important, but during the parallel revolution described
above, where many more software developers have to cope with parallel programming,
they will start to play increasing roles.

In 1997, a new specification for programming shared memory multiprocessors called
OpenMP [Ope05] has been created with some of these topics in mind. Shared memory
systems avoid many of the difficulties associated with programming distributed memory
architectures, but have a whole class of their own problems. OpenMP tries to make it as
easy as possible for programmers to deal with them. What OpenMP does not do at the
moment, is to provide the parallel programmer with all the flexibility and power of other,
more traditional (thread-based) parallel programming systems.

Because of the reasons stated in the last few paragraphs, the main objective of this
thesis is to make parallel programming easier for the normal programmer. Different aims
were identified in order to reach that objective.

The first one was to understand the situation and difficulties associated with parallel
programming better by analyzing the current state of affairs regarding the field in general.
It became necessary to understand which parallel programming systems are in actual use
by programmers today, what languages they are based on and what their problems are.

The second aim I pursued in this thesis was to research how to improve the knowledge
and education of software developers on the topic of parallel programming. The logic
behind that aim was that experienced developers with good background knowledge on
parallel programming will find creating parallelized programs easier.

The third and most important aim identified was to provide software developers with
powerful abstractions to make their work easier. I concentrated on one parallel program-
ming system for this part: OpenMP. These abstractions were both a library for parallel
programming and changes in the OpenMP specification to make it more powerful and
expressive. By encapsulating at least some of the difficulties associated with parallel pro-
gramming in either a library or the language itself, work becomes easier for the developer
using these abstractions.

All aims and objectives of this work are depicted in Figure 1.1, with the main objective
shown in red color and the aims painted in yellow. The concrete steps taken to pursue
these aims are shown in green and blue and are shortly introduced in Section 1.2. I will
be using this picture at the beginning of each advanced chapter throughout this thesis to
show how the topic of the respective chapter fits into the context of this work.
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Figure 1.1: Objectives, aims and contributions of this thesis

1.2 Contributions

This section highlights the contributions of this thesis. They are shown in green and blue
in Figure 1.1. The first aim I pursued was to get a feeling for the current state of the art
with regards to parallel programming. My main contribution in this field is a survey I have
conducted among parallel programmers, called Parasurvey in the figure. More than 250
people participated and enabled me to form hypotheses on the actual popularity and usage
of languages and systems in the field, along with information about target architectures
and encountered problems, among others.

The second contribution is a list of frequently made mistakes by novice parallel pro-
grammers when using OpenMP. This list was created by observing my students in multi-
ple projects. It is useful, because knowing about the mistakes helps to avoid them, leading
to better programs. Furthermore, some of the mistakes are made less likely to occur by
solutions presented later in this thesis, which justifies using those solutions even more.

To find information about different parallel programming systems, especially their
strengths, weaknesses or applicability is a difficult task. The information from the cre-
ators of these systems is of course biased and reports on experiences are difficult to find, if
available at all. To change this situation, I have setup a single place to find these kinds of
information on parallel programming systems – the Parawiki. It was supposed to provide
me with information about parallel programming by actual users of these systems and to
help educate programmers, who can learn from the experiences described there as well.

The Parawiki has already brought us into the territory of my second aim: to find ways
to improve the education of programmers about parallel programming. The main con-
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Figure 1.2: The AthenaMP library in a nutshell

tribution for this aim is a programmers checklist for OpenMP. It has been derived from
experiences with my students and their mistakes and from my own programming experi-
ences.

The last contribution to the aim of education is not exactly classifyable as research,
yet still valuable. I am talking about the Thinking Parallel Weblog. Read by more than
50.000 readers to date and with more than 1.200 regular subscribers, this has probably
had a bigger impact than all of my other efforts combined.

My last and most important aim was to make OpenMP easier to use and more power-
ful. I have taken two main steps here: providing a powerful library for OpenMP/C++ and
preparing to enhance the specification. The library I am talking about is called AthenaMP
and contains implementations of various parallel programming patterns in the form of
generic components. They allow to specify advanced programming constructs with a few
simple library calls, even to the point that parallelism is totally hidden from the program-
mer for a few cases. A quick overview over the functionality included in AthenaMP is
presented in Figure 1.2.

AthenaMP is a big project with its own objectives. The generic components included
in the library are well-documented and can be used as is in parallel programs. The library
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is also useful as a learning aid for programmers interested in OpenMP/C++, since it is
published under an open-source license. Compiler writers are also able to take advantage
of it as a testing ground for their compilers, as not much code using OpenMP/C++ is
available to test those. The library contains more than one hundred tests at this point that
expose quite a few errors in compilers.

During my experiments with OpenMP, it became clear that some problems could only
be solved by changing the specification. These problems include the inability to cancel
threads in a parallel region and to avoid busy waiting, among others. To solve them, I
have researched, implemented, tested and proposed to the OpenMP language committee
changes to the OpenMP specification. All implementations were done in a research com-
piler called OMPi [DGLT03]. For a few other problems, I have worked with others on
solutions while serving in the OpenMP language committee. My contributions in this
regard are also described in this thesis.

Another type of contribution frequently present throughout this thesis are descriptions
of workarounds. Before extending the specification or providing library functions/com-
ponents, I have always tried to work around the problem first. These approaches are also
described here.

The work done on improving OpenMP by providing powerful abstractions is mostly
based on sample programs. In my experience, working with the system is the best way
to find the areas where it can be improved. I have therefore implemented a variety of
small example applications (e. g. quicksort, labyrinth-search, and parallel
prefix). While they can be considered interesting to some readers, I have chosen not
to include their sources, because for the context of my work they play a minor role. Of
course, they are available on request.

Lastly, the whole thesis can also be seen as a contribution in a different regard: it
serves as an evaluation of OpenMP, showing problems, workarounds, solutions, common
mistakes and program examples in a comprehensive way. It should give a good estimation
of what can be done with OpenMP and where its limits are.

1.3 Structure

The structure of this thesis closely follows the aims and contributions sketched in the last
section. After this introduction, Chapter 2 lays the foundations necessary to understand
the rest of this thesis. Of course that can only be an overview, as the field of parallel
programming is too big to treat comprehensively in a few pages. The first aim, evaluating
the state of the art of parallel programming, is described along with my contributions
for this topic in Chapter 3. They include the parallel programming survey, the list of
frequently made mistakes and the Parawiki. Chapter 4 describes my contributions to
improve the education of programmers with regards to parallel programming. In this
chapter, the programmers’ checklist and the Thinking Parallel Weblog are described.



6 Introduction

Until this point, the work has an emphasis on OpenMP, but can still be applied eas-
ily to other parallel programming systems. This changes with Chapters 5 and 6, as they
are specific to OpenMP. In Chapter 5, a collection of parallel patterns and the generic
components associated with them are described. These include task pools (useful for
implementing irregular algorithms), generic locks, deadlock-avoidance functionality in
locks, thread-safe singletons, and several data-parallel patterns. Most of those are avail-
able in the AthenaMP library. My work to change the OpenMP specification to make it
more powerful and easier to use is presented in Chapter 6. The main topics of this chapter
are proposals to enable thread-cancellation and to avoid busy waiting. Chapter 7 closes
the thesis with a summary and possible directions for future work.

Most of the contributions presented in this thesis are in themselves structured according
to what could be expected in a research paper. This is no surprise, as many of them have
already been published in papers (see the list of publications at the end of this thesis for
details). Therefore you will often find subsections for motivation, performance/bench-
marks, and related work, allowing you to skip around in this thesis relatively freely if you
are interested in specific parts only.
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There are numerous other people who deserve a big thank you, starting from my col-
leagues at work (Raffaele and yet another Claudia, to name just a few) to my students
who have done an amazing amount of work to support my research. Thanks Beliz, To-
bias, Alex, Christopher, Alex, Florian and the many others who have helped me during
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1.5 General Remarks

Although this is my dissertation, the work presented here was not done by me exclusively,
as can be seen in the last paragraph. For this reason, I have chosen to stick to the more
common we and us also found in many research papers for the rest of this publication to
honor the people who have worked with me on the contributions presented here.This does
not apply when talking about the Thinking Parallel Weblog in Section 4.2 and my work
in the OpenMP language committee, which is why I am using the singular form then.

For readability, different font styles have been used to denote names, terms and identi-
fiers, as shown in Table 1.1.

Style Usage
type writer products, companies, computers, architectures, programs, files,

(member) functions, variables, data structures, data types,
classes, clauses, constants, commands, environment variables

emphasize special accentuation, terms

Table 1.1: Typographical conventions

1.6 Disclaimer

Trademarks and brand names have been used without explicitly indicating them. The
absence of trademark symbols does not infer that a name or a product is not protected.
All trademarks are the property of their respective owners.





Chapter 2

Foundations

In this chapter, the basics required to understand the rest of this thesis are explained.
Since parallel programming itself is a huge topic, merely an overview can be provided
here, along with references for further reading.

The chapter starts with a general introduction on how to parallelize a program in Sec-
tion 2.1. A birds-view on the basic steps that need to be carried out for most successful
parallelization efforts are sketched there. Afterwards, some of the problems and pitfalls
commonly encountered while parallelizing code are highlighted in Section 2.2. This is
necessary to understand how we have approached our main goal of making parallel pro-
gramming easier, and it will also explain why we have chosen OpenMP as the basis of
our research.

In the following Section 2.3, a short overview over the most commonly used types of
parallel programming systems is provided. Once again, only a very broad generalization
can be given, but it should be enough to gain an understanding of the systems in use
today. As already explained in the introduction, a large part of this thesis attempts to
enhance the parallel programming system OpenMP. Therefore a deeper understanding of
this system is necessary to understand the contents of Chapters 5 and 6. To make up for
this, a short tutorial on OpenMP is provided in Section 2.4. A summary closes the chapter
in Section2.5.

2.1 An Introduction to Program Parallelization

This section presents the general steps involved in parallelizing a program. While for
many programmers this is still a purely intuitive process, guided mostly by their own
experiences, there are recipes of basic steps that can be followed to parallelize an algo-
rithm/program.

Probably the most well-known methodology is presented by Grama et al. [Gra03]. It
describes the process of building a parallel algorithm as a series of five steps:

• Identifying portions of work that can be performed concurrently
• Mapping the concurrent pieces of work onto multiple execution entities

running in parallel

9
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• Distributing the input, output, and intermediate data associated with
the program

• Managing accesses to data shared by multiple processors
• Synchronizing the processors at various stages of the parallel program

execution

([Gra03, p. 85])

We are going to use this methodology as the basis for this section. Its biggest advan-
tage is that it defers architecture-specific decisions until the very last steps. A similar
methodology is described by Quinn [Qui03] and Foster [Fos95]. It has four basic steps:
partitioning, communication, agglomeration and mapping. Both methodologies are sim-
ilar enough to not include the latter here.

2.1.1 Decomposition

The first step in Grama’s methodology is called decomposition (also: task decomposition).
The goal for this step is to divide the problem into several smaller subproblems, called
tasks, that can be computed in parallel later on. The tasks can be of different size and
must not necessarily be independent.

If many tasks are created, we talk about fine-grained decomposition. If few tasks are
created, it is called coarse-grained decomposition. There is no sharp line in-between
the two, and what is better heavily depends on the problem. Many tasks allow for more
concurrency and better scalability, while fewer tasks usually have less communication /
synchronization-overhead.

There are several ways to do problem decompositions, the most well-known proba-
bly being recursive decomposition, data decomposition, functional decomposition, ex-
ploratory decomposition and speculative decomposition. The next few paragraphs will
shortly explain how they are carried out in practice.

Recursive Decomposition: Divide-and-Conquer is a widely deployed strategy for se-
quential algorithms. A problem is divided into subproblems here, which are again divided
into subproblems recursively until a trivial solution can be calculated. Afterwards, the re-
sults of the subproblems are merged together as needed. This strategy is equivalent to a
recursive problem decomposition. As the smaller tasks are often independent of one an-
other, they can be calculated in parallel, often leading to well-scaling parallel algorithms.
The parallel quicksort described in Section 5.4 is an example of recursive decomposition.

Data Decomposition: When data structures with large amounts of similar data need
to be processed, data decomposition is usually a well-performing strategy. The tasks in
this strategy correspond to groups of data. These can be either input data, output data or
even intermediate data. All processors perform the same operations on these data, which
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are usually independent from each other, once again allowing for well-scaling algorithms.
The data-parallel patterns described in Section 5.3 all employ data decomposition.

Functional Decomposition: For functional decomposition, the functions to be per-
formed are split into multiple tasks. These tasks can then be performed concurrently
by different execution entities on different data. This often leads to so-called pipelines,
which are described in more detail in Section 5.5.5.

Exploratory Decomposition: Exploratory decomposition is a special case for algo-
rithms, that search through a predefined space of solutions. In this case, the tasks cor-
respond to a partition of the search space, which can be processed concurrently. An
example of exploratory decomposition is the breadth-first tree search used in Section 6.2.

Speculative Decomposition: Another special-purpose decomposition technique is cal-
led speculative decomposition. In the case when only one of several functions is carried
out depending on a condition, these functions are turned into tasks and started before the
condition needs to be evaluated. As soon as the condition has been evaluated, only the
results of one task are used, all others are thrown away. This decomposition technique is
quite wasteful on resources and seldom used.

The different decomposition methods described above can also be combined. As soon
as the tasks have been generated, in the second step of Grama’s methodology they are
mapped onto execution entities. An execution entity in this context can either be a thread
or a process.

2.1.2 Mapping

Now that the tasks have been created using one of the techniques described in the last sec-
tion, they must be grouped and distributed across execution entities - appropriately called
mapping. The target here is to find a mapping that minimizes the overhead associated
with concurrent execution. There are two main sources of overhead in this context: the
cost of interaction (which includes synchronization and communication) between execu-
tion entities and the cost of idle execution entities. Unfortunately, optimizing to bring
both costs down at the same time is difficult, as they are conflicting goals.

There are two main classes of mapping techniques for parallel algorithms: static map-
pings and dynamic mappings. They are explained in the next two paragraphs.

Static Mapping: When all tasks are known before the algorithm starts, static mapping
techniques can be employed. For functional decompositions, it can be employed fre-
quently, yet mapping there is trivial since most of the time there are not many tasks to
distribute and in many cases one execution entity per task is available anyways.
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A more difficult problem is static mapping for data decompositions. There are tech-
niques for many data structures available in this case, for the sake of brevity we concen-
trate on two-dimensional arrays here. These techniques can be trivially converted to the
one- or multi-dimensional case. Common examples are:

• Block Distribution: The array is divided into as many blocks of the same size as
there are execution entities. Different shapes of the blocks are possible (e. g. a block
can be a row in the array, a column in the array, or a rectangular region spanning
multiple rows and columns), but of course the shapes are not allowed to overlap.
This is usually the easiest way to map data to execution entities.

• Block-Cyclic Distribution: When the work is not distributed equally in the array
(e. g. when the calculations for the higher-indexed rows need substantially more
work) a block-cyclic distribution may be in order. For this mapping, more blocks
than execution entities are created, which are then mapped to execution entities
using a round-robin algorithm.

• Randomized Block Distribution: When the amount of work to be done is even
more irregularly spread across the array, a randomized block distribution can be
employed. Like for the former technique, many more blocks than execution entities
are created, which are then mapped randomly to execution entities.

Static mapping induces the least overhead and should therefore be used whenever ap-
plicable – i. e. whenever the exact amount of tasks and the amount of work done is known
before the algorithm starts. However, for many problems it is not applicable and therefore
dynamic mapping as described in the next paragraph needs to be used.

Dynamic Mapping: Things are more complicated when the number or size of tasks
is not known prior to carrying out the algorithm. This is the case for most of the task
decomposition techniques described above. Algorithms with this property are also called
irregular algorithms and are described in more detail in Section 5.4. There are two ways
to manage this case: first by providing a central resource that distributes tasks on demand.
Depending on the architecture, this can be either a separate execution entity or a data-
structure. Each time an execution entity runs out of work, it queries the resource for
another task. If an execution entity generates more tasks than it can handle, it pushes
these back to the resource. The second approach is more complicated, as it involves a
distributed way to exchange tasks, which is usually difficult to implement correctly.

Dynamic mapping schemes are more costly to implement with regards to programming
overhead and also more difficult to program correctly. Often, they are the only sensible
way to map tasks to execution entities, though, which is why it becomes important to have
easy to use abstractions in place (e. g. the task pools described in Section 5.4).
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2.1.3 Synchronization/Communication

The last three points in Grama’s methodology can be combined into a single phase: com-
munication/synchronization. When task decomposition and mapping to execution entities
have been done, the next step is to actually distribute the data to the appropriate execution
entities, if that has not been done in the last step already (e. g. for data decompositions).
This step is not necessary when working on shared memory architectures, but it may be
a good idea to think about data-distribution to increase locality on these architectures as
well.

It also involves setting up synchronization points in the program to obey task depen-
dencies or setting up communication operations to exchange (intermediate) results. How
this is done depends on the parallel programming system and architecture, therefore we
are not going to show it here. This is the point in the methodology shown, where the
target architecture can no longer be abstracted away. This is also the point that usually
makes the most problems, some of which we are going to look at in the next section.

2.2 Why Parallel Programming is Hard

In this section, some of the reasons why parallel programming is considered difficult are
described. We also point to the appropriate sections in this thesis, where our attempts to
ease these difficulties are shown.

Added Complexity: In the last subsection, we have described a five-step approach to
creating a parallel algorithm. None of these steps are necessary for a sequential program.
For most of them, there is little support from tools available. The only thing that really
helps is experience. Naturally, these additional and difficult steps are the main reason why
parallel programming is considered difficult.

Parallel Programming is Error-Prone: Not only are there additional steps involved
when creating parallel programs, but these steps are prone to errors. If the wrong task-
decomposition is chosen, you might not see any performance increases from parallel pro-
gramming. If the wrong mapping is chosen, synchronization overhead may kill perfor-
mance. And if mistakes are made during the communication/synchronization phase, not
only performance may suffer, but the program might not run or produce incorrect results
altogether. We are trying to help for this particular problem in Section 3.2, where com-
mon mistakes when programming in OpenMP are described, and in Section 4.1, where
we show techniques to make some of the mistakes less likely to occur.

Too Little Knowledge of New, Innovative Parallel Programming Systems: There are
some parallel programming systems out there that promise to be easier to use. OpenMP
is the primary example, but also e. g. functional languages like Erlang or Haskell. The
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problem here is that most programmers do not even know about these systems or their
strengths and weaknesses. Our efforts to level off this problem are explained in Chapters 3
and 4.

Parallel Programming is Not Yet Mainstream: A lot of information can be found about
mainstream languages in books or on the internet, where a lot of tutorials or solutions to
common problems can be found. Programming is easier, when there is a lot of help
available. The situation is different for most parallel programming systems. There are
some books available, but most of them concentrate on numerical algorithms and prob-
lems found in High Performance Computing. The number of resources on the internet is
also quite thin, when compared to the more general topics of programming and software
development. Our efforts to change this situation and make parallel programming easier
are described in Sections 3.3 and 4.2.

Compilers Are Not as Well-Tested as Their Sequential Counterparts: Working with
a compiler that is not well-tested can be a huge problem. A programmer can spend large
amounts of time searching for mistakes in code, when really the compiler is to blame. In
our experience, many compilers for parallel code are less well-tested than their sequential
counterparts, therefore we have attempted to provide a testing ground for them with our
work on AthenaMP described in Chapter 5.

No Good Platform for Parallel Programming Available: There are many tools avail-
able today to help programmers of sequential programs. IDEs, debuggers, profilers, cor-
rectness tools are all important to make programming easier, and together with the abstrac-
tions provided by the language and the libraries available they form a so-called platform.
For the parallel case, there are tools available for some systems, but they are usually not
as good as their sequential counterparts.

Not Enough Powerful Abstractions Available: Programming in assembler is more
difficult than programming in a higher-level language. The languages used for parallel
programming are often on a very low level, as each communication or synchronization
operation needs to be managed in every detail by the programmer. OpenMP helps to raise
the level of abstraction, as it hides many details from the programmer. However, it could
be even more powerful in some regards, a topic that is explained further in Chapter 6.

A second aspect here is the lack of good libraries. Programming becomes much easier,
when the programmer can rely on powerful libraries to encapsulate complex behavior.
There are some numerical libraries available for many parallel programming systems, yet
others are largely missing. Our contribution to this problem is the AthenaMP library
described in Chapter 5.
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Lack of Standards/Portability: We have discussed earlier that parallel programming
systems are not yet mainstream. Related to this point, there are few standards available
that programmers can rely on, especially when changing platforms. OpenMP and Java
threads are a big win in this regard, since they enable portable parallel programming,
even including the Microsoft Windows platform.

It Is Difficult to Move from a Sequential Program to a Parallel one: In most cases,
parallelizing a sequential program is not an incremental process. For many systems, the
programmer has to start refactoring code for parallelism, and until that is completely done,
there is no way to check any intermediate steps. This is of course difficult. OpenMP has
a good approach to this problem, as it is quite easy to add pragmas one at a time without
having to refactor the whole program at once.

It Is Hard to Test Parallel Programs: Related to the last paragraph, testing parallel
programs is a problem. Most errors can be classified as problems related to parallelism
and problems with the actual algorithm. Unfortunately, finding a mistake is difficult when
the culprit could be in any of the two sources. OpenMP once again helps, because it
enables programmers to turn off parallelism for many programs and still get a correct,
sequential one, that can be debugged for errors using the advanced sequential debugging
tools available.

It should be clear from the last few paragraphs why OpenMP was chosen as basis for
our research. Many of the problems inherent in other parallel programming systems have
been solved there, others could be leveled off by our work when building on OpenMP.

2.3 An Overview of Available Parallel Programming
Systems

In this section, the two most common classes of parallel programming systems are intro-
duced: message passing systems and threading systems. We are going to look at three im-
portant properties of these systems: how execution entities (processes or threads, respec-
tively) are created, how work is distributed to these entities and how communication/syn-
chronization is achieved. This will help to further motivate our choice for OpenMP as
basis for our research. OpenMP is described in the next Section 2.4.

2.3.1 Message Passing Systems

Message passing systems operate under the premise that communication between differ-
ent execution entities happens only through explicit message exchange. They are also
commonly called Shared-Nothing Systems, because contrary to threading systems they do
not share state between execution entities. The most well-known message passing system
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is the Message Passing Interface (MPI) [GNL98]. An older one found in high perfor-
mance computing is the Parallel Virtual Machine (PVM) [Gei94]. Recently, a functional
message passing system called Erlang is also talked about often [Arm07].

The term execution entity in this context does not necessarily mean a process as de-
fined for operating systems. Quite often, message passing systems use operating system
processes, but there are also systems out there using threads (e. g. Erlang).

How execution entities are created is usually dependent on the system used. For MPI,
you may have to specify the number of processes to use in a startup file for your program
or use a command line parameter. In MPI-2, PVM or Erlang it is also possible to start
execution entities at runtime using explicit API-calls.

Work is distributed in message passing systems manually. The programmer has to take
care of decomposing the problem into tasks and mapping the tasks to execution entities
explicitly, e. g. by sending work to be done out to different execution entities using explicit
messages. The same is true for communication and synchronization: everything is done
through explicit messages.

Here is a short list of advantages that are often claimed for Message Passing Systems:

• they are less prone to errors

• they are well suited to architectures without shared memory (such as clusters), but
can also take advantage of architectures, where shared memory is available

• programmers must manage data distribution manually, resulting in programs that
exploit locality well

• result in well-scaling programs

And here are the disadvantages:

• programmers must manage data distribution manually, which is difficult for begin-
ners

• there is usually no way to do incremental parallelization

Managing data-distribution by hand is both an advantage and a disadvantage: it is an
additional step that needs to be done in the program, but once the programmer has done
it, usually leads to better locality, scalability and performance.

2.3.2 Threading Systems

Threading Systems are sometimes called Shared-Everything systems, because memory
and therefore the state of the program is mostly shared between the execution entities. In
most cases, execution entities are threads for these kinds of systems. This makes commu-
nication appear easy, because all that needs to be done is to change a shared variable or
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data-structure and all other threads can see the result. Unfortunately, it is not that easy,
as concurrent accesses to the same location in memory need to be protected. This can
be done in various ways (e. g. using locks), but if it is forgotten leads to unspecified be-
havior in most threading systems (a very frequent mistake, see Section 3.2 for details).
The most widely-known threading systems are probably POSIX threads [But97], Java
threads [GPB+06] and .NET threads. We are not counting OpenMP here, as it is on a se-
mantically higher level than the others (e. g. there is no need to manage threads explicitly,
see Section 2.4 for details).

In threading systems, threads are created via explicit API calls at runtime. Work distri-
bution used to be a largely manual process, but library support starts to become available
for some systems (e. g. through the Executor-class in Java threads). Communication
happens through shared data structures that need to be explicitly protected from concur-
rent access by the programmer. Constructs for synchronization are usually available, e. g.
barriers, mutex variables, different versions of locks and condition variables.

Here are some commonly cited advantages of threading systems:

• natural model for systems with shared memory

• no need to distribute data manually

• usually easier to get started with

And here are the disadvantages:

• not suited for distributed memory architectures, except through distributed shared
memory systems

• communication through shared memory appears easy, but is error-prone

In the next section, we are going to look at OpenMP and how it differs from threading
systems.

2.4 An Introduction to OpenMP

OpenMP is a parallel programming system that provides a specification for shared mem-
ory communication. In order to understand the contents of Chapters 5 and 6, it is neces-
sary to know the basics of this system, therefore a short introduction is presented here.
Further coverage is provided by a tutorial from Lawrence Livermore National Labora-
tory [Lab03], in the specification [Ope05], or in the books by Chapman et al. [CJP07] and
Chandra et al. [CDK00].

This section is structured as follows: We start with general information on OpenMP in
Section 2.4.1. Then, Section 2.4.2 highlights how threads are created. In Section 2.4.3,
we explain how to synchronize threads and Section 2.4.4 is about sharing work between
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threads. The data environment is explained in Section 2.4.5. Section 2.4.6 gives a short
overview of the runtime library routines provided by OpenMP and Section 2.4.7 describes
how environment variables can be used to alter the behavior of the runtime system. In
Section 2.4.8, the memory model is described, while Section 2.4.9 describes some issues
with regards to thread safety.

2.4.1 General

The first OpenMP specification was released in 1997 for Fortran. At a time, when many
hardware vendors had their own directives for exploiting data-parallelism on their ma-
chines, this was a big step forward. One year later, the specification for C and C++ was
released. At the time of this writing, the specification is at version 2.5, released in 2005,
with version 3.0 expected in early 2008. Although the specification supports three lan-
guages, for the rest of this introduction only C++ is used.

OpenMP is an Application Programming Interface (API) that consists of directives,
runtime library routines and environment variables. Some of the advantages of OpenMP
have already been described in Section 2.2, the major ones are in no particular order:

• high level of abstraction: although OpenMP builds on threads, the user does not
need to create or manage them explicitly

• portability: runs on a variety of architectures, including most UNIX platforms and
various kinds of Windows operating systems and is specified for C/C++ and Fortran

• performance: performs about equal to lower-level systems most of the time

• standardization: specification supported by more than 15 vendors

• simplicity: employs only a small set of directives, runtime routines and environment
variables

• allows incremental parallelization: adding parallelism step by step is possible

• allows to turn parallelism off: most OpenMP-programs can be compiled without
OpenMP-support and result in a valid sequential program

• tool support: correctness tools, debuggers, and profilers are available

Of course, the system also has some disadvantages. OpenMP can neither provide fa-
cilities for distributed memory programming, nor is a well performing program on one
architecture necessarily going to perform well on a different one. In some areas, it also
lacks the level of control that low-level threading systems usually offer.
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Figure 2.1: Program execution scheme for OpenMP programs

1 # i n c l u d e < i o s t r e a m >
2 # i n c l u d e <omp . h>
3
4 i n t main ( i n t argc , char ** a rgv )
5 {
6 / * Spawn a team o f 5 t h r e a d s * /
7 # pragma omp p a r a l l e l num_threads ( 5 )
8 {
9 s t d : : c o u t << " Hel lo , I am a t h r e a d ! " << s t d : : e n d l ;

10 } / * A l l t h r e a d s j o i n m as t e r t h r e a d here and t e r m i n a t e * /
11 }

Figure 2.2: A parallel region in OpenMP

2.4.2 Creating Threads

In contrast to simple thread-based programming models, OpenMP imposes a structure on
all threads. The program starts its life with a single thread, the master thread. Parallelism
is expressed using a so-called parallel region. A parallel region is a block of code that
is simultaneously executed by a team of threads. The team consists of one master thread
and many worker threads and is spawned by a parallel directive. At the end of the
parallel region, all threads in the team wait for each other in an implied barrier. This
way of expressing parallelism is called fork/join-model and is represented graphically in
Figure 2.1. A very basic program showing how to create threads is shown in Figure 2.2.

The program will print a message to the standard output device five times when exe-
cuted. The num_threads clause is one way to specify, how many threads should be
part of a team, other ways to influence this number are described later.
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1 / * Spawn a team o f 5 t h r e a d s * /
2 #pragma omp p a r a l l e l num_threads ( 5 )
3 {
4 / * Each worker t h r e a d spawns a new team o f two t h r e a d s * /
5 # pragma omp p a r a l l e l num_threads ( 2 )
6 {
7 s t d : : c o u t << " Hel lo , I am a t h r e a d ! " << s t d : : e n d l ;
8 } / * i m p l i c i t b a r r i e r f o r i n n e r teams * /
9 } / * i m p l i c i t b a r r i e r f o r o u t e r team * /

Figure 2.3: Nested parallel regions in OpenMP

1 #pragma omp p a r a l l e l num_threads ( 5 )
2 {
3 # pragma omp c r i t i c a l
4 {
5 s t d : : c o u t << " Hel lo , I am a t h r e a d ! " << s t d : : e n d l ;
6 }
7 } / * A l l t h r e a d s j o i n m as t e r t h r e a d here and t e r m i n a t e * /

Figure 2.4: The critical directive

Parallel regions in OpenMP can also be nested inside each other. If a new parallel
directive is encountered by a team of threads, each worker-thread becomes the master of a
new team. This is especially useful for libraries. Unfortunately, nested parallelism is not a
required part of the OpenMP-specification as of the time of this writing and there are still
compilers out there that serialize the inner regions. An example of nested parallelism is
shown in Figure 2.3, where a total of ten threads should be spawned if nested parallelism
is supported in the compiler.

Although the two programs shown in this section are very small, both have an error
inside: std::cout is a resource that is shared among all threads. When multiple threads
access a shared resource at the same time, it must be protected from concurrent access (see
Grama et al. [Gra03] for the reasons why this is the case). In the next few paragraphs, we
are going to describe ways to guarantee that.

2.4.3 Synchronization

Several constructs are available to synchronize threads in OpenMP. The most important
one is the critical directive. It makes sure that a block of code is only executed by
one thread at a time. This makes sure that shared resources can be accessed safely by
multiple threads, as can be seen in our modified example in Figure 2.4.
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1 i n t i = 0 ;
2
3 #pragma omp p a r a l l e l num_threads ( 5 )
4 {
5 # pragma omp a t om ic
6 ++ i ;
7 }
8
9 s t d : : c o u t << i << " t h r e a d s were c r e a t e d ! " << s t d : : e n d l ;

Figure 2.5: The atomic directive

1 omp_lock_t my_lock ; / * d e f i n e a l o c k * /
2 o m p _ i n i t _ l o c k (&my_lock ) ; / * i n i t i a l i z e l o c k * /
3
4 #pragma omp p a r a l l e l num_threads ( 5 )
5 {
6 omp_se t_ lock (&my_lock ) ; / * s e t t h e l o c k * /
7 s t d : : c o u t << " Hel lo , I am a t h r e a d ! " << s t d : : e n d l ;
8 omp_unse t_ lock (&my_lock ) ; / * r e l e a s e t h e l o c k * /
9 }

10
11 o m p _ d e s t r o y _ l o c k (&my_lock ) ; / * d e s t r o y l o c k * /

Figure 2.6: Locks in OpenMP

With the changes applied in this figure, the program is safe. We show another example
of how synchronization can be employed in Figure 2.5. The program snippet shown in this
figure counts the number of threads that were created and stores the result in the variable
i. Access to i is protected by an atomic clause, which is a second synchronization
clause in OpenMP. It guarantees that the update of the protected memory location happens
in a single machine-step, thereby making sure no other thread can interfere. Atomic
operations are usually faster than employing a critical section, yet they can only be used
on a very limited set of arithmetic operations.

Locks are a very versatile synchronization method in OpenMP. Similar in functional-
ity to the critical directive, they offer more flexibility. For example, where critical
sections can only be using inside one function, locks can be employed across function
borders. Locks also come in a nested variety that is useful if you need to lock the same
lock multiple times in a row, e. g. from multiple functions. This usefulness comes at a
cost, though: locks need to be initialized (omp_init_lock) before use and destroyed
(omp_destroy_lock) after use, which is frequently forgotten by programmers, see
Section 5.1 for a solution. An example of how to use locks is shown in Figure 2.6.
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1 #pragma omp p a r a l l e l num_threads ( 5 )
2 {
3 # pragma omp f o r s c h e d u l e ( s t a t i c )
4 f o r ( i n t i =0 ; i <20; ++ i ) {
5 do_work ( i ) ;
6 }
7 }

Figure 2.7: The for work-sharing construct

We have mentioned the fourth synchronization construct in OpenMP already: the bar-
rier. When a thread reaches a barrier, it has to wait until all other threads in his team have
reached this point in the program as well. Only after then, all threads in the team can
continue. In OpenMP, there are implicit barriers like the one at the end of the parallel re-
gion and there are explicit barriers that are specified using the barrier directive. There
are even more synchronization constructs in OpenMP, e. g. the master and ordered
directives, but they are beyond the scope of this introduction.

2.4.4 Work-sharing

In the last sample programs shown, all threads carried out the same work. Most of the
time, this is not desired, as work should be divided among threads. This brings us into
the realm of work-sharing. The most important work-sharing directive in OpenMP is the
for directive. It is put before a for-loop and makes sure that all iterations of this loop are
distributed among all threads in a team. An example will make this clearer in Figure 2.7.

In the example, each threads carries out exactly four iterations of the loop and calls
the do_work method exactly four times, with a different i each time. We have set the
schedule clause to static in this case to use static mapping of the iterations to threads,
dynamic mapping is also available.

A second work-sharing construct available in OpenMP is the sections directive. In
the block of code associated with it, one or multiple section directives can be listed.
The code inside the block of code associated with each section construct is carried out
by exactly one thread (not necessarily a different one for each section), making this the
perfect directive for functional decomposition. An example is provided in Figure 2.8.

In the example, the do_task_one and do_task_two functions are carried out ex-
actly once. For the program shown, they will most likely be carried out by two different
threads, but this is not required by the specification.

The last work-sharing construct available for C++ is called single. The block of code
associated with each single directive is carried out by exactly one thread. Figure 2.9
shows an example.
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1 #pragma omp p a r a l l e l num_threads ( 2 )
2 {
3 # pragma omp s e c t i o n s
4 {
5 # pragma omp s e c t i o n
6 {
7 d o _ t a s k _ o n e ( ) ;
8 }
9 # pragma omp s e c t i o n

10 {
11 do_ t a sk_ two ( ) ;
12 }
13 }
14 }

Figure 2.8: The sections work-sharing construct

1 #pragma omp p a r a l l e l num_threads ( 5 )
2 {
3 do_some_work ( ) ;
4
5 # pragma omp s i n g l e
6 {
7 d o _ c l e a n u p ( ) ;
8 }
9 }

Figure 2.9: The single work-sharing construct

1 #pragma omp p a r a l l e l num_threads ( 2 )
2 {
3 i f ( omp_get_thread_num ( ) == 0)
4 {
5 d o _ t a s k _ o n e ( ) ; / * t h e ma s t e r t h r e a d does t h i s * /
6 } e l s e i f ( omp_get_thread_num ( ) == 1)
7 {
8 do_ ta sk_ two ( ) ; / * one worker t h r e a d does t h i s * /
9 }

10 }

Figure 2.10: Manual work-sharing
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In the example, the do_some_work function is carried out by five threads. Only
one thread executes the do_cleanup function. All work-sharing constructs have an
implicit barrier at the end. It can be omitted by specifying the nowait clause after the
work-sharing construct.

Besides using directives for work-sharing, it is also possible to use library routines.
The omp_get_thread_num function returns a unique id for each thread in a team that
can be used to map tasks to threads. This is called manual work-sharing and is shown in
Figure 2.10.

2.4.5 Data Environment

OpenMP is a parallel programming system for shared memory, therefore some consider-
ations are in order about which variables are shared between the threads, and which are
private to each thread. The default is shared. Variables are private to each thread only, if
they are:

• defined locally inside a parallel region

• defined locally inside a function called from within a parallel region

• loop index variables of loops parallelized with a for work-sharing construct

• made private by using a private, firstprivate, or lastprivate clause
on a parallel directive or a work-sharing directive

• made private by using a threadprivate directive

2.4.6 Runtime Library Routines

There are several runtime library routines in OpenMP. The most commonly used are the
following:

• omp_set_num_threads: sets the number of threads to use in future parallel
regions

• omp_get_num_threads: returns the number of threads currently in the team

• omp_get_thread_num: returns a unique id of a thread in the team

• omp_get_max_threads: returns the number of threads used if a new parallel
region was created at this point in the program

• omp_get_num_procs: returns the number of processors available to the pro-
gram

More routines have already been introduced earlier in this section (e. g. the ones for
locks). There are more functions available that are beyond the scope of this introduction.
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2.4.7 Environment Variables

Besides the directives and runtime library routines introduced earlier in this section, the
third part of OpenMP consists of environment variables. They can be used to influence
the behavior of the OpenMP runtime system. An example is the OMP_NUM_THREADS
environment variable, that is used to control how many threads are used in a parallel
region in the absence of the num_threads clause and the omp_set_num_threads
function. They are not used in this thesis, though, therefore they are not further explained
here.

2.4.8 The Memory Model

The memory model of OpenMP is complicated and therefore frequently skipped in tuto-
rials and introductory texts. To discuss it fully is beyond the scope of this section, see
the excellent paper by Hoeflinger and de Supinski [HdS05] for details. We are going to
concentrate on one aspect of the memory model here that has particular importance for
this thesis. The specification states:

If multiple threads write to the same shared variable without synchroniza-
tion, the resulting value of the variable in memory is unspecified. If at least
one thread reads from a shared variable and at least one thread writes to it
without synchronization, the value seen by any reading thread is unspecified.
([Ope05, p. 11])

This has the implication, that even to read a shared variable from memory, synchro-
nization is necessary between threads. The flush directive that is frequently employed
to achieve this is not sufficient, except in rare edge-cases.

2.4.9 Thread Safety

As soon as functions are called from multiple threads at the same time, the concept of
thread safety becomes important. Basically, a function is thread-safe, if it can be called
from multiple threads concurrently and still returns correct results. The concept becomes
even more important, as soon as functions from libraries are called. The OpenMP speci-
fication states with regards to thread safety:

All library, intrinsic and built-in routines provided by the base language must
be thread-safe in a compliant implementation. In addition, the implemen-
tation of the base language must also be thread-safe (e.g., ALLOCATE and
DEALLOCATE statements must be thread-safe in Fortran). Unsynchronized
concurrent use of such routines by different threads must produce correct re-
sults (though not necessarily the same as serial execution results, as in the
case of random number generation routines). ([Ope05, p. 13])
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These are far-reaching guarantees, that are unfortunately not kept by today’s implemen-
tations, see Section 6.3 for details.

2.5 Chapter Summary

In this chapter, we have described some foundations for our work. We have shown the
general steps involved in parallelizing an algorithm in Section 2.1: task decomposition,
mapping and synchronization/communication. Common problems encountered in the
field have been described in Section 2.2. Also in this section, we have provided reasons
why we have chosen OpenMP as the basis for our research.

An overview over the two main classes of parallel programming systems in actual use
today has been given in Section 2.3, which described the differences between message
passing systems and threading systems. The chapter closed with an overview of OpenMP
in Section 2.4. This system is relied on heavily in the rest of this thesis.



Chapter 3

Evaluating the State of the Art

It’s not what you don’t know that hurts you, it’s what you know that just ain’t
so. (Satchel Paige)

Before work was started to improve an existing parallel programming system, we took
the time to conduct some research on what is the state of the art in the field today. We felt
that only by knowing the systems in use today and the problems associated with them, we
could achieve our goal to make parallel programming easier.

Unfortunately, the state of the art is difficult to grasp entirely and in a timely fashion,
since it is constantly evolving and changing. Therefore, we have tried to improve our
knowledge about the topic using three main instruments: a survey, a study on frequently
made mistakes and a wiki for parallel programmers.

Section 3.1 describes a survey carried out among parallel programmers during most of
the year 2005. Although not statistically significant, data could be gathered e. g. about
what parallel programming systems and languages were used and known.

In Section 3.2, data on common programming mistakes made by our students while
learning their first parallel programming system were collected over the course of two
semesters. These data were used to compile a list of best practices for OpenMP-program-
mers, which is described later in Section 4.1. Although the list of mistakes is specific to
OpenMP, at least some of them are common in other systems, as well.

Finally, in Section 3.3, an attempt to create a resource on the web to gather experiences
in the field of parallel programming is described – the Parawiki. This collaborative re-
source has been setup in 2005 as well, as a single meeting and learning point about the
strengths and weaknesses of the available parallel programming systems.

The chapter is closed with a short summary of what has been accomplished in Sec-
tion 3.4. The relevance of this chapter in the context of this thesis is highlighted in Fig-
ure 3.1.

3.1 A Survey on Parallel Programming

The work presented in this section is derived from a technical report [SPL07]. Very few
data seem to exist on the usage of parallel programming systems by application program-
mers. Some presumptions are floating around the community, e.g.:

27
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Figure 3.1: Objectives, aims and contributions of this thesis (evaluation)

• The majority of parallel applications uses MPI nowadays

• Java threads is growing strong

There are few real data available to back up any of these claims, though. Studies with a
limited number of participants have been conducted in the past (e.g. by Sodan [Sod05]),
yet their intentions were different from ours. Books about the different parallel program-
ming systems, such as by Leopold [Leo01b], show which systems are available, but have
no data about which ones are in actual use.

Furthermore, different approaches to parallel programming like algorithmic skeletons
or parallelizing compilers are raising a lot of interest in the scientific community, but no
data about how many application programmers actually know and/or use these systems
are available.

Therefore, we have conducted a non-representative survey among the programmers of
parallel applications. Section 3.1.1 explains how the survey was carried out. Section 3.1.2,
the main part of this section, goes through the questions, shows the submitted answers,
and comments on their relevance. We also wanted to combine several questions with each
other to show even more detailed analysis, but decided against it due to the limited amount
of participants.

It is important to point out, that each and every observation we sketch out in this part of
the work is merely a hypothesis. Our findings are not backed up statistically and should
therefore be treated merely as data points, not as a scientific proof. We believe, however,
that any data is better than no data on the subject at all, as it can at least be used to come up
with hypotheses, which can be proved later, possibly using a more representative study.
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3.1.1 Survey Methodology

The survey was carried out online, with a simple HTML form, and a PHP script to put
the submissions into a MySQL database. It was hosted on the web-server of our re-
search group, where it can still be viewed for reference [Sue05a]. Submissions were
accepted from February 2nd to November 7th, 2005. Visitors of the site were asked to
fill out the survey only if they were developing parallel applications. Of course, we had
no way to verify that. If participants submitted their answers along with a working e-
mail address, they could win one of two $50 gift certificates from amazon.com. We also
promised to deliver a report of the results, which was done in February 2006 as a techni-
cal report [SPL07] and mailed out to all participants who had expressed interest in being
notified.

To raise more interest for the survey and generate submissions, we have sent messages
to several discussion groups, once shortly after the start of the survey and once shortly
before the end:

• Usenet: comp.parallel, comp.parallel.mpi, comp.parallel.pvm, comp.sys.super,
aus.computers.parallel, comp.programming.threads

• Mailing Lists: beowulf@beowulf.org, lam@lam-mpi.org, omp@openmp.org,
compunity@lists.rwth-aachen.de, bspall@bsp-worldwide.org

• Forums: CodeGuru Forum, Intel Developer Services Forum

• Websites: slashdot.org

It was necessary to send out these messages, because otherwise our survey would not
have been noticed by enough members of the parallel programming community to make
the results meaningful. The distribution of these messages influenced our results, though.
An example: we did not find a discussion forum for Java threads or for algorithmic skele-
tons at the time. If we had found one, the results for these systems probably would have
been higher. For this reason alone, all results of this survey should be considered merely
as data points, as they are not in any way statistically sound. For statistical significance,
it would have been necessary to sample a proportional part of the parallel programming
population, and we know of no way to do so (at least not within our budget). It is for this
reason, that no statistical measures were applied to the data in this section.

Other sites might have reported on the survey as well. On the Erlang mailing list, a link
to the survey has been posted, which may have significantly increased the participation
from this community. We got over 30 responses from Erlang programmers, whereas few
other communities not specifically targeted by the survey were mentioned more than three
times.

Before the data was processed and evaluated, some entries had to be disqualified.
Firstly, we had four double submissions, identifiable by the submitted name and email
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address. Only the last submission was taken into account in these cases. Secondly, two
of our students participated in the survey, although all they know about parallelization
was from our classes. Since we did not want to influence the results ourselves, these
submissions were taken out as well. This left us with 256 out of 262 submissions.

Of course, we cannot rule out the possibility entirely that more of our students partic-
ipated or that there were more double submissions, since a valid e-mail address or name
was not required on the submission form. Judging from the IP-addresses of our partici-
pants, this has at least not happened on a noticeable scale, though.

3.1.2 Survey Analysis

In this section, we present the results of the survey and add some analysis to each ques-
tion. The first question considered languages for parallel programming, while the second
question was about parallel programming systems. Question three evaluated which op-
erating systems parallel applications were developed for, question four shows our data
about which hardware platforms were targeted. In order to learn more about the partici-
pants of the survey, we have collected data on the organizations they worked in (question
five), the average time they spent on parallel programming (question six), and the specific
field they worked in (question seven). Finally, question eight highlights the problems peo-
ple had with parallel programming. The last question of the survey, which provided the
possibility to add remarks, was seldom used by our participants, and is therefore omitted
here.

Question 1 – Programming Languages

The first question was formulated as shown in Figure 3.2. Results are depicted in Fig-
ure 3.3. The left graph labeled Usage is calculated by weighting the submissions like
this: N/K and never were not counted, sometimes was counted as is, about half the time
with a factor of 2, often with a factor of 3 and for every parallel application with a factor
of 4. The height of the bar for each language was the sum of the weighted submissions.
This graph presents a view on which languages were actually used by parallel program-
mers. We stick to this definition of Usage throughout this section, although it is of course
somewhat arbitrary.

In the right graph in Figure 3.3 labeled Publicity, all submissions except the votes for
N/K (not known) were counted. It shows, how many members of our survey group knew
the language.

C came out as the winner in both graphs for our specific survey group, followed by
C++ and Fortran. Parallel programming with logical languages was obviously not very
widespread (or if it was, we have not managed to reach this group). The numbers for
Java are interesting. As can be seen in the publicity-graph, many participants knew Java,
almost as many as Fortran and more than the functional languages, yet when it comes to
actually using it, Java fell behind Fortran by a great margin and was even surpassed by the
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Figure 3.2: Survey question 1

functional languages. This trend can also be observed in the first part of Figure 3.4, where
the distribution of votes for Java is shown. Note the large number of votes for never,
meaning the programmer has heard about the language but was not using it for parallel
programming. Obviously the hype around Java has managed to make the language known
to many programmers, but has not convinced too many of them to actually use it for
parallel programming.

The second part of Figure 3.4 is interesting as well. It is the distribution of votes for
functional languages. Obviously there were two camps of parallel programmers: the ones
who did not use functional languages at all (this is the larger camp and it contains the votes
for N/K and never), and the camp that used them often or even for every application. As
can be seen in the graph, there were not many votes in-between the two (for sometimes or
half the time), which seems to confirm the common belief that once a programmer starts
using functional languages, he will never go back to using any other language.

The outcome of these graphs could be explained in part by the discussion groups we
contacted for this survey, as many of the parallel programming systems for which we
found and contacted mailing lists (e.g. MPI, OpenMP, PVM or POSIX threads) have
C/C++/Fortran as their base languages. We could, however, compare the results of these
languages, and C emerged as the clear winner between the three.

But what about the other languages? As can be seen in Figure 3.2, participants had the
ability to enter their own choices of languages into various input fields. Figures 3.5 and 3.6
show, which languages have been entered. We only present languages that were submitted
more than three times, since otherwise the graph would have become too big. We have
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Figure 3.3: Parallel programming languages

also decided against dividing the graph into categories (functional, logical, others), for the
sake of clarity and because the distinction does not lead to any new insights here.

We have already told you a possible reason for the relatively high numbers for Erlang
when compared to the other languages in Section 3.1.1. What could be deduced from
these numbers, though, is that Erlang had an active user community.

It would be unfair to compare the languages explicitly mentioned in question one with
the other languages entered in textboxes. If we would have explicitly asked for e.g. Python
in this question, it would have been voted higher. Therefore, the languages depicted
in Figures 3.3 and 3.5 can only be compared fairly to the languages in their respective
figures.

All of these graphs together gave us at least some indications about our initial ques-
tion, which languages are known and in use for parallel programming today. All of
C/C++/Fortran and Java were used and known to the community at large, while at least
a few other languages (starting with Erlang, but also including languages like Perl and
Python) were on the radar of some parallel programmers.

Question 2 – Parallel Programming Systems

The second question was phrased as:
How often have you used the following parallel programming systems during the last 3

years?
The possible answers as well as their respective number of submissions (weighted ex-

actly as explained in Section 3.1.2) are shown in Figures 3.7 and 3.8.
The results of the usage graph seemed pretty clear: MPI won by a great margin, for

our survey group, followed by POSIX threads and OpenMP. We suspect that 5 years
ago, the numbers for PVM would have been much higher, but for now the battle for the
predominant message passing system seems to have been settled in favor of MPI. The high
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Figure 3.4: Parallel programming languages in detail

usage numbers for MPI were due to a large number of exclusive users, as can be seen in
Figure 3.9. There were other systems which are also widely known (see Figure 3.8), but
all of them fell behind in actual usage.

For shared memory programming, POSIX threads and OpenMP were close together,
and it will be interesting to see, whether or not one of the systems manages to become the
dominant one, especially since their usage distribution was about equal (see the bottom of
Figure 3.9). High Performance Fortran (HPF) and BSP did not appear to play a significant
role for shared memory programming, for our survey group. The picture for Java threads
was similar to what has been observed in Section 3.1.2. The system was widely known,
yet seldom used.

We were somewhat surprised by the low numbers for algorithmic skeletons. These
are generating a lot of attention in the research community, yet their publicity and even
more usage were low, in our survey group. We were not even able to create a hypothesis
about which system is the most widely known, because all three submitted systems (P3L,
DatTeL, FreePOOMA) have been mentioned only once!

A similar observation could be made for automatically parallelizing compilers. Com-
pared to other systems, their publicity and usage were relatively low. This was surprising,
since they were commonly available and all it took to use them was setting a switch in
the command line. A detailed list of the parallelizing compilers submitted is shown in
Figure 3.10. Note that, once again, only compilers that were submitted more than three
times are depicted.

Distributed shared memory systems seemed to suffer a similar fate in our survey group.
They were heavily researched, yet not widely known or used. Only SGI Altix and IBM
pSeries have been mentioned more than three times, and both are actually hardware archi-
tectures with built-in support for distributed shared memory. No pure software solutions
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Figure 3.5: Usage of other languages for parallel programming

were mentioned more than three times, which indicates that they were not widely accepted
or used in our survey group.

The other parallel programming systems submitted included a wide variety of systems,
yet only Erlang (26 submissions, accumulating to a usage of 89) and .NET (four submis-
sions with a usage of 10) managed to be mentioned more than three times. Noteworthy is
the fact that Erlang is one of the very few programming languages for which parallelism is
an integral part of the language, and it therefore had high submissions for both questions
one and two. When interpreting the numbers, the systems entered by users can only be
compared fairly among themselves, and not to systems explicitly asked for in question
two.

Using these figures and observations, let us reconsider our initial question about the
usage and publicity of parallel programming systems: It is safe to conclude that MPI,
POSIX threads, OpenMP, and Java threads were widely known and used for parallel pro-
gramming, with MPI being the most popular programming system from our submissions
(but remember that we have not sampled a proportional part of the parallel programming
population!). Algorithmic skeletons, parallelizing compilers and distributed shared mem-
ory systems did not seem to be widely accepted and used (or, if they were, we have not
managed to reach their user communities). Erlang had significant usage numbers, but we
can not fairly judge its popularity, from our survey methodology.

Question 3 – Operating Systems

Our next question was:

• What operating systems are your parallel applications intended for?
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Figure 3.6: Publicity of other languages for parallel programming

Figure 3.7: Usage of parallel programming systems

The possible answering options and the submissions are shown in Figure 3.11. Note
that only radio buttons were provided for the answers, therefore it was not possible to
distinguish between usage and publicity here as for questions one and two.

Linux was the dominant operating system for this survey by a wide margin, followed
by Solaris and Windows. It seems safe to conclude that most parallel applications were
developed for a flavor of UNIX, as even the operating systems that were hand-submitted
consist mainly of variants of UNIX (as can be seen in the right part of Figure 3.11). It
would be interesting to see if these numbers changed in time with the introduction of
Windows for Supercomputers and the increase in parallel systems on the desktop due to
the advent of multi-core processors.

Question 4 – Hardware Platforms

The next question we wanted to investigate was:
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Figure 3.8: Publicity of parallel programming systems

• What hardware platforms are your parallel applications intended for?

Possible answers were shared memory architectures (e.g. SMPs, NUMAs), distributed
memory architectures (e.g. clusters) and grids. Multiple answers were allowed. Dis-
tributed memory architectures won our survey with 199 submissions, followed by shared
memory architectures with 160 submissions. Grids came in at a distant third place with
only 47 submissions.

Question 5 – Organization

In this question we wanted to know:

• In what kind of organization are you developing parallel applications?

Answers were: University (122 submissions), Company (88 submissions), Other Re-
search Institute and Other Organization (6 submissions total). This question was most
useful to put the results we have gathered so far into perspective, as obviously our survey
was biased in favor of systems used at universities.

Question 6 – Time spent

Our next question was:

• How much of your programming time is spent on the development of parallel ap-
plications?

Answers were: 0− 20% (81 submissions), 20− 40% (48 submissions), 40− 60% (46
submissions), 60−80% (37 submissions) and 80−100% (no submission). Multiple an-
swers were not allowed. There either were no people who are employed to work on
parallel projects full-time, or we have not managed to reach them.
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Figure 3.9: Parallel programming systems in detail

Question 7 – Fields

In this question we wanted to know:

• For which scientific or economic fields are you developing parallel applications?

We did not define these fields beforehand, but rather evaluated what people have en-
tered in a text-field. This of course led to a wide variety of fields. We therefore classified
them into bigger categories and came up with the following list: Physics (41 submissions),
Computer Science (31 submissions), Biology (20 submissions), Chemistry (19 submis-
sions), Mathematics (17 submissions), Engineering (14 submissions) and Astronomy (10
submissions). All other fields had less than ten submissions and were therefore left out.
Once again, our survey results are obviously very biased in favor of the systems used for
either engineering or the natural sciences.



38 Evaluating the State of the Art

Figure 3.10: Parallelizing compilers

Question 8 – Problems

In another question, participants were asked to enter their problems regarding parallel
programming in a text field. The question was formulated as:

• What major problems do you see with the currently available parallel programming
systems?

For the analysis, we classified the entered problems into categories, of which six were
entered more than ten times: parallelization overhead (41 submissions), need for better de-
bugging tools (36 submissions), need for bug-free compilers or libraries (22 submissions),
lack of support by a community/vendor or lack of documentation (15 submissions), need
for higher-level development tools (11 submissions), and problems with special hardware
(10 submissions). Most of these problems have been described already in Section 2.2 in
the foundations of this work, some are also addressed later in this thesis.

It turns out, that the biggest problem with the currently available parallel programming
systems was parallelization overhead. Some participants went on to mention that writing
parallel programs was very hard in the comments section of the survey.

This closes our description of the parallel programming survey. In the next section, we
are going to describe a different aspect of our work to research the present state of the art
with regards to parallel programming. It shows frequently made mistakes with OpenMP.
Although the section concentrates on OpenMP, many of the mistakes and solutions de-
scribed there can be easily adapted to other parallel programming systems.
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Figure 3.11: Operating systems

3.2 A Study on Frequently Made Mistakes in OpenMP

People who make no mistakes do not usually make anything. (Unknown)

This section is derived from a conference paper published in 2006 [SL06a]. One of
the main design goals of OpenMP was to make parallel programming easier. Yet, there
are still fallacies and pitfalls to be observed when novice programmers are using the sys-
tem. We have therefore conducted a study on a total of 85 students visiting our lecture on
parallel programming, and observed the mistakes they made when asked to prepare as-
signments in OpenMP. We hope to save the novice programmer some time and grief with
this list, as it is possible to learn from it. Later in this thesis, we will also try to provide
solutions that make the mistakes less likely to occur. The study is described in detail in
Section 3.2.1.

We are concentrating on the most common mistakes from our study for the rest of this
section. They are briefly introduced in Table 3.1, along with a count of how many teams
(consisting of two students each) have made the mistake each year. We have chosen to
divide the programming mistakes into two categories:

1. Correctness Mistakes: all errors impacting the correctness of the program.

2. Performance Mistakes: all errors impacting the speed of the program. These lead
to slower programs, but do not produce incorrect results.

Section 3.2.2 explains the mistakes in more detail. Also in this section, we propose
possible ways and best practices for novice programmers to avoid these errors in the
future. Section 3.2.3 reports on tests that we conducted on a variety of OpenMP compilers
to figure out, if any of the programming mistakes are spotted and/or possibly corrected by
any of the available compilers. Section 3.2.4 reviews related work.
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No. Problem 04 05 Σ

Correctness Mistakes
1. Access to shared variables not protected 8 10 18
2. Use of locks without flush 7 11 18
3. Read of shared variable without flush and synchronization 5 10 15
4. Forget to mark private variables as such 6 5 11
5. Use of ordered clause without ordered construct 2 2 4
6. Declare loop variable in for construct as shared 1 2 3
7. Forget to put for in #pragma omp parallel for 2 0 2
8. Try to change num. of thr. in parallel reg. after start of reg. 0 2 2
9. omp_unset_lock called from non-owner thread 2 0 2
10. Attempt to change loop var. while in #pragma omp for 0 2 2

Performance Mistakes
11. Use of critical when atomic would be sufficient 8 1 9
12. Put too much work inside critical region 2 4 6
13. Use of orphaned construct outside parallel region 2 2 4
14. Use of unnecessary flush 3 1 4
15. Use of unnecessary critical 2 0 2

Total Number of Groups 26 17 43

Table 3.1: The list of frequently made mistakes when programming in OpenMP

3.2.1 Survey Methodology

We have evaluated two courses for this study. Both consisted of students on an undergrad-
uate level. The first course took place in the winter term of 2004/2005, while the second
one took place in the winter term of 2005/2006. The first course had 51 participants (26
groups of mostly two students), the second one had 33 participants (17 groups). The lec-
ture consisted of an introduction to parallel computing and parallel algorithms in general,
followed by a short introduction of about five hours on OpenMP. Afterwards, the students
were asked to prepare programming assignments in teams of two people, which had to be
defended before us. During these sessions (and afterwards in preparation for this paper),
we analyzed the assignments for mistakes, and the ones having to do with OpenMP are
presented here.

The assignments consisted of small to medium-sized programs, among them:

• find the first N prime numbers

• simulate the dining philosophers problem using multiple threads
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• count the number of connected components in a graph

• write test cases for OpenMP directives/clauses/functions

A total of 231 student programs in C or C++ using OpenMP were taken into account
and tested on a variety of compilers (e. g. from SUN, Intel, Portland Group, and IBM).
Before we begin to evaluate the results, we want to add a word of warning: Of course,
the programming errors presented here have a direct connection to the way we taught the
lecture. Topics we talked about in detail will have led to fewer mistakes, while for other
topics, the students had to rely on the specification or other literature. Moreover, mistakes
that have been corrected by the students before submitting their solution are not taken into
account here. For these reasons, the numbers presented in Table 3.1 are mere indications
of programming errors that novice programmer may make.

3.2.2 Common Mistakes in OpenMP and Best Practices to Avoid
Them

In this section, we will discuss the most frequently made mistakes observed during our
study, as well as suggest possible solutions to make them occur less likely. There is one
universal remark for instructors that we want to discuss beforehand: We based our lecture
on assignments and personal feedback, and found this approach to be quite effective: As
soon as we pointed out a mistake in the students programs during the exam, a group
would rarely repeat it again. Only showing example programs in the lecture and pointing
out possible problems did not have the same effect.

There are some mistakes, where we cannot think of any best practices to avoid the
error. Therefore, we will just shortly sketch these at this point, while all other mistakes
are discussed in their own section below (the number before the mistake is the same as in
Table 3.1):

2. Use of locks without flush: Before version 2.5 of the OpenMP specification, lock
operations did not include a flush. The compilers used by our students were not
OpenMP 2.5 compliant, and therefore we had to mark a missing flush directive
as a correctness error.

5. Use of ordered clause without ordered construct: The mistake here is to put an
ordered clause into a for work-sharing construct, without specifying with a
separate ordered clause inside the enclosed for loop, what is supposed to be
carried out in order.

8. Try to change number of threads in parallel region after start of region: The number
of threads carrying out a parallel region can only be changed before the start of the
region. It is therefore a mistake to attempt to change this number from inside the
region.
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10. Attempt to change loop variable while in #pragma omp for: It is explicitly
forbidden in the specification to change the loop variable from inside the loop.

11. Use of critical when atomic would be sufficient: There are special cases when syn-
chronization can be achieved with a simple atomic construct. Not using it in this
case leads to potentially slower programs and is therefore a performance mistake.

14. Use of unnecessary flush: flush directives are implicitly included in certain po-
sitions of the code by the compiler. Explicitly specifying a flush immediately
before or after these positions is considered a performance mistake.

15. Use of unnecessary critical: The mistake here is to protect memory accesses with
a critical construct, although they need no protection (e.g. on private variables
or on other occasions, where only one thread is guaranteed to access the location).

Access to Shared Variables Not Protected

The most frequently made and most severe mistake during our study was to not avoid
concurrent access to the same memory location. As described in Section 2.4.3, OpenMP
provides several constructs for protecting critical regions, such as the critical direc-
tive, the atomic directive and locks. Although all three of these constructs were intro-
duced during the lecture, many groups did not use them at all, or forgot to use them on
occasions. When asked about it, most of them could explain what a critical region was for
and how to use the constructs, yet to spot these regions in the code appears to be difficult
for novice parallel programmers.

A way to make novice programmers aware of the issue is to use the available tools to
diagnose OpenMP programs. For example, both the Intel Thread Checker and the Assure
tool find concurrent accesses to a memory location.

Read of Shared Variable without Flush and Synchronization

The OpenMP memory model is complicated. Whole sections in the OpenMP specification
have been dedicated to it, whole papers written about it [HdS05] and this thesis also
includes a short introduction to it (see Section 2.4.8). One of its complications is the error
described here. Simply put, when reading a shared variable without flushing it first (in
this order), it has an unspecified value. Actually, the problem is even more complicated,
as not only the reading thread has to flush the variable, but also any thread writing to
it beforehand. The order of these operations is important here as well and this order
can only be guaranteed by using other forms of synchronization (e. g. critical or
barrier). Many students did not realize this and just read shared variables without any
further consideration. On many common architectures this will not be a problem, because
the memory model of these architectures offers more guarantees than the more relaxed one
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of OpenMP. Quite often, the problem does not surface in real-world programs, because
there are implicit flushes contained in many OpenMP constructs, as well.

In other cases, students simply avoided the problem by declaring shared variables as
volatile, which puts an implicit flush before every read and after every write of any
such variable. Of course, it also disables many compiler optimizations for this variable
and therefore is often the inferior solution.

The proper solution, of course, is to make every OpenMP programmer aware of this
problem, by clearly stating that every read to a shared variable must be protected by a
critical region, except in very rare edge-cases not discussed here.

Version 2.5 of the OpenMP specification includes a new paragraph on the memory
model. Whether or not this is enough to make novice programmers aware of this pitfall
remains to be seen.

Forget to Mark Private Variables as such

This programming error has come up surprisingly often in our study. It was simply for-
gotten to declare certain variables as private, although they were used in this way. The
default sharing attribute rules will make the variable shared in this case.

Our first advice to C and C++ programmers to avoid this error in the future is to use the
scoping rules of the language itself. C and C++ both allow variables to be declared inside
a parallel region. These variables will be private (except in rare edge cases described in
the specification, e. g. static variables), and it is therefore not necessary to explicitly mark
them as such, avoiding the mistake altogether.

Our second advice to novice programmers is to use the default(none) clause. It
will force each variable to be explicitly declared in a data-sharing attribute clause, or else
the compiler will complain. We will not go as far as to suggest to make this the default
behavior, because it certainly saves the experienced programmer some time to not have
to put down each and every shared variable in a shared clause. But on the other hand,
it would certainly help novice programmers who probably do not even know about the
default clause.

It might also help if the OpenMP compilers provided a switch for showing the data-
sharing attributes for each variable at the beginning of the parallel region. This would
enable programmers to check if all their variables are marked as intended. An external
tool for checking OpenMP programs would be sufficient for this purpose as well. Another
solution to the problem is the use of autoscoping as proposed by Lin et al. [LCTaM04].
According to this proposal, all data-sharing attributes are determined automatically, and
therefore the compiler would correctly privatize the variables in question. The proposed
functionality is available in the Sun Compiler 9 and newer.

Last but not least, the already mentioned tools can detect concurrent accesses to a
shared variable. Since the wrongly declared variables fall into this category, these tools
should throw a warning and alert the programmer that something is wrong.
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Declare Loop Variable in for-Construct as shared

This mistake shows a clear misunderstanding of the way the for work-sharing construct
works. The OpenMP specification states clearly that these variables are implicitly con-
verted to private, and all the compilers we tested this on performed the conversion. The
surprising fact here is that many compilers did the conversion silently, ignoring the shared
declaration and not even throwing a warning. More warning messages from the compilers
would certainly help here.

Forget to Put for in #pragma omp parallel for

The mistake here is, to attempt to use the combined work-sharing construct #pragma
omp parallel for, but forget to put down the for in there. This will lead to every
thread executing the whole loop, and not only parts of it as intended by the programmer.

In most cases, this mistake will lead to the first mistake described in this section, and
therefore can be detected and avoided by using the tools specified there.

One way to avoid the mistake altogether is to specify the desired schedule clause,
when using the for work-sharing construct. This is a good idea for portability any-
ways, as the default schedule clause is implementation defined. It will also lead to the
compiler detecting the mistake we have outlined here, as #pragma omp parallel
schedule(static) is not allowed by the specification and yields compiler errors.

omp_unset_lock Called from Non-Owner Thread

The OpenMP-specification clearly states:

The thread which sets the lock is then said to own the lock. A thread which
owns a lock may unset that lock, returning it to the unlocked state. A thread
may not set or unset a lock which is owned by another thread.

([Ope05, p. 102])

Some of our students still made the mistake to try to unset a lock from a non-owner
thread. This will even work on most of the compilers we tested, but might lead to unspec-
ified behavior in the future.

To avoid this mistake, we have proposed to our students to use locks only when ab-
solutely necessary. There are cases when they are needed (for example to lock parts
of a variable-sized array), but most of the times, the critical construct provided by
OpenMP will be sufficient and easier to use. The use of guard objects as described in
Section 5.1.2 would also make this mistake impossible to happen, as they are unset auto-
matically.



3.2 A Study on Frequently Made Mistakes in OpenMP 45

Put too much Work inside Critical Region

This programming error is probably due to the lack of sensitivity for the cost of a critical
region found in many novice programmers. The issue can be split into two subissues:

1. Put more code inside a critical region than necessary, thereby potentially blocking
other threads longer than needed.

2. Go through the critical region more often than necessary, thereby paying the main-
tenance costs associated with such a region more often than needed.

The solution to the first case is obvious: The programmer needs to check if each and
every line of code that is inside a critical region really needs to be there. Complicated
function calls, for example, have no business being in there most of the time, and should
be calculated beforehand if possible.

As an example for the second case, consider the following piece of code, which some
of our students used to find the maximum value in an array:

1 #pragma omp p a r a l l e l f o r
2 f o r ( i = 0 ; i < N; ++ i ) {
3 # pragma omp c r i t i c a l
4 {
5 i f ( a r r [ i ] > max ) max = a r r [ i ] ;
6 }
7 }

The critical region is clearly in the critical path in this version, and the cost for it
therefore has to be paid N times. Now consider this slightly improved version:

1 #pragma omp p a r a l l e l f o r
2 f o r ( i = 0 ; i < N; ++ i ) {
3 # pragma omp f l u s h ( max )
4 i f ( a r r [ i ] > max ) {
5 # pragma omp c r i t i c a l
6 {
7 i f ( a r r [ i ] > max ) max = a r r [ i ] ;
8 }
9 }

10 }

This is called double-checked locking and will be faster (at least on architectures, where
the flush-operation is significantly faster than a critical region), because the critical re-
gion is entered less often. Unfortunately, the solution is also incorrect in OpenMP, be-
cause of constraints in the memory model (see Section 5.2.2 for an explanation). Finally,
consider this version:
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1 #pragma omp p a r a l l e l
2 {
3 i n t pr iv_max ;
4 # pragma omp f o r
5 f o r ( i = 0 ; i < N; ++ i ) {
6 i f ( a r r [ i ] > pr iv_max ) pr iv_max = a r r [ i ] ;
7 }
8 # pragma omp c r i t i c a l
9 {

10 i f ( pr iv_max > max ) max = pr iv_max ;
11 }
12 }

This is essentially a reimplementation of a reduction using the max operator. We have
to resort to reimplementing this reduction from scratch here, because reductions using the
max operator are only defined in the Fortran version of OpenMP (which in itself is a fact
that many of our students reported to have caused confusion). Nevertheless, it is possible
to write programs this way, and by showing novice programmers techniques like the ones
sketched above, they get more aware of performance issues.

Another way to avoid the reimplementation of a reduction described above is to use the
reduce function provided by the AthenaMP library, see Section 5.3.1.

Use of Orphaned Construct Outside Parallel Region:

There are essentially two subcases to this mistake:

1. Attempting to use a combined parallel work-sharing construct and forgetting to
actually put down the parallel (writing e. g. #pragma omp for outside of a
parallel region)

2. Using a synchronization or other construct outside of a region

While there is not much we can suggest for case two (except for the programmer to
be aware that this might happen), there is something that can be done in the first case: It
has already been suggested to use default(none) on every parallel construct for
novice programmers. When taking this advice to heart, the mistake will be spotted by the
compiler, as e. g.
#pragma omp for default (none)

is not allowed in the specification and will be detected by the compiler as a syntax error.

3.2.3 Compilers and Tools

There are a multitude of different compilers for OpenMP available, and we wanted to
know, if any of them were able to detect the programming errors sketched in Section 3.2.2.
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No. File icc pgcc sun guide xlc assure itc

Correctness Mistakes
1. access_shared - - - - - eE eE
2. locks_flush - - - - - - -
3. read_shared_var - - - - - - (eE)
4. forget_private (=No. 1) - - - - - eE eE
5. ordered_wo_ordered - - - - - - eW
6. shared_loop_var cE cC cW+C cE cC cE cE
7. forget_for - - - - - (eE) (eE)
8. change_num_threads - - - - - - -
9. unset_lock_diff_thread - - - - - - -
10. change_loop_var - - - - cW - -

Performance Mistakes
11. crit_when_atomic - - - - - - -
12. too_much_crit
13. orphaned_const - - rW - - - -
14. unnec_flush - - - - - - -
15. unnec_crit - - - - - - -

Table 3.2: How compilers deal with the problems

Therefore we have written a short testcase for each of the programming mistakes. Ta-
ble 3.2 describes the results of our tests on different compilers.

The numbers in the first column are the same as in Table 3.1. The second column
contains the names of our test programs. We could not think of a sound test for problem 12
(put too much work inside critical region), and therefore the results for this problem
are omitted. Test program four is the same as test program one, and therefore the results
are the same as well. The rest of the table depicts results for the following compilers (this
list is not sorted by importance, nor in any way representative, but merely includes all the
OpenMP-compilers we had access to at the time):

• Intel Compiler 9.0 (icc)

• Portland Group Compiler 6.0 (pgcc)

• Sun Compiler 5.7 (sun)

• Guide component of the KAP/Pro Toolset C/C++ 4.0 (guide)

• IBM XL C/C++ Enterprise Edition 7.0 (xlc)
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• Assure component of the KAP/Pro Toolset C/C++ 4.0 (assure)

• Intel Thread Checker 2.2 (itc)

The last two entries (assure and itc) are not compilers, but tools to help the programmer
find mistakes in their OpenMP programs. As far as we know, Assure was superseded
by the Intel Thread Checker and is no longer available, nevertheless it is still installed in
many computing centers. We were not able to find any lint-like tools to check OpenMP
programs in C, there are however solutions for Fortran available commercially.

The alphabetic codes used in the table are to be read as follows: the first (uncapital-
ized) letter is one of (c)ompiletime, (r)untime or (e)valuation time, and describes, when
the mistake was spotted by the compiler. Only Assure and the Intel Thread Checker
have an evaluation step after the actual program run. The second (capitalized) letter de-
scribes, what kind of reaction was generated by the compiler, and is one of the following:
(W)arning, (E)rror or (C)onversion. Conversion in this context means that the mistake
was fixed by the compiler without generating a warning. Conversion was done for prob-
lem six, where the compilers privatized the shared loop variable. W+C means, that the
compiler generated a warning, but also fixed the problem at the same time. There is one
last convention to describe in the alphabetic codes: When there are braces around the
code, it means that a related problem was found by the program, which could be traced
back to the actual mistake. An example: When the programmer forgets to put down for
in a parallel work-sharing construct (problem seven), it will lead to a data race. This race
is detected by the Intel Thread Checker, and therefore the problem becomes obvious. All
tests were performed with all warnings turned to the highest level for all compilers.

It is obvious from these numbers that most of the compilers observed are no big help in
avoiding the problems described in this paper. Tools such as the Intel Thread Checker are
more successful, but still it is most important that programmers avoid the mistakes in the
first place. This section and all the work presented in Chapter 4 are a step in this direction.

3.2.4 Related Work

We are not aware of any other studies regarding frequently made mistakes in OpenMP.
Of course, in textbooks [CDK00] and presentations teaching OpenMP, some warnings
for mistakes are included along with techniques to increase performance, but most of
the time, these are more about general pitfalls regarding parallel programming (like e. g.
warnings to avoid deadlocks). There is one interesting resource to mention though: the
blog of Yuan Lin [Lin05], where he has started to describe frequently made mistakes with
OpenMP. Interestingly, at the time of our study, he had not touched any errors that we
had described as well, which leads us to think that there are many more potential sources
of errors hidden inside the OpenMP specification and the shared memory idiom that it is
based on.

This closes our work on frequent mistakes in OpenMP. As already mentioned above,
although they are specific to this particular system, at least some of them can happen
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in other systems as well. In the next section, we are going to show an attempt to bring
knowledge and experiences with regards to parallel programming from different sources
into one location to make it more easily accessible: the Parawiki.

3.3 The Parawiki

This section is derived from a Technical Report published in 2005 [SL]. It describes an
effort to gather knowledge in the field of parallel programming in a single location on the
web – the Parawiki. The wiki tried to address the following questions: How does one
choose one of the available parallel programming systems for a particular project? Where
can one go hunt for information about features, reliability and real user experiences (not
supplied by the programmers of the system in question)?

Of course, the most valuable resources in a field like this are personal experiences over
several projects and years. But many people do not have these, and still need to make
educated decisions about the tools for their next project.

Of course, one can go ask on one of the available mailing lists or forums (should one be
able to find one that fits), or try one of the available link collections (like DMOZ [dmo]).
Search engines might be of help, too, but they require much time to hunt through a lot of
hits. Books such as the one by Leopold [Leo01b] may be a nice starting point, but are
unfortunately never really up to date, especially when it comes to research projects. For
these, one can look into conference proceedings or at the home page of the project, but
the information supplied there is rarely unbiased.

All of these methods have one thing in common: They are very time consuming and
not likely to lead to reliable and objective information. The solution described here is
not new, but has not yet been attempted for this particular field – a web-portal called
Parawiki [Theb], where information was to be collected about parallel programming sys-
tems. Topics included the history of a system, whether or not the system is still actively
maintained, features and caveats, as well as links to resources on the web and maybe
books describing the system. General information about parallel programming and paral-
lel architectures, for instance definitions of basic terms used in the field were included as
well.

So far this sounds much like one of the existing portals about programming languages
such as the Language Guide [Thea] or one of the available online dictionaries [Fre, Com].
This is true to a certain extent; in fact these websites even served as an inspiration to try
something similar for the topic of parallel programming, for which there appeared to be
no such site.

A crucial difference between our resource and these sites was that in the Parawiki, the
entries were supposed to be written and kept up to date by volunteers from the parallel
programming community (might that be experienced students, application programmers
or scientists). Unfortunately, this is the first reason why we consider the attempt failed,
because the wiki has not attracted enough attention in the community. Merely a few users
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registered and a few edits were entered from outside our research group, probably because
we did not manage to create enough attention and enthusiasm about the project.

The flexibility of this approach was best served by a wiki, which was the central
part of our portal. It was based on the Mediawiki-software, which is also used by the
Wikipedia [Wik] and several other large and successfull wikis. In addition to the func-
tionalities that wiki systems generally support, the Parawiki incorporated classifications
through a feature called trees. Usually, wiki systems have a flat structure, that is, all pages
are located at the same level, and connections are provided through hyperlinks. Putting
pages in categories is as far as normal wikis usually go. On the other hand, it is often
observed that classifications help to organize a complex field. With classifications, it is
easier to grasp the overall picture and, especially for a diverse field such as parallel pro-
gramming, classifications can point to opportunities in the design space that have not been
explored so far.

The Parawiki invited the community to invent and improve classification schemes. We
had defined a syntax to input tree-like categorizations that provided a quick overview
over certain subtopics and additionally served as tables of contents. New systems could
be inserted into existing trees, and these could be reorganized according to changing times
and tastes by any user. Many categorizations may have lived side by side, as of course
ordering by different properties was possible and encouraged. See Figure 3.12 for an
example. The trees are a second example of why we consider the effort failed: no trees
were created by users outside of our research group and we have never received any
feedback on the existing ones.

Up until this point in time, there have been more than 100 substantial pages created
in the Parawiki, mostly by our students and us. We have attempted to seed the wiki
with useful information about a variety of common systems, architectures and terms with
regards to parallel programming. This has lead to some traffic from search engines, but
has not enabled us to reach the critical mass where the wiki would receive contributions
from people outside of our group. Unfortunately, it has been enough to attract a large
amount of spam, which is the third reason why we consider it a failed effort. This has
finally forced us to disable registration for new users in the wiki – effectively abandoning
the idea altogether.

3.4 Chapter Summary

We have explored three different directions to evaluate the state of the art of parallel pro-
gramming today: a survey among parallel programmers (Parasurvey), a study on frequent
mistakes and the creation of a resource to collect knowledge and experiences in the field
of parallel programming (the Parawiki).

The most important observations of the Parasurvey were:

• C, C++ and Fortran were well-known and widely used in the parallel programming
community, the most widely used language in our survey group was C.
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Figure 3.12: A tree visualizing parallel architectures

• Some other languages (e. g. Erlang, Perl and Python) were known and used by at
least a few programmers.

• Java was well-known, but not frequently used.

• MPI appeared to be the most popular parallel programming system, followed by
POSIX threads, OpenMP and Java threads.

• Algorithmic skeletons, parallelizing compilers and distributed shared memory sys-
tems did not seem to be widely accepted.

• The target platform for most parallel applications was a variant of UNIX, predomi-
nantly Linux.

• Both distributed memory architectures and shared memory architectures were used
in the parallel programming community, grids were not yet common at the time of
our survey.

• The major problems with parallel programming for our survey group were par-
allelization overhead, need for better debugging tools and the need for bug-free
compilers or libraries.

• Parallel programming was still felt to be hard by many respondents.
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It must be kept in mind (once again) that the data presented was not statistically backed
up and therefore only valid for our specific survey group!

In Section 3.2, we have presented a study on frequently made mistakes with OpenMP.
Students from our parallel programming courses have been observed for two terms to
find out, which were their most frequent sources of errors. We presented 15 mistakes and
recommendations for best practices to avoid them in the future. The best practices will
be put into a checklist for novice programmers in Section 4.1, along with suggestions
from the authors’ own experiences. It has also been shown, that the OpenMP-compilers
available today were not able to protect the programmer from making these mistakes.

Finally, our attempt to create a shared resource to gather knowledge and experiences
in the field of parallel programming has been sketched in Section 3.3, along with reasons
why it has failed its purpose.



Chapter 4

Educating Programmers

In this chapter we describe our efforts to educate programmers about parallel program-
ming. The theory behind this effort is that it becomes easier for educated programmers to
deal with the difficulties associated with parallel programming – therefore making parallel
programming easier.

Two of our efforts have already been put down in previous sections. In Section 3.3
we have described the Parawiki, an online resource where information about different
PPS can be found. The second attempt is the study about frequently made mistakes in
OpenMP in Section 3.2. Ways to avoid the mistakes have been described there as well.

In Section 4.2 we describe an effort to use a weblog called Thinking Parallel to educate
programmers about the topic of parallel programming. The chapter closes with a short
summary in Section 4.3. For a quick overview on how the contents of this chapter fit into
this thesis, see Figure 4.1.

4.1 A Checklist for OpenMP Programmers

This section is derived from a conference paper published in 2006 [SL06a], where we
have summarized the advice to novice programmers from Section 3.2 and rephrased it
into a checklist. For this purpose, we changed the form of address and addressed the
novice programmer directly. The checklist also contains other items, which we have
accumulated during our own use of and experiences with OpenMP. The list is specific to
OpenMP, but some of the items can be adapted to different threading systems.

4.1.1 General

• It is tempting to use fine-grained task decompositions with OpenMP, throwing in
an occasional #pragma omp parallel for before loops (see Section 2.1.1
for a short description of fine-grained vs. coarse-grained task decomposition). Un-
fortunately, this rarely leads to big performance gains, because of overhead such
as thread creation and scheduling. You therefore have to search for potential for
coarse-grained parallelism whenever possible for better results.
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Figure 4.1: Objectives, aims and contributions of this thesis (education)

• Related to the point above, when you have nested loops, try to parallelize only the
outer loop. Loop reordering techniques can sometimes help here (see the book by
Wolfe [Wol96] for an extensive treatment of these).

• Use reduction where applicable. Even if the operation you need is not predefined,
implement it yourself if possible, as shown in Section 3.2.2.

• Use nested parallelism with care, as many compilers still do not support it at the
point of this writing, and even if it is supported, nested parallelism may not give
you any speed increases in itself.

• Nested parallelism and threadprivate data do not match, as soon as nested paral-
lelism is employed you usually cannot rely on threadprivate data being persistent
across parallel regions.

• When doing I/O (either to the screen or to a file), large time savings are possible
by writing the information to a buffer first (this can sometimes even be done in
parallel), and then pushing it to the device in one run.

• Test your programs with multiple compilers and all warnings turned on, because
different compilers will find different mistakes.

• Use tools such as the Intel Thread Checker or Assure, which help you to detect
programming errors and write better performing programs.
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4.1.2 Parallel Regions

• If you want to specify the number of threads to carry out a parallel region, you
must invoke omp_set_num_threads before the start of that region (or use other
means to specify the number of threads before entering the region).

• If you rely on the number of threads in a parallel region (e. g. for manual work
distribution), make sure you actually get this number. This can be done by check-
ing omp_get_num_threads after entering the region. Sometimes, the runtime
system will give you less threads, even when the dynamic adjustment of threads is
off!

• Try to get rid of the private clause, and declare private variables at the beginning
of the parallel region instead. Among other reasons, this makes your data-sharing
attribute clauses more manageable and makes sure, you do not accidentally forget
to privatize the variable.

• Use default(none), because it makes you think about your data-sharing at-
tribute clauses for all variables and avoids some errors.

4.1.3 Work-sharing Constructs

• For each loop you parallelize, check whether or not every iteration of the loop has
to do the same amount of work. If this is not the case, the static work schedule
(which is often the default in compilers) might hurt your performance and you
should consider dynamic or guided scheduling.

• Whatever kind of schedule you choose, explicitly specify it in the work-sharing
construct, as the default is implementation-defined!

• If you use ordered, remember that you always have to use both the ordered
clause and the ordered construct.

• Prefer work-sharing constructs to manual work-sharing whenever possible, as this
enables the runtime system to optimize more and also helps the correctness check-
ing tools mentioned above do their work.

4.1.4 Synchronization

• If more than one thread accesses a variable and one of the accesses is a write, you
must use synchronization, even if it is just a simple write-operation like i = 1. The
flush directive does not count as synchronization in this context! There are no
guarantees by OpenMP on the results otherwise!
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• Use atomic instead of critical if possible, because the compiler might be able
to optimize out the atomic or substitute it with a powerful machine instruction,
while it can rarely do that for critical.

• Try to put as little code inside critical regions as possible. Complicated function
calls, for example, can often be carried out beforehand.

• Try to avoid the costs associated with repeatedly calling critical regions, for instance
by checking for a condition before entering the critical region. Beware of the mem-
ory model when doing so, though, as the results you get might not be accurate, as
shown in Section 5.2.2.

• Only use locks when necessary and resort to the critical directive in all other
cases. If you absolutely have to use locks, make sure to invoke omp_set_lock
and omp_unset_lock from the same thread. When you are writing C++ code,
consider scoped locking (as described in Section 5.1.2) as an alternative to locks.

• Avoid nesting of critical regions and, if needed, beware of deadlocks. Ways to avoid
these are described in detail in Section 5.1.3.

• A critical region is usually the most expensive synchronization construct and takes
about twice as much time to carry out as e. g. a barrier on many architectures, there-
fore start optimizing your programs accordingly. Keep in mind that these numbers
only account for the time needed to actually perform the synchronization, and not
the time a thread has to wait on a barrier or before a critical region. The latter
time depends on various factors, among them the structure of your program and the
scheduler.

4.1.5 Memory Model

• Beware of the OpenMP memory model. Even if you only read a shared variable,
you have to flush it beforehand, except in very rare edge cases described in the
specification. In the most common cases, even a flush is not sufficient, as the mem-
ory model states that when multiple threads read and write to the same memory
location at the same time without synchronization (flush does not count as syn-
chronization in this context), the result for the reading thread is undefined. Except
for rare edge-cases, this means you have to use a critical region or locks even to
read a shared variable.

• Be sure to remember that locking operations do not imply an implicit flush before
OpenMP 2.5.

This closes our checklist. In the next section, we are going to look at an entirely differ-
ent way to educate programmers: a weblog on parallel programming.
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Figure 4.2: Thinking Parallel screenshot

4.2 Thinking Parallel Weblog

Weblogs have become a very common way to interact, communicate and educate on the
internet in our days. The top blogs have a daily readership of many hundred thousand, if
not one million readers. While most of the personal weblogs serve a small audience and
have only a limited educational value, there are others that restrict themselves to a very
special topic and have great success in reaching their target audience and educating them
about their topic. Examples of such weblogs are Joel on Software by Joel Spolsky [Spo00]
and Eric.Weblog() by Eric Sink [Sin] for the topic of software development, or the blog
by Guy Kawasaki [Kaw] on topics related to startups. With that many readers, these blogs
really do make a difference and contribute a great deal to the common knowledge about a
special topic.

While there are some weblogs on parallel programming out there, most of them are
rarely updated [Lin05] or concentrate on one parallel programming system (e. g. Er-
lang [Sad]). I have therefore setup my own weblog on parallel programming called
Thinking Parallel [Sue], where I discuss topics related to parallel programming, paral-
lel programming systems (with an emphasis on OpenMP), parallel architectures and high
performance computing, as well as news from the blogsphere. A screenshot can be seen
in Figure 4.2.

There are two main kinds of articles posted at Thinking Parallel: educational ones about
a special topic of interest related to parallel programming, and commentaries on current
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events or articles by other bloggers. An example of the first kind is the article titled A
Short Guide to Mastering Thread Safety [Sue06a]. In this article, the basics of thread
safety and how to achieve it are shown. At this point in time, more than 15.000 readers
have read this article alone.

A post from the second category is called Please Don’t Rely on Memory Barriers for
Synchronization! [Sue07c]. The article is a follow-up post to a fellow blogger that recom-
mended memory barriers for synchronizing threads. As this is a dangerous practice and
hard to get right (especially for beginners), I felt the need to warn people about using the
techniques described there.

Lately, I have also added interviews with interesting people in the field, e. g. Joe Arm-
stong, David Butenhof, Sanjiv Shah or Joe Duffy to name just a few. There have been
more than 150 articles posted and 350 comments made. By providing all this content,
I have managed to attract a sizeable readership to the weblog. Each month, more than
9000 visitors visit the blog on average. On top of that, I have more than 1200 regular
subscribers via RSS or email. Although the weblog can not be considered research in the
traditional sense, I am convinced that it has helped my goal to educate programmers about
parallel programming and concurrency considerably, most likely even more than all other
efforts from this thesis combined.

4.3 Chapter Summary

In this chapter, we have described our efforts to educate programmers about the field of
parallel programming.There was some overlap of this chapter with the contents of Chap-
ter 3, where we have described the Parawiki (Section 3.3) and some common mistakes
made by novice programmers (Section 3.2). Both of these topics are not only useful to
evaluate the field, but also to educate programmers.

In this chapter, we built on that knowledge by giving a checklist for OpenMP pro-
grammers in Section 4.1. Our second attempt to educate programmers is the Thinking
Parallel Weblog described in Section 4.2, where our articles about parallel programming
are frequently read by thousands of programmers.



Chapter 5

A Library Approach to Enhancing the
Power of OpenMP

In this chapter, we describe our work on making OpenMP more powerful using a library
approach. For a quick overview on how the contents of this chapter fit into this thesis, see
Figure 5.1.

Powerful libraries are one of the most important building blocks of a successful parallel
programming system. This could be observed e. g. in the field of numerics for a long
time, where premium quality libraries that encapsulate parallelism are available. For the
more general field of programming, design patterns are considered a good way to enable
programmers to cope with the difficulties of parallel programming [MSM04].

Although there are a variety of libraries available both commercially and in a research
stage, what is missing from the picture is a pattern library in OpenMP. This claim is
backed up by our parallel programming survey in Section 3.1, where one of the most
prominent problems mentioned is the lack of good parallel libraries. Design patterns
implemented in OpenMP should be a viable learning aid to beginners in the field of con-
current programming. At the same time, they are able to encapsulate parallelism and
hide it from the programmer if required. For this reason, the AthenaMP project [Sue07a]
was created that implements various parallel programming patterns in C++ and OpenMP.
This chapter is about AthenaMP, its implementation, and the functionality it provides. A
quick overview is provided in Figure 5.2. In that figure, the green components are parts
of AthenaMP that we consider finished and ready for release, while the blue ones need
more work and are therefore described only at the end of this chapter.

The main goal of AthenaMP is to provide implementations for a set of concurrent pat-
terns of different varieties. These patterns demonstrate solutions to parallel programming
problems, as a reference for programmers, and additionally can be used directly as generic
components. Because of the open-source nature of the project, it is even possible to tai-
lor the functions in AthenaMP to the need of the programmer. The code is also useful
for compiler vendors testing their OpenMP implementations against more involved C++-
code, an area where many compilers today still have difficulties. A more extensive project
description is provided in my weblog [Sue06b].

59
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Figure 5.1: Objectives, aims and contributions of this thesis (AthenaMP library)

In Section 5.1, we start by introducing a useful abstraction called lock adapters. It
wraps the common lock types provided by many parallel programming systems includ-
ing OpenMP (which are very C-ish) into classes, enables exception safety and prevents
programmers from forgetting to destroy locks. It is also the basis for many of the syn-
chronization patterns described in the rest of this section. They attempt to enhance the
simple synchronization primitives provided by many parallel programming systems with
additional functionality, such as to avoid deadlocks or to provide exception safety trans-
parently to the programmer.

Next, Section 5.2 describes multiple ways to make a very common object-oriented
pattern called Singleton thread-safe. This pattern is well-known throughout the literature
and has been implemented countless times. It guarantees a single point of access to a
class and makes sure that there is exactly one instance of the class available throughout
the whole program. Yet, to make the pattern safe to use in the presence of multiple threads
is another matter altogether, therefore we show ways to do so using OpenMP.

In Section 5.3, we describe implementations of data-parallel patterns: modify_each,
transmute, combine, reduce, filter and prefix. The results of two bench-
marks showing minor or no performance losses when compared to a pure OpenMP im-
plementation are also described.

Section 5.4 is about parallelizing irregular algorithms with OpenMP. These algorithms
have properties such as the need for dynamic task mapping (as explained in Section 2.1.2)
that make the introduction of a new datastructure necessary – the task pool. This datas-
tructure is also known as thread pool, and its correct use is a first example of a generic
component/pattern in this chapter. Several versions of task pools were implemented and
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Figure 5.2: The AthenaMP library in a nutshell

are compared. The work described in this section and for the rest of this chapter is not yet
integrated into AthenaMP, but work is presently under way to change this.

Section 5.5 sketches more parallel patterns/components from various fields. A sum-
mary of our work on AthenaMP closes the chapter in Section 5.6.

5.1 Synchronization Patterns

Locks are one of the most important building blocks of concurrent programming today.
As with the advent of multi-core processors, parallel programming starts to move into
the mainstream, the problems associated with locks become more visible, especially with
higher-level languages like C++. This section address the following ones:

• lock initialization and destruction is not exception-safe and very C-ish. Lock de-
struction is forgotten frequently.
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Figure 5.3: Outline of the functionality described in Section 5.1

• setting and releasing locks is not exception-safe and C-ish, as well. Unsetting Locks
may be forgotten in complicated code-paths with a lot of branches or may be re-
quested incorrectly by a non-owner thread (see Section 3.2)

• deadlocks are possible when using multiple locks at the same time

To solve the first two problems, a common C++ idiom called RAII is used. RAII stands
for Resource Acquisition is Initialization [Str97] and combines acquisition/initialization
and release/destruction of resources with construction and destruction of variables. Our
solution to the first problem is called Lock Adapter and has the effect that locks are initial-
ized and destroyed in constructors and destructors of variables, respectively. Our solution
for the second problem is already well known as Guard Objects or Scoped Locking and
means that locks are set and unset in constructors and destructors of local objects, respec-
tively.

The third problem is solved in two ways: first by extending the guard objects to multiple
locks and internally choosing the locking order in a deterministic way, and second by
introducing so-called leveled locks that enable the creation and automatic control of a
lock hierarchy that detects possible deadlocks at runtime.

The term generic warrants some more explanations at this point. From all the func-
tionality introduced in this section, only the adapters are tied to a particular lock type
as provided by the parallel programming system. New adapters are trivial to implement
for different threading systems, and we have done so as a proof-of-concept for POSIX
threads. As soon as these adapters exist, higher-level functionality built on top of the
adapters can be used. A slight deviation from this rule are the leveled locks – they have
a configurable backend to actually store the level-information, and one of these backends
uses thread-local storage as is available in OpenMP. To make up for this, an otherwise
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c l a s s omp_lock_ad {
p u b l i c :

omp_lock_ad ( ) ;
void s e t ( ) ;
void u n s e t ( ) ;
i n t t e s t ( ) ;
omp_lock_t& g e t _ l o c k ( ) ;
~ omp_lock_ad ( ) ;

} ;

Figure 5.4: Lock Adapter interface

c l a s s a c c o u n t {
omp_lock_ad l o c k ;
double b a l a n c e ;

} ;

void b a n k _ t r a n s f e r ( a c c o u n t& send ,
a c c o u n t& recv , double amount )

{
send . l o c k . s e t ( ) ;
r e c v . l o c k . s e t ( ) ;

send . b a l a n c e −= amount ;
r e c v . b a l a n c e += amount ;

r e c v . l o c k . u n s e t ( ) ;
send . l o c k . u n s e t ( ) ;

}

Figure 5.4: A bank transfer with Lock Adapters

identical backend has been implemented that is as generic as the rest of the components.
All locking abstractions provided are shown in Figure 5.3.

This section is structured as follows: we start by introducing the lock adapters in more
depth in Section 5.1.1. Afterwards, we first describe so-called Guard Objects to solve the
problem of exception safety when setting/unsetting locks (Section 5.1.2). Next, we focus
on deadlocks and how to avoid them (Section 5.1.3). This part of our work is closed with
performance numbers in Section 5.1.4 and related work in Section 5.1.5.

5.1.1 Lock Adapters in Depth

A lock adapter is a simple wrapper-object for a lock as found in most threading systems.
In AthenaMP, lock adapters are provided for the OpenMP types omp_lock_t (which
is called omp_lock_ad) and omp_nest_lock_t (omp_nest_lock_ad). The in-
terface for an omp_lock_ad is shown in Figure 5.4, along with a simple example of
how to use it in Figure 5.4. The interface should be self-explanatory, possibly except for
the get_lock method. It is useful, if library routines that expect the native lock type
need to be called, as explained by Meyers [Mey05]. In the example, a simple bank trans-
fer function is sketched (stripped to the bare essentials). The locks are encapsulated in
an account-class in this case, each account has its own lock to provide for maximum
concurrency.

A nice side-effect of the lock adapters is that they turn the traditional C-style locks
into more C++-style types. An example: it is a common mistake in OpenMP to forget
to initialize a lock before using it (using omp_init_lock), or to forget to destroy it
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t empla te < c l a s s LockType >
c l a s s guard {
p u b l i c :

gua rd ( LockType& l o c k ) ;
void a c q u i r e ( ) ;
void r e l e a s e ( ) ;
LockType& g e t _ l o c k ( ) ;
~ gua rd ( ) ;

} ;

Figure 5.5: Guard interface

void b a n k _ t r a n s f e r ( a c c o u n t& send ,
a c c o u n t& recv , double amount )

{
guard <omp_lock_ad >

s e n d _ g u a r d ( send . l o c k ) ,
r e c v _ g u a r d ( r e c v . l o c k ) ;

send . b a l a n c e −= amount ;
r e c v . b a l a n c e += amount ;

}

Figure 5.5: A bank transfer with guard objects

(omp_destroy_lock) after it is needed. The RAII idiom is employed to avoid the
mistake: the locks are initialized in the constructor of the lock adapter and destroyed
in the destructor. This ensures that locks are always properly initialized and destroyed
without intervention from the programmer, even in the presence of exceptions. Should
an exception be thrown and the thread leaves the area where the lock is defined, the lock
adapter will go out of scope. As soon as this happens, its destructor is called automatically
by the C++ runtime library, properly destroying the lock in the process. Thus, our lock
adapters are exception-safe.

5.1.2 Scoped Locking with Guard Objects

The first generic lock type that builds on the lock adapters introduced in the last section is
called guard. It employs the RAII-idiom once again. This special case is so common that
it has its own name: Scoped Locking [SSRB00]. A local, private guard object is passed a
lock as a parameter in its constructor. The guard object sets the lock there and releases it
when it goes out of scope (in its destructor). This way, it is impossible to forget to unset
the lock (another common mistake when dealing with locks), even in the presence of
multiple exit points or exceptions (as described in Section 5.1.1). During normal usage, it
also becomes less likely that programmers will unset the lock from a different, non-owner
thread, which is another frequently made mistake already described in Section 3.2.

It is also possible to unset the lock directly (using release) and to acquire again later
(using acquire), or to extract the lock out of the guard object (using get_lock). The
interface of the guard objects is presented in Fig 5.5, along with a short example (a bank
transfer again) in Figure 5.5.

A guard object as implemented in AthenaMP can be instantiated with any locking class
that provides the basic locking methods (i.e. set, unset, test). It does not depend
on OpenMP in any way. In the next section, we build on the abstractions introduced here
and in the previous section to turn to a serious problem while using locks: deadlocks and
how to avoid them.



5.1 Synchronization Patterns 65

1 t empla te < c l a s s LockType , c l a s s L o c k L e v e l S t o r a g e P o l i c y >
2 c l a s s l e v e l e d _ l o c k {
3 p u b l i c :
4 e x p l i c i t l e v e l e d _ l o c k ( c o n s t i n t _ l o c k _ l e v e l = 0 ,
5 c o n s t i n t _max_ th reads = omp_ge t_max_threads ( ) ) ;
6 void s e t _ l o c k _ l e v e l ( c o n s t i n t _ l o c k _ l e v e l ) ;
7 i n t l o c k _ l e v e l ( ) c o n s t ;
8 void s e t ( c o n s t i n t _thread_num = omp_get_thread_num ( ) ) ;
9 void u n s e t ( c o n s t i n t _thread_num = omp_get_thread_num ( ) ) ;

10 i n t t e s t ( c o n s t i n t _thread_num = omp_get_thread_num ( ) ) ;
11 LockType& g e t _ l o c k ( ) c o n s t ;
12 ~ l e v e l e d _ l o c k ( ) ;
13 } ;

Figure 5.6: Leveled Lock interface

5.1.3 Deadlock Detection and Prevention

Deadlocks are an important and all-too common problem in multi-threaded code today.
Consider the example code sketched in Figure 5.4 again that shows how a bank transfer
can be implemented. A deadlock might occur in this code, as soon as one thread performs
a transfer from one account (let’s call it account no. 1) to a different account (account
no. 2), while another thread does a transfer the other way round (from account no. 2
to account no. 1) at the same time. Both threads will lock the sender’s lock first and
stall waiting for the receiver’s lock, which will never become available because the other
thread already owns it. More subtle deadlocks might occur, as soon as more accounts are
involved, creating circular dependencies.

We now describe a way to detect deadlocks semi-automatically, along with a corre-
sponding implementation. Next, we show how to avoid deadlocks for an important sub-
problem.

Deadlock Detection using Leveled Locks

A common idiom to prevent deadlocks are lock hierarchies. If you always lock your
resources in a predefined, absolute order, no deadlocks are possible. For our example,
this means e.g. always locking account no. 2 before account no. 1. It can sometimes be
hard to define an absolute order, though, a possible solution for part of this problem is
presented in the next subsection.

Once a lock hierarchy for a project is defined, it may be documented in the project
guidelines and developers are expected to obey it. Of course, there are no guarantees they
will actually do so or even read the guidelines, therefore a more automated solution may
be in order.
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1 void b a n k _ t r a n s f e r ( a c c o u n t& send , a c c o u n t& recv , double amount )
2 {
3 t r y {
4 guard < l e v e l e d _ l o c k <omp_lock_ad , s i m p l e _ l e v e l _ s t o r a g e > >
5 s e n d _ g u a r d ( send . l o c k ) , r e c v _ g u a r d ( r e c v . l o c k ) ;
6
7 send . b a l a n c e −= amount ;
8 r e c v . b a l a n c e += amount ;
9

10 } catch ( c o n s t l o c k _ l e v e l _ e r r o r& ex ) {
11 s t d : : c e r r <<ex . what () < < s t d : : e n d l ;
12 re turn EXIT_FAILURE ;
13 }
14 }

Figure 5.7: A bank transfer with Guard objects and Leveled Locks

This solution is provided with our second generic lock type: the leveled_lock. It
encapsulates a lock adapter and adds a _lock_level to it, which is passed into the
constructor of the class, associating a level with each lock. If a thread already holds a
lock, it can only set locks with a lower (or the same - to allow for nested locks) level than
the ones it already acquired. If it tries to set a lock with a higher level, a runtime exception
of type lock_level_error is thrown, alerting the programmer (or quality assurance)
that the lock hierarchy has been violated and deadlocks are possible. The interface of the
leveled lock is shown in Figure 5.6. Our bank transfer example with leveled locks can be
seen in Figure 5.7.

Like guard objects, a leveled lock as implemented in AthenaMP can be instantiated
with any locking class that provides the basic locking methods (i.e. set, unset, test).
Since the leveled locks provide these methods as well, guard objects can also be instanti-
ated with them, thereby combining their advantages.

Our leveled locks have a configurable backend (via a template parameter) that actu-
ally stores the locks presently held for each thread. The first version we implemented
depended on OpenMP, since their implementation uses threadprivate memory internally.
This has also been a major implementation problem, because we found no OpenMP-
compiler that could handle static, threadprivate containers – although judging from the
OpenMP-specification this should be possible.

To fix this, a more generic backend was implemented. This version does not use
threadprivate memory and does not depend on OpenMP. Instead it uses another generic
component implemented in AthenaMP called thread_storage (described in more
detail in Section 5.5). The component stores all data in an std::vector that is in-
dexed by a user-supplied thread-id. For OpenMP, this can be the number returned by
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omp_get_thread_num, for all other threading systems its the users responsibility to
supply this id.

Both versions of locks with level checking induce a performance penalty. Furthermore,
the use of throwing runtime exceptions in production code is limited. For this reason,
a third backend for the leveled lock was implemented. It has the same interface as the
other backends, but does no level checking. Of course, the basic locking functionality is
provided. This class enables the programmer to switch between the expensive, checked
version and the cheap, unchecked version with a simple typedef-command. This ver-
sion of the leveled lock is called dummy_leveled_lock for the rest of this work. The
backend is selected at compile time using the second template parameter of the leveled
lock called LockLevelStoragePolicy.

Deadlock Prevention using Dual-Guards/n-Guards

It has been shown in the last paragraphs that lock hierarchies are a very powerful measure
to counter deadlocks. An argument that has been used against them in the past is that you
may not be able to assign a unique number to all resources throughout the program. This
is easy in our example of bank transfers, because every account most likely has a number
and therefore this number can be used. It becomes more difficult when data from multiple
sources (e.g. vectors, tables or even databases) need to share a single hierarchy.

While the problem in general is difficult to solve, there is a solution for an important
subclass: in our bank transfer example, two locks are needed at the same time for a short
period. Even if there was no account number to order our locks into a hierarchy, there is
another choice: although not every resource may have a unique number associated with
it, every lock in our application does, since the lock’s address remains constant during its
lifetime.

One possible way to use this knowledge is to tell the user of our library to set their locks
according to this implied hierarchy. But there is a better way: As has been described in
Section 5.1.2, guard objects provide a convenient way to utilize exception-safe locking.
Merging the idea presented above with guard objects results in a new generic locking
type: the dual_guard. Its interface is sketched in Figure 5.8 and our bank transfer
example is adapted to it in Figure 5.8.

No deadlocks are possible with this implementation, because the dual-guard will check
the locks’ addresses internally and make sure they are always locked in a predefined order
(the lock with the higher address before the lock with the lower address to make them
similar to the leveled locks).

It is also obvious from this example, how the generic high-level lock types provided
by our library raise the level of abstraction when compared to the more traditional locks
offered by the common threading systems: to get the functionality that is provided with
the one line declaration of the dual-guard, combined with an omp_lock_ad, two calls
to initialize locks, two calls to destroy locks, two calls to set the locks and two calls to
unset the locks are necessary, resulting in a total amount of eight lines of code. These
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t empla te < c l a s s LockType >
c l a s s d u a l _ g u a r d {
p u b l i c :

d u a l _ g u a r d ( LockType&
lock1 , LockType& l o c k 2 ) ;

void a c q u i r e ( ) ;
void r e l e a s e ( ) ;
LockType& g e t _ l o c k 1 ( ) ;
LockType& g e t _ l o c k 2 ( ) ;
~ d u a l _ g u a r d ( ) ;

} ;

Figure 5.8: Dual-Guard interface

void b a n k _ t r a n s f e r ( a c c o u n t& send ,
a c c o u n t& recv , double amount )

{
dua l_g ua rd <omp_lock_ad >

s r _ g u a r d ( send . lock , r e c v . l o c k ) ;

send . b a l a n c e −= amount ;
r e c v . b a l a n c e += amount ;

}

Figure 5.8: A bank transfer with Dual-Guards

eight lines of code are not exception-safe and possibly suffer from deadlocks, where the
dual-guards are guaranteed to not have these problems.

As always, a dual-guard object as implemented in AthenaMP can be instantiated with
any locking class that provides the basic locking methods (i.e. set, unset, test). It
does not depend on OpenMP in any way. This also includes all variants of the leveled
locks. When instantiated with a leveled_lock, using the lock’s address to order them
into a hierarchy is unnecessary, as there is a user-provided lock level inherent in these
locks. In this case, the lock level is used for comparing two locks by the dual-guards
automatically.

Generalizing the ideas presented in this section, we go one step further in AthenaMP
and also provide an n_guard that takes an arbitrary number of locks. Since variadic
functions are not well-supported in C++ and it is generally not recommended to use
varargs, we have decided to let it take a std::vector of locks as argument. Apart
from this, the functionality provided by these guard objects is equivalent to the dual-
guards described above.

It should be noted again, that the dual-guards and n-guards presented in this section are
only able to solve a subset of the general deadlock problem: only when two (or more)
locks have to be set at the same point in the program, they can be employed. The solution
is not applicable as soon as multiple locks have to be set at different times, possibly even
in different methods, because the guards must be able to choose which lock to set first.

5.1.4 Performance

We carried out some really simple benchmarks to evaluate, how much the added features
and safety impact the performance of locking. Table 5.1 shows how long it took to carry
out a pair of set/unset operations for the respective locks. Table 5.2 shows the same data
for the guard objects. All numbers are normalized over the course of 500.000 operations.
To make the numbers for the dual-guards and n-guards comparable, we have also normal-



5.1 Synchronization Patterns 69

Platform (Threads) omp_lock_t critical omp_lock_ad dummy_ll ll
AMD (4) 0.40 0.38 0.56 0.67 1.48

SPARC (8) 1.02 1.47 1.09 1.56 4.96
IBM (8) 0.41 0.63 0.41 0.44 1.23

Table 5.1: Wall-clock times (in ms) for one pair of lock/unlock operations

Platform (Threads) guard dual_guard n_guard (20 locks)
AMD (4) 0.65 0.43 0.26

SPARC (8) 1.51 0.87 0.37
IBM (8) 0.42 0.42 0.41

Table 5.2: Wall-clock times (in ms) for one pair of lock/unlock operations for guards

ized those to one pair of operations by dividing by two or n respectively (n = 20 for the
benchmark shown here).

These tables show that there is a performance penalty associated with the added func-
tionality. The leveled locks (shown as ll in the table) are the worst offenders and therefore
the implementation of the dummy leveled lock (dll in the table) does make a lot of sense.

5.1.5 Related Work and Contributions

A different implementation of guard objects in C++ can be found in the Boost.Threads
library [Kem01], where they are called boost::mutex::scoped_lock. Their ap-
proach to the problem is different, though: Boost tries to be portable by providing dif-
ferent mutex implementations for different platforms. Our guard objects and high-level
locks work on any platform, where a lock adapter can be implemented. Beyond that, this
approach allows us to provide guard objects and advanced locking constructs on top of
different lock variants, e.g. mutex variables, spinlocks, nested locks or others.

ZThreads [Cra00] provides portable implementations for different lock types with C++,
as well. The library includes guard objects that are instantiable with different lock types,
but does not include our more advanced abstractions (e.g. leveled locks or dual-guards). It
is a portable threading library, with focus on low level abstractions like condition variables
and locks. AthenaMP, on the other hand, builds on OpenMP (which is already portable)
and can therefore focus on higher-level components and patterns.

The idea of using lock hierarchies to prevent deadlocks is well-known [Tan01]. The
idea to automatically check the hierarchies has been described by Duffy for C# [Duf06].
There is also a dynamic lock order checker called Witness available for the locks in the
FreeBSD kernel [Bal02].

As far as we know, none of the functionality described in this section has been imple-
mented with C++ and OpenMP. The idea of using memory addresses of locks to create a
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consistent lock hierarchy is also a novel contribution, as is the idea of using dual-guards
(and n-guards) to hide the complexity of enforcing the lock hierarchy from the user.

In the next section, we are going to concentrate on an entirely different problem: how
to implement the well-known singleton pattern in a thread-safe manner using C++ and
OpenMP.

5.2 A Thread-safe Singleton Pattern

The work presented in this section is derived from a workshop publication [SL07d]. One
of the most widely known patterns among programmers is the Singleton. It has been thor-
oughly analyzed and implemented. Several thread-safe implementations are described in
depth here.

The section is organized as follows: In Section 5.2.1, the singleton pattern is introduced,
along with a simple, non-threaded implementation in C++. Section 5.2.2 describes vari-
ous thread-safe implementations, highlights problems with OpenMP and explains possi-
ble workarounds. The performance of our solutions is benchmarked in Section 5.2.3.

5.2.1 The Singleton Pattern

The most famous description of the singleton pattern is from Gamma et al. [GHJV95]:

Ensure a class only has one instance, and provide a global point of access to
it. (Gamma et al. [GHJV95])

Singletons are useful to ensure that only one object of a certain type exists throughout
the program. Possible applications are a printer spooler or the state of the world in a com-
puter game. While singletons provide a convenient way to access a resource throughout
the program, one needs to keep in mind that they are not much more than glorified global
variables, and just like them need to be used with care (or not at all, if possible). Yegge
explains this in great detail in one of his weblog posts [Yeg04].

While singletons can be implemented in C++ using inheritance, we have decided to
implement them using wrappers and templates, as described by Schmidt et al. [SSRB00].
These authors call their classes adapters, but we stick to the more general name singleton
wrapper instead, to avoid confusion with the well-known adapter pattern (which is dif-
ferent from what we are doing). We provide wrapper classes that can be instantiated with
any class to get the singleton functionality. For example, to treat the class my_class as
a singleton and call the method my_method on it, one needs to do the following:

s i n g l e t o n _ w r a p p e r < my_class > : : i n s t a n c e ( ) . my_method ( ) ;

Provided that all accesses to the class my_class are carried out in this way, then and
only then the class is a singleton. The code of class my_class does not need to be
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changed in any way, but all of the singleton functionality is provided by the wrappers.
This is the biggest advantage of this implementation over an inheritance-based approach.
Typical requirements for an implementation state that the singleton:

• must not require prior initialization, because forgetting to do so is a frequent mistake
by programmers

• must be initialized only when it is needed (lazy initialization)

• must return the same instance of the protected object, regardless of whether it is
called from within or outside a parallel region

A non-thread-safe version of the instance method of a singleton wrapper is shown
in Figure 5.9. Here, instance_ is a private static member variable, omitted for brevity
in all of our examples. This implementation, of course, has problems in a multi-threaded
environment, as the instance_ variable is a shared resource and needs to be protected
from concurrent access. Ways to deal with this problem are shown in the next section.

5.2.2 Thread-Safe Singleton Implementation Variants

A safe and simple version of a multi-threaded singleton wrapper is shown in Figure 5.9.
It uses a named critical region to protect access to the singleton instance. While this
solution solves the general problem of protecting access to the singleton class, it has two
major drawbacks, both of which we are going to solve later: First, it uses the same named
critical construct to protect all classes. If e. g. a singleton for a printer spooler and a
singleton for the world state is needed in the same program, access to these classes goes
through the same critical region and therefore these accesses can not happen concurrently.
This restriction is addressed next. The second problem is that each access to the singleton
has to pay the cost of the critical region, although technically it is safe to work with the
singleton after it has been properly initialized and published to all threads. An obvious
(but incorrect) attempt to solve this problem is shown here first, others follow later in this
section.

The Safe Version using One Lock per Protected Object In the last paragraph, we
have shown a thread-safe singleton that used one critical region to protect accesses to all
singletons in the program. This introduces unnecessary serialization, as a different critical
region per singleton is sufficient. We will show four different ways to solve the problem.
The first two require changes in the OpenMP specification to work but are quite simple
from a programmer’s point of view, the third can be done today but requires a lot of code.
The fourth solution requires a helper-class and has problems with some compilers.
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t empla te < c l a s s Type >
c l a s s s i n g l e t o n _ w r a p p e r {
s t a t i c Type& i n s t a n c e ( )
{

i f ( i n s t a n c e _ == 0) {
i n s t a n c e _ = new Type ;

}
re turn * i n s t a n c e _ ;

}
} ;

Figure 5.9: The instance method of a
sequential singleton wrapper

t empla te < c l a s s Type >
c l a s s s i n g l e t o n _ w r a p p e r {
s t a t i c Type& i n s t a n c e ( )
{

# pragma omp c r i t i c a l (ATHENAMP_1)
{

i f ( i n s t a n c e _ == 0) {
i n s t a n c e _ = new Type ;

}
}
re turn * i n s t a n c e _ ;

}
} ;

Figure 5.9: The instance method of a simple,
thread-safe singleton wrapper

Attempt 1: Extending Critical: Our first attempt at solving the problem is shown in
Figure 5.10. The idea is to give each critical region a unique name by using the template
parameter of the singleton wrapper. Unfortunately, this idea does not work, because the
compilers treat the name of the critical region as a string and perform no name substitution
on it. While it would be theoretically feasible to change this in compilers, because tem-
plate instantiation happens at compile-time, it would still require a change in the OpenMP
specification, and we suspect the demand for that feature to be small. For this reason, we
are not covering this attempt any further in Section 6.3, where we describe proposed
changes to the OpenMP specification.

Attempt 2: Static Lock initialized with OMP_LOCK_INIT: Our second attempt to solve
the problem uses OpenMP locks. The code employs a static lock to protect access to the
shared instance variable. Since each instance of the template function is technically a
different function, each instance gets its own lock as well, and therefore each singleton is
protected by a different critical region.

The big problem with this approach is to find a way to initialize the lock properly.
There is only one way to initialize a lock in OpenMP – by calling omp_init_lock.
This must only be done once, but OpenMP does not provide a way to carry out a piece of
code only once (a solution to this shortcoming is presented in Section 5.5.4). One of our
requirements for the singleton is that it must not need initialization beforehand, therefore
we are stuck.

A solution to the problem is shown in Figure 5.10 and uses static variable initialization
to work around the problem, by initializing the lock with the constant OMP_LOCK_INIT.
This is adapted from POSIX threads. In that parallel programming system, a mutex can
be initialized with PTHREAD_MUTEX_INITIALIZER. In a thread-safe environment
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/ / t h i s code works , b u t does
/ / n o t s o l v e t h e problem !
t empla te < c l a s s Type >
c l a s s s i n g l e t o n _ w r a p p e r {
s t a t i c Type& i n s t a n c e ( )
{

# pragma omp c r i t i c a l ( Type )
{

i f ( i n s t a n c e _ == 0) {
i n s t a n c e _ = new Type ;

}
}
re turn * i n s t a n c e _ ;

}
} ;

Figure 5.10: Attempt 1: instance method
with multiple critical regions

/ / t h i s code does n o t work !
t empla te < c l a s s Type >
c l a s s s i n g l e t o n _ w r a p p e r {
s t a t i c Type& i n s t a n c e ( )
{

s t a t i c omp_lock_t my_lock
= OMP_LOCK_INIT ;

omp_se t_ lock (&my_lock ) ;
i f ( i n s t a n c e _ == 0) {

i n s t a n c e _ = new Type ;
}
omp_unse t_ lock (&my_lock ) ;
re turn * i n s t a n c e _ ;

}
} ;

Figure 5.10: Attempt 2: instance
method with multiple critical
regions

(which OpenMP guarantees for the base language, see Section 2.4.9), the runtime sys-
tem should make sure this initialization is carried out only once, and all the compilers we
have tested this with actually do so. Of course, OMP_LOCK_INIT is not in the OpenMP
specification, but we believe it would be a worthy addition to solve this and similar prob-
lems, not only related to singletons. We come back to this proposal in Section 6.3. For
the reasons stated, although quite an elegant solution, this attempt does not work with
OpenMP today as well.

Attempt 3: Doing it Once: It has been shown in the previous paragraph that the func-
tion omp_init_lock needs to be called only once, but OpenMP provides no facilities
to achieve that. It is possible to code this functionality in the program itself, though, as
we will describe in Section 5.5.4. Here, we restrict ourselves to showing how the func-
tionality can be used.

Figure 5.11 depicts the instance method with once functionality. Line 19 has the
actual call to the once template function defined in AthenaMP. The function takes two pa-
rameters, the first one being a functor that includes what needs to happen only once (also
shown at the top of Figure 5.11). The second parameter is a flag of the type once_flag
that is an implementation detail to be handled by the user.

This attempt to solve our problem works. Nevertheless, it needs a lot of code, especially
if you also count the code in the once method. Moreover, it relies on static variable
initialization being thread-safe, as our last attempt. For these reasons, we are going to
solve the problem one last time.
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1 s t r u c t i n i t _ f u n c {
2 omp_lock_t * l o c k ;
3 void operator ( ) ( )
4 {
5 o m p _ i n i t _ l o c k ( l o c k ) ;
6 }
7 } ;
8
9 t empla te < c l a s s Type >

10 c l a s s s i n g l e t o n _ w r a p p e r {
11 s t a t i c Type& i n s t a n c e ( )
12 {
13 s t a t i c omp_lock_t my_lock ;
14 s t a t i c o n c e _ f l a g f l a g
15 = ATHENAMP_ONCE_INIT ;
16 i n i t _ f u n c my_func ;
17 my_func . l o c k = &my_lock ;
18
19 once ( my_func , f l a g ) ;
20
21 omp_se t_ lock (&my_lock ) ;
22 i f ( i n s t a n c e _ == 0) {
23 i n s t a n c e _ = new Type ;
24 }
25 omp_unse t_ lock (&my_lock ) ;
26 re turn * i n s t a n c e _ ;
27 }
28 } ;

Figure 5.11: Attempt 3: instance method
with multiple critical regions

t empla te < c l a s s Type >
c l a s s s i n g l e t o n _ w r a p p e r {
s t a t i c Type& i n s t a n c e ( )
{

s t a t i c omp_lock_ad my_lock ;
my_lock . s e t ( ) ;
i f ( i n s t a n c e _ == 0) {

i n s t a n c e _ = new Type ;
}
my_lock . u n s e t ( ) ;
re turn * i n s t a n c e _ ;

}
} ;

Figure 5.11: Attempt 4: instance
method with multiple critical
regions

Attempt 4: Lock Adapters to the Rescue: Figure 5.11 shows our last attempt at pro-
tecting each singleton with its own critical region. It is substantially smaller than all
previous versions and should also work with OpenMP today. It uses lock adapters as
described in Section 5.1.1.

Because lock initialization takes place automatically when an instance of the class
omp_lock_ad is created, our problem with the initialization having to be carried out
only once disappears. Or at least: it should disappear. Unfortunately, some compilers we
have tested this with call the constructor of the lock adapter more than once in this setting,
although it is a shared object. The next paragraph explains this more thoroughly.

The difference between static variable construction and static variable initialization be-
comes important here, because static variable initialization works correctly in a multi-
threaded setting with OpenMP on all compilers we have tested, but static variable con-



5.2 A Thread-safe Singleton Pattern 75

struction has problems on some compilers. Static variable initialization basically means
declaring a variable of a primitive data type and initializing it at the same time:

s t a t i c i n t my_int = 5 ;

This makes my_int a shared variable and as in the sequential case, it’s initialization is
carried out once. This works on all compilers we have tested. Static variable construction
on the other hand looks like this:

s t a t i c m y _ c l a s s _ t my_c las s ;

Since my_class_t is a user-defined class, it’s constructor is called at this point in the
program. Since the variable is static, it is a shared object and therefore the constructor
should only be called once. This does not happen on all compilers we have tested (al-
though we believe this to be a bug in them, since OpenMP guarantees thread safety of the
base language) and is therefore to be used with care. A trivial test program to find out
if your compiler correctly supports static variable construction with OpenMP is available
from the authors on request.

This solution is the most elegant and also the shortest one to provide each singleton
with its own critical region. Nevertheless, our second problem is still there: each access
to the singleton has to go through a critical region, even though only the creation of the
singleton needs to be protected. We are going to concentrate on this problem in the next
few paragraphs.

Double-Checked Locking and Why it Fails

Even in some textbooks, the double-checked locking pattern is recommended to solve the
problem of having to go through a critical region to access a singleton [SSRB00]. Our
instance method with this pattern is shown in Figure 5.12.

Unfortunately, the pattern has multiple problems, among them possible instruction re-
orderings by the compiler and missing memory barriers, as explained by Meyers and
Alexandrescu [MA04], as well as problems with the OpenMP memory model, as ex-
plained by de Supinski on the OpenMP mailing list [dS06]. Since the pattern may and
will fail in most subtle ways, it should not be employed.

Using a Singleton Cache

Meyers and Alexandrescu [MA04] also suggest caching a pointer to the singleton in each
thread, to avoid hitting the critical region every time the instance method is called.
This can of course be done by the user, but we wanted to know if it was possible to
extend our singleton wrapper to do this automatically. We therefore came up with the
implementation shown in Figure 5.12.
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/ / t h i s code i s wrong ! !
t empla te < c l a s s Type >
c l a s s s i n g l e t o n _ w r a p p e r {
s t a t i c Type& i n s t a n c e ( )
{

# pragma omp f l u s h ( i n s t a n c e _ )
i f ( i n s t a n c e _ == 0) {

# pragma omp c r i t i c a l ( A_2 )
{

i f ( i n s t a n c e _ == 0)
i n s t a n c e _ = new Type ;

}
}
re turn i n s t a n c e _ ;

}
} ;

Figure 5.12: instance method with
double-checked locking

t empla te < c l a s s Type >
c l a s s s i n g l e t o n _ w r a p p e r {
s t a t i c Type* cache_ ;
s t a t i c Type& i n s t a n c e ( )
{

# pragma omp t h r e a d p r i v a t e ( cache_ )
i f ( cache_ == 0) {

cache_ =
&s i n g l e t o n <Type > : : i n s t a n c e ( ) ;

}
re turn * cache_ ;

}
} ;

Figure 5.12: instance method using caching

The implementation solves the problem, as the critical region for each singleton is only
entered once. It relies on declaring a static member variable threadprivate. Unfortunately,
the OpenMP specification does not allow to privatize static member variables in this way.
In our opinion, this is an important omission not restricted to singletons, and therefore this
point is raised again later in this work, when we put up a list of enhancement proposals
for the OpenMP specification in Section 6.3.

There is a workaround, however, which was suggested by Meyers in his landmark pub-
lication Effective C++ [Mey05] as a solution to a different problem. Instead of making the
cache a static member variable (that cannot be declared threadprivate), it can be declared
as a static local variable in the instance method. Declaring local variables thread-
private is allowed by the specification, and this solves the problem without any further
disadvantages.

The whole solution unfortunately has some problems. It relies on threadprivate data de-
clared with the threadprivate directive, but in OpenMP these have some restrictions.
In a nutshell, these data become undefined as soon as nested parallelism is employed or
as soon as the number of threads changes over the course of multiple parallel regions (see
the OpenMP specification for details [Ope05]). There is no way to work around these
limitations for this solution, therefore the user has to be made aware of them by carefully
documenting the restrictions. Fortunately, there is a different way to achieve the desired
effect and it is explained next.
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t emplate < c l a s s Type >
c l a s s s i n g l e t o n _ w r a p p e r {
s t a t i c Type& i n s t a n c e ( )
{

s t a t i c Type i n s t a n c e ;
re turn i n s t a n c e ;

}
} ;

Figure 5.13: instance method using a Meyers singleton

The Meyers Singleton

One of the most well-known singleton implementations today is the so-called Meyers
Singleton that is described in Effective C++ [Mey05]. It is quite elegant, small, and shown
in Figure 5.13.

Meyers himself warns about using his implementation in a multi-threaded setting, be-
cause it relies on static variable construction being thread-safe. Of course, Meyers did not
write about OpenMP. OpenMP guarantees thread safety of the base language in the spec-
ification, and this should cover proper construction of static variables in a multi-threaded
setting as well. Unfortunately, as described in Section 5.2.2 in detail, our tests show that
some OpenMP-aware compilers still do have problems with this. Some of them were even
calling the constructor of the same singleton twice, which should never happen in C++.
Therefore, although it is the smallest and most elegant solution to the problem, it cannot
be recommended for everyone at this point in time.

5.2.3 Performance

This section discusses the performance of the proposed singleton wrapper implementa-
tions. We have setup a very simple test to access the performance of our solution. It is
shown in Figure 5.14.

Two different singletons are used in the example, one is an integer and one is a double.
The protected singletons will usually be classes, of course, but for our simple performance
measurements primitive data-types will do. The singletons are initialized prior to the
parallel region. Inside the parallel region, they are read only and their result is added up
and tested outside the parallel region for correctness (not shown in the figure). The results
of our tests are shown in Table 5.3. The measured numbers are in seconds and show the
best of three runs with 10.000.000 singleton accesses per thread. Only the entries printed
in bold are correct and safe!

Here is a short summary of the table headings:

• one_crit: a singleton wrapper using the same critical region for all protected sin-
gletons (see Figure 5.9)
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i n t c o u n t e r = 0 ;
double f c o u n t e r = 0 . 0 ;

double s t a r t = omp_get_wtime ( ) ;

s i n g l e t o n _ w r a p p e r < i n t > : : i n s t a n c e ( ) = 1 ;
s i n g l e t o n _ w r a p p e r <double > : : i n s t a n c e ( ) = 1 . 0 ;
#pragma omp p a r a l l e l r e d u c t i o n ( + : c o u n t e r ) r e d u c t i o n ( + : f c o u n t e r )
{

f o r ( i n t i =0 ; i < n u m t r i e s ; ++ i ) {
c o u n t e r += s i n g l e t o n _ w r a p p e r < i n t > : : i n s t a n c e ( ) ;
f c o u n t e r += s i n g l e t o n _ w r a p p e r <double > : : i n s t a n c e ( ) ;

}
}

double end = omp_get_wtime ( ) ;

Figure 5.14: The code used to benchmark our singletons

Test Environment one_crit multi_crit local_cache meyers dcl
AMD, Intel Comp., 4 Thr. 32.8 18.6 1.38 0.04 1.46

Sun, Sun Comp., 8 Thr. 176 182 n.a. 0.14 0.62
IBM, IBM Comp., 8 Thr. 72.7 71.7 0.34 0.01 0.85

Table 5.3: Measured singleton benchmark timings in seconds

• multi_crit: a singleton wrapper using a different critical region for all protected
singletons with a lock adapter (see Figure 5.11)

• local_cache: a singleton wrapper that caches a pointer to the singleton in thread-
private memory (see Figure 5.12)

• meyers: a singleton wrapper built after the Meyers Singleton (see Figure 5.13) -
the numbers are only representative on the Intel Compiler, because the other two do
not construct static classes correctly

• dcl: for comparison, we have also included the double-checked locking version (see
Figure 5.12), although it is not safe to use!

As can be clearly seen by these numbers, the Meyers Singleton is to be preferred on
all architectures, as it is the fastest by several orders of magnitude. We do not have any
numbers for the version using a threadprivate cache on the Sun Compiler, as it was not
able to translate our code. We believe this to be a bug in the compiler.

These results leave us with a disappointing situation: we have isolated a best solution
(Meyers Singleton), the solution should be legal judging from the OpenMP specification,
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yet some compilers do not implement it correctly. While we cannot fix the compilers,
what we can do at this point is provide a short test program that shows which compilers
behave correctly and which do not. It is available from the authors on request.

5.2.4 Related Work

Lots of work has been put into correctly implementing the singleton pattern. The most
famous resource on the topic is the book by Gamma et al. [GHJV95]. The idea for our
singleton wrapper is described by Schmidt et al. [SSRB00], along with double-checked
locking that was later proved to be an anti-pattern by Meyers and Alexandrescu [MA04].
The idea for the singleton cache is also from the latter source. More involved descriptions
of singletons with different properties in C++ are given by Alexandrescu [Ale01]. Yegge
describes most clearly why singletons should be used with care [Yeg04]. In the next
section we are leaving the field of object-oriented patterns and show our implementations
of several data-parallel patterns.

5.3 Data-Parallel Patterns

The work presented in this section is derived from a conference publication [SL07c]. It
reports on the implementations of data-parallel patterns: modify_each, transmute,
combine, reduce, filter and prefix. The results of two benchmarks showing no
or minor performance losses when compared to a pure OpenMP implementation are also
included.

Section 5.3.1 starts with a general introduction to the features of our patterns/generic
components and goes on to highlight each one of them in detail. The performance of our
solutions is described in Section 5.3.2. Section 5.3.3 describes related work.

5.3.1 Implementation and Features

This subsection introduces the data-parallel patterns contained in AthenaMP to date. First,
we explain some features of our implementation common to all of them.

The interfaces of our functions have been designed using the Standard Template Library
(STL) as an example where applicable. Just like in the STL, all functions presented here
are polymorphic through the use of templates. It is possible to mix the library calls freely
with normal OpenMP code. This is useful e. g. for employing nested parallelism, where
the user specifies the first level of parallelism in user’s code and the second level is opened
up by the library.

All functions take two or more iterators specifying one or more ranges of elements as
parameters, as is customary in the STL. Behind the scenes, depending on the iterators
supplied, there are two versions of the patterns: one that takes random-access iterators
(as supplied by e. g. std::vectors or std::deques), and one that takes forward
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or bidirectional iterators (as supplied by e. g. std::lists). Using template metapro-
gramming (i. e. iterator traits), the right version is selected transparently to the user by the
compiler.

The first version makes use of the schedule clause supplied with OpenMP. Although
it is set to static scheduling, this is easily changeable in the source of the library. When
the functor supplied takes a different amount of time for different input values, using a
dynamic schedule is a good idea. This random-access version is fast and has easy to
understand internals, because it uses OpenMP’s parallel for construct.

The second version is for forward iterators. Use of the scheduling functionality sup-
plied by OpenMP would be very costly in that case, as to get to a specific position in the
container, O(n) operations are necessary in the worst case. This operation would need
to be carried out n times, resulting in a complexity of O(n2). For this reason, we have
implemented our own static scheduling. The internal schedule_iter template func-
tion is responsible for it. It takes references to two iterators. One of them marks the start
and the other the end of the range to be processed. The function calculates the number
of elements in the range, divides it among the threads, and changes the iterators supplied
to point to the start and the end of the range to be processed by the calling thread (by
invoking std::advance). This results in a total complexity of O(n ∗ t), where t is
the number of threads involved. Iff each thread in a team calls the function and works
on the iterators returned, the whole range is processed with only a few explicit calls to
std::advance. However, the forward iterator version is still slower and less flexible
(because changing the scheduling policy is not possible with this version) than the random
access iterator version, as can be observed in Section 5.3.2.

The last parameter to each function is the number of threads to use in the computation.
If the parameter is left out, it defaults to the number of threads as normally calculated by
OpenMP. Unless otherwise specified in the description of the pattern, the original order
of the elements in the range is preserved and no critical sections of any kind are required.

The parallelism inherent in the patterns described is totally hidden from the user, except
of course when looking into the AthenaMP source code. This does not necessarily lead to
smaller sources (as a lot of scaffolding code for the new functors is required), but to less
error-prone ones. A lot of mistakes are common when working with OpenMP (some of
which are described in Section 3.2) and these can be reduced by deploying the patterns.

It is also possible to nest patterns inside each other, e. g. by calling reduce inside a
functor supplied to modify_each for two-dimensional containers. Nested parallelism
is employed in this case, which becomes especially useful if you have a large number of
processors to keep busy.

The following patterns and their implementations are discussed in the next few para-
graphs:

• modify_each: also commonly known as map, modifies each element supplied

• transmute: also known as transform applies a function to each element provided
and returns a new range containing the results of the operation
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/ * * a user−s u p p l i e d f u n c t o r t h a t adds d i f f t o i t s argument * /
c l a s s add_func : p u b l i c s t d : : u n a r y _ f u n c t i o n < i n t , void > {

p u b l i c :
add_func ( c o n s t i n t d i f f ) : d i f f _ ( d i f f ) {}
void operator ( ) ( i n t& v a l u e ) c o n s t { v a l u e += d i f f _ ; }

p r i v a t e :
c o n s t i n t d i f f _ ;

} ;

/ * add 10 t o a l l t a r g e t s i n p l a c e . * /
athenamp : : modi fy_each ( t a r g e t s _ . b e g i n ( ) , t a r g e t s _ . end ( ) ,

add_func ( 1 0 ) ) ;

Figure 5.15: modify_each in action

• combine: combines elements from two sources using a binary function and re-
turns a new range containing the results of the operation

• reduce: also known as fold, combines all elements into a single result using an
associative operation

• filter: filters the elements supplied according to a predicate function and returns
the results using a new container

• prefix: combines elements into results using x1 ◦ x2 ◦ . . . ◦ xk for 1 ≤ k ≤ n and
stores the results using a new container. The most well-known operation for ◦ is
addition. In this case the computation is called prefix sum.

modify_each

The modify_each pattern provides a higher-order template function to apply a user-
supplied functor to each element in a range in parallel. No provisions are made to protect
any internal data in the functor or any side-effects of the functor from concurrent access.
Figure 5.15 shows an example, where the pattern is used to add ten to all elements in an
std::vector. The user is relatively free with regards to the functor supplied, as long
as it contains an operator() method that is a unary function and takes a non-const
reference as argument. If operator() has a return value, it is ignored.

transmute

The transmute pattern is similar to modify_each in the way that it applies a user-
supplied unary functor to all elements in a range in parallel. While modify_eachworks
on the original elements and modifies them, transmute stores its results in a different
range and is therefore even able to change the type of each element. It is known in the



82 A Library Approach to Enhancing the Power of OpenMP

/ * combine a l l e l e m e n t s from s o u r c e s 1 _ w i t h a l l e l e m e n t s from
* s o u r c e s 2 _ and s t o r e t h e r e s u l t s i n s o u r c e s 1 _ * /

athenamp : : combine ( s o u r c e s 1 _ . b e g i n ( ) , s o u r c e s 1 _ . end ( ) ,
s o u r c e s 2 _ . b e g i n ( ) , s o u r c e s 1 _ . b e g i n ( ) , s t d : : p lu s < i n t > ( ) ) ;

Figure 5.16: combine in action

STL as transform (but similar to many of our components, we could not use this name
to avoid name-clashes with the STL-version).

The list of parameters it takes is similar to modify_each again, except for the fact
that it takes an additional iterator that points to the location where the results are to be
stored. The user is responsible for making sure that there is enough room to store all
results. The user-supplied functor is similar to the one supplied for modify_each,
except for the fact that it cannot work on its argument directly, but returns the result of
its computation instead. The result is then put into the appropriate location by our library
function transmute.

No provisions are made to protect any internal data in the functor or any side-effects of
the functor from concurrent access. While it is possible and correct to use transmute
to apply changes inplace by overlapping its supplied ranges, it is recommended to use
modify_each in that case because it is faster, since it involves less copying of elements.

An example is omitted here for brevity and because of the similarity of this method to
the already explained modify_each pattern.

combine

combine is a relatively simple pattern that is used to combine elements from two differ-
ent ranges using a binary operation and put the result into a third range. It is similar to
the transmute pattern explained above, except that it works on two ranges instead of
one. Similar restrictions as for transmute also apply here: the user is responsible for
making sure there is enough room to put the results in and the internals of the functor are
also not protected from concurrent access. It is also possible to store the results inplace,
as shown in Figure 5.16. What is also shown in this figure is that it is possible to use the
functors provided by the STL for this pattern (std::plus in this example). If this is
the case, many lines of code can be saved when compared to the parallel version without
patterns.

reduce

The reduce pattern combines all elements in a given range into a single result using a
binary, associative operation. It is also commonly known as fold or for_each. Many paral-
lel programming systems feature a reduce-operation, among them OpenMP. The reduce-
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/ * * A f u n c t o r t h a t can be used t o f i n d t h e maximum and sum o f a l l
* e l e m e n t s i n a range by r e p e a t e d l y a p p l y i n g o p e r a t i o n ( ) t o a l l
* e l e m e n t s i n t h e range . * /

c l a s s max_sum_functor : p u b l i c s t d : : u n a r y _ f u n c t i o n < i n t , void > {
p u b l i c :

max_sum_functor ( i n t max , i n t sum ) : max_ ( max ) , sum_ ( sum ) { } ;
i n t max ( ) c o n s t { re turn max_ ; }
i n t sum ( ) c o n s t { re turn sum_ ; }

void operator ( ) ( c o n s t i n t a rg1 )
{

max_ = s t d : : max ( arg1 , max_ ) ;
sum_ += arg1 ;

}

void combine ( c o n s t max_sum_functor& func )
{

max_ = s t d : : max ( func . max ( ) , max_ ) ;
sum_ += func . sum ( ) ;

}

p r i v a t e :
i n t max_ ;
i n t sum_ ;

} ;

max_sum_functor func (−1 , 0 ) ;
/ * c a l c u l a t e maximum and sum o f a l l e l e m e n t s i n v e c t o r t a r g e t s _ * /
athenamp : : r e d u c e ( t a r g e t s _ . b e g i n ( ) , t a r g e t s _ . end ( ) , f unc ) ;
/ * check r e s u l t * /
s t d : : c o u t << func . max ( ) << s t d : : e n d l << func . sum ( ) << s t d : : e n d l ;

Figure 5.17: reduce in action

operation in OpenMP has a disadvantage, though: it is limited to a few simple, predefined
operators, such as + or ∗. These operators can only be applied to a few data-types, such
as int’s.

Our reduce method solves these problems, as a user-defined functor is specified as
operator. This functor can work on any data-type. Multiple reductions in a single pass are
possible as well, with a functor that does two or more operations at the same time. An
example (see Figure 5.17) will make things clearer, before we go into more details. The
functor in the example stores the variables max_ and sum_ internally. They are initialized
appropriately in the constructor and can be read after the operation has completed using
the max and sum methods. operator() is applied to each element in the range to find
the maximum element and the sum of all elements.
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/ * f i l t e r a l l odd numbers and s t o r e them i n t o r e s u l t s _ * /
r e s u l t s _ = athenamp : : f i l t e r < s t d : : l i s t < i n t > > ( t a r g e t s _ . b e g i n ( ) ,

t a r g e t s _ . end ( ) , s t d : : b ind2nd ( s t d : : modulus < i n t > ( ) , 2 ) ) ;

Figure 5.18: filter in action

Internally, the reducemethod creates a copy of the functor for each thread involved in
the calculation. For this reason, the functors supplied must also have a copy constructor.
In our example, the compiler takes care of this correctly, therefore we have omitted it.
At the end of the reduction, the combine method (which has nothing in common with
the combine pattern mentioned in the last section!) is used to correctly combine the
different functors from each thread. As can be seen in the example, there is no need to
protect anything from concurrent access, as the reduce method does this automatically.
As a downside, this also means that our implementation has a critical region that must
be carried out once by all threads involved, which of course decreases the performance
slightly, especially for quick operations on few elements.

filter

The filter pattern filters a range of objects according to a predicate functor and stores
all results for which the predicate returns true into a new container. The target container
must be specified as template parameter and must offer both push_back and insert
methods in its interface (all STL sequence containers do). A small example to make things
clearer is shown in Figure 5.18.

In this example, all odd numbers are filtered out of the targets_-vector and stored
into the results_-list. The predicate functor can either be a standard one from the STL
(as shown in the example) or a user-defined one. In all cases, no protection of the internals
of the functor from concurrent access is guaranteed. This should not be a problem, as most
functors used in this case do not have any internals to protect.

The implementation has no critical sections, but a small sequential part at the end where
the contents of each threads accumulated objects are copied together into a new container
that is returned afterwards.

prefix

The prefix pattern combines elements into results using x1 ◦ x2 ◦ . . .◦ xk for 1≤ k ≤ n and
stores the results in a different range (or optionally inplace). The most well-known prefix
version is the prefix sum (shown as an example in Figure 5.19). Prefix is different from
the rest of our patterns, since it is the most complicated of them all and also the most
difficult to parallelize. It does not contain a special version for random-access iterators,
but should still run faster for them because it uses some STL functions that have fast
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/ * c a l c u l a t e p r e f i x sum and s t o r e r e s u l t s i n t a r g e t s _ * /
athenamp : : p r e f i x ( s o u r c e s _ . b e g i n ( ) , s o u r c e s _ . end ( ) ,

t a r g e t s _ . b e g i n ( ) , s t d : : p lu s < i n t > ( ) ) ;

Figure 5.19: prefix in action

Platform (Threads) modify_each OpenMP variant (lists)
AMD (4) 0.1085 (8.0511) 0.0889 (7.5558)

SPARC (8) 2.389 (35.7338) 2.3788 (34.7902)
IBM (8) 0.1457 (3.3544) 0.1415 (3.4071)

Table 5.4: Wall-clock times in seconds for the modify_each function.

versions for these iterators (e.g. std::advance). Multiple synchronization points are
needed in the function and therefore it does not scale as well as the others.

5.3.2 Performance

Measuring performance of generic components such as the ones provided here is hard,
as it depends heavily on the user code that is to be parallelized. Most patterns do not
need locks or perform at most one locking operation per thread. Therefore, they are
able to scale to a large number of processors. If the amount of work to be done in the
user-supplied functor is too small, however, bus contention will become an issue and
performance may not be satisfactory – but this is the case for pure OpenMP as well.

We have performed two different tests on our components. For the first test, we incorpo-
rated the modify_each pattern into the game-like application OpenSteerDemo [KL07],
which is a testbed for the C++ open-source library OpenSteer [Rey04] written by Rey-
nolds. It simulates and graphically displays the steering behavior of autonomous com-
puter-controlled characters, called agents, in real-time. No difference at all was measur-
able between the pure OpenMP version and our version using generic components. We
expect this to be the case in most applications.

The second test refers to the case that the user-supplied functor is too small. Our
benchmark uses e. g. modify_each to add one to all elements in an std::vector
or std::list, respectively. Similar, very simple operations are carried out for the
other functions. The results are shown in Figures 5.4 to 5.9. The values in braces are
measurements for the respective version using forward iterators. All tests carried out on
containers with 100.000 elements, using 10.000 repetitions. Of course, this benchmark is
not representative in any way, as it is clearly limited by the available memory bandwidth.
Yet, since this is true for the pure OpenMP-version as well, it shows that the overhead
introduced by using the pattern is marginal even for this case.
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Platform (Threads) transmute (lists) OpenMP variant (lists)
AMD (4) 0.1042 (7.6689) 0.0761 (7.5658)

SPARC (8) 2.4251 (36.4147) 1.2908 (34.2533)
IBM (8) 0.1621 (3.3796) 0.0391 (3.4363)

Table 5.5: Wall-clock times in seconds for the transmute function.

Platform (Threads) combine (lists) OpenMP variant (lists)
AMD (4) 0.0987 (2.6799) 0.0862 (2.6684)

SPARC (8) 2.3426 (9.0076) 2.2568 (8.983)
IBM (8) 0.1803 (2.2424) 0.1576 (2.2531)

Table 5.6: Wall-clock times in seconds for the combine function.

It can also clearly be observed that the version of our patterns using forward iterators
(as found in lists) is several orders of magnitude slower than the one for random access
iterators. The reasons for this behavior have been explained in Sec. 5.3.1. For our other
patterns, similar results can be observed.

5.3.3 Related Work

Many of the data-parallel patterns described here are similar to functionality provided by
the Standard Template Library (STL). There are a variety of parallel STL implementations
in a research stage, among them STAPL [AJR+01] or PSTL [JG97]. Similar functionality
is also starting to appear in commercial projects, such as the Intel Threading Building
Blocks [Int07] or in QT Concurrent [Tro07]. What differentiates this work from these
projects is its strong focus on OpenMP on one hand (which no other project we know of
provides), and its ability for programmers to study the source and learn from that. By
using the expressiveness of OpenMP, its code is far easier to understand and adapt than
any of the other libraries we are aware of.

This closes our work on data-parallel patterns. In the next section, we are going to
describe our work on irregular algorithms and task pools.

Platform (Threads) reduce (lists) OpenMP variant (lists)
AMD (4) 0.078 (1.998) 0.0711 (1.9835)

SPARC (8) 2.2285 (7.1695) 2.2066 (6.806)
IBM (8) 0.1642 (1.8802) 0.1661 (1.6508)

Table 5.7: Wall-clock times in seconds for the reduce function.
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Platform (Threads) filter (lists) OpenMP variant (lists)
AMD (4) 6.1821 (6.5745) 4.605 (5.5161)

SPARC (8) 10.5285 (13.4097) 9.2464 (14.0275)
IBM (8) 11.8475 (11.2674) 8.1289 (8.8956)

Table 5.8: Wall-clock times in seconds for the filter function.

Platform (Threads) prefix (lists) OpenMP variant (lists)
AMD (4) 2.9889 (3.8473) 2.7263 (4.1557)

SPARC (8) 4.063 (9.9796) 4.841 (9.8717)
IBM (8) 1.7942 (3.7026) 1.8125 (3.7398)

Table 5.9: Wall-clock times in seconds for the prefix function.

5.4 Task Pools

The work presented in this section is includes material from a workshop publication in
2004 [SL04] and a workshop publication in 2006 [WSL06]. Everything that has been
described so far in this chapter is part of AthenaMP already. The work described in the
next sections will be part of it eventually, but is not yet finished and sufficiently polished
up.

OpenMP provides powerful constructs to parallelize regular programs, i.e., programs
that execute a similar set of operations on different elements of a regular data structure
such as an array. Irregular algorithms, in contrast, are difficult to parallelize using the
existing OpenMP constructs. For irregular algorithms, the units of work (tasks) can usu-
ally not be mapped statically to a fixed number of threads (as explained in Section 2.1.2),
because their number or size depends on the given input. Therefore it is often not possible
to predict the amount of work to be done in a task for any particular input data.

According to Mattson [Mat03], one of the initial designers of the OpenMP specifica-
tion, OpenMP was never meant for irregular applications. Other people have tried to use
OpenMP for this kind of applications, though, and have gotten mixed results [HASP00,
DVT00, NPA01].

One approach to achieve dynamic mapping is the use of task pools. A task pool is a
data structure that stores tasks to support mapping them to a certain number of threads.
Section 5.4.1 gives an overview about some task pool variants that we have implemented
in OpenMP. In Section 5.4.2, we introduce three example applications that are used in
Section 5.4.3 to assess the performance of the different task pool variants: quicksort,
labyrinth-search and sparse cholesky factorization. Performance numbers gathered with
the workqueuing model proposed by Shah et al. [SHPT99] are included for comparison
in this section as well. Section 5.4.4 surveys related work and closes this part of our work
on irregular algorithms.
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1 t a s k _ d a t a _ t * t a s k _ d a t a ;
2 t p o o l _ t * poo l = t p o o l _ i n i t ( num_threads , s i z e o f ( t a s k _ d a t a _ t ) ) ;
3 t a s k _ d a t a = g e n e r a t e _ i n i t i a l _ t a s k ( ) ;
4 t p o o l _ p u t ( pool , 0 , t a s k _ d a t a ) ;
5 #pragma omp p a r a l l e l shared ( poo l )
6 {
7 t a s k _ d a t a _ t * m y _ t a s k _ d a t a ;
8 i n t me = omp_get_thread_num ( ) ;
9 whi le (TPOOL_EMPTY != t p o o l _ g e t ( pool , me , &m y _ t a s k _ d a t a ) ;

10 do_work ( m y _ t a s k _ d a t a ) ; / * i n c l u d e s c a l l s t o t p o o l _ p u t ( . . . ) * /
11 }
12 t p o o l _ d e s t r o y ( poo l ) ;

Figure 5.20: OpenMP program using task pools

5.4.1 Overview

Task pools are used to achieve dynamic load balancing (mapping) in irregular applica-
tions. A task pool stores tasks that are either created dynamically at runtime, or where
the size is not known in advance. It also provides a set of operations that allow threads
to insert and extract tasks concurrently in a thread-safe manner. In the next few para-
graphs, the high-level interface for the programmer used by all our task pool variants is
introduced. Afterwards the different task pool variants are described.

Application Programming Interface

All implemented task pools use the same application programming interface. This API
provides functions to initialize and destroy the task pool structure, as well as to insert
and extract tasks concurrently. Figure 5.20 shows an example of the relevant part of an
OpenMP program that uses our API. At the moment, this is still very C-ish. In ongoing
work, this is changed to an object-oriented design using templates to turn it into a generic
component useful for AthenaMP.

First, a task pool must be initialized by using the tpool_init function. This function
must only be called once, and only by a single thread. Afterwards, the task pool can be
used to store (tpool_put) and extract (tpool_get) tasks. The latter function blocks
until it either successfully extracts a task from the pool, or discovers that the task pool is
empty and all threads using the pool are idle. Finally, function tpool_destroy frees
the memory used by the task pool.

Variants of Task Pools

We implemented several variants of task pools. Some of them (sq1, sdq1 and dq8) were
ported to OpenMP from existing POSIX threads and Java implementations described by
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Korch and Rauber [KR04]. Others (dq9 and dq9-1) have been developed by the authors
as enhancements of the dq8 variant. The remainder of this section explains the different
versions in detail.

Central Task Queue: The simplest way to design a task pool, called sq1, is to use a
single shared task queue. Each thread is allowed to access this queue with functions
tpool_put and tpool_get. We used OpenMP lock variables to ensure that only one
thread can access the task queue at a time. The variant has the drawback that when two or
more threads are trying to access the task pool simultaneously, they have to wait for each
other. Therefore, the task pool can become a bottleneck for applications that use a large
number of threads or access the pool frequently. Nevertheless, this variant offers good
load balancing capabilities and performs well for applications that create only few tasks
or access the task pool rarely.

Combined Central and Distributed Task Queues: To reduce waiting times caused by
access conflicts, the task pool variant sdq1 uses distributed task queues. It manages a
private task queue for each thread and permits only the owner thread to access the queue.
Therefore no synchronization operations are needed for the private queues. An additional
central queue is maintained for load balancing. Whenever a private queue is empty, the
owner thread tries to fetch a task from the central queue. To ensure the exchange of tasks
among the threads, the size of the private queues is limited. If a thread tries to enqueue
a new task and discovers that its private queue is full, it will move the new task to the
central queue.

Distributed Queues with Dynamic Task Stealing: In contrast to sdq1, the task pool
variants dq8, dq9 and dq9-1 use multiple shared queues to reduce the possibility of access
conflicts: each thread has its own private and its own shared queue. If a thread runs out
of tasks in its private queue, it will take a task from its shared queue. If the shared queue
is also empty, the thread will try to steal a task from the shared queue of another thread,
and then return it from tpool_get.

Although the task pool variants dq8, dq9 and dq9-1 are conceptually similar, they use
different strategies for filling the shared queues. Like sdq1, dq8 uses private queues with
a limited size. If a private task queue is full, the new tasks are moved to the shared queue.

Unlike dq8, variants dq9 and dq9-1 adjust the size of the private queues dynamically,
based on the state of the shared queue. The size of a private queue in dq9 and dq9-1 is not
limited to a certain value. The private queues of these task pool variants can contain an
arbitrary number of tasks. The reason is that dq9 and dq9-1 try to keep most tasks in the
private queues to reduce the number of operations on shared queues. A thread will move
a task into its shared queue in tpool_put only if the shared queue is running empty.
If both the private and the shared queue are empty, a new task will be inserted into the
shared queue in dq9, but into the private queue in dq9-1.
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Name Num. Q. Num. Shar. Q. Size of Priv. Q. Task-stealing Time
sq1 1 1 - -

sdq1 num_threads+1 1 limited (2) -
dq8 num_threads∗2 num_threads limited (2) priv. queue empty
dq9 num_threads∗2 num_threads unlimited priv. queue empty

dq9-1 num_threads∗2 num_threads unlimited priv. queue low (2)

Table 5.10: Comparison of implemented task pool variants

Another difference between dq9-1 and dq9 is the point in time, when task stealing
is started. While dq8 and dq9 do not attempt to steal tasks before a private queue is
empty, dq9-1 initiates task stealing as soon as the number of tasks in the private queue
drops below a predefined threshold value. This is done to prevent the private queue from
running empty.

All of these different variants are summarized in Tab. 5.10. In the table, Q. stands for
Queue, the number in braces stands for the actual number of tasks used in our tests.

5.4.2 Benchmarks

To compare the performance of our task pool variants, we have implemented three irregu-
lar applications: quicksort, labyrinth-search and sparse cholesky factorization. Quicksort
is a popular sorting algorithm, initially invented and described by Hoare [Hoa62]. The
labyrinth-search application finds the shortest path through a labyrinth using the breadth-
first search algorithm. To ensure that all labyrinth cells with the same distance from the
entry cell are visited before any other cells are processed, we use two task pools. The
tasks in the first pool correspond to cells with distance d from the entry cell. The second
task pool is used to collect tasks (cells) with distance d +1. The algorithm is explained in
more detail in Section 6.2.1.

Cholesky factorization is an algorithm to solve systems of linear equations Ax = b.
Information on cholesky factorization can be found, for instance, in the book by George
and Liu [GL81]. To test our task pool variants, we have implemented only the most
expensive part of cholesky factorization: numerical factorization.

5.4.3 Performance

Performance measurements were carried out on an AMD Opteron 848 class computer
with four processors at 2.2 GHz, and on a Sun Fire E6900 with 24 dual-core Ultra Sparc
IV processors at 1.2 GHz. On the AMD system, a maximum of four threads was used,
while on the Sun system, a maximum of eight threads was used. Although more threads
would have been possible on the latter machine, eight processors is the maximum number
that this machine supports without encountering NUMA-effects (as it consists of multiple
mainboards with 4 dual-core processors each). On the AMD system, the benchmarks were
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compiled with the Intel C++ Compiler 9.0 using options -O2 and -openmp. On the Sun
Fire E6900, the Guide compiler with options -fast --backend -xchip=ultra3cu
--backend -xcache=64/32/4:8192/512/2 --backend -xarch=v8plusb
was used. We have not used the native SUN compiler, because it does not support the
workqueuing extension (see next paragraph).

For comparison, we implemented quicksort and the cholesky factorization using Intel’s
proposed workqueuing model. It was first introduced by Shah et al. [SHPT99], as an
integrated approach to achieve dynamic load balancing for irregular applications. Those
authors suggest an OpenMP extension which allows to split the work into units (tasks)
that are distributed dynamically to the threads of a program using a task queue. Since
both the Intel C++ and the Guide compilers already support the workqueueing model, we
implemented two benchmarks using this proposed OpenMP extension on the same set of
machines. Unfortunately, we could not implement the labyrinth-search algorithm with
this model, because we did not find a way to use two different queues and ensure that
all tasks from one queue are executed before the program starts to execute tasks from the
second queue.

Figure 5.21 shows the wall-clock times in seconds for the quicksort benchmark ap-
plication with different task pool variants and the Intel taskq implementation. We have
used an array with 100.000.000 elements as input data on the AMD Opteron system and
an array with 10.000.000 elements on the Sun Fire E6900. The results for the cholesky
factorization are shown in Figure 5.22. For the cholesky factorization, a 500x500 ma-
trix was used as input. Figure 5.23 shows the results for the labyrinth-search benchmark
application with different task pool variants.

Our experiments indicate that the performance of different task pool variants depends
on the type of application. Quicksort and labyrinth-search, which create a large number of
tasks, achieve better performance using task pools with distributed task queues. Cholesky
factorization, in contrast, generates only a few tasks, and therefore good load balancing
is crucial. The use of private queues turns out to be a drawback in this case, because all
tasks remain in the private queues and the idle threads have no chance to fetch them. The
performance of dq9 is good, though, because this variant makes the distribution of tasks
among the queues dependent on the number of tasks in the pool. If there are only a few
tasks in the pool (shared queues are empty and at least one thread is idle), a new task
will be inserted into a shared queue (and not, like e. g. for dq9-1 into a private queue).
If there are enough tasks in the pool, however, dq9 will insert a new task into a private
queue to avoid synchronization operations. Using this technique, dq9 achieves much
better performance than the other task pool variants with distributed queues.

Figure 5.22 shows that the only task pool variant that uses one central queue (sq1)
achieves the best performance for cholesky factorization. The reason is the good load
balancing offered by sq1: all tasks are kept in one central queue, where all threads can
access them. Due to the small number of tasks generated by the algorithm, a central
queue does not slow down the program because the application accesses the task pool
only rarely.
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Figure 5.21: Wall-clock times for quicksort in seconds (best of three runs)

Figure 5.22: Wall-clock times for the cholesky factorization (best of three runs)

Figure 5.23: Wall-clock times for labyrinth-search (best of three runs)
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The bottom line from our experiments is that there is no clear winning task pool imple-
mentation. It depends on the application, which task pool variant is suited best.

As can be seen, the performance of the task pools implemented inside the two compilers
using Intel’s taskq is comparable to (and in some cases even better than) our implemen-
tations for the cholesky example. When many tasks are generated and stored in the pools
(as is the case for quicksort), our optimized task pools are able to outperform the Intel
implementations, though.

5.4.4 Related Work

A detailed analysis of several task pool implementations with POSIX threads and Java
threads can be found in the article of Korch and Rauber [KR04]. They conclude that
a combination of private and a public queues for each thread works best for their three
benchmark applications.

An OpenMP extension that could help to deal with irregular problems, the workqueuing
model, has been suggested by Shah et al. [SHPT99], and performance measurements for
this extension have already been discussed in Section 5.4.3. Since it is expected that a
similar extension will be accepted into OpenMP 3.0 [ACD+07], this could make our task
pools obsolete. Nevertheless, the experiences gained from implementing the different
variants may help implementers of the extension in OpenMP compilers.

Another approach was proposed by Balart et al. [BDG+04]. They suggest to relax the
specifications of the sections directive allowing a section to be instantiated multiple times.
Additionally, they suggest to execute code outside of any section by a single thread. Each
time this thread detects a section instance, it will insert this section into an internal queue.
The section instances inserted into the queue are executed by a team of threads.

This closes our work on irregular algorithms for now. In Sections 6.1 and 6.2 enhance-
ments to the specification are described that would make working with these kinds of
algorithms even easier.

5.5 Other Patterns

In this section, some patterns that are too small for their own section are described. In de-
tail, these are the observer pattern (Section 5.5.1), the RW-lock (Section 5.5.2), the shared
queue (Section 5.5.3), the once pattern (Section 5.5.4), the pipeline pattern (Section 5.5.5),
the thread-safe containers (Section 5.5.6) and the thread-storage (Section 5.5.7).

5.5.1 Observer

The work presented in this subsection was implemented by Florian Bachmann as part of
his diploma thesis. We are only providing a short summary here, an extended description
can be found in his thesis [Bac07].
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The observer pattern (also known as publish/subscribe) is one of the original behavioral
patterns described by Gamma et al. [GHJV95]. Like the Singleton shown in Section 5.2,
it is an object-oriented pattern that has been frequently implemented. The difficulties and
the reason we chose to implement it lay in its use in a multi-threaded setting.

As the name suggests, the observer pattern is mainly used to monitor the state of an
object (called subject) and notify other objects (called subscribers) as soon as the subject
changes its state. Since C++ does not have a native event handling system, this needs to
be done manually.

Regarding implementation in a multi-threaded setting, the main difficulties lay in the
protection of the subject’s methods from concurrent access. For example, the subject con-
tains a method that allows objects to subscribe. These subscribers are kept in an internal
data structure of the subject, which of course needs to be protected from concurrent ac-
cess, as multiple threads could attempt to subscribe objects at the same time. How this is
achieved in detail can be found in the diploma thesis by Bachmann [Bac07].

5.5.2 RW-Lock

The work presented in this subsection was implemented by Christopher Bolte. The
OpenMP memory model has so-called relaxed-consistency semantics, which implies that
even to read a shared location in memory, use of a of synchronization construct is neces-
sary (see Section 2.4.8 for details.

This restriction seriously limits concurrency in many cases, especially when values are
frequently read, but only rarely changed. A so-called Reader-Writer Lock (short: RW-
Lock) provides a valid workaround in this case. It allows multiple readers to enter the
critical region protected by it. The lock is only exclusive, as long as a writer has acquired
it. The interface of the corresponding component in AthenaMP is shown in Figure 5.24.

As can be seen in the interface, this lock type is as generic as the ones described in Sec-
tion 5.1. Just specify the appropriate lock adapter (described in detail in Section 5.1.1)
via the LockPolicy template parameter, and you can use this lock in any parallel pro-
gramming system that supports lock adapters.

There are two important subclasses of RW-Locks. The distinction between them is most
visible when there are readers still holding the lock and at least one writer is waiting to
acquire it. Reader-Preferred RW-Locks let new readers acquire the lock, even when there
are writers waiting for it already. Writer-Preferred RW-Locks are more fair to writers,
as new readers have to wait in this case until the writers had their turn. Which one is
more suitable depends on the application. Our RW-Locks support both strategies via the
Strategy template parameter.

The main implementation strategy that enables our RW-Locks is the use of multiple
locks, one for each reader and one for the writers. If a reader wants to acquire the lock, it
acquires only one reader-lock, which is different from all other reader locks. Therefore,
it can continue. If a writer wants to acquire the RW-Lock, it needs to acquire the writer
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1 t empla te < c l a s s L o c k P o l i c y =omp_lock_ad ,
2 typename S t r a t e g y = i s _ r e a d e r _ p r e f e r r e d >
3 c l a s s rw_lock {
4 p u b l i c :
5 e x p l i c i t rw_lock ( c o n s t i n t t h r e a d s = omp_ge t_max_threads ( ) ,
6 c o n s t double w a i t _ t i m e = 0 . 0 0 1 ) ;
7 ~ rw_lock ( ) ;
8 void s e t _ r ( ) ;
9 i n t t e s t _ r ( ) ;

10 void se t_w ( ) ;
11 i n t t e s t _ w ( ) ;
12 void u n s e t ( ) ;
13 bool t r y _ u p g r a d e ( ) ;
14 } ;

Figure 5.24: RW-Lock interface

lock and all reader locks. Of course, this is a time-consuming operation when compared
to normal locks, therefore careful profiling is needed when using it.

5.5.3 Shared Queue

The work presented in this subsection was inspired by Mattson et al. [MSM04] and imple-
mented by Florian Bachmann as part of his diploma thesis. Note that the shared queue is
not safe to use in general because of constraints in the OpenMP memory model, although
it works just fine on x86 hardware. See the end of this subsection for details.

In Section 5.4, we have described irregular algorithms and the problems associated with
implementing them. As a general solution, task pools were suggested and implemented.
In the common case that merely two threads need to communicate, a task pool as de-
scribed earlier is overkill, as it needs locking in many cases and also does not make sure
that messages from one thread reach another thread in order. If you need this property or
want to avoid the overhead associated with locking, a shared queue may be a solution.

It guarantees delivery of messages from exactly one thread to exactly one other thread
in order, without locking. However, it is thread-safe only for this case. As soon as more
than one thread is pushing messages into the queue or more than one thread pops messages
out of the queue, the result is unspecified behavior.

The interface of the shared queue component is shown in Figure 5.25. The class has two
template parameters: Type indicates the type of the messages to be delivered through the
queue. HasConstSizeRunTime indicates, whether or not the size method is able to
complete in constant time. If the parameter has true as its value, the queue keeps track of
how many elements it presently holds by incrementing or decrementing an atomic counter
in each push/pop- operation. This makes the size method very fast, but slows down
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1 template < c l a s s Type , bool HasConstSizeRunTime = f a l s e >
2 c l a s s s h a r e d _ q u e u e
3 : p r i v a t e s i z e _ w r a p p e r : : s i z e _ w r a p p e r <HasConstSizeRunTime >
4 p u b l i c :
5 s h a r e d _ q u e u e ( ) ;
6 s h a r e d _ q u e u e ( c o n s t s h a r e d _ q u e u e& r i g h t ) ;
7 s h a r e d _ q u e u e& operator =( c o n s t s h a r e d _ q u e u e& r i g h t ) ;
8 ~ s h a r e d _ q u e u e ( ) ;
9 Type f r o n t ( ) c o n s t ;

10 bool i s _ e mp t y ( ) c o n s t ;
11 i n t s i z e ( ) c o n s t ;
12 void push ( Type t a s k ) ;
13 void pop ( ) ;
14 } ;

Figure 5.25: Shared Queue interface

the push/pop- operations. If size is only rarely used, it therefore makes sense to set
HasConstSizeRunTime to false, which gets rid of the counter and makes the size
method slower, because it has to count all elements each time it is called.

Implementation-wise, the shared queue is constructed around the idea that the data
structure has two pointers internally: one for the head of the queue and one for the
tail. The head-pointer is only accessed by the receiving thread (pop), the tail-
pointer is only accessed by the sending thread (push). Therefore, no locking should be
necessary.

Unfortunately, it does not work this way with the current OpenMP memory model for
several reasons. First, even though both threads use different pointers, they may point to
the same location in memory. Therefore, both threads may modify the same location in
memory at the same time, leading to unspecified behavior. Second, the OpenMP memory
model has the concept of the so-called temporary view of each thread, which can only
be updated by carefully utilizing flush directives in combination with synchronization
directives (see Section 2.4.8) – which we wanted to avoid here.

Last but not least, only careful placement of memory barriers (in the form of flush
directives) can prevent the compiler and the processor from performing operation reorder-
ing to increase performance. These reorderings can also lead to unspecified behavior here.
Therefore the shared queue can not be implemented correctly and in a portable manner
in OpenMP without locks – thus we decided to not include it into AthenaMP. Our ex-
periments indicate that it works on current x86-hardware, though, probably because the
memory model of this architecture provides more guarantees than OpenMP’s.
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Figure 5.26: How the once function works in general

5.5.4 Once

One feature that is missing from OpenMP but frequently found in other parallel program-
ming systems is the ability to specify a function that is supposed to be carried out exactly
once. An important use case is e.g. initialization code. In POSIX threads this feature
is called pthread_once, in the Boost library the name is call_once. OpenMP has
the single directive, which is similar, but not quite equivalent. This work-sharing di-
rective makes sure that only one thread carries out the enclosed code. This is different
from once, because if the same single directive is encountered multiple times (e.g in
a loop), the enclosed code will be carried out multiple times as well. When nested par-
allelism comes into play, single does not preserve once-semantics as well. Of course,
all of these cases can be worked around by the programmer, but the same functionality
can also be provided conveniently as a generic component called athenamp::once.
Figure 5.26 shows how it is done in principle in AthenaMP.

The caller and the callee in the figure are both written by the application program-
mer (shown in yellow), while the once function is a library call that handles all the de-
tails of making sure that the callee is called only once (in orange). The variable of type
OnceFlag serves a double role: first, it is an implementation detail - the value of the
static variable is checked inside the library to see if the function has been called already.
Second, it identifies which region to protect. If two different functions are specified with
the same flag, only one of the two will be called. Figure 5.27 shows with a simple
example, how the function can be used.

This example uses a C++-functor to demonstrate our functionality, in case a more C-
like interface is needed, once also works on function pointers. The functor solution has
the advantage, that it allows to pass parameters to the function via the functor, which
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1 c l a s s OnceFunc tor {
2 p u b l i c :
3 void operator ( ) ( ) {
4 i n i t i a l i z e _ m y _ d a t a ( ) ;
5 }
6 } ;
7
8 void main ( )
9 {

10 # pragma omp p a r a l l e l
11 {
12 s t a t i c OnceFlag f l a g = ATHENAMP_ONCE_INIT ;
13 OnceFunc tor func ;
14
15 athenamp : : once ( func , f l a g ) ;
16 }
17 }

Figure 5.27: How to use the once function

is not possible for function pointers - except by using the ugly workaround of casting
void-pointers. Another example has already been shown in Figure 5.11 in Section 5.2.2.
Another solution to the problem can be found in Section 6.3.

5.5.5 Pipeline

The work presented in this subsection was inspired by Mattson et al. [MSM04] and im-
plemented by Florian Bachmann as part of his diploma thesis. Pipelines are an important
building block of many parallel programs. The functional decomposition described in
Section 2.1.1 frequently results in a program structure resembling a pipeline. An example
are e. g. image filters that are applied one after another in different threads. A pipeline
comprises a linear sequence of stations. At each station, a function is carried out on a data
item, before it is handed down to the next station. As soon as the pipeline is populated
with work items, a speedup equivalent to the number of stations is possible.

The difficulties in implementing a multi-threaded pipeline lay in two fields: requirering
as little synchronization as possible in-between the stations, and making the pipeline as
usable as possible without requiring too much initialization work from the programmer.

We have tried to solve the first problem by using the shared queues described in Sec-
tion 5.5.3 for synchronization. However, as is described there, the shared queues are not
safe to use in general for OpenMP. Utilizing a lock-free queue as implemented e. g. in the
Intel Threading Building Blocks [Int07] would be a better solution for this problem and
is being investigated at the moment, although for this approach it becomes necessary to
rely on architecture specifics, which we have tried to avoid so far to increase portability.
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In order to solve the second problem, two different version of the pipeline were imple-
mented: a non-typesafe one using void pointers to exchange data in-between the pipeline
stations and a typesafe one using templates. The void-pointer version is very easy to
setup, the pipeline is able to connect the stations without intervention from the program-
mer. Since the types passed into the queues cannot be checked for correctness by the
compiler, this version is suboptimal. The typesafe pipeline solves this problem, but for
initialization the programmer must connect the stations himself. Because of these prob-
lems, the pipeline is not yet part of AthenaMP.

5.5.6 Thread-safe Containers

The work presented in this subsection was implemented by Florian Bachmann as well.
Thread safety is a concept every programmer of threaded programs must know about. As
has been described in Section 2.4.9, a function (or library in general) is thread-safe, if it
can be used from multiple threads simultaneously and still produces correct results. Also
in this section, we have shown that OpenMP makes far-reaching guarantees with regards
to the thread safety of the standard libraries.

Judging from those, one could conclude that e. g. C++’s Standard Template Library
(STL) is thread-safe, since it is a library and part of the language. Unfortunately, this is
not the case as of this writing. No C++ implementation we know of offers a thread-safe
STL. For this reason, access to e. g. the containers offered by the STL must be protected
from concurrent access. This can be done by the programmer, but of course it could also
be done automatically using the well-known Decorator pattern [GHJV95].

As an example of this technique, we have implemented decorators for three STL-
containers: vector, deque and list. They are called vector_ts, deque_ts and
list_ts, respectively. Each time a method is called on these containers, an implicit
lock is set to protect them from concurrent access. Note that there are better performing
options available to achieve this (e. g. by using lock-free data structures), but unfortu-
nately none of these are portable. Since the interface of these containers is the same as for
the original ones, we are not showing it here. Performance numbers do not make much
sense here either, since of course the original containers are faster in the sequential case,
yet when using them in a multi-threaded systems the same techniques as in the decorators
must be employed, resulting in exactly the same performance.

5.5.7 Thread Storage

The work presented in this subsection was implemented by Christopher Bolte. Having pri-
vate data in each thread is a typical requirement in multi-threaded programs. In OpenMP,
there are three ways to make data private: the private clause, declaring local variables
inside a parallel region, and the threadprivate directive. Neither of them is applica-
ble to an important use-case: when data are to be collected in a parallel region privately
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1 # i n c l u d e < i o s t r e a m >
2 # i n c l u d e <omp . h>
3 # i n c l u d e < v e c t o r >
4
5 c o n s t i n t N=10000000;
6 c o n s t i n t numthreads = 4 ;
7
8 void main ( )
9 {

10 s t d : : v e c t o r < i n t > A ( numthreads , 0 ) ;
11
12 double s t a r t = omp_get_wtime ( ) ;
13 # pragma omp p a r a l l e l f o r num_threads ( numthreads )
14 f o r ( i n t i = 0 ; i < N; ++ i ) {
15 ++A[ omp_get_thread_num ( ) ] ;
16 } / / end f o r
17 double end = omp_get_wtime ( ) ;
18
19 s t d : : c o u t << " Time ( s e c ) : " << end− s t a r t << s t d : : e n d l ;
20 }

Figure 5.28: An example showing false sharing

to each thread (with no protection from concurrent access provided), but need to be ac-
cessed either by a different thread later, or by the master thread after the parallel region
ends. This may be necessary e. g. when implementing reductions manually. None of the
techniques mentioned above allow this.

There is only one way to satisfy the use-case described above in OpenMP presently:
by allocating a shared array (or vector) of data. Each thread can then access its own data
in the array, while no protection from concurrent access is necessary. At a later point in
the program, these restrictions may be lifted and access from different threads may be
allowed, which is a very flexible and widely-deployed workaround. Unfortunately, it has
a problem as well: false sharing. This problem and our solution to it are explained in the
next paragraph.

Most shared memory architectures today are cache-coherent, meaning the caches on
all processors are kept consistent. Caches do not operate on a single byte basis, but the
smallest unit for a cache is a so-called cache line, which varies in size from architecture
to architecture. A typical cache line size at the time of this writing is 128 bytes. Operating
on cache-lines has significant disadvantages, as soon as many processors try to write to
different data on the same cache line repeatedly. Each write will invalidate the whole
cache line, which requires an update of the caches on the other processors. This results in
significant traffic on the memory bus. An example will make this clearer and is shown in
Figure 5.28.
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1 # i n c l u d e < i o s t r e a m >
2 # i n c l u d e <omp . h>
3 # i n c l u d e " misc / t h r e a d _ s t o r a g e . hpp "
4
5 c o n s t i n t N=10000000;
6 c o n s t i n t numthreads = 4 ;
7
8 void main ( )
9 {

10 athenamp : : t h r e a d _ s t o r a g e < i n t > A ( numthreads , 0 ) ;
11
12 double s t a r t = omp_get_wtime ( ) ;
13 # pragma omp p a r a l l e l f o r num_th reads ( numthreads )
14 f o r ( i n t i = 0 ; i < N; ++ i ) {
15 ++A ( ) ;
16 } / / end f o r
17 double end = omp_get_wtime ( ) ;
18
19 s t d : : c o u t << " Time ( s e c ) : " << end− s t a r t << s t d : : e n d l ;
20 }

Figure 5.29: An example showing no false sharing, because of the thread_storage

Vector A has merely four integer elements, therefore it fits in a single cache line on
most architectures. Each thread in the parallel region accesses exactly one element in the
vector repeatedly - thereby constantly invalidating the caches of the other threads, that
need to update their cache, before they can complete their operations. All threads share
the same cache line and this is why this performance mistake is called false sharing.

The use-case described at the beginning of this subsection (putting private variables
in a shared array, so they can be accessed from different threads later) has exactly this
problem. The canonical solution to it is padding. This means that after each element in
the array, a buffer is inserted, which pushes the next element into the next cache line. Of
course, many programmers do not know about false sharing and the workaround is also
a burden for them. For this reason, we have implemented a generic component called a
thread_storage that employs the solution automatically. In Figure 5.29, our example
program is shown again, this time with our generic component.

The only differences are in line 3 (where a different library is included), line 10 (where
we initialize the thread_storage instead of a simple vector) and line 15 (where each
thread accesses its part of the data structure). It is not even necessary to specify the thread
number with the thread_storage, as it defaults to omp_get_thread_num.

Although the difference in-between the programs with regards to code is tiny, the per-
formance difference is not: on our test system with 2 dual-core AMD Opteron processors
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the version using the thread_storage needed 0.11 seconds to finish the program,
while the version with false sharing took four times as long with 0.44 seconds.

The thread_storage is also able to solve the use-case sketched above: if data need
to be accessed by a different thread later, this can be done by specifying the appropriate
thread number to its operator() method. The thread storage itself provides no protec-
tion from concurrent access, though.

Since the component is generic, it is possible to store any type of data in it. It is
also possible to specify a different cache line size (default is 128 bytes). The amount of
padding to be inserted after each element is computed at compile time from the given
cache line size and the size of the stored data type using template metaprogramming.

5.6 Chapter Summary

This section summarizes our efforts to create powerful generic components for OpenMP
in a library called AthenaMP [Sue07a].

Locks are still an important building block for concurrent programming, but the locks
provided by most parallel programming systems are rather basic and error-prone. In Sec-
tion 5.1, we have presented higher-level classes that encapsulate the locking functionality
and provide additional value, in particular automatic lock hierarchy checking, automatic
setting of multiple locks in a safe order, as well as exception safety. We implemented our
ideas in a generic way that is decoupled from the parallel programming system used.

In Section 5.2, we have described and evaluated different implementation possibilities
for a thread-safe singleton with C++ and OpenMP, a work that has to our knowledge
never been attempted using these systems before. The smallest and fastest implementation
variant described there is the Meyers Singleton, which is unfortunately not yet safe to use
with many compilers.

In Section 5.3, we have described how to implement data-parallel patterns modelled af-
ter the Standard Template Library with OpenMP, namely modify_each, transmute,
combine, reduce, filter and prefix. Common characteristics were their iterator-
based interface, the dynamic selection of the best-suited implementation depending on the
iterator-type supplied, and their ability to nest inside each other. The patterns were de-
scribed in detail and with examples, along with performance measurements for a simple
benchmark and the game-like application OpenSteerDemo.

Efficient parallelization of irregular algorithms is an ambitious goal that often can be
tackled with task pools. We have presented several variants of task pools along with their
implementation in OpenMP in Section 5.4. To assess the performance of the variants, we
have implemented three irregular algorithms: quicksort, labyrinth-search and cholesky
factorization. Results show that the correct selection of a task pool variant has a signifi-
cant impact on the performance of an application. There was no universally best variant,
but the suitability depended on the pattern of accesses to the task pool. Applications that
generated many tasks and access the task pool frequently benefited from the usage of dis-
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tributed private queues. Applications that accessed the task pool infrequently, in contrast,
needed good load balancing, and therefore gained more from a central shared task queue.
This part is not yet included in AthenaMP.

The chapter closed with a summary of other patterns we have implemented, some of
which were too small to be described in their own section, some of which were im-
plemented by our students, and some had problems that prevented them from becom-
ing part of AthenaMP just yet. We have described the observer pattern (Section 5.5.1),
Reader-Writer locks (Section 5.5.2), shared queues (Section 5.5.3), the once-pattern (Sec-
tion 5.5.4), pipelines (Section 5.5.5), thread-safe containers (Section 5.5.6) and the thread-
storage (Section 5.5.7).





Chapter 6

A Specification Approach to Enhancing
the Power of OpenMP

While OpenMP is a relatively easy-to-use and powerful parallel programming system,
it has its problems as well. This chapter describes some of them, along with the solu-
tions we have investigated. Some problems are worked around, where others can only be
solved by extending the OpenMP-specification. Where the latter is necessary, we provide
a reference implementation in the OMPi research compiler [DGLT03], before proposing
the change to the OpenMP language committee. This work is part of our research on
enhancing OpenMP, see Figure 6.1.

We have found the first problem with OpenMP while implementing the task pools de-
scribed in Section 5.4: They are very hard to implement without busy waiting, a term that
is explained along with a solution to the problem in Section 6.1.

Another problem related to irregular algorithms is the lack of easy ways to stop all
threads from working in a parallel region, as soon as a solution is found. We address this
problem in Section 6.2 with a proposed extension to OpenMP. The (smaller) problem of
how to go to the end of the parallel region as soon as a solution is found is addressed there
as well.

In Section 6.3 I will shortly sketch some of the work done while serving in the OpenMP
language committee. This is all put into a single, short section because I can hardly be
considered the driving forces behind these efforts and have neither performance numbers
nor reference implementations for any of the proposals described there. A short summary
of what has been achieved closes the chapter in Section 6.4.

6.1 Avoidance of Busy Waiting

The work presented in this section includes material from a workshop-publication in
2004 [SL04] and a workshop-publication in 2006 [WSL06]. The implementation of the
task pools sketched in Section 5.4 was relatively straightforward with OpenMP, but we
encountered a problem for which OpenMP does not provide an adequate solution: Each
time a thread tries to extract a task but detects an empty task pool, it has to wait un-
til another thread inserts a new task. Korch and Rauber [KR04] solved the problem for
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Figure 6.1: Objectives, aims and contributions of this thesis (OpenMP specification)

• # pragma omp yield:
release the processor so that another thread can run on it

• #pragma omp sleepuntil (scalar_expression):
sleep until scalar_expression becomes true

Figure 6.2: Scheduling in a nutshell

their POSIX threads task pool implementations using condition variables, and the wait-
notify methods in Java, respectively.

Unfortunately, there is no mechanism in OpenMP to put a thread to sleep until an event
occurs or a condition becomes true. Another way to put this is: there is no point-to-point
synchronization available in OpenMP. In our task pool implementations, we therefore
had to fall back to busy waiting, which means polling a condition repeatedly, resulting
in unnecessary idle cycles. For this reason, we suggest OpenMP extensions to solve the
problem, which are sketched in Figure 6.2. These simple extensions can be used to avoid
busy waiting in a task pool, and are also helpful in other contexts.

The problem is explained on a broader scale in Section 6.1.1. Afterwards, Section 6.1.2
specifies our proposed solution, and Section 6.1.3 gives our reasons for the design. Fi-
nally, in Section 6.1.4, the specification is applied to our examples from Section 5.4.2,
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and some more ways to use the new functionality are shown. A reference implementation
of the suggested changes to the OpenMP functionality can be found in a special version
of the OMPi Compiler [DGLT03] that is available from the authors on request.

6.1.1 Problem Description

The problem of busy waiting manifests if a thread has to wait for a condition to become
true before it can continue. Most of the time, this condition is made true by a different
thread – therefore those two threads need a way to communicate without impacting all
other threads, which is called point-to-point synchronizationpoint-to-point synchroniza-
tion. In the case of our task pools, for instance, function tpool_get is supposed to
return an element from the pool, but if there is no element left, it has to wait for work to
become available. The most sparing way for the computing resources to implement this
waiting is to put the thread to sleep until the condition becomes true. Unfortunately, there
is no functionality available in OpenMP to support this, though.

As a valid workaround, the programmer may poll a condition repeatedly, thereby wast-
ing processor time. This approach is known as busy waiting or spinning. To give another
example, busy waiting is also required for pipelined algorithms and the pipeline com-
ponent described in Section 5.5.5, where a stage has to wait until a previous stage has
completed its work. Busy waiting is best avoided, especially when other threads are wait-
ing for the processor to become available, or when power consumption is an issue, e.g. in
embedded systems.

Novice OpenMP programmers may resort to using locks to solve the problem. In their
approach, the waiting thread tries to set an already set lock, and is put on hold as a result.
As soon as work is available, a different thread will unset the lock, thereby enabling the
waiting thread to continue. Although this approach often works, it is not compliant with
the OpenMP specification, because the lock is unset by a different thread than the owner
thread, which leads to unspecified behavior (see Section 3.2.2 for details on this common
mistake). Furthermore, there is no guarantee that a thread waiting on a lock is put to sleep
at all in OpenMP (spinning is also allowed), and therefore this approach is even more
flawed.

The problem described above cannot be solved in OpenMP satisfactory as of now,
since there are no directives for scheduling available. Therefore, Section 6.1.2 suggests
a possible addition to the OpenMP specification that makes the suggested workarounds
(busy waiting or non-compliant use of locks) obsolete. The problem has already been
noticed by Lu et al. [LHZ98], who suggested the introduction of condition variables (as
found in POSIX threads) in 1998. A different solution centered around point-to-point
synchronization is sketched by Ball and Bull [BB03]. Our solution tries to combine the
power of condition variables with the ease of use of OpenMP.

Let us make one more fact perfectly clear: The newly proposed functionality is not use-
ful for the common case in computing centers today, where one processor is exclusively
available for each thread. It is intended for the more general case that multiple threads are



108 A Specification Approach to Enhancing the Power of OpenMP

competing for the available processors. With the advent of multi-core CPUs in common
desktop systems and the expected shift to multi-threaded applications, we soon expect
this case to be the dominant one.

6.1.2 Specification

We suggest two new directives:

#pragma omp yield
Similar to the POSIX function sched_yield, this directive tells the scheduler to pick a
new thread to run on the current processor. If no new thread is available, it returns imme-
diately. The directive provides a simple way to pass on knowledge on what is important
and what not from the programmer to the runtime system and operating system scheduler.
As a second new directive, we propose:

#pragma omp sleepuntil (scalar_expression)
This directive puts the current thread to sleep until the specified scalar expression be-

comes true (non-zero). The expression is occasionally tested by the runtime system in the
background. Before each test, a flush is carried out automatically, to keep the tempo-
rary view of the thread consistent with memory. An implementation of the directive is not
required to wake up the sleeping thread immediately after the expression becomes true,
nor does it have to wake it up if the expression becomes true and becomes false again
shortly afterwards. Not all threads waiting on the same expression have to wake up at the
same time either. It is unspecified, how many times any side-effects in the evaluation of
the scalar expression occur.

6.1.3 Rationale

The yield directive is inspired by its POSIX counterpart, sched_yield. It offers an
easy to use way to influence the scheduling policies of the operating system. This can be
important when computing resources are sparse and the programmer wants to optimize
program throughput. An example of this would be calling the yield directive at the end
of every pipeline step in a pipelined application, to get values through the pipeline as fast
as possible.

We know of no scheduling primitive in any other parallel programming system that is
as powerful and easy to use as the proposed sleepuntil.This directive is as powerful
as condition variables, yet it lacks their difficult usage. The directive can be emulated
by wasting time in a loop, but this would be busy waiting and wasteful to the available
computing resources, as outlined in Section 6.1.1.

The proposed changes are fully backwards compatible to the existing OpenMP specifi-
cation, since no behavior of existing OpenMP functionality is altered in any way.
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Figure 6.3: Wall-clock times in seconds for task pool sq1 on oversubscribed system

6.1.4 Application

We have emphasized in Section 6.1.1 that there is no way for a parallel algorithm using
task pools to wait for a new element out of an otherwise empty pool, without constantly
polling the pool. There are two approaches to solve this problem with our newly proposed
directives. The first one calls the yield directive whenever there is no work in the pool,
which will put the thread to sleep if another thread is waiting for a processor to become
available. Chances are, that a different thread will produce work for the task pool. If there
is no other thread from the same application, a context switch may occur and a different
application will run on the processor, allowing for a higher throughput on the machine.
Finally, if there is no other thread waiting for the processor, the call to the yield directive
will just return and no harm is done. A second possible solution is the following:

#pragma omp s l e e p u n t i l ( ! t p o o l _ i s _ e m p t y ( poo l ) )

This solution offers a more fine-grained control over when the thread is supposed to
wake up again, as the thread will sleep until something has been put into the task pool
and not just an unspecified amount of time as with the yield solution. After wake-up,
it is still necessary to check if the task pool is not empty again, as no locking of any sort
is involved here. The thread might have been woken up at a time when the pool was not
empty, but when it tries to actually get a task from the pool, a different thread might have
already popped the task.

It is difficult to measure the impact of the proposed directives, as they are most useful
on fully loaded systems. We have therefore oversubscribed a system (Sun Fire E6900
with 8 processors) by starting our benchmark applications with 32 threads using the most
simple task pool sq1. The results are shown in Figure 6.3.

A different use case for both new directives is testing. When testing OpenMP compilers
or performing tests for OpenMP programs, it is often useful to force the scheduler into
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# pragma omp cancelregion:
request cancellation of parallel region

# pragma omp exitregion:
take current thread to end of parallel region

int omp_get_cancelled (void):
has the current region been cancelled ?

# pragma omp barrier oncancel:
execute scope if thread is cancelled in barrier

# pragma omp onbarriercancel:
execute scope if thread is cancelled in implicit barrier

Figure 6.4: Thread cancellation in a nutshell

certain timing behaviors that could not be tested otherwise (e. g. stalling one thread, while
all other members of the team go ahead and run into a barrier). This is not possible
with the present OpenMP specification (except with busy waiting again), and can be very
useful to test for hard to catch errors. An example to stall execution of one thread for 100
milliseconds is shown below:

double now = omp_get_wtime ( ) ; / * save c u r r e n t t i m e i n t o now * /
#pragma omp s l e e p u n t i l ( omp_get_wtime ( ) >= now + 0 . 1 )

This closes our work on avoiding the busy waiting problem, in the next section a solu-
tion for a different problem with OpenMP is introduced – the problem of how to cancel
work in a parallel region.

6.2 Cancelling Work in Parallel Regions

The work presented in this section is derived from a conference publication [SL06b].
It explores an important issue in developing irregular parallel algorithms with OpenMP,
which is the missing ability to cancel threads in a parallel region. While a (not completely
functional) workaround for the issue is suggested in Section 6.2.1, the main contribution
of this section is a proposal for new functionality to solve the problem in a convenient and
easy to use way on the language level. The suggested additions to OpenMP are previewed
in Figure 6.4. A working implementation can be found in a special version of the OMPi
compiler [DGLT03], which is available from the authors on request.
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1 #pragma omp p a r a l l e l
2 {
3 whi le ( ! e x i t _ f o u n d ) {
4 whi le ( ( t a s k = pop ( t a s k p o o l ) ) != NULL) && ( ! e x i t _ f o u n d ) ) {
5 mark ( l a b y r i n t h , t a s k ) ;
6 i f ( ! i n s p e c t _ f i e l d _ f o r _ e x i t ( t a s k ) ) / / i n s p e c t a l l n e i g h b o r s
7 push ( n e i g h b o r s ( t a s k ) , n e x t _ t a s k p o o l ) ; / / no e x i t was found
8 e l s e
9 e x i t _ f o u n d = t rue ; / / an e x i t was found

10 # pragma omp f l u s h ( e x i t _ f o u n d )
11 }
12 # pragma omp b a r r i e r
13 # pragma omp s i n g l e
14 {
15 t a s k p o o l = n e x t _ t a s k p o o l ; / / s w i t c h t h e t a s k p o o l s
16 n e x t _ t a s k p o o l = NULL;
17 } / / i m p l i c i t b a r r i e r ( i n c l u d e s f l u s h )
18 }
19 } / / end o f p a r a l l e l r e g i o n w i t h i m p l i c i t b a r r i e r

Figure 6.5: Parallel breadth first search using a flag for thread cancellation

As a running example, we use breadth-first search on a labyrinth. The algorithm and
its implementation are explained shortly in Section 6.2.1, where we will also explain why
thread cancellation is a problem. Furthermore, a first (but inconvenient) workaround for
the issue is presented in this section. Section 6.2.2 shortly introduces a few basic terms
often used when talking and writing about thread cancellation. An actual specification of
the new functionality to solve the problem on the language level is given in Section 6.2.3,
followed by the rationale for some of our design decisions in Section 6.2.4 and a short
discussion on implementation and performance issues in Section 6.2.5. Section 6.2.6 puts
the specification in perspective, by applying it to the labyrinth example.

6.2.1 Problem Description

In labyrinth-search, the objective is to find the shortest path through a labyrinth, from a
given entry to a single exit. This problem is not merely a theoretical one, but has practical
relevance e. g. for mapping electrical circuits on a chip. We consider a breadth-first search
algorithm, which is not necessarily the fastest choice, but is simple enough to serve as an
example here and to still include all the problems we want to illustrate. A very broad
sketch of the algorithm is presented in pseudocode in Figure 6.5.

The algorithm starts by putting the entry position of the labyrinth into the task pool (not
shown in the pseudocode). Afterwards, it spawns a parallel region (line 1). Then, one of
the threads takes a position out of the task pool (line 4), marks it on a map as processed
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(line 5), evaluates all neighbors by checking the four possible directions for walls (line
6), and checks if an exit is found on any of them. If no exit was found and the neighbor-
positions have not been evaluated before (this check is not shown in our pseudocode), the
neighbors are put into the task pool to be processed in the next step (line 7), possibly by
a different thread. If an exit is found, a flag is set that indicates this fact (line 9). We
need to be careful with the different positions in the task pool, since only positions with
the same distance to the start should be evaluated together, or else the breadth-first search
will degenerate. Therefore, only positions with the same distance to the entry are kept in
the task pool, while the neighbors are put into a different one (called next_taskpool).
As soon as the task pool is empty, both task pools are switched by a single thread, and
the computation proceeds with the former next_taskpool (lines 15-16). When the
algorithm depicted in Figure 6.5 is done, a single thread follows the marks set in the
labyrinth (line 5) from the exit point back to the entry point and identifies the shortest
way.

In the listing above, a flag is used to indicate when the threads in the parallel region
should finish their work, because an exit was found (indicated by exit_found == true).
We know of no other way in OpenMP to indicate that the threads should end their work
in a parallel region. In the next few paragraphs, we will point out the problems with
this approach. Section 6.2.3 will present an extension of OpenMP that leads to an easier
solution, which we will discuss in Section 6.2.6.

The Problem with Flags

When using flags to indicate that the parallel region should be aborted, great care has to
be taken with checking these flags by the programmer. In our example, it might happen
that one thread enters the while loop (line 3), finds an exit, sets the appropriate flag, and
afterwards hangs in the barrier (line 12), because another thread does not enter the next
iteration of the while loop at all, as the flag is indicating now that an exit was found! The
program will exhibit undefined behavior in this case (most likely a deadlock), because
in OpenMP the sequence of barrier constructs encountered must be the same for every
thread in the team. Thus, the code in Figure 6.5 is not correct, and it is not safe to use
without further adjustments that would make it even harder to read and explain!

Flags that indicate when a parallel region is to be cancelled give rise to yet another
problem: Due to the OpenMP memory model, the flags have to be updated with a flush
directive before their values are guaranteed to be up to date. This step is frequently missed
by inexperienced OpenMP programmers, as was shown in Section 3.2. The consequence
is similar as sketched above: the program will potentially deadlock, because the thread
which set the cancel flag has got its current correct value and will exit the loop, whereas
other threads might still use the old value and continue with it. This is not an issue in
our example, as there is a flush included in many OpenMP directives (e. g. in the implicit
barrier on line 17). Nevertheless, when the code is only slightly altered, the problem may
surface.
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Let us summarize the problems we have identified so far with thread cancellation in
OpenMP:

• there is no easy way to branch out of a parallel region, the only possible workaround
is to use flags

• it is difficult to work with flags indicating that a region should end, at least as soon
as barriers come into play

• if one forgets to flush a flag, a deadlock may arise

While we have presented a workaround for the main problem (flags manually set and
checked by the programmer), it is still cumbersome and error-prone. Therefore we will
present another possible solution in Section 6.2.3, based on a proposal to add thread can-
cellation to OpenMP. The proposal is also useful for the following common scenarios,
which could benefit from thread cancellation:

• a cancel button from a user interface was pressed

• a solution has been found in a speculative algorithm

But before we go further, we will review the terms used in this section in the next few
paragraphs.

6.2.2 Terms

We speak of forceful cancellation when a thread has the ability to cancel another thread
from the outside. The cancelled thread may get the opportunity to clean up after itself, yet
it does not have the power to decide when to be cancelled, nor to prevent cancellation at
all. Asynchronous cancellation in POSIX threads is an example of forceful cancellation.
Deferred cancellation is an important subcase of asynchronous cancellation, in which the
cancelled thread is not terminated immediately, but only at certain predefined cancellation
points. Deferred cancellation is supported in POSIX threads as well. With cooperative
cancellation, in contrast, a thread can only ask for the cancellation of another thread. The
cancelled thread has the opportunity to honor this request and cancel itself, to process the
request at a later time, or even to ignore it altogether. Java threads support cooperative
cancellation.

6.2.3 Specification

The following directives to support cooperative thread cancellation in OpenMP are pro-
posed:

#pragma omp cancelregion
This directive asks all threads in the team to stop their work and go to the end of the par-
allel region, where only the master thread will continue execution as usual. The emphasis
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1 #pragma omp b a r r i e r o n c a n c e l
2 {
3 / * T h i s code i s e x e c u t e d o n l y when t h e r e g i o n i s c a n c e l l e d b e f o r e t h e
4 * t h r e a d r e a c h e s t h e b a r r i e r or w h i l e i t i s w a i t i n g t h e r e .
5 * T h i s scope can be used t o f r e e t h r e a d r e s o u r c e s . * /
6
7 # pragma omp e x i t r e g i o n / * end t h e e x e c u t i o n o f t h e t h r e a d * /
8 }

Figure 6.6: Use of the oncancel clause

here is on asks. The threads in the team are not cancelled immediately, but merely an
internal cancel flag is set. The threads are not interrupted in any way and have to poll the
flag using one of the constructs described below. An exception is the thread that called
the directive: it is cancelled immediately by an implicit call of the exitregion direc-
tive (explained below). Invoking the cancelregion directive on an already cancelled
region has no effect except for the implicit call to exitregion. It is the task of the
programmer to check if the cancel flag has been set, using a new OpenMP runtime library
function:

int omp_get_cancelled (void)
This function returns 1 (true) if the cancellation of the enclosing parallel region was

requested, and 0 (false) otherwise.

#pragma omp exitregion
This directive is not only useful for thread cancellation, but can be invoked at any point

in a parallel region to immediately end the execution of the calling thread. This is accom-
plished by jumping to the end of the present parallel region, right into its closing implicit
barrier (which is of course honored).

There is a problem with the proposal so far: barriers. If a region containing barriers is
cancelled, at least one thread (the one calling the cancelregion directive) will never
reach that barrier. Without further adjustment, one or more of the other threads in the
region could hang in the barrier and never recover, since the barrier is not completed.

#pragma omp barrier oncancel
A solution to this problem is proposed in the form of the oncancel clause for the

barrier directive. A new scope is optionally added to the barrier directive by specifying
the oncancel clause. The commands in this scope are carried out only if the present
parallel region has been or is being cancelled while the thread is waiting on the barrier.
This can be seen in Figure 6.6.

It is now possible to use barriers in combination with thread cancellation. It remains
the task of the programmer to do the right thing when a thread waiting on a barrier is
cancelled, although most of the time he will just free the resources associated with the
thread and exit the parallel region afterwards (using the newly proposed exitregion
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1 #pragma omp f o r
2 f o r ( . . . ) {
3 / * f o r−l oop code * /
4 } / * i m p l i c i t b a r r i e r a t end o f f o r−l oop * /
5 #pragma omp o n b a r r i e r c a n c e l
6 {
7 / * T h i s code i s e x e c u t e d o n l y when t h e r e g i o n i s c a n c e l l e d b e f o r e t h e
8 * i m p l i c i t b a r r i e r or w h i l e t h e t h r e a d i s w a i t i n g t h e r e .
9 * T h i s scope can be used t o f r e e t h r e a d r e s o u r c e s . * /

10
11 # pragma omp e x i t r e g i o n / * end t h e e x e c u t i o n o f t h e t h r e a d * /
12 }

Figure 6.7: Use of the onbarriercancel directive

directive). Note that if the thread is not finalized with exitregion, it will hang in
the barrier again (or phrased differently: there is an implicit barrier at the end of the
oncancel clause). The reasons for this design decision are given in Section 6.2.4. The
oncancel code is carried out at most once per barrier and thread. Furthermore, if the
region is already cancelled when a thread enters the barrier, it will immediately proceed
with the oncancel code.

For implicit barriers (at the end of work-sharing constructs), a similar construct is pro-
posed:

#pragma omp onbarriercancel
The usage of this directive is similar to the oncancel clause suggested above, except

that onbarriercancel is a standalone construct and must be specified immediately
after the implicit barrier it references. This is shown in Figure 6.7.

If the directive is present, all commands in its scope are carried out if the region is
cancelled before or while the thread is waiting on the barrier. A nowait clause on
the referenced work-sharing construct and the onbarriercancel directive cannot be
specified together. The directive also cannot be specified after a combined parallel work-
sharing construct (e. g. #pragma omp parallel for), the reasons for this design
decision are also given in Section 6.2.4.

OpenMP allows for nested parallelism, i.e., when a member of a team inside a paral-
lel region encounters a new parallel construct, a new subteam is formed. Our proposed
extensions apply to nested parallelism as follows: Cancellation requests from inside the
subteam only cause members of the subteam to have their cancellation flag set. If another
member of the original team requests cancellation however, the cancellation flags for all
members of all subteams are set as well, although technically they are not in the same
team.
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6.2.4 Rationale

Some of the suggested changes could be emulated manually by the experienced OpenMP
programmer (such as keeping track of the cancel state of each thread). As has been
explained in Section 6.2.1, this is, however, an unnecessary burden and gets difficult when
barriers are involved at the latest. Therefore, our proposal introduces the new functionality
on a language level.

The exitregion directive can be seen as a convenient shortcut, but even without
thread cancellation, it is useful as soon as one gets into deeply nested functions inside
parallel regions. It allows the programmer to jump to the end of the parallel region im-
mediately, thereby potentially saving many lines of code of conditional statements. If
barriers are involved in the parallel region, care has to be taken with exitregion for
the reasons described in Section 6.2.3, or else the program might deadlock.

We have decided against forceful cancellation as in POSIX threads. On one hand,
asynchronous cancellation makes resource deallocation practically impossible. Since one
never knows when a thread is cancelled, there is no place to put cleanup code, not even
POSIX’s cleanup stacks are save to use with asynchronous cancellation. The concept
of having cancellation points and deferred cancellation in OpenMP, on the other hand,
seemed like overkill, as the amount of functions which are cancellation points is difficult
to handle for programmers. Therefore, this proposal suggests cooperative cancellation,
which can be found in a similar way e.g. in Java threads. Other good arguments for the
use of cooperative cancellation can be found in the Java documentation [Sun99].

A major problem with cooperative cancellation are the barrier constructs. The sug-
gested solution (oncancel clause, onbarriercancel directive) may seem like a lot
of overhead to cope with barriers, but the proposal is still easier and more natural than the
possible alternatives (such as disallowing barriers with thread cancellation, putting the
burden on the programmer to carefully work around them with flags, cancelling barriers
forcefully).

We have also decided against automatically including an exitregion directive at
the end of an oncancel or onbarriercancel scope. The main reason for this is
consistency, as automatically including the directive would cancel the threads waiting
on barriers forcefully. This would be inconsistent with the rest of the proposal, where
cooperative cancellation is employed. Another reason is nested parallelism. We have
specified in Section 6.2.3 that cancelling a parallel region will cancel all subregions as
well. But as a subregion might be presently doing uninterruptible work and may contain
barriers, the decision not to cancel on barriers automatically allows these subregions to
complete their work when interrupted from threads in the upper parallel region, while
properly shutting down when cancelled from inside their subregion.

The reason for not allowing the onbarriercancel directive after combined parallel
work-sharing constructs is that the two main reasons for applying the directive are not
valid after a combined directive. There is no need to take care of left over threads hanging
in the implicit barrier at the end of the combined construct, as these threads are exactly
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where they would be if an exitregion clause was specified. There is also no need to
clean up any resources, as the programmer must have already done this before the end of
the parallel region.

During our internal discussions on the topic of thread cancellation, we have worked out
a checklist that each and every proposal we came up with had to pass. This checklist and
some explanations of why our proposal passes it are spelled out here to make our design
decisions yet more clear:

1. Backwards Source Compatibility
Old code must run unchanged, when translated with a compiler that understands
thread cancellation. This is the case, as the behavior of existing OpenMP-constructs
is not changed, but only new clauses or directives are added.

2. Nested Parallelism
Each proposal must clearly state how thread cancellation and nested parallelism
play together. Our proposal does so, by declaring that when a parallel region is can-
celled, all parallel regions that were created by a thread from the cancelled region
have their cancel flag set as well.

3. Barriers
Each proposal must cope with the case that a region is cancelled while one or more
threads are waiting on a barrier (including implicit barriers), without producing
deadlocks. Our proposal does so with the introduction of the oncancel clause
and the onbarriercancel directive.

4. No Resource Leaks
The programmer must have the option to free any resources before a thread is can-
celled. Our proposal takes care of this by advocating cooperative cancellation,
where the programmer checks if a cancellation request has been put up and can
therefore deallocate/free all resources before exiting from a thread. Even resource
deallocation while waiting on barriers is allowed with the introduction of the new
oncancel clause and onbarriercancel directive.

5. C/C++/Fortran Compatibility
Each proposal must apply to all three supported languages of the OpenMP specifi-
cation. Although our proposal only spells out the C syntax of the proposed changes,
we believe that these are adaptable to C++ and Fortran as well.

6. Simplicity
Each proposal must be as simple and easy to understand as possible, staying in line
with the original OpenMP philosophy. Especially the barrier constructs made this a
difficult task, but we think to have met that goal with the introduction of only three
new directives, one new runtime library function and one new clause.



118 A Specification Approach to Enhancing the Power of OpenMP

6.2.5 Implementation and Performance Issues

We have used the OMPi compiler [DGLT03] as a testing ground for our implementation.
One of the benefits of employing cooperative cancellation is ease of implementation, and
most of our changes were straightforward:

• adaptation of the compiler frontend to the new directives and clauses

• addition of new runtime library functions for exitregion, cancelregion,
onbarriercancel and omp_get_cancelled

• a few more minor and locally restricted changes in the runtime library

The most difficult part was the implementation of exitregion, which must be able to
jump out of deeply nested functions to the end of the parallel region. This was solved
using setjmp and longjmp. The second difficulty was adapting the barriers to the
oncancel clause. A total rewrite of the runtime support function for barriers was re-
quired.

Great care was taken not to impact performance with our changes. Our choice of coop-
erative cancellation enabled us to implement thread cancellation without any measurable
impact on performance. None of our test applications showed any notable slowdown.
Neither did the OpenMP Microbenchmarks [BO01], which we used to measure perfor-
mance of our adapted barrier implementation.

6.2.6 Application

In this section, we apply the thread cancellation functionality to our labyrinth-search ex-
ample from Section 6.2.1. We had isolated three main problems there:

• there is no easy way to branch out of a parallel region, the only possible workaround
is to use flags

• it is difficult to work with flags indicating that a region should end, at least as soon
as barriers come into play

• if one forgets to flush a flag, a deadlock may arise

All these issues have been solved, as can be seen in Figure 6.8. Firstly, it is easy now
to branch out of a parallel region, as the cancelregion directive is a natural fit for
the problem (see line 9). Just one directive, and the code will branch to the end of the
parallel region on line 26. If barriers are involved like in our case, oncancel clauses
have to be added (line 12), as well as an onbarriercancel clause at the end of the
single work-sharing construct (line 21). The second problem is also solved, as there is
no need to work with programmer-managed flags to indicate that a parallel region should
be finished. Last but not least, the third issue has been made obsolete: there is no need
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1 #pragma omp p a r a l l e l
2 {
3 whi le ( ! o m p _ g e t _ c a n c e l l e d ( ) ) {
4 whi le ( ( t a s k = pop ( t a s k p o o l ) ) != NULL) && ! o m p _ g e t _ c a n c e l l e d ( ) ) {
5 mark ( l a b y r i n t h , t a s k ) ;
6 i f ( ! i n s p e c t _ f i e l d _ f o r _ e x i t ( t a s k ) ) / / i n s p e c t a l l n e i g h b o r s
7 push ( n e i g h b o r s ( t a s k ) , n e x t _ t a s k p o o l ) ; / / no e x i t was found
8 e l s e {
9 # pragma omp c a n c e l r e g i o n / / an e x i t was found

10 }
11 }
12 # pragma omp b a r r i e r o n c a n c e l
13 {
14 # pragma omp e x i t r e g i o n
15 }
16 # pragma omp s i n g l e
17 {
18 t a s k p o o l = n e x t _ t a s k p o o l ; / / s w i t c h t h e t a s k p o o l s
19 n e x t _ t a s k p o o l = NULL;
20 } / / i m p l i c i t b a r r i e r
21 # pragma omp o n b a r r i e r c a n c e l
22 {
23 # pragma omp e x i t r e g i o n
24 }
25 }
26 } / / end o f p a r a l l e l r e g i o n w i t h i m p l i c i t b a r r i e r

Figure 6.8: Parallel breadth first search using proposed language constructs
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anymore to flush any cancel flags, as they are managed automatically by the OpenMP
runtime system. We believe that this change alone will make errors less common in
irregular parallel applications.

6.3 Miscellaneous Changes to the OpenMP Specification

In this section, I highlight some enhancements to the OpenMP specification that I found
useful during the course of my work on AthenaMP, during my work teaching students,
and while contributing in the OpenMP language committee. Many of them have been
sketched earlier in this publication and are summarized here to have them all in one place.
I have no reference implementations for any of them and not all of them were originally
suggested by me, therefore this list is merely an indication of issues I have contributed to
in some way.

Controlling the Total Number of Threads: In one of my papers [SL04], I have paral-
lelized a recursive version of the quicksort algorithm using nested parallelism. As one
of the results of this paper I found out that there is no easy way to limit the number of
threads in an application using nested parallelism in OpenMP. This is necessary, because
creating a new active parallel region for each step in the recursion will oversubscribe
the machine quickly. Relying on omp_get_num_threads is pointless in this case,
because it only returns the number of threads in the current team and not the total num-
ber of threads in a program. For this reason, I have suggested the introduction of the
omp_get_num_all_threads function. Its proposed return value is the number of
threads created by OpenMP in the program, allowing their effective limitation, especially
in but not limited to recursive algorithms.

Lock Initialization with OMP_LOCK_INIT: I have shown in Section 5.2.2 that it would
make sense to initialize OpenMP locks not only by using the omp_init_lock function,
but also with a macro, e. g. OMP_LOCK_INIT. This is adapted from POSIX threads,
where PTHREAD_MUTEX_INITIALIZER can be used to initialize a lock. If this idea
was accepted into the standard, it would be possible to initialize static locks using static
variable initialization, a facility that is guaranteed to happen only once in OpenMP.

Declaring Static Member Variables threadprivate: In Section 5.2.2 I have shown that
there is benefit in allowing static member variables to be declared threadprivate. This
would be a very simple change in the specification and has already been implemented in
the Intel Compiler.

Flushing Reference Variables not allowed: Although it is not explicitly forbidden in
the specification to flush reference variables, most compilers do not allow it either. A very
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common use case for reference variables is to pass parameters to functions by reference,
either because they need to be changed inside the function or because the object is large
and copying it would include a performance penalty. This is a recommended practice in
many textbooks about C++. I have hit this problem when implementing the once func-
tionality touched in Section 5.2.2, where the second parameter to the once function is
passed by reference to const and I would like to flush it inside the function.

The specification only allows to flush pointers and not pointees. This is a problem in my
case, because reference variables are most likely implemented as pointers. The OpenMP
specification should therefore explicitly allow the special case of flushing reference vari-
ables to be more conforming to recommended C++ practices.

Allowing atomic assignments: Right now the specification is very restrictive when it
comes to what operations are allowed to be protected by the atomic directive. It is
allowed to update a storage location, yet it is not allowed to assign a value to it. This
leads to the grotesque situation sketched below:

i n t i = 0 ;

#pragma omp a t om ic
i += s o m e _ f u n c t i o n _ c a l l ( params ) ; / / t h i s i s a l l o w e d

#pragma omp a t om ic
i = 0 ; / / t h i s i s NOT a l l o w e d

Neither the OpenMP memory model, nor the memory models of the languages that
OpenMP is based on (C/C++/Fortran) make any guarantees about what kinds of assign-
ments are guaranteed to be atomic either. Therefore, you can e.g. increment a counter,
but you cannot reset it using atomic. As soon as a reset is required, the critical
directive needs to be employed. And since the critical directive and the atomic
directive cannot be intermixed to protect the same storage location, the atomic directive
cannot be used at all in this case. I have therefore proposed to allow assignments to be
protected by the atomic directive.

Thread Safety: The OpenMP specification makes very strong guarantees with regards
to thread safety (see Section 2.4.9). Unfortunately, most compilers and standard libraries
I am aware of currently do not satisfy those guarantees. Since many compiler vendors
do not even have control over the libraries used by their compilers, they are hesitant
to guarantee anything with regards to thread safety. This has lead to the situation that
users count on their libraries and base languages being thread-safe, yet most of them
are not in practice, potentially leading to broken programs on current compilers. I have
contributed many proposals to change this situation, e.g. by taking some guarantees out of
the specification to at least make it consistent with what is actually provided by compilers
today.
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Iterator Loops in C++: C++ programmers often use iterators in loops. As an example,
to add one to all elements in a vector, a C++ programmer will most likely write code
similar to this:

s t d : : v e c t o r : : i t e r a t o r i t ;
s t d : : v e c t o r : : i t e r a t o r f i r s t = c o n t a i n e r . b e g i n ( ) ;
s t d : : v e c t o r : : i t e r a t o r l a s t = c o n t a i n e r . end ( ) ;

f o r ( i t = f i r s t ; i t < l a s t ; ++ i t )
{

/ * use * i t here , e . g . : * /
* i t += 1 ;

}

Parallelizing this loop with OpenMP is presently not allowed, except by requiring the
programmer to rewrite it into a more C-ish form using simple integers as index variables.
Yet, this transformation can be done automatically by the compiler, e.g. by turning the
loop into this form:

i t e r a t o r i t ;
i t e r a t o r f i r s t = c o n t a i n e r . b e g i n ( ) ;
i t e r a t o r l a s t = c o n t a i n e r . end ( ) ;

#pragma omp p a r a l l e l f o r
f o r ( long omp_i =0; omp_i < s t d : : d i s t a n c e ( f i r s t , l a s t ) ; ++omp_i )
{

i t e r a t o r p r i v _ i t = f i r s t ;
s t d : : advance ( p r i v _ i t , omp_i ) ;

/ * use * p r i v _ i t here , e . g . : * /
* p r i v _ i t += 1 ;

}

It has therefore been proposed to allow the parallelization of iterator loops, at least for
random access iterators (although technically, the transformation sketched above works
for other iterator types as well, albeit slower). I have contributed to this issue in multiple
discussions, e.g. by describing the loop transformation shown above.

Runtime Scheduling: Another issue I have contributed to is the lack of support for
changing the scheduling policy for parallel loops at runtime. With this feature, it would
be possible to pass a parameter to e.g. the data-parallel patterns described in Section 5.3
and let the user decide which scheduling policy works best for the particular problem. As
an example, when the functors supplied to the patterns take a different amount of time
to execute depending on their input, dynamic or guided scheduling usually work best.



6.4 Chapter Summary 123

Currently, the user has to change the parameter inside the library or copy the code into
the program, where it can be modified.

Changing the scheduling policy at runtime is only possible with an environment vari-
able in OpenMP at the moment. This feature is mostly used as a debugging aid, because
one can only change the schedule of all loops (with a schedule set to runtime) at once.
Use of environment variables is also not practical for a library. Letting the schedule
clause take a user-supplied parameter (e. g. a string) would solve this problem and is
presently discussed in the OpenMP language committee.

Performing Operations Exactly Once: In Section 5.5.4 I have shown how to make sure
a function or a functor is called exactly once. An important usecase for this was initial-
ization of resources. Although the solution I have shown there is workable and makes the
life of the programmer easier, it is still not as easy as it could be if the functionality was
integrated into the language, e.g. like this:

#pragma omp once (A_NAME)
{

/ * p u t w h a t e v e r code you want c a r r i e d o u t once here * /
}

This solution requires no scaffolding, no extra functors or functions with parameters
and could be implemented by the compiler writers as described in Section 5.5.4. This
idea was initially suggested by me in a blog-article [Sue06c].

6.4 Chapter Summary

In this chapter, we have discussed our proposals for changing the OpenMP specification.
We started in Section 6.1 with a proposal to solve the busy waiting problem and there-
fore enable point-to-point synchronization in OpenMP. We suggested two new directives:
yield and sleepuntil. Both enable the programmer to influence the scheduling pro-
cess, and to put threads to sleep on demand. By using these directives, the need for busy
waiting is eliminated. The effectiveness of the approach was demonstrated by bench-
marking oversubscribed systems.

In Section 6.2 we have discussed a major problem with parallelizing irregular applica-
tions: lacking support for thread cancellation in OpenMP. A workaround and an extension
to OpenMP have been suggested, whose main part is the cancelregion directive that
enables cooperative cancellation. A quick way to exit a parallel region is provided for
each thread with the exitregion directive. The applicability of both directives has
been demonstrated using a breadth-first search example.

Section 6.3 of this chapter highlighted miscellaneous changes to the OpenMP spec-
ification I have proposed or worked on in the OpenMP language committee. The list
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includes changes for getting the total number of threads, lock initialization, threadpri-
vate static member variables, flushing of reference variables, atomic assignments, thread
safety, iterator loops, runtime scheduling and once functionality.



Chapter 7

Closing Remarks and Perspectives

This closing chapter of the thesis is divided into two parts. The first one (Section 7.1)
summarizes our research, findings and contributions. In the second part (Section 7.2),
possible directions for future work are described.

7.1 Thesis Summay

In this thesis, we have explored ways to make parallel programming easier for program-
mers. A quick overview over the objectives, aims and steps to pursue these aims can be
found (one last time) in Figure 7.1.

After a short introduction in Chapter 1, we took a look at foundations for this work
in Chapter 2. The chapter contained a broad introduction to the steps involved in par-
allelizing a program and some common problems while doing so. At the same time, it
explained our reasons to build a lot of material in this thesis on top of the parallel pro-
gramming system OpenMP, which already solves some of the problems sketched there.
A short overview over some common parallel programming systems in use today was
also provided, along with a short tutorial on OpenMP, which was meant to make the more
advanced parts of this thesis more understandable.

Chapter 3 started the main part of this thesis with an evaluation of the current state of the
art with regards to parallel programming. It described the results of a survey that has been
carried out among more than 250 parallel programmers and above all, highlighted what
parallel programming systems and languages are known and used among programmers.
C and MPI were the winners for our survey group. Although not statistically sound, the
survey allowed us to form eight hypotheses about these topics, which may be proven in
the future.

The chapter continued with an evaluation of fifteen frequently made mistakes with
OpenMP. The most frequently made mistake for our study was to not properly protect
shared variables from concurrent access. These mistakes have been gathered by observing
groups of students. We suspect that knowing about the mistakes alone makes them less
likely to occur, resulting in better programs that are easier to write in the first place. It
has also been shown that current compilers are no big help in diagnosing these errors, but
there are tools available (e. g. the Intel Thread Checker) that help at least for some. During
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Figure 7.1: Objectives, aims and contributions of this thesis

the course of this work, we frequently returned to these mistakes and presented solutions
to them. The chapter closed with a description of the Parawiki, our attempt to gather
knowledge and experiences in the field of parallel programming in one single location.

Chapter 4 described our efforts to make parallel programming easier by educating pro-
grammers. Its main contribution was a checklist for OpenMP programmers that was built
on the mistakes described in the previous chapters and our own experiences from using
OpenMP. In this chapter, we also described the Thinking Parallel Weblog, where we are
trying to educate programmers about topics related to parallel programming. More than
50.000 readers have read our articles there, which probably makes this resource the one
with the biggest impact from this thesis.

Chapter 5 has been the most technical part. It described a library called AthenaMP,
in which we have implemented several well-known patterns for parallel programming
as so-called generic components. Our contributions for this chapter included research
on and implementations of task pools (useful for implementing irregular algorithms),
generic locks, deadlock-avoidance functionality in locks, thread-safe singletons, several
data-parallel patterns and some more (shown in Figure 7.2). It was shown, how these
patterns/components raise the level of abstraction and safe the programmer using them
time and errors. Where applicable, performance metrics were also provided.

Chapter 6 was dedicated to enhancing the OpenMP specification on a language level.
Some problems we have encountered in earlier chapters could not be solved by a library
and therefore we have researched and implemented proposals to change the OpenMP
specification, which were described there. Our main contributions included a proposal to
avoid the need for busy waiting synchronization and a proposal to enable thread cancel-
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Figure 7.2: The AthenaMP library in a nutshell

lation in OpenMP. The chapter also included proposals for other issues, which are either
not as well-tested or not proposed by us originally.

7.2 Future Work

Every part of this thesis can be worked on and extended in future work. The topic of
finding the current state of the art was a mere snapshot at this point. Valuable insights
could be gained e. g. by repeating the Parasurvey described in Section 3.1 over time,
monitoring the changes in used and known systems. Since the survey has merely yielded
hypotheses at this point, the next step should be to turn it into a full-blown and statisti-
cally useful research study. The Parawiki and the list of frequently made mistakes can
easily be extended with more content to make them more useful, the same is true for our
programmers’ checklist and the Thinking Parallel weblog. Other steps to find out about
the state of the art today include monitoring the programs carried out on supercomputers.
Education of programmers is a wide area as well, other approaches to research this topic
further could be through online courses, tutorials or even e-learning, etc.
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The work in Chapter 5 can be extended in many ways. There are a multitude of other
parallel programming patterns available that would benefit programmers when turned into
generic components. A good example for this are the task pools presented in Section 5.4.
An outcome of this section was, that we have not yet found a single task pool that supports
both: a large number of tasks as created by e. g. quicksort (where it becomes important to
make the task pool operations as fast as possible) and a small number of tasks (where good
load balancing is key and the cost of individual task pool operations is not as important).
Work on an adaptive task pool that supports both cases has been started already and can be
expected to finish in the future. Moreover, the components already present in the library
can be tuned for more performance or for ease-of-use.

Extending the library to different parallel programming systems is also a much-needed
research direction. An example of how this could be achieved has been presented in
Section 5.1 already: the synchronization patterns shown there are not dependent on a
specific parallel programming system, but are generic by relying on a common interface.
Different patterns already implemented in this thesis could use this technique to become
independent of OpenMP, e. g. the task pools shown in Section 5.4 or the ThreadStorage
described in Section 5.5.7.

Changing the OpenMP specification is not a finished work as well, as the changes
proposed are not yet accepted into the specification - and will probably require some
rework before they are, depending on the feedback given by the language committee
members.
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