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Abstract: The non-stationary nonlinear Navier-Stokes equations describe the motion of a
viscous incompressible fluid flow for 0 < t 6 T in some bounded three-dimensional domain.
Up to now it is not known wether these equations are well-posed or not. Therefore we use
a particle method to develop a system of approximate equations. We show that this system
can be solved uniquely and globally in time and that its solution has a high degree of spatial
regularity. Moreover we prove that the system of approximate solutions has an accumulation
point satisfying the Navier-Stokes equations in a weak sense.
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1 Introduction

Let T > 0 be given and Ω ⊆ R3 be a bounded domain with a smooth compact boundary
∂Ω. In Ω we consider a non-stationary viscous incompressible fluid flow and assume that it
can be described by the Navier-Stokes equations

∂tv − ν∆v +∇p + v · ∇v = F ,

∇ · v = 0 , (N0)

v|∂Ω = 0 , v|t=0 = v0 .



These equations represent a system of nonlinear partial differential equations concerning
four unknown functions: the velocity vector v = (v1(t, x), v2(t, x), v3(t, x)) and the (scalar)
kinematic pressure function p = p(t, x) of the fluid at the time t ∈ (0, T ) in the point
x ∈ Ω. The constant ν > 0 (kinematic viscosity), the external force density F , and the
initial velocity v0 are given data. In (N0) ∂tv means the partial derivative with respect to
the time t, ∆ is the Laplace operator in R3, and ∇ = (∂1, ∂2, ∂3) the gradient, where ∂j = ∂

∂xj

denotes the partial derivative with respect to xj (j = 1, 2, 3). From the physical point of
view, the nonlinear convective term v · ∇v is a result of the total derivative of the velocity
field. Here the operator v · ∇ has to be applied to each component vj of v. In the fourth
equation ∇ · v = ∂1v1 + ∂2v2 + ∂3v3 defines the divergence of v, which vanishes due to the
incompressibility of the fluid. Finally, the no-slip boundary condition v|∂Ω = 0 expresses
that the fluid adheres to the boundary ∂Ω.

Let us assume that smooth data are given without any smallness assumptions. Then the
problem to construct a solution v, ∇p of (N0), which is uniquely determined and exists
globally in time, has not been solved in the 3-d case considered here (see for example [6], [7],
[8]). Consequently, there is no globally stable approximation scheme for (N0) up to now.

In the present paper we use particle methods to approximate the Navier-Stokes equations by
globally and uniquely solvable systems. To do so, let us consider, in particular, the nonlinear
convective term v · ∇v, which is responsable for the non-global existence of the solution.
From the physical point of view, this term results from the total (material) derivative of
the velocity field v, and therefore the use of total differences in connection with particle
methods seems to be reasonable. This leads to an approximation of the nonlinear term
by some kind of central total difference quotient, which does not destroy the conservation
of energy. The corresponding particle method and the properties of the trajectories are
studied in Section 2 and Section 3. Using an additional time delay, the resulting system
can be linearized. This requires a certain initial procedure to start, which is carried out in
Section 4. Constructing sufficiently regular solutions even at initial time t = 0, a non-local
compatibility condition arises, not checkable for given data. This condition can be satisfied,
however, by a construction of suitable initial velocities from a prescribed initial acceleration
vanishing on the boundary ∂Ω. In the following sections 5, 6, and 7 the approximate system
is investigated with energy methods: A Galerkin ansatz based on the eigenfunctions of the
Stokes operator −P∆ leads to a unique, for 0 ≤ t ≤ T globally existing, strongly H4 -
continuous regular solution. In Section 8 we prove that the Navier Stokes equations (N0)
can be re-obtained from this system in a certain sense, if the finite differences tend to zero:
In this case there always exists a subsequence of the solution sequence with limit function
v such that v is a weak solution of (N0). Finally, in Section 9 local convergence properties
of the whole sequence to the locally in time existing strong solution on the Navier Stokes
system (N0) are proved.

At this stage let us outline the notation: We use N := {1, 2, 3, . . .}, N0 := N ∪ {0}, and
denote by R the real numbers.



For x, y ∈ R3, x = (x1, x2, x3), y = (y1, y2, y3), let

x · y :=
3∑

i=1

xiyi

be the scalar product of x, y and |x| := √
x · x the Euclidian norm of x.

Throughout the paper, Ω denotes a bounded domain in R3 with smooth boundary ∂Ω at
least of class C2. We set Ω := Ω ∪ ∂Ω and Ωc := R3 \ Ω. For T > 0 let ΩT := (0, T ) × Ω.
By N(x) we mean the exterior unit normal with respect to Ω in x ∈ ∂Ω.

We use the same symbols for scalar-valued and vector-valued functions. The partial deriva-
tive of some functions v with respect to the i-th coordinate is denoted by ∂iv, for a multi-index
α ∈ N3

0 let ∂αv := ∂α1
1 ∂α2

2 ∂α3
3 v and

|α| :=
3∑

i=1

αi

the length of α.

Setting ∇ := (∂1, ∂2, ∂3) we denote by

div v := ∇ · v :=
3∑

i=1

∂ivi

the divergence of the function v = (v1, v2, v3), and ∇v is the 3× 3-matrix defined by (∂ivj)ji

.

For a domain A ⊆ Rn and m ∈ N0, let Cm(A) be the space of functions being m-times
continuously differentiable in A, and let Cm(A) denote the subspace of functions, which –
together with all their derivatives up to and including order m – can be extended continuously
onto ∂A. We set

C∞(A) :=
⋂

m∈N
Cm(A),

and define C∞
0 (A) to be the subspace of C∞(A) containing functions with a compact support

in A. The subspace C∞
0,σ(A) contains vector functions in C∞

0 (A), which are divergence free,
in addition.

If v : (t, x) → v(t, x) is a function defined in ΩT we denote by v(t) := v(t, ·) the function de-
fined by x → (v(t))(x) := v(t, x) in Ω, t ∈ (0, T ). For T1, T2 ∈ R, T1 < T2, and some Banach
space B let C([T2, T2], B) be the space of B-valued function being uniformly continuous in
[T1, T2].

By Lp(Ω) (1 ≤ p < ∞) we denote the usual (Lebesgue) Banach space, equipped with the
norm

||v||0,p :=




∫

Ω

|v(x)|pdx




1
p

.



The space L∞(Ω) with the norm

||v||∞ := ess sup
x∈Ω

|v(x)|

is the Banach space of all functions being essentially bounded in Ω. Setting p = 2, the space
L2(Ω) is a Hilbert space with the scalar product

(u, v) :=

∫

Ω

u(x) · v(x)dx

and the norm
||v|| := ||v||0,2 .

For m ∈ N0 and 1 ≤ p < ∞ let Hm,p(Ω) denote the Sobolev space of all functions v ∈ Lp(Ω)
having distributional derivatives up to and including the order m in Lp(Ω), and let

||v||m,p :=




m∑

|α|=0

||∂αv||p0,p




1
p

denote the corresponding norm. The spaces Hm,p(Ω) are Banach spaces, for p = 2 Hilbert
spaces, and we define in this case Hm(Ω) := Hm,2(Ω) and

||v||m := ||v||m,2 .

The closure of the space C∞
0 (Ω) with respect to the norm || · ||1 is defined by H

◦
1(Ω), and the

closure of the space C∞
0,σ(Ω) with respect to the norms || · || and || · ||1 by H0(Ω) and H1(Ω),

respectively.

The operator P : L2(Ω) → H0(Ω) denotes the orthogonal projection such that

L2(Ω) = H0(Ω)⊕ {v ∈ L2(Ω)| v = ∇p for some p ∈ H1(Ω)} . (1.1)

In H
◦
1(Ω) and H1(Ω) we also use

(∇u,∇v) :=
3∑

i,j=1

(∂jui, ∂jvi) , ||∇v|| := (∇v,∇v)
1
2

as a scalar product and a norm ([13]), respectively, as well as (P∆u, P∆v) and ||P∆v|| in
H2(Ω) ∩ H1(Ω) (see [4]).

In the notation of the function spaces, the symbol Ω is sometimes omitted: H1 := H1(Ω), . . .

Throughout the paper, for the estimates we often use the continuity of the imbedding

Hj,p(Ω) −→ Cm(Ω), (1.2)



valid for j,m ∈ N with j > m + 3
p
, and the compactness of the imbedding

Hm,r(Ω) −→ Hj,p(Ω), (1.3)

valid for 1 ≤ p, r < ∞ and j, m ∈ N0 with 0 ≤ j < m, 3
p

+ m > 3
r

+ j (see [1]).

Finally, by CΩ, CM , . . . we denote positive constants depending on the terms indicated as
subscripts. The values of theses constants may differ in different calculations.

Without loss of generality, throughout the paper we assume conservative external forces, i.e.
in the system (N0) we set F = 0.

2 An initial value problem

Let J ⊆ R denote a compact time interval and v : J × Ω → R3 a continuous velocity field.
Moreover, for all t ∈ J and x ∈ ∂Ω let v(t, x) = 0, and assume v(t) := v(t, ·) ∈ C l(Ω),
1 ≤ l ≤ 4.

Consider for fixed (s, xs) ∈ J × Ω in the time interval J the initial value problem

ẋ(t) = v(t, x(t)) ,
(2.4)

x(x) = xs .

Here the function t → x(t) = X(t, s, xs) denotes a solution of (2.4). It represents the
trajectory of a particle of the fluid, which at initial time t = s ∈ J is located in xs ∈ Ω.

Due to v(t, x) = 0 for (t, x) ∈ J × ∂Ω we find that for all (s, xs) ∈ J × Ω the solution x(t)
of (2.4) exists globally in J and is uniquely determined there (see [16]).

For all k = 0, 1, . . . , l and all multi-indices α with |α| = 0, 1, . . . , l, respectively, the partial
derivatives ∂k

s X, ∂t∂
k
s X, ∂αX and ∂t∂

αX exist and are continuous functions in J × J × Ω.

Due to the uniqueness of the solution, for the mappings

Xt,s :

{
Ω → Ω

x → Xt,s(x) := X(t, s, x)
(2.5)

the composition rule
Xt,s ◦Xs,r = Xt,r

holds true for all t, s, r ∈ J . In particular, we find that for all t, s ∈ J the mapping Xt,s is a
diffeomorphism in Ω, and we have

X−1
t,s = Xs,t . (2.6)



Using v(t, x) = 0 for (t, x) ∈ J × ∂Ω we obtain, moreover, Xt,x(Ω) = Ω for all t, s ∈ J .

Now consider Liouville’s differential equation

∂t det∇Xt,s(x) = −divX v(t,Xt,s(X)) det∇Xt,s(x)

concerning the functional determinant det∇Xt,s(x).

If we assume div v(t, x) = 0 for all (t, x) ∈ J × Ω, then it follows

det∇Xt,s(x) = det∇Xs,s(x) = det∇x = 1

for all t, s ∈ J and x ∈ Ω.

Throughout this paper we call this important property of the mappings Xt,s the conservation
of measure.

It implies, in particular, that for divergence-free vector functions v(t, ·) and all t, s, r ∈ J we
have

||v(t,Xs,r)||o,p = ||v(t)||o,p (2.7)

for all 1 ≤ p ≤ ∞.

Lemma 2.1. Let J ⊆ R denote a compact time interval, and let v ∈ C(J,Hm(Ω) ∩H1(Ω))
for m ∈ {3, 4} be given. Then we have

a1 := max
t∈J

||v(t)||∞ < ∞ , a2 := max
t∈J

||∇v(t)||∞ < ∞ ,

and for m = 4, in addition,

a3 := max
t∈J

||∇2v(t)||∞ < ∞ .

For every (s, xs) ∈ J × Ω there is a uniquely determined solution t → x(t) = X(t, s, xs) of
the initial value problem (2.4), which exists in the whole J . For the mappings Xt,s defined
by (2.5) for all t, s ∈ J we have the estimates

||Xt,s||∞ ≤ |t− s| a1 + cΩ , ||∇Xt,s||∞ ≤ e|t−s|a2 ,

and for m = 4, in addition,

||∇2Xt,s||∞ ≤ a3

a2

e|t−s|a2(e|t−s|a2 − 1) .

Here the constant cΩ depends only on Ω.

Proof: The existence of the norms ai follows from well-known imbedding theorems, as
well as the existence and uniqueness of the solution of (2.4): For l = m − 2 all the above



required properties of v are fulfilled, where the no-slip boundary condition and the vanishing
divergence (solenoidality) follow from v(t) ∈ H1(Ω) for all t ∈ J .

Because for every half norm || · ||h and every absolutely continuous function f : t → f(t)
the inequality d

dt
||f(t)||h ≤ ||f ′(t)||h holds true (see [15]), we obtain using the conservation

of measure of the mappings Xt,s for all t, s ∈ J the following estimates:

d

dt
||Xt,s||∞ ≤ ||∂tXt,s||∞ = ||v(t,Xt,s)||∞ = ||v(t)||∞ ,

d

dt
||∇Xt,s||∞ ≤ ||∂t∇Xt,s||∞ = ||∇Xv(t,Xt,s)∇Xt,s||∞

≤ ||∇v(t)||∞ · ||∇Xt,s||∞ ,

d

dt
||∇2Xt,s||∞ ≤ ||∂t∇2Xt,s||∞ = ||∇2

Xv(t,Xt,s)(∇Xt,s)
2 +∇Xv(t,Xt,s)∇2Xt,s||∞

≤ ||∇2v(t)||∞ · ||∇Xt,s||2∞ + ||∇v(t)||∞ · ||∇2Xt,s||∞ .

These are three differential inequalities concerning the L∞-norms of the derivatives of the
mappings Xt,s.

Due to Xs,s(xs) = xs, ∇Xs,s(xs) = I and ∇2Xs,s(xs) = 0, where I denotes the identity
matrix and 0 the zero tensor for all xs ∈ Ω, the corresponding initial values are also well
known, and the estimates follow in both cases s ≤ t and t ≤ s from Gronwall’s Lemma (see
[15]). ¤

3 Approximation of the convective term

Up to now it is not known wether the Navier-Stokes initial boundary value problem (N0)
in three dimensions is well-posed or not: We only know the existence and uniqueness of a
strong solution locally in time. So in the following we want to derive a suitable smoothing
procedure to end up with a modified Navier-Stokes-like system of equations, which can even
be solved globally in time.

This system of equations (Ñε) depends on a certain regularizing parameter ε > 0 in the
nonlinear term. In the following we shall develop this regularized system step by step.

To do so, let us first recall the physical deduction of the Navier-Stokes equations: The
nonlinear convective term v(t, x)·∇v(t, x), which is responsable for the non-global solvability
of these equations, results from the total derivative of the velocity field v(t, x). Thus a so-
called total or Lagrangian difference quotient could be used for an approximation of the
nonlinear convective term:



Definition 3.1. Let J ⊆ R denote a compact time interval and let v ∈ C(J,H3(Ω)∩H1(Ω))
be given. Let ε > 0 and let t, s, s + ε ∈ J, x ∈ Ω. Then the quotients

1

ε
{v(t,Xs+ε,s(x))− v(t, x)}

and
1

ε
{v(t, x)− v(t,Xs,s+ε(x))}

are well defined and denoted by an upwards and a backwards total (Lagrangian) difference
quotient, respectively. Summing up both quotients and dividing by two we obtain

1

2ε
{v(t, Xs+ε,s(x))− v(t,Xs,s+ε(x))}

and call it a central total (Lagrangian) difference quotient.

Remark 3.2. Using a mean value theorem, as ε → 0 all the above mentioned difference
quotients converge to v(s, x) · ∇v(t, x). For example, for the upwards quotient we find

1

ε
{v(t,Xs+ε,s(x))− v(t, x)} =

1

ε
{v(t,Xs+ε,s(x))− v(t,Xs,s(x))}

=
1

ε

s+ε∫

s

∂τXτ,s(x) · ∇v(t,Xτ,s(x))dτ

=
1

ε
·

s+ε∫

s

v(τ, Xτ,s(x)) · ∇v(t,Xτ,s(x))dτ ,

where the term on the right hand side tends to v(s, Xs,s(x))·∇v(t,Xs,s(x)) = v(s, x)·∇v(t, x)
as ε → 0.

It is well known (see [13]) that for vector functions u ∈ H1(Ω), w ∈ H
◦
1(Ω) the orthogonality

relation (u ·∇w, w) = 0 holds true. This important relation is used by Hopf (see [5]) to prove
the existence of weak solutions of the Navier-Stokes equations (N0) global in time. Using an
approximation of the convective term v(t, x) · ∇v(t, x) by a central total difference quotient,
we can prove the following analogue of this orthogonality relation:

Lemma 3.3. Under the assumptions of Definition 3.1, for the central total difference quo-
tient the following orthogonality relation holds true:

(
1

2ε
[v(t,Xs+ε,s(·))− v(t,Xs,s+ε(·))] , v(t, ·)

)
= 0 .

Proof: For all s1, s2 ∈ J the mappings Xs1,s2 are measure conserving, and by (2.6), we
obtain Xs1,s2 ◦ Xs2,s1(x) = x for all x ∈ Ω. Using the symmetry of the scalar product this



implies the orthogonality:

(v(t, Xs+ε,s(·))− v(t,Xs,s+ε(·)), v(t, ·))
= (v(t, Xs+ε,s(·)), v(t, ·))− (v(t,Xs,s+ε ◦Xs+ε,s(·)), v(t,Xs+ε,s(·)))
= 0 .

Remark 3.4. From Lemma 3.3 it follows that for sufficiently regular solutions of an ap-
proximate system regularized by central total differences the energy equation is satisfied. As
seen from the proof above, this important equation does not hold true if only a one-sided
total difference quotient is used to approximate the convective term.

To avoid fixed point considerations - it is clear that in general both the velocity field v as
well as the trajectories X are not known - in the following we use in addition a time delay:
The convective term v(t, x) · ∇v(t, x) is replaced by a central total difference quotient of the
form

1

2ε
{v(t, Xs+ε,s(x))− v(t,Xs,s+ε(x))}

with times s, s+ε < t. In these time points - using a step by step construction - the velocity
field is known, already.

Let us now formulate the regularized problem (Ñε) as follows:

Let T ∈ R (T > 0) and N ∈ N (N ≥ 2) be given. Setting ε := T
N

> 0 we define by tk = k ε
(k = 0,±1, . . . ,±N) an equidistant time grid on the compact time interval [−T, +T ].

Construct a velocity field v = (v1, v2, v3) and some pressure function p as solution of the
regularized Navier-Stokes initial boundary value problem

∂tv − ν∆v +∇p = −Zεv

(Ñε) ∇ · v = 0 (t, x) ∈ (0, T ]× Ω

v|∂Ω
= 0

∂tv|t=0 = f .

Here for (t, x) ∈ [tk, tk+1]× Ω and k = 0, 1, . . . , N − 1 we define

Zεv(t, x) := Zk
ε v(t, x)

:=
t− tk

ε
· 1

2ε
· {v(t,Xtk,tk−1

(x))− v(t,Xtk−1,tk(x))}+ (3.1)

tk+1 − t

ε
· 1

2ε
· {v(t,Xtk−1,tk−2

(x))− v(t,Xtk−2,tk−1
(x))} ,

where the mappings Xti,tj have to be constructed from the solution t → x(t) = X(t, s, xs) of
a corresponding initial value problem (2.4) with a velocity field already known.



Remark 3.5. To compute the solution v(t) of (Ñε) in the first subinterval [t0, t1] we have
to construct the mappings Xt0,t−1 and Xt−1,t−2 together with the inverse mappings X−1

t0,t−1
=

Xt−1,t0 and X−1
t−1,t−2

= Xt−2,t−1 , respectively. This construction will be carried out in the next
section.

Remark 3.6. The global construction step by step requires certain regularity properties of
the solution v(t) of (Ñε) on the subintervals Jk := [tk, tk+1] for k = 0, 1, . . . , N − 1). These
regularity properties are necessary to imply the unique solvability of the initial value problem
(2.4) in Jk and thus the existence of the mappings Xtk+1,tk , Xtk,tk−1

, which are needed for
the construction of the solution on subsequent time intervals.

This high degree of regularity - v ∈ C(Jk, H3(Ω)∩H1(Ω)) is sufficient, but v ∈ C(Jk, H2(Ω)
∩H1(Ω)) is not sufficient - leads to compatibility conditions arising on the boundary of the
time-space cylinder (see [4] and [14]), as usual for parabolic problems. In our case, due to the
stepwise construction, these conditions appear in the points (tk, x) with k = 0, 1, . . . , N − 1
and x ∈ ∂Ω.

The compatibility conditions for tk > 0 are fulfilled because of the continuity of the functions
Zεv(·, x) in [0, T ] for x ∈ Ω, and the condition at time t0 = 0 holds by a special initial
construction using an idea of Solonnikov: Instead of the initial velocity v(0) the initial
acceleration ∂tv(0) has to be prescribed in a suitable way. This construction is carried out
in the next section.

4 Construction of the initial data

Let T > 0, 2 ≤ N ∈ N, ε = T
N

> 0 and tk = k ε for k = 0,±1, . . . ,±N as fixed above in

problem (Ñε).

Let v ∈ C([−T, 0], Hm(Ω) ∩ H1(Ω)) for m ∈ {3, 4} be given. Then by Lemma 2.1 it follows
that the mapping

Xt−1,t−2 :

{
Ω → Ω

x → Xt−1,t−2(x) = X(−ε,−2ε, x)
(4.1)

defined by (2.5) exists, as well as its inverse

Xt−2,t−1 :

{
Ω → Ω

x → Xt−2,t−1(x) = X(−2ε,−ε, x) .
(4.2)

Denoting by P : L2(Ω) → H0(Ω) the orthogonal projection (see [13]) we consider in Ω the
stationary regularized Navier-Stokes boundary value problem

νP∆v0 − 1

2ε
P{v0 ◦Xt−1,T−2 − v0 ◦Xt−2,t−1} = Pf . (4.3)



Lemma 4.1. Let v ∈ C([−T, 0], Hm(Ω) ∩ H1(Ω)) for m ∈ {3, 4}, and let the mappings
Xt−1,t−2 , Xt−2,t−1 be constructed as above. Let f ∈ Hm−2(Ω) ∩ H1(Ω). Then there exists a
uniquely determined solution v0 ∈ Hm(Ω) ∩H1(Ω) of problem (4.3).

Proof: Let us set X := Xt−1,t−2 for abbreviation. Then from the linearity of the problem,
for the difference w0 := v1

0 − v2
0 of two solutions v1

0 and v2
0 it follows the identity

νP∆w0 − 1

2ε
P{w0 ◦X − w0 ◦X−1} = 0 .

Here we find (w0 ◦ X − w0 ◦ X−1, w0) = 0 due to the measure conserving property of the
mappings X, and the uniqueness follows from the inequality of Poincaré:

ν||w0||2 ≤ ν cΩ||∇w0||2 = 0 .

The existence of a solution v0 ∈ H1(Ω) can be obtained from the theory of the stationary
Navier-Stokes equations (see [13]), and for the regularity statement v0 ∈ Hm(Ω) we can use
the estimate of Cattabriga ([2]), which means that we only have to show ||v0 ◦X||m−2 < ∞,
||v0 ◦X−1||m−2 < ∞. This indeed follows from v0 ∈ H1(Ω) and the regularity properties of
the mappings X and X−1 following Lemma 2.1. ¤

Now using the function v prescribed above together with the solution v0 of the system (4.3) we
can define for example by linear interpolation some function ṽ ∈ C([−T, 0], Hm(Ω)∩H1(Ω))
for m ∈ {3, 4}:

ṽ(t) :=





v(t) t ∈ [−T,−ε]

for

1
ε
{(t + ε)v0 − t · v(−ε)} t ∈ [−ε, 0] .

(4.4)

Now we use the function ṽ and Lemma 2.1 to construct the mapping

Xt0,t−1 :

{
Ω → Ω

x → Xt0,t−1(x) = X(0,−ε, x)
(4.5)

together with its inverse

Xt−1,t0 :

{
Ω → Ω

x → Xt−1,t0(x) = X(−ε, 0, x) .
(4.6)

All the mappings (4.1), (4.2), (4.5) and (4.6) constructed in this way are used in the next
section where we start the investigation of problem (Ñε) on the first subinterval [t0, t1]. Due
to Lemma 4.1 we can replace the initial condition ∂tv|t=0 = f from problem (Ñε) (note we
assume f ∈ Hm−2(Ω) ∩ H1(Ω) with m ∈ {3, 4}) by the initial condition v|t=0 = v0 (in this
case we have v0 ∈ Hm(Ω) ∩H1(Ω)).

Moreover, the above construction implies that the initial acceleration ∂tv(0) = f is contained
in H1(Ω), if the differential equations still hold for t = 0. This ensures - as we shall see later
on - that the important compatibility condition at time t = 0 is satisfied.



5 Strongly H2-continuous solutions

We consider the problem (Ñε) restricted to t ∈ [t0, t1] = [0, ε] in the following form:

Find a velocity field v = (v1, v2, v3) and some pressure function p as a solution of the
regularized equations

∂tv − ν∆v +∇p = −Z0
ε v

(N0
ε ) ∇ · v = 0 (t, x) ∈ (0, ε]× Ω

v|∂Ω
= 0

v|t=0 = v0 .

Here for (t, x) ∈ [0, ε]× Ω we define

Z0
ε v(t, x) :=

t

2ε2
{v(t,X(x))− v(t,X−1(x))}+

ε− t

2ε2
{v(t, Y (x))− v(t, Y −1(x))} (5.1)

with some given measure conserving homomorphisms X : Ω → Ω and Y : Ω → Ω. The
function v0 ∈ H2(Ω) ∩H1(Ω) is a given initial velocity distribution.

In this section we show the existence of a solution t → v(t) := v(t, ·) to the linear system (N0
ε )

being strongly H2-continuous in [0, ε]. This solution is uniquely determined and satisfies the
energy equation (Theorem 5.7). Similar to [3] we prove the existence with help of a Galerkin
ansatz based on the eigenfunctions of the Stokes operator −P∆. This is done in the following
way: First we derive suitable a-priori estimates for the Galerkin approximations and then
we use compactness arguments to proceed to the limit and prove the existence of a solution.

(a) Galerkin ansatz

The Stokes operator −P∆ : H2(Ω)∩H1(Ω) → H0(Ω) defines in H1(Ω) a symmetric positive
definite operator with compact inverse (−P∆)−1 : H0(Ω) → H0(Ω) (see [12]). Hence there
is a sequence (λi)i of positive eigenvalues satisfying 0 < λ1 ≤ λ2 ≤ . . . ≤ λn → ∞, and the
corresponding sequence (ei)i of eigenfunctions represents a complete orthonormal system in
H0(Ω). Due to the regularity of the boundary (∂Ω ∈ C4) we have ei ∈ H4(Ω) for all i ∈ N
(see [13]).

Now for i = 1, 2, . . . , n (n ∈ N) and t > 0 we consider the following initial value problem for
ordinary differential equations:

c′in(t) = −νλicin(t)− 1
2ε2

n∑

j=1

cjn(t) · (t{ej ◦X − ej ◦X−1}+ (ε− t){ej ◦ Y − ej ◦ Y −1}, ei) ,

cin(0) = (v0, ei) .

This is a linear system for the functions cin, and it is globally and uniquely solvable with
cin ∈ C∞([0, ε]) for all i = 1, . . . , n.



The function

vn :





[0, ε]× Ω → R3

(t, x) → vn(t, x) :=
n∑

i=1

cin(t) · ei(x)
(5.2)

is denoted as Galerkin approximation of order n for the solution v of the problem (N0
ε ).

Due to the construction, for the functions vn(t) := vn(t, ·) for all t ∈ (0, ε] and all i =
1, 2, . . . , n the following equations hold true:

(∂tv
n(t), ei)− ν(P∆vn(t), ei) = −(Z0

ε v
n(t), ei) , (5.3)

vn(0) =
n∑

j=1

(v0, ej)ej . (5.4)

(b) Estimates of the Galerkin approximations

All estimates of the Galerkin approximations vn(t) can be obtained from the following two
lemmata and are valid – depending on the regularity of the data – uniformly for t ∈ [0, ε] or
only for t ∈ (0, ε].

Lemma 5.1. Let k, n ∈ N. Then for the Galerkin approximation vn(t) defined for t ∈ [0, ε]
by (5.2) the following identities hold true:

d

dt
||vn(t)||2 + 2ν ||∇vn(t)||2 = 0 ,

d

dt
||∂k

t vn(t)||2 + 2ν ||∇∂k
t vn(t)||2 = −2(∂k

t Z0
ε v

n(t), ∂k
t vn(t))

(5.5)

= − k

ε2
(∂k−1

t vn(t,X)− ∂k−1
t vn(t,X−1)

−∂k−1
t vn(t, Y ) + ∂k−1

t vn(t, Y −1), ∂k
t vn(t)) ,

d

dt
||∇vn(t)||2 + 2ν ||P∆vn(t)||2 = −2(Z0

ε v
n(t),−P∆vn(t)) ,

d

dt
||∇∂k

t vn(t)||2 + 2ν ||P∆∂k
t vn(t)||2 = −2(∂k

t Z0
ε v

n(t),−P∆∂k
t vn(t))

= −2(Z0
ε ∂

k
t vn(t),−P∆∂k

t vn(t)) (5.6)

− k

ε2
(∂k−1

t vn(t,X)− ∂k−1
t vn(t,X−1)

−∂k−1
t vn(t, Y ) + ∂k−1

t vn(t, Y −1),−P∆∂k
t vn(t)) .



Proof: Let k ≥ 0. Then the first sequence of identities in the second line of (5.5) and
(5.6), respectively, follows from differentiating the equation (5.3) k times with respect to t,
multiplying the result scalar by ∂k

t cin(t) and λi∂
k
t cin(t), respectively, and afterwards summing

up for i = 1, . . . , n. Concerning the first line of (5.5) we use in addition the orthogonality
(Z0

ε v
n(t), vn(t)) = 0, which follows from the measure conserving property of the mappings

X, Y .

The second sequence of identities is obtained from

∂k
t Z0

ε v
n(t) = ∂k−1

t

(
Z0

ε ∂tv
n(t) +

1

2ε2
{vn(t,X)− vn(t,X−1)− vn(t, Y ) + vn(t, Y −1)}

)

= . . .
(5.7)

= Z0
ε ∂

k
t vn(t) +

k

2ε2
·

{∂k−1
t vn(t,X)− ∂k−1

t vn(t,X−1)− ∂k−1
t vn(t, Y ) + ∂k−1

t vn(t, Y −1)} .

Estimating the right hand sides in (5.5) and (5.6) using the inequalities of Hölder, Poincaré
und Young (see [7]), the measure conserving property of the mappings X and Y , and, finally,
the absorbtion of terms arising on both sides of the inequalities, the following corollary can
be proved:

Corollary 5.2. Let k, n ∈ N. Then the Galerkin approximations vn(t) defined for t ∈ [0, ε]
by (5.2) satisfy the following differential inequalities:

d

dt
||∂k

t vn(t)||2 + ν ||∇∂k
t vn(t)||2 ≤ cΩ,ν,ε,k ||∂k−1

t vn(t)||2 , (5.8)

d

dt
||∇vn(t)||2 + ν ||P∆vn(t)||2 ≤ cν,ε ||vn(t)||2 ,

(5.9)
d

dt
||∇∂k

t vn(t)||2 + ν ||P∆∂k
t vn(t)||2 ≤ cν,ε,k (||∂k−1

t vn(t)||2 + ||∂k
t vn(t)||2) .

Finally, from the Galerkin equations (5.3) we quote immediately:

Lemma 5.3. Let k, n ∈ N. Then for the Galerkin approximation vn(t) defined by (5.2) for
t ∈ [0, ε] the following inequalities hold true:

||∂tv
n(t)||2 ≤ cν,ε (||P∆vn(t)||2 + ||vn(t)||2) ,

(5.10)
||∂k+1

t vn(t)||2 ≤ cν,ε,k (||P∆∂k
t vn(t)||2 + ||∂k

t vn(t)||+ ||∂k−1
t vn(t)||2) ,

||P∆vn(t)||2 ≤ cν,ε (||∂tv
n(t)||2 + ||vn(t)||2) ,

(5.11)
||P∆∂k

t vn(t)||2 ≤ cν,ε,k (||∂k+1
t vn(t)||2 + ||∂k

t vn(t)||2 + ||∂k−1
t vn(t)||2) .



Now we are ready to prove the above mentioned a-priori estimates for the Galerkin approx-
imations vn(t) for t ∈ [0, ε]:

Lemma 5.4. Let n ∈ N. Then the Galerkin approximation vn(t) defined by (5.2) satisfies
for all t ∈ [0, ε] the following a-priori estimates:

||vn(t)||2 + 2ν

t∫

0

||∇vn(τ)||2dτ = ||vn(0)||2 ≤ ||v0||2 , (5.12)

||∇vn(t)||2 + ν

t∫

0

||P∆vn(τ)||2dτ ≤ ||∇vn(0)||2 + cν,ε ||v0||2 t

(5.13)
≤ ||∇v0||2 + cν,ε ||v0||2 t ,

||∂tv
n(t)||2 + ν

t∫

0

||∇∂τv
n(τ)||2dτ ≤ ||∂tv

n(0)||2 + cΩ,ν,ε ||v0||2 t , (5.14)

||∂tv
n(0)||2 ≤ cΩ,ν,ε ||P∆v0||2 , (5.15)

||P∆vn(t)||2 ≤ cΩ,ν,ε ||P∆v0||2 . (5.16)

Here all appearing constants are independent of n.

Proof: The estimates (5.12), (5.13), (5.14) follow by integration from (5.5), (5.9) and (5.8).
The estimates (5.15) and (5.16) can be obtained from (5.10) and (5.11), using the estimate
of Cattabriga in the form

||w||2 ≤ cΩ ||P∆w||2 , (5.17)

valid for functions w ∈ H2(Ω) ∩H1(Ω) (compare [2] and [4]). ¤

In Lemma 5.4 all norm estimates of the Galerkin approximations vn(t), which are valid
uniformly for all t ∈ [0, ε], are listed. Due to the regularity of the initial value v0 ∈ H2(Ω) ∩
H1(Ω), higher order estimates uniformly in time cannot be expected.

Nevertheless, higher order regularity statements about the solution of (N0
ε ) can be proved,

if norm estimates for higher order derivatives of the functions vn(t) independent of n are
available. This is only possible for t > 0 or uniformly for t ∈ [α, ε] with α > 0:



Lemma 5.5. Let α ∈ R with 0 < α < ε, and let n ∈ N, k ∈ N0. Then for the Galerkin
approximation vn(t) defined by (5.2) the following estimates hold true for all t ∈ [α, ε]:

||∂k
t vn(t)||2 + 2ν

t∫

α

||∇∂k
τ vn(τ)||2dτ ≤ K1 , (5.18)

||∇∂k
t vn(t)||2 + ν

t∫

α

||P∆∂k
τ vn(τ)||2dτ ≤ K2 , (5.19)

||P∆∂k
t vn(t)||2 ≤ K3 . (5.20)

Here the constants K1, K2, K3 depend only on α, ε, ν, k, Ω and on the H2-Norm of the initial
value v0, but not on n.

The proof follows as in [3] by combining mean value theorems with methods of bootstrapping
to increase the regularity.

At the end of this subsection we shall prove a continuity statement which is needed for later
use. Taking into account (5.12) and (5.13), we find that for the function vn(t) the inequalities

lim sup
t↘0

||vn(t)|| ≤ ||vn(0)||

and
lim sup

t↘0
||∇vn(t)|| ≤ ||∇vn(0)|| .

hold true, respectively. A corresponding statement for the norm ||P∆vn(t)|| can be obtained
from the next lemma:

Lemma 5.6. Let n ∈ N. Then for the Galerkin approximation vn(t) defined by (5.2) for all
t ∈ [0, ε] the following inequality holds:

||P∆vn(t)||2 +
2

ν

t∫

0

||∇∂τv
n(τ)||2dτ

(5.21)

≤ ||P∆vn(0)||2 + Kt + cε,ν (vn(τ, Y (·))− vn(τ, Y −1(·)), P∆vn(τ, ·))
∣∣∣∣∣

τ = t

τ = 0
.

Here the constant K depends only on Ω, ε, ν and the H2-norm of the initial value v0.



Proof: From (5.3) we obtain by multiplication with λi c
′
in(t), by summing up for i = 1, . . . , n

and by integration from 0 to t the identity

t∫

0

||∇∂τv
n(τ)||2dτ +

ν

2
(||P∆vn(t)||2 − ||P∆vn(0)||2) = −

t∫

0

(Z0
ε v

n(τ),−P∆∂τv
n(τ))dτ .

Using partial integration and (5.7) it follows for the right hand side

(Z0
ε v

n(τ), P∆vn(τ))

∣∣∣∣∣
τ = t

τ = 0
+

t∫

0

(Z0
ε ∂τv

n(τ),−P∆vn(τ))dτ

+
1

2ε2

t∫

0

(vn(τ, X)− vn(τ,X−1)− vn(τ, Y )

+ vn(τ, Y −1),−P∆vn(τ))dτ =:
3∑

i=1

si .

Finally, the terms s1, s2, s3 can be estimated using (5.14) and (5.16):

s1 ≤ Kt + cε(v
n(τ, Y )− vn(τ, Y −1), P∆vn(τ))

∣∣∣∣∣
τ = t

τ = 0
,

s2 ≤ Kt ,

s3 ≤ Kt .

(c) Existence of the solution

Based on the estimates of the Galerkin approximations vn independent of n ∈ N we can
prove a first main result:

Theorem 5.7. Let v0 ∈ H2(Ω) ∩ H1(Ω) and let X, Y be measure conserving homomor-
phisms in Ω. Then there is a uniquely determined function v ∈ C([0, ε], H2(Ω) ∩ H1(Ω))
with ∂tv ∈ C([0, ε],H0(Ω)) and a uniquely determined function ∇p ∈ C([0, ε], L2(Ω)) as
a solution of the equations (N0

ε ). The function v(t) satisfies for all t ∈ [0, ε] the energy
equation

||v(t)||2 + 2ν

t∫

0

||∇v(τ)||2dτ = ||v0||2 (5.22)

and the estimates

||∇v(t)||2 + ν

t∫

0

||P∆v(τ)||2dτ ≤ ||∇v0||2 + cν,ε||v0||2 t , (5.23)

||∂tv(t)||2 + ν

t∫

0

||∇∂τv(τ)||2dτ ≤ ||∂tv(0)||2 + cΩ,ν,ε||v0||2 t . (5.24)



Moreover, for all t ∈ [α, ε], 0 < α < ε, the estimates (5.18), (5.19) and (5.20)also hold true,
where here the constants on the right hand sides, in particular, depend on α.

Proof: Let vn, n ∈ N the Galerkin approximation defined by (5.2). Then we obtain from
the estimates of Lemma 5.5 using the theorem of Arzela and Ascoli that for every k ∈ N0

the sequence (∂k
t vn)n is relatively compact in C([α, ε],H1(Ω)), 0 < α < ε.

Using Lemma 5.4, in the case k = 0 even α = 0 is allowed. By subsequently (k = 0, 1, . . .)
extracting subsequences we finally obtain a subsequence, denoted by (vñ)ñ, and a function
ṽ ∈ C([0, ε],H1(Ω)) with ∂k

t ṽ ∈ C([α, ε],H1(Ω)) for all k ∈ N, satisfying

sup
[0,ε]

||∇vñ(t)−∇ṽ(t)|| ñ→∞−−→ 0

and

sup
[α,ε]

||∇∂k
t vñ(t)−∇∂k

t ṽ(t)|| ñ→∞−−→ 0

for every α with 0 < α < ε and every k ∈ N.

Using the properties of weakly convergent subsequences in Sobolev spaces we find that every
bound being independent of n of the functions vn(t) from Lemma 5.4 and Lemma 5.5 also
holds true for the limit function ṽ(t), as well as the estimate (5.21). This means that ṽ is a
solution of the equations (N0

ε ) such that the equation

∂τ ṽ − νP∆ṽ = −PZ0
ε ṽ (5.25)

is satisfied as identity in L2(0, t,H0(Ω)) for all 0 < t < ε with

lim
t↘0

||∇ṽ(t)−∇v0|| = 0 . (5.26)

Due to the measure conserving property of the mappings X, Y we find (Z0
ε ṽ(t), ṽ(t)) = 0

for all t ∈ [0, ε], and the energy equation follows from (5.25).

Moreover, the existence of a uniquely determined pressure gradient ∇p̃(t) is obtained from
the projection theorem (compare [13]).

All the properties derived for the function ṽ are also valid for any other accumulation point,
which is obtained by extracting some other different subsequences. Since, due to the linearity
of the equations (N0

ε ), such solutions are uniquely determined there is only one accumulation
point v = ṽ, and the whole sequence of Galerkin approximations vn converges to v in the
corresponding spaces.

Thus for the proof of the theorem it remains to show that the regularity v ∈ C([0, ε], H2(Ω))
holds true. Using the estimate of Cattabriga ([2]), for any function w ∈ H2(Ω)∩H1(Ω) (∂Ω ∈
C2) we have

||w||2 ≤ cΩ ||P∆w|| . (5.27)



From (5.19) we obtain by the Cauchy-Schwarz inequality the strong H2-continuity of the
function t → v(t) for every t > 0:

||P∆(t + h)− P∆v(t)||2 ≤ h

t+h∫

t

||P∆∂τv(τ)||2dτ ≤ hK2 (h > 0) .

To prove the strong L2-continuity of the function t → P∆v(t) at time t = 0 we firstly show
the weak L2-continuity of this function at t = 0 as in ([3]).

From here we quote (see [11])

||P∆v0|| ≤ lim inf
t↘0

||P∆v(t)|| . (5.28)

On the other hand, from (5.21) we obtain

lim sup
t↘0

||P∆v(t)|| ≤ ||P∆v0||, (5.29)

due to ||P∆vn(0)|| ≤ ||P∆v0|| for n ∈ N and the strong L2-continuity of the functions
t → v(t, Y ) and t → v(t, Y −1).

From the continuity of the function t → ||P∆v(t)|| in t = 0 due to (5.28) and (5.29) finally
it follows v ∈ C([0, ε], H2(Ω)), and the theorem is proved. ¤

6 Solutions compatible at initial time t = 0

In Section 4 we proved the existence and uniqueness of a solution v ∈ C([0, ε], H2(Ω)∩H1(Ω))
with ∂tv ∈ C([0, ε], H0(Ω)) of the problem (N0

ε ).

In this case we assumed the regularity v0 ∈ H2(Ω) ∩ H1(Ω) for the initial value and, in
addition, the mappings X,Y to be measure conserving homomorphisms in Ω.

Next we want to show that the solution v together with its time derivatives ∂k
t v(k ∈ N) of

general order is contained in C([0, ε], Hm(Ω) ∩ H1(Ω)) for m ∈ {3, 4}, if, in addition, the
mappings X,Y are Cm−2-diffeomorphisms in Ω.

This statement follows from the estimate of Cattabriga ([2]), which can be applied in Ω for
t > 0 and k ∈ N0 to the system

P∆∂k
t v(t) =

1

ν
P{∂k+1

t v(t) + ∂k
t Z0

ε v(t)} =: Rk(t). (6.1)



After that we shall investigate a necessary and sufficient condition for v ∈ C([0, ε], Hm(Ω)
∩ H1(Ω)) with m ∈ {3, 4}. In particular, we shall see that the assumption v0 ∈ Hm(Ω) ∩
H1(Ω) without further requirements is not sufficient for the strong Hm-continuity of the
solution t → v(t) of (N0

ε ) uniformly in time (compare [14]).

(a) H4-regularity for t > 0

The next lemma shows regularity properties of the solution v(t) from Theorem 5.7 for t > 0.
Here no additional assumptions on the initial value v0 are necessary.

Lemma 6.1. Let the assumptions of Theorem 5.7 be satisfied, and suppose, in addition, that
the mappings in (N0

ε ) satisfy X, X−1, Y, Y −1 ∈ Cm−2(Ω) with m ∈ {3, 4}. Then for the
solution v of (N0

ε ) constructed in Theorem 5.7 we find ∂k
t v ∈ C((0, ε], Hm(Ω) ∩ H1(Ω)) for

all k ∈ N0.

Proof: Let t ∈ (0, ε], k ∈ N0, and m ∈ {3, 4} be given. Using (6.1) and the estimate of
Cattabriga we have to verify Rk(t) ∈ Hm−2(Ω). For the term ∂k+1

t v(t) this follows from
(5.20) using (5.27).

To prove ∂k
t Z0

ε v(t) ∈ Hm−2(Ω) we use the representation (5.7) of ∂k
t Z0

ε v(t) to derive suitable
bounds for the terms ||∂k

t Z0
ε v(t)||2, ||∇(∂k

t Z0
ε v(t))||2, and ||∇2(∂k

t Z0
ε v(t))||2 her.

Due to the measure conserving property of X, Y and (5.18) it follows

||∂k
t Z0

ε v(t)||2 ≤ ck,ε {||∂k
t v(t)||2 + ||∂k−1

t v(t)||2} ≤ K̃1 , (6.2)

where in the case k = 0 the norm ||∂k−1
t · || can be neglected.

To estimate the term ||∇(∂k
t Z0

ε v(t))||2, let a denote some constant satisfying ||∇g||∞ ≤ a for
every mapping g ∈M = {X,X−1, Y, Y −1}. Because of

||∇(∂k
t v(t, g))|| ≤ ||∇∂k

t v(t)|| · ||∇g||∞,

from (5.19) we find

||∇(∂k
t Z0

ε v(t))||2 ≤ ck,ε a2{||∇∂k
t v(t)||2 + ||∇∂k−1

t v(t)||2} ≤ a2K̃2 . (6.3)

Here as above, for k = 0 the norm ||∇∂k−1
t · || can be neglected.

Now let m = 4 and denote by b some constant satisfying ||∇2g||∞ ≤ b for g ∈M, in addition.
From

||∇2(∂k
t v(t))|| = ||∇2

g(∂
k
t v(t, g)) · (∇g)

2 +∇g∂
k
t v(t, g) · ∇2g||

≤ CΩa2 ||P∆∂k
t v(t)||+ b ||∇∂k

t v(t)||



using (5.27), we find by (5.19) and (5.20) the estimate

||∇2(∂k
t Z0

ε v(t))||2 ≤ Ck,ε,Ω

{
a4{||P∆∂k

t v(t)||2 + ||P∆∂k−1
t v(t)||2}

+ b2{||∇∂k
t v(t)||2 + ||∇∂k−1

t v(t)||2}
}

(6.4)

≤ a4K̃3 + b2K̃2 ,

where for k = 0 the norms || · ∂k−1
t · || can be neglected.

Collecting the estimates (6.2), (6.3), and (6.4) we obtain ∂k
t v(t) ∈ Hm(Ω) ∩ H1(Ω) for

m ∈ {3, 4}, k ∈ N0, and t ∈ (0, ε], and the asserted continuity for t > 0 follows from

||∂α∂k
t (v(t + h)− v(t))||2 ≤

∣∣∣h ·
t+h∫

t

||∂α∂k
τ v(τ)||2dτ

∣∣∣ (h ∈ R)

for any spatial derivative of order |α| ≤ m. ¤

(b) The compatibility condition at time t = 0

The regularity property v ∈ C([0, T ∗], H3(Ω) ∩H1(Ω)) of a strong solution v of the Navier-
Stokes initial value problem (N0) – here [0, T ∗] denotes the maximum existence interval of the
strong solution – leads to an over-determined Neumann problem for the pressure p0 = p(0)
at time t = 0 (initial pressure). Due to its nonlocal character it is in general not checkable
for given data (see [4] and [9]).

For the construction of solutions of the Navier-Stokes system (N0) with such a high degree
of regularity it is necessary that some compatibility conditions are satisfied by the velocity
field on the parabolic boundary (see [14]). Similar conditions for the corresponding linear
problem can be find in [14] and [7]. The compatibility condition for the problem (N0

ε ) is
formulated in the next theorem. It can be satisfied – as shown in the next section – due to
a special construction of the initial values (compare Remark 3.6).

Theorem 6.2. Let the assumptions of Lemma 6.1 be satisfied and assume, in addition,
v0 ∈ Hm(Ω) ∩ H1(Ω) for m ∈ {3, 4}. Let v denote the solution of Problem (N0

ε ) from
Theorem 5.7. Then it holds v ∈ C([0, ε], Hm(Ω) ∩H1(Ω)) if and only if

νP∆v0|∂Ω
− 1

2ε
P{v0 ◦ Y − v0 ◦ Y −1}|∂Ω

= 0. (6.5)

Moreover, from (6.5) it follows ∂tv ∈ C([0, ε], Hm−2(Ω) ∩ H1(Ω)), as well as, in addition,
∂2

t v ∈ C([0, ε],H0(Ω)) for m = 4.

Remark 6.3. Using the projection P in the equations (N0
ε ), we obtain at time t = 0

νP∆v0 − 1

2ε
P{v0 ◦ Y − v0 ◦ Y −1} = ∂tv(0) . (6.6)

Hence for ∂tv(0) ∈ H1(Ω) the condition (6.5) is satisfied (compare (4.3) and Lemma 4.1).



Remark 6.4. The proof of the above theorem uses some statements about the solution w =
(w1, w2, w3) of the non-stationary Stokes initial boundary value problem

∂tw − νP∆w = g (t, x) ∈ (0, T ]× Ω
(6.7)

w|t=0 = w0 .

Here we recall:

(a) For w0 ∈ H1(Ω) and g ∈ L2(0, T,H0(Ω)) there exists a uniquely determined solution w
of Problem (6.7), and it holds w ∈ C([0, T ]), H1(Ω) with ∂tw ∈ L2(0, T,H0(Ω)) (see [7]).

(b) If, in addition, w0 ∈ H2(Ω) and ∂tg ∈ L2(0, T,H0(Ω)), then, in addition, we even find
w ∈ C([0, T ], H2(Ω) ∩H1(Ω)) with ∂tw ∈ C([0, T ],H0(Ω)) (see [7]).

Proof of Theorem 6.2: Let v ∈ C([0, ε], H3(Ω) ∩ H1(Ω)) be a solution of the problem
(N0

ε ). Then it follows v(0) ∈ H1(Ω) and ∂tv(0) ∈ H1(Ω). Since H1(Ω) is a closed subspace
of H1(Ω) we find ∂tv(0) ∈ H1(Ω), and (6.5) follows from Remark 6.3.

Let us assume now that the equation (6.5) holds. Differentiate the equation (N0
ε ) with

respect to t and consider the resulting equations as a problem of the type (6.7) for w = ∂tv
with T = ε, g = −P∂tZ

0
ε v and w0 given by (6.6).

For this problem the assumptions in Remark 6.4 (a) are satisfied: Due to ∂tv ∈ L2(0, ε,H0(Ω))
using (5.25) it follows g ∈ L2(0, ε,H0(Ω)), and since v0 ∈ Hm(Ω) ∩ H1(Ω) due to the as-
sumption we find w0 = ∂tv(0) ∈ Hm−2(Ω) ∩ H0(Ω), hence using (6.5) we have w0 ∈ H1(Ω).
Therefore we quote w = ∂tv ∈ C([0, ε],H1(Ω)) with ∂tw = ∂2

t v ∈ L2(0, ε,H0(Ω)). This im-
plies ∂tg ∈ L2(0, ε,H0(Ω)), and in the case m = 4 also w = ∂tv ∈ ([0, ε], Hm−2(Ω) ∩ H1(Ω))
with ∂tw = ∂2

t v ∈ C([0, ε],H0(Ω)), using Remark 6.4 (b).

Due to
νP∆v = ∂tv + PZ0

ε v ∈ C([0, ε], Hm−2(Ω) ∩H0(Ω))

we finally obtain v ∈ C([0, ε], Hm(Ω) ∩H1(Ω)) with help of Cattabriga’s estimate. ¤

7 Global solutions

In the first theorem of this section we prove the existence of a solution v to the problem (Ñε)
formulated in §2 with v ∈ C([0, T ], Hm(Ω) ∩H1(Ω)) for m ∈ {3, 4}.

This high degree of regularity can be proved since all compatibility conditions can be satisfied:
At time t0 = 0 we use a special construction of the initial values as shown in Section 3 (we



prescribe ∂tv(0) = f ∈ H1(Ω)) as initial acceleration), and at time tk > 0 (k = 1, . . . , N − 1)
we use the continuity of the mappings Zεv(·, x) for x ∈ Ω (the function ∂tv(tk) as final value
of the k-th partial problem coincides with the initial value of the next partial problem).

Moreover we show that the solution is uniquely determined if the initial values are con-
structed as indicated in Section 3, and that the solution satisfies the energy equation.

Theorem 7.1. Let f ∈ Hm−2(Ω) ∩ H1(Ω) for m ∈ {3, 4}. With f and some function
v ∈ C([−T, 0], Hm(Ω) ∩ H2(Ω)) let the initial values for the problem (Ñε) be constructed
uniquely as indicated in Section 3. Then there exists a uniquely determined function v ∈
C([0, T ], Hm(Ω)∩H1(Ω)) with ∂tv ∈ C([0, T ], Hm−2(Ω)∩H1(Ω)) and a uniquely determined
function ∇p ∈ C([0, T ], Hm−2(Ω)) as solution of the problem (Ñε).

Proof: Using v and v, first we construct the initial mappings Y := Xt−1,t−2 , Y −1 := Xt−2,t−1 ,
v0, X := Xt0,t−1 and X−1 := Xt−1,t0 as done in Section 3.

Then, with these functions as given data, we consider the problem (Ñε) restricted to the
interval [0, ε] as a problem of the type (N0

ε ).

Due to Section 1 and Lemma 4.1 all the assumptions of Theorem 6.2 are fulfilled, and,
following Remark 6.3, due to f ∈ H1(Ω) also the compatibility condition (6.5) is satisfied.
It follows that there is a uniquely determined function v0 as solution of (N0

ε ) (and thus of
(Ñε), restricted to [0, ε]) with the following regularity properties:

v0 ∈ C([0, ε], Hm(Ω) ∩ H1(Ω)) with ∂tv ∈ C([0, ε], Hm−2(Ω) ∩ H1(Ω)) and for m = 4 also
∂2

t v ∈ C([0, ε],H0(Ω)); moreover we have v0(0) = v0 and ∂tv
0(0) = f .

This solution procedure for the problem (Ñε) can be repeated: First we construct the map-
pings Xt1,t0 and Xt0,t1 from the function v0, since they are needed in the next subinterval
[ε, 2ε] (according to Lemma 2.1, this is possible due to v0 ∈ C([0, ε], Hm(Ω) ∩H1(Ω))), and
then we consider the problem (Ñε) restricted to the subinterval [ε, 2ε] as problem

∂tv − ν∆v +∇p = −Z1
ε v

(N1
ε ) ∇ · v = 0 (t, x) ∈ (ε, 2ε]× Ω

v|∂Ω
= 0

v|t=ε = v0(ε) ,

where Z1
ε v is defined by 3.5.

We denote the solution of this problem by v1. This solution has the same properties as
the solution v0 of the problem (N0

ε ): Due to v1(ε) = v0(ε), Z1
ε v

1(ε) = Z0
ε v

0(ε) and the
unique solvability of Problem (4.3) we find ∂tv

1(ε) = ∂tv
0(ε) ∈ Hm−2(Ω) ∩ H1(Ω). Hence

the compatibility condition corresponding to (6.5) for the problem (N1
ε ) at time t1 = ε is



satisfied, too. It follows that the solution v1 of this problem is uniquely determined, and we
have v1 ∈ C([ε, 2ε], Hm(Ω)∩H1(Ω)) with ∂tv

1 ∈ C([ε, 2ε], Hm−2(Ω)∩H1(Ω)), and for m = 4
also ∂2

t v
1 ∈ C([ε, 2ε],H0(Ω)). Moreover, we find v1(ε) = v0(ε) and ∂tv

1(ε) = ∂tv
0(ε), but

not in general ∂2
t v

1(ε) = ∂2
t v

0(ε) (m = 4).

By repeating this solution procedure we finally obtain functions vk defined on subsequent
subintervals [tk, tk−1], which we can put together to a uniquely determined solution v of the
problem (Ñε) in such a way that all properties asserted in Theorem 7.1 are satisfied. ¤

To investigate convergence in the next section we need the regularized problem (Nε), , which
is obtained from (Ñε) by changing the initial condition: Let T > 0, N ∈ N (N ≥ 2), ε := T

N

and tk = k · ε for k = 0,±1, . . . ,±N as in Problem (Ñε).

Construct a velocity field v = (v1, v2, v3) and some pressure function p as a solution of the
problem

∂tv − ν∆v +∇p = −Zεv

(Nε) ∇ · v = 0 (t, x) ∈ (0, T ]× Ω

v|∂Ω
= 0

v|t=0 = v0(ε) ,

where Zεv is defined as in 3.5.

Theorem 7.1 leads to a statement about the solvability of the problem (Nε):

Corollary 7.2. Let the assumptions of Theorem 7.1 be satisfied, and let the initial data for
the problem (Nε) coincide with the initial data of problem (Ñε) from Theorem 7.1. Then,
given f ∈ Hm−2(Ω) ∩ H1(Ω) for m ∈ {3, 4} as initial value in Problem (Ñε), there is a
uniquely determined function v0 ∈ Hm(Ω) ∩ H1(Ω) as the solution of Problem 4.3. Using
this function v0 as initial value the problem (Nε) is uniquely solvable.

Its solution v coincides with the solution of the problem (Ñε) from Theorem 7.1 and satisfies
in t ∈ [0, T ] the energy equation

||v(t)||2 + 2ν

t∫

0

||∇v(τ)||2dτ = ||v0||2 . (7.1)

Proof: We only have to show (7.1). This follows from (5.22), since for t ∈ [tk, tk+1] and



k = 0, 1, . . . , N − 1 we find

||v(t)||2 − ||v(tk)||2 + 2ν

t∫

tk

||∇v(τ)||2dτ +
k∑

j=1

{||v(tj)||2 − ||v(tj−1)||2

+ 2ν

tj∫

tj−1

||∇v(τ)||2dτ} = 0.

¤

The properties

v ∈ C([0, T ], H4(Ω) ∩H1(Ω)), ∂tv ∈ C([0, T ], H2(Ω) ∩H1(Ω))

for the solution v of the problem (Ñε) and (Nε), respectively, represent the highest degree
of regularity – formulated in standard Sobolev spaces of integer order – which is possible
without using additional (coupled) compatibility conditions at time t = 0 (see [14]). These
properties imply, in particular, that the solution v is continuously differentiable one time
with respect to t and two times with respect to x in the open cylinder ΩT := (0, T ) × Ω,
and the corresponding derivatives can be continuously extended to the parabolic boundary
of ΩT . In this sense the function v is a classical solution of the problem (Ñε), and we finish
the regularity investigation of this problem at this stage.

8 Global Convergence to a weak solution of (N0)

In this section we suppose that the initial data for the problems (Ñε) and (Nε) are constructed
as in Section 3, and that the initial value v0 given in the problem (Nε) has been determined
as the solution of the problem (4.3) from the initial value f of the problem (Ñε).

Under these assumptions we showed in the last Section 6, that the problems (Ñε) and (Nε)
are globally uniquely solvable and that their solutions coincide.

In the following we investigate the behavior of the solution of (Nε), if for fixed T > 0 the
step size ε = T

N
for N →∞ tends to zero.

To do so, we set εN := T
N

for 2 ≤ N ∈ N and denote the solution of the problem (NεN
) from

Corollary 7.2 by vN . The corresponding initial value, depending on εN as well, is denoted
by vN

0 . Moreover, let ṽN be the function defined by (4.4), necessary for the construction of
the initial values. Here we start with some given function vN for N = 2 as in Section 3, and
then we choose vN := ṽN−1 for all N ≥ 3:



The reason for this choice of the functions vN will be explained in the next section. All
statements of this section also remain true if we simply choose vN := v2 =: v.

The definition of a weak solution of the Navier-Stokes problem (N0) in the sense of Hopf
(compare [5], [13], [10], [7]) is given now:

Definition 8.1. Let v0 ∈ H0(Ω). A function v ∈ L2(0, T,H1(Ω)) ∩ L∞(0, T,H0(Ω)) is a
weak solution of the problem (N0) with initial value v0, if

v : [0, T ] −→ H0(Ω) is weakly continuous, (8.1)

lim
t→0

||v(t)− v0|| = 0 , (8.2)

and for all test functions φ ∈ C∞
0,σ(ΩT ) we have

T∫

0

{(v(t), ∂tφ(t))− ν(∇v(t),∇φ(t))}dt = −
T∫

0

(v(t) · ∇φ(t), v(t))dt . (8.3)

Remark 8.2. It can be shown that every function v ∈ L2(0, T,H1(Ω)) satisfying (8.2) and
(8.3) already represents a weak solution of the problem (N0) with initial value v0 ∈ H0(Ω),
according to Definition 8.1 (see [13]).

The following theorem states the main convergence result and shows that only the central
total difference quotient leads to an energy conserving regularizing approximation for the
convective term of the Navier-Stokes system (compare Remark 3.2).

Theorem 8.3. Let T ∈ R (T > 0) and N ∈ N (N ≥ 2). Setting εN := T
N

let vN denote
the uniquely determined solution of the problem (NεN

) with initial value vN
0 from Corollary

7.2. Then there is a convergent subsequence (vNk)k of the sequence (vN)N of the solutions
with limit function v and a convergent subsequence (vNk

0 )k of the sequence (vN
0 )N of the

corresponding initial values with limit function v0 such that v is a weak solution of the
Navier-Stokes problem (N0) with initial value v0 ∈ H0(Ω) and satisfies for t ∈ [0, T ] the
energy inequality

||v(t)||2 + 2ν

t∫

0

||∇v(τ)||2dτ ≤ ||v0||2. (8.4)

To prove Theorem 8.3 we need some estimates of the regularized solutions vN and their data
independent of N . These estimates will be established in the next two lemmata.

Lemma 8.4. Let the assumptions of Theorem 8.3 be satisfied. Let f denote the initial
value of the problem (ÑεN

), and let ṽN denote the function defined by (4.4) and constructed
according to Section 3 from v. Then the following estimates hold true independent of N ∈
N (N ≥ 2) :

||vN
0 ||2 ≤ cΩ,ν ||f ||2 , (8.5)



||∇vN
0 ||2 ≤ c̃Ω,ν ||f ||2 , (8.6)

as well as for all t ∈ [0, T ]

||vN(t)||2 + 2ν

t∫

0

||∇vN(τ)||2dτ = ||vn
0 ||2 ≤ cΩ,ν ||f ||2 , (8.7)

and for all t ∈ [−T, 0]

||ṽN(t)|| ≤ max
{

sup
s∈[−T,0]

||v(s)||, cΩ,ν ||f ||
}

, (8.8)

||∇ṽN(t)|| ≤ max
{

sup
s∈[−T,0]

||∇v(s)||, c̃Ω,ν ||f ||
}

(8.9)

Proof: The estimates (8.5) and (8.6) follow using the inequality of Poincaré due to the
measure conserving property of the mappings X.,. from (4.3). The estimate (8.7) is obtained
from (7.1) and (8.8), and (8.9) follows from (4.4).

Lemma 8.5. Let vN denote the solution of the problem (NεN
) from Theorem 8.3, and let

V := {ai|i ∈ N} be a complete orthonormal system in H0(Ω). Then for every i ∈ N we have
the estimate

|(ZεN
vN(t), ai)| ≤ Ki, (8.10)

where the constant Ki does not depend on N ∈ N (N ≥ 2) and not on t ∈ [0, T ].

Proof: Let i, N ∈ N (N ≥ 2) and t ∈ [0, T ]. For simplification we set ε := εN and obtain
from the measure conserving property of the mappings X.,. analogously to partial integration
the identity

(Zεv
N(t), ai) = −(Zεai, v

N(t)) . (8.11)

Here Zεai for t ∈ [tk, tk+1] and k = 0, 1, . . . , N − 1 is defined by

Zεai =
t− tk
2ε2

{ai ◦Xtk,tk−1
− ai ◦Xtk−1,tk} +

tk+1 − t

2ε2
{ai ◦Xtk−1,tk−2

− ai ◦Xtk−2,tk−1
} .

(8.12)
By a well-known density argument we can choose V ⊂ C∞

0,σ(Ω). Since the functions X.,.

defined by (2.5) have been constructed from the solution of an initial value problem of type
(2.4), we obtain, setting for abbreviation

Xk := Xtk,tk−1
(k = 1, 0, . . . , N − 1), (8.13)

for every x ∈ Ω the following representation:

ai ◦Xk(x)− ai ◦X−1
k (x)

= ai ◦Xk(x)− ai + ai − ai ◦X−1
k (x)



=

tk∫

tk−1

{∂τX(τ, tk−1, x) · ∇Xai(X(τ, tk−1, x)) + ∂τX(τ, tk, x) · ∇ai(X(τ, tk, x))}dτ

=

tk∫

tk−1

{[vN(τ) · ∇ai] ◦X(τ, tk−1, x) + [vN(τ) · ∇ai] ◦X(τ, tk, x)}dτ .

Here for k ∈ {−1, 0}, due to the construction of the initial values according to Section 3,
the function vN has to be replaced by ṽN . From

|ai ◦Xk(x)− ai ◦X−1
k (x)| ≤ 2 ε · sup

s1,s2∈[0,T ]

|[vN(s1) · ∇ai] ◦X(s1, s2, x)|

for k ∈ {1, 2, . . . , N − 1} and from

|ai ◦Xk(x)− ai ◦X−1
k (x)| ≤ 2 ε · sup

s1,s2∈[−T,0]

|[ṽN(s1) · ∇ai] ◦X(s1, s2, x)|

for k ∈ {−1, 0} it follows by (8.7), (8.8), and (8.12) that the estimate

||Zεai|| ≤ K̃i, (8.14)

holds true. Here the constant does not depend on ε and thus not on N . The assertion now
follows using (8.7) from (8.11), and the lemma is proved. ¤

Due to (8.10) we obtain by projecting the problem (NεN
) onto the subspace ofH0(Ω) spanned

by ai ∈ V the estimate
∣∣∣ d

dt
(vN(t), ai)

∣∣∣ = |(∂tv
N(t), ai)| ≤ Ki , (8.15)

where the constant Ki, i ∈ N, is independent of N ∈ N (N ≥ 2) and t ∈ [0, T ]. It depends
only on Ω, ν, and the data f, v, and the basis function ai ∈ V , where we may assume
V ⊂ C∞

0,σ(Ω) using a density argument, as already mentioned above.

As in [5] we obtain from (8.7) and (8.15)

Lemma 8.6. Let the assumptions of Theorem 8.3 be satisfied. Then there exists a weakly
continuous function v : [0, T ] → H0(Ω) with

v ∈ L2(0, T,H1(Ω)) ∩ L∞(0, T,H0(Ω))

and a subsequence (vNk)k of the sequence of the solutions of the problems (NεN
) with the

following properties: For t ∈ [0, T ] the sequence (vNk(t))k converges weakly in H(Ω) to the
limit v(t), and the sequence (vNk)k converges weakly to v in L2(0, T,H1(Ω)) and strongly in
L2(0, T,H0(Ω)).

The following theorem shows that the properties of the subsequence (vNk)k from Lemma
8.6 are already sufficient to proceed to the limit in the nonlinear convective term of the
Navier-Stokes equations:



Theorem 8.7. Let V := {ai|i ∈ N} denote a complete orthonormal system in H0(Ω). Then
for the convergent subsequence (vNk)k with limit function v according to Lemma 8.6 for all
i ∈ N the following identity holds true:

lim
k→∞

T∫

0

(ZεNk
ai, vNk(t))dt =

T∫

0

(v(t) · ∇ai, v(t))dt . (8.16)

Proof: For simplification we set ε := εNk
, N := Nk, a := ai, vN(s) := ṽN(s) for s ∈ [−T, 0]

and write (8.16) in the form

lim
N→∞

T∫

0

{(Zεa, vN(t))− (v(t) · ∇a, v(t))}dt = 0 . (8.17)

We prove (8.17) using a decomposition of the integrand IN(t):

IN(t) = (Zεa, vN(t)− v(t)) + (Zεa− v(t) · ∇a, v(t)) =: S̃N
1 (t) + S̃N

2 (t) .

Due to (8.12) and the notation (8.13) we find

S̃n
2 (t) =

t− tk
2ε

(1

ε
{a ◦Xk − a} − v(t) · ∇a, v(t)

)
+

t− tk
2ε

(1

ε
{a− a ◦X−1

k } − v(t) · ∇a, v(t)
)

+

tk+1 − t

2ε

(1

ε
{a ◦Xk−1 − a} − v(t) · ∇a, v(t)

)
+

tk+1 − t

2ε

(1

ε
{a− a ◦X−1

k−1} − v(t) · ∇a, v(t)
)

=:
4∑

j=1

MN
j (t) .

The term MN
1 (t) is decomposed again (MN

2 (t) to MN
4 (t) analogously):

MN
1 (t) =

t− tk
2ε


1

ε

tk∫

tk−1

∂τX(τ, tk−1, ·) · ∇a(X(τ, tk−1, ·))dτ − v(t) · ∇a, v(t)




=
t− tk
2ε2

tk∫

tk−1

([vN(τ) · ∇a] ◦X(τ, tk−1, ·)− v(t) · ∇a, v(t))dτ



=
t− tk
2ε2

tk∫

tk−1

([vN(τ)− vN(t)] · ∇a, v(t) ◦X(tk−1, τ, ·))dτ +

t− tk
2ε2

tk∫

tk−1

([vN(t)− v(τ)] · ∇a, v(t) ◦X(tk−1, τ, ·))dτ −

t− tk
2ε2

tk∫

tk−1

(v(t) · ∇a, v(t)− v(t) ◦X(tk−1, τ, ·))dτ

=:
3∑

j=1

sN
j (t) .

The integrals of the summands S̃N
1 (t) and sN

1 (t), sN
2 (t), sN

3 (t) will be estimated now. In the
following, all appearing constants K1, K2, . . . do not depend on N .

S̃N
1 (t): Using (8.14) we find that there is a bound for ||Zεa|| not depending on t ∈ [0, T ] and

not depending on ε. This implies

∣∣∣∣∣∣

T∫

0

S̃N
1 (t)dt

∣∣∣∣∣∣
≤

T∫

0

||Zεa|| ||vN(t)− v(t)||dt ≤ K1




T∫

0

||vN(t)− v(t)||2dt




1
2

,

and using the strong convergence in L2(0, T,H0(Ω)) we obtain

lim
N→∞

∣∣∣∣∣∣

T∫

0

S̃N
1 (t)dt

∣∣∣∣∣∣
= 0 .

sN
2 (t): Due to v ∈ L2(0, T,H1(Ω)) according to Lemma 8.6 it follows from the estimate

∣∣∣∣∣∣

T∫

0

sN
2 (t)dt

∣∣∣∣∣∣
≤ 1

2
·

T∫

0

||vN(t)− v(t)|| ||∇a||∞ ||v(t)||dt

≤ K2




T∫

0

||vN(t)− v(t)||2dt




1
2

the same behavior as above for S̃N
1 (t):

lim
N→∞

∣∣∣∣∣∣

T∫

0

sN
2 (t)dt

∣∣∣∣∣∣
= 0 .



sN
1 (t): For every t ∈ [0, T ] the function v(t) is the weak limit of vN(t) in H0(Ω) (see Lemma

8.6). Hence also the weak limit v(t) satisfies the estimate (8.7), and we find

∣∣∣∣∣∣

T∫

0

sN
1 (t)dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣

N−1∑

k=0

tk+1∫

tk

sN
1 (t)dt

∣∣∣∣∣∣

≤ 1

2ε

N−1∑

k=0

tk+1∫

tk

tk∫

tk−1

||vN(τ)− vN(t)|| ||∇a||∞ ||v(t)||dτdt

≤ K3

ε

N−1∑

k=0

tk+1∫

tk

tk∫

tk−1

||vN(τ)− vN(t)||dτdt .

Here we have τ ≤ 0 if k = 0. This summand is estimated separately: Due to (8.7) and (8.8)
we find

K3

ε

ε∫

0

0∫

−ε

||vN(τ)− vN(t)||dτdt ≤ K3

ε

ε∫

0

0∫

−ε

{||vN(τ)||+ ||vN(t)||}dτdt ≤ K4

N
.

The rest of the above sum can be treated with the inequality of Friedrichs (see [11]): Let
δ > 0 be fixed. Then there is some number Mδ ∈ N with

||vN(τ)− vN(t)|| ≤
Mδ∑
j=1

|(vN(τ)− vN(t), aj)|+ δ {||∇vn(τ)||+ ||∇vn(t)||}

=: gN
1 (τ, t) + δ gN

2 (τ, t) .

In the first term gN
1 we have τ, t ≥ 0. Using (8.15) it follows

|(vN(τ)− vN(t), aj)| ≤ Kj |τ − t| ≤ 2Kj ε ,

and we obtain for the integral over gN
1 the estimate

K5

ε

(
Mδ∑
j=1

Kj

)
N ε3 = K5

(
Mδ∑
j=1

Kj

)
T 2

N
.

Thus it remains to show that the integral over gN
2 remains bounded as N →∞.

Due to

K3

ε

N−1∑

k=1

tk+1∫

tk

tk∫

tk−1

{||∇vN(τ)||+ ||∇vN(t)||}dτdt



≤ K3

N−1∑

k=1





tk+1∫

tk

||∇vN(t)||dt +

tk∫

tk−1

||∇vN(τ)||dτ





≤ 2K3

T∫

0

||∇vN(t)||dt

≤ K6




T∫

0

||∇vN(t)||2dt




1
2

≤ K7

according to (8.7), also the limit procedure

lim
n→∞

∣∣∣∣∣∣

T∫

0

sN
1 (t)dt

∣∣∣∣∣∣
= 0

holds true.

sN
3 (t): Let x ∈ Ω and τ ∈ [tk−1, tk] for k ∈ {0, 1, . . . , N − 1}. From x = X(τ, τ, x) we find

v(t, x)− v(t, X(tk−1, τ, x)) =

τ∫

tk−1

[vN(σ) · ∇v(t)] ◦X(σ, τ, x) dσ .

From the Hölder inequality and the Sobolev imbedding theorem it follows

|sN
3 (t)| ≤ t− tk

2ε2

∣∣∣∣∣∣

tk∫

tk−1

τ∫

tk−1

(v(t) · ∇a, [vN(σ) · ∇v(t)] ◦X(σ, τ, ·)) dσ dτ

∣∣∣∣∣∣

≤ 1

2ε

tk∫

tk−1

τ∫

tk−1

||v(t)||0,6||∇a||∞||vN(σ)||0,3||∇v(t)|| dσ dτ

≤ K7||∇v(t)||2 ·
tk∫

tk−1

||∇vN(σ)|| dσ

≤ Kz

√
ε||∇v(t)||2




+T∫

−T

||∇vN(σ)||2dσ




1
2

≤ K8

√
ε||∇v(t)||2 .



Here the last estimate is due to (8.7) and (8.9), and using (8.15) also the last limit transition
is proved:

lim
N→∞

∣∣∣∣∣∣

T∫

0

sN
3 (t)dt

∣∣∣∣∣∣
≤ lim

N→∞
Kg√
N
·

T∫

0

||∇v(t)||2dt = 0 .

After these preparations we are now ready to prove that the function v from Lemma 8.6
satisfies the assertions of Theorem 8.3:

Proof of Theorem 8.3: Using (8.6) and the compactness of the imbedding

H1(Ω) ↪→ H0(Ω)

we find without any restriction of generality that the subsequence (vNk
0 )k of the initial values

of the solutions vNk from Lemma 8.6 converges to some function v0 ∈ H0(Ω) strongly in
H0(Ω). From here we quote with the weak convergence according to Lemma 8.6 that the
limit function v satisfies the energy inequality: For all t ∈ [0, T ] we have

||v(t)||2 + 2ν

t∫

0

||∇v(τ)||2dτ ≤ lim inf
k→∞

||vNk(t)||2 + 2ν lim inf
k→∞

t∫

0

||∇vNk(τ)||2dτ

≤ lim
k→∞

||vNk
0 − v0 + v0||2 = ||v0||2 .

Together with the weak continuity of the function t → v(t) in H0(Ω) at time t = 0 it follows
the strong continuity of this function at time t = 0 as in (5.28), (5.29), hence (8.2) holds
true. It remains to prove (8.3), where we can restrict our considerations to test functions
of the form φi = ϕ · ai with ϕ ∈ C∞

0 ((0, T )) and ai ∈ V ⊂ C∞
0,σ(Ω), using again a density

argument. To do so, we multiply the first equation of the problem (NεNk
) by ϕi, integrate

over ΩT and obtain with help of partial integration

T∫

0

{(vNk(t),ai)ϕ′(t)− ν(∇vNk(t),∇ai)ϕ(t)} dt = −
T∫

0

(vNk(t) · ∇ai, v
Nk(t))ϕ(t) dt .

Finally, using the weak convergence of the subsequence in L2(0, T,H0(Ω)) as well as in
L2(0, T, H1(Ω)) to the limit function v, respectively, and Theorem 8.7 we obtain (8.3) as
k →∞, and the theorem is proved. ¤

9 Local strong convergence

Let T > 0, N ∈ N (N ≥ 2), εN := T
N

, and let vN denote the solution of the problem
(NεN

) with initial value vN
0 ∈ Hm(Ω) ∩ H1(Ω) for m ∈ {3, 4}. According to Corollary



7.2, the function vN coincides with the solution of the problem (ÑεN
) with initial value

f ∈ Hm−2(Ω) ∩ H1(Ω).

In the last section we have shown that the sequences (vN)N and (vN
0 )N have accumulation

points v and v0, respectively, such that v is a weak solution of the problem (N0) with initial
value v0 ∈ H0(Ω).

The next theorem describes local properties of such a pair of accumulation points.

Theorem 9.1. Let T > 0, N ∈ N (N ≥ 2) and εN := T
N

. Let the assumptions of Theorem
8.3 be satisfied, and let f ∈ Hm−2(Ω) ∩ H1(Ω) for m ∈ {3, 4} denote the initial value of the
problem (ÑεN

).
Then there exists some number T ∗ = T ∗(Ω, ν, f) with 0 < T ∗ ≤ T such that the following
statements hold true: Every problem (N0) from Theorem 8.3 is uniquely solvable in [0, T ∗],
and for its solution v we find

v ∈ C([0, T ∗], Hm(Ω) ∩ H1(Ω)), ∂tv ∈ C([0, T ∗], Hm−2(Ω) ∩ H1(Ω)),

and for m = 4 even ∂2
t v ∈ C([0, T ∗],H0(Ω)). Moreover we have

∂tv(0) = f . (9.1)

To prove this theorem we consider first in Ω the stationary nonlinear Navier-Stokes boundary
value problem

νP∆u0 − P (u0 · ∇u0) = f (9.2)

and show in the next lemma that every function v0 from Theorem 8.3 is a weak solution of
this problem. To do so let us recall:

Definition 9.2. A function u0 ∈ H1(Ω) is a weak solution of the Navier-Stokes problem
(9.2), if for all test functions ϕ ∈ C∞

0,σ(Ω) the identity

−ν(∇u0,∇ϕ) + (u0 · ∇ϕ, u0) = (f, ϕ) (9.3)

is valid.

Lemma 9.3. Let f ∈ Hm−2(Ω) ∩ H1(Ω). Then every function v0 from Theorem 8.3
is a weak solution of the problem (9.2) according to the definition 9.2, and we find v0 ∈
Hm(Ω) ∩ H1(Ω).

Proof: For simplification let us assume the convergence of the whole sequence (vN
0 )N from

Therorem 8.3 to the limit function v0. From (8.6) we know that this convergence is weak
with respect to H1(Ω) and strong with respect to H0(Ω), and that v0 ∈ H1(Ω) is true. Now
let V := {ai|i ∈ N} be a complete orthonormal system in H1(Ω). Then we can choose
V ⊂ C∞

0,σ(Ω) and restrict us in (9.3) for ϕ on basis functions of the type a = ai. Due to the



weak convergence in H1(Ω) the first part of the lemma is proved, if, using (8.13), we can
show

lim
N→∞

{ 1

2ε
(a ◦X−1 − a ◦X−1

−1 , v
N
0 )− (v0 · ∇a, v0)

}
= 0. (9.4)

According to Section 7 here the measure conserving mapping X−1 := X−ε,−2ε is constructed
from the velocity field vN = ṽN−1, and we obtain as in the proof of Lemma 8.5 for every
x ∈ Ω the identity

a◦X−1(x)−a◦X−1
−1 (x) =

−ε∫

−2ε

{[ṽN−1(τ) ·∇a]◦X(τ,−2ε, x)+[ṽn−1(τ) ·∇a]◦X(τ,−ε, x)}dτ . (9.5)

The assertion(9.4) then follows by a suitable decomposition as in Theorem 8.7.

For the asserted regularity statement, using the estimate of Cattabriga for the equation

P∆v0 =
1

ν
{f + P (v0 · ∇v0)},

we have to prove v0 · ∇v0 ∈ Hm−2(Ω). This can be done with help of the Sobolev imbedding
theorem and a suitable bootstrapping procedure as in ([14]): Due to v0 ∈ H1(Ω) we have
v0 ∈ L6(Ω), and using

||v0 · ∇v0||0, 3
2
≤ ||∇v0|| · ||v0||0,6

it follows v0 · ∇v0 ∈ L 3
2
(Ω), hence v0 ∈ H2, 3

2
(Ω) and thus v0 ∈ L∞(Ω). Since ||v0 · ∇v0|| ≤

||v0||∞ · ||∇v0|| it follows v0 · ∇v0 ∈ L2(Ω), hence v0 ∈ H2(Ω).

From
||∇(v0 · ∇v0)|| = ||∇v0||20,4 + ||v0||∞ ||∇2v0|| ≤ cΩ ||v0||22,2

we quote v0 · ∇v0 ∈ H1(Ω), hence v0 ∈ H3(Ω) and thus ∇v0 ∈ L∞(Ω). Using

||∇2(v0 · ∇v0)|| ≤ 3 ||∇v0||∞ ||∇2v0||+ ||v0|| ||v0||3,2 ≤ cΩ ||v0||23,2

we finally obtain v0 · ∇v0 ∈ Hm−2(Ω). ¤

From (9.5) it follows that the first statement of Lemma 9.3 and thus the assertion (9.1) from
Theorem 9.1 does not necessarily hold true, if the same function v, which is needed for the
construction of the initial data of the problem (NεN

), is used for all N ∈ N.

Proof of Theorem 9.1: For every weakly solvable problem from Theorem 8.3, due to the
regularity of its initial value v0, there exists a number T̃ = T̃ (Ω, ν, v0) with 0 < T̃ ≤ T such
that this problem can be solved uniquely in [0, T̃ ], and that its strong solution, due to the
validity of the compatibility condition at time t = 0, has all the properties asserted in 9.1
(compare also [14]). Since the norms of the initial data can be estimated by the norm of f
there is a unique existence interval [0, T ∗] of positive length. ¤

Thus the solution of problem (N0) from Theorem 9.1 is a solution of the following Navier-
Stokes initial boundary value problem (Ñ0) in [0, T ∗]:



Let T > 0. Construct a velocity field v = (v1, v2, v3) and some pressure function p as a
solution of the system

∂tv − ν∆v +∇p = −v · ∇v

(Ñ0) ∇ · v = 0 (t, x) ∈ (0, T ]× Ω

v|∂Ω
= 0

∂tv|t=0 = f .

Since the stationary problem (9.2) can be solved uniquely for sufficiently large ν or sufficiently
small f (see [13]) we find that in this case the problem (Ñ0) is locally, i.e. in [0, T ∗], uniquely
solvable and the whole sequence (vN

0 )N of the initial values of the problems (NεN
) from

Theorem 8.3 converges to the uniquely determined initial value v0.
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