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Abstract. A conditionally contaminated linear model Y(t) = x(t)'P + Z(t) is considered where 
the errors Z(t) may have different contaminated normal distributions for different experimental 
conditions t. Estimating the unknown parameter P or a linear aspect q(P) = CP in such a model, 
an asymptotic bias will appear. Bounding the maximum asymptotic bias by some bias bound 
b, optimal robust estimators and optimal designs can be derived by minimizing the trace of the 
asymptotic covariancematrix (see Bickel, 1984; Rieder, 1987; I<urotschka and Miiller, 1992; Miiller, 
1992a). While the optimal designs, which are the classical A-optimal designs, do not depend on the 
bias bound b, the optimal robust estimators depend strongly on b and the trace of their asymptotic 
covariance matrix increases if the bias bound decreases. In this paper optimal bias bounds are 
derived by minimizing the asymptotic mean squared error or its generalization. In particular at 
A-optimal designs the optimal bias bounds are easy to compute. For two examples the optimal 
bias bounds are given. 
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1. Introduction 

A general linear model 

' is considered, where Y,N are observations, t , ~  E T are experimental conditions, 
X : T -, RP is a known 'regression' function, P E RP is an unknown parameter 
vector, and ZnN are error variables. In classical linear models it is assumed that the 
error variables ZIN, ..., ZNN are independent and identically distributed. Usually it 
is assumed that they are normally distributed with mean 0 and known or unknown 
variance u2, i.e. 

But if some outlying observations (gross errors) may appear, the normal distribu- 
tion is not correct. Then, even for designed experiments, a conditionally contami- 
nated linear model is adequate (see Bickel, 1984; Rieder, 1987; Kurotschka and 
Miiller, 1992; Miiller, 1992b). In such a model it is assumed that the error variables 
ZIN, . . . , ZNN are independent and are distributed according to a contaminated nor- 
mal distribution, where the contamination may be different for different experimental 
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conditions, i.e. 

with C:==, e ( t , ~ )  5 N for almost all N E N ,  Jg(.z,t) P(dz) = 1, g(z,t) 2 0 
for all z E R, t E T. Thereby the markov kernel g(., t )P  models the form and 
e(t) 2 0 the proportion of contamination. The set P of all sequences (QN = 

QnN)NEmr defines a conditional contamination neighbourhood around the 
classical model ( P N ) N E ~ .  

To estimate in this model a linear aspect cp(P) = C@, C E RsXP, one can use a 
one-step-M-estimator. An estimator pN : X TN -+ R* is called a one-step-M- 
estimator for cp(P) = C p  with a score function + : R X T -+ RS, an initial estimator 

: RN X TN + RP for and a variance estimator G; : RN X TN - R+ for u2, if 

(see Bickel, 1975; Rieder, 1985; and Muller, 1992b). Thereby the initial and the 
variance estimators can be robust or non-robust estimators. For example the initial 
estimator can be the least squares estimator or some M-estimator and the variance 
estimator can be the mean squared residuals or Huber's Proposal 2 (Huber, 1964). 
Because the asymptotic behaviour of the one-step-M-estimators does neither de- 
pend on the initial estimator nor on the variance estimator and here the robustness 
property is derived from the asymptotic distribution we also can use non-robust ini- 
tial and variance estimators. But if the estimator should also satisfy a finite sample 
robustness property then the initial and variance estimator should also satisfy the 
finite sample robustness pro pert,^. 

If we assume that the design d~ = (tlN, ..., tNN) converges to an asymptotic 
design measure 6 in the following sense 

1 N 

lim - et,,, (t) = 6(t) for all t E supp(l), 
N-m N 

n = l  

then the one-step-M-estimator with the score function +,(z,t) = C I(6)-x(t)z 
behaves asymptotically like the Gauss-Markov estimator for p(P) = CP. Here et 
denotes the Dirac measure on t and I(6) = S x(t) x(t)'6(dt) is the information 
matrix of the design 6 while I(6)- is a g-inverse of I(6). In the conditionally con- 
taminated linear model the one-step-M-estimator with the score function +, , and 
therefore also the Gauss-Markov estimator, has an unbounded asymptotic bias. But 
robust estimators should have a bounded asymptotic bias and this is the case for all 
one-step-M-estimators with bounded score function $. This was shown by Bickel 
(1984) and Rieder (1985, 1987) for estimating the whole parameter vector P and by 
Kurotschka and Muller (1992) for estimating a linear aspect cp(P) = CP. Moreover, 
they derived optimal robust estimators by minimizing the trace of the asymptotic 
covariance matrix under the side condition that the asymptotic bias is bounded by 
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some bias bound b .  Hence the optimal robust estimators depend on the bias bound 
b. 

Similar optimal robust estimators can be also obtained by deriving the influence 
functions of the estima.tors (see Hampel et al., 1986). Basing on this approach, 
Samarov (1985) proposed optimal bounds b for the robust estimators by minimizing 
an approximated mean squared error at, finite samples. But Samarov calculated the 
optimal bounds only for few estimators which, in particular for designed experiments, 
are not the optimal estimators. 

In Section 3 of this paper we propose optimal bounds for planned experiments and 
show that for experiments at optimal designs the bounds are very easy to calculate. 
Because this approach is based on results of Kurotschka and Muller (1992) and 
Miiller (1992a) concerning optimal robust estimators and optimal designs for robust 
estimation, at first these results will be briefly repeated in Section 2. In Section 4 
we will give the optimal bias bounds for the linear regression model and a one-way 
lay-out with 3 treatments and a control treatment. 

2. Optimal Robust Estimators with Given Bias Bound 

Under some regularity conditions (see Muller, 1992b), in particular under condition 
(1) and the condition 4 E q(6, C), where 

Q(6, C )  = (4: R x T  + RS; z, t) x(t)'z P(dz)S(dt) = C}, 

a one-step-M-estimator with a score function 11, is asymptotically normally dis- 
tributed for all contaminated error distributions, i.e. 

L ( O ( P N  - P(PB)Q~N) N(b(11, ( Q N ) ~ ~ i v ) , u 2  V(4,6)) (2) 

for all (QN),vEm E P. 

Thereby the asymptotic covariance matrix is given by 

and the maximum asymptotic bias satisfies 

(see Bickel, 1984; Rieder, 1985, 1987; Kurotschka and Muller, 1992; and Muller, 
199213). This shows that the asymptotic behaviour of a one-step-M-estimator is 
completely determined by its score function. 

Optimal robust estimators for a given bias bound b for the maximum asymptotic 
bias a t  a given design 5 are those which have a score function +a,a solving 

min{tr V($, 6); 4 E q(6, C),  [ l + l l m  5 b} 

The solution is P@-unique and exists if and only if b is greater than or equal to 
bo(6) = rnin{ll.JtJJ,; + E Q(6, C)). A general, but very implicit characterization of 
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these optimal score functions was given by Hampel (1978) and Krasker (1980). 
More explicit characterizations for special designs were given by I<urotschka and 
Miiller (1992) and Miiller (1992a). In Miiller (1992a) it was also shown that the 
classical A-optimal designs are olitimal for these optimal robust estimators. It means 
that a design 6* solving 

is also a solution of 

min{tr V($a,a, 6); 6 E A with bo(6) 5 b), 

and this holds for all bias bounds b 2 bo(6*). Thereby we have bo(6*) 5 bo(6) for all 
6 E A. 

3. O p t i m a l  Bias Bounds  

According to  (2), the asymptotic mean squared error of a one-step-M-estimator with 
a score function $ at a design 6 is equal to 

and, according to  (3), the maximum asymptotic mean squared error is equal to 

To give more or less weight on the maximum asymptotic bias, the mean squared 
error criterion can be generalized in the following sense 

where a ,  y 3 0 and W : R+ + R+ is a convex function. 
Now the optimal bias bound can be defined as the solution b* of 

min{GMSE($b,p, 6*); b 2 bo(6*)). (4) 

In particular, for a = y and w(b) = b2, the solution of (4) will be denoted by b2. It 
is the optimal bias hound for the mean squared error criterion, i.e. is a solution of 

min{MSE($t,,a., S*); b 2 bo(6*)). 

The solution of (4) for a = y and w(b) = b will be denoted by bl. 
In Miiller (1992a) it was shown that the score functions of the optimal robust 

estimators with bias bound b at the A-optimal design 6* have a very simple form and 
that the trace of the corresponding asymptotic covariance matrix, tr V($b,a., 6*), is 
a decreasing, convex function of b with a known first and second derivative. Hence 
GMSE(+a,a-,6*) is also a convex function of b and the minimum point can be 
calculated by Newton's method. 

If we want to minimize GhfSE($b,a, 6) with respect to b for an arbitrary, non- 
A-optimal design, then the problem becomes very complicated, since no explicit 
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formulas for the first and the second derivative are known. The advantage of the 
above definition of an optimal bias bound follows also from the fact that it provides 
the estimator and the design which minimizes the generalized mean squared error 
within all estimators and designs, i.e. ($Jb.,b*, 6') is the solution of 

min(GMSE(4,b); $J E Q(6, C )  and 5 E A).  

4. Examples 

4.1. LINEAR REGRESSION 

In a linear regression model 

Y(t) = P o + P i t  +Z( t )  with t E [-I l l ] ,  

the A-optimal design for estimating the whole parameter vector P is 6* = f (e-1+el). 
According to  Miiller (1992a), the score function of the optimal robust estimator for 
p with the bias bound b > bo(6*) = fi at 6* has the form 

where yb satisfies yb = [2@(b yb) - 1 1 1 4  > 0, while denotes the standard normal 
distribution function. 

As the optimal bias bound with respect to the mean squared error criterion we 
get b2 = 1.8289. For this bias bound the fixed point yb is equal to yb, = 0.2386. The 
optimal bias bound for the generalized mean squared error criterion with cr = 7 and 
w(b)  = b is bl = 1.9934, where yb, = 0.4317. 

4.2. ONE-WAY LAY-OUT 

In a one-way lay-out model 

Y(i) = Pi + Z(i), for i = 1, ..., 4, 

with a control treatment, say 1, and three other treatments, say 2, 3, 4, let consider 
a linear aspect of the form p(P) = (Pl,  P:, - PI, P3 - PI, P4 - PI)'. The A-optimal 
design for estimating this aspect is 6* = 9(2 el + e:, + es + e4). According to Miiller 
(1992a) the score function of the optimal robust estimator for p(P) with the bias 
bound b > bo(6*) = 5@ at 6* has the form 

( l ,  -1, -1, -1)' for t = l 
$b,6*(z1 t )  = sgn(z) 

min{lzl,b~b} . { 
Yb (e1(t) . e ( t ) )  for t # 1 ' 

where yb satisfies yb = [2@(byb) - 1115 > 0. 
As the optimal bias bound with respect to the mean squared error criterion we 

get b2 = 6.4660 with yb, = 0.0675. The optin~al bias bound for the generalized mean 
squared error criterion with a = 7 and w(b) = b is bl = 8.1950 with yb, = 0.1644. 
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