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Abstract

We present a general method of generating continuous fractal interpolation surfaces
by iterated function systems on an arbitrary data set over rectangular grids and estimate
their Box-counting dimension.
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1 Introduction

A fractal interpolation function(FIF) is an interpolation function whose graph is a fractal.
In 1986, by M. Barnsley[2], FIFs were introduced and after that they have widely been used
in many scientific applications like approximation theory(to approximate discrete sequences
of data), image compression, computer graphics, modelling of the natural surfaces(terrains,
metals, planets, water) and so on. On the basis of the construction of fractal interpolation
functions, fractal surfaces are usually generated as graphs of bivariate fractal interpolation
functions(BFIF) and they are called fractal interpolation surfaces(FIS).

In many papers (see [4− 7, 11− 16]) constructions of self-affine FISs are considered, which
are attractors of some iterated function systems(IFSs) associated with a given data set. Mas-
sopust [13] presented the construction of self-affine FISs on triangular data sets, at which the
interpolation points on the boundary data are coplanar. By Geronimo and Hardin [11] this
construction was generalized to allow more general boundary data, and Zhao [16] improved
that.

Papers [14, 15] introduced the construction of an attractor that contains the interpolation
points of a rectangular data set, but generally is not a graph of a continuous function, and in
[8] this problem was solved for the special case where the interpolation points on the boundary
data are collinear. This method was generalized by Malysz [12]. In that article, the free vertical
contractivity factor is constant and the IFS consists of linear horizontal(domain) contraction
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transformations and vertical contraction mappings which are quadratic polynomials. This type
of an IFS was also used by Bouboulis and others [4, 5]. In [6] a general construction of a FIF
in RN was introduced, but that still constrains the domain contraction transformations and
the vertical contractivity factors. To solve these problems, Bouboulis and Dalla [7] introduced
a construction of non self-affine FISs on the basis of fractal curves.

In this paper we introduce a new construction of FISs using an even more general IFS with
a vertical contraction factor function on an arbitrary data set which can generate self-affine
and non self-affine fractal surfaces, and give lower and upper bounds for the (fractal)Box-
counting dimension of the constructed surface. Finally, we consider the generalization of our
construction for a data set over a grid in RN .

2 Construction of the BFIF

Let the data set over the rectangular grid be

P =
{

(xi, yj , zij) ∈ R3; i = 0, 1, . . . ,m, j = 0, 1, . . . , n
}
,

such that x0 < x1 < . . . < xm, y0 < y1 < . . . < yn. Let denote

Nmn = {1, . . . ,m} × {1, . . . , n} , Ix = [x0, xm], Iy = [y0, yn],
Ixi = [xi−1, xi], Iyj = [yj−1, yj ], Eij = Ixi × Iyj , E = Ix × Iy, for (i, j) ∈ Nmn,
Pxα = {(xα, yl, zαl) ∈ P; l = 0, 1, . . . , n } , for α ∈ {0, . . . ,m},
Pyβ = {(xk, yβ , zkβ) ∈ P; k = 0, 1, . . . ,m } , for β ∈ {0, . . . , n},

In R2, we use the metric ρ0 ((x, y) , (x′, y′)) = |x− x′|+ |y − y′| , for (x, y) , (x′, y′) ∈ R2.
We construct an IFS

{
R3;Wij = (Lij , Fij) , i = 1, . . . ,m, j = 1, . . . , n

}
, whose attractor is

the graph of some bivariate interpolation function of the data set P. We define the domain
contraction transformations Lij : E→ Eij , for (i, j) ∈ Nmn by

Lij (x, y) =
(
Lxi (x) , Lyj (y)

)
,

where Lxi : Ix → Ixi , Lyj : Iy → Iyj are contractive homeomorphisms with contractivity
factors axi , ayj obeying

(i) Lxi : {x0, xm} → {xi−1, xi} , Lyj : {y0, yn} → {yj−1, yj} ,

(ii) For any i ∈ {1, . . . ,m− 1} , j ∈ {1, . . . , n− 1} , there exist xk ∈ {x0, xm} , yl ∈ {y0, yn}
such that

Lxi+1 (xk) = Lxi (xk) = xi, Lyj+1 (yl) = Lyj (yl) = yj . (1)

Denote aij = Max
{
axi , ayj

}
, for (i, j) ∈ Nmn. Then aij are contractivity factors of the

mappings Lij .
Let Fij : E×R→ R, for (i, j) ∈ Nmn be defined by

Fij (x, y, z) = d (Lij (x, y)) (z − g (x, y)) + h (Lij (x, y)) , (2)

where d (x, y) is a vertical continuous contraction such that |d (x, y)| < 1 on E, h (x, y) , g (x, y)
are continuous Lipschitz mappings on E with the Lipschitz constants Lh, Lg each satisfying

g (xα, yβ) = zα,β , for (α, β) ∈ {0,m} × {0, n},
h (xi, yj) = zij , for (i, j) ∈ {0, 1, . . . ,m} × {0, 1, . . . , n}.
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Then, the Fij satisfy ’join up’ conditions

Fij (xα, yβ , zαβ) = zσ(Lij(xα,yβ)), for α ∈ {0,m} , β ∈ {0, n} ,

where σ (Lij (xα, yβ)) = σ (xk, yl) = (k, l) , for (k, l) ∈ {i− 1, i} × {j − 1, j} . By (1), (2) we
have on the common borders {xi} × [yj−1, yj ] , [xi−1, xi]× {yj}

Fi+1 j (xk, y, z) = Fij (xk, y, z) , for i ∈ {1, . . . ,m− 1} , j ∈ {1, . . . , n},
Fi j+1 (x, yl, z) = Fij (x, yl, z) , for i ∈ {1, . . . ,m} , j ∈ {1, . . . , n− 1},

where xk, xi, yl, yj obey (1).
Hence, for (i, j) ∈ Nmn the transformations Wij , coincide on common borders. The fol-

lowing theorem shows that the above IFS has an attractor.

Theorem 1 There exists some metric ρ that is equivalent to the Euclidean metric on R3 such
that the Wij are contractions for all (i, j) ∈ Nmn with respect to ρ.

Proof. Let denote dmax = MaxE |d (x, y)| , dmin = MinE |d (x, y)| . We define a metric ρ on
R3 for (x, y, z) , (x′, y′, z′) ∈ R3 by

ρ ((x, y, z) , (x′, y′, z′)) = |x− x′|+ |y − y′|+ θ |z − z′| ,

where θ is a positive real number which is specified below. It is obvious that this metric is
equivalent to the Euclidean metric on R3.

The distance between two points Wij (x, y, z) and Wij (x′, y′, z′) , for (i, j) ∈ Nmn is as
follows:

ρ (Wij (x, y, z) ,Wij (x′, y′, z′))

= |Lxi (x)− Lxi (x′)|+
∣∣Lyj (y)− Lyj (y′)

∣∣+ θ |Fij (x, y, z)− Fij (x′, y′, z′)|
≤ |axi | |x− x′|+

∣∣ayj ∣∣ |y − y′|+
θ
(
dmax |z − z′|+ dmaxLg (|x− x′|+ |y − y′|) + Lh

(
|axi | |x− x′|+

∣∣ayj ∣∣ |y − y′|))
= (|axi |+ θ (dmaxLg + Lh |axi |)) |x− x′|+

(∣∣ayj ∣∣+ θ
(
dmaxLg + Lh

∣∣ayj ∣∣)) |y − y′|+
θdmax |z − z′| . (3)

We choose

θ =
1−Max

{
|axi | ,

∣∣ayj ∣∣ ; i = 1, . . . ,m, j = 1, . . . , n
}

2Max
{
dmaxLg + Lhaxi , dmaxLg + Lhayj ; i = 1, . . . ,m, j = 1, . . . , n

} .
Then, by(3) it follows that

ρ (Wij (x, y, z) ,Wij (x′, y′, z′)) ≤ a |x− x′|+ a |y − y′|+ θdmax |z − z′|
≤ Max {a, dmax} ρ ((x, y, z) , (x′, y′, z′)) ,

where

a =
1 + Max

{
|axi | ,

∣∣ayj ∣∣ ; i = 1, . . . ,m, j = 1, . . . , n
}

2
< 1.

This complets the proof. 2
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Let denote

C (E) =
{
ϕ ∈ C0 (E) : ϕ (xi, yj) = zij , i = 0, . . . ,m, j = 0, 1 . . . , n

}
,

F (E) = {f |f : E→ R} .

Defining an operator T : C (E)→ F (E) by

(Tϕ) (x, y) = Fij

(
L−1
xi (x) , L−1

yj (y) , ϕ
(
L−1
xi (x) , L−1

yj (y)
))

, for (x, y) ∈ Eij ,

it can be easily proved that the operator T has the following properties:

(i) Tϕ ∈ C (E)

(ii) T is contractive in the sup-norm ‖·‖∞ with contractivity factor dmax.

Thus, according to the fixed point theorem in the complete metric space C (E), the operator
T has a unique fixed point f ∈ C (E) with

f (Lij (x, y)) = Fij (x, y, f (x, y)) , for (x, y) ∈ Eij , (i, j) ∈ Nmn.

This means that
Gr (f) =

⋃
(i,j)∈Nmn

Wij (Gr (f)) ,

where Gr (f) is the graph of the function f .
Therefore, Gr (f) is the attractor of the IFS

{
R3;Wij , i = 1, . . . ,m, j = 1, . . . , n

}
defined

above. This gives the following theorem:

Theorem 2 There exists a bivariate fractal interpolation function (BFIF ) of the data set P
whose graph is the attractor of the IFS defined above.

Remark 1 To be simple, let the endpoints of interval [x0, xm] be 0 and 1. Then, the above
Lxi can take two ways of corresponding endpoints of intervals as follows:

L(1)
xi (α) =

{
xi−1+α i : odd
xi−1+(1−α) i : even

or

L(2)
xi (α) =

{
xi−1+(1−α) i : odd
xi−1+α i : even

for α ∈ {0, 1} . L(1)
yj , L

(2)
yj are the same forms. Thus, for Lij there are 4 cases(Figure 1):(

L(1)
xi , L

(1)
yj

)
,
(
L(1)
xi , L

(2)
yj

)
,
(
L(2)
xi , L

(1)
yj

)
,
(
L(2)
xi , L

(2)
yj

)
.

In the paper[12], Lij has the form
(
L

(1)
xi , L

(1)
yj

)
, where L(1)

xi , L
(1)
yj are linear mappings.

Remark 2 d (Lij (x, y)) is the vertical contraction factor function on subdomain Eij . In (2),

d (Lij (x, y)) can be replaced by d
(
Luxi (x) , Lvyj (y)

)
, where

Luxi (x) =
{
L
θi1
xi1
◦ · · · ◦ Lθiuxiu (x) u ∈ Z+

x u = 0
(4)

and θik ∈ {−1, 1} , ik ∈ {1, . . . ,m} , k = 1, . . . , u. Lvyj (y) is of the same form. This can im-
prove more flexibility of the IFS, but normally it’s attractor is not the graph of some continuous
fractal interpolation function, excepting the case where in (2) d is given by d

(
Lxi (x) , Lyj (y)

)
and d (x, y) from (4).
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Figure 1: Shaps of L
(1)
xi , L

(2)
xi

3 Box-counting dimension of the graph of BFIF

In this section, we get lower and upper bounds for the Box-counting dimension of the graph
of the fixed point f of T in the case where a data set is

P =
{(

x0 +
xn − x0

n
i, y0 +

yn − y0
n

j, zij

)
∈ R3; i, j = 0, 1 . . . , n

}
.

The calculation of the fractal dimension is similar to that one in [9, 12]. Since there exists a
bi-Lipschitz mapping which maps a rectangle [0, 1]× [0, 1] to some rectangle E ⊂ R2, we can
assume that E = [0, 1]× [0, 1]. Then P =

{(
i
n ,

j
n , zij

)
∈ R3; i, j = 0, 1 . . . , n

}
. We denote

Fij (x, y, z) = d (x, y) z + ϕ (x, y) , for (x, y, z) ∈ E×R, (5)

where ϕ (x, y) = h (Lij (x, y)) − d (Lij (x, y)) g (x, y), which is a Lipschitz mapping with
Lipschitz constant b = Lh 1

n + dmaxLg.
Let the maximum range of a function f be denoted by

Rf [M] = supu,v∈M |f (u)− f (v)| for M ⊂ R2,

and denote D =
{(

i
n ,

j
n

)
∈ E;

(
i
n ,

j
n , zij

)
∈ P, i, j = 0, 1, . . . , n

}
,

L (E) =
⋃

(k,l)∈Nnn

Lkl (E) , Lk (E) = L ◦ · · · ◦ L︸ ︷︷ ︸
k−times

(E) .

Lemma 1 Let f be the BFIF in Theorem 2. If dmax < 1, then

Rf [E] ≤ 2n2 dmax∆z + 2 (dmaxLg + Lh)
1− dmax

,

where ∆z = Max {|zkl − z00| ; k, l = 0, 1, . . . , n} .
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Proof Let

Λk = Max
{
|f (u)− z00| ;u ∈ Lk−1 (D)

}
,

λk = MaxNnn

{∣∣f (u)− zσ(Lij(0,0))

∣∣ ;u ∈ Lk−1 (D) ∩ Eij
}
,

where L0 (D) = D.
Then, for u ∈ Lk (D) ∩ Eij ,

f (u) = Fij (u′, f (u′)) = d (u) [f (u′)− g (u′)] + h (u) ,

where u′ = L−1
ij (u) ∈ Lk−1 (D) ∩ Eij , and

f (u)− zσ(Lij(0,0)) = d (u) [(f (u′)− z00) + (g (0, 0)− g (u′))] + h (u)− h (Lij (0, 0)) ,

where g (0, 0) = z00, h (Lij (0, 0)) = zσ(Lij(0,0)). Therefore, we obtain

λk+1 ≤ dmaxΛk + 2 (dmaxLg + Lh) .

Since Λk ≤ Λ1 + λk, by induction it follows that

λk+1 ≤ (dmaxΛ1 + 2 (dmaxLg + Lh))

(
k−1∑
α=0

dαmax

)

≤ dmaxΛ1 + 2 (dmaxLg + Lh)
1− dmax

.

Hence, we get

supEij

∣∣f (u)− zσ(Lij(0,0))

∣∣ ≤ dmaxΛ1 + 2 (dmaxLg + Lh)
1− dmax

.

That gives the result. 2

Let Eik,ik−1,...,i1 = Lik ◦Lik−1 ◦ · · ·◦Li1 (E) for i1, . . . , ik ∈ Nnn for any non-negative integer
k and Ei0 = E.

Lemma 2 If dmax > 1
n , then there exists H ∈ R such that

Rf
[
Eik,ik−1,...,i1

]
≤ Hdkmax.

Otherwise
Rf
[
Eik,ik−1,...,i1

]
≤ 1
nk
Rf [E] + bk

1
nk−1

.

Proof. By (5), we obtain

Rf
[
Eik,ik−1,...,i1

]
≤ dmaxRf

[
Eik−1,...,i1

]
+ b

(
1
n

)k−1

Therefore, by induction

Rf
[
Eik,ik−1,...,i1

]
≤ dkmaxRf [E] + b

k−1∑
α=0

dαmax

(
1
n

)k−1−α

. (6)
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If dmax > 1
n , then by (6), we have

Rf
[
Eik,ik−1,...,i1

]
≤ dkmax

(
Rf [E] +

b

dmax

k−1∑
α=0

(
1

dmaxn

)k−1−α
)

≤ dkmax

Rf [E] +
b

dmax

(
1− 1

dmaxn

)
 = Hdkmax ,

where

H = 2n2 2 (dmaxLg + Lh) + dmax∆z
1− dmax

+
b

dmax

(
1− 1

dmaxn

) .
Otherwise, replacing dmax by 1

n in (6) gives the inequality

Rf
[
Eik,ik−1,...,i1

]
≤ 1
nk
Rf [E] + bk

1
nk−1

. 2

Theorem 3 Let f be the BFIF of the data set P defined above.

(i) If there exists β ∈ {0, . . . , n} (or α ∈ {0, . . . , n}) such that the points of Pyβ (or Pxα) are
non-collinear and dmin > 1

n , then

3 + logdminn ≤ dimBGr (f) ≤ 3 + logdmaxn . (7)

(ii) If dmax ≤ 1
n , then dimBGr (f) = 2.

Proof. As usual, dimBGr (f) denotes the Box-counting dimension of graph(f) and is defined
by

dimBGr (f) = lim
δ→0

logNδ (Gr (f))
− log δ

(if this limit exists), where Nδ (Gr (f)) is any of the following [9]:

(i) the smallest number of closed balls of radius δ that cover Gr (f);

(ii) the smallest number of cubes of side δ that cover Gr (f);

(iii) the number of δ-mesh cubes that intersect Gr (f);

(iv) the smallest number of sets of diameter at most δ that cover Gr (f);

(v) the largest number of disjoint balls of radius δ with centres in Gr (f).

(i) By the assumption, we may assume without loss of generality that q1 =
(
k1
n ,

j
n , zk1j

)
,

q2 =
(
k2
n ,

j
n , zk2j

)
, q3 =

(
k3
n ,

j
n , zk3j

)
are non-collinear. Let Wik,...,i1 = Wik ◦ · · · ◦Wi1 , for

i1, . . . , ik ∈ Nmn. Then, the points Wik,...,i1 (qi) (i = 1, 2, 3) are contained in Wik,...,i1 (Gr (f)) .
The height of the triangle with these vertices is at least hdkmin, where h is the distance between
the point q2 and an intersection point at which the vertical line to the rectangle E through the
point q2 intersects the segment [q1, q3] . Thus, by Lemma 2 the range of the function f over
Eik,...,i1 satisfies

hdkmin ≤ Rf [Eik,...,i1 ] ≤ Hdkmax.
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Let εk =
(

1
n

)k and N (εk) denote the smallest number of cubes of the side length εk which
cover Gr (f). Then,

n2k
(
hdkminn

k
)
≤ N (εk) ≤ n2k

(
2 +Hdkmaxn

k
)
.

Taking logarithms and using the definition of the Box-counting dimension gives (7).
(ii) If dmax ≤ 1

n , then by Lemma 2, we get

N (εk) ≤ n2k

(
2 +

(
1
nk
Rf [E] + bk

1
nk−1

)
nk
)

= n2k (2 +Rf [E] + bkn) .

Therefore, dimBGr (f) ≤ 2. Since the Box-counting dimension of any surface is at least 2,
dimBGr (f) = 2. 2

Remark 3 If for all (i, j) ∈ Nmn, Lxi , Lyj are similitudes, for all (α, β) ∈ {0, . . . ,m} ×
{0, . . . , n} , the points of Pxα , Pyβ are collinear and d (x, y) = d0, then dimBGr (f) = 2.

4 Examples

In this section, we consider the special case where the Lij are quadratic transformations, Fij
are power functions and E = [0, 1]× [0, 1].

L
(1)
xi , L

(2)
xi are given by

L(1)
xi (x) =

[
(−1)i+1 (xi − xi−1) + (−1)i b

]
x2 + (−1)i+1

bx+ xi−γ(i),

L(2)
xi (x) =

[
(−1)i (xi − xi−1) + (−1)i+1

b
]
x2 + (−1)i bx+ xi−1+γ(i),

where b obeys 0 ≤ b ≤ 2 (xi − xi−1) (b 6= xi − xi−1) and γ (i) = i mod 2. L(1)
yj , L

(2)
yj are of the

same form. In the case where b = 2 (xi − xi−1)

L(1)
xi (x) = (−1)i (xi − xi−1)x2 + (−1)i+1 2 (xi − xi−1)x+ xi−γ(i) (8)

and

L(2)
xi (x) = (−1)i+1 (xi − xi−1)x2 + (−1)i 2 (xi − xi−1)x+ xi−1+γ(i). (9)

If b = (xi − xi−1), then

L(1)
xi (x) = (−1)i+1 (xi − xi−1)x+ xi−γ(i),

L(2)
xi (x) = (−1)i (xi − xi−1)x+ xi−1+γ(i),

and this is exactly the example [12]:

L(1)
xi (x) =

(−1)γ(i+1)

n
x+

i− γ (i)
n

, (10)

L(1)
yj (y) =

(−1)γ(j+1)

n
y +

j − γ (j)
n

. (11)

For (i, j) ∈ Nmn Fij is as follows:

Fij (x, y, z) = d
(
Lxi (x) , Lyj (y)

)
(z − g (x, y)) + h

(
Lxi (x) , Lyj (y)

)
,
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where

g (x, y) = z00 (1− x)s11 (1− y)t11 + z0n (1− x)s12 yt12

+zm0x
s13 (1− y)t13 + zmnx

s14yt14 ,

h (x, y) = zσ(Lij(0,0))

(
1− L−1

xi (x)
)s21 (1− L−1

yj (y)
)t21

+zσ(Lij(0,1))

(
1− L−1

xi (x)
)s22 (

L−1
yj (y)

)t22
+zσ(Lij(1,0))

(
L−1
xi (x)

)s23 (1− L−1
yj (y)

)t23
+zσ(Lij(1,1))

(
L−1
xi (x)

)s24 (
L−1
yj (y)

)t24
and sij , tij ∈ R+, i, j ∈ {1, 2, 3, 4}, and d (x, y) is any continuous function obeying |d (x, y)| <
1. In [12] Fij is the case where sij = tij = 1, for i, j ∈ {1, 2, 3, 4} and d (x, y) = d0. Figure 2
shows FISs constructed according to the above conditions on the data set [12], i.e.
E =

{
(0, 0, 0) ,

(
0, 1

2 , 0
)
, (0, 1, 0) ,

(
1
2 , 0, 0

)
,
(

1
2 ,

1
2 , 1
)
,
(

1
2 , 1, 0

)
, (1, 0, 0) ,

(
1, 1

2 , 0
)
, (1, 1, 0)

}
.

5 Construction in the N-dimensional space RN

Since the principle of the construction of a FIF in RN is similar to that in R3, we introduce
only the results.

Let now the data set be denoted by

P =
{

(x1,i1 , x2,i2 , . . . , xM,iM , zi1,i2,...,iM ) ∈ RM+1; ik = 0, 1, . . . ,mk, mk ∈ N, k = 1, . . . ,M
}
,

where xk,0 < xk,1 < . . . < xk,mk for k ∈ {1, . . . ,M} , M, mk ∈ N, and denote Pk,ik =
{(x1,i1 , . . . , xk,ik , . . . , xM,iM , zi1,...,ik,...,iM ) ∈ P; il = 0, . . . ,ml, l = 1, . . . , k − 1, k + 1, . . . ,M} ,
for k ∈ {1, . . . ,M} , ik ∈ {0, . . . ,mk}. We use the following notations;

Ik = [xk,0, xk,mk ] , Ik,l = [xk,l−1, xk,l] ,
Ei = I1,i1 × . . .× IM,iM ,

Ω = {(1, i1) , . . . , (M, iM ) ; ik = 1, . . . ,mk, k = 1, . . . ,M} , (12)

where i ∈ Ω, ik ∈ {1, . . . ,mk} , k ∈ {1, . . . ,M}. Then E = I1 × . . . × IM =
⋃

i Ei, Ik =⋃mk
l=1 Ik,l.

We construct an IFS
{
RM+1; Wi = (Li, Fi) ; i ∈ Ω

}
. The domain contraction transforma-

tions Li : E→ Ei with contractivity factors ai are defined by

Li (x1, . . . , xM ) = (L1,i1 (x1) , . . . , LM,iM (xM )) ,

where Lk,ik : Ik → Ik,ik , for ik ∈ {1, . . . ,mk} , k ∈ {1, . . . ,M} are contractive homeomor-
phisms with the contractivity factors ak,ik satisfying

(i) Lk,ik : {xk,0, xk,mk} → {xk,ik−1, xk,ik} , ik ∈ {1, . . . ,mk},

(ii) For any xk,ik ∈ {xk,1, . . . , xk,mk−1} , there exist xk,l ∈ {xk,0, xk,mk} such that

Lk,ik+1 (xk,l) = Lk,ik (xk,l) = xk,ik , (13)

and ai = Max {a1,i1 , . . . , aM,iM } .
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Figure 2: FISs: In (a) , L
(1)
xi , L

(1)
yj are defined by (10), (11). In (b), Lij are given by (8), (9) : (b) :(

L
(1)
xi , L

(1)
yj

)
. Here sij = tij = 2.5, d (x, y) = 0.9. dimBGr (f) ≈ 2.848.
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Figure 3: FISs: In (c), (d), Lij are given by (8), (9): (c) :
(
L

(1)
xi , L

(2)
yj

)
, (d) :

(
L

(2)
xi , L

(2)
yj

)
. Case(

L
(2)
xi , L

(1)
yj

)
is symmetric to (c). Here sij = tij = 2.5, d (x, y) = 0.9. dimBGr (f) ≈ 2.848.
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We define the vertical contraction functions Fi : E×R→ R by

Fi (x, z) = d (Li (x)) (z − g (x)) + h (Li (x)) , for (x, z) ∈ E×R, (14)

where d (x) obeys |d (x)| < 1 and g, h are continuous Lipschitz mappings on E with Lipschitz
constants Lh,Lg satisfying

g (x1,e1 , . . . , xM,eM ) = ze1,...,eM for (e1, . . . , eM ) ∈ {0,m1} × . . .× {0,mM}, and
h (x1,i1 , . . . , xM,iM ) = zi1,...,iM for (i1, . . . , iM ) ∈ {1, . . . ,m1} × . . .× {0, . . . ,mM}.

Then, the Fi satisfy ’join-up’ conditions

Fi (x1,e1 , . . . , xM,eM , ze1,...,eM ) = zσ(Li(x1,e1 ,...,xM,eM )),

where σ (Li (x1,e1 , . . . , xM,eM )) = σ (x1,k1 , . . . , xk,kM ) = (k1, . . . , kM ) , (e1, . . . , eM ) ∈ {0,m1}×
. . .× {0,mM}, (k1, . . . , kM ) ∈ {i1 − 1, i1} × . . .× {iM − 1, iM} .

Consequently, Wi are contractive transformations for all i ∈ Ω with respect to some metric
which is equivalent to Euclidean metric on RM+1. Furthermore, there exists an interpolation
function f : E→ R of a data set P whose graph is the attractor of the above IFS. The following
theorem gives the Box-counting dimension of the graph of this function f in the case where
the data set

P =
{(

i1
n
, . . . ,

iM
n
, zi1,...,iM

)
∈ RM+1; ik = 0, 1, . . . , n, k = 1, . . . ,M

}
and E = [0, 1]M .

Theorem 4 Let f be the above FIF of the data set P.

i) If there exists k ∈ {1, . . . , n} such that the points of the data set Pk,ik are not in M − 1
dimension space and dmin > 1

n , then

M + 1 + logdminn ≤ dimBGr (f) ≤M + 1 + logdmaxn .

ii) If dmax ≤ 1
n , then dimBGr (f) = M, where dmax = MaxE |d (x)|, dmin = MinE |d (x)|.
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