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Abstract
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A generalization of the classical A-optimality criterion for designs is derived by defining optimal designs for
those asymptotically linear (AL-) estimators which are optimally robust in the sense of minimizing the trace
of the covariance matrix under bounded bias in an infinitesimal conditionally contaminated normal linear
model. It is proved that the A-optimal designs are also optimal in the generalized, robust sense. For the
proof special characterizations of the influence functions of the optimal robust AL-estimators for A-optimal
designs and designs with finite support based on characterizations in Hampel (Proe. ASA Stat. Comp.
Section, 1978), Krasker (Econometrica 48, 1980) and Kurotschka and Müller (Ann. Statist. 20, 1992) are
investigated. In particular a very simple form of optimal influence functions at A-optimal designs is derived.
This provides the side reseult that for estimating the whole parameter vector at A-optimal designs the
Huber and the Hampel-Krasker estimator coincide.
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1. Introduction and main result

We consider a general linear model X nN(tn)=a(tn)Tß+ZnN,n=l, ... ,N,NEN,
where

t1,···,tN ET
a: T --+ IRr
ßE~r

ZnN
XnN(tn)

are different experimental conditions,
the vector of known 'regression' functions,
the vector of unknown parameters,
the error variables,
the observations at tn •
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Here t l, ... , tN are realizations of independent random elements Tl' ... ' TN which are
identically distributed according to a given probability measure b on (T, §") where
!!7 is a suitable c-algebra on the experimental region T. In classical models,
(ZlN' Tl), ... ,(ZNN, TN) are independent and identically distributed according to
Pb:= n(O, 1) ® b where n(O,l) is the standard normal probability measure on ~. To
describe contamination ofthe error variables ZnN, we take (ZlN' Tl), ... ,(ZNN, TN) to
be independent and identically distributed according to a contaminated distribution
PN,b:=kN® b where the Markov kernel kN has the form

kN(dx, t) = (1-N- l /2 e(t))n(O, l)(dx) +N- l/2 e(t)k(dx, t)

for almost all NE N. The function s: T~ [0 (0) determines conditionally on te T the
probabilities of contamination, and the Markov kernel k determines conditionally on
t e T the form of the contamination distribution. On the average the proportion of
contamination shall be less than a positive constant R, i.e., Jedb ~ R, providing
a conditionally contaminated linear model, also studied by Bickel (1984), Rieder
(1985, 1987) and Kurotschka and Müller (1992). For contiguity properties the
conditional contamination distribution k is taken to have the form k(dx, t) =
j(x,t)n(O,l) (dx), with esssuPle(t)(j(x,t)-1)1< 00. The distributions ((PN,b)N)NeN of
((ZlN' Tl), ... , (ZNN, TN))NeN define a class QJR,b which states an infinitesimal con­
tamination neighbourhood around the normal model ((Pb)N)Net~J, with radius R.

If the experimenter has the option between several distributions b then b can
be subjected to optimization criteria and will be interpreted as a design, because
b provides random designs (Tl, ... , TN) which have asymptotic properties like a deter­
ministic design b, see Kurotschka and Müller (1992). Here such 'designs' bare
characterized which are optimal for robust estimation of a linear aspect <p(ß) = Cß
(CE ~s xr) of the unknown parameter vector ß in the conditionally contaminated
linear model.

To estimate ß with observations X IN(Tl), ... , XNN(TN) in the contaminated linear
model, Bickel (1981, 1984) and Rieder (1985, 1987) investigated the asymptotic
behaviour of asymptotically linear (AL-) estimator sequences, define optimal robust
AL-estimators as those which minimize the trace of the asymptotic covariance matrix
among all AL-estimators, with asymptotic bias bounded by some given constant, and
characterize those optimal robust AL-estimators. In particular if the bias bound is
greater than the minimum possible bias, the optimal robust AL-estimators have
influence functions which Hampel (1978) and Krasker (1980) have proposed. These
results can be extended to estimation of a linear aspect cp(ß) = CßE ~s as Kurotschka
and Müller (1992) have shown:

AL-estimators (cPN)NeN for <p(ß)=Cß with influence function t/J are estimators
which fulfill
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in probability ((Pc5)N)NEN where l/J is an element of the set

P(<5):= {l/J: ~ x T ---+~s; f Il/J(x,t)1 2 Pc5(dx, dt) < 00,

f l/J(x,· ) n(O, 1) (dx) = 0, Jl/J(x, t) a(t)Tx Pc5(dx, dt) = C}.

Asymptotically AL-estimators for cp(ß) are normally distributed, i.e.,

sup {lim sup IN 1
/
2 Jl/J dP N,c5l; ((P N,c5)N)NENE QJ R'c5} = R Ill/J Ilc5'

N-CX)

127

where Ill/J Ilc5 denotes the P c5-essential supremum of Il/J(x,t)l·
The Gauss-Markov estimator is an AL-estimator with unbounded asymptotic bias

because its influence function is l/J(x,t) = CI (<5) - a(t)x, where I (<5):= Ja(t)a(t)T <5 (dt) is
the information matrix and M- E~n x m denotes ag-inverse of M E~m x ". i.e.,

MM- M = M. For robust AL-estimators the asymptotic bias should be bounded by

some given bound b (without loss of generality we set R = 1). Optimal robust
AL-estimators with bias bound bare those which have an influence function

l/Jb, c5 solving

(1)

where tr V( l/J, (5) is the trace of the asymptotic covariance matrix V( l/J, (5) := Jl/Jl/JT dPs

and l/Jb(<5):= {l/JE P(<5); Ill/J Ilc5 ~ b}.
Hence, if L1 is a subset of L1 *, the set of all distribution l5 on T at which cp(ß) is

identifiable i.e., there exists K EIRS
x r with C = KI (l5), we call a design l5* optimal in L1 for

robust estimation with bias bound b if and only if at <5* the trace of the asymptotic
covariance matrix of the optimal robust AL-estimator with bias bound b is minimized

among all <5EL1.

Definition. A design <5* is called optimal in L1 for robust estimation with bias bound b,
briefl y called A(b)-optimal in L1, if and only if

<5* = arg min{inf{tr V(t/J, (5); t/JEPb(<5)}; <5EL1} (inf4>:=oo). (2)

Because for b~ bo((5):=min { " t/J 11c5; t/J E 'l' (<5)} a solution of (1) always exists (see, for
example, Bickel, 1984, p. 1355; or Kurotschka and Müller, 1992, Theorem 1) every
solution of (2) is a solution of
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and vice versa. Because for b = 00 and bEL1* the influence functions of the
Gauss-Markov estimators t/J oo,~(x, t):= CI(b)- a(t)x are solutions of (1), the well­

known classical A-optimal designs l5A which are defined by

bA = arg min {tr CI(b)- CT
; bEL1}

are optimal for estimation without bias bound, i.e., A(oo)-optimal, so that A(b)­
optimality is a generalization of A-optimality. The following theorem shows that

A-optimal designs are also optimal for robust estimation with bounded bias.

Theorem. Let bo(L1):=min(bo(l5 ); l5EL1} and either
(A) L1 = {bEL1*; l5 has a finite support} and b~bo(L1), or
(B) L1 = L1 *, b = bo(L1) and a: T --+ ~r is continuous, or
(C) L1 = L1*, b~ bo(L1 ), a: T --+~r is continuous and T compact.

If L1 includes an A-optimal design, then l5* is A-optimal in L1 if and only if l5* is optimal in
L1 for robust estimation with bias bound b, i.e., A (b)-optimal in L1.

Essential to the proof of the theorem are calculations of the trace of the covariance

matrix V(tjlb,~, l5). They are based on special characterizations of the optimal robust
influence functions t/Jb, s for A-optimal designs and for designs with finite support.

These characterizations use the characterizations for arbitrary linear aspects

cp(ß)=Cß given in Kurotschka and Müller (1992). In particular it is shown that for

A-optimal designs the optimal robust influence functions have the simplest form, only

depending on a single one-dimensional fixed point. This entails that at A-optimal
designs, estimating the whole parameter vector ß with bias bound greater than the

minimum bias bound, i.e., b>bo(l5):=min{lltjI"~; tjlEP(l5)}, the Hampel-Krasker
influence functions of Hampel (1978) and Krasker (1980) coincide with the influence

functions of Huber (1973) (see also Huber, 1981; and Hampel et al., 1986). Hence
Huber's estimators appear to be optimal in this context for special designs. For
b = bo(l5) and A-optimal designs there is also a relation to the result of Ronchetti and

Rousseeuw (1985) concerning most Bu-robust estimators.
Because the characterizations of optimal robust influence functions may be of

interest in their own right especially for A-optimal designs they are given in Section 2.
In Section 3 the theorem is proved under the various conditions (A), (B) and (C). In

Sections 4 and 5 two examples, the quadratic regression and a two-way classification
model, are given.

2. Characterization of optimal robust estimators

Let l/J denote the distribution function of the standard normal distribution and let
y(t) be a positive fixed point of

ft(y) := (2l/J (by) - 1) leI (l5) - a(t)1- 1.
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For designs l5 which have a finite support with linearly independent regressors
Kurotschka and Müller (1992, Theorem 2) show that t/Jt,d with

(3)

CI(l5)-a(t) sgn(x) (!1t)1/2 for b = ICI(l5)- a(t)1 (!1t)1/2,

CI (15) - a(t) sgn(x)min {lxi, by(t)} für b> ICI(15)- a(t)1 (11t)1/2 >0,
ICI (l5) - a(t) Iy(t)

o otherwise

is a solution of(1). Thus it is the influence function of an optimal robust AL-estimator

with bias bound b at l5. Lemma 1 below shows that influence functions of the form (3)
are also optimal for arbitrary A-optimal designs. (Note that there exist A-optimal

designs with a support on which the regressors are not linearly independent, see for
instance the example in Section 4.) The support supp(l5) of l5 is the smallest closed set
D c T with l5(D) = 1. Moreover we define L1 n := {l5 E L1 *; supp(l5) = D} for D c T.

Lemma 1. Let a :D-+ ~r be continuous and l5 E L1 o-

(a) Then we have bo(l5)~(trC1(l5)-CT!1t)1/2, with equality if and only if l5 is
A-optimal in L1 n .

(b) 1f l5 is A-optimal in L1 n and b~ bo(b), then tfJt,d is a solution of (1).

Proof. Because of

(see Kurotschka and Müller, 1992, Lemma 2; and for C = Er x r the identity matrix,
Rieder, 1985, Theorem 3.7), one gets for Q = CI(l5)- and t/Jo, d:=Qa(t) sgn(x) (!1t)1/2

11 t/J 0, () 11 s~ bo(l5) ~ tr QC T (JI Qa(t) I b(dt)) - 1 (!1t)1/2

~ tr QCT(JI Qa(t)12l5(dt))-1/2(!1t)1/2 =(tr C1(l5)- CT!n)1/2,

with equality if and only if ICI(l5)-a(t)1 2=trC1(l5)-CT l5-a.e., i.e.,

sUPtenlCI(l5)- a(t)1 2= tr CI(l5)- CT
. Since the equivalence theorem for linear optimality

is also true for estimating cp(ß)= Cß in L1 n (see, for example, Federov, 1972, p. 125),

assertion (a) folIows. Moreover if l5 is A-optimal in L1 n , then for b= bo(l5 ) with
Q1=CI(l5)- we have

where
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Furthermore for b > bo(l5) with Ql = CI(l5)- (I CI(l5)- a(t)ly(t))-1 for some t fulfilling
ICI(l5)-a(t)12=trCI(l5)-CT we have

t/J:, l5(x, t) = Ql a(t) sgn(x) min {IXI, bl Ql a(t) I-I} P l5-a.e.,
where

C=JQl a(t)a(t)T(2cP(bIQl a(t)I- 1)-1)l5(dt).

Hence Theorem 1 in Kurotschka and Müller (1992) proves assertion (b) (see also for
C=Er x r Bickel, 1981, 1984; and Rieder, 1985, 1987). D

Remark 1. Because A-optimal designs are characterized by ICI(b)- a(t)1 2 =
tr CI(l5)- C T l5-a.e., form (3) of the optimal influence functions reduces for A-optimal
designs to

l/J:,l5(x, t):=

CI(l5)- a(t)sgn(x)(!1t)1/2 for b=(trCI(l5)-CT!1t)1/2,

CI (15) ~ a(t) sgn(x) min {Ix I, bYb} für b > (tr CI (15) - CT!1t )1/2,

Jtr CI(l5)-cTYb

where Yb is a positive fixed point of

Therefore, for A-optimal designs l5 and b > bo(l5), only one one-dimensional fixed
point Yb for l/J:,b must be determined, and l/J:,b(X, t) is of the form Qa(t)1J(x) with
1J(x)=sgn(x).min{lxl,c} which Huber (1973) has proposed for estimating the whole
parameter vector ß. For estimating ß with bias bound b = bo(l5 ), Theorem 2 of
Ronchetti and Rousseeuw (1985) can be deduced from Lemma 1, replacing l5 and a(t)
by the modified design l5m(dt):=(Jla(t)Il5(dt))-lla(t)Il5(dt) and the modified regressors
am(t):=Ia(t)1-1 a(t), so that bm is A-optimal for the modified regressors am(t) (see
Müller, 1992, p. 113).

Remark 2. If F: [0, (0)3 ---+~ is defined by

F(a, b, y):= a(2cP( by) -1) - Y,

and f implicitly given by F(a,b,f(a,b}}=O and f(a,b}>O then we have
y(t) =f(1 CI(l5)- a(t)l-l, b). Further, with

g(y):= Jmin {]x], y}2 n(O, 1) (dx)
and

{
! 1t for a = 1t/(2b2),

vb(a):= g(bj(a1/2, b))aj(a1/2, b)~ 2 für a> 1t/(2b2),

we get, for influence functions t/J:,lJ of form (3) at designs with finite support D,

tr V(l/J:, l5, b)= L ICI (b)- a(t)12 b({t} )Vb( ICI (b)- a(t)1- 2 ).

teD

(4)
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For designs l5 which are A-optimal in L1 n this reduces to

where
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(5)

b rr a:

The latter is seen as folIows. Setting

r(y) := g(y) (2cI>(y) - 1)- 2,

and

lim vb((tr CI(l5)- CT)- 1)=11t.
b! bo(ö)

b(e):=~ 4>-1(e~a}

we have Vb(a 2)= r(bj(a, b)), F(a,b(e),e)=O and, with the rule of L'Höpital,

lim r(y)=11t
y!O

In particular this provides

and . 1Ahmb(e)=- -.
E! 0 a 2

lim f(a, b)= limf(a, b(e))= lim s = O.
b!a-l~1t/2 E!O E!O

Therefore, and because f(a, b) is strictly increasing in b (0/obf(a, b)> 0), we get

lim vb(a) =!1t
b! ~1t/(2a)

and lim vb(a) = 1.
b-oo

Setting a(e):= e(2cI>( be)-1) -1, we can see similarly that Vb(') is continuous on
[1t/(2b 2

), (0) with

Remark 3. If for finite support D = {L1, ... , LI} the regressors a(L1)' ... , a(LI) are not
linearly independent, i.e., p=rg(An)<I =card(D) where An:=(a(L1)1···la(LI))T, then
there exists Bn=(b11"'lbI)TE~IXI-p with rg(AnIBn)=I and AnTBn=OrxI-p'
Defining

b(t):=OE~I-p for tET/D,

we can regard the extended model X*(t)=(a(t)Tlb(t)T)ß*+Z* with ß*ErHr+ I- p

instead of the model X(t)=a(t)Tß+Z, and the aspect CPG(ß*)=(CIG)ß*E~s

with GE~sxI-p instead of cp(ß)=CßE~s. In the extended model the regressors
(a(L1)T Ib(L1)T)T, ... ,(a(LI)T Ib(LI)T)T are linearly independent, whence Theorem 2
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of Kurotschka and Müller (1992) can be applied. For application of that theorem
define

J(J):=f(~~;~}a(t)T Ib(t)T)J(dt),

PG(l5):= {t/JE P(l5); Jt/J(x, t)b(t)TXP «5 (dx, dt) = G},

bo(l5, G):=min { " t/J "«5; t/J EPG(l5)},

_ (a(t»)y(t, G):=(C1 G)J(J) b(t) ,

and

y(t, G)sgn(x) (!n)1/2 for b = Iy(t, G)I(!n)1/2,

* (t G) sgn(x) min {Ix I, bYG(t)} f b> I (t G)I(~ )1/2> 0t/JG,b,6(X, t):= y, Iy(t, G)IYG(t) or y, 2 1t ,

o otherwise,

where YG(t) is a positive fixed point of

Then the influence function t/J~,b,«5 solves

Since

tr V(t/J~,b,«5,l5)= L Iy(t, G)1 2l5({t} )vb(ly(t, G)I- 2
)

teD

is continuous, as a function of G on the compact set

(see Remark 2 for continuity of Vb), and because of

P(l5) = U{PG(l5); GE~SXI-P},

and

min {tr V(t/J ,l5); t/J EPb(l5) }

=min{tr V(t/J~,b,«5'c5); GElRsxI- p with bo(l5, G)~b},

we get the following lemma:

Lemma 2. If l5ELt Dand p=rg(AD)<I =card(D)< 00, then we have

bo(c5)= min {max {I y(t, G)I(tn)1/2; te D}; GE lRS
x 1- P},

and for b~bo(l5) there exists G(b)ElRsxI- p such that t/J~(b),b,«5 is a solution of (1).
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3. Proof of the theorem
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Proof under condition (A). If the functions 1, Vb and rare defined as in Remark 2,
h(y):= y<P( - y) - <P' (y) and sb(a):=vb(a 2

) we have the following derivatives

r'(y) = [2<P(y) -1] - 3 4h(y) [2<P(y) -1- 2y<P'(y)]< 0,

sb(a) = 4h(bf(a, b))b [2<P(bf(a, b))-1] -1 <0,

s~(a»O for a>b- 1(! 1t)1/2.

This shows that Vb is strictly decreasing and strictly convex. Let bA be an A-optimal
design in L1 and c5EL1 n with rg(An)=card(D). Then, applying Theorem 2 of
Kurotschka and Müller (1992) and Lemma 1, we get from (4) and (5) in Remark 2:

min {tr V( t/J, c5); t/J ElJIb(c5) }= tr V(t/J:, l" b)

= tr CI(b)- CT L ICI (c5)- a(t)1 2b({t} )(tr CI(b) - CT)-1 vb(1 CI(b) - a(t)l- 2)
t e D

~ tr CI(b)- CT Vb«tr CI(b)- CT
) -1 L b( {t}))

ten

~trCI(b A ) - CTVb«tr CI(b A ) - CT)- 1)

= min {tr V(t/J, c5A); t/JE lJIb(c5A)},

with equality if and only if b is also A-optimal in Lt. Because of Remark 3 and

tr(C IG)J(c5)-(C IG)T~tr CI(c5)-CT
,

where G and J are defined as in Remark 3, a similar inequality is true for c5EL1 n with
rg(An) <card(D):

min {tr V(t/J, c5); t/JE lJIb(c5)} = tr V(t/J~,b,Ö' c5)

~tr(C IG)J(b)-(C IG)T vb«tr(C IG)J(c5)-(C IG)T)-1)

~ tr CI(c5)-CTvb«trCI(c5)- CT)- 1)

~min{tr V(t/J,c5 A ); t/JElJIb(bA ) } . 0

Proof under condition (B). If bA is A-optimal in Lt, then Lemma 1 yields bo(b) ~ bo(c5A)
for all c5EL1, with equality if and only if c5 is also A-optimal. Hence we obtain
b=bo(Lt)=bo(bA ) , and b is A-optimal in Lt if and only if tI'b(b)i=0. Because of (5) in
Remark 2 the assertion is proved. 0

Proof under condition (C). If it can be shown that for every c5EL1 there exists a c5FEL1

with finite support fulfilling I (c5) = I (c5F ) and

min{tr V(t/J,c5F ) ; t/JElJIb(e5 F ) } ~min{tr V(t/J,b); t/JElJIb(e5)},
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then the theorem under condition (C) follows from the theorem under condition (A).
To show this let bEJ be arbitrary. Then by Theorem 1 in Kurotschka and Müller
(1992) there exists a solution l/Jb,lJ of (1), a disjoint partition Tl, ... , TM of T, and
matrices Ql' ... ,QME~sxr such that, for m= 1, ... , M -1,

while for m=M

M-l

with TM= n {tET; Qma(t)=O}.
m=l

Setting

there exists bn,mE J, nE N, m= 1, ... , M with finite support such that

for all continuous and bounded functions f This holds especially for

fm(t}:= Qma(t}a(t}TIQma(t}I- 1
,

t, (t):= QMa(t)a(t)T(2cP( bl QM a(t) ,-1) -1),

fo(t):= IQMa(t)1 2 g(b IQMa(t)I- 1
),

f 00 (t):= a(t}a(t}T,

where g is defined as in Remark 2. Because the sets

and

are compact, the theorem of Caratheodory (see, for example, Silvey, 1980, p. 72)
provides for m = 1, ... , M -1 with p~ s- r+ r- r+ 1 the existence of

amI, ... ,ampEa(T),

p

ltml, ... ,ltmpE[O,l], L ltmi=l,
i= 1

with
p

(Jfmdbm,Jfoodbm)= L Clmi(Qmia~i,amia~d·
i= 1
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Moreover, if TM # 0 it secures für m=M with q~s·r+r·r+2 the existence of

q

a (r 1)' ... , a (rq), L a(r j) = 1,
j= 1

with
q

(SI; db M , Sfo db M , Sf 00 db M ) = L a (t j) (f* (t j), fo (r j), f 00 ( t j) ).
j= 1

Setting

RO:={ami; i=1, ... ,p, rn=1, ... ,M-1}

and

135

there exist TocT and T*cT with cardTo=cardRo, a(To)=Ro, Tr;cT*,

card T*=cardR* and a(T*)=R*. Define für TM=0

M-l p

bF(t):= L b(Tm) L ami 1{ami =a(t)}(t) 1To(t),
m= 1 i=1

M-l P

t/!F(X, t) :=bF(t)-1 L b(Tm) L ami Qmi1{ami=a(t)}(t)b sgn(x) 1To(t),
m= 1 i=1

M-l p

+ L b(Tm) L ami l{ami =a(t)}(t) 1T.(t),
m= 1 i= 1

t/lF(X, t):= bF(t)-1 sirM )a(t)QMa(t) sgn(x) min {IX I, blQMa(t) I-I} 1TT(t)

M-l p

+bF(t)-1 L b(Tm) L amiQmi 1{ami =a(t)}(t)b sgn(x) 1T.(t).
m= 1 i=1

Then we have bF(To) = 1 für TM = 0, bF(T*) = 1 für TM#0, t/lFE Pb(bF ) and I(b F) = I(b).
Because of

(« +(1- «) ()2 ~ a +(1- a)(2 für all aE[O, 1] and (E IR,

we also get

min{tr V(t/!,bF); t/!EPb(bF)}~tr V(t/!F,bF)= SIt/!FI2dP~F

~SIt/lb,<512dP<5=min{tr V(t/I,b); t/lEPb(b)}. D
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4. Example: Quadratic regression

For the quadratic regression model X(t)=ßo+ß1t+ß2t2+Z(t) where
ß =(ßo, ßl' ß2)Tand a(t) =(1, t, t2)T with te T= [ -1, 1], Kurotschka and Müller (1992)
derived the influence functions of optimal robust AL-estimators with bias bound b for
several designs and aspects. According to Lemma 1, the influence functions with the
simplest form appear at the A-optimal designs, namely for estimating the whole
parameter vector ß at the A-optimal design t5A =!e -1 +!eo +!e1' and for estimating
the aspect CP(ß)=ß1 at the A-optimal design l5~=!e-1+!e1. For the A-optimal
design l5A for estimating ßthe trace of the asymptotic covariance matrix of the optimal
AL-estimator with bias bound b is plotted for several values of the bias bound b in
Figure 1. For comparison also the trace of the asymptotic covariance matrix of the
optimal AL-estimator with bias bound b at the uniform design with equispaced
three-point support for estimating ß, namely at l5=ie-1 +ieo+ie1' is plotted. The
traces of the covariance matrices are

8· in ~ 12.57 for b =bo(bA)=2~~3.54,

tr V(t/!t,bA,t5A)= 8Vb(!) for b~bo(t5A)'

trI(l5A )- 1= 8 for b=oo,
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Fig. 1. The traces of the asymptotic covariance matrices of the optimal robust AL-estimators for the
quadratic regression model. These are plotted versus the bias bounds b for the A-optimal design bA and the
uniform design b with equispaced three-point support. The minimum bias bounds bo(bA) and bo(b) are
marked with verticallines.
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and

3Vb(~)+6·!1t~12.43 for b=bo(b)=3~~5.32,

tr V(t/J:,~,b)= 3Vb(~)+6vb(l8) for b~bo(b),

trI(b)-1=9 for b=oo.

5. Example: Two-way classification

137

Consider a two-way classification model without interactions X(i,j)=Li,i+ßj+Z(i,j),
i= 1,2,3, j = 1,2, with three levels for the first factor and two levels for the second
factor. Thus we have

ß= (Li,1 ,Li,2, Li,3 , ßl' ß2)T,

a(t) = a(i, j) = (1{1}(i), 1{2}(i), 1{3}(i), 1{1}(j), 1{2}(j))T,
with

t=(i, j)E T= {1,2,3} x {1,2}.

For estimating the contrasts qJ(ß) = (Li, 1 - Li,2, Li,1 - Li,3)T the A-optimal design in L1 * is

b 1.(2 1/2 21/2 )A 2(21/2+ 2) e(1, 1) + e(1, 2) + e(2, 1) + e(2, 2) + e(3, 1) + e(3, 2) .

According to Lemma 1, at this design the influence function of the optimal robust
AL-estimator with bias bound bis, for b=bo(bA)=(2

1/2+ 1)1t1/2~4.28,

(1,1)T for i= 1,

t/J:'~A(x,(i,j))=sgn(x)(t1t)1/2(21/2+1). (_2 1/ 2, 0)T for i=2,

(0, - 21/2 )T for i = 3,

1/,* ( (" '))_ sgn(x)min{lxl,bu}
0/ b, s, X, i, ) - 21/2 U .

(1, 1)T for i = 1,

(- 21/ 2 , O)T for i = 2,

(0, - 21/2 )T for i = 3,

with °< u = (2l/J(bu) -1) (2+21
/
2
)-1.

The trace of the asymptotic covariance matrix of the AL-estimators with these
influence functions results in

(21/2+1)21t~18"31 for b=bo(bA),

tr V(t/J:,~A,bA)= (2+21/2)2Vb«2+21/2)-2) for b~bo(bA)'

trCI(bA ) - CT=(2+21/2)2~11.66 for b= 00.

For several values of the bias bound b the trace of the covariance matrix is plotted in
Figure 2.
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Fig. 2. The traces of the asymptotic covariance matrices of the optimal robust AL-estimators for the
two-way classification model. These are plotted versus the bias bounds b for the A-optimal design bA and
the uniform design b with minimum support. The minimum bias bounds bo(bA)and bo(b)are marked with
vertical lines.

At the design bA the regressors are not linearly independent. An uniform design with
minimum support for estimating <p(ß)=((Xl-(X2,(Xl-(X3)T so that the regressors are

linearly independent is b =ie(1, 1) +ie(1, 2) +ie(2, 1) +ie(3, 2)' This design bis A-optimal
in the restricted class L1 v with D = {(1, 1),(1, 2),(2, 1),(3, 2)}. Therefore we use Lemma
1 to calculate the influence function of the optimal robust AL-estimator with bias
bound b. It provides for b= bo(b) = 4(}n)1/2 ~ 5.01,

tfJ:, b(X, (i, j)) = sgn(x)4(!n)1/2 .

and for b > bo(b),

(1,0)T for (i, j) =(1, 1),

(0, 1)T for (i, j) = (1,2),

( -1, O)T for (i, j) = (2, 1),

(0, _l)T for (i, j)=(3, 2),

111* ( (. .)) _ sgn(x) min {Ix], bv} .
'Pb s x, l,} --------, v

(1,0)T for (i, j)=(1, 1)

(O,l)T for (i, j) = (1,2),

( -1, O)T for (i, j) = (2, 1),

(0, _1)T for (i, j) = (3,2),
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with O<v=(2lP(bv)-1)i. The corresponding trace of the asymptotic covariance
matrix is (see Figure 2)

8n ~ 25.13

tr V(t/Jt~, b)= 16Vb( /6)

for b= bo(b),

for b~ bo(b),
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