Theoretical study of the structural dependence of nuclear quadrupole frequencies in high- T_c superconductors ## M. E. Garcia and K. H. Bennemann Institute for Theoretical Physics, Freie Universität Berlin, Arnimallee 14, D-1000 Berlin 33, Federal Republic of Germany (Received 18 January 1989; revised manuscript received 26 May 1989) The remarkable difference between the nuclear quadrupole frequencies v_Q of Cu(1) and Cu(2) in YBa₂Cu₃O₆ and YBa₂Cu₃O₇ is analyzed. We calculate the ionic contribution to the electric field gradients and estimate, by using experimental results for Cu₂O and La₂CuO₄, the contribution of the d valence electrons. Thus, we determine v_{Q1} , v_{Q2} , and the asymmetry parameter η for YBa₂Cu₃O₆ and YBa₂Cu₃O₇. The number of holes in the Cu-O planes and chains is found to be important for the different behavior of v_{Q1} and v_{Q2} . Nuclear quadrupole resonance (NQR) can give important information about the electronic structure of solids, since the nuclear quadrupole coupling constant is proportional to the total electric field gradient (q_{ii}) at the nucleus. An interpretation of the experimental data within a simple electronic physical picture is possible. However, in general and especially for complex systems, a quantitative analysis is difficult. Many NQR experiments have been performed for the various high- T_c compounds, and particularly for both copper sites Cu(1) and Cu(2) in YBa₂Cu₃O₇₋₈. Obviously, different charge configurations expected in such systems may be reflected in NQR results. However, due to the complicated structure of high- T_c materials, it remains difficult to obtain from the values of the NQR frequencies v_0 (and consequently of the total field gradient q_{ij}) for $Cu(\overline{1})$ and Cu(2) a complete understanding of the ionic charge distribution. Furthermore, it is by no means clear whether such high-T_c materials can be treated as dominantly ionic in character and that the covalent character of the Cu-O bonds may be neglected. Experimental results for antiferromagnetic YBa₂Cu₃O₆ show⁷ an inversion of the magnitudes of v_{Q1} and v_{Q2} , which refer to Cu(1) and Cu(2), respectively, with respect to these values in YBa₂Cu₃O₇. One observes ν_{Q1} =30.11 MHz and ν_{Q2} =22.87 MHz in YBa₂Cu₃O₆, and ν_{Q1} =22 MHz and ν_{Q2} =31.5 MHz in YBa₂Cu₃O₇.4-6 This interesting difference could suggest that v_Q is a sensitive quantity reflecting changes in the electronic properties of both compounds (whose crystal structures are similar). The purpose of our analysis is to estimate the quadrupole frequencies in YBa2Cu3O6 and YBa2Cu3O7 and to explain the experimental results. We use simple assumptions about the electronic structure and consider explicity the existence of covalent Cu-O bonds. Furthermore, for determining the valence electron contribution to the electric field gradient q_{ii} we use experimental results for Cu₂O and La₂CuO₄. The quadrupole frequency for the ⁶³Cu nucleus (with nuclear spin $I = \frac{3}{2}$) is given by $$v_Q = \frac{1}{2}e^2 Q q_{zz}^{\text{tot}} (1 + \eta^2/3)^{1/2}$$, (1) where Q is the nuclear quadrupole moment, q_{zz}^{tot} the largest component (z component) of the total field gradient tensor in a set of principal axes, and $\eta = (q_{xx} - q_{yy})/q_{zz}$ refers to the asymmetry parameter. From a general expression of q_{zz}^{tot} as a function of the coordinates of all the nuclei and electrons in the solid⁸ one can derive an approximate expression, in which the sources of the electric field gradient at a certain nucleus are the outer (or valence) electrons with aspherical wave functions and the other ions (considered in lowest approximation as an infinite arrangement of point charges). Then, if the principal axes of both ionic and valence contributions are the same, Eq. (1) may be rewritten as $$v_O = \left[\frac{1}{2}e^2Q(1-\gamma_{\infty})q_{zz}^{\text{ionic}} + q_{\text{val}}\right](1+\eta^2/3)^{1/2},$$ (2) where γ_{∞} refers to the Sternheimer antishielding factor, ¹⁰ which accounts for the contribution from the distortion of the Cu ion both by the local field gradient and by the quadrupolar field of the nucleus. The contribution to the field gradients due to the ionic lattice is given by the term $$\frac{1}{2}e^2Q(1-\gamma_{\infty})q_{zz}^{\text{ionic}},$$ and the term $$q_{\rm val} = \frac{1}{2} (1 - R) e^2 Q q_{zz}^{\rm val}$$ refers to the field gradients produced by the valence electrons at the Cu sites, in which the shielding factor R describes the shielding by core electrons.¹⁰ The asymmetry parameter η is written as $$\eta = (q_{xx}^T - q_{yy}^T)/q_{zz}^T$$, where $$q_{ii}^T = q_{ii}^{\text{ionic}} + q_{ii}^{\text{val}}$$. q_{zz}^{val} results from the electrons (holes) in the open d Cu shells. In terms of the number of holes in the different d orbitals, q_{zz}^{val} may be written as $$q_{zz}^{\text{val}} = A \langle r^{-3} \rangle_{3d} [n_h (3d_{3z^2 - r^2}) - n_h (3d_{x^2 - y^2}) - n_h (3d_{xy}) + \frac{1}{2} n_h (3d_{xz}) - \frac{1}{2} n_h (3d_{yz})], \qquad (3)$$ where A is a constant. In what follows we will assume that the orbitals $3d_{xy}$, $3d_{xz}$, and $3d_{yz}$ are below the Fermi level and that consequently their contributions vanish. Note that previously Adrian¹¹ has calculated v_{Q1} and v_{Q2} in YBa₂Cu₃O₇ using Eq. (2). Although his results seem to be in agreement with experiment, one should note that he makes two crude assumptions. First, he considers γ_{∞} to be independent of the ionic charge and he takes $\gamma_{\infty}^{\text{Cu}^{2+}} = -17$, which is the calculated value¹² for Cu⁺. A calculation of γ_{∞} for Cu²⁺ has been carried out by Gupta et al.¹³ and gives $\gamma_{\infty}^{\text{Cu}^{2+}} = -7.59$. Using this value, Adrian results are no longer close to the experimental values.¹⁴ Furthermore, performing his calculations in YBa₂Cu₃O₆ one obtains values which are far away (even qualitatively) from the experimental results. Second, he assumes that only Cu²⁺ contributes to q_{val} . In the following we determine v_{Q1} and v_{Q2} and the asymmetry parameter η for YBa₂Cu₃O₆ and YBa₂Cu₃O₇ from Eq. (2) by calculating directly $\frac{1}{2}e^2Qq_{zz}^{\rm ionic}$ and by estimating $q_{\rm val}$ using experimental results for Cu₂O and La₂CuO₄. We have calculated the ionic contribution $\frac{1}{2}e^2Qq_{zz}^{ionic}$ for Cu(1) and Cu(2) in both YBa₂Cu₃O₆ and YBa₂Cu₃O₇ using the Evjen method¹⁵ (to insure the convergence of the numerical summations). The following charge configurations are assumed: Y³⁺,Ba²⁺ for both compounds, and O(2)²⁻,O(3)²⁻,Cu(1)⁺Cu(2)²⁺O(4)²⁻ for YBa₂Cu₃O₆, whereas O(2)^{1.95-},O(3)^{1.95-},Cu(1)^{2.4+}, Cu(2)^{2.1+},O(4)²⁻,O(1)^{1.8-} for YBa₂Cu₃O₇. O(1) refers to the oxygen atoms along the chains, and O(4) to the ox- ygen atoms above and below Cu(1). Note, in the assumed charge distribution for YBa₂Cu₃O₇, each CuO₂ plane and the chain have 0.2 and 0.6 holes, respectively, near to the values observed in recent experiments. If It must be mentioned that $\frac{1}{2}e^2Qq_{zz}^{\rm jonic}$ is not very sensitive to small charge changes. However, the holes will contribute to $q_{\rm val}$. The values for the $\frac{1}{2}(1-\gamma_{\infty})e^2Qq_{zz}^{\rm jonic}$ and the asymmetry parameter η obtained for Cu(1) and Cu(2) in YBa₂Cu₃O₆ and YBa₂Cu₃O₇ are shown in Table I. These results indicate that the ionic contribution alone cannot explain the behavior of ν_{O} in YBa₂Cu₃O₇. Since a first-principles calculation of $q_{\rm val}$ seems still a very complicated and not yet solved many-body problem and since we only attempt to explain qualitatively the behavior of ν_{Q1} and ν_{Q2} , we will estimate $q_{\rm val}$ for Cu using simple physical arguments and with the help of experimental data for ν_{Q} in the related compounds Cu₂O and La₂CuO₄. For example, q_{val} for Cu(1) in YBa₂Cu₃O₆ may be estimated from v_O in Cu_2O , where copper is also in the state Cu+. Since Cu2O is mainly ionic 18,19 and an isolated Cu⁺ is spherically symmetric, it seems reasonable to take $q_{\rm val} = 0^{20-22}$ Our calculation of the ionic contribution for Cu in Cu₂O gives $\frac{1}{2}e^2Qq_{zz}^{\text{ionic}}$ =4.01 Mhz, the z principal axis being the (1,1,1) axis. The experimental values in Cu₂O are $\nu_Q = 26$ MHz, and $\eta = 0.23$ Note that, using an effective $(1 - \gamma_{\infty}) = -6.48$, one could obtain, from our calculated value 4.01 MHz for $\frac{1}{2}e^2Qq_{zz}^{\text{ionic}}$, the observed experimental value for v_0 . In order to determine now the Cu(1) quadrupole frequency in YBa₂Cu₃O₆ we reason as follows. The coordination O(4)-Cu(1)-O(4) is very similar to that of Cu in Cu₂O. The only difference is given by the interatomic distances, namely the Cu-O distance is 1.84 Å for Cu₂O,²⁴ whereas the Cu(1)-O(4) distance for YBa₂Cu₃O₆ (Ref. 25) is 1.79 Å. Since this change in the interatomic distances is relatively small TABLE I. Calculated results for the field gradient contribution $\frac{1}{2}e^2Q(1-\gamma_{\infty})q_{zz}^{\rm ionic}$ of the lattice and the asymmetry parameter η . The Cu d-electron field gradient contribution $q_{\rm val}$ is estimated from experimental results for the NQR resonance frequency ν_Q in Cu₂O and La₂CuO₄; modifications due to changes in covalency, see discussion in text, are included. Results for $q_{\rm val}$ given in brackets follow if values derived for La₂CuO₄ are used. | | YBa ₂ Cu ₃ O ₆ | YBa ₂ Cu ₃ O ₇ | |-------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------| | $\frac{1}{2}e^2Qq_{zz}^{\text{ionic}}(\text{Cu}(1))$ | 4.86 MHz | -32.36 MHz | | $\frac{1}{2}e^2Q(1-\gamma_{\infty})q_{zz}^{\text{ionic}}(\text{Cu}(2))$ | -22.5 MHz | -18.9 MHz | | $q_{\text{val}}(\text{Cu}(1))$ | 0.0 MHz | 52.1 MHz | | $q_{\rm val}({\rm Cu}(2))$ | 45.4 MHz | 47.1 MHz | | | (52.1 MHz) | | | $oldsymbol{\eta}_1$ | 0.0 | 0.67 | | $oldsymbol{\eta}_1^{expt}$ | 0.0 | ~1.0 | | η_2 | . 0.0 | 0.07 | | $\eta_2^{ ext{expt}}$ | 0.0 | 0.01-0.1 | | v_{Q1} | 31.5 MHz | 21.2 MHz | | v_{Ql}^{expt} | 30.11 MHz | 22.0 MHz | | v_{Q2} | 22.87 (29.6) MHz | 28.0 MHz | | $ u_{Q2}^{ m expt}$ | 22.87 MHz | 31.5 MHz | and the distance to the planes is still large, 25 we assume that the covalent contribution (due to the $\dot{q}_{\rm val}$) to v_{Q1} is small. Then, if the antishielding factor is the same in both compounds, then we can write $$v_{O1} \simeq v_O(\text{Cu}_2\text{O})q_{zz}^{\text{ionic}}(\text{YBa}_2\text{Cu}_3\text{O}_6)/q_{zz}^{\text{ionic}}(\text{Cu}_2\text{O})$$. Our calculated value for $\frac{1}{2}e^2Qq_{zz}^{\text{jonic}}$ in YBa₂Cu₃O₆ is 4.86 MHz (where the z principal axis is the c axis). Then, $v_{Q1}=31.5$ MHz (expt: 30.11 MHz). Note that this value might be smaller if a small amount of holes is present in the $3d_{3z^2-r^2}$ orbital of Cu(1). In order to estimate $q_{\rm val}$ and v_Q for the other Cu atoms in YBa₂Cu₃O₆ and YBa₂Cu₃O₇, we use experimental data for Cu²⁺. Recently, NQR measurements have been performed on the La₂CuO_{4- δ} compound, where Cu is approximately Cu²⁺. The quadrupole frequency for Cu was observed to be $v_Q = 31.9$ MHz. Our calculation yields $$\frac{1}{3}e^2Qq_{zz}^{\text{ionic}} = -2.35 \text{ MHz}$$ for this compound. Then, using $\gamma_{\infty}^{\text{Cu}^2+} = -7.59$, ¹³ we derive from Eq. (2) $q_{\text{val}} = 52.1$ MHz. Taking into account that the z principal axis is the c axis, and that the quadrupole moment is negative $[Q(^{63}\text{Cu}) = -0.211 \text{ b (Ref. 27)}]$, it is possible to understand, from Eq. (3), the positive value of q_{val} as resulting from holes in the $3d_{x^2-y^2}$ orbital of Cu. If the number of holes were $n_h = 1$, then Cu would be in a pure Cu^{2+} state and one would calculate according to Adrian¹¹ $q_{\text{val}} = 95.5$ MHz. The smaller value $q_{\text{val}} = 52.1$ MHz derived by us indicates stronger covalent bonding. If we assume that Cu(2) in YBa₂Cu₃O₆ has nearly the same configuration as Cu in La₂ CuO₄, and thus insert $q_{\text{val}} = 52.1$ MHz and our calculated value for YBa₂Cu₃O₆ of $$\frac{1}{2}e^{2}Qq_{zz}^{\text{ionic}} = -2.62 \text{ MHz}$$ in Eq. (2), we obtain $$v_{O2}(YBa_2Cu_3C)_6) \simeq 29.6 \text{ MHz}$$. This is somewhat larger than the experimental value 22.87 MHz. However, there are structural differences between La₂CuO₄ and YBa₂Cu₃O₆. The oxygen atoms above and below Cu(2) along the c axis have different coordinations. In La₂CuO₄ this type of oxygen lies between Cu(2) and La, whereas in YBa2Cu3O6 it is located between Cu(2) and Cu(1) [closer to Cu(1) than to Cu(2)]. Furthermore, in the case of the La compound, the oxygen atoms are rather O²⁻, because they have only the possibility to make covalent bonding with Cu, which is 2.4 Å away. In the YBa₂Cu₃O₆ the O(4) may form at least weak bonds with the Cu neighbors [Cu(1) and Cu(2)], through the hopping matrix elements between p_z orbital of O(4) and the $3d_{3r^2-r^2}$ orbitals of the Cu atoms. This would favor the existence of holes in these orbitals (which in the ionic picture are assumed to be absent). Hence, with respect to La₂CuO₄, more itinerancy is expected for YBa₂Cu₃O₆ along the c axis with consequent gain of kinetic energy. A resultant smaller number of holes in the $3d_{3z^2-r^2}$ orbital of Cu(2) in YBa₂Cu₃O₆ will reduce the value for $q_{\rm val}$ (because it has negative contribution). Since the $q_{\rm val}$ due to one hole in the $3d_{3z^2-r^2}$ is opposite to $q_{\rm val}$ produced by one hole in the $3d_{x^2-y^2}$, we can use the value $q_{\rm val}(3d_{x^2-y^2})=95.5$ MHz $[=-q_{zz}^{\rm val}(3d_{3z^2-r^2})]$ for ${\rm Cu}^{2+}$, as calculated by Adrian¹¹ using Hartree-Fock orbitals, to estimate the number of holes in the $3d_{3z^2-r^2}$ of Cu(2) needed to reduce v_{Q2} from the calculated value 29.6 MHz to 22.87 MHz. We obtain $n_h(3d_{3z^2-r^2})=0.07$ holes more than in La₂CuO₄. Actually, a decrease of the number of holes in the $3d_{x^2-y^2}$ can also be responsible for a reduction of v_{Q1} [see Eq. (2)]. Hence, the relevant quantity which changes with respect to La₂CuO₄ is $$\Delta = n_h(3d_{x^2-y^2}) - n_h(3d_{3z^2-r^2})$$, and thus, $$\Delta(YBa_2Cu_3O_6) = \Delta(La_2CuO_4) - 0.07$$ should hold for Cu(2) in YBa₂Cu₃O₆ in order to obtain agreement with experiment. This indicates that v_Q depends sensitively on the d-hole distribution. Note that this is also supported by NQR measurements on Cu in the superconducting²⁸ (La_{0.925}Sr_{0.075})₂CuO₄ yielding v_Q =35.3 MHz. This compound has 0.15 extra holes in the CuO₂ plane as compared with La₂CuO₄. Some of these holes are at the Cu atom, and mainly in the $3d_{x^2-y^2}$ orbital. Consequently, q_{val} increases and thus v_Q explaining the experimentally observed increase in v_Q with respect to the undoped compound. We now analyze the NQR results for Cu(2) in the YBa₂Cu₃O₇ compound, taking into account that the distance between Cu(2) and O(4) is $r^{(1)}$ =2.28 Å, smaller than in YBa₂Cu₃O₆, where $r^{(0)}$ =2.46 Å.²⁵ Thus, Cu(2) in YBa₂Cu₃O₇ will have stronger covalent bonding with O(4) than Cu(2) in YBa₂Cu₃O₆ and consequently the increase in the number of holes in the $3d_{3z^2-r^2}$ orbital with respect to La₂CuO₄ will be larger than for YBa₂Cu₃O₆, since the hopping matrix element $V_{pd\sigma}$ between this orbital and the p_z orbital of O(4) is larger. We can roughly estimate for both compounds the number of holes in the $3d_{3z^2-r^2}$ of Cu(2) due to the covalent bonding with the p_z orbital of O(4) as given by $n_h \sim [V_{pd\sigma}/(\epsilon_d - \epsilon_p)]^2$, where ϵ_d , ϵ_p are the on-site energies of both orbitals. Thus, the rate $$\rho \equiv n_h^{(0)} (3d_{3z^2-r^2})/n_h^{(1)} (3d_{3z^2-r^2}) ,$$ where index 0 and 1 refer to YBa₂Cu₃O₆ and YBa₂Cu₃O₇, respectively, is given by $$\rho\!\simeq\!(V_{pd\sigma}^{\mathrm{YBa_2Cu_3O_7}}/V_{pd\sigma}^{\mathrm{YBa_2Cu_3O_6}})^2\;.$$ Using the distance dependence of the hopping element $V_{pd\sigma} \sim r^{-7/2}$, derived by Harrison,²⁹ and inserting the maximum value for $n_h^{(0)}(3d_{3z^2-r^2})=0.07$ holes estimated before, we obtain approximately $$n_h^{(1)}(3d_{3z^2-r^2}) = n_h^{(0)}(3d_{3z^2-r^2})(r^{(1)}/r^{(0)})^{-7}$$ = 0.12 with respect to the $n_h(3d_{3z^2-r^2})$ in La₂CuO₄. There will also be a difference between the number of holes in the orbital $3d_{x^2-y^2}$ of Cu in the planes for La₂CuO₄ and YBa₂Cu₃O₇. This difference cannot be estimated in the same way as for the $3d_{3z^2-r^2}$ orbital, since the orbital $3d_{x^2-y^2}$ of Cu(2) has only vanishing hopping elements with O(4). Thus, we obtain a maximum value for $$\Delta(YBa_2Cu_3O_7) = n_h^{(1)}(3d_{x^2-y^2}) - n_h^{(1)}(3d_{3z^2-r^2})$$, namely, $$\Delta(YBa_2Cu_3O_7) = \Delta(La_2CuO_4) - 0.12.$$ This would imply a reduction of $q_{\rm val} = -52.1$ by 11 MHz, at most, upon going from $\rm La_2CuO_4$ to $\rm YBa_2Cu_3O_7$. However, the latter high- T_c superconductor has more holes, namely $n_h \sim 0.25$ holes in the $\rm CuO_2$ planes, ¹⁶ which so far are not included in our analysis. If we make the assumption that these holes are distributed among the $\rm Cu(2)$ and the two oxygen atoms in the same proportion as in $(\rm La_{0.925}Sr_{0.075})_2CuO_4$, in which the 0.15 holes in the plane produce a frequency increase of 3.4 MHz, this will lead (using a linear interpolation) to an increase of $q_{\rm val}$ by 6 MHz. Hence, $q_{\rm val}$ for $\rm Cu(2)$ in $\rm YBa_2Cu_3O_7$ will be smaller than for $\rm Cu$ in $\rm La_2CuO_4$ by ~ 5 Mhz. Thus, if we use our calculated value for $$\frac{1}{2}e^2Q(1-\gamma_m)q_{zz}^{\text{ionic}} = -18.9 \text{ MHz}$$ for YBa2Cu3O7 and $$q_{\text{val}} = (52.1 - 5) \text{ MHz} = 47.1 \text{ MHz}$$ we obtain $v_{Q2} \approx 28$ MHz. The discrepancy with the experimental value of $v_{Q2} \approx 31.5$ MHz is reasonable. perimental value of v_{Q2} =31.5 MHz is reasonable. To determine v_{Q1} in YBa₂Cu₃O₇, we note that Cu(1) has covalent bonds with its four neighboring oxygen atoms within the yz plane. The atomic environment is approximately similar to that of Cu in La₂CuO₄ (since the other two of the six oxygen neighbors are farther away). Using then $q_{\text{val}} = 52.1 \text{ MHz}$ as derived for La₂CuO₄, and our calculated values for $$\frac{1}{2}e^{2}Q(1-\gamma_{\infty})q_{zz}^{\text{ionic}} = -32.36 \text{ MHz}$$ and for η ,³⁰ we obtain ν_{Q1} =21.2 MHz. This is in good agreement with experiment. However, on physical grounds one expects q_{val} in YBa₂Cu₃O₇ to be larger than in La₂CuO₄ since, in YBa₂Cu₃O₇, Cu(1) is in the Cu^{2.4+} state.³¹ Distributing the holes equally among the $3d_{\gamma^2-z^2}$ and the $3d_{3x^2-r^2}$ orbitals might change q_{val} only slightly (the two orbitals contribute with opposite signs). The discrepancy between our calculated value of η_1 and the experimental η_1 for YBa₂Cu₃O₇ is probably due to the different electronic density at O(1) and O(4). This has a strong effect on the asymmetry parameter, but not on the quadrupole frequency.¹⁷ This means that η must be calculated more accurately including the effect of the p orbitals of the neighboring oxygen atoms. Our results for ν_Q and the asymmetry parameter η obtained by calculating $\frac{1}{2}e^2Qq_{zz}^{\rm jonic}$ and using Eq. (2) are summarized in Table I. Note that we calculated $\frac{1}{2}e^2Qq_{zz}^{\rm jonic}$ for a crystal consisting of point charges and estimated $q_{\rm val}$ from experimental results for Cu₂O and La₂CuO₄. As discussed the results for ν_{Q1} , ν_{Q2} depend sensitively on the hole distribution. ν_Q could even be a good measure of the number of holes in the CuO₂ planes. But for a precise analysis γ_{∞} remains a problem. Note that taking different values of γ_{∞} can change the results dramatically. Therefore, the use of higher-order terms than those of Eq. (2) in the expression of the quadrupole frequency makes no sense. It is of interest to note that charge fluctuations on Cu and O sites need not be considered explicity to explain experimental results. NQR experiments on YBa₂Cu₃O₇₋₈ as a function of δ and Ga and Zn doping [which has interesting influence on T_c (Ref. 32)] could give further useful information. We are grateful to V. Müller and H. Riesemeier for many useful discussions. This work was supported by the Bundesministerium für Forschung und Technologie. ¹H. Lütgemeier and M. W Pieper, Solid State Commun. 64, 267 (1987). ²R. E. Walstedt, W. W. Warren, Jr., R. F. Bell, G. F. Brennert, J. P. Remeika, R. J. Cava, and E. A. Reitman, Phys. Rev. B 36, 5727 (1987); W. W. Warren, Jr., R. E. Walstedt, G. F. Brennert, G. P. Espinosa, and J. P. Remeika, Phys. Rev. Lett. 59, 1960 (1987). ³H. Riesemeier, Ch. Grabow, E. W. Scheidt, V. Müller, K. Lüders, and D. Riegel, Solid State Commun. 64, 309 (1987). ⁴M. Mali, D. Brinkman, L. Pauli, J. Roos, H. Zimmermann, and J. Hulliger, Phys. Lett. A 124, 112 (1987). ⁵C. H. Pennington, D. J. Durand, D. B. Zax, C. P. Slichter, J. P. Rice, and D. M. Ginsburg, Phys. Rev. B 37, 7944 (1988). ⁶H. Riesemeier, J. Pattloch, K. Lüders, and V. Müller, Solid State Commun. 68, 251 (1988). ⁷Hiroshi Yasuoka, Tadashi Shimizu, Yutaka Ueda, and Koji Kosuge, J. Phys. Soc. Jpn. 57, 2659 (1988). ⁸Chester T. O'Konski and Tae-Kyu Ha, J. Chem. Phys. 49, 5354 (1968); C. T. O'Konski in *Determination of Organic Structures by Physical Methods*, edited by F. C. Nachod and J. J. Zuckerman (Academic, New York, 1962), Vol. 2, Chap. 11. ⁹J. L. De Vries, C. P. Keijzers, and E. de Boer, Inorg. Chem. 11, 1343 (1972). ¹⁰R. M. Sternheimer, Phys. Rev. **80**, 102 (1950); R. M. Sternheimer, Phys. Rev. **84**, 244 (1951). ¹¹Frank J. Adrian, Phys. Rev. B 38, 2426 (1988). ¹²R. E. Watson and A. J. Freeman, Phys. Rev. **131**, 250 (1963). ¹³R. P. Gupta and S. K. Sen, Phys. Rev. A 8, 1169 (1973). ¹⁴Using $\gamma_{\infty}^{\text{Cu}^2+} = -7.59$ the calculation by Adrian (see Ref. 11) would give $\nu_{Q1} = 56.24$ MHz and $\nu_{Q2} = 51.4$ MHz for YBa₂Cu₃O₇. ¹⁵M. Tosi, Solid State Phys. 16, 1 (1964). ¹⁶Y. Tokura, J. B. Torrance, T. C. Huang, and A. I. Nazzal, Phys. Rev. B 38, 7156 (1988). ¹⁷We have calculated $\frac{1}{2}e^2Qq_{zz}^{\text{ionic}}$ for different charge configurations resulting from a redistribution of the holes within the planes and chains and between them. $\frac{1}{2}e^2Qq_{zz}^{\text{ionic}}$ is almost independent if these changes are small, whereas $\eta_{\text{ionic}} = (q_{xx}^{\text{ionic}} - q_{yy}^{\text{ionic}})/q_{zz}^{\text{ionic}}$ is very sensitive to changes in the charge distribution among the oxygen atoms surrounding Cu(1) and Cu(2). ¹⁸Experimental results for the quadrupole frequency as a function of the volume show clearly the ionic character of Cu₂O (see Ref. 19). ¹⁹T. Kushida, G. B. Benedek, and N. Bloembergen, Phys. Rev. 104, 1364 (1956). ²⁰Using $\gamma_{\infty} = -17$ (see Ref. 12), we derive from Eq. (2) $q_{\rm val} = -46.2$ MHz which is not acceptable for an ionic compound, since $q_{val} \neq 0$ implies that Cu is not completely in a $3d^{10}$ state, but in a hybridized state $\psi = \alpha |3d^{10}\rangle + \beta |3d^94s\rangle$. To obtain the preceding value for $q_{\rm val}$ we need ~ 0.4 holes in the d shell, too large for an ionic compound. In conclusion, the correct value for γ_{∞} must be much smaller than (-17) to obtain $q_{\text{val}} \simeq 0$. It is well known (see Ref. 21) that the calculated antishielding factors are not always in good agreement with the experimentally measured enhancement of the electric field gradients. For the case of Cu₂O, Bersohn (see Ref. 22) already pointed out that the agreement is only within a factor of two (if one fits γ_{∞} from the experimental ν_{O} using the ionic model). Consequently, we conclude that $q_{val} \approx 0$ for Cu_2O is a more reasonable assumption (and $\gamma_{\infty} \neq -17$). ²¹R. E. Watson and A. J. Freeman, in Hyperfine Interactions, edited by A. J. Freeman and R. B. Frankel (Academic, New York, 1967), Chap. 2. ²²Richard Bersohn, J. Chem. Phys. 29, 326 (1958). ²³H. Krüger and U. Meyer-Berkhout, Z. Phys. 132, 171 (1952). ²⁴S. Nagel, J. Phys. Chem. Solids 46, 743 (1985). ²⁵Frank Herman, Robert V. Kasowski, and William Y. Hsu, Phys. Rev. B 36, 6904 (1988). ²⁶Toshinobu Tsuda, Tadashi Shimizu, Hiroshi Yasuoka, Kohoji Kishio, and Koichi Kitazawa, J. Phys. Soc. Jpn. 57, 2908 ²⁷R. M. Sternheimer, Phys. Rev. **164**, 10 (1967). ²⁸Kenji Ishida, Yoshio Kitaoka, and Kunisuke Asayama, J. Phys. Soc. Jpn. 58, 36 (1989). ²⁹W. A. Harrison, Electronic Structure and the Properties of Solids (Freeman, San Francisco, 1980). ³⁰We have assumed $q_{xx}^{\text{val}} = q_{yy}^{\text{val}} = q_{zz}^{\text{val}}/2$, since the nonionic contribution to the field gradients is due to d electrons with equal charge density along the x and y principal axes. Charge density along the x and y principal axes. 31We have used as antishielding factor for Cu(1) in YBa₂Cu₃O₇ (Cu^{2,4+}) the quantity $\gamma_{\infty} = x\gamma_{\infty}^{\text{Cu}^{2+}} + (1-x)\gamma_{\infty}^{\text{Cu}^{3+}}$, where x = 0.6 is the concentration of Cu²⁺ in Cu^{2,4+}, $\gamma_{\infty}^{\text{Cu}^{2+}} = -7.59$, and $\gamma_{\infty}^{\text{Cu}^{3+}} = -7.04$ (see Ref. 11). 32Gang Xiao, M. Z. Cieplak, A. Gavrin, F. H. Streitz, A. Bakhshai, and C. L. Chien, Phys. Rev. Lett. 60, 1446 (1988).