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Abstract

We use a microscopic theory to describe the dynamics of the valence electrons in divalent-metal clusters, The
theory is based on a many-body model Harniltonian H which takes into account, on the same electronic level, thc
van der Waals and the covalent bonding, In order to study the ground-state properties of H we have developed an
extended slave-boson method. We have studied the bonding character and the degree of electronic delocalization in
Hg" clusters as a function of cluster size, Results show that, for increasing cluster size, an abrupt change occurs in
the bond character frorn van der Waals to covalent bonding at a critical cluster size n c ,.w 10-20. This change also
involves a transition from localized to deJocalized valence electrons, as a consequence of the competition between
both bonding mechanisms.

The size dependence of the electronic struc­
ture of Hg n clusters is one of the most fascinating
problems of cluster physics. The mercury atom is
characterized by having a closed..shelI electronic
configuration of the form [Xe]6s2

, i.e., isoelec­
tronic to helium, with a relatively large atomic
gap to the empty 6p level. At the other end of the
size dependence, mercury bulk shows metallic
properties due to the overlap of the sand p
bands. Thus, from the point of view of the elec­
tronic structure in the atom, small Hg, clusters
should be expected to be van der Waals bonded.
However, since the bulk band widths, and conse ...
quently the hopping elements, are large, one can...
not exclude the possibility of covalent bonding
even in the very small clusters. Thus, in order to
study tbe size dependence of the bond character
and degree of electronic delocalization in Hg"

clusters, a microscopic theory is needed, which
must be able to treat both the covalent and the
van der Waals bonding mechanisms on the same
electronic level. It is the purpose of this paper to
present such a theory,

A correct description of the size evolution of
the electronic structure of small Hg; clusters only
in terms of a single-particle theory is not possible.
The intuitive (single-particle like) picture of a
gradually increasing broadening of the sand p
bands (with the consequent reduction of the sp
gap) due to an increase of the average coordina­
tion number, is in contradiction with experiment
[1-5]. The experimental results for size depen­
dence of the 5d ~ 6p autoionization energy [1]
ionization potential [2,3], cohesive energy and
optical properties [4,5lt show a common feature,
which is a relatively abrupt change in the be-
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Fig, 1. Illustration of the dominant electronic excitations
responsible for (a) van der Waals interactions (involving IDeal..
ized electrons) and (b) covalent interactions (interatornic hop..
ping),

(3)

where VJ)}) = V,~2) cc aL1/rjj, are the coupling con­
stants für the van der Waals interactions [7,8].
Here a refers to the atomic polarizability, L1 to
the atornic sp gap and 'j" to the interatornic
distance. The operator HQP in Eq. (1) describes
the charge-dipole interactions and is given by

r,,·P.
HQp =EQ/~. (4)

ltj rn

ing. In Bq. (1), the operator H vdW describes the
van der Waals interactions as arising from the
coupling between intraatornic sp excitations
(which is a microscopic description of the induced
dipole-dipole interactions), and has the form
[7,8]:

In Eq. (4), Q, = 2 - Ie I'EßiJnlßu refers to the
charge operator at atom I, and PI = eLß-ycrXßy
ctßrrC'Y(T stands for the dipole operator at atoln I,
where the components of Xß y are the atomic
dipole matrix elements between orbitals ß and ,,_
In Fig. 1, the intraatomic and interatomic elec­
tronic processes responsible for the van der Waals
and covalent bonding, and represented by the
operators H..,dW and Hcov't respectively, are
schematically shown. Clearly, since the same va­
lence electrons take part on both cohesion pro­
cesses, an interplay between vdW and covalent
bonding arises, which dominates the electronic
structure and is contained in the Hamiltonian H.

The calculation of the ground..state properties
of H requires one to take into account explicitly
the different Ioeal electronic configurations which
contribute to the correlated ground-state wave
function. Therefore, we introduce, in analogy with
the slave-boson method [9] a set of boson opera­
tors which proiect onto the different possible
atomic configurations. This means that one needs
16 X n boson operators to describe a Hg, cluster
[8]. However, only a few of these Ioeal configura­
tions contribute appreciably to the ground state
properties of neutral Hg tl clusters, Therefore, we

(2)

(a)

pr~ v ~t, f\J\NV\J\J .... I
: I "V"

S v I

haviour at a given critical cluster size n c• In
particular, the cohesive energy of Hg, clusters [3]
can be weIl fitted by using Lennard-Jones poten­
tials für 11 :$ 13. For n > 13 the cohesive energy
increases more rapidly and the agreement be­
cornes worse as the cluster size increases.

A consistent interpretation of the experiments
has been performed [6], with the nontrivial con...
clusion, that in small Hg; clusters the valence
electrons rernain almost completely localized un­
tiI Cl critical cluster size n c (10 ~ »: ;s 20), where
there is a transition to delocalized electronic
states. This abrupt transition reflects the fact that
small Hg" clusters are strongly correlated sys­
tems.

In order to find which correlations are irnpor­
tant for this transition we consider the main
electronic interactions present in neutral Hg"
clusters, which are included in the following
rnany-body model Hamiltonian [7]

H = HCll V + H vdw + Hop. (1)

H cov describes the covalent interactions by a gen­
eralized sp-band .Hubbard Hamiltonian of the
form

H -" +, + ~ tlj +
cov - c: ~ßc/ßcTcJI~tT z: ßyc'{3cTCfyu

Iß(T ljßycr

+ E U/3-yn'(jc,.ll'"'I(T"
'ßlr*"1'Cr'

where €/ß (ß = s, Px' p}" J?z) refers to the
atomic-like energy levels, t#y to the different
interatomic hoppingintegrals, and Uß y to the
on-site direct Coulomb-interaction integrals. c/ßq'l
c //3(' and 11'/13(1' are the corresponding creation,
annihilation and occupation-number operators.
Note that the covalent interactions in neutral
Hg, clusters involve rnainly inter-atomic sp hop-
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where Zj~u' Z/ßu and Jlta. are operators acting on
the boson space, provide the generalizations of
the original fermion operators describing inter..
atomic hopping and coupling between two in...
traatomic sp excitations. The Coulomb energy in
the enlarged space can be written only in terms of
boson operators, as [8]

consider the creation (annihilation) operators s;
(s,'), d: (d s )' ";0- ('Tper) and rrt;ü (muoJ, which
correspond, respectively, to the configurations s1)

s2, S2 pl and Slpl (with opposite spins), Of course,
in order to obtain a one to one correspondence
between bosons and local electronic configura­
tions, a set of constraints has to be imposed to
the boson operators [7,8]. Thus, in the enlarged
Hilbert space (including fermions and bosons)
one obtains a Hamiltonian $ which has the
same matrix elements as the original (pure elec...
tronic) Hamiltonian H. For instance, the trans­
formations [8]

We evaluate the ground state properties in the
saddle-point approximation (SPA) [9]. Here, the
boson operators are taken to be numbers deter­
mined by rninimizing the ground-state energy, By
setting S:S".=S2, d:ds=d

2
, -r:u7'pu=-r

2 a,nd
m +-m - = m 2 we recover an electronic effective

trtr 0'(1' , •

Hamiltonian Heff , in which the hOPP1l1g elements
and the van der Waals coupling constant become
renormalized, by the factors [7,8]

q' = (Z/ßuZjyu) (8)

and

qV = (niunj~')' (9)

which depend on the numbers S2, d2
, ,,2 and m2

,

which can be interpreted as the probabilities for
the occurrence of the different atomic configura­
tions. This reflects in a very transparent way the
interplay between covalent and van der Waals
bonding. Moreover, it holds that 0 s a', .qV ;5;; 1.
Thus, one can interpret the renormalization fac-

tors as order parameters, The effective Hamilto­
nian Heff can be easily diagonalized [7,8] and its
ground state energy E; (d 2,s 2,T 2,m 2, ••• ) is given
by

+2nEAJA-/JL{'T2
, d 2

, S2, m2
) . (10)

JL

The first term of Bq. (10) is the kinetic energy of
the electrons, where Ji"S(p)(e) refers to the renor­
malized s(p) density of states. In the second
(Coulomb) term, U is the Coulomb energy of a
charge fluctuation, and T

2 the probability for the
ionic (triply occupied) configurations. The third
term stands for the van der Waals energy, and
the last term refers to the constraints fp. = 0 or
~ = fermion operator, which the probabilities S2,

/2, 7"2 and m2 have to satisfy. The quantities A,..
are the corresponding Lagrange multipliers. The
binding energy of the cluster is then obtained by
minimizing the function E; (d 2,s 2,'T2,m 2, .•• ) with
respect to the probabilities s2, d2, 7 2 and m 2,

subjected to the corresponding constraints.
We have performed calculations for Hg , clus­

ters with n ~ 43 atoms and for different values of
the parameters U and V. Since both vdW and
covalent bonding favour close..packed structures,
we have assumed such cluster geometries. Für
n 2 13 results on fcc-like structures are presented
in this paper. No qualitative difference have been
found für icosahedraI structures, In general, re­
sults were checked to be insensitive to the details
of the cluster structure.

The parameters Es, Ep ' t~ß' used for the calcu...
lations are determined as folIows. The sp-promo­
tion energy Ii = E - es = 5.8 eV is obtained from

p 3 1 • 6 2the average between the P and P atornic S ~

6s6p transitions [10]. We use tss = -0.44 eV, tsp

= 0.5 eV, and tpp = 0.73 eV, similar to those. of
Ref. [6], which were fitted to bulk-Hg assummg
the relation tsscr= -1.32/1.42 t spu = -1.32/2.22
t proposed by Harrison [11]. Due to the con­
st~~ints for the probabilities, E; is actually func-

(5)

(6)

(7)EC ouJ = UETh,uT/PlT
Irr

Cj~(]'C/ß(T ----+ Cj~rrCLßuZj~crZ1ßcr'

+ + + + nr si:ClpuC/suCjpuCjsu~ c/puc/suCjpuCjsu tu ja»
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with the binding energy up to second order per­
turbation theory, i.e., it has the same dependence
with U as the exact solution of a Hubbard Hamil­
tonian. New features appear if vdW interactions
are included. For V =F 0, in addition to the cova­
lent minimum, a second SP is found in E; having
qV = 1 and q' = 0, i.e., pure vdW character. This
is shown schematicaIly for n = 2 in Fig. 2(b),
where we plot the lowest value of En<d

2,m2
) for

each value of qt(d2,m2
) . In this SP the probabil­

ity of triple and single occupations is negligible
(72 = S2 ~ 0), whereas m2

1"J (V/ ,d)2 =1= o. This in­
dicates that the binding arises from intraatomic
electron-hole excitations. The energy of this vdW
SP is independent of U, and is approximately
given by

En "" -V2/L1, (12)

i.e., London vdW cohesion. The SP which .is
actually relevant for the cluster ground state is
the one with the lowest energy. For the parame­
ters used in Fig. 2(b) this is the covalent SP. Für
the same value of V but increasing U, the energy
of the covalent SP decreases according to (11),
until a value U, is reached, for which both min­
ima have the same energy. With a further in­
crease of U the vdW SP becomes the absolute
minimum, as illustrated in Fig, 2(c). At U, the
ground state of the cluster changes dramatically
its properties and undergoes a transition from
delocalized, covalent (qt = 1) to localized, vdW­
Iike (q! = 0, q" = 1) electronic states.

It is important to stress, that für V = 0, i.e., in
absence of vdW interactions, the electrons are
deiocalized (qt = 1) for all cluster sizes n. This
indicates that the correlations introduced by the
van der Waals forces are of fundamental impor­
tance and must be considered in order to account
for the experimental observations.

It is possible to obtain, for each cluster size, a
phase diagram for the bond character as a func­
tion of U and V, as shown in Fig, 3 für a cluster
of n = ·13 atoms. Clearly, there are many ways to
go from the van der Waals to the covalent phase.
For instance, by keeping U constant and decreas­
ing V until a critical value ~ is reached for
which the system changes from covalent to vdW
bonding. For decreasing U, ~ needed to sup-

V=O(a)

o

E

U/t,8P = 10

V!l,p := 1.1

E (e)
o

Ujtap = 2

V/tap = 1.1

tion of only two variables, for example d 2 and m2

[7,8] Definite values of the hopping and vdW
coupling renormalization factors qt and qV corre­
spond to each point (d 2 , m 2 ) .

For V = 0 we obtain, for all cluster sizes, a
single minimum in E; (m 2

, d 2
) having a' = 1 and

qV = 0 (see Fig, 2). The probability für the s-p
mixed state in this minimum is negligible (m 2 ~ 0).
The binding is, thus, exclusively due to inter­
atomic charge fluctuations. Für increasing
Coulomb repulsion, it results that the probability
for the triply (singly) occupied state is ,,2 = S2 f'J

t;p/(L\ + U)2 for U~ co, This means that the
binding energy, which comes from charge fluctua­
tions, decreases for increases U. The energy of
this saddle point E; (ql = 1) decreases for in­
creasing U as

t 2

E '" - sp ~ 0 for U ~ 00. (11)
n J+U

This minimum corresponds, as expected, to the
saddle point (SP) solution of a two-band Hubbard
model with 2 electrons per site. The behaviour of
En described in Eq, (11). for large U coincides

o 0.2 0.4 qt 0.6 0.8

Fig. 2. Schematic plot of the lowest value of the function E;
(n = 2) for each pair (d 2 , m 2 ) as a function of the hopping
renormalization factor q' for different values of U and V
(scaled by t~p). A crossing of the energy minima occurs for
increasing U.
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Fig, 3. Phase diagram for vdW and covalent bonding as a
function of the Coulomb energy of acharge fluctuation U and
the vdW coupling constant V (both scaled by tsp) for n == 13
atoms.

press charge fluctuations increases. This reflects
clearly the important role of the Coulomb repul­
sion as regulating the interplay between covalent
and vdW bonding, Other possible path for such a
transition consists in keeping V constant while U
is reduced. And this case is particularly impor­
tant, since there is a very simple way to decrease
U, namely by increasing the cluster size. One
expects U to decrease due to the increase of the
screening of the charge fluctuations. In aur the­
ory the screening is given by the charge-dipole, .
interactions H Q _ p [Eq. (4)]. As shown schemati-
cally in Fig, 3, in a hopping process a positive and
a negative ions are formed. The Coulomb energy
U that the electrons have to pay is given by

U=Uo - e2/rij-8U/
j , (13)

where Uo= 2U - Uss is the increase of the
sp . 2 he iintra..atomic Coulomb repulsion, -e /rij tne m..

teratomic attraction between the electron and the
remaining hole, and 8~j takes into account ~he

screening of the interatomic charge fluctuation
due to the polarization of the atoms surrounding
the electron-hole pair [7,8]. This polarization of
the environment is clearly a size-dependent ef­
feet. Since the polarization energy increases with
increasing cluster size [7,8], we conclude that a
transition from van der Waals to covalent bond­
ing can occur for increasing cluster size.

Fig, 4. Screening process consisting in polarization of the
neutral atoms surrounding acharge fluctuation, Thick arrows
refer to the induce dipole moments.

In order to explain quantitatively the change in
the bond character of Hg, clusters as a function
of cluster size, we estimate the interaction param­
eters V and U as folIows. The vdW coupling
constant V = c1aL\/rJ = 0.55 is obQtained from the
atomic polarizability [12] a = 5.7 A3

, and the con­
stant cl = 1.25, which was determined by fitring
to the experimental binding energy of rare-gas
dimers. For simplicity we assume ~s = ~p = Uo.
In Fig, 5 results are given for the bond character
of Hg, clusters as a function of Uo and n. The
phase boundary is determined as the value of Uo
für which n is equal to the critical cluster size n.,
where the transition occurs. A realistic value

10

van der Waals
bonding

8
..-...

off- Uo(Hg)
~...,.,
~ ql 1

6 I
covalent a.e I oovalent

bonding
vdW

I

0 10 eo eo .. 0 r.o
4 n

o 10 t 20 30 40

n o(Hg) n

Fig. S. Phase diagram for vdW and covalent bonding as a
function of the intraatomic Coulomb repulsion Uo und n.
Estimating Uo(Hg) == 7.5 eV, one obtains nc(Hg) =13 atoms,
The subfigure shows the size dependence the hopping renor­
malization q t.
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Uo(I-Ig) = 7.5 eV [10,13] is indicated. This yields a
transition at n = 13 atoms.. Of course, since we
use a model Hamiltonian, the set of parameters
used cannot be determined accurately to describe
univocally Hg. Therefore, we allow an uncertainty
in the value of Uo of approxirnately 1 eV. Then,
we can conclude that the transition occurs in Hg"
clusters at nc ~ 10-20 atoms, in very good agree­
ment with experiment, In the inset of Fig, 5, the
size dependence of the degree of delocalization
of the valence electrons (renorrnalization factor
q') is shown. Für n ~ 13,qt = 0 implies the hop­
ping processes are blocked. The number of single
and triple occupations vanishes, i.e., the electrons
are localized. In addition, q v = 1 reflects that
only vdW bonding is present. The binding energy
and the number of p-electrons per bond is roughly
independent of n. At n ::= 13 there is a crossing of
the SP solutions and the character of the bonding
changes. For n > 13 we obtain qt = 1, which
physically means that the valence electrons delo ..
calize to form covalent bonds (or for even larger
clusters metallic bonds) and vdW bonding is sup­
pressed (qV = 0). Now, the binding energy per
bond increases with n, and the same occurs with
the number of p-electrons.

The change in the bond character of Hg,
clusters is, of course, also reflected in the size
dependence of the cohesive energy, as it has been
shown in a previous paper [7], where good quanti­
tative agreement with experiment is obtained.

Although the results for Uc(n) depend not only
on n and UD, but also implicitly on the other
parameters (V, d, tsp ) , Fig, 5 can be interpreted
as a general phase diagram for the size depen­
dent bond character in divalent-metal clusters.
Notice that the existence of a transition is re­
stricted to certain values of Uo" Für instance, if
Uo< 5 eV, the system could be covalent already
for n = 2 [14]. For UcJ> 9 eV, vdW behaviour
results forall cluster sizes.

We study now the change of the bonding in
rare-gas clusters. From Reis. [10,11,13] and by
fitting to experimental results of rare-gas dimers
we estimate the values Uo(Xe) = 9.13 eV, L1(Xe)
=: 13.26 eV, a(Xe) = 4.04 N, and ro(Xe) = 4.36
A for Xe, clusters, Uo(Kr) = 10.48 eV, L1(Kr) =

17.11 eV, ze(Kr)= 2.48 :R, and ro(Kr) = 4.03 Ä,

for Kr; clusters and Ug(Ar) = 11.12 eV, ~(Ar) =
18.7 eV, a(Ar) = 1.64 A3

, and ro(Ar) = 3.76 A. for
Arn clusters. We assume that Xe., Kr; and Arn
clusters have the same hopping elements as Hg,
clusters, which is an overestimation, since the
interatomic distances between rare-gas atoms are
Iarger than between Hg atoms, and since the
overlap between atomic-like wave functions is
known to be smaller than für Hg [15]. In spite of
it we obtain, in the SPA, that Xen , Ar, and Kr"
clusters are vdW for all cluster sizes investigated.
This means that in our model, rare-gas clusters
are can be seen as divalent-metaI clusters for
which the transition to covalent bonding does not
take place,

Summarizing, we have explained the size de ..
pendent change of the bonding character in small
Hg, clusters by using an electronic theory which
takes into account properly the correlations intro­
duced by the interplay between van der Waals
and covalent bonding mechanisms.
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