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Self-energy corrections in heavy muonic atoms
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Self-energy corrections for 1SI /2 levels of heavy muonic atoms are ca1culated to all orders in the external
field using numerical techniques to evaluate the bound-muon propagator. The resulting values of the self­
energy are about 10% larger than previous estimates.

11. PREVIOUS MUONIC LAMB-SHIFT CALCULATIONS

FIG. 1. feynman diagram representing the muonic
self-energy. The double line indie ates that the muon is
propagating in the statie field of a nueleus of charge Z.
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ergy. (See also Ref. 7.)
In Sec. 11 of the present paper we discuss pre­

vious work on the muonic Lamb shift, then in Sec.
111, we discuss our present calculations, and in
Sec. IV we describe our results.

(

where V is the muonic potential energy, m is the
muonic mass, and o is the fine structure constant.
The quantity ~E occurring in Eq. (1) is the log­
average excitation energy defined by the Bethe
sum." The term -t arises from the muon vacuum
polarization, whereas the remaining terms come
from the self-energy. There are two sources of
uncertainty associated with Eq. (1):

(i) The Iog'-average excitation energy ßE is not
always given with high accuracy. Barrett et al ,"
determine In(m/2'~E) to about 25%. Bethe and
Negele-" determine bounds on ~E which reduce the
uncertainty in In(m/2ßE) to about 10%. Such bounds

Only the lowest-order terms in a field-strength
expanslonv" have been retained in older calcula­
tions of the muonic Lamb shift. 9

-
11 The resulting

energy shift is given by ,

I. INTRODUCTION

Progress has been made in recent years in cal­
culating radiative corrections of order a to the
binding of K-shell electrons in heavy atoms. 1

-
3

The most difficult aspect of such calculations is
the accurate determination of the electron self­
energy (represented by the Feynman diagram of
Fig. 1) in the strong Iield of a nucleus of high
charge Z. In recent calculations, expansion in
powers of the external field" (which shows no signs
qf convergence for a Coulomb field with Z ~ 10) is
avoided by employing an expansion based on the
known Coulomb Green's function"; or alternatively,
by a direct numerical evaluation of the electron
propagator.!" The results of these recent electron
self-energy calculations, combined with an eval­
uation of the vacuum polarization and the Breit
interaction, have been used as corrections to Di­
rac-Hartree-Fock many-electron calculations to
bring theoretical inner-shell binding energies into
agreement with experiment to a level of ±10 eV. 5

Factors influencing the binding in heavy muonic
atoms are of course quite different from those
occurring in the electronic case . Because of the
relatively large muonic mass, nuclear finite size
plays the dominant role in determining muonic
energy levels. Vacuum polarization and polariza­
tion of the nucleus by the muon, together with
electronic screening, are other factors important
in determining muonic binding energy. The major
uncertainty in theoretical calculations of muonic
binding is the nuclear polarization correctlon."
Muonic self-energy is only a small correction eyep
for 181 / 2 states; however, in view of the high pre­
cision of x-ray energy measurements, it is neces­
sary to have precise values of the muonic self-en-
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are also utilized by Barrett!' in his later tabula­
tions of ß ELS • The most recent determination of
ßE is that of Klarsfeld" who evaluates the Bethe
sum numerically. For the 18 1 / 2 state of muonic
208Pb Klarsfeld' s value of ß ELS is about 2% higher
than Barrett' s value.

(ii) Contributions from terms of second and
higher order in the external field have been ne­
glected in Eq. (1). As has been pointed out by
Barrett et al.,9 the external-field expansion is
expected to converge for high Z in muonic atoms
in centrast to the situation for the electronie Lamb
shift. The largest term of second order has been
estimated and found to contribute about 15% to the
Lamb shift in heavy muonic atoms. This value
can be taken as a generous allowance for all of
the neglected higher-order terms.

Considering both sources of uncertainty (i) and
(i i) leads to an estimated error of about 20% in the
existing Lamb-shift calculations for heavy muonic
atoms. As we shall see in Sec. IV, the existing
calculations do, in fact, lie below those of the
present calculations by about 10%.

III. DESCRIPTION OF THE NUMERICAL SELF-ENERGY

CALCULATION

The present calculation i s a numerical evaluation
of the renormalized self-energy following the me­
thod devised by Brown, Langer, and Schaef'er."
This particular numerical procedure has been ap­
plied to heavy atoms (Z = 70-90) by Desiderio and
Johnson" and to superheavy atoms (Z =90-160) by
Cheng and Johnson.! For an electron in a nuelear
Coulomb field the present method! gives self-ener­
gy values in close agreement with those determined
by Mohr,3 who bases his work on the known Cou­
lomb Green' s function.
, The advantage of the present teehniques in the
muonie ease is that we are not restrieted to a Cou­
lomb field but may eonsider other. potentials as
weIl; thus, the Coulomb singularity in the self-en­
ergy," which occurs at Z =137 is avoided by inelud­
ing nuclear finite size in the electron potential en­
ergy.! In the muonie caleulation,where nuelear
radii and muonic radii are comparable, it is nec­
essary to allow for nuclear finite size in the inter­
action potential; the Brown-Langer-Sehaefer me­
thod provides the appropriate tool.

A detailed description of the method together
with a discussion of the numerical problems en­
countered in its application is given in Ref. 14.
We just mention here that after renormalization
the Feynman diagram of Fig. 1 reduces to three
terms; ßESE =ßE(ü +ßE(2) +i1TRo• The "jnain
term," ß E(1), involves a surn over photon partial
waves land an integration over photon frequency

w. Since both the infinite l sum and the infinite
w integration are slowly convergent, care must be
taken to estimate remainders after truncation ae­
curately. The terrn dE(2), which arises after re­
normalization, and the residue i1TRo, which occurs
because the w integration is rotated to the imagin­
ary axis, are both simple quadratures whieh are
calculated with high accuracy. As in the electronie
ease, there is a cancellation between the three
terms; in the present case this amounts to a re­
duction in size of the sum to about 10% of the in­
dividual terms. This caneellation becomes so
severe for light muonic atoms that the present
numerical proeedure is impractieal. Similar nu­
merical cancellations prevent us from giving ac­
curate values for the Lamb shift of states with
higher priniepal quantum numbers.

Theprimary souree of numerieal error is our
estimate of remainders after truneation of ß EU).

With the present techniques these estimates lead
to an error of about 5% in the determination of
LlESE for 1s 1/2 states of muonie atoms.

IV. RESULTS AND DISCUSSION

As pointed out' in Sec. 111 the Brown-Langer­
Schaefer method works with sufficient accuracy
only for the 181 / 2 state in very heavy muonic
atoms (Z ~ 70). We therefore chose five nuclei
equally spaced in Z from Z' =74 to Z =92, namely ..
184W, 194pt, 208Pb,. 322Rn, and 238U. In order to see
a possible isotope effect on the self-energy level
shift, we have ealculated the level shift for 206 Pb
also. From an experimental point of view, the
muon binding energies of these two Pb isotopes are
also the best known ones in the Z region consi­
dered. The nuelear charge distribution employed
is always that of a Fermi distribution

p(r) =Po{I +exp[ (4 In3) (r - c)/ t]}-1

with nuclear radius c and skin thickness t. The
values of c and t were taken from Table 111 of the
eompilation of Engfer etal. 15 This ehoice was
motivated by the consideration that the muon
bound-state wave functions and propagators should
be reproduced best by nuelear charge distributions
obtained from experimental muonic transition en­
ergies. Since all nuclei eonsidered by us except
the Pb isotopes are deformed, we have had to
construct the corresponding spherical 'charge dis­
tributions. This was done by fitting the radii c of
all measured spherical isotopes from Z =79 to
Z =83 by

c=roA 1/3 , r o = 1 .1243 fm

and then extrapolating this function to the d eformed
nuclei. In Table I we list the nuclear parameters
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TABLE I. Values of the nuclear parameters (Im) and the corresponding uncorrected Dirac
IS1/2 binding energies (ke V).

Nucleus c E(ls1/ 2) Remarks

182W 6.4038 2.197 9 186.239 Barrett 's parameters a
184W 6.3947 2.3 9168.838 Extrapolation of Engfer's

parameters b
194 p t 6.5085 2:3 9857.212 Extrapolation of Engfer' s

parameters b

206Pb 6.6302 2.3 10538.801 Engfer's parameters b

208Pb 6.6477 2.3 10526.017 Engfer' s parameters b

222Rn 6.8076 2.3 11173.278 Extrapolation of Engfer' s
parameters b

238U 6.9674 2.3 12 197.340 Extrapolation of Engfer's
parameters b

238U 7.0028 2.637 12064.217 Barrett 's parameters a

a Reference 11.
b Reference 15.

491

used together with the corresponding binding ener­
gies of the muon in the 1s 1 /2 state; we also give
the nuclear parameters used in Barrett' s calcula­
tion of the self-energy level shift l 1 for later com­
parisons. The results of our calculations on the
ls 1 /2 self-energy level shifts for heavy muonic
atoms are presented in Table Ir. For ease of
eomparison with Ref. 1 we list values of the con­
tributing terms, ß E(l), ß E(2), and irrR o in muonic
Rydbergs (1RYt-t <rn Ime Ry =2.813 keV). The
terms irrR o and L.\ EG.) are reduced to about half of
their values in the electronic case, whereas tl E(2)

is more than twice as large as in the electronic
case. Since all three terms nearly cancel, the
total shift is about 10% of the contributing terms
and much smaller than the corresponding electron­
ie values. Of course, this reduction was expected
beeause of the finite field strength argument of
Ref. 9.

The values of ß E SE in keV are given in column
6 of Table Ir. In column 7 we give the small con­
tribution of vacuum polarization by muonic pairs
dedueed from Eq. (1). Finally, in column 8 of

Table 11 we list the resulting value of the muonic
Lamb-shift in keV.

For comparison we include values calculated
using the same nuclear parameters as used in
Barrett' s Table I (Ref. 11) for two nuclei 182W74
and 238U92 .. For both nuclei we find an increase in
the level shift of about 10% as compared with
Barrett' s first-order calculation. Adding in Bar­
rett' s estimated second-order shift reduces the
discrepancy further . Comparing our results for
two nuclei (20Bpb, 208Pb) with different charge dis­
tributions but the same total charge Z, we find a
completely negligible isotope correction to the
Lamb shift. The insensitivity of ß ELS to nuclear
parameters i s further illustrated by comparing
the first and second rows of Table 11 in which 182W
computed using Barrett' s parameters is compared
with 184W computed using Engfer' s parameters, or
by comparing the last two rows of Table Ir in
whieh corresponding values are given for 238U.

On the basis of the elose agreement between our
present values and Barrett' s values of ~ E LS (1)
+ ß E LS (2) we see that the finite-field-strength ar-

TABLE IL Self-energy level shitts for lS1/2 states in heavy muonic atoms.

ßE(1) ßE(2) i7TR o ~ESE ~ESE ~Evp ~ELS

Nucleus (RytJ,) (RytJ,) (Ry,) (RytJ,) (keV) (keV) (keV)

182W -14.59 -10.89 26.60 1.12 3.1S a -0.219 2.93 a

184W -14.56 -10.89 26.56 1.11 3.12 -0.218 2.90
194pt -14.84 -11.05 27.08 1.19 3.35 -0.233 3.12
206Pb -15.10 -11.19 27.55 1.26 3.54 -0.247 3.29
208Pb -15.07 -11.19 27.51 1025 3.52 -0.246 3.27
222Rn -15.25 -11.30 27.86 1.31 3.69 -0.256 3.43
238U -15.61 -11.43 28.45 1.41 3.97 -0.275 3.70
238U -15.39 _11.43 28.19 1.37 3.85 a -0.264 3.59 a

aCalculated with Barrett's nuclear parameters, Ref. 11.

Ref. 11

2.66 ± 0.50

3.17 ± 0.52
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ized moments of the nuclear-charge distribution
(e.g., the Barrett moment (rke- Cn»)are deduced
from the measured muonic x-ray transition ener­
gies. In the standard compilation ofEngfer etrü ., 15

only the first-order Lamb-shift corrections of
Bar-rett!' are taken into account. Since the higher-
order corrections to the self-energy level shift
are somewhat larger than present day experimen­
tal errors in themuonic x- ray transition energies,
these higher-order corrections should be properly
taken into account. Using Eq. (17) of Ref. 15, we
find a decrease of the Barrett moment (rke- ct T

) for
the 1s1/2 state in very heavy muonic atoms of the
order of 0,,0005 fm due to the higher-order correc­
tions of the self-energy level shift.

As mentioned in the introduction, the main source
of uncertainties in the analysis of measured muonic
x-ray transition energies is the theoretical uncer­
tainty of the nuclear-polarization correction. In a
recent paper, Enteneuer et al .' have tried to deter­
mine experimentally the nuclear-polarization cor­
rection by a consistency analysis of measured mu­
onic transition energies and high-energy electron­
scattering cross sections. Since all other correc­
tions to the muonic transition energies except the
nuclear-polartzatton corrections have to be taken
into accountas given by theory, thehigher-order
corrections to the muonic self-energy level shift
would increase the measured nuclear-polarization
correction by the same amount.
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would like to thank the Physics Department of the
University of Notre .Dame for its hospitality durtng
his stay.
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guments of Ref. 9 are adequate for muons in 1s 1/2

states; moreover, we see that in the range con­
sidered here ~ E LS (2) accounts very weIl for the
higher-order a.Z corrections to Eq. (1). We ex­
pect Barrett's values of ~ELs(l) + dE1..s(2) to be in­
creasingly accurate for lower values of Z, so that
the present calculations for Z> 74 supplemented
by Barrett' s values for lower Z provide d ELS for
1s 1 /2 states throughout the entire range of atoms
accurate to about 5%. Results of our calculation
are also shown in Fig. 2 where the self-energy
shifts in keV are plotted against nuclear charge Z.

Exper-iments on muonic atoms are cornmonly
analyzed in a model-independent mannerv'" In
these analyses, some model-inaependent general-

40 60 80 100
Z

FIG. 2. The muonic Lamb shift plotted against nuclear
charge for 15 1/ 2 states. The syrnbol jä designates re-

, sults of the present calculation, • designates Barrett's
first-order calculation ~ELS(l), 0 designates Barrett's
second-order calculation AELs(l) +AEL S(2).

*Present address: Argonne National Laboratory, Ar­
gonne, 111. 60439.
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