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Abstract

A review of relativistic atomic structure calculations is given with a
emphasis on the Multiconfigurational-Dirac-Fock method. Its problems
and deficiencies are discussed together with the contributions which go
beyond the Dirac-Fock procedure.

1. Introduction

This paper is intended to give a review on relativistic atomic
structure calculations [1] with emphasis on the Multiconfigur­
ational-Dirac-Foek method, Dr Crossley has summarized in
his preeeeding paper most of the non-relativistic methods whieh
lead to good binding energies and transition probabilities. Both
quantities are espeeially important in astrophysies and plasma
physies. Sinee relativistie effeets beeome inereasingly important
with inereasing Z, I would like to concentrate first on a dis­
cussion of the differences between non-relativistic and rela­
tivistie ealeulations whieh ean be best illustrated in the one­
eleetron ease.

To deseribe the many eleetron atomie system the ansatz for
the wavefunetion and the resulting relativistic Multiconfigur­
ation-Dirac-Fock (MCDF) procedure is discussed as a seeond
point. In the last part the problems of this method its deffi­
cieneies as well as the additional eontributions whieh go beyond
the MCDF picture are diseussed.

2. Comparison of the non-relativistic and relativistic
one-electron atom

In the following the equations and quantities which describe
a one-eleetron atom are listed.

Non-relativistic

Schrödinger equation.

The radial equation

_:!P" + 1(/ + 1) P_!-.P == €P
2 2r 2 r

is one differential equation of second order.

There exists one radial function P(r). The radial electron density IP(r)1 2

has n -1 - 1 zeros. The angular electron density has I zeros.

Spectrum:
E > 0 continuum
E < 0 bound states

Good quantum numbers: n, I, mZ, Parity.

For I > 0 there is always one nl-state only

To .demonstrate the difference of these two deseriptions
Fig. 1 shows the eleetron density (41Tr2

I\jI(r)1
2

) of the ls, 2s and
2p states [2] in a one-electron mercury atom. The strong eon­
traction towards smaller r for the relativistie wavefunctions is
espeeially pronounced for all sand P1I2 wavefunetions. This
is called the Direct Relativistic Effect. Also the splitting of the
non-relativistic 2p wavefunetion into the 2P1I2 and 2P3/2 rela­
tivistie wavefunctions can elearly be seen in Fig. l(e).

3. Hartree-(Dirac-) Fock description of many electron atoms

The general equation which has to be solved in the ease of
a many-eleetron atom is the Schrödinger and Dirae equation,
respeetively where the eleetron-eleetron interaetion is intro­
duced in the Hamiltonian. The theoretical fundamental prob­
lems which are conneeted with this procedure in the ease of
the Dirae equation are diseussed in general by Sucher [3].

If a l-Slater-determinant is used as the ansatz for the wave­
function the variation of the total energy with respect to the
radial funetions leads to the Hartree-Fock-equations in the non­
relativistie ease [4] and the Dirac-Fock-equations in the rela­
tivistie case [5]. The eomparison of results of such calculations
shows two features. First, the direct relativistie effeet, l.e.,
the contraction of the sand P1l2 wavefunetions is very similar
as diseussed in the one-electron case. Seeond, the so ealled
Indirect Relativistic Effect appears. Due to the strong eontrac­
tion of the innermost wavefunctions the ou ter wavefunctions
with large angular momenta beeome more shielded than in the
non-relativistic case and expand. Both effects can very well be
seen in Fig. 2 where the quantity (r)reL/(r)non-reL is given as

Relativistic

Dirac equation.

The radial equation

P'+~P-(2C+~(€+;))Q= 0

Q' + Q'(-~ i)p = 0

consists of two coupled differential equations of first order.

There exist two radial functions P(r) and Q(r) which are called the large
and the small component respectively. The radia electron density
IP(r)1 2 + IQ(r)12 has no exact zeros. Also the angular electron density has
no exact zeros.

Spectrum:
E> mc? continuum
mc? > E > - mc? bound states
E < - mc? negative continuum

Good quantum numbers: n.], mj, Parity.

For 1 > 0 there are two states instead:
t, = 1 + 1/2 The energy difference between these
t, = 1 - 1/2 states is the spin-orbit splitting.
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Fig. 1. Charge density D = 41Tr2( IP12 + IQI2) for an one-electron mercury
atom. In (a) the ls in (b) the 2s and in (c) the 2p electron densities are
given, - is the relativistic and --- the non-relativistic calculation.

0.15

2p

0.05 0.10

r [a.U.l

15

o

cl

0.2

25

\
\

\

\
\
\
\
\
\
\

\
\ ,

' ..... --

15

~ 10

o

15

b)

\

\
\
\
\
\
\
\

\

\

",
...........

/,0

o 20

(3)

(4)

The IcPi> are linear combinations of Slater determinants laj)

M

Il/J> = L edcPi>
i=l

Icf>i> = L ßijlaj>
j

The Slater determinants laj> are constructed from N one-particle
wavefunctions c.p which in the relativistic case are spinors of
rank 4

lP = !( Pnk(r) Xk
j

) (5)
r iQnk(r) X~~

P(r) and Q(r) are the large and small components of the radical
functions. The angular part is a linear combination of spherical
harmonics Y]" and the spin function S which is a spinor of
rank 2

4. Remarks on the MCDF-proeedure

The equation which has to be solved is

function of the main quantum number in fermium. The outer­
most 5[ wavefunctions expand due to the indirect relativistic
effect whereas all s wavefunctions contract, including those
with large main quantum numbers although they are only
loosely bound.

Since l-Slater-determinental wavefunctions in general have
no good angular momentum one has to construct so called
Configuration State Funetions (CSF) which are a linear com­
bination of Slater determinants. These CSF have J2, MJ and the
Parity as good quantum numbers in the relativistic case. If a
linear combination of such CSF's are used as the ansatz for the
wavefunctions to solve the Dirac equation one finally ends up
with the Multiconfiguration-Dirac-Fock Method (MCDF) [6].

The ansatz for the total wavefunction Il/J) is a superposition of
CSF

Hil/J> = Ell/J> (2) Xkj = L yZ-aSO(l m-a! all! jm)
a

k is the Dirac quantum number:

(6)

State: s

Fermium (Z=100) k : -1 -2 2 -3 3 -4

(7)

If we use the ansatz (3) for the wavefunctions which can be
rewritten in the form

M

IljI) = L ed<Pi) = etl,>
i=l

with

the total energy of a time-independent quantum mechanical
system is then

.::::.. r>R.

<: r>N.R.

1,0

1,1

0,9

Fig. 2. The quotient of the expectation value of r in a relativistic and a
non-relativistic Hartree-Fock calculation of a fermium atom is shown as
function of the main quantum number n.

(8)

M

= <l/JIl/J> = ete<<Pd<Pj) = ete = L led2 = 1.
i=1

In a Hartree-Fock-procedure the total energy E is varied
under the additional constraints that the norm of the total
wavefunction is 1 and that the CSF's are orthogonal <4>i 14» =

E = <l/JIHIl/J) = et<,IHI,le = etBe

with (H)ij = <<Pi \HI<Pj).
The norm is given by

7 n

5

65432

0,8
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5ij • In all relativistic versions which exist so far the authors
[7, 8] use (<Pi I<pj) = Sij so that all Slater determinants are con­
structed from the same orthogonal set of atomic wavefunctions.
This leads to the energy functional
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a
0.6

0.4

E = etHe-w(ete-I)+ L €ij«<pi!<pj)-I) (9)
i<j

where wand €ij are Lagrange multipliers, which have to be
varied (i) with respect to the expansion coefficients Ci and
(H) with respect to the radial one-particle wavefunctions P
and Q.

The variation of (i) leads to the matrix equation
Fig. 3. Expansion coefficient a for tbe intermediate wavefunction of the
1Pl state in the isoelectronic Be-series. The wavefunction is defined as
11P

1) = -alsPl/2) + blsP3/2)·He = we (10)

0.2

o 20 40 60 80

Z

where w is the total energy since E = etHe = etwe = w.
The variation of (ii) leads to the inhomogeneous coupled

MCDF equations for the radial functions per) and Q(r)

~'+;~ = [2c+~(ei-~)]Q;+XQ
i = 1,2, ... , N

, ki 1 ) D X (11)Qi - - Qi = - - (€i - Vi Li + p
r c

which are explained in detail in [6].
Since this variation is performed with respect to the radial

part of the wavefunctions only this is a restricted Dirac-Fock­
procedure.

In a practical calculation one starts with good guesses of the
potential Vi and the expansion coefficients c; calculates eq. (11)
to get new 1';, and G then calculates the matrix Hand diagon­
alizes eq. (10) which in turn allows a new calculation of
eq. (11), etc. This has to be done until convergence is achieved
both for the P's and Q's as weIl as the ci. The two programs
which solve this problem are the programs by Desclaux [7] and
Grant et al. [8]. A large number of such calculations have since
been performed by the authors as well as a large number of
other people [9].

To give a very simple example of the usefulness of these
programs I discuss the configuration sp in the isoelectronic
series of Be. The pure jj-configurations are: SP1I2 with J = 0, 1
and SP3/2 with J = 1, 2. Thus the two J = 1 states can be
described in the LS picture by

13Pt) = .J213lsP1I2) + v'f73ISP3/2)

1
1Pt ) = - v'f73ISP1I2) + .J213lsP3J2)

Of course in reality one has neither pure LS coupling nor pure
h·-coupling but intermediate coupling so that the tPt state for
example can be written as

1
1Pt ) = -a ISPV2) + blsP3/2)

in the presence of additional ls2 electrons.
A MCDF calculation of this system not only yields the one

particle wavefunctions but also the coefficients a and b. Figure 3
shows the results of such calculations for the factor a which
clearly shows the quick breakdown from pure LS coupling at
very small Z to nearly pure jj-coupling for very large Z for the
isoelectronic series of Be.

s. Approximations and problems in the MCDF ealeulations

The Multiconfigurational-Dirac-Fock procedure would be an

exact solution for the given Hamiltonian if the number of con­
figurations would be infinite. Since this never can be achieved
the result always is an approximation!

In general one can say that the calculations become better
with increasing number of configurations, but since a good
intermediate coupling always needs all possible jj·configuration
state functions at least all CSF's, which are possible within the
same shell of the atomic one-particle functions, should be taken
into account.

As stated above it is necessary in the MCDF procedure that
all CSP are orthogonal to each other. This means that the one­
particle atomic wave-functions from which the Slater deter­
minan ts are constructed are orthogonal to each other only
within one CSF. If one would allow for many different sets
of one-particle atomic wavefunctions the MCDP programs
would become very much more difficult. That is the reason
why up to now only one set of one-particle orthogonal atomic
wavefunctions <p are used to construct all CSF's. The error intro­
duced by this procedure usually is expected to be small but
this should be proven in each case [10]. Again an infinite
number of atomic basis states would solve this problem too.

The finite, and different, number of CSF for each calculation
of different total angular momentum J introduces an additional
error which first was discussed in detail by Huang et al. [11].
The best example for this deficiency of the MCDP method now
in use is the fine-structure splitting between the 2pl/2 and 2P3/2
states in B-like ions. In a single-configuration calculation this
is the splitting between the (2s2 2P1I2) 2pl/2and (2s2 2P3/2) 2P3/2
state. If one does a MCDF calculation taking into account all
CSF constructed from all atomic functions with n = 2 one gets
the two states (plus the ls2-core)

IJ= 1/2> = a12s22P1I2) + bI2P1I22p;J2)

IJ= 3/2) = a12s22P3/2) +b12Pt22P3/2) + cI2P:12)

+ dI2P1I2 2p;J2)

Table I. Spin-orbit splitting (in cm -1) in the ground state 0/B­
like ions

Ion SC MCDF MCDF Corrected Exp*
(a =0)

B 15.7 435.3 419.6 15.7 16
C+ 64.4 271.5 208.8 62.7 63.42
N2+ 179 335.8 163.4 172.4 174.5
Ne5+ 1 346 1472 174 1 298 1 310
Si9 + 7194 7183 215 6968 6990
Ar13+ 23286 22856 244 22612 22655.9

* For references see [11].
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Table 11. (a) Fine strueture interval of ls2s2p 4pOand ls2p24pe term (in ern-I) in Li-like Fand Mg. (b) Wavelength in Afor
4pJ-4PJ, transitions for Li-like Fand Mg

z

9 exp. [14a]
MCDF-EAL [12]
MCDF-OL [13]

12 exp. [14b]
MCDF-EAL [12]
MCDF-OL [13 ]

z

9 exp. [14a]
MCDF-EAL [12]
MCDF-OL [13]

12 exp. [14b]
MCDF-EAL[12]
MCDF-OL [13 ]

4pO 4pe

5/2-3/2 3/2-1/2 5/2-3/2 3/2-1/2

713 211 474 503
718.8 219.5 475.37 504.15
706 201 456 505

2708(20) 1010(20) 1995(25) 1824(35)
2731.3 1038.6 2018.1 1835,7
2742 968 2016 1855

J-J'

3/2-5/2 1/2-3/2 3/2-3/2 5/2-5/2 1/2-1/2 3/2-1/2 5/2-3/2

818.09 819.89 821.37 822.91 823.42 824.99 826.23
817.1 818.8 820.3 822.0 822.2 823.7 825.2
810.3 811.9 813.6 815.1 815.2 816.7 818.4

577.62 580.93 584.35 586.80 587.10 590.70 593.75
577.00 580.27 583.79 586.23 586.52 590.12 593.25
573.72 577.12 580.44 582.89 583.44 596.75 589.82

where the sum goes over all possible jj-coupled CSF belonging
to the set of atomic one-particle wavefunctions which are taken
into account. If one then uses these radial functions to deter­
mine the energy matrix H only one diagonalization is required
to get all eonfiguration energies as weIl as expansion coeffi­
eients Ci' This method is ealled MCDF-EAL (EAL for extended
average level). Since this method does not need a selfconsistent
procedure it is very cheap. The general method described above
needs a full selfconsistent treatment for both the P's and Q's as
weIl as the c; for each state calculated. This method therefore
is called MCDF-OL (OL for optimal level). An example and
comparison for both methods [12, 13] is given in Table 11,
where the ealculation of the fine-structure within the 4pe and
4pO states as weIl as the transition energies between them in
Li-like systems is given. Indeed Table 11 shows that the MCDF­
EAL method is nearer to the experimental [14] results although
the absolute difference between the calculations and the exper-

MCDF ealeulations for these two states lead to an energy
splitting whieh is by far too large as can be seen in row 3 of
Table I whieh is taken from [11]. The reason for this defieieney
is the inequivalent treatment of the eorrelation problem for the
two J-states. (For details see [11 ]). One possible eure is to per­
form the same ealeulations with the fine strueture eonstant
a = 0 (or e ~ 00) whieh is a non-relativistie analogue ealeulation.
Sinee the eorrelation is treated inequivalent one also gets a
splitting in this ease (see row 4 of Table I) although non­
relativistieally both levels should be degenerate. If one eorreets
row 3 with row 4 one gets the results of row 5 whieh indeed
are better than the single-eonfiguration ealeulations. From a
general point of view this unphysieal eorrelation energy also is
a eonsequence of the finite number of CSF and associated
finite number of atomic one-particle wavefunctions.

But how to overcome this difficulty in an acutal finite cal­
culation? The proposal by Grant [8] is, to calculate the radial
functions in eq. (11) from an energy functional of the form

E = const. L(2J + I)Ei (12)

iment is nearly constant in both cases. The effeet of the aver­
aging procedure of eq. (12) probably is just the constant differ­
enee between the two calculations.

This short description probably made clear that there are
computer programs available which enable everyone to calculate
binding energies, transition energies and wavefunctions with this
sophistication discussed above. Examples of calculations of
transition probabilities with this method are given in [15].

6. Additional corrections

In the results discussed in Table 11 additional contributions
which go beyond the usual MCDF procedure are already
included within some approximation. These corrections are
corrections due to a more realistic interaction between the
charged particles within the atom.

The main contribution comes from the Breit-operator which
is an expression for the transverse part of the e-e interaction.
This is often called magnetic interaetion and retardation. In the
usually used approximate form the operator reads

H
Br

= _e2(ai·~i + (GiVi)(a/vi)rii) (13)
rij 2

Details ean be found in [16-20]. This operator normally is
caleulated in perturbation theory to correct for the total energy
but is usually not included in the self-consistent process to
correet for the wavefunetions. On the other hand the contri­
bution due to this operator can now be calculated in a coupling
to good J [18-20].

The second largest correction is due to vacuum fluctuation
or self-energy. Usually Mohr's one-electron QED values [21, 22]
are used in a somehow sereened way [19]. This procedure is the
best one ean use at present but has no sound theoretical justifi­
cation. Better many-electron QED ealeulations are urgently
needed.

The third correction is the vacuum polarisation which is a
eorreetion of the nucleus-electron interaction. The main part
of it is the long known Uehling potential [23].
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Table III. Contribution of the Breit-operator and the QED cor­
rections for the innermost electron levels in Th and Fm

Table IV. Contributions to the transition energies of the Ipand
3p to IS transitions in He-like iron (in eV)

Table 111 shows the magnitude of these effects in very heavy
atoms for which it is known since a long time that these contri­
butions are absolutely necessary to get good agreement between
theory and experiment [16, 17]. That these additional contri­
butions are also important in low Z systems clearly is demon­
strated in Table IV which show the newest high precission
measurements and calculations in He-like iron [10].

Thorium Fermium

(a) Vacuum polarisation Is -80eV -148eV
Uehling term

2P1I2 -2eV -4eV
higher order Is +4eV +8eV

(b) Vacuum fluctuation Is +306 eV +457 eV
2P1/ 2 +7eV +15eV

(c) Breit-term
magnetic part Is +492eV +715eV

2Pl/2 +100eV +153eV
retardation Is -36eV -41eV

2P1I2 -10eV -13eV
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6616.77
74.06

-6.08
-3.55

1.28

6682.48
6682.7

Ip
1_

1S
0

3p
1_

1S
0

Hartree-Fock 6638.81 6616.77
Dirac corr. 70.22 59.00
Breit int. -6.10 -5.70
QED -3.52 -3.58
Correlation 1.29 1.30

(MCDF minus SCDF)

Theory 6700.70 6667.79
Experiment 6701.9 6667.5
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