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ABSTRACT. We present the Finite-Element-Method (FEM) in
its application to quantum mechanical problems solving for
diatomic molecules. Results for Hartree-Fock calculations
of H, and Hartree-Fock-Slater calculations of molecules like
N g%d CO have been obtained. The accuracy achieved with
1%55 then 500089r1d points for the total energies of these
systems is 107° a.u. , which is demonstrated for NZ'

1. INTRODUCTION

The Finite Element Method (FEM) dis a well known technique
for solving static and dynamical problems in engineering
science. Examples can be found in the textbooks of Ref. 1-
3. The idea of this method is to divide the space into a
number of 2 or 3 dimensional domains and describe the pro-
perties of idinterest on each of these elements separately
connected via boundary conditions. In engineering science
one uses low order polynomials to specify the interesting
quantities on each element.

We applied the FEM to quantum mechanical problems where the
accuracy required is very high. To achieve this accuracy we
were forced to use high order polynomials on each element
and, in order to minimize the total number of points, to use
a small number of elements.

2. THE HARTREE-FOCK-SLATER EQUATIONS
The Hartree-Fock equations for a diatomic molecule read
r) o.(r) = e, 0. (r) ;7 = 1,2,000,N0 (1)
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The interelectronic Coulomb potential VC(L) satisfies the
Poisson equation

vZ ve(r) = - 4r o(r) (4)

where p(r) is the total electronic density.

In the Hartree-Fock-Slater equations the nonlocal exchange
potential V”(r) of the Hartree-Fock equations 1is replaced
by the local exchange potential

VX(r) = - 3/2 @ (3/7 o (r))1/3 (5)

where o is a constant. We use this simplified form of a
local exchange with a = 0.7.
The total molecular energy then is

1 - - - (6)

The differential equations to be solved are the Schrddinger
type equation derived from Equ. (1) with potentials kept
féxed, and the Poisson equation (4) relating the potential
V™ to the electronic density

3. THE COORDINATE SYSTEM
To solve the Hartree-Fock-Slater differential equations for

a diatomic molecule numerically we <chose the prolate
spheroidal coordinates
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X = R/2 sinh{s) sin(t) cos(®)
Xy = R/2 sinh(s) sin(t) sin{w) (7)
X, = R/2 cosh(s) cos(t)

which where also used by Laaksonen et a1.4 and Becke5 for
their num erical approach. Within these coordinates the
unknown one electron wave functions are:

@;(s,t, ) = 9;(s,t) exp(i m o) ; (8)
m denotes the projection of the angular momentum onto the
internuclear axis.

Using this ansatz the Schrddinger type equation (1) can be
rewritten as a two dimensional differential equation

1 3 90; J 3Q;
S Y CR S e i Ry G Y IR EE S S
2 3s 3s 2 ot st
(9)
- 1/2 0% Ky(s,t) ©.(s,t) + K,(s,t) V(s,t) o(s,t)
- e Ky (s,t) ©.(s,t)

Similary we get for the Poisson equation (4)

1 9 av© 1 3 sv ¢
o e K (s,t) mem ) = = m=( Ky (s,t) - )

2 9ds 3s 2 ot st

(10)
= =47 K4(s,t) p(s,t)
with

Kl(s,t) = Kz(s,t) = R/2 sinh(s) sin{t)
Ky(s,t) = R/2 (sinhZ(s) + sin?(t))/(sinh(s) sin(t)) (11)
Ka(s.t) = R¥/2 (sinh?(s) + sin®(t)) sinh(s) sin(t) .

4. THE FINITE ELEMENT METHOD!™3

The FEM orginally was developed in engineering science 1in
order to calculate static and dynamic stresses of compli-
cated constructions. In order to apply the FEM to the solu-
tion of the Hartree-Fock-Slater equations, one best starts
from the equivalent variational principle
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c 2 c 2

ff 1 3V 1 (BV \

1, = {- - K (--- )- - K, [-ae

2 2 1\ g 2\ /
c (13)

+ 47 K,(s,t) p(s,t) V 3} ds dt

4

for the Poisson equation (10).

We subdivide the two dimensional space by the use of tri-
angles. 0On each element a number of points, the nodal
points, are chosen, If u (s,t) is the approximation of the
unknown function on the element with the number e, this
function is written as a linear combination of the nodal

values
P

u(s,t) = ] uf Ni(s,t) (14)
i=1

were u? is. the i-th nodal value of the e-th element. The
function N;{s,t) is the i-th shape function. The sum runs
over all p nodal values of the element.
Because of the subdivision of the region into N_ elements
the functionals I, equ. (12) and I, equ. (13) can be written
as a sum of e]eme*t integrals

N N
1, = 7y 1¢ and I, = )15 (15)
1 e=1 1 2 e=1 2

The substitution of the trial function (14) into the element
integrals (15) Teads to

IT - (ge)t~ﬂe'ge _ (Ee)t,ie,ge (16)
with the matrix elements
1 BN? e 3N$ N
Hio = = = it Ky === -- 4 Ky === == 4 4 (17)
J 4 3 9s st ot
2 e e
+( Kgm® + 2K, V) N Ny ds dt

and



1
_ e e
Sij = /I ; Kg Nj N5 ds dt (18)

and for the Poisson equation similary

Ig - (Ee)t'ge.ue _ (Ee)t,de (19)

with the matrix elements

1 aNf an€ aNS aNE
Dy, = - ] 1 Ky === --d 4 Ky === -= 13 ds dt (20)
J 2 3S 35S ot ot
and the vector elements
d. = 4v [[ K, o(s,t) N? ds dt . (21)

€ js the element nodal vector of the e-th ele-

The vector u
ment.
Adding the contributions of all elements leads to the ex-
pressions

t t

Iy, = weH-u - u-S-u (22)

and

I, = utep.u - utod (23)
where Et denotes the global nodal vector. Minimizing I, and
I, with respect to the nodal values 1leads to the matrix
e%genva]ue problem

ﬂ.y_ =€-§'_U_ (24)

for the Schrddinger type equation and to the matrix equa-
tion

D-u = d (25)

for the Poisson equation.

The calculation of the matrix elements (17, 18, 20, 21) is
done, numerically with a conical product Gauss integration
rule”.

To account for the asymptotic decrease of the potential ve
we introduce a function g(s,t)
Ve = g(s,t) - f'(s,t) (26)

and solve for the function fv(s,t) by the FEM.
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5. RESULTS

For the calculations the points were distributed equidistant
in both coordinates for simplicity. Such an equidistant
point distribution is not at all optimal and it will be
shown that point distributions which are physically more
adequate will increase the accuracy.

In Tab. I we compare the convergence of the results with
increasing grid size for both 5-th and for 6-th order poly-
nomials for the sy%gem N2. These results are expected to be

accurate within 10 A.Ue .
Table I:

N,, interﬁuclear distance R = 2.07 a.u.
L%aksonen this work, 5-th order polynomials

Points 5989 3136 4356

E -108.346622 -108.3466076 -108.3466090
{10 ) -13.981070 -13.98106828 -13.98106840
(109) -13.979661 -13.97965838 -13.97965850
(Zou) -1.007215 -1.00721472 -1.00721471
(Zog) -0.460725 -0.46072505 -0.46072505
(lﬂu) -0.404235 -0.40423462 -0.40423462
(309) -0.350058 0.35005852 -0.35005852

this work, 6-th order polynomials

Points 2401 3025 4489

E -108.3466090 -108.34660925 -108.34660934
Ilo ) -13.9810686 -13.98106844 -13.98106844
(108) -13.9796587 -13.97965854 -13.97965854
(207) -1.00721474 -1.00721471 -1.00721471
(208) -0.46072506 -0.46072505 -0.46072505
(lnu) -0.40423461 -0.40423462 -0.40423462
(309) -0.35005852 0.35005852 -0.35005852

Total energy and energy eigenvalues of the system N
for different grid sizes and different order of thé
polynomials on the elements. For the largest grids the
last figure 1is wuncertain. A1l values are given 1in
a.u. .

In Tab. II a step towards an optimized point distribution
is documented. In this table we compare the results for the
system N, for a 31*%31 points grid of 6-th order. In mesh A
we use a% equidistant distribution of the points whereas in
mesh B the s-coordinates (Equ. 7) of the vertices of the
triangles are distributed 1logarithmically improving the
accuracy by about a factor of 15.
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Table I1:

NZ’ internuclear distance R = 2.07 a.u.

6=th order polynomials

Mesh A Mesh B

Points 961 961

E -108.34645 -108.34659
flc ) -13.98104 -13.981066
(103) -13.97963 -13.979656
(207) -1.0072143 -1.0072150
(208) -0.4607255 -0.4607253
(lvu) -0.4042346 -0.4042347
(309) -0.3500577 0.3500587

Total energy and energy eigenvalues of
the system N for two different point
distributions, Mesh A refers to a equi-
distant grid with all elements of equal
size whereas mesh B refers to a lo-
garithmically point distribution in the
s-coordinate. All values are given in
d.U. o

The results presented are by 2 orders of magnitude mor
accurate then the results achieved by Laaksonen et al.
with the finite difference method, although we used a much
smaller number of points.

A Hartree-Fock approach to diatomic molecules will be one of
our next goals. The first attempt towards an optimized
element distribution shows a very nice increase in accura-
cy. With better adapted element distributions one may tackle
the 3-dimensional problems within reasonable computer
times.
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