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ABSTRACT. We present the Finite-Element-Method (FE~~) in
i ts appl i cat ion to quantum rnechani cal probl ems sol vi ng for
diatomic molecules. Results for Hartree-Fock calculations
of H? and Hartree-Fock-Slater calcu1ations of moleeules like
N and C0 have be e n 0 b t a i n e d , The ace u r a c y ach i e v e d wi t h
1~ s s t he n 5000 89r i d po i nt s f 0 r t he totale ne r 9 i es 0 f t he s e
systems is 10- a.u. , which is demonstrated for N

2•

1. INTRODUCTION

The F i n i teE 1 eme n t Met h 0 d (F E~1 ) isa we 1 1 k n 0 wn tee h n i q ue
for sol vi ng stat i c and dynami cal probl ems in engi neeri ng
science. Examples can be found in the textbooks of Ref. 1­
3. The idea of this method is to divide the space into a
number of 2 or 3 dimensional domains and describe the pro­
perties of interest on each of these e1 ements separately
connected vi a bounda ry cond i t ions. I n eng; n ee r i ng sc i ence
one uses low order polynomials to specify the interesting
quantities on each element.
We applied the FEM to quantum mechanical problems where the
accuracy required is very high. To achieve this accuracy we
were forced to use hi gh order pol ynomi al s on each el ement
and, in order to minimize the total number of points, to use
a small number of elements.

2. THE HARTREE-FOCK-SLATER EQUATIONS

The Hartree-Fock equations for a diatomic moleeule read

HHF(r) tp.(r) = E. tP.(r)
- 1 - 1 1-
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i = 1,2, ••• ,N ( 1 )
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The interelectronic Coulomb potential VC(L) satisfies the
Poisson equation

v2 Vc(~) = _ 4n p(~) (4)

where p(r) is the total electronic density.
I n t he Ha r t re e - F0 c k- S1at e r e qua t ion s t he non 10 ca 1 ex c ha nge
potential VX(r) of the Hartree-Fock equations is replaced
by the local exchange potential

VxC!:) = - 3/2 Cl (3/n p C!:))1/3 (5)

where Cl isa constant. We use thi s simpl i fi ed form of a
local exchange with Cl = 0.7.
The total molecular energy then is

N
L E. - 1/2

i=l ' ( 6 )

The differential equations to be solved are the Schrödinger
type equation derived from Equ. (1) with potentials kept
f~xed, and the Poisson equation (4) relating the potential
V to the electronic density

3. THE COORDINATE SYSTEM

To solve the Hartree-Fock-Slater differential equations for
a diatomic molecule numerically we chose the prolate
spheroidal coordinates
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Xl R/2 sinh{s) sin{t) cos(~)

X 2 R/ 2 s i nh( s) s i n ( t) s i n (<P ) ( 7 )

x3 R/2 cosh{s) cos{t)
whi ch where al so used by Laaksonen et a l , 4 and Becke 5 for
their num erical approach. Within these coordinates the
unknown one electron wave functions are:

4) i ( s , t , ) = tpi ( s , t ) e X p(i m l!) ) ( 8 )

m denotes the projecti on of the angul ar momentum onto the
internuclear axis.
Using this ansatz the Schrödinger type equation (I) can be
rewritten as a two dimensional differential equation

+ K4 ( s , t) V( s , t) lPi ( s , t )

1 d d~·
- --( K (s,t) -_! ) -
2 at 2 at

1 a a~.

- - - ( K (s, t ) - ~.! )
2 dS 1 dS

2
- 1 / 2 m K3 ( s , t) tpi ( s , t )

Ei K4 ( s , t ) tPi{s,t)

Similary we get for the Poisson equation (4)

1 a av c 1 a avc
- - --( K (s,t) --- ) - - --( K2 ( s , t )

2 dS 1 dS 2 at at

( 9 )

( IO )

with

K1 (s,t)
K3 ( s , t )

K4 ( s , t )

K2 ( s , t ) = R/2 sinh(s) sin(t)
R/2 (sinh 2(s)

+ sin 2(t))/(sinh(s) sin(t)) (11)

R3/2 (sinh 2(s)
+ sin 2(t)) sinh(s) sin(t)

4. THE FINITE ELEMENT METHOo l - 3

The FEr" 0 r gin all y was de ve 10 ped i n eng i nee r i n9 s c i e ncein
order to calcul ate static and dynamic stresses of compl i­
cated constructions. In order to apply the FEM to the solu­
tion of the Hartree-Fock-Sl ater equations, one best starts
from the equivalent variational principle
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JJ {-
{d\Pl 2 \ 1 (dlP i 2 \

K1 \ --- J- K2 --- J-
4 'as 4 'at
1 2 2 1 2

m K3 (lPi ) - - (V - Ei) K4 ( tf) i) } ds d t
4 2

( 12 )

( 13 )

for the Schrödinger type equation (9) and

1 avc 2 1 av c 2

I 2 = Jf {- 2 K1 (~; - ) - 4 K2 (;t- )
+ 4t! K4(s,t) p(s,t) vC

} ds dt

for the Poisson equation (10).
We subdivide the two dimensional space by the use of tri­
angles. On each element a number of points, the nodal
points, are chosen. If ue(s,t) is the approximation of the
unknown funct i on on the el ement wi th the number e, thi s
function is written as a linear combination of the nodal
values

p

ue(s,t) =.I ur Nr(S,t) (14)
1=1

were u: i s the i -th nodal val ue of the e-th el ement. The
fun c t i o'n Nr(s , t ) ist he i - t h s ha pe fun c t i on , The s um run s
over all p nodal values of the element.
ßecause of the subdivision of the region into N elements
the functionals I, equ. (12) and 12 equ. (13) can te written
as a sum of element integrals

and ( 15 )

( 16 )

The substitution of the trial function (14) into the element
integrals (15) leads to

e (e tee
I 1 = J!) • .!:! •~ -

with the matrix elements

1 aN: aN: aN: dN~
H.. JJ K1

1 __ J + K2
1

--~ + ( 17 ), J
4 as as at at

+ ( K3 m2 + 2 K4
V) N: N~ } ds dt

and 1 J



1
S.. = JJ - K4 N~ N~ ds dt

1 J 2 1 J

and for the Poisson equation similary

I~ = (~e)t'Qe.~e _ (~e)t.ie

with the matrix elements
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( 18 )

( 19 )

1
o.. = - JJ

1 J 2
( 20)

and the vector elements

d i = 4n JJ K4 p(s,t) N~ ds dt ( 21 )

The vector ue is the element nodal vector of the e-th ele­
ment.
Adding the contributions of all elements leads to the ex­
pressions

and

t
u • 0 • u

tu # d

( 22)

( 23)

where ut denotes the global nodal vector. Minimizing land
I with respect to the nodal val ues leads to the mAtrix
e'genvalue problem

H • u = E:. ~ • .!! (24)

for the Schrödinger type equation and to the matrix equa­
tion

o • u d ( 25)

for the Poisson equation.
The calculation of the matrix elements (17, 18,20,21) is
done 6 numerically with a conical product Gauss integration
rule •
To account for the asymptotic decrease of the potential VC

we introduce a function g(s,t)

VC = g(s,t) • fV(s,t)

and solve for the function fV(s,t) by the FEM.

( 26)
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5. RESULTS

For the calculations the points were distributed equidistant
in both coordinates for simplicity. Such an equidistant
point distribution is not at all optimal and it will be
shown that point distributions which are physically more
adequate will increase the accuracy.
In Tab. I we compare the convergence of the results with
increasing grid size for both 5-th and for 6-th order poly­
nomials for the sy~em N2 • These results are expected to be
accurate within 10- a.u ••

Table I:

N?, interijuclear distance R = 2.07 a.u.
Ldaksonen this work, 5-th order polynomials

5989
-108.346622

-13.981070
-13.979661

-1.007215
-0.460725
-0.404235
-0.350058

3136
-108.3466076

-13.98106828
-13.97965838

-1.00721472
-0.46072505
-0.40423462

0.35005852

4356
-108.3466090

-13.98106840
-13.97965850

-1.00721471
-0.46072505
-0.40423462
-0.35005852

this work, 6-th order polynomials

4489
-108.34660934

-13.98106844
-13.97965854

-1.00721471
-0.46072505
-0.40423462
-0.35005852

3025
-108.34660925

-13.98106844
-13.97965854

-1.00721471
-0.46072505
-0.40423462

0.35005852

2401
-108.3466090

-13.9810686
-13.9796587

-1.00721474
-0.46072506
-0.40423461
-0.35005852

Points
E
T1 0 )

( log)
(2o u)
( 20 g)
( In U )

(3 0u )
9

Total energy and energy ei genval ues of the system N?
for different grid s i ze s and different order of t he
polynomials on the elements. For the largest grids the
last figure is uncertain. All values are given in
a • u. •

In Tab. 11 a step towards an optimized point distribution
is documented. In this table we compare the results for the
system N for a 31*31 points grid of 6-th order. In mesh A
we use a~ equidistant distribution of the points whereas in
mesh B the s-coordinates (Equ. 7) of the vertices of the
triangles are distributed logarithmically improving the
accuracy by about a factor of 15.
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Table 11:

N2, internuclear distance R
6-th order polynomials

2.07 a.u.

t1 e s h B
961

-108.34659
-13.981066
-13.979656

-1.0072150
-0.4607253
-0.4042347

0.3500587

t1 es h A
961

-108.34645
-13.98104
-13.97963

-1.0072143
-0.4607255
-0.4042346
-0.3500577

Points
ETl 0 )

( 1 og)
(2 ou)
(2 og)
( 1 1T

U
)

( 3 oU)
9

Total energy and energy ei genval ues of
the system N2 for two different point
distributions. Mesh A refers to a equi­
distant grid with all elements of equal
si ze whereas mesh B refers to a 10­
garithmically point distribution in the
s-coordinate. All values are given in
a • u. •

The results presented are by 2 orders of magnitude mor~

accurate then the results achieved by Laaksonen et a l ,
with the finite difference method, although we used a much
smaller number of points.
A Hartree-Fock approach to diatomic moleeules will be one of
our next goals. The first attempt towards an optimized
element distribution shows a very nice increase in accura­
cy. With better adapted element distributions one may tackle
the 3-dimensional problems within reasonable computer
times.
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