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Solution of the Hartree-Fock-Slater equations for diatomic moleeules
by the finite-element method
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We present the finite-element method in its application to solving quantum-mechanical problems
for diatomic molecules. Results for Hartree-Fock calculations of H2 and Hartree-Fock-Slater cal­
culations for molecules like N2 and CO are presented. The accuracy achieved with fewer than 5000
grid points for the total energies of these systems is 10-8 a.u., which is about two orders of magni­
tude better than the accuracy of any other available method,
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the Hartree-Fock-Slater equations of N2 and CO as ex­
amples. The last seetion contains the conclusion and
outlook.

11. HARTREE·FOCK·SLATER EQUATIONS

Many publications'P describe the Hartree-Fock
method and its derivation in detail. We will, therefore,
merely provide a very brief description to define the phys­
ieal approximation and the equations which we are going
to solve with the FEM. Using a single Slater determinant
wave function for the N electrons in a diatomic moleeule,

with the one-electron wave functions 4Ji(ri) and the non­
relativistie Hamiltonian

the total energy of such a system can be calculated:

I. INTRODUCTION

The finite-element method (FEM) is a welI-known teeh­
nique to solve statie and dynamical problems in engineer­
ing scienee. Examples ean be found in the textbooks of
Refs. 1-3. The idea of this method is to split the space
into a number of two or three-dimensional domains and
to describe the properties of interest for each of these ele­
ments separately. The connection between these ele­
ments is done via boundary conditions. The standard ap­
proach .in engineering science is to use low-order polyno­
mials in order to specify the interesting quantities on
each element.

We applied the FEM to quantum-mechanical problems
such as the electronic structure of atoms or small diatom­
ic moleeules to obtain good wave funetions and total en­
ergies. Here the accuracy required is very high. In order
to achieve this accuracy we had to use high-order polyno­
mials on eaeh element and (in order to minimize the total
number of points) a small number of elements.

Seetion 11 briefty deseribes the Hartree-Foek-Slater
equations which we are going to solve, whereas Sec. 111
defines the coordinate system for the diatomic moleeules
diseussed by us. The applieation of the finite-element
method to this problem is discussed in Sec. IV followed
by description of the necessary boundary conditions and
self-consistency. Finally, we present results for the
Hartree-Fock equations of the ground state of H2, and
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The variation of this total energy with respect to the
one-eleetron wave funetions cPi(ri), subject to the eon­
straint of their orthonormality, leads to the Hartree-Fock
equations

The Hartree-Fock operator HHF(r) is defined by

(5)

(4) with
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z, Z2
h (r )= - tV2 - ---

Irl-rl Ir 2 - rl'

VC(r)= i~1 f 4>r(r') Ir~r' I 4>i(r')dr' ,

(6)

to be solved are the Schrödinger-type equations derived
from Eq. (4) with potentials kept fixed, and the Poisson
equation (7) relating the potential V C to the electronic
density p. The solution of the Hartree-Fock-Slater equa­
tions (4) has to be achieved iteratively. '

and

In addition, the interelectronic Coulomb potential
vC( r ) satisfies the Poisson equation

The Hartree-Fock-Slater equations (4), with the ex­
change part according to Eq. (8), are a system of coupled
integre-differential equations. The differential equations

I

(10)

(11)

111. CHOICE OF THE COORDINATE SYSTEM

For a numerical solution of the Hartree-Fock-Slater
differential equations for a diatomic molecule the coordi­
nate system must be chosen with great care. Because of
the axial symmetry of diatomic molecules we use orthog­
onal axial-symmetric coordinate systems as they allow a
two-dimensional treatment of the problem. They can be
written as

Using the ansatz (10) for the wave functions <Pi(r) the
Schrödinger-type equation (4) can be rewritten as a two­
dimensional differential equation in the axial-symmetric
coordinate system

Xl =/I(S,t)cos(cp) ,

X2 = /1 (S,t) sin(cp) ,

X3 =/2(s,t) ,

where the unknown one-electron wave functions are

m denotes the projection of the angular momentum onto
the internuclear axis. The interelectronic Coulomb po­
tential can be written as folIows:

(8)

(7)

VX(r)= -ta [3/ rrp (r )]1/3 ,

with a a constant. The simplified form of a local ex­
change with a=O.7 is used here because the solution of
the Hartree-Fock-Slater (HFS) equations with the FEM
discussed below depends only on the local form of the ap­
proximation. With this approach the total energy of the
molecular system is calculated as

N

Etot =~ Ei -tf p(r)Vc(r)dr-t f p(r)Vx(r)dr · (9)
;=1

where p( r) is the total electronic density.
In the case of the Hartree-Fock-Slater equations the

nonlocal exchange potential VX(r) of the Hartree-Fock
equations is replaced by the local statistical exchange po­
tential6~8

(12)

= -4rrK4(s,t)p(s,t) (13)

for the Poisson equation (7). The coefficient functions
K 1, K 2, K 3 , and K 4 are calculated from the transforma­
tion functions 11 and 12through

In the same way we obtain the two-dimensional
differential equation

1 a [ aVc] 1 a [ aV
C

1-2 as Kt(s,t)a;- -iat" K 2(s,t)---at

(15)X 2= (R /2) sinhs sint sincp ,

X 3 = (R /2) coshs cost .

With these transformation equations we can calculate the
coefficient functions to be

gll = [a~1 r+ [a~2 r
[

al l 1
2

[a/2]2
g22= at + at '
g33=/t·

We agree with Laaksonen et al.9- 11 and Beckel2 in
finding the prolate-spheroidal coordinates most suitable
for the properties of the self-consistent calculation of dia­
tomic molecules. The transformation equations for this
coordinate system are given by the equations

X 1 = (R /2) sinhs sint coscp ,(14)

and

K 3 = g I / 2 / g 33 , K 4 = g l / 2 ,

with
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FIG. 1. Nodal points of a fifth-order Lagrangian element.

erties can be taken into account, e.g., one can use small
elements in regions of physical importance and large ele­
ments in regions of lesser weight. Thus the point distri­
bution can be adapted to a given problem.

The next step in the FEM is to choose a trial function
for the element to approximate the solution of the
differential equation. In order to fulfill the continuity cri­
terion of the solution from one element to the next, the
trial functions are written in a special way. For each ele­
ment a number of points, the nodal points, are chosen. If
u "(s, t) is the approximation of the unknown function
over the element with the number e, this function is writ­
ten as a linear combination of the nodal values

where u{ is the ith nodal value of the eth element. The
function N{(s,t) is the ith shape function. The sum runs
over all nodal values of the element. Two main types of
elements exist, namely, the Lagrangian- and the
Hermitian-type elements. (If the interpolation of an un­
known function is calculated only due to the values of the
function at specified points this is called a Lagrange inter­
polation. The interpolation of the unknown function
which takes also the derivatives of the function into ac­
count is called a Hermite interpolation.P) Lagrangian
elements have only one nodal value per nodal point,
namely, the value of the unknown function. Hermitian
elements have more than one nodal value per nodal point,
because here also the derivatives of the functions are no­
dal values. One conclusion of Eq. (21) is that each shape
function equals 1 only at a single nodal point of the ele­
ment and equals 0 at all others. This restriction allows
the construction of the shape functions from the given
trial function.

We use Lagrange elements with two-dimensional poly­
nomials up to order 6 as trial function. To be able to con­
struct the shape functions we choose as many nodal
points for each elements as there are free coefficients of
the two-dimensional polynomials. Figure 1 shows the no­
dal points of an element for a fifth-order polynomial.

Because of the subdivision of the region into M ele­
ments the functionals 11 [Eq. (19)] and 12 [Eq. (20)] can

(21)
p

ue(s,t)= ~ u{N{(s,t) ,
;=1

IV. FINITE-ELEMENT METHOn (REFS. 1-3)

K I (s,t)=K2(s,t)=(R /2) sinhs sint ,

K 3(s,t)=(R /2)(sinh2s+sin2t )/(sinhs sinr ) , (16)

K 4(s,t),=(R 3 /2)(sinh2s+sin2t ).sinhs sint .

Other coordinate systems were also tested. For the
case of H2+ we found the coordinates with the transfor­
mation equations

XI =(R /2)[( l-c Ins )2_1]( I-t 2 ) coeq: ,

x2 =(R /2)[( l-c Ins )2_1]( I-t 2 ) sine , (17)

x~=(R/2)(I-clns)t ,

to be most useful. By varying the transformation param­
eter c of the transformation equations (17) very accurate
results could be achieved with a very small number of
points.P However, for the H2 problem we used the coor­
dinate system defined by the transformation equations

X I =(R /2)[(sinhs + 1)2_1]( I-t 2 ) covp ,

X 2= (R /2 )[ (sinhs + 1)2 - 1](1- t 2 ) sinc , (18)

x3 =(R /2)(sinhs + l)t .

The reason for this was that the solution of the Poisson
equation within the coordinate system (17) proved to be
unstable.

Originally the FEM was developed in engineering sei­
ence in order to calculate static and dynamic stresses of
complicated constructions. Recently, it has been dem on­
strated l4

-
20 that this method can also be used with great

success to solve quantum-mechanical problems. In order
to apply the FEM to the solution of the Hartree-Fock­
Slater equations, one best starts from the variational
equivalent of the second-order partial differential equa­
tions which, for the Schrödinger-type equation (12), takes
the form

1, = f f [-tK, [a~i r-tK2 [a~i r-tm2K3(~Y
-f(V-Ei)K4(~Y )dSdt , (19)

and for the Poisson equation (13),

12 = f f [-fK , [ a~cr-tK 2 [ a~cr
+41TK4(S,t)P(S,tlV

C
] ds dt . (20)

The idea of the FEM is to subdivide the space into N,
small domains called elements. In our case triangles are
used to subdivide the two-dimensional spaee of our prob­
lem. And it is at this point that one main advantage of
the FEM in contrast to other numerical methods, such as
the finite-difference method used by Laaksonen et
al.,9-11,21,22 becomes important. The size and shape of
elements can be defined very freely so that physical prop-
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and

with integrals running over the array of the element e.
The substitution of the trial funetion (21) into the ele­

ment integrals (22) leads to the following linear expres­
sion for the Sehrödinger-type equations:

~ 0 X ~

0 0 0

X rgJ rgJ tJ. g

~ 0 rgJ ~ 0

c: c: 6

~ 0 6 g
FIG. 2. Structure of the global matrices resulting from the

subdivision of a reetangular region given in Fig. 3. The matrix
elements of element 1 (2,3,4) are symbolized by 0 ( X, 0,6. ).

(23)

(22)

(25)

bewritten as a sum of element integrals
M M

I} = ~ /1' /2= ~ /i ,
e=l e=l

with the matrix elements

[
aN~ aN~ aN~ aN~

1 f f I) I)H;j=-4 K1a;-a;-+K2atat

+(K3m 2+2K
4VlN{NJ]dsdt (24)

For the Poisson equation we obtain the similar matrix
expression These eonditions lead to the matrix eigenvalue problem

for the Sehrödinger-type equation and to the matrix
equation

li =(ue )t·ne·ue_(ue)t·de ,

with the matrix elements

[
aN~ aN~ aN~ aN~ I

D;j=tf f K 1a;-- a/ +K2af- a/ ds dt

(26)

(27) 12·u=d

(32)

(33)

and

The vector u" is the element nodal veetor of the eth ele­
ment.

Adding the eontributions of all elements leads to the
expressions

5

6

3

42

for the Poisson equation. The order of this matrix equa­
tion is equal to the number Np of nodal variables. For
the Lagrangian elements used by us, this is equal to the
total number of points.

The ealeulation of tbe matrix elements (24,25,27,38) is
done numerieally with a eonieal produet Gauss integra­
tion rule.24 A number of only 7 X 7 integration points for
eaeh element proved to be suffieient for all ealeulations.

The matrix eigenvalue problem is solved by an inverse
veetor iteration method3,25 with modifieations due to the
iterative solution of the Hartree-Foek-Slater equations.
The matrix equation is solved by a Cholesky deeomposi­
tion. 3,26 All algorithms used at this point take eare of the
band strueture of the global matrices.:'

(28)

(30)

(29)

where u denotes the global nodal veetor.
The global matriees H, S, and n are band-struetured

matrices, beeause for any given nodal variable u, at point
(Si' t;) the sum over all elements runs only over those ele­
ments whieh share this point. As an example, Fig. 2
shows the strueture of the global matrix for the subdi­
vision of a reetangular region given in Fig. 3. The nodal
points are given by the vertiees of the triangles. Tbe no­
dal variables are numbered from 1 to 6 and the elements
from 1 to 4. The matrix elements of element 1 (2,3,4) are
marked with the symbols 0 (X,0,6 ).

With the substitution of the trial funetions the fune­
tionals I 1 and I 2 are seen to be funetions of the nodal
variables Ui : The eonditions for I 1 and /2 to be minimal
are

and the veetor elements

all a/2
-=0, --=0, i=I, ... ,Np.
au; au;

(31)

FIG. 3. Subdivision of a reetangular region with four tri­
angular elements. The enumeration of the nodal points leads to
a bandwidth of 3 for the corresponding global matrices.
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V. BOUNDARY CONDITIONS

To obtain the boundary conditions for the unknown
wave functions and the unknown potential it is useful to
introduce the coordinates

where the relation to the coordinates sand t used above
(15) is given by S=coshs and 1]=cost. Within these coor­
dinates the asymptotic behavior!' for the wave functions
4J(S, 1]) is

~~exp[ -( -2E)I/2(R /2)S], S-+ 00 (35)

where E is the one-electron energy eigenvalue. For the
boundary conditions of the wave functions we use the
value 4J = 0 for practical infinity. The error of this value
can be checked either from Eq. (35) or by variation of the
practical infinity point.

The asymptotic behavior of the interelectronic poten-
tial V C is . .

V C~N /(R /2s)=N /[(R /2) coshs], s-+ 00. (36)

To remove the N /S decrease of the potential V C we in-

Smax S

O -.:::I~_ __1___...1.___.1.__ ___.JI.....--~

o

Tt ----r---tr---.------tr'---,.

troduce a function g (s, t). Thus

VC=g(s,t)jv(s,t) . (37)

The function jV(s,t) is solved by the FEM. The function
g (s, t) is chosen to be

FIG. 5. Equidistant subdivision of the (s,t) region with 50
triangular elements. The nodal points on one element are distri­
buted according to Fig. 1.

(34)
S=('1 +'2)/R ,

11=('1 -'2 )/R ,

at practical infinity. Other choices for the function g (s, t)

are possible. Favorable are functions which also approxi­
mate the potential for small Sand include the dipole po­
tential of the electronic density for large S.

Calculate:
Shape function
Element matriees

Calculate:
Global matrix g,
Global veetor.d

Solve

g'y=~

g (s, r) 7=N/[ (R /2) coshs] .

The resulting boundary condition for f v(s, r) is

jV(s,t)= 1

(38)

(39)

VI. SELF·CONSISTENT SOLUTION

Calculate:
Global matrices

!j and .s

Cctcutnte.
Total Energy

Er

Figure 4 shows the ftow diagram of the computer pro­
gram. As a convergence criterion we use three parame­
ters. First the change Ile of the one-electron energy ei­
genvalues, second the maximal change Il v of the in­
terelectronic potential, and third the change IlE of the to­
tal energy. The most accurate results were obtained with

FIG.4. Flowchart of the finite-element program solving the
Hartree-Fock-Slater equations.

TABLE I. Convergence properties of total energy and energy
eigenvalue of the system H2 with increasing number of points.
All values are given in a.u,

H 2, internuclear distance R = 1.40 a.u,
ET E

-0.59583041
-0.59466119
-0.594658 13
-0.59465860
-0.59465856
-0.5946585694(3)

- 1.128737 69
-1.13362024
-1.13362884
-1.13362949
-1.13362956
-1.133629571 7(2)

Points

6X6
11XiI
16X 11
21x n
26X 11
41 X 16

Test
onvergenee

NoSolve.
.tty=e~y

Calculate:
Density s Is, t)
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rAßLE 11. Total energy and energy eigenvalues of the system N2 for different grid sizes and different orders of the polynomials
over the elements. The last figure for the largest grids is uncertain. All values are given in a.u.

Laaksonen et al. a

N2, internuclear distance R =2.07 a.u,
This work, fifth-order polynomials

Points
Er
E(lug)

E(luu)
E(2ug )

E(2uu )

E( I1Tu)

E(3ug )

5989
-108.346622
-13.981070
-13.979661
-1.007215
-0.460725
-0.404235
-0.350058

2601
-108.346605
-13.9810680
-13.979658 1
-1.00721471
- 0.460725 06
-0.40423461
-0.35005851

3136
-108.3466076
-13.981068'28
- 13.979658 38
-1.00721472
-0.46072505
- 0.40423462

0.35005852

3721
-108.3466086
-13.98106837
-13.97965847
-1.00721471
-0.46072505
-0.40423462
-0.35005852

4356
- 108.3466090
-13.98106840
-13.97965850
-1.00721471
-0.46072505
-0.40423462
-0.35005852

This .work, sixth-order polynomials

Points
ET

E(lUg}

E(tuu)

E(2ug )

E(2u u )

E(t1Tu )

E(3ug)

'Reference 11.

2401
-108.3466090
-13.9810686
-13.9796587
-1.00721474
-0.46072506
-0.404 23461
-0.35005852

3025
-108.34660925
-13.98106844
-13.97965854
-1.00721471
-0.46072505
- 0.404 234 62

0.35005852

3721
-108.34660932
-13.98106844
-13.97965854
-1.00721471
- 0.460725 05
-0.404 234 62
-0.35005853

4489
-108.34660934
-13.98106844
-13.97965854
-1.00721471
- 0.460725 05
- 0.404 234 62
-0.35005852

ae and Ii.E set to 10-8 a.u, and Ii. v = 10-8~ Typically the
change of the total energy Ii.E· was the most restricting
criterion for the convergence.

The self-consistent calculation is initialized by the vari­
able screening potential of Eichler and Wille. 27 With this
starting potential about 20 iterations were needed to
achieve convergence to 10-8•

VII. RESULTS

We present the results for some of the systems calculat­
ed by us. The systems here were chosen to be identical to
the systems already calculated by Laaksonen et al.,9-11,22
in order to compare the numerical quality of the results.

For the simplicity the points were distributed equidis­
tantly in the selected coordinate system. As an example,
Fig. 5 shows a triangularization of the two-dimensional
region with a total number of 50 elements. For the fifth-

order polynomials as trial functions this results in a total
number of 26 X 26 grid points, and in 31 X 31 grid points
for the sixth-order polynomials. Such an equidistant
point distribution is not at all optimal, and it will be
shown that point distributions, which are physically more
adequate, will increase the accuracy.

Table I shows the convergence of the total energy and
the lUg level of the system H 2 with increasing grid size.
For a number of only 26 X 11 grid points an accuracy
better than 10-8 was reached with fifth-order polynomi­
als. Increasing the number of grid points by a factor of
about 3 to 41 X 16 points enabled us to add two more
significant digits to a new benchmark with ten-figure ac­
curacy. This shows the stability of the FEM even for
highly accurate calculations.

The next system was N 2• In Table 11 we compare the
convergence of the results with increasing grid size for '
both fifth- and for sixth-order polynomials. For 2401

TABLE III. Total energy and energy eigenvalues of the system CO and BH for the largest grids used
so far. The last figure given is uncertain. All values are given in a.u.

Laaksonen et alea

BH CO
This work, sixth order

BH CO

Points
R
E T
E(10')

E(20')

E(30')

E(40')

E( 17T)

E(50')

"Reference 11.

2.366
-24.808852
-6.5323604
-0.4078652
-0.1731323

2.13
-112.129925
-18.744146
-9.911347
-1.044 171
-0.489071
-0.413613
-0.303029

4356
2.366

-24.80885148
-6.53236004
-0.407 8~5 19

0.17313242

4356
2.13

-112.12991528
-18.74414325
-9.911 34609
-1.044 17077
-0.48907075
-0.412612 71
- 0.303029 91
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TAHLE IV. Total energy and energy eigenvalues of the sys­
tem N2 for two different point distributions. Mesh A refers to
an equidistant grid with all elements of equal size, whereas mesh
B refers to a logarithrnic point distribution in the s coordinate.
All values are given in a.u.

N 2, internuclear distance R =2.07 a.u,
Sixth-order polynornials

Mesh A Mesh B

no special vector routines were used. About 90% of the
CPU time was needed to solve the matrix eigenvalue
problem (32) and the matrix equation (33). The CPU
time per iteration is about 20 seconds for the 31X 31
point grid with sixth-order polynomials. The increase of
CPU time with grid size is about

(40)

Points
Er
E( lag)
E( lau)
E(2ag )'

E(2a u )

E( I1Tu )

E(3ag )

961
-108.34645
-13.98104
-13.97963
-1.0072143
-0.4607255
-0.4042346
-0.3500577

961
-108.34659
-13.981066
-13.979656
-1.0072150
-0.4607253
-0.4042347

0.3500587

Here n denotes the number of grid points, n1 is the num­
ber of levels to be calculated, and mb is the bandwidth of
the global matrices. For the bandwidth mb we can write

(41)

when nord is the order of the polynomials of the trial
function. The last formula is only true for the regular
grids used up to now.

VIII. CONCLUSION AND OUTLOOK
points the accuracy of the sixth-order polynomial grid is
comparable to that of the 4356-point fifth-order polyno­
mial grid. This comparison shows clearly the advantage
of high-order trial functions for the FEM in order to ap­
ply this method to quantum-mechanical problems. These
results are expected to be accurate within 10-8 a.u. The
results for the asymmetric molecules CO and BH, given
in Table 111, are the results obtained with the largest
sixth -order grid.

In Table IV a step towards an optimized point distribu­
tion is documented. In this table we compare the results
of the system N2 for a 31X 31 point grid of sixth order.
In mesh A we use an equidistant distribution of the
points, whereas in mesh B the s coordinates [Eq. (15)] of
the vertices of the triangles are distributed logarithmical­
ly. The points used for the s coordinates are about 0.0,
0.091, 0.219, 0.348, 0.649, and 1.0 times the maximal s
value (for practical infinity we use 25 a.u, in this case).
The other nodal points for a single element are distribut­
ed equidistantly within that element. With this distribu­
tion of elements still far from being optimal the accuracy
of the results is about 1.0 X 10-s a.u. This is about a fac­
tor of 15 better than the accuracy of 1.5X 10-4 a.u.
achieved with the linear mesh A.

All calculations were performed on an IBM 3090-40E
mainframe. The FORTRAN vectorize option was used for
all routines handling the global matrices and vectors, but

1G. Strang and G. Fix, An Analysis 0/ the Finite Element
Method (Prentice-Hall, Englewood Cliffs, 1973).

20. H. Norrie and G. de Vries, An Introduction to Finite Ele­
ment Analysis (Academic, New York, 1978).

3H. R. Schwarz, Methode der Finiten Elemente (Teubner,
Stuttgart, 1980).

4J. C. Slater, Quantum Theory 0/ Atomic Structure, (McGraw­
HilI, New York, 1960).

sC. Froese-Fischer, The Hartree-Fock Method for Atoms
(McGraw-Hill, New York, 1977).

6J. C. Slater, Phys. Rev. 81, 385 (1951).

It has been demonstrated that the finite-element
method is adequate for solving the two-dimensional
Hartree-Fock-Slater equations with high numerical accu­
racy. The results presented are by two orders of magni­
tude more accurate than the results achieved by Laak­
sonen et al. 9-11,22 with the finite-difference method, al-
though we used a much smaller number of points. Up to
now no numerical instabilities have been found in the cal­
culations with increasing grid sizes. The main difference
between the engineering approaches of the FEM and the
current approach is the need of very-high-order trial
functions.

A Hartree-Fock approach to diatomic molecules is one
of our next goals. The first attempt towards an optimized
element distribution shows a very nice increase in accura­
cy. With better adaptedelement distributions we hope to
reach very accurate results with a very small number of
grid points. If this can be achieved one can think of at­
tacking a three-dimensional numerical calculation within
reasonable computer times.
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